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Reading Assignment 

Read Kaufman 2.1-4 and 4.2 
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Basic Problem 

 

? 

 
   

             
   

            

----- ----- 
----- 

Given: both parties already know the same secret  

How is this achieved in practice? Goal: send a message confidentially 

Any communication system that aims to guarantee 

confidentiality must solve this problem 
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Kerckhoffs's Principle 

An encryption scheme should be 
secure even if enemy knows 
everything about it except the key 

• Attacker knows all algorithms 

• Attacker does not know random numbers 

Do not rely on secrecy of the 
algorithms (“security by obscurity”) 

 Full name:  

Jean-Guillaume-Hubert-Victor-
François-Alexandre-Auguste 
Kerckhoffs von Nieuwenhof 

Easy lesson: 
use a good random number 
generator! 
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Randomness Matters! 
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One-Time Pad (Vernam Cipher) 

 
   

            

= 10111101… 
----- ----- 
----- 

= 00110010… 

 10001111…   
00110010… = 

 

 

 
    

   10111101… 

 

Key is a random bit sequence 
as long as the plaintext 

Encrypt by bitwise XOR of 
plaintext and key: 
ciphertext = plaintext  key 

Decrypt by bitwise XOR of 
ciphertext and key: 
ciphertext  key =  
(plaintext  key)  key = 
plaintext  (key  key) = 
plaintext  

Cipher achieves perfect secrecy if and only if  
there are as many possible keys as possible plaintexts, and 
every key is equally likely   (Claude Shannon, 1949) 
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Advantages of One-Time Pad 

Easy to compute 

• Encryption and decryption are the same operation 

• Bitwise XOR is very cheap to compute 

As secure as theoretically possible 

• Given a ciphertext, all plaintexts are equally likely, 
regardless of attacker’s computational resources 

• …if and only if  the key sequence is truly random 

– True randomness is expensive to obtain in large quantities 

• …if and only if  each key is as long as the plaintext 

– But how do the sender and the receiver communicate the key 
to each other?  Where do they store the key? 
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Problems with One-Time Pad 

Key must be as long as the plaintext 

• Impractical in most realistic scenarios 

• Still used for diplomatic and intelligence traffic 

Does not guarantee integrity 

• One-time pad only guarantees confidentiality 

• Attacker cannot recover plaintext, but can easily 
change it to something else 

Insecure if keys are reused 

• Attacker can obtain XOR of plaintexts 
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No Integrity 

 
   

            

= 10111101… 
----- ----- 
----- 

= 00110010… 

 10001111…   
00110010… = 

 

 

 
    

   10111101… 

 

Key is a random bit sequence 
as long as the plaintext 

Encrypt by bitwise XOR of 
plaintext and key: 
ciphertext = plaintext  key 

Decrypt by bitwise XOR of 
ciphertext and key: 
ciphertext  key =  
(plaintext  key)  key = 
plaintext  (key  key) = 
plaintext  

 
   

            

0 

0 
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Dangers of Reuse 

 
   

            

= 00000000… 
----- ----- 
----- 

= 00110010… 

 00110010…   
00110010… = 

 

 

 
    

   00000000… 

 

 
   

            

P1 
C1 

 
   

            

= 11111111… 
----- ----- 
----- 

= 00110010… 

 11001101…    

 

 

P2 
C2 

Learn relationship between plaintexts 

C1C2 = (P1K)(P2K) =  

(P1P2)(KK) = P1P2 
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Reducing Key Size 

What to do when it is infeasible to pre-share huge 
random keys? 

Use special cryptographic primitives: 

    block ciphers, stream ciphers 

• Single key can be re-used (with some restrictions) 

• Not as theoretically secure as one-time pad 
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Block Ciphers 

Operates on a single chunk (“block”) of plaintext 

• For example, 64 bits for DES, 128 bits for AES 

• Same key is reused for each block (can use short keys) 

Result should look like a random permutation 

Not impossible to break, just very expensive 

• If there is no more efficient algorithm (unproven 
assumption!), can only break the cipher by brute-force, 
try-every-possible-key search 

• Time and cost of breaking the cipher exceed the value 
and/or useful lifetime of protected information 
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Permutation 

1 

2 

3 

4 

1 

2 

3 

4 

 

  

 

CODE becomes DCEO 

For N-bit input, N! possible permutations 

Idea: split plaintext into blocks, for each block use 
secret key to pick a permutation, rinse and repeat 

• Without the key, permutation should “look random” 
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A Bit of Block Cipher History 

Playfair and variants (from 1854 until WWII) 

Feistel structure 

• “Ladder” structure: split input in half, put one half 
through the round and XOR with the other half 

• After 3 random rounds, ciphertext indistinguishable 
from a random permutation 

DES: Data Encryption Standard 

• Invented by IBM, issued as federal standard in 1977 

• 64-bit blocks, 56-bit key + 8 bits for parity 

• Very widely used (usually as 3DES) until recently 

– 3DES: DES + inverse DES + DES (with 2 or 3 different keys) 

Textbook 

Textbook 
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DES Operation (Simplified) 

Block of plaintext 

S S S S 

S S S S 

S S S S 

Key 
             

   Add some secret key bits 
to provide confusion 

Each S-box transforms  
its input bits in a  
“random-looking” way  
to provide diffusion  
(spread plaintext bits  
throughout ciphertext) 

 

   
           

   
           

 

repeat for several rounds 

Block of ciphertext 

                
Procedure must be reversible  

(for decryption) 
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Remember SHA-1? 

 Current message block 

Constant value 

Buffer contains final hash value 

Very similar to a block cipher, 

with message itself used 

as the key for each round  
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Advanced Encryption Standard (AES) 

US federal standard as of 2001 

Based on the Rijndael algorithm 

128-bit blocks, keys can be 128, 192 or 256 bits 

Unlike DES, does not use Feistel structure 

• The entire block is processed during each round 

Design uses some clever math 

• See section 8.5 of the textbook for a concise summary 
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Basic Structure of Rijndael 

128-bit plaintext 

(arranged as 4x4 array of 8-bit bytes) 
128-bit key 

 
 

 

S 
 

shuffle the array (16x16 substitution table) 

Shift rows 

 
shift array rows  
(1st unchanged, 2nd left by 1, 3rd left by 2, 4th left by 3) 

add key for this round 

 
 

 

 

Expand key 

 

 

repeat 10 times 

Mix columns 

 
mix 4 bytes in each column  
(each new byte depends on all bytes in old column) 
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Encrypting a Large Message 

So, we’ve got a good block cipher, but our 
plaintext is larger than 128-bit block size 

Electronic Code Book (ECB) mode 

• Split plaintext into blocks, encrypt each one separately 
using the block cipher 

Cipher Block Chaining (CBC) mode 

• Split plaintext into blocks, XOR each block with the 
result of encrypting previous blocks 

Also various counter modes, feedback modes, etc. 
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ECB Mode 

 Identical blocks of plaintext produce identical 
blocks of ciphertext 

No integrity checks: can mix and match blocks 

     

     

plaintext 

ciphertext 

block 
cipher 

 

 

block 
cipher 

 

 

block 
cipher 

 

 

block 
cipher 

 

 

block 
cipher 

 

 

key 

 
key 

 
key 

 
key 

 
key 
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Information Leakage in ECB Mode 
[Wikipedia] 

Encrypt in ECB mode 
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Adobe Passwords Stolen (2013) 

153 million account passwords 

• 56 million of them unique 

Encrypted using 3DES in ECB mode rather than 
hashed 

Password hints 



 

Sent with ciphertext 

(preferably encrypted) 
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CBC Mode: Encryption 

 Identical blocks of plaintext encrypted differently 

Last cipherblock depends on entire plaintext 
• Still does not guarantee integrity 

    

    

plaintext 

ciphertext 

block 
cipher 

 

 

block 
cipher 

 

 

block 
cipher 

 

 

block 
cipher 

 

 

 
 

Initialization 
vector 
(random)   

 
 

 
 

    key 

 
key 

 
key 

 
key 
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CBC Mode: Decryption 

    

    

plaintext 

ciphertext 

decrypt 

 

 

decrypt 

 

 

decrypt 

 

 

decrypt 

 

 
  

Initialization 
vector 

       

   
key 

 
key 

 
key 

 
key 
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ECB vs. CBC 

  
AES in ECB mode AES in CBC mode 

Similar plaintext 
blocks produce 
similar ciphertext 
blocks (not good!) 

 

[Picture due to Bart Preneel] 



 

slide 26 

Choosing the Initialization Vector 

Key used only once 

• No IV needed (can use IV=0) 

Key used multiple times 

• Best: fresh, random IV for every message 

• Can also use unique IV (eg, counter), but then the first 
step in CBC mode must be IV’  E(k, IV) 

– Example: Windows BitLocker 

– May not need to transmit IV with the ciphertext 

Multi-use key, unique messages 

• Synthetic IV: IV  F(k’, message) 

– F is a cryptographically secure keyed pseudorandom function 
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CBC and Electronic Voting 

Initialization 
vector 
(supposed to 
 be random) 

    

    

plaintext 

ciphertext 

DES 

 

 

DES 

 

 

DES 

 

 

DES 

 

 

 
 

  
 

 
 

 
    

Found in the source code for Diebold voting machines: 
 
DesCBCEncrypt((des_c_block*)tmp, (des_c_block*)record.m_Data, 

             totalSize, DESKEY, NULL, DES_ENCRYPT) 

[Kohno, Stubblefield, Rubin, Wallach] 

key 

 
key 

 
key 

 
key 
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CTR (Counter Mode) 

Still does not guarantee integrity 

Fragile if counter repeats 

    

    

plaintext 

ciphertext 

Enc(IV) 

 

 

Enc(IV+1) 

 

 

Enc(IV+2) 

 

 

Enc(IV+3) 

 

 

 
 

Random IV 

 
 

 
 

 
 

 

IV  

 

key 

 
key 

 
key 

 
key 
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When Is a Cipher “Secure”? 

Hard to recover plaintext from ciphertext? 

• What if attacker learns only some bits of the plaintext? 
Some function of the bits?  Some partial information 
about the plaintext? 

Fixed mapping from plaintexts to ciphertexts? 

• What if attacker sees two identical ciphertexts and 
infers that the corresponding plaintexts are identical? 

• What if attacker guesses the plaintext – can he verify 
his guess? 

• Implication: encryption must be randomized or stateful 
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How Can a Cipher Be Attacked? 

Attackers knows ciphertext and encryption algthm 

• What else does the attacker know? Depends on the 
application in which the cipher is used! 

Known-plaintext attack (stronger) 

• Knows some plaintext-ciphertext pairs 

Chosen-plaintext attack (even stronger) 

• Can obtain ciphertext for any plaintext of his choice 

Chosen-ciphertext attack (very strong) 

• Can decrypt any ciphertext except the target 

• Sometimes very realistic 
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Known-Plaintext Attack 

Extracting password from an encrypted PKZIP file … 

“… I opened the ZIP file and found a `logo.tif’ file, 
so I went to their main Web site and looked at all 
the files named `logo.tif.’ I downloaded them and 
zipped them all up and found one that matched 
the same checksum as the one in the protected 
ZIP file” 

With known plaintext, PkCrack took 5 minutes to 
extract the key 

• Biham-Kocher attack on PKZIP stream cipher  

[From “The Art of Intrusion”] 
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Chosen-Plaintext Attack 

Crook #1 changes 
his PIN to a number 
of his choice 

 

cipher(key,PIN) 

PIN is encrypted and 
transmitted to bank 

 

Crook #2 eavesdrops 
on the wire and learns 
ciphertext corresponding 
to chosen plaintext PIN 

… repeat for any PIN value 
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Very Informal Intuition 

Security against chosen-plaintext attack 

• Ciphertext leaks no information about the plaintext 

• Even if the attacker correctly guesses the plaintext, he 
cannot verify his guess 

• Every ciphertext is unique, encrypting same message 
twice produces completely different ciphertexts 

Security against chosen-ciphertext attack 

• Integrity protection – it is not possible to change the 
plaintext by modifying the ciphertext 

Minimum security  
requirement for a  
modern encryption scheme 
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The Chosen-Plaintext Game  

Attacker does not know the key 

He chooses as many plaintexts as he wants, and 
receives the corresponding ciphertexts 

When ready, he picks two plaintexts M0 and M1 

• He is even allowed to pick plaintexts for which he 
previously learned ciphertexts! 

He receives either a ciphertext of M0, or a 
ciphertext of M1 

He wins if he guesses correctly which one it is 
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Meaning of “Leaks No Information” 

Idea: given a ciphertext, attacker should not be 
able to learn even a single bit of useful 
information about the plaintext 

Let Enc(M0,M1,b) be a “magic box” that returns 
encrypted Mb 

• Given two plaintexts, the box always returns the 
ciphertext of the left plaintext or right plaintext 

• Attacker can use this box to obtain the ciphertext of 
any plaintext M by submitting M0=M1=M, or he can try 
to learn even more by submitting M0≠M1 

Attacker’s goal is to learn just this one bit b 

0 or 1 
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Chosen-Plaintext Security 

Consider two experiments (A is the attacker) 
 Experiment 0    Experiment 1 

       A interacts with Enc(-,-,0)     A interacts with Enc(-,-,1) 

       and outputs his guess of bit b    and outputs his guess of bit b 

• Identical except for the value of the secret bit 

• b is attacker’s guess of the secret bit 

Attacker’s advantage is defined as 

| Prob(A outputs 1 in Exp0) - Prob(A outputs 1 in Exp1)) | 

Encryption scheme is chosen-plaintext secure if 
this advantage is negligible for any efficient A 
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Simple Example 

Any deterministic, stateless symmetric encryption 
scheme is insecure  

• Attacker can easily distinguish encryptions of different 
plaintexts from encryptions of identical plaintexts 

• This includes ECB mode of common block ciphers! 

 Attacker A interacts with Enc(-,-,b) 

    Let X,Y be any two different plaintexts 

       C1  Enc(X,X,b);   C2  Enc(X,Y,b); 

       If C1=C2 then b=0 else b=1 

The advantage of this attacker A is 1 

Prob(A outputs 1 if b=0)=0    Prob(A outputs 1 if b=1)=1 
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Encrypt + MAC 

Goal: confidentiality + integrity + authentication 

Alice Bob 

K1, K2 
K1, K2 

 

msg   

 

MAC=HMAC(K2,msg) 

 

 

encrypt(msg), MAC(msg) 

 

 

 
 = 

? 

 

Encrypt(K1,msg) 

 

Decrypt 

Verify MAC 

encrypt(msg2), MAC(msg2) 

 

 

 

 

 

Can tell if messages 
are the same! 

MAC is deterministic: messages are equal  their MACs are equal 

Solution: Encrypt, then MAC    (or MAC, then encrypt) 

Breaks chosen-
plaintext security 


