

Vitaly Shmatikov

CS 361S

Overview of Symmetric Encryption

slide 2

Reading Assignment

Read Kaufman 2.1-4 and 4.2

slide 3

Basic Problem

?

----- -----

Given: both parties already know the same secret

How is this achieved in practice? Goal: send a message confidentially

Any communication system that aims to guarantee

confidentiality must solve this problem

slide 4

Kerckhoffs's Principle

An encryption scheme should be
secure even if enemy knows
everything about it except the key

• Attacker knows all algorithms

• Attacker does not know random numbers

Do not rely on secrecy of the
algorithms (“security by obscurity”)

 Full name:

Jean-Guillaume-Hubert-Victor-
François-Alexandre-Auguste
Kerckhoffs von Nieuwenhof

Easy lesson:
use a good random number
generator!

slide 5

Randomness Matters!

slide 6

One-Time Pad (Vernam Cipher)

= 10111101…
----- -----

= 00110010…

 10001111… 
00110010… =

 

 10111101…

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext  key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext  key =
(plaintext  key)  key =
plaintext  (key  key) =
plaintext

Cipher achieves perfect secrecy if and only if
there are as many possible keys as possible plaintexts, and
every key is equally likely (Claude Shannon, 1949)

slide 7

Advantages of One-Time Pad

Easy to compute

• Encryption and decryption are the same operation

• Bitwise XOR is very cheap to compute

As secure as theoretically possible

• Given a ciphertext, all plaintexts are equally likely,
regardless of attacker’s computational resources

• …if and only if the key sequence is truly random

– True randomness is expensive to obtain in large quantities

• …if and only if each key is as long as the plaintext

– But how do the sender and the receiver communicate the key
to each other? Where do they store the key?

slide 8

Problems with One-Time Pad

Key must be as long as the plaintext

• Impractical in most realistic scenarios

• Still used for diplomatic and intelligence traffic

Does not guarantee integrity

• One-time pad only guarantees confidentiality

• Attacker cannot recover plaintext, but can easily
change it to something else

Insecure if keys are reused

• Attacker can obtain XOR of plaintexts

slide 9

No Integrity

= 10111101…
----- -----

= 00110010…

 10001111… 
00110010… =

 

 10111101…

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext  key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext  key =
(plaintext  key)  key =
plaintext  (key  key) =
plaintext

0

0

slide 10

Dangers of Reuse

= 00000000…
----- -----

= 00110010…

 00110010… 
00110010… =

 

 00000000…

P1
C1

= 11111111…
----- -----

= 00110010…

 11001101… 

P2
C2

Learn relationship between plaintexts

C1C2 = (P1K)(P2K) =

(P1P2)(KK) = P1P2

slide 11

Reducing Key Size

What to do when it is infeasible to pre-share huge
random keys?

Use special cryptographic primitives:

 block ciphers, stream ciphers

• Single key can be re-used (with some restrictions)

• Not as theoretically secure as one-time pad

slide 12

Block Ciphers

Operates on a single chunk (“block”) of plaintext

• For example, 64 bits for DES, 128 bits for AES

• Same key is reused for each block (can use short keys)

Result should look like a random permutation

Not impossible to break, just very expensive

• If there is no more efficient algorithm (unproven
assumption!), can only break the cipher by brute-force,
try-every-possible-key search

• Time and cost of breaking the cipher exceed the value
and/or useful lifetime of protected information

slide 13

Permutation

1

2

3

4

1

2

3

4

CODE becomes DCEO

For N-bit input, N! possible permutations

Idea: split plaintext into blocks, for each block use
secret key to pick a permutation, rinse and repeat

• Without the key, permutation should “look random”

slide 14

A Bit of Block Cipher History

Playfair and variants (from 1854 until WWII)

Feistel structure

• “Ladder” structure: split input in half, put one half
through the round and XOR with the other half

• After 3 random rounds, ciphertext indistinguishable
from a random permutation

DES: Data Encryption Standard

• Invented by IBM, issued as federal standard in 1977

• 64-bit blocks, 56-bit key + 8 bits for parity

• Very widely used (usually as 3DES) until recently

– 3DES: DES + inverse DES + DES (with 2 or 3 different keys)

Textbook

Textbook

slide 15

DES Operation (Simplified)

Block of plaintext

S S S S

S S S S

S S S S

Key

 Add some secret key bits
to provide confusion

Each S-box transforms
its input bits in a
“random-looking” way
to provide diffusion
(spread plaintext bits
throughout ciphertext)

repeat for several rounds

Block of ciphertext

Procedure must be reversible

(for decryption)

slide 16

Remember SHA-1?

 Current message block

Constant value

Buffer contains final hash value

Very similar to a block cipher,

with message itself used

as the key for each round

slide 17

Advanced Encryption Standard (AES)

US federal standard as of 2001

Based on the Rijndael algorithm

128-bit blocks, keys can be 128, 192 or 256 bits

Unlike DES, does not use Feistel structure

• The entire block is processed during each round

Design uses some clever math

• See section 8.5 of the textbook for a concise summary

slide 18

Basic Structure of Rijndael

128-bit plaintext

(arranged as 4x4 array of 8-bit bytes)
128-bit key



S

shuffle the array (16x16 substitution table)

Shift rows

shift array rows
(1st unchanged, 2nd left by 1, 3rd left by 2, 4th left by 3)

add key for this round



Expand key

repeat 10 times

Mix columns

mix 4 bytes in each column
(each new byte depends on all bytes in old column)

slide 19

Encrypting a Large Message

So, we’ve got a good block cipher, but our
plaintext is larger than 128-bit block size

Electronic Code Book (ECB) mode

• Split plaintext into blocks, encrypt each one separately
using the block cipher

Cipher Block Chaining (CBC) mode

• Split plaintext into blocks, XOR each block with the
result of encrypting previous blocks

Also various counter modes, feedback modes, etc.

slide 20

ECB Mode

 Identical blocks of plaintext produce identical
blocks of ciphertext

No integrity checks: can mix and match blocks

plaintext

ciphertext

block
cipher

block
cipher

block
cipher

block
cipher

block
cipher

key

key

key

key

key

slide 21

Information Leakage in ECB Mode
[Wikipedia]

Encrypt in ECB mode

slide 22

Adobe Passwords Stolen (2013)

153 million account passwords

• 56 million of them unique

Encrypted using 3DES in ECB mode rather than
hashed

Password hints

Sent with ciphertext

(preferably encrypted)

slide 23

CBC Mode: Encryption

 Identical blocks of plaintext encrypted differently

Last cipherblock depends on entire plaintext
• Still does not guarantee integrity

plaintext

ciphertext

block
cipher

block
cipher

block
cipher

block
cipher



Initialization
vector
(random) 





 key

key

key

key

slide 24

CBC Mode: Decryption

plaintext

ciphertext

decrypt

decrypt

decrypt

decrypt



Initialization
vector

   

key

key

key

key

slide 25

ECB vs. CBC

AES in ECB mode AES in CBC mode

Similar plaintext
blocks produce
similar ciphertext
blocks (not good!)

[Picture due to Bart Preneel]

slide 26

Choosing the Initialization Vector

Key used only once

• No IV needed (can use IV=0)

Key used multiple times

• Best: fresh, random IV for every message

• Can also use unique IV (eg, counter), but then the first
step in CBC mode must be IV’  E(k, IV)

– Example: Windows BitLocker

– May not need to transmit IV with the ciphertext

Multi-use key, unique messages

• Synthetic IV: IV  F(k’, message)

– F is a cryptographically secure keyed pseudorandom function

slide 27

CBC and Electronic Voting

Initialization
vector
(supposed to
 be random)

plaintext

ciphertext

DES

DES

DES

DES



 





Found in the source code for Diebold voting machines:

DesCBCEncrypt((des_c_block*)tmp, (des_c_block*)record.m_Data,

 totalSize, DESKEY, NULL, DES_ENCRYPT)

[Kohno, Stubblefield, Rubin, Wallach]

key

key

key

key

slide 28

CTR (Counter Mode)

Still does not guarantee integrity

Fragile if counter repeats

plaintext

ciphertext

Enc(IV)

Enc(IV+1)

Enc(IV+2)

Enc(IV+3)



Random IV







IV

key

key

key

key

slide 29

When Is a Cipher “Secure”?

Hard to recover plaintext from ciphertext?

• What if attacker learns only some bits of the plaintext?
Some function of the bits? Some partial information
about the plaintext?

Fixed mapping from plaintexts to ciphertexts?

• What if attacker sees two identical ciphertexts and
infers that the corresponding plaintexts are identical?

• What if attacker guesses the plaintext – can he verify
his guess?

• Implication: encryption must be randomized or stateful

slide 30

How Can a Cipher Be Attacked?

Attackers knows ciphertext and encryption algthm

• What else does the attacker know? Depends on the
application in which the cipher is used!

Known-plaintext attack (stronger)

• Knows some plaintext-ciphertext pairs

Chosen-plaintext attack (even stronger)

• Can obtain ciphertext for any plaintext of his choice

Chosen-ciphertext attack (very strong)

• Can decrypt any ciphertext except the target

• Sometimes very realistic

slide 31

Known-Plaintext Attack

Extracting password from an encrypted PKZIP file …

“… I opened the ZIP file and found a `logo.tif’ file,
so I went to their main Web site and looked at all
the files named `logo.tif.’ I downloaded them and
zipped them all up and found one that matched
the same checksum as the one in the protected
ZIP file”

With known plaintext, PkCrack took 5 minutes to
extract the key

• Biham-Kocher attack on PKZIP stream cipher

[From “The Art of Intrusion”]

slide 32

Chosen-Plaintext Attack

Crook #1 changes
his PIN to a number
of his choice

cipher(key,PIN)

PIN is encrypted and
transmitted to bank

Crook #2 eavesdrops
on the wire and learns
ciphertext corresponding
to chosen plaintext PIN

… repeat for any PIN value

slide 33

Very Informal Intuition

Security against chosen-plaintext attack

• Ciphertext leaks no information about the plaintext

• Even if the attacker correctly guesses the plaintext, he
cannot verify his guess

• Every ciphertext is unique, encrypting same message
twice produces completely different ciphertexts

Security against chosen-ciphertext attack

• Integrity protection – it is not possible to change the
plaintext by modifying the ciphertext

Minimum security
requirement for a
modern encryption scheme

slide 34

The Chosen-Plaintext Game

Attacker does not know the key

He chooses as many plaintexts as he wants, and
receives the corresponding ciphertexts

When ready, he picks two plaintexts M0 and M1

• He is even allowed to pick plaintexts for which he
previously learned ciphertexts!

He receives either a ciphertext of M0, or a
ciphertext of M1

He wins if he guesses correctly which one it is

slide 35

Meaning of “Leaks No Information”

Idea: given a ciphertext, attacker should not be
able to learn even a single bit of useful
information about the plaintext

Let Enc(M0,M1,b) be a “magic box” that returns
encrypted Mb

• Given two plaintexts, the box always returns the
ciphertext of the left plaintext or right plaintext

• Attacker can use this box to obtain the ciphertext of
any plaintext M by submitting M0=M1=M, or he can try
to learn even more by submitting M0≠M1

Attacker’s goal is to learn just this one bit b

0 or 1

slide 36

Chosen-Plaintext Security

Consider two experiments (A is the attacker)
 Experiment 0 Experiment 1

 A interacts with Enc(-,-,0) A interacts with Enc(-,-,1)

 and outputs his guess of bit b and outputs his guess of bit b

• Identical except for the value of the secret bit

• b is attacker’s guess of the secret bit

Attacker’s advantage is defined as

| Prob(A outputs 1 in Exp0) - Prob(A outputs 1 in Exp1)) |

Encryption scheme is chosen-plaintext secure if
this advantage is negligible for any efficient A

slide 37

Simple Example

Any deterministic, stateless symmetric encryption
scheme is insecure

• Attacker can easily distinguish encryptions of different
plaintexts from encryptions of identical plaintexts

• This includes ECB mode of common block ciphers!

 Attacker A interacts with Enc(-,-,b)

 Let X,Y be any two different plaintexts

 C1  Enc(X,X,b); C2  Enc(X,Y,b);

 If C1=C2 then b=0 else b=1

The advantage of this attacker A is 1

Prob(A outputs 1 if b=0)=0 Prob(A outputs 1 if b=1)=1

slide 38

Encrypt + MAC

Goal: confidentiality + integrity + authentication

Alice Bob

K1, K2
K1, K2

msg

MAC=HMAC(K2,msg)

encrypt(msg), MAC(msg)

 =

?

Encrypt(K1,msg)

Decrypt

Verify MAC

encrypt(msg2), MAC(msg2)

Can tell if messages
are the same!

MAC is deterministic: messages are equal  their MACs are equal

Solution: Encrypt, then MAC (or MAC, then encrypt)

Breaks chosen-
plaintext security

