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Reading Assignment 

Read Kaufman 2.1-4 and 4.2 
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Basic Problem 

 

? 

 
   

             
   

            

----- ----- 
----- 

Given: both parties already know the same secret  

How is this achieved in practice? Goal: send a message confidentially 

Any communication system that aims to guarantee 

confidentiality must solve this problem 
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Kerckhoffs's Principle 

An encryption scheme should be 
secure even if enemy knows 
everything about it except the key 

• Attacker knows all algorithms 

• Attacker does not know random numbers 

Do not rely on secrecy of the 
algorithms (“security by obscurity”) 

 Full name:  

Jean-Guillaume-Hubert-Victor-
François-Alexandre-Auguste 
Kerckhoffs von Nieuwenhof 

Easy lesson: 
use a good random number 
generator! 
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Randomness Matters! 
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One-Time Pad (Vernam Cipher) 

 
   

            

= 10111101… 
----- ----- 
----- 

= 00110010… 

 10001111…   
00110010… = 

 

 

 
    

   10111101… 

 

Key is a random bit sequence 
as long as the plaintext 

Encrypt by bitwise XOR of 
plaintext and key: 
ciphertext = plaintext  key 

Decrypt by bitwise XOR of 
ciphertext and key: 
ciphertext  key =  
(plaintext  key)  key = 
plaintext  (key  key) = 
plaintext  

Cipher achieves perfect secrecy if and only if  
there are as many possible keys as possible plaintexts, and 
every key is equally likely   (Claude Shannon, 1949) 
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Advantages of One-Time Pad 

Easy to compute 

• Encryption and decryption are the same operation 

• Bitwise XOR is very cheap to compute 

As secure as theoretically possible 

• Given a ciphertext, all plaintexts are equally likely, 
regardless of attacker’s computational resources 

• …if and only if  the key sequence is truly random 

– True randomness is expensive to obtain in large quantities 

• …if and only if  each key is as long as the plaintext 

– But how do the sender and the receiver communicate the key 
to each other?  Where do they store the key? 
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Problems with One-Time Pad 

Key must be as long as the plaintext 

• Impractical in most realistic scenarios 

• Still used for diplomatic and intelligence traffic 

Does not guarantee integrity 

• One-time pad only guarantees confidentiality 

• Attacker cannot recover plaintext, but can easily 
change it to something else 

Insecure if keys are reused 

• Attacker can obtain XOR of plaintexts 
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No Integrity 

 
   

            

= 10111101… 
----- ----- 
----- 

= 00110010… 

 10001111…   
00110010… = 

 

 

 
    

   10111101… 

 

Key is a random bit sequence 
as long as the plaintext 

Encrypt by bitwise XOR of 
plaintext and key: 
ciphertext = plaintext  key 

Decrypt by bitwise XOR of 
ciphertext and key: 
ciphertext  key =  
(plaintext  key)  key = 
plaintext  (key  key) = 
plaintext  

 
   

            

0 

0 
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Dangers of Reuse 

 
   

            

= 00000000… 
----- ----- 
----- 

= 00110010… 

 00110010…   
00110010… = 

 

 

 
    

   00000000… 

 

 
   

            

P1 
C1 

 
   

            

= 11111111… 
----- ----- 
----- 

= 00110010… 

 11001101…    

 

 

P2 
C2 

Learn relationship between plaintexts 

C1C2 = (P1K)(P2K) =  

(P1P2)(KK) = P1P2 
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Reducing Key Size 

What to do when it is infeasible to pre-share huge 
random keys? 

Use special cryptographic primitives: 

    block ciphers, stream ciphers 

• Single key can be re-used (with some restrictions) 

• Not as theoretically secure as one-time pad 
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Block Ciphers 

Operates on a single chunk (“block”) of plaintext 

• For example, 64 bits for DES, 128 bits for AES 

• Same key is reused for each block (can use short keys) 

Result should look like a random permutation 

Not impossible to break, just very expensive 

• If there is no more efficient algorithm (unproven 
assumption!), can only break the cipher by brute-force, 
try-every-possible-key search 

• Time and cost of breaking the cipher exceed the value 
and/or useful lifetime of protected information 
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Permutation 

1 

2 

3 

4 

1 

2 

3 

4 

 

  

 

CODE becomes DCEO 

For N-bit input, N! possible permutations 

Idea: split plaintext into blocks, for each block use 
secret key to pick a permutation, rinse and repeat 

• Without the key, permutation should “look random” 
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A Bit of Block Cipher History 

Playfair and variants (from 1854 until WWII) 

Feistel structure 

• “Ladder” structure: split input in half, put one half 
through the round and XOR with the other half 

• After 3 random rounds, ciphertext indistinguishable 
from a random permutation 

DES: Data Encryption Standard 

• Invented by IBM, issued as federal standard in 1977 

• 64-bit blocks, 56-bit key + 8 bits for parity 

• Very widely used (usually as 3DES) until recently 

– 3DES: DES + inverse DES + DES (with 2 or 3 different keys) 

Textbook 

Textbook 
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DES Operation (Simplified) 

Block of plaintext 

S S S S 

S S S S 

S S S S 

Key 
             

   Add some secret key bits 
to provide confusion 

Each S-box transforms  
its input bits in a  
“random-looking” way  
to provide diffusion  
(spread plaintext bits  
throughout ciphertext) 

 

   
           

   
           

 

repeat for several rounds 

Block of ciphertext 

                
Procedure must be reversible  

(for decryption) 
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Remember SHA-1? 

 Current message block 

Constant value 

Buffer contains final hash value 

Very similar to a block cipher, 

with message itself used 

as the key for each round  
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Advanced Encryption Standard (AES) 

US federal standard as of 2001 

Based on the Rijndael algorithm 

128-bit blocks, keys can be 128, 192 or 256 bits 

Unlike DES, does not use Feistel structure 

• The entire block is processed during each round 

Design uses some clever math 

• See section 8.5 of the textbook for a concise summary 
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Basic Structure of Rijndael 

128-bit plaintext 

(arranged as 4x4 array of 8-bit bytes) 
128-bit key 

 
 

 

S 
 

shuffle the array (16x16 substitution table) 

Shift rows 

 
shift array rows  
(1st unchanged, 2nd left by 1, 3rd left by 2, 4th left by 3) 

add key for this round 

 
 

 

 

Expand key 

 

 

repeat 10 times 

Mix columns 

 
mix 4 bytes in each column  
(each new byte depends on all bytes in old column) 
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Encrypting a Large Message 

So, we’ve got a good block cipher, but our 
plaintext is larger than 128-bit block size 

Electronic Code Book (ECB) mode 

• Split plaintext into blocks, encrypt each one separately 
using the block cipher 

Cipher Block Chaining (CBC) mode 

• Split plaintext into blocks, XOR each block with the 
result of encrypting previous blocks 

Also various counter modes, feedback modes, etc. 
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ECB Mode 

 Identical blocks of plaintext produce identical 
blocks of ciphertext 

No integrity checks: can mix and match blocks 

     

     

plaintext 

ciphertext 

block 
cipher 

 

 

block 
cipher 

 

 

block 
cipher 

 

 

block 
cipher 

 

 

block 
cipher 

 

 

key 

 
key 

 
key 

 
key 

 
key 
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Information Leakage in ECB Mode 
[Wikipedia] 

Encrypt in ECB mode 
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Adobe Passwords Stolen (2013) 

153 million account passwords 

• 56 million of them unique 

Encrypted using 3DES in ECB mode rather than 
hashed 

Password hints 



 

Sent with ciphertext 

(preferably encrypted) 
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CBC Mode: Encryption 

 Identical blocks of plaintext encrypted differently 

Last cipherblock depends on entire plaintext 
• Still does not guarantee integrity 

    

    

plaintext 

ciphertext 

block 
cipher 

 

 

block 
cipher 

 

 

block 
cipher 

 

 

block 
cipher 

 

 

 
 

Initialization 
vector 
(random)   

 
 

 
 

    key 

 
key 

 
key 

 
key 
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CBC Mode: Decryption 

    

    

plaintext 

ciphertext 

decrypt 

 

 

decrypt 

 

 

decrypt 

 

 

decrypt 

 

 
  

Initialization 
vector 

       

   
key 

 
key 

 
key 

 
key 
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ECB vs. CBC 

  
AES in ECB mode AES in CBC mode 

Similar plaintext 
blocks produce 
similar ciphertext 
blocks (not good!) 

 

[Picture due to Bart Preneel] 
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Choosing the Initialization Vector 

Key used only once 

• No IV needed (can use IV=0) 

Key used multiple times 

• Best: fresh, random IV for every message 

• Can also use unique IV (eg, counter), but then the first 
step in CBC mode must be IV’  E(k, IV) 

– Example: Windows BitLocker 

– May not need to transmit IV with the ciphertext 

Multi-use key, unique messages 

• Synthetic IV: IV  F(k’, message) 

– F is a cryptographically secure keyed pseudorandom function 
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CBC and Electronic Voting 

Initialization 
vector 
(supposed to 
 be random) 

    

    

plaintext 

ciphertext 

DES 

 

 

DES 

 

 

DES 

 

 

DES 

 

 

 
 

  
 

 
 

 
    

Found in the source code for Diebold voting machines: 
 
DesCBCEncrypt((des_c_block*)tmp, (des_c_block*)record.m_Data, 

             totalSize, DESKEY, NULL, DES_ENCRYPT) 

[Kohno, Stubblefield, Rubin, Wallach] 

key 

 
key 

 
key 

 
key 
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CTR (Counter Mode) 

Still does not guarantee integrity 

Fragile if counter repeats 

    

    

plaintext 

ciphertext 

Enc(IV) 

 

 

Enc(IV+1) 

 

 

Enc(IV+2) 

 

 

Enc(IV+3) 

 

 

 
 

Random IV 

 
 

 
 

 
 

 

IV  

 

key 

 
key 

 
key 

 
key 
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When Is a Cipher “Secure”? 

Hard to recover plaintext from ciphertext? 

• What if attacker learns only some bits of the plaintext? 
Some function of the bits?  Some partial information 
about the plaintext? 

Fixed mapping from plaintexts to ciphertexts? 

• What if attacker sees two identical ciphertexts and 
infers that the corresponding plaintexts are identical? 

• What if attacker guesses the plaintext – can he verify 
his guess? 

• Implication: encryption must be randomized or stateful 



 

slide 30 

How Can a Cipher Be Attacked? 

Attackers knows ciphertext and encryption algthm 

• What else does the attacker know? Depends on the 
application in which the cipher is used! 

Known-plaintext attack (stronger) 

• Knows some plaintext-ciphertext pairs 

Chosen-plaintext attack (even stronger) 

• Can obtain ciphertext for any plaintext of his choice 

Chosen-ciphertext attack (very strong) 

• Can decrypt any ciphertext except the target 

• Sometimes very realistic 
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Known-Plaintext Attack 

Extracting password from an encrypted PKZIP file … 

“… I opened the ZIP file and found a `logo.tif’ file, 
so I went to their main Web site and looked at all 
the files named `logo.tif.’ I downloaded them and 
zipped them all up and found one that matched 
the same checksum as the one in the protected 
ZIP file” 

With known plaintext, PkCrack took 5 minutes to 
extract the key 

• Biham-Kocher attack on PKZIP stream cipher  

[From “The Art of Intrusion”] 
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Chosen-Plaintext Attack 

Crook #1 changes 
his PIN to a number 
of his choice 

 

cipher(key,PIN) 

PIN is encrypted and 
transmitted to bank 

 

Crook #2 eavesdrops 
on the wire and learns 
ciphertext corresponding 
to chosen plaintext PIN 

… repeat for any PIN value 



 

slide 33 

Very Informal Intuition 

Security against chosen-plaintext attack 

• Ciphertext leaks no information about the plaintext 

• Even if the attacker correctly guesses the plaintext, he 
cannot verify his guess 

• Every ciphertext is unique, encrypting same message 
twice produces completely different ciphertexts 

Security against chosen-ciphertext attack 

• Integrity protection – it is not possible to change the 
plaintext by modifying the ciphertext 

Minimum security  
requirement for a  
modern encryption scheme 

 



 

slide 34 

The Chosen-Plaintext Game  

Attacker does not know the key 

He chooses as many plaintexts as he wants, and 
receives the corresponding ciphertexts 

When ready, he picks two plaintexts M0 and M1 

• He is even allowed to pick plaintexts for which he 
previously learned ciphertexts! 

He receives either a ciphertext of M0, or a 
ciphertext of M1 

He wins if he guesses correctly which one it is 
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Meaning of “Leaks No Information” 

Idea: given a ciphertext, attacker should not be 
able to learn even a single bit of useful 
information about the plaintext 

Let Enc(M0,M1,b) be a “magic box” that returns 
encrypted Mb 

• Given two plaintexts, the box always returns the 
ciphertext of the left plaintext or right plaintext 

• Attacker can use this box to obtain the ciphertext of 
any plaintext M by submitting M0=M1=M, or he can try 
to learn even more by submitting M0≠M1 

Attacker’s goal is to learn just this one bit b 

0 or 1 
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Chosen-Plaintext Security 

Consider two experiments (A is the attacker) 
 Experiment 0    Experiment 1 

       A interacts with Enc(-,-,0)     A interacts with Enc(-,-,1) 

       and outputs his guess of bit b    and outputs his guess of bit b 

• Identical except for the value of the secret bit 

• b is attacker’s guess of the secret bit 

Attacker’s advantage is defined as 

| Prob(A outputs 1 in Exp0) - Prob(A outputs 1 in Exp1)) | 

Encryption scheme is chosen-plaintext secure if 
this advantage is negligible for any efficient A 
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Simple Example 

Any deterministic, stateless symmetric encryption 
scheme is insecure  

• Attacker can easily distinguish encryptions of different 
plaintexts from encryptions of identical plaintexts 

• This includes ECB mode of common block ciphers! 

 Attacker A interacts with Enc(-,-,b) 

    Let X,Y be any two different plaintexts 

       C1  Enc(X,X,b);   C2  Enc(X,Y,b); 

       If C1=C2 then b=0 else b=1 

The advantage of this attacker A is 1 

Prob(A outputs 1 if b=0)=0    Prob(A outputs 1 if b=1)=1 
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Encrypt + MAC 

Goal: confidentiality + integrity + authentication 

Alice Bob 

K1, K2 
K1, K2 

 

msg   

 

MAC=HMAC(K2,msg) 

 

 

encrypt(msg), MAC(msg) 

 

 

 
 = 

? 

 

Encrypt(K1,msg) 

 

Decrypt 

Verify MAC 

encrypt(msg2), MAC(msg2) 

 

 

 

 

 

Can tell if messages 
are the same! 

MAC is deterministic: messages are equal  their MACs are equal 

Solution: Encrypt, then MAC    (or MAC, then encrypt) 

Breaks chosen-
plaintext security 


