

Vitaly Shmatikov

CS 361S

Overview of Symmetric Encryption

slide 2

Reading Assignment

Read Kaufman 2.1-4 and 4.2

slide 3

Basic Problem

?

----- -----

Given: both parties already know the same secret

How is this achieved in practice? Goal: send a message confidentially

Any communication system that aims to guarantee

confidentiality must solve this problem

slide 4

Kerckhoffs's Principle

An encryption scheme should be
secure even if enemy knows
everything about it except the key

• Attacker knows all algorithms

• Attacker does not know random numbers

Do not rely on secrecy of the
algorithms (“security by obscurity”)

 Full name:

Jean-Guillaume-Hubert-Victor-
François-Alexandre-Auguste
Kerckhoffs von Nieuwenhof

Easy lesson:
use a good random number
generator!

slide 5

Randomness Matters!

slide 6

One-Time Pad (Vernam Cipher)

= 10111101…
----- -----

= 00110010…

 10001111…
00110010… =

 10111101…

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext key =
(plaintext key) key =
plaintext (key key) =
plaintext

Cipher achieves perfect secrecy if and only if
there are as many possible keys as possible plaintexts, and
every key is equally likely (Claude Shannon, 1949)

slide 7

Advantages of One-Time Pad

Easy to compute

• Encryption and decryption are the same operation

• Bitwise XOR is very cheap to compute

As secure as theoretically possible

• Given a ciphertext, all plaintexts are equally likely,
regardless of attacker’s computational resources

• …if and only if the key sequence is truly random

– True randomness is expensive to obtain in large quantities

• …if and only if each key is as long as the plaintext

– But how do the sender and the receiver communicate the key
to each other? Where do they store the key?

slide 8

Problems with One-Time Pad

Key must be as long as the plaintext

• Impractical in most realistic scenarios

• Still used for diplomatic and intelligence traffic

Does not guarantee integrity

• One-time pad only guarantees confidentiality

• Attacker cannot recover plaintext, but can easily
change it to something else

Insecure if keys are reused

• Attacker can obtain XOR of plaintexts

slide 9

No Integrity

= 10111101…
----- -----

= 00110010…

 10001111…
00110010… =

 10111101…

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext key =
(plaintext key) key =
plaintext (key key) =
plaintext

0

0

slide 10

Dangers of Reuse

= 00000000…
----- -----

= 00110010…

 00110010…
00110010… =

 00000000…

P1
C1

= 11111111…
----- -----

= 00110010…

 11001101…

P2
C2

Learn relationship between plaintexts

C1C2 = (P1K)(P2K) =

(P1P2)(KK) = P1P2

slide 11

Reducing Key Size

What to do when it is infeasible to pre-share huge
random keys?

Use special cryptographic primitives:

 block ciphers, stream ciphers

• Single key can be re-used (with some restrictions)

• Not as theoretically secure as one-time pad

slide 12

Block Ciphers

Operates on a single chunk (“block”) of plaintext

• For example, 64 bits for DES, 128 bits for AES

• Same key is reused for each block (can use short keys)

Result should look like a random permutation

Not impossible to break, just very expensive

• If there is no more efficient algorithm (unproven
assumption!), can only break the cipher by brute-force,
try-every-possible-key search

• Time and cost of breaking the cipher exceed the value
and/or useful lifetime of protected information

slide 13

Permutation

1

2

3

4

1

2

3

4

CODE becomes DCEO

For N-bit input, N! possible permutations

Idea: split plaintext into blocks, for each block use
secret key to pick a permutation, rinse and repeat

• Without the key, permutation should “look random”

slide 14

A Bit of Block Cipher History

Playfair and variants (from 1854 until WWII)

Feistel structure

• “Ladder” structure: split input in half, put one half
through the round and XOR with the other half

• After 3 random rounds, ciphertext indistinguishable
from a random permutation

DES: Data Encryption Standard

• Invented by IBM, issued as federal standard in 1977

• 64-bit blocks, 56-bit key + 8 bits for parity

• Very widely used (usually as 3DES) until recently

– 3DES: DES + inverse DES + DES (with 2 or 3 different keys)

Textbook

Textbook

slide 15

DES Operation (Simplified)

Block of plaintext

S S S S

S S S S

S S S S

Key

 Add some secret key bits
to provide confusion

Each S-box transforms
its input bits in a
“random-looking” way
to provide diffusion
(spread plaintext bits
throughout ciphertext)

repeat for several rounds

Block of ciphertext

Procedure must be reversible

(for decryption)

slide 16

Remember SHA-1?

 Current message block

Constant value

Buffer contains final hash value

Very similar to a block cipher,

with message itself used

as the key for each round

slide 17

Advanced Encryption Standard (AES)

US federal standard as of 2001

Based on the Rijndael algorithm

128-bit blocks, keys can be 128, 192 or 256 bits

Unlike DES, does not use Feistel structure

• The entire block is processed during each round

Design uses some clever math

• See section 8.5 of the textbook for a concise summary

slide 18

Basic Structure of Rijndael

128-bit plaintext

(arranged as 4x4 array of 8-bit bytes)
128-bit key

S

shuffle the array (16x16 substitution table)

Shift rows

shift array rows
(1st unchanged, 2nd left by 1, 3rd left by 2, 4th left by 3)

add key for this round

Expand key

repeat 10 times

Mix columns

mix 4 bytes in each column
(each new byte depends on all bytes in old column)

slide 19

Encrypting a Large Message

So, we’ve got a good block cipher, but our
plaintext is larger than 128-bit block size

Electronic Code Book (ECB) mode

• Split plaintext into blocks, encrypt each one separately
using the block cipher

Cipher Block Chaining (CBC) mode

• Split plaintext into blocks, XOR each block with the
result of encrypting previous blocks

Also various counter modes, feedback modes, etc.

slide 20

ECB Mode

 Identical blocks of plaintext produce identical
blocks of ciphertext

No integrity checks: can mix and match blocks

plaintext

ciphertext

block
cipher

block
cipher

block
cipher

block
cipher

block
cipher

key

key

key

key

key

slide 21

Information Leakage in ECB Mode
[Wikipedia]

Encrypt in ECB mode

slide 22

Adobe Passwords Stolen (2013)

153 million account passwords

• 56 million of them unique

Encrypted using 3DES in ECB mode rather than
hashed

Password hints

Sent with ciphertext

(preferably encrypted)

slide 23

CBC Mode: Encryption

 Identical blocks of plaintext encrypted differently

Last cipherblock depends on entire plaintext
• Still does not guarantee integrity

plaintext

ciphertext

block
cipher

block
cipher

block
cipher

block
cipher

Initialization
vector
(random)

 key

key

key

key

slide 24

CBC Mode: Decryption

plaintext

ciphertext

decrypt

decrypt

decrypt

decrypt

Initialization
vector

key

key

key

key

slide 25

ECB vs. CBC

AES in ECB mode AES in CBC mode

Similar plaintext
blocks produce
similar ciphertext
blocks (not good!)

[Picture due to Bart Preneel]

slide 26

Choosing the Initialization Vector

Key used only once

• No IV needed (can use IV=0)

Key used multiple times

• Best: fresh, random IV for every message

• Can also use unique IV (eg, counter), but then the first
step in CBC mode must be IV’ E(k, IV)

– Example: Windows BitLocker

– May not need to transmit IV with the ciphertext

Multi-use key, unique messages

• Synthetic IV: IV F(k’, message)

– F is a cryptographically secure keyed pseudorandom function

slide 27

CBC and Electronic Voting

Initialization
vector
(supposed to
 be random)

plaintext

ciphertext

DES

DES

DES

DES

Found in the source code for Diebold voting machines:

DesCBCEncrypt((des_c_block*)tmp, (des_c_block*)record.m_Data,

 totalSize, DESKEY, NULL, DES_ENCRYPT)

[Kohno, Stubblefield, Rubin, Wallach]

key

key

key

key

slide 28

CTR (Counter Mode)

Still does not guarantee integrity

Fragile if counter repeats

plaintext

ciphertext

Enc(IV)

Enc(IV+1)

Enc(IV+2)

Enc(IV+3)

Random IV

IV

key

key

key

key

slide 29

When Is a Cipher “Secure”?

Hard to recover plaintext from ciphertext?

• What if attacker learns only some bits of the plaintext?
Some function of the bits? Some partial information
about the plaintext?

Fixed mapping from plaintexts to ciphertexts?

• What if attacker sees two identical ciphertexts and
infers that the corresponding plaintexts are identical?

• What if attacker guesses the plaintext – can he verify
his guess?

• Implication: encryption must be randomized or stateful

slide 30

How Can a Cipher Be Attacked?

Attackers knows ciphertext and encryption algthm

• What else does the attacker know? Depends on the
application in which the cipher is used!

Known-plaintext attack (stronger)

• Knows some plaintext-ciphertext pairs

Chosen-plaintext attack (even stronger)

• Can obtain ciphertext for any plaintext of his choice

Chosen-ciphertext attack (very strong)

• Can decrypt any ciphertext except the target

• Sometimes very realistic

slide 31

Known-Plaintext Attack

Extracting password from an encrypted PKZIP file …

“… I opened the ZIP file and found a `logo.tif’ file,
so I went to their main Web site and looked at all
the files named `logo.tif.’ I downloaded them and
zipped them all up and found one that matched
the same checksum as the one in the protected
ZIP file”

With known plaintext, PkCrack took 5 minutes to
extract the key

• Biham-Kocher attack on PKZIP stream cipher

[From “The Art of Intrusion”]

slide 32

Chosen-Plaintext Attack

Crook #1 changes
his PIN to a number
of his choice

cipher(key,PIN)

PIN is encrypted and
transmitted to bank

Crook #2 eavesdrops
on the wire and learns
ciphertext corresponding
to chosen plaintext PIN

… repeat for any PIN value

slide 33

Very Informal Intuition

Security against chosen-plaintext attack

• Ciphertext leaks no information about the plaintext

• Even if the attacker correctly guesses the plaintext, he
cannot verify his guess

• Every ciphertext is unique, encrypting same message
twice produces completely different ciphertexts

Security against chosen-ciphertext attack

• Integrity protection – it is not possible to change the
plaintext by modifying the ciphertext

Minimum security
requirement for a
modern encryption scheme

slide 34

The Chosen-Plaintext Game

Attacker does not know the key

He chooses as many plaintexts as he wants, and
receives the corresponding ciphertexts

When ready, he picks two plaintexts M0 and M1

• He is even allowed to pick plaintexts for which he
previously learned ciphertexts!

He receives either a ciphertext of M0, or a
ciphertext of M1

He wins if he guesses correctly which one it is

slide 35

Meaning of “Leaks No Information”

Idea: given a ciphertext, attacker should not be
able to learn even a single bit of useful
information about the plaintext

Let Enc(M0,M1,b) be a “magic box” that returns
encrypted Mb

• Given two plaintexts, the box always returns the
ciphertext of the left plaintext or right plaintext

• Attacker can use this box to obtain the ciphertext of
any plaintext M by submitting M0=M1=M, or he can try
to learn even more by submitting M0≠M1

Attacker’s goal is to learn just this one bit b

0 or 1

slide 36

Chosen-Plaintext Security

Consider two experiments (A is the attacker)
 Experiment 0 Experiment 1

 A interacts with Enc(-,-,0) A interacts with Enc(-,-,1)

 and outputs his guess of bit b and outputs his guess of bit b

• Identical except for the value of the secret bit

• b is attacker’s guess of the secret bit

Attacker’s advantage is defined as

| Prob(A outputs 1 in Exp0) - Prob(A outputs 1 in Exp1)) |

Encryption scheme is chosen-plaintext secure if
this advantage is negligible for any efficient A

slide 37

Simple Example

Any deterministic, stateless symmetric encryption
scheme is insecure

• Attacker can easily distinguish encryptions of different
plaintexts from encryptions of identical plaintexts

• This includes ECB mode of common block ciphers!

 Attacker A interacts with Enc(-,-,b)

 Let X,Y be any two different plaintexts

 C1 Enc(X,X,b); C2 Enc(X,Y,b);

 If C1=C2 then b=0 else b=1

The advantage of this attacker A is 1

Prob(A outputs 1 if b=0)=0 Prob(A outputs 1 if b=1)=1

slide 38

Encrypt + MAC

Goal: confidentiality + integrity + authentication

Alice Bob

K1, K2
K1, K2

msg

MAC=HMAC(K2,msg)

encrypt(msg), MAC(msg)

 =

?

Encrypt(K1,msg)

Decrypt

Verify MAC

encrypt(msg2), MAC(msg2)

Can tell if messages
are the same!

MAC is deterministic: messages are equal their MACs are equal

Solution: Encrypt, then MAC (or MAC, then encrypt)

Breaks chosen-
plaintext security

