CS 361S

Overview of Symmetric Encryption

Vitaly Shmatikov

Reading Assignment

■cfandacosk
Read Kaufman 2.1-4 and 4.2

Basic Problem

Given: both parties already know the same secret
Goal: send a message confidentially

Any communication system that aims to guarantee confidentiality must solve this problem

Kerckhoffs's Principle

-An encryption scheme should be secure even if enemy knows everything about it except the key

- Attacker knows all algorithms

- Attacker does not know random numbers
-Do not'rely on secrecy of the algonthms ("security by obscurity")
Full name:
Easy lesson:
use a good random number generator!

Jean-Guillaume-Hubert-Victor-
François-Alexandre-Auguste
Kerckhoffs von Nieuwenhof

Randomness Matters!

The Alw Hork ©imes

Business Day

Technology

Crypto shocker: four of every 1,000 public keys provide no security (updated)
By Dan Goodin | Published 7 days ago

One-Time Pad (Vernam Cipher)

Cipher achieves perfect secrecy if and only if there are as many possible keys as possible plaintexts, and every key is equally likely (Claude Shannon, 1949)

Advantages of One-Time Pad

- Easy to compute
- Encryption and decryption are the same operation
- Bitwise XOR is very cheap to compute
-As secure as theoretically possible
- Given a ciphertext, all plaintexts are equally likely, regardless of attacker's computational resources
- ...if and only if the key sequence is truly random
- True randomness is expensive to obtain in large quantities
- ...if and only if each key is as long as the plaintext
- But how do the sender and the receiver communicate the key to each other? Where do they store the key?

Problems with One-Time Pad

\rightarrow Key must be as long as the plaintext

- Impractical in most realistic scenarios
- Still used for diplomatic and intelligence traffic

Does not guarantee integrity

- One-time pad only guarantees confidentiality
- Attacker cannot recover plaintext, but can easily change it to something else
- Insecure if keys are reused
- Attacker can obtain XOR of plaintexts

No Integrity

Dangers of Reuse

症
P2

$$
\begin{aligned}
& \xrightarrow[\rightarrow]{\rightarrow-\overbrace{0}}=1111111 \ldots \xrightarrow{C 2} \\
& \square \vec{\square}=00110010 \ldots
\end{aligned}
$$

Learn relationship between plaintexts
$\mathrm{C} 1 \oplus \mathrm{C} 2=(\mathrm{P} 1 \oplus \mathrm{~K}) \oplus(\mathrm{P} 2 \oplus \mathrm{~K})=$
$(\mathrm{P} 1 \oplus \mathrm{P} 2) \oplus(\mathrm{K} \oplus \mathrm{K})=\mathrm{P} 1 \oplus \mathrm{P} 2$

Reducing Key Size

\checkmark What to do when it is infeasible to pre-share huge random keys?
-Use special cryptographic primitives: block ciphers, stream ciphers

- Single key can be re-used (with some restrictions)
- Not as theoretically secure as one-time pad

Block Ciphers

Operates on a single chunk ("block") of plaintext

- For example, 64 bits for DES, 128 bits for AES
- Same key is reused for each block (can use short keys)
-Result should look like a random permutation
- Not impossible to break, just very expensive
- If there is no more efficient algorithm (unproven assumption!), can only break the cipher by brute-force, try-every-possible-key search
- Time and cost of breaking the cipher exceed the value and/or useful lifetime of protected information

Permutation

For N-bit input, N! possible permutations

- Idea: split plaintext into blocks, for each block use secret key to pick a permutation, rinse and repeat
- Without the key, permutation should "look random"

A Bit of Block Cipher History

- Playfair and variants (from 1854 until WWII)

Feistel structure Textbook

- "Ladder" structure: split input in half, put one half through the round and XOR with the other half
- After 3 random rounds, ciphertext indistinguishable from a random permutation
\rightarrow DES: Data Encryption Standard Textbook
- Invented by IBM, issued as federal standard in 1977
- 64-bit blocks, 56-bit key +8 bits for parity
- Very widely used (usually as 3DES) until recently
- 3DES: DES + inverse DES + DES (with 2 or 3 different keys)

DES Operation (Simplified)

Procedure must be reversible
(for decryption)

Remember SHA-1?

Advanced Encryption Standard (AES)

-US federal standard as of 2001
Based on the Rijndael algorithm
128-bit blocks, keys can be 128, 192 or 256 bits

- Unlike DES, does not use Feistel structure
- The entire block is processed during each round
- Design uses some clever math
- See section 8.5 of the textbook for a concise summary

Basic Structure of Rijndael

Encrypting a Large Message

-So, we've got a good block cipher, but our plaintext is larger than 128 -bit block size
\rightarrow Electronic Code Book (ECB) mode

- Split plaintext into blocks, encrypt each one separately using the block cipher
- Cipher Block Chaining (CBC) mode
- Split plaintext into blocks, XOR each block with the result of encrypting previous blocks
- Also various counter modes, feedback modes, etc.

ECB Mode

- Identical blocks of plaintext produce identical blocks of ciphertext
\rightarrow No integrity checks: can mix and match blocks

Information Leakage in ECB Mode
 [Wikipedia]

Adobe Passwords Stolen (2013)

-153 million account passwords

- 56 million of them unique

Encrypted using 3DES in ECB mode rather than hashed

$79985232-1-1$	a@fbi.gov $-\mid-+$ ufciL 90 fBnioxG6CatHBw==-\|-anniversary $\mid-$ -			
105009730-1--1-	gon@ic. fbi.gov - \|-9nCgb38RHiw=-	-band	--	
108684532-\| - - -	burn@ic.fbi.gov-\|-EQ7fIpT7i/Q=-	-numbers $\mid-$		
33041670-\|-- -	v-1-hRwtmq98mKzioxG6CatHEw=-1-1			
94038395-1-	n@ic . fbi.gov - \|-MreVpEovY17ioxG6CatHBw==-	-eod date	--	
$116097938-\mid$ - -	- \| - Tur7wt 2zH5CwI IHfjvchKQ $==-$ - SH? ${ }^{\text {- }}$			
33310434-1--1-	c.fbi.gov-\|-NLupdfyYrsM=-	-ATP MIDDLE	-	
113389790-1--	ıv-\|-iMhaearHXjPioxG6CatHBw=--	-w	--	
113931981-\|--	Cic. fbi.gov-\|-1TmosXxYnP3ioxG6CatHBw==-	-See MSDN	--	
114081741-\|--	lom@ic. fbi.gov-\|-ZcDbLlvCad0=-1-fuzzy boy 20	--		
106145242-\|-	@ic. fbi.gov-\|-xc2KumNGzYfioxG6CatHBw==-	-4s	-	
106437837-1-	1. gov-\|-adIewKvmJEsFqxOHFoFrxg==-	-	--	
96649467-\|--1-	Ifus@ic.fbi.gov-\|-1sYw5KRKNT/ioxG6CatHBw==-	-glass of		
96670195-1-	.fbi.gov - $1-\times 4+\mathrm{k} 4$ ¢hyDh/ioxG6CatHBw= $=-1-$			
105095956 -	zarthlink, net-\|-ZU2t TTFIZq/ioxG6CatHBw==-	-socialsecurity\#	-	
108260815-\| -- -	r@genext , net-\|-MuknZ7KtsiHioxG6CatHBw==-	-socialsecurity	-	
33508352-\|--	-h	ghotmail . com-\|-ADEcoaN2oUM=-	-socialsecurityno.	--
33023162-\|--	-k	j90@aol.com-\|-9HT+kVHOfs4=-	-socialsecurity name	- -
90331688-\| -	-b	.edu-\|-nNiWEcoZTBmXrIXpAZiRHQ==-	-ssn\#	--

CBC Mode: Encryption

- Identical blocks of plaintext encrypted differently

Last cipherblock depends on entire plaintext

- Still does not guarantee integrity

CBC Mode: Decryption

ECB vs. CBC

Choosing the Initialization Vector

- Key used only once
- No IV needed (can use IV=0)
\rightarrow Key used multiple times
- Best: fresh, random IV for every message
- Can also use unique IV (eg, counter), but then the first step in CBC mode must be $\mathrm{IV}^{\prime} \leftarrow \mathrm{E}(\mathrm{k}, \mathrm{IV})$
- Example: Windows BitLocker
- May not need to transmit IV with the ciphertext
- Multi-use key, unique messages
- Synthetic IV: IV $\leftarrow F\left(k^{\prime}\right.$, message)
- F is a cryptographically secure keyed pseudorandom function

CBC and Electronic Voting

Found in the source code for Diebold voting machines:
DesCBCEncrypt((des_c_block*)tmp, (des_c_block*) record.m_Data, totalSize, DESKEY, NULL, DES_ENCRYPT)

CTR (Counter Mode)

Still does not guarantee integrity
\checkmark Fragile if counter repeats

When Is a Cipher "Secure"?

-Hard to recover plaintext from ciphertext?

- What if attacker learns only some bits of the plaintext? Some function of the bits? Some partial information about the plaintext?
- Fixed mapping from plaintexts to ciphertexts?
- What if attacker sees two identical ciphertexts and infers that the corresponding plaintexts are identical?
- What if attacker guesses the plaintext - can he verify his guess?
- Implication: encryption must be randomized or stateful

How Can a Cipher Be Attacked?

- Attackers knows ciphertext and encryption algthm
- What else does the attacker know? Depends on the application in which the cipher is used!
- Known-plaintext attack (stronger)
- Knows some plaintext-ciphertext pairs

-Chosen-plaintext attack (even stronger)
- Can obtain ciphertext for any plaintext of his choice

Chosen-ciphertext attack (very strong)

- Can decrypt any ciphertext except the target
- Sometimes very realistic OpenSSL

Known-Plaintext Attack

[From "The Art of Intrusion"]
Extracting password from an encrypted PKZIP file ...
>"... I opened the ZIP file and found a `logo.tif" file, so I went to their main Web site and looked at all the files named `logo.tif.' I downloaded them and zipped them all up and found one that matched the same checksum as the one in the protected ZIP file"
\checkmark With known plaintext, PkCrack took 5 minutes to extract the key

- Biham-Kocher attack on PKZIP stream cipher

Chosen-Plaintext Attack

... repeat for any PIN value

Very Informal Intuition

 Minimum security requirement for a modern encryption scheme-Security against chosen-plaintext attack

- Ciphertext leaks no information about the plaintext
- Even if the attacker correctly guesses the plaintext, he cannot verify his guess
- Every ciphertext is unique, encrypting same message twice produces completely different ciphertexts
Security against chosen-ciphertext attack
- Integrity protection - it is not possible to change the plaintext by modifying the ciphertext

The Chosen-Plaintext Game

- Attacker does not know the key
- He chooses as many plaintexts as he wants, and receives the corresponding ciphertexts
- When ready, he picks two plaintexts M_{0} and M_{1}
- He is even allowed to pick plaintexts for which he previously learned ciphertexts!
- He receives either a ciphertext of M_{0}, or a ciphertext of M_{1}
He wins if he guesses correctly which one it is

Meaning of "Leaks No Information"

- Idea: given a ciphertext, attacker should not be able to learn even a single bit of useful information about the plaintext
Let Enc($\left.M_{0}, M_{1}, b\right)$ be a "magic box" that returns encrypted $\mathrm{M}_{\mathrm{b}} \quad 0$ or 1
- Given two plaintexts, the box always returns the ciphertext of the left plaintext or right plaintext
- Attacker can use this box to obtain the ciphertext of any plaintext M by submitting $M_{0}=M_{1}=M$, or he can try to learn even more by submitting $M_{0} \neq M_{1}$
-Attacker's goal is to learn just this one bit b

Chosen-Plaintext Security

Consider two experiments (A is the attacker)

Experiment 0
A interacts with Enc(-,-,0)
and outputs his guess of bit b

Experiment 1
A interacts with Enc $(-,-, 1)$
and outputs his guess of bit b

- Identical except for the value of the secret bit
- b is attacker's guess of the secret bit
- Attacker's advantage is defined as
$\operatorname{Prob}(A$ outputs 1 in Exp0) - Prob(A outputs 1 in Exp1)) |
- Encryption scheme is chosen-plaintext secure if this advantage is negligible for any efficient A

Simple Example

Any deterministic, stateless symmetric encryption scheme is insecure

- Attacker can easily distinguish encryptions of different plaintexts from encryptions of identical plaintexts
- This includes ECB mode of common block ciphers!

Attacker A interacts with Enc $(-,-, b)$
Let X, Y be any two different plaintexts
$\mathrm{C}_{1} \leftarrow \operatorname{Enc}(\mathrm{X}, \mathrm{X}, \mathrm{b}) ; \quad \mathrm{C}_{2} \leftarrow \operatorname{Enc}(\mathrm{X}, \mathrm{Y}, \mathrm{b}) ;$
If $C_{1}=C_{2}$ then $b=0$ else $b=1$

- The advantage of this attacker A is 1
$\operatorname{Prob}(A$ outputs 1 if $b=0)=0 \quad \operatorname{Prob}(A$ outputs 1 if $b=1)=1$

Encrypt + MAC

Goal: confidentiality + integrity + authentication

MAC is deterministic: messages are equal \Rightarrow their MACs are equal
Solution: Encrypt, then MAC (or MAC, then encrypt)

