

Vitaly Shmatikov

CS 361S

Cryptographic Hash Functions

slide 2

Reading Assignment

Read Kaufman 5.1-2 and 5.6-7

slide 3

Hash Functions: Main Idea

bit strings of any length n-bit strings

. .

.
.
.

x’
x’’

x

y’

y

hash function H

Hash function H is a lossy compression function

• Collision: H(x)=H(x’) for some inputs x≠x’

H(x) should look “random”

• Every bit (almost) equally likely to be 0 or 1

A cryptographic hash function must have certain properties

“message
digest”

message

slide 4

One-Way

Intuition: hash should be hard to invert

• “Preimage resistance”

• Given a random, it should be hard to find any x such
that h(x)=y

– y is an n-bit string randomly chosen from the output space
of the hash function, ie, y=h(x’) for some x’

How hard?

• Brute-force: try every possible x, see if h(x)=y

• SHA-1 (a common hash function) has 160-bit output

– Suppose we have hardware that can do 230 trials a pop

– Assuming 234 trials per second, can do 289 trials per year

– Will take 271 years to invert SHA-1 on a random image

Birthday Paradox

T people

Suppose each birthday is a random number taken
from K days (K=365) – how many possibilities?

• KT - samples with replacement

How many possibilities that are all different?

• (K)T = K(K-1)…(K-T+1) - samples without replacement

Probability of no repetition?

• (K)T/K
T  1 - T(T-1)/2K

Probability of repetition?

• O(T2)

slide 6

Collision Resistance

Should be hard to find x≠x’ such that h(x)=h(x’)

Birthday paradox

• Let T be the number of values x,x’,x’’… we need to look
at before finding the first pair x≠x’ s.t. h(x)=h(x’)

• Assuming h is random, what is the probability that we
find a repetition after looking at T values?

• Total number of pairs?

– n = number of bits in the output of hash function

• Conclusion:

Brute-force collision search is O(2n/2), not O(2n)

• For SHA-1, this means O(280) vs. O(2160)

O(T2)

O(2n)

T  O(2n/2)

slide 7

One-Way vs. Collision Resistance

One-wayness does not imply collision resistance

• Suppose g() is one-way

• Define h(x) as g(x’) where x’ is x except the last bit

– h is one-way (cannot invert h without inverting g)

– Collisions for h are easy to find: for any x, h(x0)=h(x1)

Collision resistance does not imply one-wayness

• Suppose g() is collision-resistant

• Define h(x) to be 0x if x is (n-1)-bit long, else 1g(x)

– Collisions for h are hard to find: if y starts with 0, then there
are no collisions; if y starts with 1, then must find collisions in g

– h is not one way: half of all y’s (those whose first bit is 0) are
easy to invert (how?), thus random y is invertible with prob. 1/2

slide 8

Weak Collision Resistance

Given a randomly chosen x, hard to find x’
such that h(x)=h(x’)

• Attacker must find collision for a specific x… by
contrast, to break collision resistance, enough to
find any collision

• Brute-force attack requires O(2n) time

Weak collision resistance does not imply
collision resistance (why?)

slide 9

Hashing vs. Encryption

Hashing is one-way. There is no “uh-hashing”!

• A ciphertext can be decrypted with a decryption
key… hashes have no equivalent of “decryption”

Hash(x) looks “random”, but can be compared
for equality with Hash(x’)

• Hash the same input twice  same hash value

• Encrypt the same input twice  different ciphertexts

Cryptographic hashes are also known as
“cryptographic checksums” or “message digests”

slide 10

Application: Password Hashing

Instead of user password, store hash(password)

When user enters a password, compute its hash
and compare with the entry in the password file

• System does not store actual passwords!

• Cannot go from hash to password!

Why is hashing better than encryption here?

Does hashing protect weak, easily guessable
passwords?

slide 11

Application: Software Integrity

goodFile

Software manufacturer wants to ensure that the executable file

 is received by users without modification…

Sends out the file to users and publishes its hash in the NY Times

The goal is integrity, not secrecy

Idea: given goodFile and hash(goodFile),
 very hard to find badFile such that hash(goodFile)=hash(badFile)

BigFirm™ User

VIRUS

badFile

 The Times

hash(goodFile)

http://msn.cwusa.tv/images/Bill-Gates-08-Formal.jpg

slide 12

Which Property Is Needed?

Passwords stored as hash(password)

• One-wayness: hard to recover entire password

• Passwords are not random and thus guessable

Integrity of software distribution

• Weak collision resistance?

• But software images are not random… maybe need full
collision resistance

Auctions: to bid B, send H(B), later reveal B

• One-wayness… but does not protect B from guessing

• Collision resistance: bidder should not be able to find
two bids B and B’ such that H(B)=H(B’)

slide 13

Common Hash Functions

MD5

• Completely broken by now

RIPEMD-160

• 160-bit variant of MD-5

SHA-1 (Secure Hash Algorithm)

• Widely used

• US government (NIST) standard as of 1993-95

– Also the hash algorithm for Digital Signature Standard (DSS)

Overview of MD5

Designed in 1991 by Ron Rivest

Iterative design using compression function

M1 M2 M3 M4 IHV0

Com-
press

Com-
press

Com-
press

Com-
press

IHV4

slide 14

slide 15

History of MD5 Collisions

2004: first collision attack

• The only difference between colliding messages is
128 random-looking bytes

2007: chosen-prefix collisions

• For any prefix, can find colliding messages that have
this prefix and differ up to 716 random-looking bytes

2008: rogue SSL certificates

• Talk about this in more detail when discussing PKI

2012: MD5 collisions used in cyberwarfare

• Flame malware uses an MD5 prefix collision to fake a
Microsoft digital code signature

slide 16

Basic Structure of SHA-1

Against padding attacks

Split message into 512-bit blocks

Compression function
• Applied to each 512-bit block
 and current 160-bit buffer
• This is the heart of SHA-1

160-bit buffer (5 registers)
initialized with magic values

slide 18

SHA-1 Compression Function

 Current message block

Current buffer (five 32-bit registers A,B,C,D,E)

Buffer contains final hash value

Similar to a block cipher,
with message itself used
as the key for each round

Four rounds, 20 steps in each

 Let’s look at each step
in more detail…

Fifth round adds the original

buffer to the result of 4 rounds

slide 19

A E B C D

A E B C D

+

+

ft

5 bitwise
left-rotate

Wt

Kt

One Step of SHA-1 (80 steps total)

Special constant added
(same value in each 20-step round,
4 different constants altogether)

Logic function for steps
• (BC)(BD) 0..19
• BCD 20..39
• (BC)(BD)(CD) 40..59
• BCD 60..79

Current message block mixed in
• For steps 0..15, W0..15=message block
• For steps 16..79,
 Wt=Wt-16Wt-14Wt-8Wt-3

+

+

Multi-level shifting of message blocks

30 bitwise
left-rotate

slide 20

How Strong Is SHA-1?

Every bit of output depends on every bit of input

• Very important property for collision-resistance

Brute-force inversion requires 2160 ops, birthday
attack on collision resistance requires 280 ops

Some weaknesses discovered in 2005

• Collisions can be found in 263 ops

slide 21

NIST Competition

A public competition to develop a new
cryptographic hash algorithm

• Organized by NIST (read: NSA)

64 entries into the competition (Oct 2008)

5 finalists in 3rd round (Dec 2010)

Winner: Keccak (Oct 2012)

• Will be standardized as SHA-3

slide 22

Integrity and Authentication

Integrity and authentication: only someone who knows KEY can

 compute correct MAC for a given message

Alice Bob

KEY
KEY

message

MAC
(message authentication code)

message, MAC(KEY,message)

 =

?

Recomputes MAC and verifies whether it is

equal to the MAC attached to the message

slide 23

HMAC

Construct MAC from a cryptographic hash function

• Invented by Bellare, Canetti, and Krawczyk (1996)

• Used in SSL/TLS, mandatory for IPsec

Why not encryption?

• Hashing is faster than encryption

• Library code for hash functions widely available

• Can easily replace one hash function with another

• There used to be US export restrictions on encryption

slide 24

Structure of HMAC

Embedded hash function

“Black box”: can use this HMAC

construction with any hash function

(why is this important?)

Block size of embedded hash function

Secret key padded
to block size

magic value (flips half of key bits)

another magic value
(flips different key bits)

hash(key,hash(key,message))

