
slide 1

0x1A Great Papers in

Computer Security

Vitaly Shmatikov

CS 380S

http://www.cs.utexas.edu/~shmat/courses/cs380s/

slide 2

After All Else Fails

Intrusion prevention

• Find buffer overflows and remove them

• Use firewall to filter out malicious network traffic

Intrusion detection is what you do after
prevention has failed

• Detect attack in progress

• Discover telltale system modifications

slide 3

What Should Be Detected?

Attempted and successful break-ins

Attacks by legitimate users

• Illegitimate use of root privileges, unauthorized
access to resources and data …

Malware

• Trojan horses, rootkits, viruses, worms …

Denial of service attacks

slide 4

Intrusion Detection Systems (IDS)

Host-based

• Monitor activity on a single host

• Advantage: better visibility into behavior of OS and
individual applications running on the host

Network-based (NIDS)

• Often placed on a router, firewall, or network gateway

• Monitor traffic, examine packet headers and payloads

• Advantage: single NIDS can protect many hosts and
look for global patterns

slide 5

Intrusion Detection Techniques

Misuse detection

• Use attack “signatures” (need a model of the attack)

– Sequences of system calls, patterns of network traffic, etc.

• Must know in advance what attacker will do (how?)

• Can only detect known attacks

Anomaly detection

• Using a model of normal system behavior, try to
detect deviations and abnormalities

• Can potentially detect unknown (zero-day) attacks

Which is harder to do?

slide 6

Misuse Detection (Signature-Based)

Set of rules defining a behavioral signature likely
to be associated with attack of a certain type

• Example: buffer overflow

– A setuid program spawns a shell with certain arguments

– A network packet has lots of NOPs in it

– Very long argument to a string function

• Example: denial of service via SYN flooding

– Large number of SYN packets without ACKs coming back

 …or is this simply a poor network connection?

Attack signatures are usually very specific and
may miss variants of known attacks

• Why not make signatures more general?

slide 7

Extracting Misuse Signatures

Use invariant characteristics of known attacks

• Bodies of known viruses and worms, RET addresses of
memory exploits, port numbers of applications with
known vulnerabilities

• Hard to handle mutations

– Polymorphic viruses: each copy has a different body

Big research challenge: fast, automatic extraction
of signatures of new attacks

slide 8

Anomaly Detection

Define a profile describing “normal” behavior

• Works best for “small”, well-defined systems (single
program rather than huge multi-user OS)

Profile may be statistical

• Build it manually (this is hard)

• Use machine learning and data mining techniques

– Log system activities for a while, then “train” IDS to recognize
normal and abnormal patterns

• Risk: attacker trains IDS to accept his activity as normal

– Daily low-volume port scan may train IDS to accept port scans

IDS flags deviations from the “normal” profile

slide 9

Statistical Anomaly Detection

Compute statistics of certain system activities

Report an alert if statistics outside range

Example: IDES (Denning, mid-1980s)

• For each user, store daily count of certain activities

– For example, fraction of hours spent reading email

• Maintain list of counts for several days

• Report anomaly if count is outside weighted norm

Problem: the most unpredictable user is the most important

slide 10

“Self-Immunology” Approach

Normal profile: short sequences of system calls

• Use strace on UNIX

… open,read,write,mmap,mmap,getrlimit,open,close …

open,read,write,mmap

read,write,mmap,mmap

 …

write,mmap,mmap,getrlimit

mmap,mmap,getrlimit,open
…

remember last K events

Compute % of traces that
have been seen before.
Is it above the threshold?

Y

N

normal

abnormal Raise alarm if a high fraction of
system call sequences haven’t
been observed before

[Forrest]

slide 11

Level of Monitoring

Which types of events to monitor?

• OS system calls

• Command line

• Network data (e.g., from routers and firewalls)

• Keystrokes

• File and device accesses

• Memory accesses

Auditing / monitoring should be scalable

slide 12

System Call Interposition

Observation: all sensitive system resources are
accessed via OS system call interface

• Files, sockets, etc.

Idea: monitor all system calls and block those
that violate security policy

• Inline reference monitors

• Language-level: Java runtime environment inspects
stack of the function attempting to access a sensitive
resource to check whether it is permitted to do so

• Common OS-level approach: system call wrapper

– Want to do this without modifying OS kernel (why?)

slide 13

Janus
[Berkeley project, 1996]

slide 14

Policy Design

Designing a good system call policy is not easy

When should a system call be permitted and
when should it be denied?

Example: ghostscript

• Needs to open X windows

• Needs to make X windows calls

• But what if ghostscript reads characters you type in
another X window?

slide 16

Problems and Pitfalls

Incorrectly mirroring OS state

Overlooking indirect paths to resources

• Inter-process sockets, core dumps

Race conditions (TOCTTOU)

• Symbolic links, relative paths, shared thread meta-data

Unintended consequences of denying OS calls

• Process dropped privileges using setuid but didn’t check
value returned by setuid… and monitor denied the call

Bugs in reference monitors and safety checks

• What if runtime environment has a buffer overflow?

[Garfinkel]

slide 17

Incorrectly Mirroring OS State

Policy: “process can bind TCP sockets on port 80,

 but cannot bind UDP sockets”

6 = socket(UDP, …) Monitor: “6 is UDP socket”

7 = socket(TCP, …) Monitor: “7 is TCP socket”

close(7)

dup2(6,7) Monitor’s state now inconsistent with OS

bind(7, …) Monitor: “7 is TCP socket, Ok to bind”

 Oops!

[Garfinkel]

slide 18

TOCTTOU in Syscall Interposition

User-level program makes a system call

• Direct arguments in stack variables or registers

• Indirect arguments are passed as pointers

Wrapper enforces some security condition

• Arguments are copied into kernel memory and analyzed
and/or substituted by the syscall wrapper

What if arguments change right here?

If permitted by the wrapper, the call proceeds

• Arguments are copied into kernel memory

• Kernel executes the call

slide 19

R. Watson

 Exploiting Concurrency Vulnerabilities

in System Call Wrappers

(WOOT 2007)

slide 20

Exploiting TOCTTOU Conditions

Forced wait on disk I/O

• Example: rename()

– Page out the target path of rename() to disk

– Kernel copies in the source path, then waits for target path

– Concurrent attack process replaces the source path

– Postcondition checker sees the replaced source path

Voluntary thread sleeps

• Example: TCP connect()

– Kernel copies in the arguments

– Thread calling connect() waits for a TCP ACK

– Concurrent attack process replaces the arguments

[Watson]

slide 21

TOCTTOU via a Page Fault
[Watson]

slide 22

TOCTTOU on Sysjail
[Watson]

slide 23

Mitigating TOCTTOU

Make pages with syscall arguments read-only

• Tricky implementation issues

• Prevents concurrent access to data on the same page

Avoid shared memory between user process,
syscall wrapper and the kernel

• Argument caches used by both wrapper and kernel

• Message passing instead of argument copying

– Why does this help?

Atomicity using system transactions

Integrate security checks into the kernel?

slide 24

D. Wagner, D. Dean

Intrusion Detection via Static Analysis

(Oakland 2001)

slide 25

Interposition + Static Analysis

Assumption: attack requires making system calls

1. Analyze the program to determine its expected
behavior

2. Monitor actual behavior

3. Flag an intrusion if there is a deviation from the
expected behavior

• System call trace of the application is constrained to
be consistent with the source or binary code

• Main advantage: a conservative model of expected
behavior will have zero false positives

slide 26

Trivial “Bag-O’Calls” Model

Determine the set S of all system calls that an
application can potentially make

• Lose all information about relative call order

At runtime, check for each call whether it
belongs to this set

Problem: large number of false negatives

• Attacker can use any system call from S

Problem: |S| very big for large applications

slide 27

Callgraph Model

Build a control-flow graph of the application by
static analysis of its source or binary code

Result: non-deterministic finite-state automaton
(NFA) over the set of system calls
• Each vertex executes at most one system call

• Edges are system calls or empty transitions

• Implicit transition to special “Wrong” state for all
system calls other than the ones in original code;
all other states are accepting

System call automaton is conservative

• No false positives!

[Wagner and Dean]

slide 28

NFA Example

• Monitoring is O(|V|) per system call

• Problem: attacker can exploit impossible paths

– The model has no information about stack state!

[Wagner and Dean]

slide 29

write

log

exec

myexec

log

setuid

mysetuid

log

void

myexec (char *src)

{

 log(“Execing”, 7);

 exec(“/bin/ls”);

}

void

mysetuid (uid_t uid)

{

 setuid(uid);

 log(“Set UID”, 7);

}

void

log (char *msg,

 int len)

{

 write(fd, msg, len);

}

Another NFA Example

[Giffin]

slide 30

NFA Permits Impossible Paths

e

e e

e

write

log

exec

myexec

log

setuid

mysetuid

log

 Impossible execution path
is permitted by NFA!

slide 31

NFA: Modeling Tradeoffs

A good model should be…

• Accurate: closely models expected execution

• Fast: runtime verification is cheap

NFA Fast

Slow

Accurate Inaccurate

slide 32

Abstract Stack Model

NFA is not precise, loses stack information

Alternative: model application as a context-free
language over the set of system calls

• Build a non-deterministic pushdown automaton (PDA)

• Each symbol on the PDA stack corresponds to single
stack frame in the actual call stack

• All valid call sequences accepted by PDA; enter
“Wrong” state when an impossible call is made

slide 33

e

e
push A

pop A

e

e
pop B

push B

write

log

exec

myexec

log

setuid

mysetuid

log

PDA Example
[Giffin]

slide 34

Another PDA Example
[Wagner and Dean]

slide 35

PDA: Modeling Tradeoffs

Non-deterministic PDA has high cost

• Forward reachability algorithm is cubic in
automaton size

• Unusable for online checking

NFA Fast

Slow

Accurate Inaccurate

PDA

slide 36

Dyck Model

Idea: make stack updates (i.e., function calls and
returns) explicit symbols in the alphabet

• Result: stack-deterministic PDA

At each moment, the monitor knows where the
monitored application is in its call stack

• Only one valid stack configuration at any given time

How does the monitor learn about function calls?

• Use binary rewriting to instrument the code to issue
special “null” system calls to notify the monitor

– Potential high cost of introducing many new system calls

• Can’t rely on instrumentation if application is corrupted

[Giffin et al.]

slide 37

Example of Dyck Model

A

A

B

 B

write

log

exec

myexec

setuid

mysetuid

Runtime monitor now
“sees” these transitions

[Giffin]

slide 38

CFG Extraction Issues

Function pointers
• Every pointer could refer to any function whose

address is taken

Signals
• Pre- and post-guard extra paths due to signal

handlers

setjmp() and longjmp()
• At runtime, maintain list of all call stacks possible at a

setjmp()

• At longjmp() append this list to current state

[Giffin]

slide 39

System Call Processing Complexity

 n is state count

 m is transition count

Model
Time & Space
Complexity

NFA O(n)

PDA O(nm2)

Dyck O(n)

[Giffin]

slide 40

Dyck: Runtime Overheads

Program
Unverified
execution

Verified
against Dyck Increase

procmail 0.5 0.8 56%

gzip 4.4 4.4 1%

eject 5.1 5.2 2%

fdformat 112.4 112.4 0%

cat 18.4 19.9 8%

Execution times in seconds

Many tricks to improve performance

• Use static analysis to eliminate unnecessary null system calls

• Dynamic “squelching” of null calls

[Giffin]

slide 41

Persistent Interposition Attacks

Observation: malicious behavior need not
involve system call anomalies

Hide malicious code inside a server

• Inject via a memory corruption attack

• Hook into a normal execution path (how?)

Malicious code communicates with its master by
“piggybacking” on normal network I/O

• No anomalous system calls

• No anomalous arguments to any calls except those
that read and write

[Parampalli et al.]

