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Abstract 

We present principles for the design of crypto- 
graphic protocols. The principles are neither 
necessary nor sufficient for correctness. They are 
however helpful, in that adherence to them would 
have avoided a considerable number of published 
errors. 

Our principles are informal guidelines. They 
complement formal methods, but do not assume 
them. In order to demonstrate the actual ap- 
plicability of these guidelines, we discuss some 
instructive examples from the literature. 

1 Introduction 

It has been evident for a number of years that 
cryptographic protocols, as used in distributed 
systems for authentication and related purposes, 
are prone to design errors of every kind. A con- 
siderable body of literature has come into be- 
ing in which various formalisms are proposed 
for investigating and analyzing protocols to see 
whether they contain various kinds of blunders. 
(Liebl’s bibliography [ll] contains references to 
protocols and formalisms.) Although sometimes 
useful, these formalisms do not of themselves 
suggest design rules; they are not directly bene- 
ficial in seeing how to avoid trouble. 
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We present principles for the design of crypto- 
graphic protocols. The principles are not neces- 
sary for correctness, nor are they sufficient. They 
are however helpful, in that adherence to them 
would have contributed to the simplicity of pro- 
tocols and avoided a considerable number of pub- 
lished confusions and mistakes. 

We arrived at our principles by noticing some 
common features among protocols that are diffi- 
cult to analyze. If these features are avoided, it 
becomes less necessary to resort to formal tools- 
and also easier to do so if there is good reason 
to. The principles themselves are informal guide- 
lines, and useful independently of any logic. 

We illustrate the principles with examples. We 
draw our examples from the published literature, 
in order to demonstrate the actual applicability 
of our guidelines. Some of the oddities and er- 
rors that we analyze here have been documented 
previously (in particular, in [4]). Other examples 
are new: protocols by Denning and Sacco [6], Lu 
and Sundareshan [la], Varadharajan, Allen, and 
Black [29], and Woo and Lam [32]. We believe 
they are all instructive. 

Generally, we choose examples from the au- 
thentication literature, but the principles are ap- 
plicable elsewhere, for example to electronic-cash 
protocols (e.g., [15]). We focus on traditional 
cryptography, and on protocols of the sort com- 
monly implemented with the DES [18] and the 
RSA [26] algorithms. In particular, we do not 
consider the subtleties of interactive schemes for 
signatures (eg, [7]) .  Moreover, we do not discuss 
the choice of cryptographic mechanisms with ad- 
equate protection properties, the correct imple- 
mentation of cryptographic primitives, or their 
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appropriate use; these subjects are discussed 
elsewhere (e.g., [30, 171). 

Throughout, we concentrate on the simple 
facts with the largest potential applicability and 
payoff. Admittedly, the literature is full of inge- 
nious protocols and attacks. We do not attempt 
to organize the principles that underly this inge- 
nuity, and perhaps it is not necessary. We hope 
that our simple principles and examples will be of 
help to the engineering of robust cryptographic 
protocols. 

2 Basics 

A protocol, for present purposes, is a set of rules 
or conventions defining an exchange of messages 
among a set of two or more partners. These part- 
ners are users, processes, or machines, which we 
will generically refer to as principals. In a cryp- 
tographic protocol the whole or part of some or 
all of the messages is encrypted. We interpret 
the term encryption fairly broadly, applying it 
for example to signature operations. Encryption 
and decryption are for present purposes defined 
as key-dependent transformations of a message 
which may only be inverted by using a definite 
key; the keys used for encryption and decryp- 
tion are the same or different, depending on the 
cryptographic algorithm used. 

We find two overarching principles for the de- 
sign of secure cryptographic protocols. One prin- 
ciple is concerned with the content of a message 
and 
will 

1. 

2. 

the other with the circumstances in which it 
be acted upon: 

Every message should say what it means- 
its interpretation should depend only on its 
content. 

The conditions for a message to be acted 
upon should be clearly set out so that some- 
one reviewing a design may see whether they 
are acceptable or not. 

Next we explain these general principles. They 
lead to other, more specific recommendations, 
which we discuss in the subsequent sections. 

2.1 Explicit communication 

In full, our first basic principle is: 
Principle 1 

Every message should say what it means: 
the interpretation of the message should de- 
pend only on its content. It should be possi- 
ble to write down a straightforward English 
sentence describing the content-though if 
there is a suitable formalism available that 
is good too. 

For example, an authentication server S might 
send a message whose meaning may be expressed 
thus: “After receiving bit-pattern P ,  S sends to 
A a session key K intended to be good for con- 
versation with B”. All elements of this meaning 
should be explicitly represented in the message, 
so that a recipient can recover the meaning with- 
out any context. In particular, if any of P ,  S ,  A,  
B,  or K are left to be inferred from context, it 
may be possible for one message to be used de- 
ceitfully in place of another. 

Principle 1 is not completely original. In [4], 
we recommend the use of a logical notation in 
generating and describing protocols-essentially 
proposing a method to follow the principle. Es- 
tablishing the correspondence between the logi- 
cal protocol and its concrete implementation can 
be a simple matter of parsing, as for example 
in [31, Section 4.3.21. Although a precise com- 
parison of informal ideas is difficult, we also find 
an affinity with Boyd and Mao’s proposal that 
protocols should be robust in the sense that “au- 
thentication of any message in the protocol de- 
pends only on information contained in the mes- 
sage itself or already in the possession of the 
recipient” [3]. An operational variant on this 
theme appears in the work of Woo and Lam, 
who call a protocol full information if “its initia- 
tor and responder always include in their outgo- 
ing encrypted messages all the information they 
have gathered” [33]. 

2.2 Appropriate action 

For a message to be acted upon, it not merely has 
to be understood but a whole variety of other 
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conditions have to hold too. These often con- 
sist of what may informally be regarded as state- 
ments of trust, though this anthropomorphic no- 
tion should be used with care. Statements of 
trust cannot be wrong though they may be con- 
sidered inappropriate. For example, if some- 
one believes that choosing session keys should 
be done by a suitably trusted server rather than 
by one of the participants in a session, then he 
will not wish to use a protocol such as the Wide- 
mouthed-frog protocol [4]. 

Principle 2 

In general, we have: 

The conditions for a message to be acted 
upon should be clearly set out so that some- 
one reviewing a design may see whether they 
are acceptable or not. 

2.3 Secrecy 

The secrecy of certain pieces of information is es- 
sential to the functioning of cryptographic proto- 
cols. Obviously, a protocol should not publicize 
the cryptographic keys used for communicating 
sensitive data. 

None of the our principles makes this point ex- 
plicitly. Rather, all of our principles warn against 
mistakes that often imply the loss of secrecy, in- 
tegrity, and authenticity. Some of the examples 
clarify how the principles relate to the need for 
secrecy. 

There may be more to say about secrecy guide- 
lines for cryptographic protocols, but these are 
outside the scope of the present paper. 

2.4 Examples and other principles 

Below we discuss many concrete examples where 
errors would have been avoided by use of our 
two basic principles. We also introduce other 
principles. Some of these are clearly corollaries 
of the basic ones, others are not. In particular, 
we recommend: 

0 Be clear on how encryption is used, and on 
the meaning of encryption. 

0 Be clear on how the timeliness of messages 
is proved, and on the meaning of temporal 
information in messages. 

Hopefully, the two basic principles will encourage 
a certain lucidity in the design of cryptographic 
protocols, and thereby make it easier to follow 
our other principles. 

3 Notation 

We adopt notation common in the literature. 
That notation is not quite uniform and, in exam- 
ples, we make compromises between uniformity 
of this paper and faithfulness to original nota- 
tion. 

In this paper, the symbols A and B often rep- 
resent arbitrary principals, S represents a server, 
T a timestamp, N a nonce (a quantity gener- 
ated for the purpose of being recent), K a key, 
and K-' its inverse. In symmetric cryptosys- 
tems such as DES, K and K-' are always equal. 
For asymmetric cryptosystems such as RSA, we 
assume for simplicity that the inversion opera- 
tion is an involution (so ~ - 1 - l  equals K ) ;  we 
tend to use K-' for the secret part and K for 
the public part of a key pair ( K ,  K-'). We write 
{ X } K  to represent X encrypted under K ;  any- 
one who knows { X } K  and the inverse of K can 
obtain X .  If K is secret, we may refer to { X } K  
as a signed message, and to the encryption oper- 
ation as a signature. 

For example, 

Message 4 B -+ A : { T a  + l } ~ , ~  

describes the fourth message in a protocol; in 
this message, B sends to A the timestamp T a  
incremented by 1, under the key Kat,. In this ex- 
ample, the subscript a in Ta is a hint that A first 
generated T,; the subscript ab in K a b  is a hint 
that Kab is intended for communication between 
A and B. Similarly, we may write K, for A's 
public key. 

4 Naming 

The most immediate instance of Principle 1 pre- 
scribes being explicit about names of principals: 
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Principle 3 A opens communication with B ,  

Message 3 A -+ B : CA, CB, 
{ { K a b ,  T a ) K ; l } K b  

B removes the outer encryption, reencrypts with 
K,, sends: 

Message 3’ B -+ C : CA, CC, 
{ { K a b ,  T o ) K , - ~ } K ,  

and C will believe that the message is from A. 
In particular, C might send sensitive information 
under K,b, and B may see it when perhaps only 
A should. 

The intended meaning of Message 3 is roughly 
“At time T,, A says that Kab is a good key for 
communication between A and B”. Any ade- 
quate format for Message 3 should contain all of 
these elements expressly or by implication. The 
obvious one is: 

Message 3 A -+ B : CA, CB, 
{ { A ,  Kab, % } ~ , - l  }Kb 

although the name A might be deducible from 
KL1. It is important that this format must not 
be used for anything else; we return to this point 
in Section 7. 0 

Example 3.2 In [32, pp. 42-43], Woo and 
Lam present an authentication protocol based on 
symmetric-key cryptography. When B wants to 
check that it is in A’s presence, it runs: 

Message 1 A -+ B : A 
Message 2 B -+ A : Nb 
Message 3 A + B : { N b } K a s  

Message 5 S + B : { N b } K b S  
Message B : { A ,  { N b ) K a , } K b a  

Here Nb is a nonce, S is a server, and K,, and 
Kbs are keys that A and B share with S.  Basi- 
cally, A claims his identity (Message l); B pro- 
vides a nonce challenge (Message 2); A returns 
this challenge encrypted under K,, (Message 3); 
B passes this message on to S for verification, 
bound with A’s name under Kb, (Message 4); S 
decrypts using A’s key and reencrypts under B’s 
(Message 5 ) .  If S replies { N b } K b s ,  then B should 
be convinced that A has responded to the chal- 
lenge Nb. 

If the identity of a principal is essential to 
the meaning of a message, it is prudent to 
mention the principal’s name explicitly in 
the message. 

The names relevant for a message can some- 
times be deduced from other data and from what 
encryption keys have been applied. However, 
when this information cannot be deduced, its 
omission is a blunder with serious consequences. 

The principle is obvious and simple, yet it is 
commonly ignored. We give several examples of 
fairly different natures. 

Example 3.1 In [6, p. 5351, Denning and Sacco 
propose a protocol for key exchange based on 
an asymmetric cryptosystem. In the first two 
messages of this protocol, A obtains certificates 
CA and CB that connect A and B with their 
public keys K, and Kb, respectively. The exact 
form of CA and CB is not important for our 
purposes. The interesting part of the protocol is 
Message 3. There, A sends to B a key Kat, for 
subsequent encrypted communication between A 
and B ,  with a timestamp T,. The protocol is: 

Message 1 A -+ S :  A,  B 
Message 2 S -+ A :  CA, CB 
Message 3 A + B : CA, CB, 

{ { K a b ,  T a ) ~ , - l  }Kb 

This third message is encrypted for both secrecy 
and authenticity. When A sends this message to 
B,  it is important that no other principal obtain 
K,b; the use of Kb provides this guarantee. f i r -  
thermore, the intent is that, when B receives the 
message, B should know that A sent it (because 
of the signature with K;’). Finally, B should 
know that the message was intended for B (be- 
cause of the use of K b ) .  

Unfortunately nothing provides this final guar- 
antee, with dramatic consequences. Any princi- 
pal B with which A opens communication can 
pretend to a third party C that it actually is 
A,  for the duration of validity of the timestamp. 
For simplicity, we omit the exchanges which yield 
the public certificates CA, CB, and CC. When 
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The protocol is flawed. The connection be- 
tween the messages is not sufficient. In partic- 
ular, nothing connects B’s query to S with S’s 
reply. The protocol is therefore vulnerable to an 
attack, as follows. Suppose that B is willing to 
talk to A and to C roughly at the same time; A 
may be off-line. Then C can impersonate A: 

Message 1 C --f B : 
Message 1’ C --f B : 
Message 2 B -+ A : 
Message 2’ B -+ C : 
Message 3 C + B : 
Message 3’ C t E : 
Message 4 B -+ S : 
Message 4’ B -+ S : 
Message 5 S -+ B : 
Message 5’ S + B : 

where NF is the result of decrypting { N b } K c ,  us- 
ing Kas. In Messages 1 and l’, C tells B that 
both A and C want to establish a connection. In 
Messages 2 and 2’, B replies with two challenges; 
C receives one normally, and captures the other 
one, which was destined to A’s address. In Mes- 
sages 3 and 3’, C replies to both challenges. On 
A’s behalf, it can send anything. On its own be- 
half, C responds to the challenge intended for A.  
In Messages 4 and 4’, B consults S about the two 
responses. Messages 5 and 5’ are the replies from 
S. One of these replies matches nothing, while 
the other one contains the challenge intended for 
A. On the basis of these replies, then, B must 
believe that A is present. 

The existence of this attack demonstrates that 
the messages in the protocol are not sufficiently 
explicit about the identity of the principals in 
question. (After we contacted them, Woo and 
Lam came to the same conclusion [33].) Reason- 
ing as in Example 3.1, we may remove the flaw, 
by changing the last message of the protocol to 

A further change is discussed in Example 6.2. 0 

Example 3.3 A more dramatic example is pro- 
vided by the basic Internet protocol of Lu and 
Sundareshan [12, pp. 1016-10171. This protocol 
is rather complicated for a detailed description. 

Its intent is to allow two principals A and B to 
obtain a session key, with the mediation of local 
servers and gateways. 

On the other hand, the fundamental flaw of 
the protocol is rather simple. One immediately 
sees that neither A nor B ever receives a message 
that contains the other’s name. Obviously, this 
opens the door for confusions between different 
connections. It also allows some easy attacks to 
defeat the protocol. After we contacted them, 
the authors published a correction [13], where 
names appear in messages explicitly. 0 

5 Encryption 

The next group of principles and examples con- 
cern encryption. They are generally related to 
Principle 1, since they concern what encryption 
means and on what it does not mean. 

5.1 The uses of encryption 

As the examples below illustrate, encryption is 
used for a variety of purposes in the present con- 
text [ 1 91. 

0 Encryption is sometimes used for the preser- 
vation of confidentiality. In such case it is 
assumed that only intended recipients know 
the key needed to recover a message. When 
a principal knows K-’ and sees { X ) K ,  it 
may deduce that X was intended for a prin- 
cipal who knows K-’; and it may even de- 
duce that X was intended for itself, given 
additional information. 

0 Encryption is sometimes used to guarantee 
authenticity. In such case it is assumed 
that only the proper sender knew the key 
used to encrypt a message. The encryption 
clearly contributes to the overall meaning 
of the message. The extreme situation is 
that where a principal shows that a key is 
known by encrypting a null message or a 
timestamp. 

0 While encryption guarantees confidentiality 
and authenticity, it also serves in binding 
together the parts of a message: receiving 
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{ X ,  Y } K  is not always the same as receiv- 
ing { X } K  and { Y } K .  When encryption is 
used only to bind parts of a message, sig- 
nature is sufficient. The meaning attached 
to this binding is rather protocol-dependent, 
and often subtle. 

0 Finally, encryption can serve in producing 
random numbers. There is a vast theory 
that explains the relation between one-way 
functions and random-number generators. 
At the level of abstraction that we consider, 
one typically assumes that random numbers 
are available without examining how they 
are constructed (but see Example 7.1). 

There is considerable confusion about the uses 
and meanings of encryption. If the cryptogra- 
phy is asymmetric it may be obvious what is in- 
tended; if the cryptography is symmetric, it is 
generally not. 
Principle 4 

Be clear as to why encryption is being done. 
Encryption is not wholly cheap, and not ask- 
ing precisely why it is being done can lead to 
redundancy. Encryption is not synonymous 
with security, and its improper use can lead 
to errors. 

Example 4.1 The Kerberos protocol [16] is 
based on the original Needham-Schroeder pro- 
tocol [20], but makes use of timestamps as 
nonces in order to remove flaws demonstrated 
by Denning and Sacco [6] and in order to re- 
duce the total number of messages required. 
Like the Needham-Schroeder protocol on which 
it is based, the Kerberos protocol relies on 
symmetric-key cryptography. A slightly simpli- 
fied version of the protocol goes: 

Message 1 A + S :  A ,  B 
Message 2 S + A : {T,, L,  K a b ,  B ,  

Message 3 A + B : {T,, L ,  K a b ,  A } K ~ ~ ,  

Message 4 B + A : { T a  + 1 ) ~ ~ ~  

ITS, L, K a b ,  A } K b , ) K a s  

{ A ,  Ta}K,t, 

Here, T, and T a  are timestamps, and L is a life- 
time. Initially the server S shares the keys K a ,  

and Kbs with the principals A and B; after exe- 
cution, A and B share Kab. This protocol serves 
to illustrate different uses of encryption; we de- 
scribe the protocol step by step: 

0 Encryption is not essential for Message 1. 
Without encryption, though, an attacker 
can flood S with requests for keys, by fal- 
sifying instances of Message l. It is com- 
mon for designers not to focus on this sort 
of vulnerability. 

0 Message 2 requires encryption: Kab should 
remain confidential, and S should sign the 
message as a proof of authenticity. 

0 We may however question why double en- 
cryption is used in Message 2. Most prob- 
ably, this use of double encryption is sim- 
ply inherited from the Needham-Schroeder 
protocol (see Example 9.1). As in that pro- 
tocol, double encryption does not add any- 
thing from the points of view of confiden- 
tiality or authenticity, and it is not entirely 
free of cost. 

It does provide a guarantee: when B re- 
ceives the first part of Message 3, it knows 
that A must have extracted it from Mes- 
sage 2, and hence that A must have looked 

a similar use of encryption in a variant of the 
Otway-Rees protocol [23].) This interpreta- 
tion of encryption is sound, but slightly un- 
usual, and probably not what the protocol 
designers had in mind. 

at Message 2. (Heintze and Tygar [9] d' lSCUSS 

0 In the second part of Message 3, encryp- 
tion is used for an entirely different purpose: 
A encrypts Ta with Kab in order to prove 
knowledge of Kab near time T'. 

In general, Ta may be a few hours newer 
than T,. However, if Ta is not much dif- 
ferent from T,, the encryption is redundant: 
the use of double encryption in Message 2 
gives adequate proof of knowledge of Kab. 
In this case, the second part of Message 3 
could be omitted altogether, and B could 
use T, in Message 4. (Were we to propose a 
change in Kerberos, however, it would not 
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be removing an encryption in Message 3 
but rather eliminating the double encryp- 
tion in Message 2, which would become 
i T S ,  L ,  Kab ,  B}Kas ,  {Z, L,  K a b ,  A}Kbb*) 

0 The encryption in Message 4 serves an anal- 
ogous purpose. 

0 

Examples 6.1 and 6.2, below, illustrate the in- 
teraction of encryption and nonces. In short, en- 
cryption is often used for binding when a nonce 
provides an association between a message and 
an implicit name. Following Principle 3, we make 
this missing name explicit. The use of both en- 
cryption and nonces is then much simpler and 
economical. 

5.2 Signing encrypted data 

Signature is used, as the name suggests, to indi- 
cate which principal last encrypted a message. It 
is frequently taken as also guaranteeing that the 
signing principal knew the message content. It is 
hard, but fortunately unnecessary to be precise 
about what knowing is. An informal notion is 
sufficient for stating the next principle: 
Principle 5 

When a principal signs material that has al- 
ready been encrypted, it should not be in- 
ferred that the principal knows the content 
of the message. On the other hand, it is 
proper to infer that the principal that signs 
a message and then encrypts it for privacy 
knows the content of the message. 

Failure to follow this principle can lead to er- 
rors, as in the next example. 
Example 5.1 The CCITT X.509 standard con- 
tains a set of three protocols using between 
one and three messages [5]. The protocols are 
intended for signed, secure communication be- 
tween two principals, assuming that each knows 
the public key of the other. 

The CCITT proposal has problems. We dis- 
cuss one problem described in [4]; it appears al- 
ready in the one-message protocol: 

Message 1 A -+ B : A,  {Ta, Nay B ,  X,, 
{ya)Kb)K;' 

Here, T, is a timestamps, N ,  is a nonce (not 
used), and X ,  and Y, are user data. The 
X.509 protocol actually uses hashing to reduce 
the amount of encryption. We do not show this 
because it does not affect our argument about 
X.509. 

The protocol is intended to ensure the in- 
tegrity of X ,  and Ya, assuring the recipient of 
their origin, and to guarantee the privacy of Y,. 
However, although Ya is transferred in a signed 
message, there is no evidence to suggest that the 
sender is actually aware of the data sent in the 
private part of the message. This corresponds to 
a scenario where some third party intercepts a 
message and removes the existing signature while 
adding his own, blindly copying the encrypted 
section within the signed message. This problem 
can be avoided by several means, the simplest 
of which is to sign the secret data before it is 
encrypted for privacy. 0 

A particular case of the principle concerns 
hash functions: 

Example 5.2 It is common to use hash functions 
in order to save on encryption with asymmetric- 
key systems (see for example [25, 103). In partic- 
ular, A can send a signed, confidential message 
to B as follows: 

Message 1 A + B : { X } K & ,  { H ( x ) } K ; l  

where H is a one-way hash function. When A 
sends this message, only B discovers X ,  and B 
knows that A signed the hash of X .  For example, 
if X is a request for an operation, B may then 
infer that A supports X .  We should think of one- 
way hashing as encryption, and then Principle 5 
applies. In this instance, it means that B cannot 
be certain that A knew X .  For example, if X is 
a secret such as a password, B cannot be certain 
that A knew the secret; A may have received 
H ( X )  from a friend. 0 

In general, we recommend careful examination 
of those protocols that require a principal to sign 
material that is already encrypted, and such that 
the principal cannot decrypt it. On the other 
hand, signing before encrypting is not a bill of 
health; see Example 3.1. 



6 Timeliness N,, and Nb: 

Message 1 A + B : M ,  A,  B ,  

Message 2 B +. S : M ,  A,  B,  
{Na 7 M ,  A,  B }  Kas 

{Na, M ,  A,  B } K , ~ ,  
{Nb, M ,  A, B}Kb. 

{Nb, Kab}Kbs  

Message 3 s + B : hf, {Na, Kab}KaS, 

Message 4 B + A : M ,  {Na, Kab}Ka, 

This is the first protocol analyzed in [4]. 
Perhaps because of our relative inexperience, 
we were rather bold in the idealization of this 
protocol-in assigning meanings to these mes- 
sages. As a consequence, we suggested in passing 
that the encryption of Nb in Message 2 is unnec- 
essary. As Mao and Boyd have since explained 
in detail [14], the encryption of Na and Nb is 
essential: because Na and Nb are bound with 
the names A and B by encryption in Messages 1 
and 2, they can serve as secure references to A 
and B in Messages 3 and 4. Encryption is being 
used not for secrecy, but for binding; nonces are 
exploited not only as proofs of timeliness but as 
substitutes for names. 

Much encryption can be avoided when names 
are included in S’s reply: 

An important part of the meaning of a message is 
made up of temporal information. Further, one 
common precondition for acting upon a message 
is that there is reason to believe that the message 
is fresh, and hence not a replay of an old one. 
This has to be inferred from something in the 
message, and evidently whatever this is should 
be bound together with the rest of the message 
so that the magic talisman cannot be attached to 
a message being replayed. It is important to un- 
derstand properly how the freshness component 
works, and what is being assumed about it. 

The next group of principles and examples 
concern time. They all address what must be 
assumed about proofs of timeliness, and what 
they actually prove. 

6.1 Timestamps, sequence numbers, 
and other nonces 

When guarding against replay of messages from 
an earlier run of the same protocol it is common 
to use nonces as part of a challenge-response ex- 
change. A message is sent which leads to a reply 
which could only have been produced in knowl- 
edge of the first message. The objective is to 
guarantee that the second message is made after 
the first was sent, and sometimes to bind the two 
together. There is sometimes confusion about 
nonces-are they guaranteed new, random, un- 
predictable? Whence we propose: 

Principle 6 

Be clear what properties you are assuming 
about nonces. What may do for ensuring 
temporal succession may not do for ensuring 
association-and perhaps association is best 
established by other means. 

Example 6.1 In [23], Otway and Rees describe 
the following protocol. It allows two parties A 
and B to establish a shared key Kab, with the 
help of a server S with whom they share keys 
K,, and KbS, respectively, using the nonces M ,  

Message 1 A + B : A,  B ,  Na 
Message 2 B + S : A,  B,  N,, Nb 
Message 3 S + B : {Nay A,  B ,  Kab}Kas, 

{ Nb 7 A,  B Kab } Kbs 
Message 4 B + A : {Na, A,  B ,  Kab}Ka, 

The protocol is not only more efficient but also 
conceptually simpler after this modification. 0 

Example 6.2 Example 3.2 describes a protocol 
due to Woo and Lam. Looking back at the use of 
encryption in that protocol, we notice that the 
purpose of encryption in Message 4 is to bind two 
parts of a message. Looking back at the use of 
nonces, we notice that Nb provides only a proof 
of freshness, but not an association to the name 
A as was intended. 

As we argue in Example 3.2, Message 5 should 
mention the name A explicitly for the sake of se- 
curity. With that change, the binding of Mes- 
sage 4 becomes unnecessary. Further, Nb needs 
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to be viewed only as a proof of freshness. The 
protocol is now simply: 

Message 1 A --t B : A 
Message 2 B -+ A : Nb 
Message 3 A -+ B : {Nb}K,, 
Message 4 B --t s : A ,  {Nb}K,, 
Message 5 s + B : { A ,  Nb}Kbs 

0 

It is not essential for nonces to be unpre- 
dictable. In fact, the value of a counter makes 
a proper nonce. However, predictable nonces 
should be used with caution: 

Principle 7 

The use of a predictable quantity (such 
as the value of a counter) can serve in 
guaranteeing newness, through a challenge- 
response exchange. But if a predictable 
quantity is to be effective, it should be pro- 
tected so that an intruder cannot simulate a 
challenge and later replay a response. 

Example 7.1 Protocols that rely on synchro- 
nized clocks must be accompanied by protocols 
to access time servers. These protocols cannot 
themselves rely on synchronized clocks, but they 
can rely either on random nonces or on pre- 
dictable nonces. 

Using random nonces, we may have: 

Message 1 A + S :  A,  N, 
Message 2 S --f A : {T,, N a } ~ , ,  

where T, is the current time and N, is a ran- 
dom nonce, used as a challenge. After this ex- 
change, A accepts T, as the current time if the 
response arrived reasonably soon after the chal- 
lenge. Reiter exploits random nonces roughly in 
this manner [24]. 

This protocol would not work if N, were pre- 
dictable. An attacker C could make A set its 
clock back: early on, C makes a request for the 
current time using a future value of the nonce, 
saves S’s response, and then forwards the re- 
sponse to A when A uses this value in a chal- 
lenge. 

When N, is predictable, it should be pro- 
tected: 

Message 1 A -+ S : A,  { N a } ~ , .  
Message 2 S -+ A : {T,, { N ~ ) K , , ) K , .  

The attack is no longer possible. Note that it 
is not important for N, to remain secret (and 
after all we have assumed it is predictable). The 
encryption in Message 1 serves to construct a 
quantity {N,}K,,  that only A and S can predict 
from one that anyone can predict. 

A similar exchange arises in the context of 
Kerberos. Neuman and Stubblebine suggest us- 
ing Kerberos itself to obtain the time from a 
time server [22]. The quantity used as a nonce 
is roughly predictable: it is an incorrect times- 
tamp; since it is encrypted, we expect no diffi- 
culties. 0 

Freshness can also be proved by the use of 
timestamps. Timestamps are appealing because 
they seem easier to use than random numbers. 
However, their use is not always correct. There 
are number of aspects of prudent practice in the 
use of timestamps, and they are often misun- 
derstood. One use of timestamps is as a kind 
of nonce. In this case the ultimate user of the 
timestamp, as part of a response, is the same 
as the originator of the challenge of which the 
timestamp was part. This style of use does not 
depend on clock synchronization at all, but does 
need care because the timestamp may be to a 
large extent predictable. Another style of use 
does depend on clock synchronization. The re- 
cipient of a message looks at a timestamp in it, 
and only accepts the message if the timestamp 
is within a reasonable interval of the recipient’s 
local time. In this case we have: 

Principle 8 

If timestamps are used as freshness guar- 
antees by reference to absolute time, then 
the difference between local clocks at vari- 
ous machines must be much less than the 
allowable age of a message deemed to be 
valid. Furthermore, the time maintenance 
mechanism everywhere becomes part of the 
trusted computing base. 
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Example 8.1 Timestamps have received abun- 
dant attention in the authentication literature. 
Gong, in particular, has described problems aris- 
ing from the use of incorrect timestamps [8]. 
Therefore, we keep this example brief, summa- 
rizing Gong’s example for the Kerberos system. 

In Kerberos, as elsewhere, a principal with a 
slow clock is exposed to all sorts of difficulties, 
since the principal may mistake expired certifi- 
cates for current ones. It is more interesting that 
a fast clock can also be an opportunity for attack- 
ers. If a principal A signs a request at time TO 
using a timestamp T, with To < T ,  an attacker 
C can replay this request near time T. The ef- 
fect of the request at time T may benefit C ,  for 
example if C is using A’s workstation at time T .  

Bellovin and Merritt have discussed further 
problems in Kerberos, some of them in the use 
of timestamps. 0 

6.2 What is fresh: use vs. generation 

Roughly, a bit-pattern is fresh if any message 
that contains it must be recent. Clearly, it does 
not suffice that the bit-pattern participate in one 
recent message, if it may also participate in old 
ones. This observation is most important for 
keys: 
Principle 9 

A key may have been used recently, for ex- 
ample to encrypt a nonce, yet be quite old, 
and possibly compromised. Recent use does 
not make the key look any better than it 
would otherwise. 

Example 9.1 The Needham-Schroeder protocol 
and the Kerberos protocol are similar in struc- 
ture and in goal; the Needham-Schroeder proto- 
col reads: 

Message 1 A + S : A,  B ,  N,  
Message 2 S --f A : {N,, B ,  Kab, 

Message 3 A + B : {Kab, A } K ~ ,  
Message 4 B --+ A : {Nb}Kab 
Message 5 A + B : {Nb + l } ~ , ~  

{Kab, 

As in Kerberos, only A makes contact with S, 
who provides A with the session key, Kab, and a 

certificate encrypted with B’s key Kbs conveying 
the session key to B. Then B decrypts this cer- 
tificate and carries out a nonce handshake with 
A to be assured that A is present currently, since 
the certificate might have been a replay. As ex- 
plained in Section 7, Message 5 contains Nb + 1 
rather than Nb in order to distinguish this mes- 
sage from Message 4. 

Messages 4 and 5 of the Needham-Schroeder 
protocol were intended to convince B that A is 
present and active. They do not (and in fact were 
not intended to) convince B that Kab is fresh, 
and it was pointed out by Denning and Sacco 
that compromise of a session key could allow an 
intruder to deceive B [6]. Once the importance of 
freshness of Kab is recognized, a solution may be 
found by using timestamps, as suggested by Den- 
ning and Sacco. In another solution, described 
in [21], B send a nonce to S, and then S includes 
it in its certificate. 0 

Example 9.2 In [29], Varadharajan, Allen, and 
Black present several protocols for delegation in 
distributed systems. We take as an example the 
one for delegation in a Kerberos environment [29, 
p. 2731. In this protocol, client B shares the key 
Kbt with the authentication server; B has gen- 
erated a timestamp Tb and wants a key Kbs to 
communicate with another server S. The au- 
thentication server gives Kbs and {Kbs)Kbt to s. 
Then S constructs {Tb + l } ~ ~ ~ ,  and sends: 

Message 5 S + B : s, B ,  {Tb + 1 ) ~ ~ ~ ~  
{ K b s ) K b t  

The authors reason: 

Having obtained Kbs, B is able to verify us- 
ing Tb that S has replied to a fresh message, 
so that the session key is indeed fresh. 

However, B obtains no proof that Kbs is fresh. 
All that B can deduce is that Kbs has been used 
recently-but it may be an old, compromised 
key. 0 

7 Recognizing messages 
and encodings 

It seems important that principals recognize 
messages for what they are, and can associate 
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them correctly with the current step of what- 
ever protocol they are executing. There are 
two possible forms of confusion (which could in 
principle happen together): between the cur- 
rent message and a message of similar purpose 
form a previous run of the protocol, and be- 
tween the current message and a message be- 
longing elsewhere in the protocol, or to another 
protocol. Snekkenes [27] and Syverson [28] have 
constructed examples of protocols where these 
confusions can arise. 

We believe that these confusions are less im- 
portant when all our principles are correctly fol- 
lowed. If a message says what it means then we 
have no reason to be concerned with its context. 
The message is meaningful (or meaningless) on 
its own, whether we know that it belongs in a 
particular protocol instance or not. 

Still, mapping a message to the appropri- 
ate protocol instance is convenient when it con- 
tributes to the compact encoding of the message. 
For example, Message 1 of the Wide-mouthed- 
frog protocol always means something of the 
form: “the signer (with key Ka3) says at time 
T, that &b is a good key to talk to B” (see 
Example 11.2). If the principal who receives a 
message can be certain that the message is Mes- 
sage 1 of an instance of the Wide-mouthed-frog 
protocol, then the message can be encoded com- 

We arrive at the following recommendation: 
pactly: {Ta, B,  Kab}K,,- 

Principle 10 

If an encoding is used to present the mean- 
ing of a message, then it should be possible 
to tell which encoding is being used. In the 
common case where the encoding is protocol 
dependent, it should be possible to deduce 
that the message belongs to this protocol, 
and in fact to a particular run of the proto- 
col, and to know its number in the protocol. 

Mapping a message to the appropriate pro- 
tocol instance is often trivial if the message 
obeys our other principles. If the message con- 
tains sufficient timeliness guarantees and suffi- 
cient names, then the current instance cannot 
be confused with an old instance, or an instance 

for other principals. It could be confused with a 
concurrent instance for the same principals. 

Next we give an example where this princi- 
ple is relevant, but where other more important 
principles apply as well. 
Example 10.1 If signature or confidentiality are 
mediated by symmetric-key encryption then a 
particular form of confusion is associated with 
the direction in which a message is intended to 
pass. 

In the Needham-Schroeder protocol, a partici- 
pant sends a challenge Nb and receives Nb + 1 as 
a response (see Example 9.1): 

Message 4 B ---f A : { N b } K a b  
Message 5 A ---t B : {Nb + 1 ) ~ ~ ~  

The purpose of incrementing Nb is to distinguish 
the challenge from the response. Without this 
increment, an attacker could send B’s message 
back to B,  who could mistake it for A’s reply. 
The purpose of incrementing a nonce has often 
been misunderstood. For example, a “+1” oper- 
ation appears in Kerberos, where it is unneces- 
sary. 

The messages would be clearer if they were 
rewritten: 

Message 4 B + A : {N-S Message 4: Nb}Kab  
Message 5 A + B : {N-S Message 5: Nb}Kab 

though in fact any way of making the two mes- 
sages different will do. (This is an instance of 
our suggestion to Syverson mentioned in [28].) 

Guided by the principle that messages should 
say what they mean, however, we ought to 
rewrite the messages: 

Message 4 B + A : Nb, { B  says that Kab is 
a good key to talk to A,  sometime 
after receiving K a b } K a b  

Message 5 A + B : 
a good key to talk to B ,  sometime 
after receiving Nb}Kab 

Of course, shorter encodings of these meanings 
can be constructed. Not only there is no risk of 
confusion between these two messages: each of 
them is self-contained, and it is not important to 
know that they are part of a particular instance 
of the Needham-Schroeder exchange. U 

{ A  says that K,b is 
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8 Trust B via S in only two messages: 

Message 1 A + S : A,  {“a, B,  Kab}K, .  
Message 2 S -+ €? : {T,, A,  Kab}Kbs  

First, A sends a session key Kab to S, includ- 
ing a timestamp T,. Then S checks T, and for- 
wards the message to B,  together with its own 
timestamp T,. Finally, B checks T, and accepts 
the session key Kab for communication with A. 
Thus, A is trusted to choose a session key. This 
kind of trust is often thought unacceptable be- 
cause of the quality requirements placed on key 
generation such as secrecy, non-repetition, un- 
predictability, and doubtless more. 0 

Example 11.3 Principals associate public keys 
with other principals by consulting public-key 
certificates. These certificates can be issued by 
certification authorities (CAS). CAS are trusted 
to certify a key only after proper steps have been 
taken to identify the principal that owns it. Since 
there is no global source of authority, it is not 
surprising that this is an area where questions of 
transitivity of trust come up. It may happen that 
the only way A can find out B’s public key is by 
accepting a certificate from CA1 for CAP’S public 
key which is used to sign a certificate for CAS’S 
public key . . . which is used to sign a certificate 
for B’s public key, for example. In this case A 
knows and trusts CA1 but has never heard of the 
other certification authorities-and maybe even 
distrusts them. 0 

Example 11.4 It is usually taken for granted 
that the two principals in an authentication dia- 
logue are honestly working to the common end of 
establishing a secure communication channel for 
subsequent use. This is not always the case, as 
may be seen in communication between potential 
enemies or between security forces and terrorists. 
Possible sorts of bad behavior are disclosure of 
keys and forgery of messages. Therefore, if this 
assumption is made in a particular case then it 
should be explicit. 0 

Example 11.5 An access control list (ACL) is 
a statement of trust [l]: if principal A appears 
on the ACL for an operation then A is trusted 
when it says that the operation should be per- 
formed (that is, when it makes a request). It 

The use of timestamps makes explicit for the first 
time a question of trust. When can a principal 
A rely on another principal B putting a correct 
timestamp in a message? The answer usually 
given is that this is acceptable if A trusts B in 
relation to timestamps. 

The idea of trust is pervasive and a little elu- 
sive. A careful classification of types of trust 
is given in [34] and is taken further by Klein 
in her doctoral thesis. There are questions 
both of practice and philosophy to do with trust 
relations-for example whether they are transi- 
tive or not-which it would not be appropriate 
to pursue here. We may simply say that A trusts 
B in regard to some function if a loss of security 
to A could follow from B not behaving in the 
specified way; it is usually difficult or impossible 
for A to verify B’s good behavior. 

There is some measure of trust involved when- 
ever one principal acts on the content of a mes- 
sage from another. It is essential that this trust 
be properly understood. 

Principle 11 

The protocol designer should know which 
trust relations his protocol depends on, and 
why the dependence is necessary. The rea- 
sons for particular trust relations being ac- 
ceptable should be explicit though they will 
be founded on judgement and policy rather 
than on logic. 

Example 11.1 Complete loss of security could 
follow from a Kerberos server issuing wrong 
timestamps. The server, and its source of time, 
must be trusted by all concerned. This, it may 
be pointed out, is a case in which clients can to 
some extent monitor the good behavior of the 
trusted server because the correct time is public 
and global. If a client reads GPS time it will have 
reason for suspicion if Kerberos’ time is much at 
variance. 0 

Example 11.2 The Wide-mouthed-frog proto- 
col uses symmetric-key cryptography and an au- 
thentication server. It transfers a key from A to 
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can be a complex matter to determine whether 
the statement of trust that the ACL represents is 
appropriate. Often, the question of whether it is 
appropriate makes little sense, particularly in the 
context of completely discretionary access con- 
trol policies. Nonetheless, understanding ACL's 
and their consequences is crucial for security. 0 

In practice it is not very common for com- 
plicated inferences about trust to be necessary. 
With the exception of the chains of trust of Ex- 
ample 11.3, which are likely to be simpler in prac- 
tice than they might be in theory, it is usually 
not difficult to isolate the trust relations being 
relied on in a particular circumstance. It is valu- 
able to do so explicitly, because this may lead to 
useful debate about the appropriateness of these 
trust relations. 

9 Conclusion 

We have found the principles and examples de- 
scribed in this paper useful in our own work. Per- 
haps it is because of this that they bear a certain 
subjective character. We do however believe that 
they respond to an immediate general need, in a 
discipline where some basic mistakes appear in 
print several times. 

Many of our suggestions can be embodied in 
development methods and in formalisms. While 
these are helpful, we tried to emphasize an in- 
formal understanding of some issues essential for 
security. We hope that our guidelines will con- 
tribute to the improvement of the practice of de- 
signing cryptographic protocols. 
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