
Prudent Engineering Practice
for Cryptographic Protocols

Martin Abadi* Roger Needhamt

Abstract

We present principles for the design of crypto-
graphic protocols. The principles are neither
necessary nor sufficient for correctness. They are
however helpful, in that adherence to them would
have avoided a considerable number of published
errors.

Our principles are informal guidelines. They
complement formal methods, but do not assume
them. In order to demonstrate the actual ap-
plicability of these guidelines, we discuss some
instructive examples from the literature.

1 Introduction

It has been evident for a number of years that
cryptographic protocols, as used in distributed
systems for authentication and related purposes,
are prone to design errors of every kind. A con-
siderable body of literature has come into be-
ing in which various formalisms are proposed
for investigating and analyzing protocols to see
whether they contain various kinds of blunders.
(Liebl’s bibliography [ll] contains references to
protocols and formalisms.) Although sometimes
useful, these formalisms do not of themselves
suggest design rules; they are not directly bene-
ficial in seeing how to avoid trouble.

~

*maQsrc.dec.com. Digital Equipment Corporation,
Systems Research Center, 130 Lytton Ave., Palo Alto,
California 94301, USA.

trmnQcl.cam.ac.uk. University of Cambridge, Com-
puter Laboratory, New Museums Site, Pembroke St.,
Cambridge CB1 3QG, UK.

We present principles for the design of crypto-
graphic protocols. The principles are not neces-
sary for correctness, nor are they sufficient. They
are however helpful, in that adherence to them
would have contributed to the simplicity of pro-
tocols and avoided a considerable number of pub-
lished confusions and mistakes.

We arrived at our principles by noticing some
common features among protocols that are diffi-
cult to analyze. If these features are avoided, it
becomes less necessary to resort to formal tools-
and also easier to do so if there is good reason
to. The principles themselves are informal guide-
lines, and useful independently of any logic.

We illustrate the principles with examples. We
draw our examples from the published literature,
in order to demonstrate the actual applicability
of our guidelines. Some of the oddities and er-
rors that we analyze here have been documented
previously (in particular, in [4]). Other examples
are new: protocols by Denning and Sacco [6], Lu
and Sundareshan [la], Varadharajan, Allen, and
Black [29], and Woo and Lam [32]. We believe
they are all instructive.

Generally, we choose examples from the au-
thentication literature, but the principles are ap-
plicable elsewhere, for example to electronic-cash
protocols (e.g., [15]). We focus on traditional
cryptography, and on protocols of the sort com-
monly implemented with the DES [18] and the
RSA [26] algorithms. In particular, we do not
consider the subtleties of interactive schemes for
signatures (eg, [7]) . Moreover, we do not discuss
the choice of cryptographic mechanisms with ad-
equate protection properties, the correct imple-
mentation of cryptographic primitives, or their

122
1063-7109194 $03.00 0 1994 IEEE

http://maQsrc.dec.com
http://trmnQcl.cam.ac.uk

appropriate use; these subjects are discussed
elsewhere (e.g., [30, 171).

Throughout, we concentrate on the simple
facts with the largest potential applicability and
payoff. Admittedly, the literature is full of inge-
nious protocols and attacks. We do not attempt
to organize the principles that underly this inge-
nuity, and perhaps it is not necessary. We hope
that our simple principles and examples will be of
help to the engineering of robust cryptographic
protocols.

2 Basics

A protocol, for present purposes, is a set of rules
or conventions defining an exchange of messages
among a set of two or more partners. These part-
ners are users, processes, or machines, which we
will generically refer to as principals. In a cryp-
tographic protocol the whole or part of some or
all of the messages is encrypted. We interpret
the term encryption fairly broadly, applying it
for example to signature operations. Encryption
and decryption are for present purposes defined
as key-dependent transformations of a message
which may only be inverted by using a definite
key; the keys used for encryption and decryp-
tion are the same or different, depending on the
cryptographic algorithm used.

We find two overarching principles for the de-
sign of secure cryptographic protocols. One prin-
ciple is concerned with the content of a message
and
will

1.

2.

the other with the circumstances in which it
be acted upon:

Every message should say what it means-
its interpretation should depend only on its
content.

The conditions for a message to be acted
upon should be clearly set out so that some-
one reviewing a design may see whether they
are acceptable or not.

Next we explain these general principles. They
lead to other, more specific recommendations,
which we discuss in the subsequent sections.

2.1 Explicit communication

In full, our first basic principle is:
Principle 1

Every message should say what it means:
the interpretation of the message should de-
pend only on its content. It should be possi-
ble to write down a straightforward English
sentence describing the content-though if
there is a suitable formalism available that
is good too.

For example, an authentication server S might
send a message whose meaning may be expressed
thus: “After receiving bit-pattern P , S sends to
A a session key K intended to be good for con-
versation with B”. All elements of this meaning
should be explicitly represented in the message,
so that a recipient can recover the meaning with-
out any context. In particular, if any of P , S , A,
B, or K are left to be inferred from context, it
may be possible for one message to be used de-
ceitfully in place of another.

Principle 1 is not completely original. In [4],
we recommend the use of a logical notation in
generating and describing protocols-essentially
proposing a method to follow the principle. Es-
tablishing the correspondence between the logi-
cal protocol and its concrete implementation can
be a simple matter of parsing, as for example
in [31, Section 4.3.21. Although a precise com-
parison of informal ideas is difficult, we also find
an affinity with Boyd and Mao’s proposal that
protocols should be robust in the sense that “au-
thentication of any message in the protocol de-
pends only on information contained in the mes-
sage itself or already in the possession of the
recipient” [3]. An operational variant on this
theme appears in the work of Woo and Lam,
who call a protocol full information if “its initia-
tor and responder always include in their outgo-
ing encrypted messages all the information they
have gathered” [33].

2.2 Appropriate action

For a message to be acted upon, it not merely has
to be understood but a whole variety of other

123

conditions have to hold too. These often con-
sist of what may informally be regarded as state-
ments of trust, though this anthropomorphic no-
tion should be used with care. Statements of
trust cannot be wrong though they may be con-
sidered inappropriate. For example, if some-
one believes that choosing session keys should
be done by a suitably trusted server rather than
by one of the participants in a session, then he
will not wish to use a protocol such as the Wide-
mouthed-frog protocol [4].

Principle 2

In general, we have:

The conditions for a message to be acted
upon should be clearly set out so that some-
one reviewing a design may see whether they
are acceptable or not.

2.3 Secrecy

The secrecy of certain pieces of information is es-
sential to the functioning of cryptographic proto-
cols. Obviously, a protocol should not publicize
the cryptographic keys used for communicating
sensitive data.

None of the our principles makes this point ex-
plicitly. Rather, all of our principles warn against
mistakes that often imply the loss of secrecy, in-
tegrity, and authenticity. Some of the examples
clarify how the principles relate to the need for
secrecy.

There may be more to say about secrecy guide-
lines for cryptographic protocols, but these are
outside the scope of the present paper.

2.4 Examples and other principles

Below we discuss many concrete examples where
errors would have been avoided by use of our
two basic principles. We also introduce other
principles. Some of these are clearly corollaries
of the basic ones, others are not. In particular,
we recommend:

0 Be clear on how encryption is used, and on
the meaning of encryption.

0 Be clear on how the timeliness of messages
is proved, and on the meaning of temporal
information in messages.

Hopefully, the two basic principles will encourage
a certain lucidity in the design of cryptographic
protocols, and thereby make it easier to follow
our other principles.

3 Notation

We adopt notation common in the literature.
That notation is not quite uniform and, in exam-
ples, we make compromises between uniformity
of this paper and faithfulness to original nota-
tion.

In this paper, the symbols A and B often rep-
resent arbitrary principals, S represents a server,
T a timestamp, N a nonce (a quantity gener-
ated for the purpose of being recent), K a key,
and K-' its inverse. In symmetric cryptosys-
tems such as DES, K and K-' are always equal.
For asymmetric cryptosystems such as RSA, we
assume for simplicity that the inversion opera-
tion is an involution (so ~ - 1 - l equals K) ; we
tend to use K-' for the secret part and K for
the public part of a key pair (K , K-'). We write
{ X } K to represent X encrypted under K ; any-
one who knows { X } K and the inverse of K can
obtain X . If K is secret, we may refer to { X } K
as a signed message, and to the encryption oper-
ation as a signature.

For example,

Message 4 B -+ A : { T a + l } ~ , ~

describes the fourth message in a protocol; in
this message, B sends to A the timestamp T a
incremented by 1, under the key Kat,. In this ex-
ample, the subscript a in Ta is a hint that A first
generated T,; the subscript ab in K a b is a hint
that Kab is intended for communication between
A and B. Similarly, we may write K, for A's
public key.

4 Naming

The most immediate instance of Principle 1 pre-
scribes being explicit about names of principals:

124

Principle 3 A opens communication with B ,

Message 3 A -+ B : CA, CB,
{ { K a b , T a) K ; l } K b

B removes the outer encryption, reencrypts with
K,, sends:

Message 3’ B -+ C : CA, CC,
{ { K a b , T o) K , - ~ } K ,

and C will believe that the message is from A.
In particular, C might send sensitive information
under K,b, and B may see it when perhaps only
A should.

The intended meaning of Message 3 is roughly
“At time T,, A says that Kab is a good key for
communication between A and B”. Any ade-
quate format for Message 3 should contain all of
these elements expressly or by implication. The
obvious one is:

Message 3 A -+ B : CA, CB,
{ { A , Kab, % } ~ , - l }Kb

although the name A might be deducible from
KL1. It is important that this format must not
be used for anything else; we return to this point
in Section 7. 0

Example 3.2 In [32, pp. 42-43], Woo and
Lam present an authentication protocol based on
symmetric-key cryptography. When B wants to
check that it is in A’s presence, it runs:

Message 1 A -+ B : A
Message 2 B -+ A : Nb
Message 3 A + B : { N b } K a s

Message 5 S + B : { N b } K b S
Message B : { A , { N b) K a , } K b a

Here Nb is a nonce, S is a server, and K,, and
Kbs are keys that A and B share with S. Basi-
cally, A claims his identity (Message l); B pro-
vides a nonce challenge (Message 2); A returns
this challenge encrypted under K,, (Message 3);
B passes this message on to S for verification,
bound with A’s name under Kb, (Message 4); S
decrypts using A’s key and reencrypts under B’s
(Message 5) . If S replies { N b } K b s , then B should
be convinced that A has responded to the chal-
lenge Nb.

If the identity of a principal is essential to
the meaning of a message, it is prudent to
mention the principal’s name explicitly in
the message.

The names relevant for a message can some-
times be deduced from other data and from what
encryption keys have been applied. However,
when this information cannot be deduced, its
omission is a blunder with serious consequences.

The principle is obvious and simple, yet it is
commonly ignored. We give several examples of
fairly different natures.

Example 3.1 In [6, p. 5351, Denning and Sacco
propose a protocol for key exchange based on
an asymmetric cryptosystem. In the first two
messages of this protocol, A obtains certificates
CA and CB that connect A and B with their
public keys K, and Kb, respectively. The exact
form of CA and CB is not important for our
purposes. The interesting part of the protocol is
Message 3. There, A sends to B a key Kat, for
subsequent encrypted communication between A
and B , with a timestamp T,. The protocol is:

Message 1 A -+ S : A, B
Message 2 S -+ A : CA, CB
Message 3 A + B : CA, CB,

{ { K a b , T a) ~ , - l }Kb

This third message is encrypted for both secrecy
and authenticity. When A sends this message to
B, it is important that no other principal obtain
K,b; the use of Kb provides this guarantee. f i r -
thermore, the intent is that, when B receives the
message, B should know that A sent it (because
of the signature with K;’). Finally, B should
know that the message was intended for B (be-
cause of the use of K b) .

Unfortunately nothing provides this final guar-
antee, with dramatic consequences. Any princi-
pal B with which A opens communication can
pretend to a third party C that it actually is
A, for the duration of validity of the timestamp.
For simplicity, we omit the exchanges which yield
the public certificates CA, CB, and CC. When

125

The protocol is flawed. The connection be-
tween the messages is not sufficient. In partic-
ular, nothing connects B’s query to S with S’s
reply. The protocol is therefore vulnerable to an
attack, as follows. Suppose that B is willing to
talk to A and to C roughly at the same time; A
may be off-line. Then C can impersonate A:

Message 1 C --f B :
Message 1’ C --f B :
Message 2 B -+ A :
Message 2’ B -+ C :
Message 3 C + B :
Message 3’ C t E :
Message 4 B -+ S :
Message 4’ B -+ S :
Message 5 S -+ B :
Message 5’ S + B :

where NF is the result of decrypting { N b } K c , us-
ing Kas. In Messages 1 and l’, C tells B that
both A and C want to establish a connection. In
Messages 2 and 2’, B replies with two challenges;
C receives one normally, and captures the other
one, which was destined to A’s address. In Mes-
sages 3 and 3’, C replies to both challenges. On
A’s behalf, it can send anything. On its own be-
half, C responds to the challenge intended for A.
In Messages 4 and 4’, B consults S about the two
responses. Messages 5 and 5’ are the replies from
S. One of these replies matches nothing, while
the other one contains the challenge intended for
A. On the basis of these replies, then, B must
believe that A is present.

The existence of this attack demonstrates that
the messages in the protocol are not sufficiently
explicit about the identity of the principals in
question. (After we contacted them, Woo and
Lam came to the same conclusion [33].) Reason-
ing as in Example 3.1, we may remove the flaw,
by changing the last message of the protocol to

A further change is discussed in Example 6.2. 0

Example 3.3 A more dramatic example is pro-
vided by the basic Internet protocol of Lu and
Sundareshan [12, pp. 1016-10171. This protocol
is rather complicated for a detailed description.

Its intent is to allow two principals A and B to
obtain a session key, with the mediation of local
servers and gateways.

On the other hand, the fundamental flaw of
the protocol is rather simple. One immediately
sees that neither A nor B ever receives a message
that contains the other’s name. Obviously, this
opens the door for confusions between different
connections. It also allows some easy attacks to
defeat the protocol. After we contacted them,
the authors published a correction [13], where
names appear in messages explicitly. 0

5 Encryption

The next group of principles and examples con-
cern encryption. They are generally related to
Principle 1, since they concern what encryption
means and on what it does not mean.

5.1 The uses of encryption

As the examples below illustrate, encryption is
used for a variety of purposes in the present con-
text [1 91.

0 Encryption is sometimes used for the preser-
vation of confidentiality. In such case it is
assumed that only intended recipients know
the key needed to recover a message. When
a principal knows K-’ and sees { X) K , it
may deduce that X was intended for a prin-
cipal who knows K-’; and it may even de-
duce that X was intended for itself, given
additional information.

0 Encryption is sometimes used to guarantee
authenticity. In such case it is assumed
that only the proper sender knew the key
used to encrypt a message. The encryption
clearly contributes to the overall meaning
of the message. The extreme situation is
that where a principal shows that a key is
known by encrypting a null message or a
timestamp.

0 While encryption guarantees confidentiality
and authenticity, it also serves in binding
together the parts of a message: receiving

126

{ X , Y } K is not always the same as receiv-
ing { X } K and { Y } K . When encryption is
used only to bind parts of a message, sig-
nature is sufficient. The meaning attached
to this binding is rather protocol-dependent,
and often subtle.

0 Finally, encryption can serve in producing
random numbers. There is a vast theory
that explains the relation between one-way
functions and random-number generators.
At the level of abstraction that we consider,
one typically assumes that random numbers
are available without examining how they
are constructed (but see Example 7.1).

There is considerable confusion about the uses
and meanings of encryption. If the cryptogra-
phy is asymmetric it may be obvious what is in-
tended; if the cryptography is symmetric, it is
generally not.
Principle 4

Be clear as to why encryption is being done.
Encryption is not wholly cheap, and not ask-
ing precisely why it is being done can lead to
redundancy. Encryption is not synonymous
with security, and its improper use can lead
to errors.

Example 4.1 The Kerberos protocol [16] is
based on the original Needham-Schroeder pro-
tocol [20], but makes use of timestamps as
nonces in order to remove flaws demonstrated
by Denning and Sacco [6] and in order to re-
duce the total number of messages required.
Like the Needham-Schroeder protocol on which
it is based, the Kerberos protocol relies on
symmetric-key cryptography. A slightly simpli-
fied version of the protocol goes:

Message 1 A + S : A , B
Message 2 S + A : {T,, L, K a b , B ,

Message 3 A + B : {T,, L , K a b , A } K ~ ~ ,

Message 4 B + A : { T a + 1) ~ ~ ~

ITS, L, K a b , A } K b ,) K a s

{ A , Ta}K,t,

Here, T, and T a are timestamps, and L is a life-
time. Initially the server S shares the keys K a ,

and Kbs with the principals A and B; after exe-
cution, A and B share Kab. This protocol serves
to illustrate different uses of encryption; we de-
scribe the protocol step by step:

0 Encryption is not essential for Message 1.
Without encryption, though, an attacker
can flood S with requests for keys, by fal-
sifying instances of Message l. It is com-
mon for designers not to focus on this sort
of vulnerability.

0 Message 2 requires encryption: Kab should
remain confidential, and S should sign the
message as a proof of authenticity.

0 We may however question why double en-
cryption is used in Message 2. Most prob-
ably, this use of double encryption is sim-
ply inherited from the Needham-Schroeder
protocol (see Example 9.1). As in that pro-
tocol, double encryption does not add any-
thing from the points of view of confiden-
tiality or authenticity, and it is not entirely
free of cost.

It does provide a guarantee: when B re-
ceives the first part of Message 3, it knows
that A must have extracted it from Mes-
sage 2, and hence that A must have looked

a similar use of encryption in a variant of the
Otway-Rees protocol [23].) This interpreta-
tion of encryption is sound, but slightly un-
usual, and probably not what the protocol
designers had in mind.

at Message 2. (Heintze and Tygar [9] d' lSCUSS

0 In the second part of Message 3, encryp-
tion is used for an entirely different purpose:
A encrypts Ta with Kab in order to prove
knowledge of Kab near time T'.

In general, Ta may be a few hours newer
than T,. However, if Ta is not much dif-
ferent from T,, the encryption is redundant:
the use of double encryption in Message 2
gives adequate proof of knowledge of Kab.
In this case, the second part of Message 3
could be omitted altogether, and B could
use T, in Message 4. (Were we to propose a
change in Kerberos, however, it would not

127

be removing an encryption in Message 3
but rather eliminating the double encryp-
tion in Message 2, which would become
i T S , L , Kab , B}Kas , {Z, L, K a b , A}Kbb*)

0 The encryption in Message 4 serves an anal-
ogous purpose.

0

Examples 6.1 and 6.2, below, illustrate the in-
teraction of encryption and nonces. In short, en-
cryption is often used for binding when a nonce
provides an association between a message and
an implicit name. Following Principle 3, we make
this missing name explicit. The use of both en-
cryption and nonces is then much simpler and
economical.

5.2 Signing encrypted data

Signature is used, as the name suggests, to indi-
cate which principal last encrypted a message. It
is frequently taken as also guaranteeing that the
signing principal knew the message content. It is
hard, but fortunately unnecessary to be precise
about what knowing is. An informal notion is
sufficient for stating the next principle:
Principle 5

When a principal signs material that has al-
ready been encrypted, it should not be in-
ferred that the principal knows the content
of the message. On the other hand, it is
proper to infer that the principal that signs
a message and then encrypts it for privacy
knows the content of the message.

Failure to follow this principle can lead to er-
rors, as in the next example.
Example 5.1 The CCITT X.509 standard con-
tains a set of three protocols using between
one and three messages [5]. The protocols are
intended for signed, secure communication be-
tween two principals, assuming that each knows
the public key of the other.

The CCITT proposal has problems. We dis-
cuss one problem described in [4]; it appears al-
ready in the one-message protocol:

Message 1 A -+ B : A, {Ta, Nay B , X,,
{ya)Kb)K;'

Here, T, is a timestamps, N , is a nonce (not
used), and X , and Y, are user data. The
X.509 protocol actually uses hashing to reduce
the amount of encryption. We do not show this
because it does not affect our argument about
X.509.

The protocol is intended to ensure the in-
tegrity of X , and Ya, assuring the recipient of
their origin, and to guarantee the privacy of Y,.
However, although Ya is transferred in a signed
message, there is no evidence to suggest that the
sender is actually aware of the data sent in the
private part of the message. This corresponds to
a scenario where some third party intercepts a
message and removes the existing signature while
adding his own, blindly copying the encrypted
section within the signed message. This problem
can be avoided by several means, the simplest
of which is to sign the secret data before it is
encrypted for privacy. 0

A particular case of the principle concerns
hash functions:

Example 5.2 It is common to use hash functions
in order to save on encryption with asymmetric-
key systems (see for example [25, 103). In partic-
ular, A can send a signed, confidential message
to B as follows:

Message 1 A + B : { X } K & , { H (x) } K ; l

where H is a one-way hash function. When A
sends this message, only B discovers X , and B
knows that A signed the hash of X . For example,
if X is a request for an operation, B may then
infer that A supports X . We should think of one-
way hashing as encryption, and then Principle 5
applies. In this instance, it means that B cannot
be certain that A knew X . For example, if X is
a secret such as a password, B cannot be certain
that A knew the secret; A may have received
H (X) from a friend. 0

In general, we recommend careful examination
of those protocols that require a principal to sign
material that is already encrypted, and such that
the principal cannot decrypt it. On the other
hand, signing before encrypting is not a bill of
health; see Example 3.1.

6 Timeliness N,, and Nb:

Message 1 A + B : M , A, B ,

Message 2 B +. S : M , A, B,
{Na 7 M , A, B } Kas

{Na, M , A, B } K , ~ ,
{Nb, M , A, B}Kb.

{Nb, Kab}Kbs

Message 3 s + B : hf, {Na, Kab}KaS,

Message 4 B + A : M , {Na, Kab}Ka,

This is the first protocol analyzed in [4].
Perhaps because of our relative inexperience,
we were rather bold in the idealization of this
protocol-in assigning meanings to these mes-
sages. As a consequence, we suggested in passing
that the encryption of Nb in Message 2 is unnec-
essary. As Mao and Boyd have since explained
in detail [14], the encryption of Na and Nb is
essential: because Na and Nb are bound with
the names A and B by encryption in Messages 1
and 2, they can serve as secure references to A
and B in Messages 3 and 4. Encryption is being
used not for secrecy, but for binding; nonces are
exploited not only as proofs of timeliness but as
substitutes for names.

Much encryption can be avoided when names
are included in S’s reply:

An important part of the meaning of a message is
made up of temporal information. Further, one
common precondition for acting upon a message
is that there is reason to believe that the message
is fresh, and hence not a replay of an old one.
This has to be inferred from something in the
message, and evidently whatever this is should
be bound together with the rest of the message
so that the magic talisman cannot be attached to
a message being replayed. It is important to un-
derstand properly how the freshness component
works, and what is being assumed about it.

The next group of principles and examples
concern time. They all address what must be
assumed about proofs of timeliness, and what
they actually prove.

6.1 Timestamps, sequence numbers,
and other nonces

When guarding against replay of messages from
an earlier run of the same protocol it is common
to use nonces as part of a challenge-response ex-
change. A message is sent which leads to a reply
which could only have been produced in knowl-
edge of the first message. The objective is to
guarantee that the second message is made after
the first was sent, and sometimes to bind the two
together. There is sometimes confusion about
nonces-are they guaranteed new, random, un-
predictable? Whence we propose:

Principle 6

Be clear what properties you are assuming
about nonces. What may do for ensuring
temporal succession may not do for ensuring
association-and perhaps association is best
established by other means.

Example 6.1 In [23], Otway and Rees describe
the following protocol. It allows two parties A
and B to establish a shared key Kab, with the
help of a server S with whom they share keys
K,, and KbS, respectively, using the nonces M ,

Message 1 A + B : A, B , Na
Message 2 B + S : A, B, N,, Nb
Message 3 S + B : {Nay A, B , Kab}Kas,

{ Nb 7 A, B Kab } Kbs
Message 4 B + A : {Na, A, B , Kab}Ka,

The protocol is not only more efficient but also
conceptually simpler after this modification. 0

Example 6.2 Example 3.2 describes a protocol
due to Woo and Lam. Looking back at the use of
encryption in that protocol, we notice that the
purpose of encryption in Message 4 is to bind two
parts of a message. Looking back at the use of
nonces, we notice that Nb provides only a proof
of freshness, but not an association to the name
A as was intended.

As we argue in Example 3.2, Message 5 should
mention the name A explicitly for the sake of se-
curity. With that change, the binding of Mes-
sage 4 becomes unnecessary. Further, Nb needs

129

to be viewed only as a proof of freshness. The
protocol is now simply:

Message 1 A --t B : A
Message 2 B -+ A : Nb
Message 3 A -+ B : {Nb}K,,
Message 4 B --t s : A , {Nb}K,,
Message 5 s + B : { A , Nb}Kbs

0

It is not essential for nonces to be unpre-
dictable. In fact, the value of a counter makes
a proper nonce. However, predictable nonces
should be used with caution:

Principle 7

The use of a predictable quantity (such
as the value of a counter) can serve in
guaranteeing newness, through a challenge-
response exchange. But if a predictable
quantity is to be effective, it should be pro-
tected so that an intruder cannot simulate a
challenge and later replay a response.

Example 7.1 Protocols that rely on synchro-
nized clocks must be accompanied by protocols
to access time servers. These protocols cannot
themselves rely on synchronized clocks, but they
can rely either on random nonces or on pre-
dictable nonces.

Using random nonces, we may have:

Message 1 A + S : A, N,
Message 2 S --f A : {T,, N a } ~ , ,

where T, is the current time and N, is a ran-
dom nonce, used as a challenge. After this ex-
change, A accepts T, as the current time if the
response arrived reasonably soon after the chal-
lenge. Reiter exploits random nonces roughly in
this manner [24].

This protocol would not work if N, were pre-
dictable. An attacker C could make A set its
clock back: early on, C makes a request for the
current time using a future value of the nonce,
saves S’s response, and then forwards the re-
sponse to A when A uses this value in a chal-
lenge.

When N, is predictable, it should be pro-
tected:

Message 1 A -+ S : A, { N a } ~ , .
Message 2 S -+ A : {T,, { N ~) K , ,) K , .

The attack is no longer possible. Note that it
is not important for N, to remain secret (and
after all we have assumed it is predictable). The
encryption in Message 1 serves to construct a
quantity {N,}K,, that only A and S can predict
from one that anyone can predict.

A similar exchange arises in the context of
Kerberos. Neuman and Stubblebine suggest us-
ing Kerberos itself to obtain the time from a
time server [22]. The quantity used as a nonce
is roughly predictable: it is an incorrect times-
tamp; since it is encrypted, we expect no diffi-
culties. 0

Freshness can also be proved by the use of
timestamps. Timestamps are appealing because
they seem easier to use than random numbers.
However, their use is not always correct. There
are number of aspects of prudent practice in the
use of timestamps, and they are often misun-
derstood. One use of timestamps is as a kind
of nonce. In this case the ultimate user of the
timestamp, as part of a response, is the same
as the originator of the challenge of which the
timestamp was part. This style of use does not
depend on clock synchronization at all, but does
need care because the timestamp may be to a
large extent predictable. Another style of use
does depend on clock synchronization. The re-
cipient of a message looks at a timestamp in it,
and only accepts the message if the timestamp
is within a reasonable interval of the recipient’s
local time. In this case we have:

Principle 8

If timestamps are used as freshness guar-
antees by reference to absolute time, then
the difference between local clocks at vari-
ous machines must be much less than the
allowable age of a message deemed to be
valid. Furthermore, the time maintenance
mechanism everywhere becomes part of the
trusted computing base.

130

Example 8.1 Timestamps have received abun-
dant attention in the authentication literature.
Gong, in particular, has described problems aris-
ing from the use of incorrect timestamps [8].
Therefore, we keep this example brief, summa-
rizing Gong’s example for the Kerberos system.

In Kerberos, as elsewhere, a principal with a
slow clock is exposed to all sorts of difficulties,
since the principal may mistake expired certifi-
cates for current ones. It is more interesting that
a fast clock can also be an opportunity for attack-
ers. If a principal A signs a request at time TO
using a timestamp T, with To < T , an attacker
C can replay this request near time T. The ef-
fect of the request at time T may benefit C , for
example if C is using A’s workstation at time T .

Bellovin and Merritt have discussed further
problems in Kerberos, some of them in the use
of timestamps. 0

6.2 What is fresh: use vs. generation

Roughly, a bit-pattern is fresh if any message
that contains it must be recent. Clearly, it does
not suffice that the bit-pattern participate in one
recent message, if it may also participate in old
ones. This observation is most important for
keys:
Principle 9

A key may have been used recently, for ex-
ample to encrypt a nonce, yet be quite old,
and possibly compromised. Recent use does
not make the key look any better than it
would otherwise.

Example 9.1 The Needham-Schroeder protocol
and the Kerberos protocol are similar in struc-
ture and in goal; the Needham-Schroeder proto-
col reads:

Message 1 A + S : A, B , N,
Message 2 S --f A : {N,, B , Kab,

Message 3 A + B : {Kab, A } K ~ ,
Message 4 B --+ A : {Nb}Kab
Message 5 A + B : {Nb + l } ~ , ~

{Kab,

As in Kerberos, only A makes contact with S,
who provides A with the session key, Kab, and a

certificate encrypted with B’s key Kbs conveying
the session key to B. Then B decrypts this cer-
tificate and carries out a nonce handshake with
A to be assured that A is present currently, since
the certificate might have been a replay. As ex-
plained in Section 7, Message 5 contains Nb + 1
rather than Nb in order to distinguish this mes-
sage from Message 4.

Messages 4 and 5 of the Needham-Schroeder
protocol were intended to convince B that A is
present and active. They do not (and in fact were
not intended to) convince B that Kab is fresh,
and it was pointed out by Denning and Sacco
that compromise of a session key could allow an
intruder to deceive B [6]. Once the importance of
freshness of Kab is recognized, a solution may be
found by using timestamps, as suggested by Den-
ning and Sacco. In another solution, described
in [21], B send a nonce to S, and then S includes
it in its certificate. 0

Example 9.2 In [29], Varadharajan, Allen, and
Black present several protocols for delegation in
distributed systems. We take as an example the
one for delegation in a Kerberos environment [29,
p. 2731. In this protocol, client B shares the key
Kbt with the authentication server; B has gen-
erated a timestamp Tb and wants a key Kbs to
communicate with another server S. The au-
thentication server gives Kbs and {Kbs)Kbt to s.
Then S constructs {Tb + l } ~ ~ ~ , and sends:

Message 5 S + B : s, B , {Tb + 1) ~ ~ ~ ~
{ K b s) K b t

The authors reason:

Having obtained Kbs, B is able to verify us-
ing Tb that S has replied to a fresh message,
so that the session key is indeed fresh.

However, B obtains no proof that Kbs is fresh.
All that B can deduce is that Kbs has been used
recently-but it may be an old, compromised
key. 0

7 Recognizing messages
and encodings

It seems important that principals recognize
messages for what they are, and can associate

131

them correctly with the current step of what-
ever protocol they are executing. There are
two possible forms of confusion (which could in
principle happen together): between the cur-
rent message and a message of similar purpose
form a previous run of the protocol, and be-
tween the current message and a message be-
longing elsewhere in the protocol, or to another
protocol. Snekkenes [27] and Syverson [28] have
constructed examples of protocols where these
confusions can arise.

We believe that these confusions are less im-
portant when all our principles are correctly fol-
lowed. If a message says what it means then we
have no reason to be concerned with its context.
The message is meaningful (or meaningless) on
its own, whether we know that it belongs in a
particular protocol instance or not.

Still, mapping a message to the appropri-
ate protocol instance is convenient when it con-
tributes to the compact encoding of the message.
For example, Message 1 of the Wide-mouthed-
frog protocol always means something of the
form: “the signer (with key Ka3) says at time
T, that &b is a good key to talk to B” (see
Example 11.2). If the principal who receives a
message can be certain that the message is Mes-
sage 1 of an instance of the Wide-mouthed-frog
protocol, then the message can be encoded com-

We arrive at the following recommendation:
pactly: {Ta, B, Kab}K,,-

Principle 10

If an encoding is used to present the mean-
ing of a message, then it should be possible
to tell which encoding is being used. In the
common case where the encoding is protocol
dependent, it should be possible to deduce
that the message belongs to this protocol,
and in fact to a particular run of the proto-
col, and to know its number in the protocol.

Mapping a message to the appropriate pro-
tocol instance is often trivial if the message
obeys our other principles. If the message con-
tains sufficient timeliness guarantees and suffi-
cient names, then the current instance cannot
be confused with an old instance, or an instance

for other principals. It could be confused with a
concurrent instance for the same principals.

Next we give an example where this princi-
ple is relevant, but where other more important
principles apply as well.
Example 10.1 If signature or confidentiality are
mediated by symmetric-key encryption then a
particular form of confusion is associated with
the direction in which a message is intended to
pass.

In the Needham-Schroeder protocol, a partici-
pant sends a challenge Nb and receives Nb + 1 as
a response (see Example 9.1):

Message 4 B ---f A : { N b } K a b
Message 5 A ---t B : {Nb + 1) ~ ~ ~

The purpose of incrementing Nb is to distinguish
the challenge from the response. Without this
increment, an attacker could send B’s message
back to B, who could mistake it for A’s reply.
The purpose of incrementing a nonce has often
been misunderstood. For example, a “+1” oper-
ation appears in Kerberos, where it is unneces-
sary.

The messages would be clearer if they were
rewritten:

Message 4 B + A : {N-S Message 4: Nb}Kab
Message 5 A + B : {N-S Message 5: Nb}Kab

though in fact any way of making the two mes-
sages different will do. (This is an instance of
our suggestion to Syverson mentioned in [28].)

Guided by the principle that messages should
say what they mean, however, we ought to
rewrite the messages:

Message 4 B + A : Nb, { B says that Kab is
a good key to talk to A, sometime
after receiving K a b } K a b

Message 5 A + B :
a good key to talk to B , sometime
after receiving Nb}Kab

Of course, shorter encodings of these meanings
can be constructed. Not only there is no risk of
confusion between these two messages: each of
them is self-contained, and it is not important to
know that they are part of a particular instance
of the Needham-Schroeder exchange. U

{ A says that K,b is

132

8 Trust B via S in only two messages:

Message 1 A + S : A, {“a, B, Kab}K, .
Message 2 S -+ €? : {T,, A, Kab}Kbs

First, A sends a session key Kab to S, includ-
ing a timestamp T,. Then S checks T, and for-
wards the message to B, together with its own
timestamp T,. Finally, B checks T, and accepts
the session key Kab for communication with A.
Thus, A is trusted to choose a session key. This
kind of trust is often thought unacceptable be-
cause of the quality requirements placed on key
generation such as secrecy, non-repetition, un-
predictability, and doubtless more. 0

Example 11.3 Principals associate public keys
with other principals by consulting public-key
certificates. These certificates can be issued by
certification authorities (CAS). CAS are trusted
to certify a key only after proper steps have been
taken to identify the principal that owns it. Since
there is no global source of authority, it is not
surprising that this is an area where questions of
transitivity of trust come up. It may happen that
the only way A can find out B’s public key is by
accepting a certificate from CA1 for CAP’S public
key which is used to sign a certificate for CAS’S
public key . . . which is used to sign a certificate
for B’s public key, for example. In this case A
knows and trusts CA1 but has never heard of the
other certification authorities-and maybe even
distrusts them. 0

Example 11.4 It is usually taken for granted
that the two principals in an authentication dia-
logue are honestly working to the common end of
establishing a secure communication channel for
subsequent use. This is not always the case, as
may be seen in communication between potential
enemies or between security forces and terrorists.
Possible sorts of bad behavior are disclosure of
keys and forgery of messages. Therefore, if this
assumption is made in a particular case then it
should be explicit. 0

Example 11.5 An access control list (ACL) is
a statement of trust [l]: if principal A appears
on the ACL for an operation then A is trusted
when it says that the operation should be per-
formed (that is, when it makes a request). It

The use of timestamps makes explicit for the first
time a question of trust. When can a principal
A rely on another principal B putting a correct
timestamp in a message? The answer usually
given is that this is acceptable if A trusts B in
relation to timestamps.

The idea of trust is pervasive and a little elu-
sive. A careful classification of types of trust
is given in [34] and is taken further by Klein
in her doctoral thesis. There are questions
both of practice and philosophy to do with trust
relations-for example whether they are transi-
tive or not-which it would not be appropriate
to pursue here. We may simply say that A trusts
B in regard to some function if a loss of security
to A could follow from B not behaving in the
specified way; it is usually difficult or impossible
for A to verify B’s good behavior.

There is some measure of trust involved when-
ever one principal acts on the content of a mes-
sage from another. It is essential that this trust
be properly understood.

Principle 11

The protocol designer should know which
trust relations his protocol depends on, and
why the dependence is necessary. The rea-
sons for particular trust relations being ac-
ceptable should be explicit though they will
be founded on judgement and policy rather
than on logic.

Example 11.1 Complete loss of security could
follow from a Kerberos server issuing wrong
timestamps. The server, and its source of time,
must be trusted by all concerned. This, it may
be pointed out, is a case in which clients can to
some extent monitor the good behavior of the
trusted server because the correct time is public
and global. If a client reads GPS time it will have
reason for suspicion if Kerberos’ time is much at
variance. 0

Example 11.2 The Wide-mouthed-frog proto-
col uses symmetric-key cryptography and an au-
thentication server. It transfers a key from A to

133

can be a complex matter to determine whether
the statement of trust that the ACL represents is
appropriate. Often, the question of whether it is
appropriate makes little sense, particularly in the
context of completely discretionary access con-
trol policies. Nonetheless, understanding ACL's
and their consequences is crucial for security. 0

In practice it is not very common for com-
plicated inferences about trust to be necessary.
With the exception of the chains of trust of Ex-
ample 11.3, which are likely to be simpler in prac-
tice than they might be in theory, it is usually
not difficult to isolate the trust relations being
relied on in a particular circumstance. It is valu-
able to do so explicitly, because this may lead to
useful debate about the appropriateness of these
trust relations.

9 Conclusion

We have found the principles and examples de-
scribed in this paper useful in our own work. Per-
haps it is because of this that they bear a certain
subjective character. We do however believe that
they respond to an immediate general need, in a
discipline where some basic mistakes appear in
print several times.

Many of our suggestions can be embodied in
development methods and in formalisms. While
these are helpful, we tried to emphasize an in-
formal understanding of some issues essential for
security. We hope that our guidelines will con-
tribute to the improvement of the practice of de-
signing cryptographic protocols.

Acknowledgments

We have benefited from discussions with Mike
Burrows and Butler Lampson. In particular, we
discovered many of the examples in this paper in
collaboration with Mike Burrows. The authors
of the papers from which we drew our examples
have also been helpful.

Raphael Yahalom, Michael Reiter, and anony-
mous referees all made useful comments on ear-
lier versions of this paper.

References

[l] M. Abadi, M. Burrows, B. Lampson, and
G. Plotkin. A Calculus for Access Con-
trol in Distributed Systems. ACM Transac-
tions on Programming Languages and Sys-
tems Vol. 15, No. 4, September 1993, 706-
734.

[2] S.M. Bellovin and M. Merritt. Limitations
of the Kerberos Authentication System.
Computer Communication Review Vol. 20,
No. 5, October 1990, pp. 119-132.

[3] C . Boyd and W. Mao. Limitations of Logical
Analysis of Cryptographic Protocols. Euro-
crypt '93, to appear.

[4] M. Burrows, M. Abadi, and R.M. Needham.
A Logic of Authentication. Proceedings of
the Royal Society of London A Vol. 426,
1989, pp. 233-271. A preliminary version
appeared as Digital Equipment Corpora-
tion Systems Research Center report No. 39,
February 1989.

[5] CCITT. CCITT Blue Book, Recommenda-
tion X.509 and IS0 9594-8: The Directory-
Authentication Framework. Geneva, March
1988.

[6] D.E. Denning and G.M. Sacco. Timestamps
in Key Distribution Protocols. CACM
Vol. 24, NO. 8, August 1981, pp. 533-536.

[7] U. Feige, A. Fiat, A. Shamir. Zero Knowl-
edge Proofs of Identity. Proceedings of the
Nineteenth Annual ACM Symposium on
Theory of Computing, 1987, pp. 210-217.

[8] L. Gong. A Security Risk of Depending
on Synchronized Clocks. Operating Systems
Review Vol. 26, No. 1, January 1992, pp. 49-
54.

[9] N. Heintze and J.D. Tygar. Timed Models
for Protocol Security. CMU Technical Re-
port CMU-CS-92-100, January 1992.

[lo] B. Lampson, M. Abadi, M. Burrows, and
E. Wobber. Authentication in Distributed

134

Systems: Theory and practice. ACM Trans- [20] R.M. Needham and M.D. Schroeder. Using
actions on Computer Systems Vol. 10, Encryption for Authentication in Large Net-
No. 4, November 1992, 265-310. works of Computers. CACM Vol. 21, No. 12,

December 1978, pp. 993-999.
[ll] A. Liebl. Authentication in Distributed Sys-

tems: A BibliOgraPhY- Operating Systems [21] R.M. Needham and M.D. Schroeder. Au-
Review Vol. 27, No. 4, October 1993, thentication Revisited. Operating Systems
pp. 31-41. Review Vol. 21, No. 1, January 1987, p. 7.

[12] w.p' Lu and M*K' Sundareshan* Secure
Communication in Internet Environments:
A Hierarchical Key Management Scheme
for End-To-End Encryption. IEEE Trans-
actions on Communications Vol. 37, No. 10,
October 1989, pp. 1014-1023.

[22] B.C. Neuman and S.G. Stubblebine. A Note
on the Use of Timestamps as Nonces. Oper-
ating Systems Review Vol. 27, No. 2, April
1993, pp. 10-14.

[23] D. Otway and 0. Rees. Efficient and Timely
Mutual Authentication. Operating Systems
Review Vol. 21, No. 1, January 1987, pp. 8-
10.

1131 W.P. Lu and M.K. Sundareshan. Enhanced
Protocols for Hierarchical Encryption Key
Management for Secure Communication in

[24] M.K. Reiter. A Security Architecture for
Fault-Tolerant Systems. Ph.D. Thesis, Cor-
ne11 University. Available as Technical Re-

Internet Environments. IEEE Transactions
on Communications Vol. 40, No. 4, April
1992, p ~ . 658-660.

[14] W. Mao and C. Boyd. Towards Formal port 93-1367, Department of Computer Sci-
Analysis of Security Protocols. Proceed- ence, Cornel1 University, July 1993.
ings of the Computer Security Foundations
Workshop VU, 1993, pp. 147-158.

[15] G. Medvinsky and B.C. Neuman. NetCash:
A Design for Practical Electronic Currency
on the Internet. Proceedings of the 1993
ACM Conference on Computer and Com-
munications Security, pp. 102-106.

[16] S.P. Miller, B.C. Neuman, J.I. Schiller,
and J.H. Saltzer. Kerberos Authentication
and Authorization System. Project Athe-
na Technical Plan Section E.2.1, MIT,
July 1987.

[25] R. Rivest. The MD4 Message Digest Algo-
rithm. Advances in Cryptology: Crypto '90,
Springer-Verlag, 1991, pp. 303-311.

[26] R.L. Rivest, A. Shamir, and L. Adleman.
A Method for Obtaining Digital Signatures
and Public-key Cryptosystems. Communi-
cations of the ACM Vol. 21, No. 2, February
1978, pp. 120-126.

[27] E. Snekkenes. Roles in Cryptographic Pro-
tocols. Proceedings of the 1992 IEEE Sym-
posium on Security and Privacy, pp. 105-
119. [17] J.H. Moore. Protocol Failures in Cryptosys-

terns* Of the IEEE 76, [28] p. Syverson. On Key Distribution Proto-
No. 5, May 1988, pp. 594-602. cols for Repeated Authentication. Operat-

ing Systems Review Vol. 27, No. 4, October [18] National Bureau of Standards. Data En-
cryption Standard. FIPS Pub. 46, January
1977.

1993, pp. 24-30.

[29] V. Varadharajan, P. Allen, S. Black. An
[19] R.M. Needham. Cryptography and Secure Analysis of the Proxy Problem in Dis-

tributed Systems. Proceedings of the 1991
IEEE Symposium on Security and Privacy,

Channels. Distributed Systems, 2nd Ed., S.
Mullender (editor), ACM Press, 1993, 231-
241. pp. 255-275.

135

[30] V.L. Voydock and S.T. Kent. Security
Mechanisms in High-Level Network Proto-
cols, Computing Surveys Vol. 15, No. 2,
1983, pp. 135-171.

[31] E. Wobber, M. Abadi, M. Burrows, and
B. Lampson. Authentication in the Taos
Operating System. Proceedings of the Four-
teenth ACM Symposium on Operating Sys-
tem Principles, 1993, pp. 256-269.

[32] T.Y.C. Woo and S.S. Lam. Authentication
for Distributed Systems. Computer Vol. 25,
No. 1, January 1992, pp. 39-52.

[33] T.Y.C. Woo and S.S. Lam. A Lesson on Au-
thentication Protocol Design. Manuscript,
1993.

[34] R. Yahalom, B. Klein, T. Beth. Trust Rela-
tions in Secure Systems-A Distributed Au-
t hent icat ion Perspective. Proceedings of the
1993 IEEE Symposium on Security and Pri-
WUCY, pp. 150-164.

136

