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Buffer Overflow: Causes and Cures 

Typical memory exploit involves code injection 

• Put malicious code in a predictable location in 
memory, usually masquerading as data 

• Trick vulnerable program into passing control to it 

– Overwrite saved EIP, function callback pointer, etc. 

Defense: prevent execution of untrusted code 

• Make stack and other data areas non-executable 

– Note: messes up useful functionality (e.g., ActionScript) 

• Digitally sign all code 

• Ensure that all control transfers are into a trusted, 
approved code image 
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WX / DEP 

Mark all writeable memory locations as non-
executable 

• Example: Microsoft’s DEP - Data Execution Prevention 

• This blocks most (not all) code injection exploits 

Hardware support 

• AMD “NX” bit, Intel “XD” bit (in post-2004 CPUs) 

• OS can make a memory page non-executable 

Widely deployed 

• Windows (since XP SP2), Linux (via PaX patches), 
OpenBSD, OS X (since 10.5) 
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What Does WX Not Prevent? 

Can still corrupt stack … 

• … or function pointers or critical data on the heap, but 
that’s not important right now 

As long as “saved EIP” points into existing code, 
WX protection will not block control transfer 

This is the basis of return-to-libc exploits 

• Overwrite saved EIP with address of any library 
routine, arrange memory to look like arguments 

Does not look like a huge threat 

• Attacker cannot execute arbitrary code 

• … especially if system() is not available 
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return-to-libc on Steroids 

Overwritten saved EIP need not point to the 
beginning of a library routine 

Any existing instruction in the code image is fine 

• Will execute the sequence starting from this instruction 

What if instruction sequence contains RET? 

• Execution will be transferred… to where? 

• Read the word pointed to by stack pointer (ESP) 

– Guess what?  Its value is under attacker’s control!  (why?)  

• Use it as the new value for EIP 

– Now control is transferred to an address of attacker’s choice! 

• Increment ESP to point to the next word on the stack 
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Chaining RETs for Fun and Profit 

Can chain together sequences ending in RET 

• Krahmer, “x86-64 buffer overflow exploits and the 
borrowed code chunks exploitation technique” (2005) 

What is this good for? 

Answer [Shacham et al.]: everything 

• Turing-complete language 

• Build “gadgets” for load-store, arithmetic, logic, 
control flow, system calls 

• Attack can perform arbitrary computation using no 
injected code at all! 
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Ordinary Programming 

Instruction pointer (EIP) determines which 
instruction to fetch and execute 

Once processor has executed the instruction, it 
automatically increments EIP to next instruction 

Control flow by changing value of EIP 
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Return-Oriented Programming 

Stack pointer (ESP) determines which instruction 
sequence to fetch and execute 

Processor doesn’t automatically increment ESP 

• But the RET at end of each instruction sequence does 

slide 9 



 

No-ops 

No-op instruction does nothing but advance EIP 

Return-oriented equivalent 

• Point to return instruction 

• Advances ESP 

Useful in a NOP sled  (what’s that?) 
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Immediate Constants 

Instructions can encode constants 

Return-oriented equivalent 

• Store on the stack 

• Pop into register to use 
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Control Flow 
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Ordinary programming 

• (Conditionally) set EIP to new value 

Return-oriented equivalent 

• (Conditionally) set ESP to new value 



 

Gadgets: Multi-instruction Sequences 

Sometimes more than one instruction sequence 
needed to encode logical unit 

Example: load from memory into register 

• Load address of source word into EAX 

• Load memory at (EAX) into EBX 
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“The Gadget”: July 1945 
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Gadget Design 

Testbed: libc-2.3.5.so, Fedora Core 4 

Gadgets built from found code sequences: 

• Load-store, arithmetic & logic, control flow, syscalls 

Found code sequences are challenging to use! 

• Short; perform a small unit of work 

• No standard function prologue/epilogue 

• Haphazard interface, not an ABI 

• Some convenient instructions not always available 
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Conditional Jumps 

cmp compares operands and sets a number of 
flags in the EFLAGS register 

• Luckily, many other ops set EFLAGS as a side effect 

jcc jumps when flags satisfy certain conditions 

• But this causes a change in EIP… not useful (why?) 

Need conditional change in stack pointer (ESP) 

Strategy: 

• Move flags to general-purpose register 

• Compute either delta (if flag is 1) or 0 (if flag is 0) 

• Perturb ESP by the computed delta 
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Phase 1: Perform Comparison 

neg calculates two’s complement 

• As a side effect, sets carry flag (CF) 
if the argument is nonzero 

Use this to test for equality 

 sub is similar, use to test if one 
number is greater than another 
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Phase 2: Store 1-or-0 to Memory 
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 Clear ECX 

 EDX points to destination 

 adc adds up its operands & the carry flag; 

    result will be equal to the carry flag (why?) 

 Store result of adc into destination  

 
 

 

 



 

Two’s-complement 
negation: 

0 becomes 0…0; 

1 becomes 1…1 

Bitwise AND with delta 

(in ESI) 
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Phase 3: Compute Delta-or-Zero 



 

Phase 4: Perturb ESP by Delta 
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Finding Instruction Sequences 

Any instruction sequence ending in RET is useful 

Algorithmic problem: recover all sequences of 
valid instructions from libc that end in a RET 

At each RET (C3 byte), look back: 

• Are preceding i bytes a valid instruction? 

• Recur from found instructions 

Collect found instruction sequences in a trie 
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ret } 

Unintended Instructions 

c7 

45 

d4 

01 

00 

00 

00 

f7 

c7 

07 

00 

00 

00 

0f 

95 

45 

c3 

movl $0x00000001, -44(%ebp) 

test $0x00000007, %edi 

setnzb -61(%ebp) 

add %dh, %bh 

movl $0x0F000000, (%edi) 

xchg %ebp, %eax 
inc %ebp } 

} 
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x86 Architecture Helps 

Register-memory machine 

• Plentiful opportunities for accessing memory 

Register-starved 

• Multiple sequences likely to operate on same register 

Instructions are variable-length, unaligned 

• More instruction sequences exist in libc 

• Instruction types not issued by compiler may be 
available 

Unstructured call/ret ABI 

• Any sequence ending in a return is useful 
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SPARC: The Un-x86 

Load-store RISC machine 

• Only a few special instructions access memory 

Register-rich 

• 128 registers; 32 available to any given function 

All instructions 32 bits long; alignment enforced 

• No unintended instructions 

Highly structured calling convention 

• Register windows 

• Stack frames have specific format 
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ROP on SPARC 

Use instruction sequences that are suffixes of real 
functions 

Dataflow within a gadget 

• Structured dataflow to dovetail with calling convention 

Dataflow between gadgets 

• Each gadget is memory-memory 

Turing-complete computation! 

• “When Good Instructions Go Bad: Generalizing Return-
Oriented Programming to RISC” (CCS 2008) 
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More ROP 

Harvard architecture: code separate from data  
code injection is impossible, but ROP works fine 

• Z80 CPU – Sequoia AVC Advantage voting machines 

• Some ARM CPUs – iPhone 

No returns = no problems 

• (Lame) defense against ROP: eliminate sequences with 
RET and/or look for violations of LIFO call-return order 

• Use update-load-branch sequences in lieu of returns + 
a trampoline sequence to chain them together 

• Read “Return-oriented programming without returns” 
(CCS 2010) 

slide 26 



 

Other Issues with WX / DEP 

Some applications require executable stack 

• Example: Lisp interpreters 

Some applications are not linked with /NXcompat 

• DEP disabled (e.g., popular browsers) 

JVM makes all its memory RWX – readable, 
writable, executable (why?) 

• Spray attack code over memory containing Java 
objects (how?), pass control to them 

Return into a memory mapping routine, make 
page containing attack code writeable  
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