
slide 1

0x1A Great Papers in

Computer Security

Vitaly Shmatikov

CS 380S

http://www.cs.utexas.edu/~shmat/courses/cs380s/

slide 2

H. Shacham

 The Geometry of Innocent Flesh on the Bone:
Return-into-libc without Function Calls (on the x86)

(CCS 2007)

Buffer Overflow: Causes and Cures

Typical memory exploit involves code injection

• Put malicious code in a predictable location in
memory, usually masquerading as data

• Trick vulnerable program into passing control to it

– Overwrite saved EIP, function callback pointer, etc.

Defense: prevent execution of untrusted code

• Make stack and other data areas non-executable

– Note: messes up useful functionality (e.g., ActionScript)

• Digitally sign all code

• Ensure that all control transfers are into a trusted,
approved code image

slide 3

WX / DEP

Mark all writeable memory locations as non-
executable

• Example: Microsoft’s DEP - Data Execution Prevention

• This blocks most (not all) code injection exploits

Hardware support

• AMD “NX” bit, Intel “XD” bit (in post-2004 CPUs)

• OS can make a memory page non-executable

Widely deployed

• Windows (since XP SP2), Linux (via PaX patches),
OpenBSD, OS X (since 10.5)

slide 4

What Does WX Not Prevent?

Can still corrupt stack …

• … or function pointers or critical data on the heap, but
that’s not important right now

As long as “saved EIP” points into existing code,
WX protection will not block control transfer

This is the basis of return-to-libc exploits

• Overwrite saved EIP with address of any library
routine, arrange memory to look like arguments

Does not look like a huge threat

• Attacker cannot execute arbitrary code

• … especially if system() is not available
slide 5

return-to-libc on Steroids

Overwritten saved EIP need not point to the
beginning of a library routine

Any existing instruction in the code image is fine

• Will execute the sequence starting from this instruction

What if instruction sequence contains RET?

• Execution will be transferred… to where?

• Read the word pointed to by stack pointer (ESP)

– Guess what? Its value is under attacker’s control! (why?)

• Use it as the new value for EIP

– Now control is transferred to an address of attacker’s choice!

• Increment ESP to point to the next word on the stack

slide 6

Chaining RETs for Fun and Profit

Can chain together sequences ending in RET

• Krahmer, “x86-64 buffer overflow exploits and the
borrowed code chunks exploitation technique” (2005)

What is this good for?

Answer [Shacham et al.]: everything

• Turing-complete language

• Build “gadgets” for load-store, arithmetic, logic,
control flow, system calls

• Attack can perform arbitrary computation using no
injected code at all!

slide 7

[Shacham et al]

Ordinary Programming

Instruction pointer (EIP) determines which
instruction to fetch and execute

Once processor has executed the instruction, it
automatically increments EIP to next instruction

Control flow by changing value of EIP

slide 8

Return-Oriented Programming

Stack pointer (ESP) determines which instruction
sequence to fetch and execute

Processor doesn’t automatically increment ESP

• But the RET at end of each instruction sequence does

slide 9

No-ops

No-op instruction does nothing but advance EIP

Return-oriented equivalent

• Point to return instruction

• Advances ESP

Useful in a NOP sled (what’s that?)

slide 10

Immediate Constants

Instructions can encode constants

Return-oriented equivalent

• Store on the stack

• Pop into register to use

slide 11

Control Flow

slide 12

Ordinary programming

• (Conditionally) set EIP to new value

Return-oriented equivalent

• (Conditionally) set ESP to new value

Gadgets: Multi-instruction Sequences

Sometimes more than one instruction sequence
needed to encode logical unit

Example: load from memory into register

• Load address of source word into EAX

• Load memory at (EAX) into EBX
slide 13

“The Gadget”: July 1945

slide 14

Gadget Design

Testbed: libc-2.3.5.so, Fedora Core 4

Gadgets built from found code sequences:

• Load-store, arithmetic & logic, control flow, syscalls

Found code sequences are challenging to use!

• Short; perform a small unit of work

• No standard function prologue/epilogue

• Haphazard interface, not an ABI

• Some convenient instructions not always available

slide 15

Conditional Jumps

cmp compares operands and sets a number of
flags in the EFLAGS register

• Luckily, many other ops set EFLAGS as a side effect

jcc jumps when flags satisfy certain conditions

• But this causes a change in EIP… not useful (why?)

Need conditional change in stack pointer (ESP)

Strategy:

• Move flags to general-purpose register

• Compute either delta (if flag is 1) or 0 (if flag is 0)

• Perturb ESP by the computed delta

slide 16

Phase 1: Perform Comparison

neg calculates two’s complement

• As a side effect, sets carry flag (CF)
if the argument is nonzero

Use this to test for equality

 sub is similar, use to test if one
number is greater than another

slide 17

Phase 2: Store 1-or-0 to Memory

slide 18

 Clear ECX

 EDX points to destination

 adc adds up its operands & the carry flag;

 result will be equal to the carry flag (why?)

 Store result of adc into destination








Two’s-complement
negation:

0 becomes 0…0;

1 becomes 1…1

Bitwise AND with delta

(in ESI)

slide 19

Phase 3: Compute Delta-or-Zero

Phase 4: Perturb ESP by Delta

slide 20

Finding Instruction Sequences

Any instruction sequence ending in RET is useful

Algorithmic problem: recover all sequences of
valid instructions from libc that end in a RET

At each RET (C3 byte), look back:

• Are preceding i bytes a valid instruction?

• Recur from found instructions

Collect found instruction sequences in a trie

slide 21

ret }

Unintended Instructions

c7

45

d4

01

00

00

00

f7

c7

07

00

00

00

0f

95

45

c3

movl $0x00000001, -44(%ebp)

test $0x00000007, %edi

setnzb -61(%ebp)

add %dh, %bh

movl $0x0F000000, (%edi)

xchg %ebp, %eax
inc %ebp }

}

slide 22

Actual code from ecb_crypt()

x86 Architecture Helps

Register-memory machine

• Plentiful opportunities for accessing memory

Register-starved

• Multiple sequences likely to operate on same register

Instructions are variable-length, unaligned

• More instruction sequences exist in libc

• Instruction types not issued by compiler may be
available

Unstructured call/ret ABI

• Any sequence ending in a return is useful

slide 23

SPARC: The Un-x86

Load-store RISC machine

• Only a few special instructions access memory

Register-rich

• 128 registers; 32 available to any given function

All instructions 32 bits long; alignment enforced

• No unintended instructions

Highly structured calling convention

• Register windows

• Stack frames have specific format

slide 24

ROP on SPARC

Use instruction sequences that are suffixes of real
functions

Dataflow within a gadget

• Structured dataflow to dovetail with calling convention

Dataflow between gadgets

• Each gadget is memory-memory

Turing-complete computation!

• “When Good Instructions Go Bad: Generalizing Return-
Oriented Programming to RISC” (CCS 2008)

slide 25

More ROP

Harvard architecture: code separate from data 
code injection is impossible, but ROP works fine

• Z80 CPU – Sequoia AVC Advantage voting machines

• Some ARM CPUs – iPhone

No returns = no problems

• (Lame) defense against ROP: eliminate sequences with
RET and/or look for violations of LIFO call-return order

• Use update-load-branch sequences in lieu of returns +
a trampoline sequence to chain them together

• Read “Return-oriented programming without returns”
(CCS 2010)

slide 26

Other Issues with WX / DEP

Some applications require executable stack

• Example: Lisp interpreters

Some applications are not linked with /NXcompat

• DEP disabled (e.g., popular browsers)

JVM makes all its memory RWX – readable,
writable, executable (why?)

• Spray attack code over memory containing Java
objects (how?), pass control to them

Return into a memory mapping routine, make
page containing attack code writeable

slide 27

