CS 380S

Ox1A Great Papers In
Computer Security

Vitaly Shmatikov

http://www.cs.utexas.edu/~shmat/courses/cs380s/

Secure Multi-Party Computation

AN P e G ST B e W P S S ST e VT T TP S G ST S N T I O G ST B R N TV PR O S ST R A

@ General framework for describing computation
between parties who do not trust each other

& Example: elections

e N parties, each one has a “Yes” or "No” vote

e Goal: determine whether the majority voted “Yes”, but
no voter should learn how other people voted

€ Example: auctions
e Fach bidder makes an offer

e Goal: determine whose offer won without revealing
losing offers

slide 2

More Examples

AN P e G ST B e W P S S ST e VT T TP S G ST S N T I O G ST B R N TV PR O S ST R A

® Example: distributed data mining

e Two companies want to compare their datasets

without revealing them
— For example, compute the intersection of two customer lists

® Example: database privacy

e Evaluate a query on the database without revealing
the query to the database owner

e Evaluate a statistical query without revealing the
values of individual entries

slide 3

A Couple of Observations

AN P e G ST B e W P S S ST e VT T TP S G ST S N T I O G ST B R N TV PR O S ST R A

€ We are dealing with distributed multi-party
protocols

e "Protocol” describes how parties are supposed to
exchange messages on the network

@ All of these tasks can be easily computed by a
trusted third party

e Secure multi-party computation aims to achieve the
same result without involving a trusted third party

slide 4

How to Define Security?
€ Must be mathematically rigorous

@ Must capture all realistic attacks that a malicious
participant may try to stage
€ Should be “abstract”

e Based on the desired “functionality” of the protocol,
not a specific protocol

e Goal: define security for an entire class of protocols

slide 5

I t. I -t
ORI i S T B A W W P PR R G T B A W T R O D ST P A R O R R R RO T A T R R R R T

€ K mutually distrustful parties want to jointly carry
out some task

Model this task as a “functionality”

fr ({0,13%)* —>({0,1}*)"
/\ _L

K inputs (one per party); K outputs
each input is a bitstring

Assume that this functionality is computable in
probabilistic polynomial time

slide 6

ORI i T P A O R P O G ST

& Intuitive
a trustec

EOAEN SRR N L ER A AN B B O N LB AR L AN S R N LR

y, we want the protocol to behave “as if”
third party collected the parties’ inputs

and com

puted the desired functionality

o Computation in the ideal model is secure by definition!

slide 7

ORI i T B A W W T PR O i ST B A W R O D ST P A O SR RO D ST P A O R R P R I ST

@ A protocol is secure if it emulates an ideal setting
where the parties hand their inputs to a “trusted
party,” who locally computes the desired outputs
and hands them back to the parties

[Goldreich-Micali-Wigderson 1987]

slide 8

Adversary Models

AN P e G ST B e W P S S ST e VT T TP S G ST S N T I O G ST B R N TV PR O S ST R A

€ Some participants may be dishonest (corrupt)

o If all were honest, we would not need secure multi-
party computation

€ Semi-honest (aka passive; honest-but-curious)
e Follows protocol, but tries to learn more from received
messages than he would learn in the ideal model
@ Malicious
e Deviates from the protocol in arbitrary ways, lies about
his inputs, may quit at any point
@ For now, focus on semi-honest adversaries and
two-party protocols

slide 9

Correctness and Security

AN P e G ST B e W P S S ST e VT T TP S G ST S N T I O G ST B R N TV PR O S ST R A

€ How do we argue that the real protocol
“emulates” the ideal protocol?

® Correctness

e All honest participants should receive the correct result
of evaluating functionality f
— Because a trusted third party would compute f correctly

@ Security

e All corrupt participants should learn no more from the
protocol than what they would learn in the ideal model

e What does a corrupt participant learn in ideal model?
— His own input and the result of evaluating f

slide 10

Simulation

AN P e G ST B e W P S S ST e VT T TP S G ST S N T I O G ST B R N TV PR O S ST R A

@ Corrupt participant’s view of the protocol = record
of messages sent and received
e In the ideal world, this view consists simply of his input
and the result of evaluating f
¥ How to argue that real protocol does not leak
more useful information than ideal-world view?

& Key idea: simulation

o If real-world view (i.e., messages received in the real
protocol) can be simulated with access only to the ideal-
world view, then real-world protocol is secure

e Simulation must be indistinguishable from real view

slide 11

Technlcalltles

LI TP S G TS R N T TP O G N e N T I O G ST B R W TV PR i S ST B R O R PR R G ST R A

Distance between probability distributions A and B
over a common set X is

2 * sumy(|Pr(A=x) — Pr(B=x)|)
@ Probability ensemble A, is a set of discrete

probability distributions
e Index i ranges over some set I
@ Function f(n) is negligible if it is asymptotically
smaller than the inverse of any polynomial
Vv constant ¢ 3m such that [f(n)| < 1/n® ¥n>m

slide 12

Indisti ishability Noti
AN TP P G ST e W TP O G ST e VS P S G S T e S TP G T R

S ST B S T RV PR R G ST A

@ Distribution ensembles A and B, are equal

@ Distribution ensembles A, and B, are statistically
close if dist(A,B;) is a negligible function of i

@ Distribution ensembles A. and B; are
computationally indistinguishable (A, ~ B)) if, for
any probabilistic polynomial-time algorithm D,
|Pr(D(A)=1) - Pr(D(B,)=1)| is a negligible
function of i

e No efficient algorithm can tell the difference between
A and B, except with a negligible probability

slide 13

SMC Deflnltlon (Flrst Attempt)

g ap O ADA RIS AN S S ADA RIS AN S S ADA RIS AN S S ADA RIS AN G R e L AL]

@ Protocol for computing f(X,,Xg) betw. A and B is
secure if there exist efficient simulator algorithms
S, and Sg such that for all input pairs (X,,Xg) ...

@ Correctness: (y,,Yg) ~ f(X,,Xg)

e Intuition: outputs received by honest parties are
indistinguishable from the correct result of evaluating f

@ Security: view,(real protocol) = S,(X,,Y)

viewg(real protocol) ~ Sg(Xg,Ys)

e Intuition: a corrupt party’s view of the protocol can be
simulated from its input and output

€ This definition does not work! Why?

slide 14

Randomized Ideal Functionality

AN P e G ST B e W P S S ST e VT T TP S G ST S N T I O G ST B R N TV PR O S ST R A

Consider a coin flipping functionality

f()=(b,-) where b is random bit
e f() flips a coin and tells A the result; B learns nothing

@ The following protocol “implements” f()

1. A chooses bit b randomly
2.AsendsbtoB
3. Aoutputs b

@1t is obviously insecure (why?)

®Yet it is correct and simulatable according to our
attempted definition (why?)

slide 15

SMC Definition

AN P e G ST B e W P S S ST e VT T TP S G ST S N T I O G ST B R N TV PR O S ST R A

@ Protocol for computing f(X,,Xg) betw. A and B is
secure if there exist efficient simulator algorithms
S, and Sg such that for all input pairs (X,,Xg) ...

@ Correctness: (y,,Yg) ~ f(X,,Xg)
@ Security: (view,(real protocol), yg) = (Sy(X5,Ya), Va)

(viewg(real protocol), y,) = (Sg(Xg,Ys): Ya)

o Intuition: if a corrupt party’s view of the protocol is
correlated with the honest party’s output, the simulator
must be able to capture this correlation

@ Does this fix the problem with coin-flipping f?

slide 16

AN P e G T e W P O G S T B e W T P i S ST B S T R PR R

meeecen [Rabin 1981]
€ Fundamental SMC primitive

e A inputs two bits, B inputs the index of one of A’s bits

e B learns his chosen bit, A learns nothing

— A does not learn which bit B has chosen; B does not learn the
value of the bit that he did not choose

e Generalizes to bitstrings, M instead of 2, etc.

slide 17

One-Way Trapdoor Functions

AN P e G ST B e W P S S ST e VT T TP S G ST S N T I O G ST B R N TV PR O S ST R A

@ Intuition: one-way functions are easy to compute,
but hard to invert (skip formal definition)
e We will be interested in one-way permutations

@ Intution: one-way trapdoor functions are one-way
functions that are easy to invert given some extra
information called the trapdoor

e Example: if n=pq where p and g are large primes and e
is relatively prime to ¢(n), f, ,(m) = m® mod n is easy to
compute, but it is believed to be hard to invert

e Given the trapdoor d s.t. de=1 mod ¢(n), f. ,(m) is easy
to invert because f, ,((m)4 = (me)d = m mod n

slide 18

Hard-Core Predicates

AN P e G ST B e W P S S ST e VT T TP S G ST S N T I O G ST B R N TV PR O S ST R A

® Let f: S—S be a one-way function on some set S

€ B: S—{0,1} is a hard-core predicate for f if

e Intuition: there is a bit of information about x such that
learning this bit from f(x) is as hard as inverting f

e B(X) is easy to compute given xeS

e If an algorithm, given only f(x), computes B(x) correctly
with prob > 2+¢, it can be used to invert f(x) easily

— Consequence: B(x) is hard to compute given only f(x)

@ Goldreich-Levin theorem

e B(Xx,r)=rex is a hard-core predicate for g(x,r) = (f(x),r)
— f(x) is any one-way function, rex=(r;x,) ® ... ® (rx,)

slide 19

Oblivious Transfer Protocol

-

- S -

S
ide b

@ Assume the existence of some family of one-way
trapdoor permutations

Chooses a one-way permutation
F and corresponding trapdoor T

Chooses his input i (0 or 1)

N

A

F N

Chooses random rg 1, X, Ynot i
Computes y, = F(x)
rOI r]_l YOI YI

B

by@(reeT(Yo)), b1®(rieT(y,)) N

Computes m@(r;ex)
_/\

= (bi@(rieT(y;)))®(rex)

= (bi@(r;eT(F(x))))®(r;ex) = b,

slide 20

Proof of Security for B

WSS E AN S B O LR

>

Chooses random rg 1, X, Ynot i
Computes y, = F(x)

A rOI rll YOI YI B
<

bo@(reeT(y5)),\D1@(r10T(Y,))

>
/ \ Computes m@(r;ex)

Yo and y, are uniformly random regardless of
A’s choice of permutation F (why?)
Therefore, A's view is independent of B’s input i.

slide 21

Proof of Security for A (Sketch)

@ Need to build a simulator whose output is
indistinguishable from B’s view of the protocol

Knows i and b, (why?)
N Z

F
—_—
Random rO,ll X, Ynoti
Chooses random F,

yi = F(x)
random r‘0,11 X, Ynoti

V
|
computes y; = F(x), I m For T1/ Yor Y1 B
sets m=b®(r;eT(y))),

random Mot i b0®(r00T(y0)), b1®(r1'T(Y1))

A —>
The only difference between simulation and real protocol:
In simulation, m, . ; is random (why?)

In real pl’OtOCOl, mnoti=bnot i@(rnot i.T(Ynot I))

slide 22

Proof of Security for A (Cont'd)
(NS 30 S N QLA SR TATEN S 30 F LA SRS A NS B0 N LA AR AN S 3 N LA SRR TA AN S B N LA S

& \Why is it computationally infeasible to distinguish
random m and m'=b®(reT(y))?

e bis some bit, r and y are random, T is the trapdoor of a
one-way trapdoor permutation

@ (rex) is a hard-core bit for g(x,r)=(F(x),r)
e This means that (rex) is hard to compute given F(x)

@ If B can distinguish m and m’=b®(rex") given only
y=F(x"), we obtain a contradiction with the fact
that (rex’) is a hard-core bit

e Proof omitted

slide 23

Naor Plnkas Oblivious Transfer

R e 1 Setting: order-q subgroup of Z*p, p is prime, q divides p-1
g is a generator group for which CDH assumption holds

Chooser does not

[Messages m, and ml] know discrete log of C [Choice: bit &]
cC =

4
PK, Sets PK_=gk, PK,..=C/PK_)
(C

Chooses random r,
computes PK;

g, my®Hash((PK;)"0), ml@Hash((PKl)r 1)

Chooser knows discrete log Computes (g")k = (PK_)" and
either for PK,, or for PK,, but not both decrypts m,

Chooser does not know the discrete log of PK;__, thus cannot
distinguish between a random value g, and (PK;..)" - why?

slide 24

A. Yao
Protocols for Secure Computations

(FOCS 1982)

Yao S Protocol

AN P e G ST B e W P S S ST e VT T TP S G ST S N T I O G ST B R N TV PR O S ST R A

€ Compute any function securely
.. in the semi-honest model; can be extended to malicious

@ First, convert the function into a boolean circuit
N

Alice’s inputs - ZAN Bob’s inputs
(LS S e S|

z Z

Truth table: Truth table:
X Y X y

il (=] (=} =] § N|
HHOOX
I—*OI—*O~<
=== 1O N

r—tl—hOOx
HOHO<

slide 26

1 Pick Random Keys For Each Wire

S TP G ST e N T P O G ST B R VN T P S G SIS B R T P TP R G ST B S N W R P O G ST R A

Evaluate one gate securely
e |ater generalize to the entire circuit

@ Alice picks two random keys for each wire
e One key corresponds to "0, the other to “1”
e 6 keys in total for a gate with 2 input wires

kOZI I(lz z

Alice S Bob

kOXI klx /
Koy K

ly

slide 27

2 Encrypt Truth Table

LI TP S G TS R N T TP O G N e N T I O G ST B R W TV PR i S ST B R O R PR R G ST R A

@ Alice encrypts each row of the truth table by
encrypting the output-wire key with the
corresponding pair of input-wire keys

z
kaI klZ
AND
Alice - T Bob
Koy Kiy /
K., K
Oyr My Ey, (Exoy(Koz))
Xy z EOX(E Oy(<))
0 Jo]o0 : kox ~k1y’ 202
Original truth table: 1011 10 nenypred frufh b Ekli(Eka((oz))
111101 Eklx(Ekl ((12)) _
Yy slide 28

3: Send Garbled Truth Table
|
AN P P G ST e W P P S S ST B e VS T TP O G ST e S I O G ST B A e Y

PRI AN A

® Alice randomly permutes (“garbles”) encrypted
truth table and sends it to Bob

Does not know which row of
Z garbled table corresponds to
k k which row of original table
0zr ™1z

A 7

Alice S Bob
kOXI klx/
Koy K

ly
v (v, (Ko2)) Ey 1, (Exgy (Koz))
o Fay(K02)) Garbled truth table: Erox By (Ko2))
Eklx(Ekoy(kOZ)) Eklx(Ekly((12))
By, (Exyy (Ki2)) EkOX(EkOy()

slide 29

4: Send Keys For Alice’s Inputs

AN P e G ST B e W P S S ST e VT T TP S G ST S N T I O G ST B R N TV PR O S ST R A

® Alice sends the key corresponding to her input bit
e Keys are random, so Bob does not learn what this bit is

7 Learns K., where b’
kOZ’ klz is Alice’s IEinput bit,
but not b” (why?)
AND /
Alice Xl Yl Bob
K., K .
kOX’ klx If Alice’s bit is 1, she
Oyr Py simply sends k,, to Bob;
if 0, she sends k
Eklx(Ekoy(kOZ)) ! Ox
Garbled truth table: Exg,(Exy,(Koz))
Eklx(Ekly(klz))
Ekox(Ekoy(kOZ))

slide 30

5: Use OT on Keys for Bob’s Input

AN P e G ST B e W P S S ST e VT T TP S G ST S N T I O G ST B R N TV PR O S ST R A

Alice and Bob run oblivious transfer protocol
e Alice’s input is the two keys corresponding to Bob’s wire
e Bob’s input into OT is simply his 1-bit input on that wire

z Knows K, where b’ is
Kozr K1z C\v'r'f:ri g][i)su;izlg\?v?ndnf Ut bit
AND put bi
Alice x1 vl Bob/
kOX’ le / - -
Run oblivious transfer
koy, k1y

Alice’s input: kg, ki,

E gy B (koe)) ~> TPV Poyr |

Garbled truth table: Ek(l)X(Ekcl)Z(kOZ)) Bob’s input: his bit b
EI<1X(Ek1y(k12)) BOb |earnS kby
Ekox(Ekoy(kOZ))

What does Alice learn? slide 31

6 Evaluate One Garbled Gate

VY RO AENS W RO AENS W RN Wb L L R LA ARG W LA

® Using the two keys that he learned, Bob decrypts
exactly one of the output-wire keys

e Bob does not learn if this key corresponds to 0 or 1
— Why is this important?

’ Knows Ky, where b is
kOZ, klz Alice’s input bit and Ky,
AND where b is his own input bit
Alice J YL, o e
Suppose b’=0, b=1
kOXI klx

kO ’ kl o This is the only row
Y Y Garbled truth table m Bob can decrypt.

kix\“k1y 12)) He learns K,
Ekox(Ekoy(kOZ»

slide 32

7 Evaluate Entlre Clrcwt

AN P e G ST B e W P S S ST e VT T TP S G ST S N T I O G ST B R N TV PR O S ST R A

@ In this way, Bob evaluates entire garbled circuit
e For each wire in the circuit, Bob learns only one key

e It corresponds to 0 or 1 (Bob does not know which)
— Therefore, Bob does not learn intermediate values (why?)

fa\

Alice’s inputs AN Bob’s inputs

OR OR ‘
|| Q

#Bob tells Alice the key for the final output wire and
she tells him if it corresponds to 0 or 1

e Bob does not tell her intermediate wire keys (why?)

slide 33

Brief Discussion of Yao’s Protocol

AN P e G ST B e W P S S ST e VT T TP S G ST S N T I O G ST B R N TV PR O S ST R A

@ Function must be converted into a circuit
e For many functions, circuit will be huge (can use BDD)

€ If m gates in the circuit and n inputs, then need
4m encryptions and n oblivious transfers
e Oblivious transfers for all inputs can be done in parallel

@®Yao's construction gives a constant-round protocol
for secure computation of any function in the
semi-honest model

e Number of rounds does not depend on the number of
inputs or the size of the circuit!

slide 34

