CS 395T

Design and Analysis of
Security Protocols
Vitaly Shmatikov

http://www.cs.utexas.edu/~shmat/courses/cs395t _fall04/

Course Logistics

@ Lectures
 Monday, Wednesday 3:30-5pm
e Project presentations in the last two weeks

& This is a

e The best way to understand security is by getting
your hands dirty

e There will be one short homework and one read-and-
present a research paper assignment

e Most of your work will be project, writeup and in-class
presentation

Please enroll!

Grading

®Homework: 10%
®Read and present a research paper: 15%

\ 4

e Projects are best done individually
e Two-person teams are Ok, but talk to me first

» Project proposal due around 5™ week of the course
— More details later

e I'll provide a list of potential project ideas, but don’t
hesitate to propose your own

Computer Security

Firewalls, intrusion
detection...

Implementation

d's"
/ _ - SSL, IPSec, access
Blueprints Protocols and policies ontrol...

@ Bullding Cryptographic primitives BEGSaRZEEEA0 A

blocks
Algorithmic Computational
number theory complexity

Class Poll

€ Cryptography?
e Public-key and symmetric encryption, digital signatures,
cryptographic hash, random-number generators?

 Computational complexity?

€ Systems security?

« Buffer overflows, Web security, sandboxing, firewalls,
denial of service?

€ Formal methods and verification?
 Model checking, theorem proving?

Security Protocols

&® The focus of this course is on

e« Two or more parties

« Communication over insecure network

e Cryptography used to achieve some goal

— Exchange secret keys, verify identity, pay for a service...

€ ...and for security

e Analyze protocol design assuming cryptography,

Implementation, underlying OS are correct

@ Later in the course will talk about privacy

protection in databases and trusted computing

Correctness vs Security

@®Program or system correctness:

program satisfies specification
e For reasonable input, get reasonable output

€ Program or system security:

program properties preserved In face of attack
e For unreasonable input, output not completely disastrous

€ Main differences
« Active interference from adversary

» Refinement techniques may fail

— Abstraction is very difficult to achieve in security:
what Iif the adversary operates below your level of abstraction?

Security Analysis

Theme #1: there are many

O Model SyStem notions of what it means
® Model adve rsary for a protocol to be “secure”
© ldentify security properties

O See If properties preserved under attack

Theme #2: there are many

ways of looking for security flaws

¥ Result

e Under given assumptions about system, no attack of
a certain form will destroy specified properties

e There is no “absolute” security

Theme #1: Protocols and Properties

& Authentication Some of these are excellent

topics for a project or
» Needham-Schroeder, Kerberos [s e o

& Key establishment
e SSL/TLS, IPSec protocols (IKE, JFK, IKEV2)

€ Secure group protocols

e Group Diffie-Hellman, CLIQUES, key trees and graphs
€ Anonymity

e MIX, Onion routing, Mixmaster and Mixminion

@ Electronic payments, wireless security, fair
exchange, privacy...

Theme #2: Formal Analysis Methods

@ Focus on special-purpose security applications

e Some techniques are very different from those used In
hardware verification

e In all cases, the main difficulty is modeling the attacker
€ Simple, mechanical models of the attacker

€ No cryptanalysis!
e In this course, we’ll assume that cryptography is perfect
e Search for design flaws, not cryptographic attacks

€ We'll talk about the relationship between formal
and cryptographic models late in the course

Variety of Tools and Techniques

@ Explicit finite-state checking
* Mure model checker
* There will be a small homework!

@ Infinite-state symbolic model checking
e SRI constraint solver

@ Process algebras
» Applied pi-calculus

e Secrecy

e Authentication
e Authorization

@ Probabilistic model checking
e PRISM probabilistic model checker

e Anonymity

€ Game-based verification
 MOCHA model checker

e Fairness

Example: Needham-Schroeder

@ Very (in)famous example
e Appeared in a 1979 paper
« Goal: authentication in a network of workstations
e In 1995, Gavin Lowe discovered unintended property
while preparing formal analysis using FDR system
®Background: public-key cryptography
» Every agent A has a key pair Ka, Ka!

e Everybody knows public key Ka and can encrypt
messages to A with it (we’ll use {m},, notation)

e Only A knows secret key Ka, therefore, only A can
decrypt messages encrypted with Ka

Needham-Schroeder Public-Key Protocol

A’s identity Fresh random number
generated by A

{ A, NonceA }Kb

—

{ NonceA, NonceB }

{ NonceB} kp

B’s reasoning:
e The only way to learn NonceB is

A’s reasoning:
e The only person who could know NonceA

to decrypt 2" message
e Only A can decrypt 2"d message
e Therefore, A is on the other end

is the person who decrypted 15t message
e Only B can decrypt message encrypted with Kb
e Therefore, B is on the other end of the line

B is authenticated!

A is authenticated!

What Does This Protocol Achieve?

{ A, NonceA }Kb
pee —— D'2/|”=”\l!le—s”—SmS B o eeB-—_—_———

{ NonceA, NonceB }
S ————————————————————————————————

{ NonceB} kp
pepe e B === == ——

@ Protocol aims to provide both authentication and secrecy
@ After this the exchange, only A and B know Na and Nb
€ Na and Nb can be used to derive a shared key

Anomaly in Needham-Schroeder

[published by Lowe]

{ A, Na},
. TS
d

; Evil B pretends
B can’t decrypt this message, that he is A
but he can replay it

Evil agent B tricks { Na, Nc }Ka { A, Na} .
honest A into revealing
C’s private value Nc

C Is convinced that he is talking to Al

Lessons of Needham-Schroeder

& Classic man-in-the-middle attack

@ Exploits participants’ reasoning to fool them

— AIs correct that B must have decrypted {A,Na},, message, but
this does not mean that {Na,Nb},. message came from B

— The attack has nothing to do with cryptography!

@It is important to realize limitations of protocols
e The attack requires that A willingly talk to adversary

e In the original setting, each workstation is assumed to
be well-behaved, and the protocol is correct!

€ Wouldn't it be great if one could discover attacks
like this automatically?

Important Modeling Decisions

€ How powerful is the adversary?
« Simple replay of previous messages
e Decompose into pieces, reassemble and resend
e Statistical analysis, partial info from network traffic
e Timing attacks

€ How much detail in underlying data types?

e Plaintext, ciphertext and keys
— Atomic data or bit sequences?

e Encryption and hash functions
— Perfect (“black-box™) cryptography
— Algebraic properties: encr(x+y) = encr(x) * encr(y) for RSA
because encrypt(k,msg) = msgk mod N

Fundamental Tradeoff

& Formal models are abstract and greatly simplified
« Components modeled as finite-state machines
» Cryptographic functions modeled as abstract data types
e Security property stated as unreachability of “bad” state

& Formal models are tractable...
e Lots of verification methods, many automated

€ ...but not necessarily sound

e Proofs in the abstract model are subject to simplifying
assumptions which ignore some of attacker’s capabilities

\ 4

Explicit Intruder Method

Informal
protocol
description

Formal Intruder

specification model

Set of rules
describing what
attacker can do

RFC, IETF draft,
research paper...

Find error)

Muro [Dill et al.]

@ Describe finite-state system
e State variables with initial values
e Transition rules for each protocol participant
« Communication by shared variables

@ Specify security condition as a state invariant

e Predicate over state variables that must be true in
every state reachable by the protocol

€ Automatic exhaustive state enumeration
e Can use hash table to avoid repeating states

@ Research and industrial protocol verification

Making the Model Finite

€ Two sources of infinite behavior
e Many instances of participants, multiple runs
e Message space or data space may be infinite

@ Finite approximation

e Assume finite number of participants

— For example, 2 clients, 2 servers

— Muro is scalable: can choose system size parameters
e Assume finite message space

— Represent random numbers by constants rl, r2, r3, ...
— Do not allow encrypt(encrypt(encrypt(...)))

Applying Mure to Security Protocols

€ Formulate the protocol
e Define a datatype for each message format

e Describe finite-state behavior of each participant

— If received message M3, then create message M4, deposit it
In the network buffer, and go to state WAIT

e Describe security condition as state invariant

€ Add adversary
e Full control over the “network” (shared buffer)

e Nondeterministic choice of actions
— Intercept a message and split it into parts; remember parts

liandil — Generate new messages from observed data and initial
combinations :
knowledge (e.g., public keys)

Mure will try

Needham-Schroeder in Murep (1)

const
Numlnitiators: 1; -— number of i1nitiators
NumResponders: 1; -- number of responders
Numlntruders: 1; -— number of i1ntruders
NetworkSize: 1; —-— max. outstanding msgs i1n network
MaxKnowledge: 10; -— number msgs i1ntruder can remember
type

Initiatorld: scalarset (NumInitiators);
Responderld: scalarset (NumResponders);
Intruderld: scalarset (Numlntruders);

Agentld: union {Initiatorld, Responderld, Intruderid};

MessageType : enum {
M_NonceAddress,
M_NonceNonce,

M_Nonce
}s
Message : record
source: Agentld;
dest: Agentld;
key: Agentld;
mType: MessageType;

noncel: Agentld;
nonce2: Agentld;
end;

Needham-Schroeder in Murg

(2)

-- types of messages

{Na, A}Kb nonce and addr
{Na,Nb}Ka two nonces
{Nb}Kb one nonce

source of message

intended destination of msg
key used for encryption

type of message

noncel

nonce2 OR sender 1d OR empty

Needham-Schroeder in Murep (3)

—— 1Intruder 1 sends recorded message

ruleset 1: Intruderld do —— arbitrary choice of
choose j: iInt][i1].-messages do -- recorded message
ruleset k: Agentld do —— destination
rule "iIntruder sends recorded message'
Tismember(k, Intruderld) & -- not to iIntruders
multisetcount (I:net, true) < NetworkSize
==>
var outM: Message;
begin
outM = 1nt[1].messages|j];
outM.source = 1;
outM.dest = k;

multisetadd (outM,net);
end; end; end; end;

Try Playing With Mure

&®You'll need to use Mure for your first homework
€ The input language is easy to understand, but
ask me If you are having problems
e Simple IF... THEN... guarded commands
e Attacker is nondeterministic, not sequential

@ Local Mureo installation is in
/projects/shmat/Murphi3.1

Some security examples are In
/projects/shmat/Murphi3.1/ex/secur

 Needham-Schroeder, SSL (ignore rule priorities!)

Start Thinking About the Project

@ I'll post a list of ideas soon

€ Four ways to go about it

» Use one of the tools we’ll discuss in class to analyze an
existing or proposed protocol
— Learn to read an RFC
— Check out reference materials on the class website

e Extend a tool to handle a new class of properties

e Do a theoretical project

— Example: algorithmic properties of verification techniques;
relationship between cryptographic and formal models

e Invent something of your own (but talk to me first!)

Some ldeas

€ E-commerce protocols
e Micropayment schemes, secure electronic transactions

@ \Wireless security
= Ad-hoc routing, WiFi security, location security

@ Trusted Computing Base / Palladium

@ Electronic voting

@ Group key management protocols

€ Anonymity networks

@ Censorship-resistant Web publishing

¥ Choose something that interests you!

Watch This Space

http://www.cs.utexas.edu/~shmat/courses/cs395t_fall04/

@ Already contains pointers to several tools,
some with online demos

@ I'll be constantly adding new references

@ Start poking around in protocol libraries
e Clark-Jacob survey is a good start

	Design and Analysis of Security Protocols
	Course Logistics
	Grading
	Computer Security
	Class Poll
	Security Protocols
	Correctness vs Security
	Security Analysis
	Theme #1: Protocols and Properties
	Theme #2: Formal Analysis Methods
	Variety of Tools and Techniques
	Example: Needham-Schroeder
	Needham-Schroeder Public-Key Protocol
	What Does This Protocol Achieve?
	Anomaly in Needham-Schroeder
	Lessons of Needham-Schroeder
	Important Modeling Decisions
	Fundamental Tradeoff
	Explicit Intruder Method
	Murj [Dill et al.]
	Making the Model Finite
	Applying Murj to Security Protocols
	Needham-Schroeder in Murj (1)
	Needham-Schroeder in Murj (2)
	Needham-Schroeder in Murj (3)
	Try Playing With Murj
	Start Thinking About the Project
	Some Ideas
	Watch This Space

