Protocols for Anonymity
Overview

◆ Basic concepts of anonymity
 • Chaum’s MIX
 • Dining cryptographers
 • Knowledge-based definitions of anonymity

◆ Probabilistic anonymity
 • Onion routing
 • Crowds

◆ Introduction to probabilistic model checking
 • Using a probabilistic model checker to analyze randomized routing protocols
Applications of Anonymity

◆ Privacy
 • Hide online transactions, Web browsing, etc. from intrusive governments, corporations and archivists

◆ Digital cash
 ▪ Electronic currency with properties of paper money

◆ Anonymous electronic voting

◆ Censorship-resistant publishing

◆ Untraceable electronic mail

◆ Crypto-anarchy
 • “Some people say `anarchy won't work'. That's not an argument against anarchy; that's an argument against work.” – Bob Black
Chaum’s MIX

Early proposal for anonymous email

Public key crypto + trusted re-mailer (MIX)
• Untrusted communication medium
• Public keys used as persistent pseudonyms

Modern anonymity systems use MIX as the basic building block
Basic MIX Design

Adversary knows all senders and all receivers, but cannot link a sent message with a received message.
Anonymous Return Addresses

M includes \(\{K_1, A\}_{pk(mix)}, K_2 \) where \(K_2 \) is a fresh public key

\[\{r_1, \{r_0, M\}_{pk(B)}, B\}_{pk(mix)} \]

Secrecy without authentication
(good for an online confession service)
Mix Cascade

- Messages are sent through a sequence of mixes
- Some of the mixes may be controlled by adversary, but even a single good mix guarantees anonymity
- Need traffic padding and buffering to prevent timing correlation attacks
Dining Cryptographers

- Clever idea how to make a message public in a perfectly untraceable manner

- Guarantees information-theoretic anonymity for message senders
 - This is an unusually strong form of security: defeats adversary who has unlimited computational power

- Impractical, requires huge amount of randomness
 - In group of size N, need N random bits to send 1 bit
Three-Person DC Protocol

Three cryptographers are having dinner. Either NSA is paying for the dinner, or one of them is paying, but wishes to remain anonymous.

1. Each diner flips a coin and shows it to his left neighbor.
 • Every diner will see two coins: his own and his right neighbor’s.
2. Each diner announces whether the two coins are the same. If he is the payer, he lies (says the opposite).
3. Odd number of “same” \Rightarrow NSA is paying; even number of “same” \Rightarrow one of them is paying
 • But a non-payer cannot tell which of the other two is paying!
Non-Payer’s View: Same Coins

“same” “different” “same” “different”

Without knowing the coin toss between the other two, non-payer cannot tell which of them is lying.
Non-Payer’s View: Different Coins

Without knowing the coin toss between the other two, non-payer cannot tell which of them is lying.
Superposed Sending

◆ This idea generalizes to any group of size N
◆ For each bit of the message, every user generates 1 random bit and sends it to 1 neighbor
 • Every user learns 2 bits (his own and his neighbor’s)
◆ Each user announces (own bit XOR neighbor’s bit)
◆ Sender announces (own bit XOR neighbor’s bit XOR message bit)
◆ XOR of all announcements = message bit
 • Every randomly generated bit occurs in this sum twice (and is canceled by XOR), message bit occurs once
DC-Based Anonymity is Impractical

◆ Requires secure pairwise channels between group members
 ● Otherwise, random bits cannot be shared

◆ Requires massive communication overhead and large amounts of randomness

◆ DC-net (a group of dining cryptographers) is robust even if some members cooperate
 ● Guarantees perfect anonymity for the other members

◆ A great protocol to analyze
 ● Difficult to reason about each member’s knowledge
What is Anonymity?

FBI intercepted three emails and learned that …

- Two of the emails came from the same account
- Emails are not in English
- The recipients are Bob386@hotmail.com, Dick Tracy and Osama Bin Laden, but it’s not known who received which email
- Emails were routed via Anonymizer.com

Wrong question: has “anonymity” been violated?
Right question: what does FBI actually know?
Definitions of Anonymity

“Anonymity is the state of being not identifiable within a set of subjects.”

• There is no such thing as absolute anonymity

Unlinkability of action and identity

• E.g., sender and his email are no more related within the system than they are related in a-priori knowledge

Unobservability

• Any item of interest (message, event, action) is indistinguishable from any other item of interest

“Anonymity is bullshit” - Joan Feigenbaum
Anonymity and Knowledge

Anonymity deals with hiding information
- User’s identity is hidden
- Relationship between users is hidden
- User cannot be identified within a set of suspects

Natural way to express anonymity is to state what the adversary should not know
- Good application for logic of knowledge
- Not supported by conventional formalisms for security (process calculi, I/O automata, ...)

To determine whether anonymity holds, need some representation of knowledge
What actually happened

Sender suspects(1) = Alice or Charlie

Sender suspects(2) = Bob or Charlie

What attacker knows

2-anonymity for senders:
2 plausible senders for each message
Absolute Anonymity

What actually happened

Sender suspects(1) = Alice, Bob or Charlie

Sender suspects(2) = Alice, Bob or Charlie

What attacker knows

 абсолют sender anonymity:
 every agent is a plausible sender for every message
Identities Are Not Enough

What actually happened

Sender suspects(1) = Alice, Bob or Charlie

What attacker knows

Sender suspects(2) = Alice, Bob or Charlie

Sender(2) = Sender(3)

Must be able to express this knowledge
Anonymity via Randomized Routing

- Hide message source by routing it randomly
 - Popular technique: Crowds, Freenet, Onion routing
- Routers don’t know for sure if the apparent source of a message is the true sender or another router
 - Only secure against local attackers!
Onion Routing

[Reed, Syverson, Goldschlag ’97]

◆ Sender chooses a random sequence of routers
 • Some routers are honest, some hostile
 • Sender controls the length of the path
 • Similar to a mix cascade
◆ Goal: hostile routers shouldn’t learn that Alice is talking to Bob
The Onion

• Routing info for each link encrypted with router’s public key
• Each router learns only the identity of the next router
Crowds System

[Reiter, Rubin '98]

- Routers form a random path when establishing connection
 - In onion routing, random path is chosen in advance by sender
- After receiving a message, honest router flips a biased coin
 - With probability P_f randomly selects next router and forwards msg
 - With probability $1-P_f$ sends directly to the recipient
Probabilistic Notions of Anonymity

♦ Beyond suspicion

• The observed source of the message is no more likely to be the true sender than anybody else

♦ Probable innocence

• Probability that the observed source of the message is the true sender is less than 50%

♦ Possible innocence

• Non-trivial probability that the observed source of the message is not the true sender

Guaranteed by Crowds if there are sufficiently many honest routers:

\[N_{\text{good}} + N_{\text{bad}} \geq \frac{p_f}{(p_f - 0.5) \cdot (N_{\text{bad}} + 1)} \]
A Couple of Issues

◆ Is probable innocence enough?

1% 1% 1% 49% 1% 1% 1%

Maybe Ok for “plausible deniability”

◆ Multiple-paths vulnerability
 • Can attacker relate multiple paths from same sender?
 – E.g., browsing the same website at the same time of day
 • Each new path gives attacker a new observation
 • Can’t keep paths static since members join and leave
Deployed Anonymity Systems

- Free Haven project has an excellent anonymity bibliography
 - http://www.freehaven.net/anonbib/
- TOR (second-generation onion router)
 - Low-latency overlay network
 - http://www.freehaven.net/tor
- Mixminion
 - Type III anonymous remailer
 - http://www.mixminion.net
- Mixmaster
 - Type II anonymous remailer
 - http://mixmaster.sourceforge.net
- Cypherpunks
 - Assorted rants on crypto-anarchy
 - http://www.csua.berkeley.edu/cypherpunks/Home.html