
CS 395T

Probabilistic Model Checking

Overview

Crowds redux
Probabilistic model checking
• PRISM model checker
• PCTL logic
• Analyzing Crowds with PRISM

Probabilistic contract signing
• Rabin’s beacon protocol
• Ben-Or, Goldreich, Rivest, Micali protocol
• Analyzing probabilistic contract signing protocols

with PRISM

Crowds System [Reiter,Rubin ‘98]

C C4

C1
C2

C

C

CC3

C0
sender recipient

C
C

C

Cpf

1-pf

Routers form a random path when establishing connection
• In onion routing, random path is chosen in advance by sender

After receiving a message, honest router flips a biased coin
• With probability Pf randomly selects next router and forwards msg
• With probability 1-Pf sends directly to the recipient

Probabilistic Model Checking

...
...

0.3

0.5

0.2
Participants are finite-state machines
• Same as Murϕ

State transitions are probabilistic
• Transitions in Murϕ are nondeterministic

Standard intruder model
• Same as Murϕ: model cryptography with

abstract data types
Murϕ question:
• Is bad state reachable?

Probabilistic model checking question:
• What’s the probability of reaching bad state?

“bad state”

Discrete-Time Markov Chains

(S, s0, T, L)

S is a finite set of states
s0 ∈S is an initial state
T :S×S→[0,1] is the transition relation

• ∀s,s’∈S Σs’ T(s,s’)=1
L is a labeling function

Markov Chain: Simple Example

Probabilities of outgoing
transitions sum up to 1.0
for every state

B

A
C

D

0.2

E0.8

0.9

0.5

0.50.1s0

1.0

1.0

• Probability of reaching E from s0 is 0.2•0.5+0.8•0.1•0.5=0.14
• The chain has infinite paths if state graph has loops

– Need to solve a system of linear equations to compute probabilities

PRISM [Kwiatkowska et al., U. of Birmingham]

Probabilistic model checker
System specified as a Markov chain
• Parties are finite-state machines w/ local variables
• State transitions are associated with probabilities

– Can also have nondeterminism (Markov decision processes)

• All parameters must be finite

Correctness condition specified as PCTL formula
Computes probabilities for each reachable state

– Enumerates reachable states
– Solves system of linear equations to find probabilities

PRISM Syntax

B

A
C

D

0.2

E0.8

0.9

0.5

0.50.1s0

1.0

1.0

module Simple
state: [1..5] init 1;
[] state=1 -> 0.8: state’=2 + 0.2: state’=3;
[] state=2 -> 0.1: state’=3 + 0.9: state’=4;
[] state=3 -> 0.5: state’=4 + 0.5: state’=5;

endmodule
IF state=3 THEN with prob. 50% assign 4 to state,

with prob. 50% assign 5 to state

Modeling Crowds with PRISM

Model probabilistic path construction
Each state of the model corresponds to a
particular stage of path construction
• 1 router chosen, 2 routers chosen, …

Three probabilistic transitions
• Honest router chooses next router with probability pf,

terminates the path with probability 1-pf

• Next router is probabilistically chosen from N candidates
• Chosen router is hostile with certain probability

Run path construction protocol several times and
look at accumulated observations of the intruder

PRISM: Path Construction in Crowds

module crowds
. . .
// N = total # of routers, C = # of corrupt routers
// badC = C/N, goodC = 1-badC
[] (!good & !bad & run) ->

goodC: (good’=true) & (revealAppSender’=true) &
(run’=false) +

badC: (badObserve’=true) & (run’=false);

// Forward with probability PF, else deliver

[] (good & !deliver) ->
PF: (pIndex’=pIndex+1) & (forward’=true) &

(good’=false) +
notPF: (deliver’=true);

. . .
endmodule

Next router is corrupt with certain probability

Route with probability PF, else deliver

PRISM: Intruder Model

module crowds
. . .
// Record the apparent sender and deliver
[] (badObserve & appSender=0) ->

(observe0’=observe0+1) & (deliver’=true);
. . .
// Record the apparent sender and deliver
[] (badObserve & appSender=15) ->

(observe15’=observe15+1) & (deliver’=true);
. . .

endmodule

• For each observed path, bad routers record apparent sender
• Bad routers collaborate, so treat them as a single attacker
• No cryptography, only probabilistic inference

PCTL Logic [Hansson, Jonsson ‘94]

Probabilistic Computation Tree Logic
Used for reasoning about probabilistic temporal
properties of probabilistic finite state spaces
Can express properties of the form “under any
scheduling of processes, the probability that event
E occurs is at least p’’
• By contrast, Murϕ can express only properties of the

form “does event E ever occur?’’

PCTL Syntax

State formulas
• First-order propositions over a single state

Φ ::= True | a | Φ ∧ Φ | Φ ∨ Φ | ¬Φ | P>p[Ψ]

Path formulas
• Properties of chains of states

Ψ ::= X Φ | Φ U≤k Φ | Φ U Φ

Predicate over state variables
(just like a Murϕ invariant)

Path formula holds
with probability > p

State formula holds for
next state in the chain

First state formula holds for every state
in the chain until second becomes true

PCTL: State Formulas

A state formula is a first-order state predicate
• Just like non-probabilistic logic

X=3
y=0

X=1
y=1

X=1
y=20.2 X=2

y=0

0.8 0.5

1.0

1.0
s0

0.5
True

True False

False

ϕ = (y>1) | (x=1)

PCTL: Path Formulas

A path formula is a temporal property of a
chain of states
• ϕ1Uϕ2 = “ϕ1 is true until ϕ2 becomes and stays true”

X=3
y=0

X=1
y=1

X=1
y=20.2 X=2

y=0

0.8 0.5

1.0

1.0
s0

0.5

ψ = (y>0) U (x>y) holds for this chain

PCTL: Probabilistic State Formulas

Specify that a certain predicate or path formula
holds with probability no less than some bound

X=3
y=0

X=1
y=1

X=1
y=20.2 X=2

y=0

0.8 0.5

1.0

1.0
s0

0.5
False

True True

False

ϕ = P>0.5[(y>0) U (x=2)]

Intruder Model Redux

module crowds
. . .
// Record the apparent sender and deliver
[] (badObserve & appSender=0) ->

(observe0’=observe0+1) & (deliver’=true);
. . .
// Record the apparent sender and deliver
[] (badObserve & appSender=15) ->

(observe15’=observe15+1) & (deliver’=true);
. . .

endmodule

Every time a hostile crowd member receives a message
from some honest member, he records his observation
(increases the count for that honest member)

Negation of Probable Innocence

launch ->
[true U (observe0>observe1) & done] > 0.5

launch ->
[true U (observe0>observe9) & done] > 0.5

…

“The probability of reaching a state in which hostile crowd
members completed their observations and observed the
true sender (crowd member #0) more often than any of
the other crowd members (#1 … #9) is greater than 0.5”

Analyzing Multiple Paths with PRISM

Use PRISM to automatically compute interesting
probabilities for chosen finite configurations

“Positive”: P(K0 > 1)
• Observing the true sender more than once

“False positive”: P(Ki≠0 > 1)
• Observing a wrong crowd member more than once

“Confidence”: P(Ki≠0 ≤ 1 | K0 > 1)
• Observing only the true sender more than once

Ki = how many times crowd member i was recorded as apparent sender

Size of State Space

5
10

15
20

3
4

5
6

0

5,000,000

10,000,000

15,000,000

States

Honest
routers

Paths

All hostile routers are treated as a single router, selected with probability 1/6

Sender Detection (Multiple Paths)

3
4

5
6

6
12

18
24

0%

10%

20%

30%

40%

50%

Sender
detection

PathsRouters

All configurations satisfy probable
innocence
Probability of observing the true
sender increases with the number
of paths observed…
… but decreases with the increase
in crowd size

Is this an attack?
• Can’t avoid building new paths
• Hard to prevent attacker from

correlating same-sender paths
1/6 of routers are hostile

Attacker’s Confidence

6
12

18
24

3
4

5
6

80%

85%

90%

95%

100%

Attacker
confidence

RoutersPaths

“Confidence” = probability of detecting
only the true sender
Confidence grows with crowd size
Maybe this is not so strange
• True sender appears in every path,

others only with small probability
• Once attacker sees somebody twice,

he knows it’s the true sender

Is this an attack?
• Large crowds: lower probability to

detect senders, but higher
confidence that the detected user is
the true sender1/6 of routers are hostile

	Probabilistic Model Checking
	Overview
	Crowds System
	Probabilistic Model Checking
	Discrete-Time Markov Chains
	Markov Chain: Simple Example
	PRISM
	PRISM Syntax
	Modeling Crowds with PRISM
	PRISM: Path Construction in Crowds
	PRISM: Intruder Model
	PCTL: State Formulas
	PCTL: Path Formulas
	PCTL: Probabilistic State Formulas
	Intruder Model Redux
	Negation of Probable Innocence
	Analyzing Multiple Paths with PRISM
	Size of State Space
	Sender Detection (Multiple Paths)
	Attacker’s Confidence

