Probabilistic Contract Signing
Probabilistic Fair Exchange

- Two parties exchange items of value
 - Signed commitments (contract signing)
 - Signed receipt for an email message (certified email)
 - Digital cash for digital goods (e-commerce)

- Important if parties don’t trust each other
 - Need assurance that if one does not get what it wants, the other doesn’t get what it wants either

- Fairness is hard to achieve
 - Gradual release of verifiable commitments
 - Convertible, verifiable signature commitments
 - Probabilistic notions of fairness
Properties of Fair Exchange Protocols

Fairness
- At each step, the parties have approximately equal probabilities of obtaining what they want.

Optimism
- If both parties are honest, then exchange succeeds without involving a judge or trusted third party.

Timeliness
- If something goes wrong, the honest party does not have to wait for a long time to find out whether exchange succeeded or not.
A “beacon” is a trusted party that publicly broadcasts a randomly chosen number between 1 and N every day.

Contract

CONTRACT (A, B, future date D, contract terms)

Exchange of commitments must be concluded by this date
Rabin’s Contract Signing Protocol

\(\text{sig}_A \) “I am committed if \(I \) is broadcast on day \(D \)”

\(\text{sig}_B \) “I am committed if \(I \) is broadcast on day \(D \)”

\(\text{CONTRACT} \) (\(A, B, \) future date \(D \), contract terms)

\(\text{sig}_A \) “I am committed if \(i \) is broadcast on day \(D \)”

\(\text{sig}_B \) “I am committed if \(i \) is broadcast on day \(D \)”

…

\(\text{sig}_A \) “I am committed if \(N \) is broadcast on day \(D \)”

\(\text{sig}_B \) “I am committed if \(N \) is broadcast on day \(D \)”

2N messages are exchanged if both parties are honest
Probabilistic Fairness

Suppose B stops after receiving A’s i^{th} message
- B has sig_A ”committed if 1 is broadcast”,
 sig_A ”committed if 2 is broadcast”,
 ...
 sig_A ”committed if i is broadcast”
- A has sig_B ”committed if 1 is broadcast”,
 ...
 sig_B ”committed if $i-1$ is broadcast”

... and beacon broadcasts number b on day D
- If $b < i$, then both A and B are committed
- If $b > i$, then neither A, nor B is committed
- If $b = i$, then only A is committed

This happens only with probability $1/N$
Properties of Rabin’s Protocol

Fair

- The difference between A’s probability to obtain B’s commitment and B’s probability to obtain A’s commitment is at most 1/N
 - But communication overhead is 2N messages

Not optimistic

- Need input from third party in every transaction
 - Same input for all transactions on a given day sent out as a one-way broadcast. Maybe this is not so bad!

Not timely

- If one of the parties stops communicating, the other does not learn the outcome until day D
BGMR Probabilistic Contract Signing

[Ben-Or, Goldreich, Micali, Rivest ’85-90]

- Doesn’t need beacon input in every transaction
- **Uses** \(\text{sig}_A \text{”I am committed with probability } p_A \text{”} \) instead of \(\text{sig}_A \text{”I am committed if } i \text{ is broadcast on day } D \text{”} \)
- Each party decides how much to increase the probability at each step
 - A receives \(\text{sig}_B \text{”I am committed with probability } p_B \text{”} \) from B
 - Sets \(p_A = \min(1, p_B \cdot \alpha) \) \(\alpha \text{ is a parameter chosen by } A \)
 - Sends \(\text{sig}_A \text{”I am committed with probability } p_A \text{”} \) to B
- … the algorithm for B is symmetric
BGMR Message Flow

\[\text{CONTRACT}(\text{A, B, future date D, contract terms}) \]

\[\text{sig}_A \text{"I am committed with probability } 0.10 \text{"} \]
\[\text{sig}_B \text{"I am committed with probability } 0.12 \text{"} \]

\[\ldots \]

\[\text{sig}_A \text{"I am committed with probability } 1.00 \text{"} \]
\[\text{sig}_B \text{"I am committed with probability } 1.00 \text{"} \]
Conflict Resolution

\[\text{sig}_A \text{"I am committed with probability } p_A, \text{"} \]
\[\text{sig}_B \text{"I am committed with probability } p_B, \text{"} \]
\[\text{sig}_A \text{"I am committed with probability } p_{A2}, \text{"} \]

???

\[\text{sig}_B \text{"I am committed with probability } p_{B1}, \text{"} \]

"Binding" or "Canceled"
(same verdict for both parties)

Waits until date D
If \(\rho \leq p_{B1} \), contract is binding, else contract is canceled

\[0 \leq \rho \leq 1 \]

judge

"Binding" or "Canceled"
(same verdict for both parties)
Judge

- Waits until date D to decide
- Announces verdict to both parties
- Tosses coin once for each contract
- Remembers previous coin tosses
 - Constant memory: use pseudo-random functions with a secret input to produce repeatable coin tosses for each contract
- Does not remember previous verdicts
 - Same coin toss combined with different evidence (signed message with a different probability value) may result in a different verdict
Privilege and Fairness

Privilege

A party is privileged if it has the evidence to cause the judge to declare contract binding

Intuition: the contract binds either both parties, or neither; what matters is the ability to make the contract binding

Fairness

At any step where $\text{Prob}(B \text{ is privileged}) > \nu$, $\text{Prob}(A \text{ is not privileged } | B \text{ is privileged}) < \varepsilon$

Intuition: at each step, the parties should have comparable probabilities of causing the judge to declare contract binding (privilege must be symmetric)
Properties of BGMR Protocol

Fair

- Privilege is almost symmetric at each step:

 if \(\text{Prob}(B \text{ is privileged}) > p_{A_0} \), then

 \(\text{Prob}(A \text{ is not privileged } | \ B \text{ is privileged}) < 1-1/\alpha \)

Optimistic

- Two honest parties don’t need to invoke a judge

Not timely

- Judge waits until day D to toss the coin
- What if the judge tosses the coin and announces the verdict as soon as he is invoked?
Formal Model

◆ Protocol should ensure fairness given any possible behavior by a dishonest participant
 • Contact judge although communication hasn’t stopped
 • Contact judge more than once
 • Delay messages from judge to honest participant

◆ Need nondeterminism
 • To model dishonest participant’s choice of actions

◆ Need probability
 • To model judge’s coin tosses

◆ The model is a Markov decision process
Constructing the Model

◆ Discretize probability space of coin tosses
 - The coin takes any of N values with equal probability

◆ Fix each party’s “probability step”
 - Rate of increases in the probability value contained in the party’s messages determines how many messages are exchanged

◆ A state is unfair if privilege is asymmetric
 - Difference in evidence, not difference in commitments

◆ Compute probability of reaching an unfair state for different values of the parties’ probability steps

Defines state space

Use PRISM
Attack Strategy

◆ Dishonest B’s probability of driving the protocol to an unfair state is maximized by this strategy:
 1. Contact judge as soon as first message from A arrives
 2. Judge tries to send verdict to A (the verdict is probably negative, since A’s message contains a low probability value)
 3. B delays judge’s verdicts sent to A
 4. B contacts judge again with each new message from A until a positive verdict is obtained

◆ This strategy only works in the timely protocol
 • In the original protocol, coin is not tossed and verdict is not announced until day D

◆ Conflict between optimism and timeliness
Analysis Results

Probability of reaching a state where B is privileged and A is not privileged

Increase in B’s probability value at each step (lower increase means more messages must be exchanged)

For a higher probability of winning, dishonest B must exchange more messages with honest A
Attacker’s Tradeoff

- **Linear tradeoff** for dishonest B between probability of winning and ability to delay judge’s messages to A
- Without complete control of the communication network, B may settle for a lower probability of winning
Summary

◆ Probabilistic contract signing is a good testbed for probabilistic model checking techniques
 • Standard formal analysis techniques not applicable
 • Combination of nondeterminism and probability
 • Good for quantifying tradeoffs

◆ Probabilistic contract signing is subtle
 • Unfairness as asymmetric privilege
 • Optimism cannot be combined with timeliness, at least not in the obvious way