Compositional Protocol Logic
Outline

- Floyd-Hoare logic of programs
 - Compositional reasoning about properties of programs
- DDMP protocol logic
 - Developed by Datta, Derek, Mitchell, and Pavlovic for logical reasoning about security properties
Floyd-Hoare Logic

◆ **Main idea:** before-after assertions
 - $F \mathsf{<P>} G$
 - If F is true before executing P, then G is true after

◆ **Total correctness or partial correctness**
 - **Total correctness:** $F \mathsf{[P]} G$
 - If F is true, then P will halt and G will be true
 - **Partial correctness:** $F \mathsf{\{P\}} G$
 - If F is true and if P halts, then G will be true
While Programs

\[P ::= \]
\[x := e \mid \]
\[P ; P \mid \]
\[\text{if } B \text{ then } P \text{ else } P \mid \]
\[\text{while } B \text{ do } P \]

where \(x \) is any variable

\(e \) is any integer expression

\(B \) is a Boolean expression (true or false)
Assignment and Rule of Consequence

◆ Assignment axiom: \(F(t) \ { x := t } \ F(x) \)
 - If \(F \) holds for \(t \), and \(t \) is assigned to \(x \), then \(F \) holds for \(x \) afterwards
 - This assumes that there is no aliasing!
 - Examples:
 - \(7=7 \ { x := 7 } \ x=7 \)
 - \((y+1)>0 \ { x := y+1 } \ x>0 \)
 - \(x+1=2 \ { x := x+1 } \ x=2 \)

◆ Rule of consequence:
 If \(F \ { P } \ G \) and \(F' \rightarrow F \) and \(G \rightarrow G' \),
 then \(F' \ { P } \ G' \)
Simple Examples

 Assertion: \(y > 0 \) \{ x := y+1 \} \ x > 0

 Proof:

 \[(y+1) > 0 \] \{ x := y+1 \} \ x > 0 \quad \text{(assignment axiom)}
\[y > 0 \quad \{ x := y+1 \} \ x > 0 \quad \text{(rule of consequence)}
\]

 Assertion: \(x = 1 \) \{ x := x+1 \} \ x = 2

 Proof:

 \[x+1 = 2 \quad \{ x := x+1 \} \ x = 2 \quad \text{(assignment axiom)}
\[x = 1 \quad \{ x := x+1 \} \ x = 2 \quad \text{(rule of consequence)}
\]
Conditional

\[F \& B \{ P \} G \]
\[F \& \neg B \{ Q \} G \]
\[\underline{F \{ \text{if } B \text{ then } P \text{ else } Q \} G} \]

• Example:

\[\text{true } \{ \text{if } y \geq 0 \text{ then } x := y \text{ else } x := -y \} \ x \geq 0 \]
Sequence

\[
\begin{align*}
F \{P\} G \\
G \{Q\} H \\
F \{P; Q\} H
\end{align*}
\]

• Example:

\[
x=0 \{x := x+1 ; x := x+1\} \quad x=2
\]
Loop Invariant

\[F \land B \{ P \} F \]

\[F \{ \text{while } B \text{ do } P \} F \land \neg B \]

• Example:

\[\text{true} \{ \text{while } x \neq 0 \text{ do } x := x-1 \} x=0 \]
Example: Compute $d = x - y$

 Assertion: $y \leq x$ \[\{d := 0; \text{ while } (y+d) < x \text{ do } d := d + 1\} y+d=x \]

 Proof:

 - Choose loop invariant $F = y+d \leq x$

 \[
 y+d \leq x \land B \quad \{Q\} \quad y+d \leq x \]

 \[
 y+d \leq x \quad \{\text{while } B \text{ do } Q\} \quad y+d \leq x \land \neg B
 \]

 Important: proving a property of the entire loop has been reduced to proving a property of one iteration of the loop

 - To prove $y+d \leq x \land B \quad \{Q\} \quad y+d \leq x$, use assignment axiom and sequence rule

After loop execution, $y+d \leq x \land \neg(y+d < x)$, thus $y+d = x$
Goal: Logic for Security Protocols

◆ “Floyd-Hoare” reasoning about security properties
 • Would like to derive global properties of protocols from local assertions about each protocol participant
 • Use a rigorous logical framework to formalize the reasoning that each participant carries out

◆ Compositionality is important
 • Security properties must hold even if the protocol is executed in parallel with other protocols
 • Compositionality is the main advantage of process calculi and protocol logics
Intuition

◆ Reason about local information
 • I chose a fresh, unpredictable number
 • I sent it out encrypted
 • I received it decrypted
 • Therefore: someone decrypted it

◆ Incorporate knowledge about protocol into reasoning
 • According to the protocol specification, server only sends m if it received m'
 • If server not corrupt and I receive m signed by server, then server received m'
Alice’s “View” of the Protocol

- Protocol spec
- Private data
- Sent and received messages
- Honest principals, attacker
Example: Challenge-Response

Alice’s reasoning:
- If Bob is honest, then only Bob can generate his signature
- If honest Bob generates a signature of the form \(\text{sig}_B\{m, n, A\} \), then
 1. Bob must have received \(m, A \) from Alice
 2. Bob sent \(\text{sig}_B\{m, n, A\} \) as part of his 2\(^{nd}\) message

Alice concludes:
- Received(\(B, \text{msg1}\)) \& Sent(\(B, \text{msg2}\))
Protocol Composition Logic

- A formal language for describing protocols
 - Terms and actions instead of informal arrows-and-messages notation
- Operational semantics
 - Describe how the protocol executes
- Protocol logic
 - State security properties (in particular, secrecy and authentication)
- Proof system
 - Axioms and inference rules for formally proving security properties
Terms
\[t ::= c \mid x \mid N \mid K \mid t, t \mid \text{constant} \]
\[\text{variable} \]
\[\text{name} \]
\[\text{key} \]
\[\text{tuple} \]
\[\text{signature} \]
\[\text{encryption} \]
Actions

- **new m** generated fresh value
- **send U, V, t** send term t from U to V
- **receive U, V, x** receive term and assign into variable x
- **match t/p(x)** match term t against pattern p(x)

◆ **A thread is a sequence of actions**
 - Defines the “program” for a protocol participant, i.e., what messages he sends and receives and the checks he performs
 - For notational convenience, omit “match” actions
 - Write “receive sig_B{A, n}” instead of “receive x; match x/sig_B{A, n}”
Challenge-Response Threads

InitCR(A, X) = [
 new m;
 send A, X, {m, A};
 receive X, A, {x, sig_A{m, x, A}};
 send A, X, sig_A{m, x, X};
]

RespCR(B) = [
 receive Y, B, {y, Y};
 new n;
 send B, Y, {n, sig_B{y, n, Y}};
 receive Y, B, sig_B{y, n, B};
]
A protocol is a finite set of roles
- Initial configuration specifies a set of principals and keys; assignment of \(\geq 1 \) role to each principal

A run is a concurrent execution of the roles
- Models a protocol session
- Send and receive actions are matched up

Position in run:
- New action: \(\text{new } x \)
- Send action: \(\text{send}\{x\}_B \)
- Receive action: \(\text{receive}\{x\}_B \) and \(\text{receive}\{z\}_B \)
- New action: \(\text{new } z \)
- Send action: \(\text{send}\{z\}_B \)
Action Formulas

◆ Predicates over action sequences

\[
a ::= \text{Send}(X,m) \mid \text{Message } m \text{ was sent in thread } X
\]
\[
\text{Receive}(X,m) \mid \text{Message } m \text{ was received in thread } X
\]
\[
\text{New}(X,t) \mid \text{Term } t \text{ was generated as new in } X
\]
\[
\text{Decrypt}(X,t) \mid \text{Term } t \text{ was decrypted in thread } X
\]
\[
\text{Verify}(X,t) \mid \text{Term } t \text{ was verified in } X
\]
Formulas

\[\varphi ::= a \quad | \quad \text{Action formula} \]
\[\text{Has}(X,m) \quad | \quad \text{Thread X created m or received} \]
\[\text{a message containing m and has} \]
\[\text{keys to extract m from the message} \]
\[\text{Fresh}(X,t) \quad | \quad \text{Term t hasn’t been “seen” outside X} \]
\[\text{Honest}(N) \quad | \quad \text{Principal N follows protocol rules in} \]
\[\text{all of its threads} \]
\[\text{Contains}(t,t') \quad | \quad \text{Term t contains subterm t’} \]
\[\neg \varphi \quad | \quad \varphi_1 \land \varphi_2 \quad | \quad \exists x \ \varphi \quad | \quad \Box \varphi \quad | \quad \Diamond \varphi \]
\[\varphi \text{ was true} \]

Modal operator \[[\text{actions}]_X \ \varphi \]
\[\text{After actions, X reasons } \varphi \]
Trace Semantics

◆ Protocol Q
 • Defines a set of roles (e.g., initiator and responder)

◆ Run R
 • Sequence of actions by principals following protocol roles and the attacker (models a protocol session)

◆ Satisfaction
 • \(Q, R \models [actions]_p \phi \)
 - Some role of principal \(P \) in \(R \) performs exactly \(actions \) and \(\phi \) is true in the state obtained after \(actions \) complete
 • \(Q \models [actions]_p \phi \)
 - \(Q, R \models [actions]_p \phi \) for all runs \(R \) of \(Q \)
Specifying Authentication

Initiator authentication in Challenge-Response

CR |= [InitCR(A, B)]_A Honest(B) \supset
ActionsInOrder(
 Send(A, \{A,B,m\}),
 Receive(B, \{A,B,m\}),
 Send(B, \{B,A,\{n, sig_B\{m, n, A\}\}\}),
 Receive(A, \{B,A,\{n, sig_B\{m, n, A\}\}\})
)

After initiator executes his program

If B is honest...

...then msg sends and receives must have happened in order prescribed by protocol spec
Specifying Secrecy

◆ Shared secret in key establishment

After initiator executes his program

If B is honest...

\[KE \models [\text{InitKE}(A, B)]_A \text{ Honest}(B) \supset (\text{Has}(X, m) \supset X=A \lor X=B) \]

...then if some party X knows secret m, then X can only be either A, or B
Goal: formally prove properties of security protocols

Axioms are simple formulas
 • Provable by hand

Inference rules are proof steps

Theorem is a formula obtained from axioms by application of inference rules
Sample Axioms

◆ New data
 • \([\new x]_P \text{ Has}(P,x) \)
 • \([\new x]_P \text{ Has}(Y,x) \supset Y=P \)

◆ Acquiring new knowledge
 • \([\text{receive } m]_P \text{ Has}(P,m) \)

◆ Performing actions
 • \([\text{send } m]_P \Diamond \text{Send}(P,m) \)
 • \([\text{match } x/\text{sig}_x\{m\}]_P \Diamond \text{Verify}(P,m) \)
Reasoning About Cryptography

◆ Pairing
 • Has(X, \{m,n\}) ⊃ Has(X, m) ∧ Has(X, n)

◆ Symmetric encryption
 • Has(X, enc_k(m)) ∧ Has(X, K^{-1}) ⊃ Has(X, m)

◆ Public-key encryption
 • Honest(X) ∧ ◇ Decrypt(Y, enc_X{m}) ⊃ X=Y

◆ Signatures
 • Honest(X) ∧ ◇ Verify(Y, sig_X{m}) ⊃
 \exists m' (◇ Send(X, m') ∧ Contains(m', sig_X{m})).
Sample Inference Rules

\[
\begin{align*}
\text{[actions]}_p \text{ Has}(X, t) \\
\text{[actions; action]}_p \text{ Has}(X, t)
\end{align*}
\]

\[
\begin{align*}
\text{[actions]}_p \phi & \quad \text{[actions]}_p \varphi \\
\hline
\text{[actions]}_p \phi \land \varphi
\end{align*}
\]
Honesty Rule

∀ roles R of Q. ∀ initial segments A ⊆ R.

\[\begin{align*}
Q & \vdash [A]_X \phi \\
Q & \vdash \text{Honest}(X) \supset \phi
\end{align*} \]

- **Finitary rule** (finite number of premises to choose from)
 - Typical protocol has 2-3 roles, typical role has 1-3 actions
- **Example:**
 - If Honest(X) ⊃ (Sent(X,m) ⊃ Received(X,m')) and Y receives a message from X, then Y can conclude Honest(X) ⊃ Received(X,m')
Correctness of Challenge-Response

\[\text{InitCR}(A, X) = [\]
\[
\text{new m;}
\] \[
\text{send A, X, \{m, A\};}
\] \[
\text{receive X, A, \{x, sig}_{X}\{m, x, A\};}
\] \[
\text{send A, X, sig}_{A}\{m, x, X\};
\]\[
]
\[\]

\[\text{RespCR}(B) = [\]
\[
\text{receive Y, B, \{y, Y\};}
\] \[
\text{new n;}
\] \[
\text{send B, Y, \{n, sig}_{B}\{y, n, Y\};}
\] \[
\text{receive Y, B, sig}_{Y}\{y, n, B\};
\]\[
]
\[\]

\[\text{CR} \vdash [\text{InitCR}(A, B) \]_A \text{ Honest}(B) \supset \text{ActionsInOrder} (\]
\[
\text{Send}(A, \{A,B,m\}),
\] \[
\text{Receive}(B, \{A,B,m\}),
\] \[
\text{Send}(B, \{B,A,\{n, sig}_{B}\{m, n, A\}\}),
\] \[
\text{Receive}(A, \{B,A,\{n, sig}_{B}\{m, n, A\}\})
\])
1: A Reasons about Own Actions

\[
\text{InitCR}(A, X) = [\\
\quad \text{new m;} \\
\quad \text{send } A, X, \{m, A\}; \\
\quad \text{receive } X, A, \{x, \text{sig}_X\{m, x, A\}\}; \\
\quad \text{send } A, X, \text{sig}_A\{m, x, X\}; \\
\]
\]

\[
\text{RespCR}(B) = [\\
\quad \text{receive } Y, B, \{y, Y\}; \\
\quad \text{new n;} \\
\quad \text{send } B, Y, \{n, \text{sig}_B\{y, n, Y\}\}; \\
\quad \text{receive } Y, B, \text{sig}_Y\{y, n, B\}; \\
\]
\]

\[
\text{CR} \vdash [\text{InitCR}(A, B)]_A \\
\quad \diamond \text{Verify}(A, \text{sig}_B\{m, n, A\})
\]

If A completed a protocol session, it must have verified B’s signature at some point.
2: Properties of Signatures

InitCR(A, X) = [
 new m;
 send A, X, {m, A};
 receive X, A, {x, sig_x{m, x, A}};
 send A, X, sig_A{m, x, X};
]

RespCR(B) = [
 receive Y, B, {y, Y};
 new n;
 send B, Y, {n, sig_B{y, n, Y}};
 receive Y, B, sig_Y{y, n, B};
]

\[CR \models [\text{InitCR}(A, B)]_A \text{ Honest}(B) \supset \exists \ t'(\Diamond \text{Send}(B, t') \land \text{Contains}(t', \text{sig}_B\{m, n, A\})) \]

If A completed protocol and B is honest, then B must have sent its signature as part of some message.
Honesty Invariant

InitCR(A, X) = [
 new m;
 send A, X, {m, A};
 receive X, A, {x, sig_X{m, x, A}};
 send A, X, sig_A{m, x, X};
]

RespCR(B) = [
 receive Y, B, {y, Y};
 new n;
 send B, Y, {n, sig_B{y, n, Y}};
 receive Y, B, sig_Y{y, n, B};
]

CR |- Honest(X) ∧
 ◊ Send(X, t') ∧ Contains(t', sig_X{y, x, Y}) ∧
 ¬ ◊ New(X, y) ⊃
 ◊ Receive(X, {Y, X, {y, Y}})

Honest responder only sends his signature if he received a properly formed first message of the protocol.

This condition disambiguates sig_X(...) sent by responder from sig_A(...) sent by initiator.
Reminder: Honesty Rule

∀ roles R of Q. ∀ initial segments A ⊆ R.

\[Q \mid - [A]_X \phi \]

\[Q \mid - \text{Honest}(X) \supset \phi \]
3: Use Honesty Rule

\[
\text{InitCR}(A, X) = [\\
\quad \text{new m;} \\
\quad \text{send } A, X, \{m, A\}; \\
\quad \text{receive } X, A, \{x, \text{sig}_X\{m, x, A\}\}; \\
\quad \text{send } A, X, \text{sig}_A\{m, x, X\}; \\
\]
\]

\[
\text{RespCR}(B) = [\\
\quad \text{receive } Y, B, \{y, Y\}; \\
\quad \text{new n;} \\
\quad \text{send } B, Y, \{n, \text{sig}_B\{y, n, Y\}\}; \\
\quad \text{receive } Y, B, \text{sig}_Y\{y, n, B\}; \\
\]
\]

\[
\text{CR} \vdash [\text{InitCR}(A, B)]_A \text{ Honest}(B) \supset \\
\Diamond \text{Receive}(B, \{A, B, \{m, A\}\})
\]

If A completed protocol and B is honest, then B must have received A’s first message.
4: Nonces Imply Temporal Order

\[\text{InitCR}(A, X) = [\]
\[\text{new } m;\]
\[\text{send } A, X, \{m, A\};\]
\[\text{receive } X, A, \{x, \text{sig}_X\{m, x, A\}\};\]
\[\text{send } A, X, \text{sig}_A\{m, x, X\};\]
\]

\[\text{RespCR}(B) = [\]
\[\text{receive } Y, B, \{y, Y\};\]
\[\text{new } n;\]
\[\text{send } B, Y, \{n, \text{sig}_B\{y, n, Y\}\};\]
\[\text{receive } Y, B, \text{sig}_Y\{y, n, B\};\]
\]

\[\text{CR} |- [\text{InitCR}(A, B)]_A \text{ Honest}(B) \supset\]
\[\text{ActionsInOrder}(\ldots)\]
Complete Proof

Table 8. Deductions of A executing Init role of CR
Properties of Proof System

◆ Soundness
 • If ϕ is a theorem, then ϕ is a valid formula
 - $Q |- \phi$ implies $Q |= \phi$
 • Informally: if we can prove something in the logic, then it is actually true

◆ Proved formula holds in any step of any run
 • There is no bound on the number of sessions!
 • Unlike finite-state checking, the proved property is true for the entire protocol, not for specific session(s)
Weak Challenge-Response

InitWCR(A, X) = [
 new m;
 send A, X, {m};
 receive X, A, {x, sigX{m, x}};
 send A, X, sigA{m, x};
]

RespWCR(B) = [
 receive Y, B, {y};
 new n;
 send B, Y, {n, sigB{y, n}};
 receive Y, B, sigY{y, n};
]
1: A Reasons about Own Actions

\[
\text{InitWCR}(A, X) = [\\
\quad \text{new } m; \\
\quad \text{send } A, X, \{m\}; \\
\quad \text{receive } X, A, \{x, \text{sig}_X\{m, x\}\}; \\
\quad \text{send } A, X, \text{sig}_A\{m, x\}; \\
\]
\]

\[
\text{RespWCR}(B) = [\\
\quad \text{receive } Y, B, \{y\}; \\
\quad \text{new } n; \\
\quad \text{send } B, Y, \{n, \text{sig}_B\{y, n\}\}; \\
\quad \text{receive } Y, B, \text{sig}_Y\{y, n\}; \\
\]
\]

\[
\text{WCR} \mid - [\text{InitWCR}(A, B)]_A \\
\quad \Diamond \text{Verify}(A, \text{sig}_B\{m, n\})
\]
2: Properties of Signatures

InitWCR(A, X) = [
 new m;
 send A, X, {m};
 receive X, A, {x, sig_x{m, x}};
 send A, X, sig_A{m, x};;
]

RespWCR(B) = [
 receive Y, B, {y};
 new n;
 send B, Y, {n, sig_B{y, n}};
 receive Y, B, sig_Y{y, n};
]

WCR |- [InitWCR(A, B)]_A Honest(B) ⊃
 ∃ t' (◊ Send(B, t') ∧
 Contains(t', sig_B{m, n}))
Honesty Invariant

\[\text{InitWCR}(A, X) = [\]
\[\text{new m;} \]
\[\text{send } A, X, \{m\}; \]
\[\text{receive } X, A, \{x, \text{sig}_X\{m, x\}\}; \]
\[\text{send } A, X, \text{sig}_A\{m, x\}; \]
\[] \]
\[\text{RespWCR}(B) = [\]
\[\text{receive } Y, B, \{y\}; \]
\[\text{new n;} \]
\[\text{send } B, Y, \{n, \text{sig}_B\{y, n\}\}; \]
\[\text{receive } Y, B, \text{sig}_Y\{y, n\}; \]
\[] \]
\[\text{WCR} |- \text{Honest}(X) \land \]
\[\text{◇Send}(X, t') \land \text{Contains}(t', \text{sig}_X\{y, x\}) \land \]
\[\neg \text{◇New}(X, y) \supset \]
\[\text{◇Receive}(X, \{Y, X, \{y\}\}) \]

In this protocol, \text{sig}_X\{y, x\} does not explicitly include identity of intended recipient Y
3: Use Honesty Rule

\[\text{InitWCR}(A, X) = [\]
\[
\begin{align*}
 &\text{new } m; \\
 &\text{send } A, X, \{m\}; \\
 &\text{receive } X, A, \{x, \text{sig}_X\{m, x\}\}; \\
 &\text{send } A, X, \text{sig}_A\{m, x\}; \\
\end{align*}
\]

\[] \]

\[\text{RespWCR}(B) = [\]
\[
\begin{align*}
 &\text{receive } Y, B, \{y\}; \\
 &\text{new } n; \\
 &\text{send } B, Y, \{n, \text{sig}_B\{y, n\}\}; \\
 &\text{receive } Y, B, \text{sig}_Y\{y, n\}; \\
\end{align*}
\]

\[] \]

\[\text{WCR} |- [\text{InitWCR}(A, B)]_A \ \text{Honest}(B) \supset \]
\[\Diamond \text{Receive}(B, \{Y, B, \text{sig}_Y\{y, n\}\}) \]

B receives 3rd message from someone, not necessarily A
Failed Proof and Counterexample

◆ WCR does not provide the strong authentication property for the initiator

◆ Counterexample: intruder can forge sender’s and receiver’s identity in first two messages

• A -> X(B) A, B, m
• X(C) -> B C, B, m [X pretends to be C]
• B -> X(C) n, sig_B(m, n)
• X(B) -> A n, sig_B(m, n)
Further Work on Protocol Logic

◆ See papers by Datta, Derek, Mitchell, and Pavlovic on the course website
 • With a Diffie-Hellman primitive, prove authentication and secrecy for key exchange (STS, ISO-97898-3)
 • With symmetric encryption and hashing, prove authentication for ISO-9798-2, SKID3

◆ Work on protocol derivation
 • Build protocols by combining standard parts
 - Similar to the derivation of JFK described in class
 • Reuse proofs of correctness for building blocks
 - Compositionality pays off!