
CS 395T

Formal Model for
Secure Key Exchange

Main Idea: Compositionality

Protocols don’t run in a vacuum
• Security protocols are typically used as building

blocks in a larger secure system
• For example, a key exchange protocol such as IKE

can be used to implement secure sessions

A protocol can be “correct” when used in
standalone mode, but completely broken when
used as a building block in a larger system
Objective: modular, composable definitions of
protocol security

“Compositional” Definition of Security
[Shoup ’99]Read and understand this paper!

Definition should describe guarantees provided by
a key exchange protocol to higher-level protocols
• Security properties must hold in any environment in

which the key exchange protocol is used

Different types of attack
• Static corruptions: adversary may operate under

aliases, but honest users remain honest
• Adaptive corruptions: adversary corrupts honest users

– Learns either the long-term secret, or all of user’s internal data

Support anonymous (password-only) users

Station-to-Station Protocol

gx mod p

gy mod p, enck(sigB(gx,gy))

enck(sigA(gx,gy))

A B

[Diffie et al. ’92]

k=gxyk=gxy

This encryption is critical.
Without it, adversary can send sigC(gx,gy).
Result: B thinks he is talking to C, while

sharing a key with A, who thinks
he is talking to B.

Interleaving attack:
Adversary replays B’s own
encryption back to B.
Result: B thinks he is talking

to himself, A thinks
he is talking to B.

Protocol Interference Attack

What if, in addition to STS, A executes some
protocol where this interaction takes place:

Problem: challenge-response protocols may be
used as encryption oracles by the adversary
Problem: “hijacking” of honest user’s public key
• Fool CA into binding A’s public key to a different identity

Random challenge m

enck(m)A
Adversary picks sigC(gx,gy) as m, and
learns enck(sigC(gx,gy)) , which he
passes to B in the STS protocol,
convincing B that B is talking to C.

Simulatability

Security is indistinguishability between the ideal
world and the real world
In the ideal world, the protocol is secure by design
• Key are distributed “magically” (no communication)

The real protocol is secure if it can be simulated in
the ideal world
• Intuitively, this means that the real protocol leaks no

more information than a protocol with “magic” channels
• Transcripts (records of everything that happened)

should be indistinguishable between the real world and
a simulation in the ideal world

Ideal World

Adversary creates and connects user instances
• Users magically obtain secret keys that are hidden from

the adversary
• If users are “connected,” then they magically share a

common key which is hidden from the adversary
• Adversary does not learn any information about the

keys except what is leaked through their use

No cryptography, no certificates, no messages
Pure abstraction of the service that key exchange
protocol provides to higher-level protocols

Adversary and Ring Master

Define a game between the adversary and the
“ring master”
• Ring master generates random values and executes

operations issued by the adversary
• Interaction between the ring master and the adversary

models permissible information leakage from protocol

Operations allow the adversary to set up a secure
session in the ideal world
• Create users and user instances
• Create and abort sessions between user instances
• Apply a function

Ideal World: User Instances

InitializeUser(i, IDi)
• Assign unique identity (bit string) IDi to the ith user
• User in the ideal world is simply a placeholder; he

does not actually do anything
– Recall that session keys will be created magically

InitializeUserInstance(i, j, roleij, PIDij)
• Same user may participate in multiple instances of

the same protocol
• Iij is the identity of the new instance, which is

communicating with some counterparty PIDij

• roleij is either 0, or 1 Adversary creates an instance
of user i who will be talking to
an instance of user j.

Ideal World: Session Key Generation

StartSession(i, j, , [adversaryKey])

– “Create” models creation of a brand-new session key to be
used between the ith and jth user

– “Connect” models establishment of this session (the key
magically becomes known to both user instances)

– “Compromise” models adversary’s corruption of a user

• Add StartSession(i,j) to the transcript

AbortSession(i, j)
• This models failed attempt to establish a session

• Create: ring master generates Kij as random bit string
• Connect(i’,j’): ring master sets Kij equal to Ki’j’

• Compromise: ring master sets Kij equal to adversaryKey

Only permitted if PIDij

hasn’t been assigned
(static corruptions only)

Ideal World: Information Leakage

Application(f)
• Ring master gives to the adversary f(R,{Kij}) where

R is some known random bit string and {Kij} is the
set of all session keys. This is recorded in transcript.

– f is a function or a program, may have side effects

• Intuitively, function f defines what adversary may be
able to learn after shared key has been established

– For example, he may able to learn ciphertexts computed by
user using some randomized symmetric cipher and the new
key. We encode this cipher as function f.

Implementation(comment)
• Adversary puts arbitrary bit string into transcript

Real World: Registering Identities

InitializeUser(i, IDi)
• Assign unique identity (bit string) IDi to the ith user
• User registers his identity with trusted third party T

via protocol-specific, probabilistic registration routine
– This models issuance of a public-key certificate

Register(ID, registrationRequest)
• Adversary runs registration protocol directly with T,

using protocol-specific registrationRequest bitstring
– This models PKI attacks: adversary obtains a certificate for

an identity of his choice

• The sets of identities in InitializeUser and Register
must be disjoint

Not in the ideal world!

Not in
the ideal
world!

Real World: User Instances

InitializeUserInstance(i, j, roleij, PIDij)
• Iij is the identity of the new instance, which is

communicating with some counterparty PIDij

• roleij is either 0, or 1
• User instance is a probabilistic state machine. Upon

delivery of a message, it updates its state, generates
a response message and reports status:

– Continue: prepared to receive another message
– Accept: finished & has generated session key Kij

– Reject: finished & refuses to generate session key

In the ideal world, user
instances are placeholders

Real World: Messages

DeliverMessage(i, j, inMsg)
• Adversary delivers message inMsg to user instance Iij

• User instance updates its state, generates response
message outMsg and reports its status

– This models active interaction between the adversary
controlling the network and the user in actual protocol

• The following is recorded in the transcript:
– Implementation(DeliverMessage,i,j,inMsg,outMsg,status)
– StartSession(i,j) if status=accept
– AbortSession(i,j) if status=reject

DeliverMessageToTTP(inMsg)
• Adversary delivers inMsg to T and receives outMsg

This is used to simulate real-
world messages in ideal world
(no messages in ideal world!)

Real World: Higher-Level Protocols

Application(f)
• Same in the real world as in the ideal world, except

that f(R,{Kij}) is computed as a function of actual
session keys {Kij} and random input R

– R is independent of any randomness used in initialization of
user instances and protocol execution

• As in the ideal world, add Application(f,f(R,{Kij})) to
the transcript

Definition of Security

Termination
• Any real-world user instances terminates after a

receiving a polynomially-bounded number of messages

Liveness
• If adversary faithfully delivers msgs between two real-

world user instances, they accept & share same key

Simulatability
• For any efficient real-world adversary A, there exists an

efficient ideal-world adversary A’ such that transcripts
RealWorld(A) and IdealWorld(A’) are computationally
indistinguishable

Discussion

Compositionality is much more than key secrecy
• Application operation allows keys to be used in an

arbitrary way by higher-level protocols
– Can encode any higher-level key-based functionality as some

function f, and then add Application(f) to the transcript

• The real protocol is indistinguishable from the ideal
functionality regardless of how keys are used later on

– Can use key exchange protocol as it were perfectly secure

Adversary’s freedom to set up connections in the
ideal world is illusory
• To simulate a secure real-world protocol, connections

will have to be set up in a very specific way

Simple Exercise

Prove that protocol cannot satisfy simulatability if
real-world adversary A can output session key
after it has been established, but not yet used

• Using constant f in Application, A records his guess of
the key in the transcript. Using identity as f in
Application, he has ring master record the actual key.

• In real world, they are always equal
– By assumption, A knows the key in the real world

• In ideal world, they are equal with negligible probability
– Key is generated randomly by ring master

• This immediately gives a statistical test to distinguish
the real and the ideal world

Crypto Review: DDH Assumption

Let’s review some crypto
G is a group of large prime order q
For g1,g2,u1,u2∈G define

1 if ∃x∈Zq s.t. u1=g1
x, u2=g2

x

DHP(g1,g2,u1,u2) =
0 otherwise

Decisional Diffie-Hellman (DDH) Assumption says
that there exists no efficient algorithm for
computing DHP correctly with negligible error
probability on all inputs

More DDH

The following is implied by the DDH Assumption:
Distributions
g, {gxi}, {gyj}, {gxiyj} and
g, {gxi}, {gyj}, {gzij} where 1≤i≤n,1≤j≤m,

g,xi,yj,zij random
are computationally indistinguishable
DDH and Leftover Hash Lemma imply that the
following are computationally indistinguishable:
g, gx, gy, k, Hk(gxy) and
g, gx, gy, k, K where K is random bit string

Security of Digital Signatures

It is infeasible for adversary to win following game:

1. Signing key is generated and given to the signing oracle.
The corresponding public key is given to the adversary.

2. Adversary requests signatures on any messages of his
choice. Messages may depend on received signatures.

3. Adversary wins the game if he outputs a message other
than those on which he previously requested signatures
along with a valid signature on that message.

This is known as security against existential forgery

DHKE Protocol

gx, sigA(gx,B), certA

gy, k, sigB(gx,gy,k,A), certBA B

Session key is Hashk(gxy)

Assuming the digital signature scheme is secure
against existential forgery,
DHKE is a secure key exchange protocol under
the DDH assumption

Proof of Simulatability

Given real-world adversary A, construct ideal-world
adversary A’ who simulates protocol execution to A
• A should not be able to tell whether he is in the real or

ideal (perfectly secure) world
– Prove that no probab. poly-time test can distinguish transcript of

real-world protocol execution from a simulation created by A’

Basic idea: A’ runs A as a subroutine
• When a session is established in the real world, A’

“connects” corresponding user instances in ideal world
• Ring master in the ideal world substitutes real-world

session keys with randomly generated ideal keys

Must prove that key substitutions are undetectable

DHKE: Security for Responder (1)

Suppose user instance B received 1st message
and accepted
If PIDB is not assigned to user, then
“compromise” B in the ideal world
• PIDB is initiator’s identity (in responder’s view)

– PIDB not assigned means that the protocol is being executed
with the adversary (or adversary-controlled user) as initiator

• Extract session key from the responder in the real
world, and use it as argument to the “compromise”
operation in the ideal world

DHKE: Security for Responder (2)

If PIDB has been assigned to user, then “create” B
in the ideal world
• This means that the protocol is being executed with an

honest user as the initiator
• “Create” models key creation in ideal world. Ring master

creates a random session key for B. In the real world,
the key is not random. It is computed as Hashk(gxy).

DDH Assumption and Leftover Hash Lemma imply
that Hashk(gxy) is computationally indistinguishable
from a random key even if gx, gy, and k are known

DHKE: Security for Responder (3)

The indistinguishability argument only works if A
has not been, nor ever will be compromised
Fortunately, “compromised” connections are not
allowed if PIDA has been assigned
• PIDA is responder’s identity (in initiator’s view).

Because initiator sent 1st message to B, this means
that PIDA=B and “compromise” is not allowed.

• Intuition: corruptions are static. Once honest A starts
talking to B, he cannot be compromised.

DHKE: Security for Initiator (1)

Suppose user instance A received 2nd message
and accepted
If PIDA is not assigned to any user, then
“compromise” A in the ideal world
• PIDA is responder’s identity (in initiator’s view)

– PIDA not assigned means that the protocol is being executed
with the adversary (or adversary-controlled user) as responder

• Extract session key from the responder in the real
world, and use it as argument to the “compromise”
operation in the ideal world

DHKE: Security for Initiator (2)

If PIDA has been assigned to user B, then
“connect” A and B in the ideal world
• Protocol is being executed with honest responder B
• “Connect” magically gives B’s random session key to A

Security of digital signature scheme guarantees
that A’s and B’s values of gx, gy, and k match
• Therefore, A’s and B’s keys are equal in the real world

There is no detectable difference between worlds
• A’s and B’s keys are equal in both worlds
• In ideal world, keys are random. In real world, they are

DH values, but this is not computationally detectable

Crypto Review: Non-Malleability

Same as CCA-2 indistinguishability, i.e., adversary’s
probability of winning following game is close to ½:

1. Adversary requests encryption of any plaintext and/or
decryption of any ciphertext

2. Adversary picks two plaintexts m0 and m1, and receives an
encryption of mb (b is a randomly chosen bit)

3. Adversary requests encryption of any plaintext and/or
decryption of any ciphertext except that returned in step 2

4. Adversary wins if he outputs b’=b

Non-malleability says adversary can neither learn
plaintext, nor modify it

EKE Protocol

r, certA

encpk(A)(K,B), sigB(encpk(A)(K,B),r,A), certB B

Session key is K

Generates random string K

A

Assuming the digital signature scheme is secure
against existential forgery and the public-key
encryption scheme is non-malleable,
EKE is a secure key exchange protocol

EKE: Security for Responder (1)

Suppose user instance B received 1st message
and accepted
If PIDB is not assigned to user, then
“compromise” B in the ideal world
• PIDB is initiator’s identity (in responder’s view)

– PIDB not assigned means that the protocol is being executed
with the adversary (or adversary-controlled user) as initiator

• Extract session key from the responder in the real
world, and use it as argument to the “compromise”
operation in the ideal world

EKE: Security for Responder (2)

If PIDB has been assigned to user, then “create”
B in the ideal world
• This means that the protocol is being executed with

an honest user as the initiator
• In the ideal world, ring master creates a random

session key for B. This key is not equal to the key
that B sent to A under encryption in the real world.

Real-world adversary cannot tell the difference
between a random key generated by ring master
and the key that B sent under encryption
• Holds only if ciphertext sent by B is never decrypted
• Proving this will rely on non-malleability

EKE: Security for Initiator (1)

Suppose user A received 2nd message, but PIDA
has not been assigned to a user
If encpk(A)(K,B’) was generated by B’, A rejects
• Some honest user B’ thinks he is responding to A, but

his identity doesn’t match identity PIDA expected by A
• Rejection does not require decrypting encpk(A)(K,B’)

– This is important! Otherwise, ideal-world adversary would not
know when to tell the ideal-world instance of A to reject.

If encpk(A)(K,B’) not from another user, let A run.
If A accepts, “compromise” A and extract key.
• Requires decrypting encpk(A)(K,B’). This is Ok, since it

was not created by an honest user.

EKE: Security for Initiator (2)

If PIDA has been assigned to user B, then
“connect” A and B in the ideal world
• If signature verifies correctly, then encpk(A)(K,B) must

have been created by B who thinks he is talking to A
– Recall that A’s identity is signed by B

• No need to decrypt the ciphertext
• Connection is valid because random values r are unique

There is no detectable difference between worlds
• A’s and B’s keys are equal in both worlds

Anonymous Users

Add user with special “anonymous” identity
• Treat all anonymous users as a single user

StartSession(i, j, Compromise, adversaryKey) is
legal if PIDij=“anonymous”
• An anonymous user may be the adversary himself, so

permit adversary to compromise anonymous users

Simulatability-based definition of security naturally
supports password protocols
• Use secure key exchange to establish a secure channel,

then authenticate with password on this channel
• Like any other functionality based on secure sessions

A-EKE Protocol

r, certA

encpk(A)(K,“anonymous”,r) Anon

Session key is K

Generates random string K

A

Assuming the public-key encryption scheme is
non-malleable,
EKE is a secure key exchange protocol

A-EKE: Security for Initiator

Suppose PIDA=“anonymous”
• Initiator thinks he is talking to the anonymous user

If encpk(A)(K,“anonymous”,r) was not generated
by “anonymous”, let A run. If A accepts,
compromise A and extract key.
• Requires decrypting encpk(A)(…). This is Ok, since it

was not created by an honest user with identity.

If encpk(A)(K,“anonymous”,r) was generated by
“anonymous” and r received by “anonymous”
matches r sent by A, connect.
If r does not match, reject.

Adaptive Corruptions

Users may be corrupted during protocol execution
• Adversary learns user’s long-term secret (private key)
• Strong adaptive corruptions: learns user’s entire state

CorruptUser(i) operation in the ideal world
• Gives no information to ideal-world adversary

StartSession(i, j, Compromise, …) is legal if PIDij is
assigned to corrupt user or user Ui is corrupt
• Compromise is now allowed if either party in the

protocol session is corrupt

Neither DHKE, nor EKE is secure against adaptive
corruptions

Security Against Adaptive Corruptions

gx, sigA(gx,IDB), certA

gy, k, sigB(gx,gy,k,IDA), certBA B

Session key is K2

(K1,K2)=PRG(Hashk(gxy)) (K1,K2)=PRG(Hashk(gxy))

This protocol provides key confirmation
(B doesn’t start using the key until he receives

confirmation that A is using the same key)

K1

	Formal Model for Secure Key Exchange
	Main Idea: Compositionality
	“Compositional” Definition of Security
	Station-to-Station Protocol
	Protocol Interference Attack
	Simulatability
	Ideal World
	Adversary and Ring Master
	Ideal World: User Instances
	Ideal World: Session Key Generation
	Ideal World: Information Leakage
	Real World: Registering Identities
	Real World: User Instances
	Real World: Messages
	Real World: Higher-Level Protocols
	Definition of Security
	Discussion
	Simple Exercise
	Crypto Review: DDH Assumption
	More DDH
	Security of Digital Signatures
	DHKE Protocol
	Proof of Simulatability
	DHKE: Security for Responder (1)
	DHKE: Security for Responder (2)
	DHKE: Security for Responder (3)
	DHKE: Security for Initiator (1)
	DHKE: Security for Initiator (2)
	Crypto Review: Non-Malleability
	EKE Protocol
	EKE: Security for Responder (1)
	EKE: Security for Responder (2)
	EKE: Security for Initiator (1)
	EKE: Security for Initiator (2)
	Anonymous Users
	A-EKE Protocol
	A-EKE: Security for Initiator
	Adaptive Corruptions
	Security Against Adaptive Corruptions

