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Probabllistic Polynomial-Time
Calculus



Security as Equivalence

@ Intuition: encryption scheme is secure if ciphertext
IS Indistinguishable from random noise

@ Intuition: protocol is secure if it is indistinguishable
from a perfectly secure “ideal” protocol

& Security is defined as observational equivalence
between protocol and its ideal functionality
e Both formal methods and cryptography use this

approach, but with different notions of what it means for
the adversary to “observe” the protocol execution



Bridging the Gap

@ Cryptography: observational equivalence is
defined as

e No probabilistic poly-time algorithm can tell the
difference between the real and the ideal protocol with
more than negligible probability

€ Formal methods: observational equivalence is
defined as some form of

* No probabillitities, no computational bounds
€ Goal: bridge the gap by explicitly supporting
probability and complexity in process calculus



Standard Example: PRNG

€ Pseudo-random Sequence
P.: let b = nk-bit sequence generated fromn random bits ("seed”)
In pusLIc(b) end

€ Truly random sequence
Q. let b = sequence of nk random bits

In puBLIC(b) end

@ P is a cryptographically strong pseudo-random
number generator If the two seguences are
observationally equivalent P ~ Q

e Equivalence is asymptotic in security parameter n




Process Calculus Approach
@ \Write protocol in process calculus
e For example, applied pi-calculus

@ Express security using observational equivalence
e Standard relation from programming language theory
Iff for all contexts ,
same observations about and
e Inherently compositional (quantifies over all contexts)
e Context (environment) represents adversary

@ Use proof rules for ~ to prove observational
equivalence to the “ideal” protocol



Challenges

@ Probabilistic formal model for crypto primitives
» Key generation, random nonces, randomized encryption

@ Probabilistic attacker
e Replace nondeterminism with probability
 Need a formal way of representing complexity bounds

& Asymptotic form of observational equivalence
» Relate to polynomial-time statistical tests

@ Proof rules for probabilistic observational
equivalence



Nondeterminism Is Too Strong

@ Alice encrypts message and sends to Bob
A—B: {msg }
@® Adversary “nondeterministically” guesses every
bit of the key
Process E; ¢(0) | c{O) | ... | c(O)
Process E; c{1) | c1)]| ... | c(2)
Process E  c(b,).c(b,)...c(b,).decrypt(b,b,...b,,, msg)

In reality, at most 2N chance to guess n-bit key



PPT Calculus: Syntax

€®Bounded n-calculus with integer terms

P::

=0
Caqnp T send up to q(|n|) bits
Caqtnp(X¥)-P receive _ N
VCq(jnp-P private channel
[T=T] P test
P|P parallel composition
Laann P bounded replication

Terms may contain symbol n;
channel width and replication bounded by polynomial of |n|



Probabilistic Operational Semantics

& Basic idea: alternate between terms & processes
e Probabillistic scheduling of parallel processes
» Probabilistic evaluation of terms (incl. )

€ Outer term evaluation
e Evaluate all exposed terms, evaluate tests e TEE

€ Communication )
e Match up pairs “send” and “receive” actions

e If multiple pairs, schedule them probabilistically
— Probabillistic if multiple send-receive pairs




Probabilistic Scheduling

€ Outer term evaluation
e Evaluate all exposed terms in parallel
e Multiply probabilities

€ Communication
e E(P) = set of eligible subprocesses
e S(P) = set of schedulable pairs
e Schedule private communication first

= Probabilistic poly-time computable scheduler that
makes progress



Simple Example

®Process | onsoortuin
o c(rand+1) | c(x).d(x+1) | d(2) | d(y).e(y+1)
& Outer evaluation

* c(1) | c(x).d(x+1) | d(2) | d(y). e(y+1) | Each with
e ¢(2) | c(x).d(x+1) | d(2) | d(y). e(y+1) prob ¥

€ Communication
° (1) | c(x).d{x+1) | d(2) | d(y). eCy+1)

N N

Choose according to probabilistic scheduler



Complexity

€ Bound on number of communications

e Count total number of inputs, multiplying by q(|n]) to
account for bounded replication ! ,,,P

€ Bound on term evaluation
e Closed term T is evaluated in time g-(|n|)

€ Bound on time for each communication step
e Example: ¢c(m) | c(x).P — [m/x]P
— Bound on size of m; previous steps preserve # of X occurrences
@ For each closed process P, there is a polynomial
g(x) such that for all n, all probabilistic poly-time
schedulers, evaluation of P halts in time q(|n])



How To Define Process Equivalence?

@ Intuition: P and Q are equivalent if no test by any
context can distinguish them

° | Prob{ C[P] — “yes” } - Prob{ C[Q] — “yes” } | <¢

€ How do we choose g?

— Less than 1/2, 1/4, ... ? (not an equivalence relation)
— Vanishingly small? As a function of what?

€ Solution: asymptotic form of process equivalence
e Use security parameter (e.g., key length)
= Protocol is a family { P, }..,Indexed by key length




Probabilistic Observat’l Equivalence

€ Asymptotic equivalence within f
= Families of processes { P, }~0 1 Qn }r>0
e Family of contexts { C, }.-o
. If ¥V context C[ ]. V observation v. 3n,. Vn>n,
| Prob(C,[P,] — V) — Prob(C[Q,] — V) | < f(n)

¥ Asymptotic polynomial indistinguishability
. If P = Q for every f(n) = 1/p(n) where p(n) is
a polynomial function of n



Probabilistic Bisimulation
@ Labeled transition system

e Evaluate process in a “maximally benevolent context”

e Process may read any input on public channel or send
output even if no matching input exists in process

e Label with numbers “resembling probabilities”
€ Bisimulation relation

e [fP—-QandP P’, then exists Q' such that
Q Q and P’ — Q' , and vice versa

® Strong form of probalistic equivalence

e Implies probabilistic observational equivalence, but
not vice versa



Provable Equivalences (1)
Assume scheduler iIs stable under bisimulation

>~ Q = C[P] — C[Q]
P~ Q = P~Q

> QIR)~(P[IQ)IR
P Q~Q[P

P |0 =~ P

L 2 2B 2B 2 -




Provable Equivalences (2)

® P~ vuc. (c<T> | c(X).P) it x 2FV(P)

&€ P{a/x} ~ vc.(c<a> | ¢(X).P) it bandwidth of c large enough

‘ P ~ 0 if no public channels in P

o Q= P{d/C} ~ Q{d/C} if ¢, d have the same bandwidth,
d is fresh

® c<T>=c<T> if Prob[T — a] = Prob[T’ — a] for all a



Connection with Cryptography

€ Can use probabilistic observational equivalence in
process calculus to carry out proofs of protocol
security

®Example: semantic security of EIGamal public-key
cryptosystem is equivalent to Decisional Diffie-
Hellman

®Reminder: semantic security is indistinguishability
of encryptions

e enc,(m) is indistinguishable from enc,(m’)



Review: Decisional Diffie-Hellman

n is security parameter (e.g., key length)
G, Is cyclic group of prime order p,
length of p is roughly n,
g IS generator of G,

For random a, b, c € {O, ..., p-1}
(g%, 0°,0%) ~ (g%, 0", g%



ElGamal Cryptosystem

n is security parameter (e.g., key length)
G, Is cyclic group of prime order p,

length of p is roughly n, g is generator of G,
®Keys

e Private key = (g, X), public key = (g, g*
®Encryption of meG,, is (g*, m-(g¥)¥)

- ke {0,..., p-1} is random
@ Decryption of (v, w) is w-(v¥)-1

e For v=gk, w=m-(g¥)k get w-(v¥)" = m-g*/gk* = m



DDH = Semantic Security of EIGamal

@ Start with (g2, gb, gab> =~ (g2, gb, g% (random a,b,c)
€ Build up statement of semantic security from this
* in(c, (x,y)).out(c, (gk, m-g*)) ~ Encryption of m is observationally
in(c, {x,y)).out(c, {(g&, n-g*))
@ Use structural transformations
 E.g., out(c,T(r)) = out(c,U(r)) (any randomr)
Implies in(c,x).out(c,T(X)) = in(c,x).out(c,U(x) )
€ Use domain-specific axioms
- E.g., out(c, {(g?3,gP,g2*)) ~ out(c, (ga,g®,gc)) implies
out(c, (g?,g°,m-g?")) ~ out(c, (9,9°,m-g%)) (any M)

equivalent to encryption of n



Semantic Security of ElGamal = DDH

& Harder direction: “break down” vs. “build up”
e Want to go from
in(c,{x,y)).out(c,(g",m-g*)) ~ in(c, (x,y)).out(c,(g*,n-g*))
to (9%, g, g*)~ (9%, g% g%
& Main idea: if m=1, then we essentially have DDH
@ Proof “constructs” a DDH tuple

e Hide all public channels except output challenge
e Set the message to 1

@ Need structural rule equating a process with the
term simulating the process

e Special case: process with 1 public output
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