
CS 395T

Computational Soundness of
Formal Models

Bridging the Gap (Again)

Cryptography: computational constructions
• Define actual algorithms operating on bit strings
• For example, RSA is defined as a triple of algorithms

– Key generation: public key is (n,e), private key is d where
n=pq for some large primes p,q; ed=1 mod (p-1)(q-1)

– Encryption of m: me mod n
– Decryption of c: cd mod n

Formal model: axiomatic interpretation of crypto
• Instead of defining cryptographic algorithms, simply

say that they satisfy a certain set of properties
– Given ciphertext, obtain plaintext if have exactly the right key
– Cannot learn anything from ciphertext without the right key

Goal: Soundness of Formal Analysis

Prove that axioms assumed in the formal model
are true for some cryptographic constructions
Formal proofs must be sound in following sense:
• For any attack in concrete (computational) model…
• …there is matching attack in abstract (formal) model
• …or else the concrete attack violates computational

security of some cryptographic primitive

If we don’t find an attack in the formal model,
then no computational attack exists

– More precisely, probability that a computational attack exists is
negligible

State of the Art

Abadi, Rogaway. “Reconciling Two Views of Cryptography
(The Computational Soundness of Formal Encryption)”. J.
Cryptology, 2002.
• Symmetric encryption only, passive adversary

Micciancio, Warinschi. “Completeness Theorems for the
Abadi-Rogaway Logic of Encrypted Expressions”. JCS 2004.
• Fixes some bugs in the Abadi-Rogaway paper
• Notion of “confusion-free” encryption

Micciancio, Warinschi. “Soundness of Formal Encryption in
the Presence of Active Adversaries”. TCC 2004.
• Public-key encryption, active adversary

We’ll look at this paper today

Outline

Define what it means for an encryption scheme to
be secure against adaptive chosen-ciphertext
attack in the multi-user setting
Define a formal language for describing protocols
Define concrete trace semantics for protocols
• Actual execution traces of protocols obtained by

instantiating nonces with bit strings, etc.
• Traces include actions of the concrete adversary

Show that almost every action of concrete
adversary maps to an action of abstract adversary
• This will follow from security of encryption scheme

IND-CCA in Multi-User Setting
[Boldyreva, Bellare, Micali]

adversary

users

m0 m1

Left-right selector LR(m0,m1,b)
(returns m0 or m1 depending on bit b)

1. Generate n public-private key pairs (pki,ski); give public keys to adversary A.

pk1 … pkn

b

…

2. A may send any two plaintexts m0 and m1 to any user. A receives encpki(mb).

mo, m1

An encryption oracle for every key pair

3. A may send any c (not received previously). If c= encpkj(m), A receives m.

m

encpkj(m)

A decryption oracle for every key pair

4. A wins if he guesses b correctly.

encpki(m0) or encpki(m1)

Encryption scheme is IND-CCA secure if this
probability is within a negligible factor of ½

Simple Protocol Language

Pairing and encryption only
Term ::= Id | Identity

Key | Public keys only
Nonce |
Pair | Ciphertext

Pair ::= (Term, Term)
Ciphertext ::= {Term}Key

Can write simple protocols with this syntax
• Must describe valid computations of honest parties

– For example, (B receives {X}pk(A), B sends {X}pk(B)) is not
valid because B can’t decrypt {X}pk(A)

Abstract vs. Concrete Execution

Abstract execution Concrete execution (with RSA)

A → {Na,A}pk(X)

B → {Nb,NA}pk(A)

A → {Nb}pk(X)

A → bits(m1
ex mod nx)

B → bits(m2
ea mod na)

A → bits(m3
ex mod nx)

(ex, nx) is responder’s RSA public key; m1 is a
number encoding a concatentation of a random
bit string representing nonce Na and a fixed bit

string representing A’s identity

(ea, na) is A’s RSA public key; m2 is a number
encoding a concatentation of a random bit

string representing nonce Nb and the bit string
extracted from the message received by B

(ex, nx) is responder’s RSA public key; m3 is a
number encoding the bit string extracted from

the message received by A

Abstract vs. Concrete Adversary

Abstract adversary Concrete adversary
Fix some set of corrupt users C.
Let M be messages sent prior to
some point in protocol execution.

• M ∈ know(C,M)
• If t,t’ ∈ know(C,M), then (t,t’) ∈ know(C,M)
• If (t,t’) ∈ know(C,M), then t,t’ ∈ know(C,M)
• If t ∈ know(C,M), then {t}k ∈ know(C,M) for any key k ∈ Keys

- Adversary can access any encryption oracle

• If {t}ki ∈ know(C,M) and Ai ∈ C, then t ∈ know(C,M)
- Adversary can decrypt only messages encrypted with public keys
of corrupt users

Any polynomial-time algorithm
(maybe probabilistic)

Equivalence of Concrete & Abstract

Need to prove that concrete adversary cannot
achieve more than the abstract adversary except
with negligible probability
• E.g., may guess secret key with negligible probability

Show that almost any concrete trace is an
implementation of some valid abstract trace
• Concrete traces represent everything that the concrete

adversary can achieve
• If almost any concrete trace can be achieved by the

abstract adversary, it is sufficient to look only at the
abstract adversary when doing analysis

Concrete and Abstract Traces

Representation function R maps abstract symbols
(nonces, keys, identities) to bit strings
• Defines concrete “implementation” of abstract protocol

Concrete trace is an implementation of an abstract
trace if exists a representation function R such
that every message in concrete trace is a bit string
instantiation of a message in abstract trace
• Intuitively, concrete trace is an implementation if it is

created by plugging bit strings in place of abstract
symbols in the abstract trace

• Denote implementation relation as ≤

How Can This Fail?

Abstract execution

A → {Na,A}pk(B)

B ← ???

A → meb mod nb

B ← m2eb mod nb

Concrete execution (with RSA)

Suppose encryption scheme is malleable
• Can change encrypted message without decrypting
• Plain old RSA is malleable!

Adversary intercepts and squares;
B receives m2eb instead of meb

There is no abstract operation
corresponding to the action of

concrete adversary!

Main Theorem

…some abstract trace generated
by abstract adversary interacting

with abstract encryption and
decryption oracles

is an implementation of…

Every concrete trace generated by concrete
adversary interacting with concrete encryption

and decryption oracles...
(note that concrete adversary and concrete

encryption oracles are randomized)

If the encryption scheme used in the protocol is IND-
CCA secure, then for any concrete adversary Ac

ProbRA,Ro
(∃Af: traceset(Af, Of) ≤ traceset(Ac(RA),Oc(RO)) ≥ 1-ν(η)

With overwhelming probability
(i.e., dominated by any polynomial

function of security parameter)
Probability is taken over randomness of concrete

adversary and encryption oracles (recall that
concrete adversary may be probabilistic and public-

key encryption must be probabilistic)

There exists an abstract adversary such that…

Proof Outline

1. For any (randomized) concrete adversary,
construct the corresponding abstract adversary Af

Abstract “model” of concrete adversary’s behavior
Guarantees traceset(Af, Of) ≤ traceset(Ac(RA),Oc(RO))

2. Show that every action performed by constructed
adversary is a valid action in the abstract model
(with overwhelming probability)

Abstract adversary is only permitted to decrypt if he
knows the right key (e.g., cannot gain partial info)
Prove: constructed adversary doesn’t do anything else

Constructing Abstract Adversary

Must prove that every concrete action can
be represented by a valid abstract action

Concrete adversary Abstract adversary

1. Fix coin tosses (i.e., randomness) of honest participants and
concrete adversary

2. This uniquely determines keys and nonces of honest participants
Use symbolic constants to give them names in abstract model

3. Every bitstring which is not an honest participant’s key or nonce is
considered the adversary’s nonce and given some symbolic name

Reduction to IND-CCA

Prove that every time concrete adversary does
something that’s not permitted in abstract model,
he breaks IND-CCA security of encryption
• This can only happen with negligible probability
• Therefore, with overwhelming probability every

concrete action implements some valid abstract action

We’ll prove this by constructing a simulator who
runs the concrete adversary in a “box” and breaks
IND-CCA exactly when the concrete adversary
deviates from the abstract model

Overview of Reduction

Encryption and
decryption oracles
(CCA game)

CCA adversary interacts with
encryption and decryption oracles
according to rules of CCA game

Abstraction Af

CCA adversary

Concrete adversary Ac

CCA adversary wins CCA game
exactly when Af does something

illegal in the abstract model

CCA adversary runs concrete
adversary as a subroutine

To do this, CCA adversary must be able to
simulate protocol to Ac (i.e., create an illusion for
Ac that he is interacting with the actual protocol)

What’s Illegal in Abstract Model?

The only way in which constructed abstract
adversary Af may violate rules of abstract model is
by sending a term with some honest nonce X that
he could not have learned by abstract actions
• X cannot be learned from messages sent by honest

parties by simple decryption and unpairing rules

Case 1: If Af sends X in plaintext, this means that
concrete adversary managed to open encryption
• Recall that Af is abstraction of concrete adversary Ac

• If concrete adversary extracts a bitstring (abstracted as
nonce X) from under encryption, he wins the CCA game

What if Encryption is Malleable?

Case 2: Af sends {t[X]}k, but neither t[X], nor
{t[X]}k was previously sent by honest parties
• Adversary managed to take some encryption containing

X and convert it into another encryption containing X
• This is known as malleability. For example, with RSA

can convert an encryption of m into encryption of m2

In this case, CCA adversary will win CCA game by
using the concrete adversary’s ability to convert
one encryption into another
• But to do this, CCA adversary must be able to simulate

protocol execution to the concrete adversary

Winning the CCA Game (Simplified)

1. CCA adversary guesses nonce X and picks two values xo and x1

2. Every time Ac asks for enck(s(X)), CCA adversary uses oracles to obtain enck(s(xb))

3. When Ac outputs enck(t(xb)), CCA adversary submits it to decryption oracle

CCA adversary

users

m0 m1

Left-right selector
LR(m0,m1,b)

b

…

t(xb)

4. From t(xb) CCA adversary learns whether xo or x1 is inside; outputs bit b correctly

Concrete adversary Ac

s(xo), s(x1)

enck(s(xb))enck(s(xb))

enck(t(xb))enck(t(xb))

Ok, since the ciphertext was not
previously created by encryption oracle

Summary

If the encryption scheme used in the protocol is
non-malleable under chosen-ciphertext attack,
then the abstract model is sound
• If an attack is not discovered in the abstract model, a

concrete attack may exist only with negligible
probability

This result does not cover signatures, hashes, etc.
(yet)

	Computational Soundness ofFormal Models
	Bridging the Gap (Again)
	Goal: Soundness of Formal Analysis
	State of the Art
	Outline
	IND-CCA in Multi-User Setting
	Simple Protocol Language
	Abstract vs. Concrete Execution
	Abstract vs. Concrete Adversary
	Equivalence of Concrete & Abstract
	Concrete and Abstract Traces
	How Can This Fail?
	Main Theorem
	Proof Outline
	Constructing Abstract Adversary
	Reduction to IND-CCA
	Overview of Reduction
	What’s Illegal in Abstract Model?
	What if Encryption is Malleable?
	Winning the CCA Game (Simplified)
	Summary

