Game-Based Verification of Contract Signing Protocols
Alternating Transition Systems

◆ Game variant of Kripke structures

◆ Start by defining state space of the protocol
 • Π is a set of propositions
 • Σ is a set of players
 • Q is a set of states
 • $Q_0 \subseteq Q$ is a set of initial states
 • $\pi: Q \rightarrow 2^\Pi$ maps each state to the set of propositions that are true in the state

◆ So far, this is very similar to $\text{Mur}\varphi$
Transition Function

\(\delta: Q \times \Sigma \rightarrow 2^2 \) maps a state and a player to a nonempty set of choices, where each choice is a set of possible next states

- When the system is in state \(q \), each player chooses a set \(Q_a \in \delta(q, a) \)
- The next state is the intersection of choices made by all players \(\bigcap_{a \in \Sigma} \delta(q, a) \)
- The transition function must be defined in such a way that the intersection contains a unique state

Informally, a player chooses a set of possible next states, then his opponents choose one of them
Example: Two-Player ATS

\[\Sigma = \{\text{Alice, Bob}\} \]

A’s choices

\[p \land q \]
\[p \land \neg q \]
\[\neg p \land q \]
\[\neg p \land \neg q \]

B’s choices
Example: Computing Next State

\[\Sigma = \{ \text{Alice, Bob} \} \]

If A chooses this set...

...B can choose either state
Alternating-Time Temporal Logic

- Propositions $p \in \Pi$
- $\neg \varphi$ or $\varphi_1 \lor \varphi_2$ where $\varphi, \varphi_1, \varphi_2$ are ATL formulas
- $\langle\langle A \rangle\rangle \Diamond \varphi, \langle\langle A \rangle\rangle \square \varphi, \langle\langle A \rangle\rangle \varphi_1 \mathbin{U} \varphi_2$ where $A \subseteq \Sigma$ is a set of players, $\varphi, \varphi_1, \varphi_2$ are ATL formulas
 - These formulas express the ability of coalition A to achieve a certain outcome
 - \Diamond, \square, U are standard temporal operators (similar to what we saw in PCTL)
- Define $\langle\langle A \rangle\rangle \Diamond \varphi$ as $\langle\langle A \rangle\rangle \text{true} \mathbin{U} \varphi$
A strategy for a player $a \in \Sigma$ is a mapping $f_a : Q^+ \rightarrow 2^Q$ such that for all prefixes $\lambda \in Q^*$ and all states $q \in Q$, $f_a(\lambda \cdot q) \in \delta(q,a)$

- For each player, strategy maps any sequence of states to a set of possible next states.

Informally, the strategy tells the player in each state what to do next.

- Note that the player cannot choose the next state. He can only choose a set of possible next states, and opponents will choose one of them as the next state.
Temporal ATL Formulas (I)

\[\langle\langle A\rangle\rangle \Box \phi \iff \text{there exists a set } F_a \text{ of strategies, one for each player in } A, \text{ such that for all future executions } \lambda \in \text{out}(q,F_a) \hspace{1pt} \phi \text{ holds in first state } \lambda[1] \]

- Here \(\text{out}(q,F_a) \) is the set of all future executions assuming the players follow the strategies prescribed by \(F_a \), i.e., \(\lambda = q_0q_1q_2 \ldots \epsilon \text{ out}(q,F_a) \) if \(q_0 = q \) and \(\forall i \hspace{1pt} q_{i+1} \in \cap_{a \in A} f_a(\lambda[0,i]) \).

- Informally, \(\langle\langle A\rangle\rangle \Box \phi \) holds if coalition \(A \) has a strategy such that \(\phi \) always holds in the next state.
Temporal ATL Formulas (II)

\(\langle\langle A\rangle\rangle \square \varphi \) iff there exists a set \(F_a \) of strategies, one for each player in \(A \), such that for all future executions \(\lambda \in \text{out}(q, F_a) \) \(\varphi \) holds in all states

- Informally, \(\langle\langle A\rangle\rangle \square \varphi \) holds if coalition \(A \) has a strategy such that \(\varphi \) holds in every execution state

\(\langle\langle A\rangle\rangle \Diamond \varphi \) iff there exists a set \(F_a \) of strategies, one for each player in \(A \), such that for all future executions \(\lambda \in \text{out}(q, F_a) \) \(\varphi \) eventually holds in some state

- Informally, \(\langle\langle A\rangle\rangle \Diamond \varphi \) holds if coalition \(A \) has a strategy such that \(\varphi \) is true at some point in every execution
Protocol Description Language

◆ Guarded command language
 • Very similar to PRISM input language (proposed by the same people)

◆ Each action described as \([\square]\) guard → command
 • guard is a boolean predicate over state variables
 • command is an update predicate, same as in PRISM
 • Simple example:

\([\square]\text{SigM1B} \land \neg\text{SendM2} \land \neg\text{StopB} \rightarrow \text{SendMrB1'}:=\text{true};\)
Bob in collaboration with communication channels does not have a strategy to reach a state in which Bob has Alice’s signature but honest Alice does not have a strategy to reach a state in which Alice has Bob’s signature
Timeliness + Fairness in ATL

\[\langle A_h \rangle \diamond (\text{stop}_A \land (\neg \text{contract}_B \rightarrow \langle B, \text{Com} \rangle \diamond \text{contract}_A)) \]

Honest Alice always has a strategy to reach a state in which she can stop the protocol and if she does not have Bob’s signature then Bob does not have a strategy to obtain Alice’s signature even if he controls communication channels.
Abuse-Freeness in ATL

\neg \langle\langle A \rangle\rangle \diamond (proveToC \land \langle\langle A \rangle\rangle \diamond contract_B \land \langle\langle A \rangle\rangle \diamond (aborted \land \neg \langle\langle B_h \rangle\rangle \diamond contract_A))

Alice doesn’t have a strategy to reach state in which she can prove to Charlie that she has a strategy to obtain Bob’s signature AND a strategy to abort the protocol, i.e., reach a state where Alice has received abort token and Bob doesn’t have a strategy to obtain Alice’s signature.
Modeling TTP and Communication

◆ Trusted third party is impartial
 • This is modeled by defining a unique TTP strategy
 • TTP has no choice: in every state, the next action is uniquely determined by its sole strategy

◆ Can model protocol under different assumptions about communication channels
 • Unreliable: infinite delay possible, order not guaranteed
 – Add “idle” action to the channel state machine
 • Resilient: finite delays, order not guaranteed
 – Add “idle” action + special constraints to ensure that every message is eventually delivered (rule out infinite delay)
 • Operational: immediate transmission
MOCHA Model Checker

- Model checker specifically designed for verifying alternating transition systems
 - System behavior specified as guarded commands
 - Essentially the same as PRISM input, except that transitions are nondeterministic (as in Mur_φ), not probabilistic
 - Property specified as ATL formula

- Slang scripting language
 - Makes writing protocol specifications easier

- Try online implementation!
 - http://www-cad.eecs.berkeley.edu/~mocha/trial/