Private Graph Algorithms in the Semi-Honest Model

Justin Brickell
November 24, 2004
Two Party Graph Algorithms

- Parties P_1 and P_2 own graphs G_1 and G_2
- f is a *two-input* graph algorithm
- Compute $f(G_1,G_2)$ without revealing "unnecessary information"
Unnecessary Information

• Intuitively, the protocol should function as if a trusted third party computed the output
• We use *simulation* to prove that a protocol is private
The Semi-Honest Model

• A malicious adversary can alter his input
• A semi-honest adversary
 – adheres to protocol
 – tries to learn extra information from the message transcript
General Secure Two Party Computation

- *Any* polynomial sized functionality can be made private (in the semi-honest model)
 - Yao’s Method

- What are our goals?
 - Yao’s Method is inefficient
 - Efficient, private protocols to compute particular graph functionalities
 - Take advantage of information “leaked” by the result
Two-Input Graph Algorithms?

- Graph Isomorphism
- Comparison of graph statistics
 - $f(G_1) > f(G_2)$?
 - max flow, diameter, average degree
- Synthesized Graphs
 - $f(G_1 \cdot G_2)$
Graph Synthesis

• G_1 and G_2 are weighted complete graphs on the same vertex and edge set
 \[G_1 = (V,E,w_1); \quad G_2 = (V,E,w_2) \]

• $g_{\text{max}}(G_1, G_2) = (V,E,w_{\text{max}})$
 \[w_{\text{max}}(e) = \max(w_1(e), w_2(e)) \]

• $g_{\text{min}}(G_1, G_2) = (V,E,w_{\text{min}})$
 \[w_{\text{min}}(e) = \min(w_1(e), w_2(e)) \]
Graph Synthesis

G_1

G_2

$g_{\text{max}}(G_1, G_2)$

$g_{\text{min}}(G_1, G_2)$
Graph Isomorphism

• Unlikely to find a private protocol
 – No known poly-time algorithm
Comparison of Graph Statistics

1. Compute statistic on own graph
 - Semi-honest participants can’t lie
2. Use a private comparison protocol
 - Yao’s Millionaire Protocol
 - Yao’s method (circuit protocol)
Synthesized Graphs

- This is the interesting case
- All Pairs Shortest Distance and Single Source Shortest Distance both “leak” significant useful information
 - Solved: APSD(gmin), SSSD(gmin)
 - Solved with leaks: APSD(gmax), SSSD(gmax)
APSD(gmin(G₁,G₂))

• Basic Idea: Add edges to the solution graph in order of smallest to largest
• Private, because we can recover the order from the final solution graph
Run APSD on G_1 and G_2
Initialize G_0'
Find shortest blue edge lengths

G_1'

$min1 = 2$

G_2'

$min2 = 2$

G_0'

$min0 = \infty$
Privately find global shortest length

\[\begin{align*}
G_1' & : 1 \rightarrow 2 : 7 \quad 1 \rightarrow 4 : 8 \\
G_2' & : 1 \rightarrow 2 : 2 \quad 1 \rightarrow 3 : 6 \\
G_0' & : 1 \rightarrow 2 \quad \infty \quad \infty
\end{align*}\]

\[\begin{align*}
\text{min}1 &= 2 \\
\text{min}2 &= 2 \\
\text{min}0 &= \infty
\end{align*}\]

\[\text{bluemin} = \min(\text{min}0, \text{min}1, \text{min}2) = 2\]
Find edges of length bluemin

G_1'

G_2'

G_0'

$S_1 = \{e_{23}\}$

$S_2 = \{e_{12}\}$

$S_0 = \{\}$

$\text{bluemin} = \min(\min0, \min1, \min2) = 2$
Privately find all edges of length bluemin

\[S_1 = \{e_{23}\} \quad S_2 = \{e_{12}\} \quad S_0 = \{\} \]

\[S = S_1 \cup S_2 \cup S_3 = \{e_{12}, e_{23}\} \]
Update S edges in G_0'

G_1'

$S_1 = \{e_{23}\}$

$S = S_1 \cup S_2 \cup S_3 = \{e_{12}, e_{23}\}$
Run APSD on G_0'
Repeat!

\[bluemin = \min(\min_0, \min_1, \min_2) = 4 \]

\[S = S_1 \cup S_2 \cup S_3 = \{e_{13}, e_{24}\} \]
\[
\text{bluemin} = \min(\min_0, \min_1, \min_2) = 5
\]

\[
S = S_1 \cup S_2 \cup S_3 = \{e_{34}\}
\]
bluemin = min(min0, min1, min2) = 6

\[S = S_1 \cup S_2 \cup S_3 = \{e_{14}\} \]
... until all edges are red
The solution is correct!

g_{\min}(G_1, G_2)

G_0'
Other Results

• A similar protocol for SSSD(gmin)
 – This isn’t free!
• Protocol for special case of APSD(gmax) and SSSD(gmax)
 – Input graphs obey triangle inequality
• “Leaky” protocol for APSD(gmax) and SSSD(gmax) in the general case
Final Thought

• Other graph algorithms don’t leak enough information
• Questions?