Formal verification of distance vector routing protocols

Routing in a network

(Find the cheapest route from Source to Destination)

L(i, j) = Cost of direct link i --- j.

R(a, b) = Cost of route from a to b.

 $R(a, b) = \min\{ L(a, k) + R(k, b) \}$

Outline

- RIP (Routing Information Protocol)
 - Internet routing protocol

- AODV (Ad-hoc On-demand Distance Vector routing)
 - Used for mobile ad-hoc networking.

Distance-vector routing in RIP

Initially

A: 0

B: 5

C: ∞

A: 5

B: 0

C: 7

A: ∞

B: 5

C: 0

After exchange

A: 0 B: 5

C: 12

A: 5

B: 0

C: 7

A: 12

B: 5

C: 0

RIP

Routing table: Each node maintains the cost of route to every other node

Initially: All nodes know cost to neighbors

Desired Final Goal: All nodes know cost to all other nodes

```
while(1)
{
    Nodes periodically send their routing table to every neighbor;
    R(a, b) = min{ L(a, k) + R(k, b) };
}
```

Count to Infinity

After exchange

A: 0

B: 5

C: 12

A: 5

B: 0

C: 7

A: 12

B: 5

C: 0

Poisoned reverse

Works for loops of two routers (adds more cases for Verification)

RIP limitation: Doesn't work for loops of three or more routers

Infinity = 16

- Since we can't solve the loop problem
 - Set Infinity to 16
- RIP is not to be used in a network that has more than 15 hops.

Convergence

- Convergence:
 - All nodes eventually agree upon routes
- Divergence:
 - Nodes exchange routing messages indefinitely.
- Ignore topology changes
 - We are concerned only with the period between topology changes.

Some definitions

- Universe is modeled as a bipartite graph
 - Nodes are partitioned into routers and networks
 - Interfaces are edges.
 - Each routers connects to at least two networks.
 - Routers are neighbors if they connect to same network
- Actually, we can do away with bipartite graph by assuming that router = network (i.e. each network has one router).
- An entry for destination *d* at a router *r* has:
 - hops(r): Current distance estimate
 - nextR(r): next router on the route to d.
 - nextN(r): next network on route to d.

More definitions

- $\mathbf{D}(r) = 1$ if r is connected to d= $1 + \min\{ |\mathbf{D}(s)| s \text{ is a neighbor of } r \}$
- k-circle around d is the set of routers:

$$C_k = \{ r \mid D(r) \leq k \}$$

- Stability: For $1 \le k \le 15$, universe is k-stable if:
 - (S1): Every router r in C_k has hops(r) = D(r)

Also,
$$D(nextR(r)) = D(r) - 1$$
.

(S2): For every router r outside C_k , hops(r) > k.

Convergence

- Aim of routing protocol is to expand *k*-circle to include all routers
- A router r at distance k+1 from d is (k+1)stable if it has an optimal route:
 - Hops(r)=k+1 and nextR(r) is in C_k.
- Convergence theorem (Correctness of RIP)
 - For any k < 16, starting from an arbitrary state of the universe, for any fair sequence of messages, there is a time t_k , such that the universe is k-stable at all times $t \ge t_k$.

Tools

- HOL (higher order logic)
 - Theorem prover (more expressive, more effort)
- SPIN
 - Model checker (less expressive, easier modeling)
- Number of routers is infinite
 - SPIN would have too many states
 - States reduced by using abstraction

Lemmas in convergence proof

- Proved by induction on *k*.
 - Lemma 1: Universe is initially 1-stable. (Proved in HOL).
 - Lemma 2: Preservation of Stability. For any k < 16, if the universe is k-stable at some time t, then it is k-stable at any time $t' \ge t$. (Proved in HOL).
 - Lemma 3: For any k < 15 and router r such that D(r)=k+1, if the universe is k-stable at some time t_k , then there is a time $t_{r,k} \ge t_k$ such that r is (k+1)-stable at all times $t \ge t_{r,k}$. (Proved in SPIN)
 - Lemma 4: Progress. For any k < 15, if the universe is kstable at some time t_k , then there is a time $t_{k+1} \ge t_k$ such that the universe is (k+1)-stable at all times $t \ge t_k + 1$.

 (Proved in HOL).

Abstraction

- To reduce state-space for SPIN
- Abstraction examples:
 - If property P holds for two routers, then it will hold for arbitrarily many routers.
 - Advertisements of distances can be assumed to be k or k+1.
- Abstraction should be:
 - Finitary: should reduce system to finite number of states
 - Property-preserving: Whenever abstract system satisfies the property, concrete system also satisfies the property

Abstraction of universe

Concrete system with many routers

Advertiser send updates

Router processes Updates

Hop-count is {LT, EQ, GR}

Abstract system with 3 routers

Bound on convergence time

Theorem: A universe of radius *R* becomes 15-stable within time = min {15, *R*}* Δ.
(Assuming there were no topology changes).

After Δ

After 2Δ

After 3Δ

After 4Δ

• • •

After $(R-1)\Delta$

After $R\Delta$

weakly 2-stable

weakly 3-stable

weakly 4-stable

weakly 5-stable

• • •

weakly **R**-stable

R-stable

Weak stability

- Universe is weakly *k*-stable if:
 - Universe is *k*-1 stable
 - For all routers on k-circle: either r is k-stable or hops(r) > k.
 - For all routers r outside C_k (D(r) > k), hops(r) > k.
- By using weak stability, we can prove a sharp bound

Lemmas in Proof of timing bound

- Lemma 5: Preservation of weak stability. For any $2 \le k \le 15$, if the universe is weakly k-stable at some time t, then it is weakly k-stable at any time $t' \ge t$.
- Lemma 6: Initial Progress. If the topology does not change, the universe becomes weakly 2-stable after Δ time.
- Lemma 7: For any $2 \le k \le 15$, if the universe is weakly k-stable at some time t, then it is k-stable at time $t + \Delta$.

Proof continued

• Lemma 8: Progress. For any $2 \le k \le 15$, if the universe is weakly k-stable at some time t, then it is weakly (k+1)-stable at time $t + \Delta$.

AODV

Routes are computed on-demand to save bandwidth.

AODV

- Each route request has a sequence number for freshness.
- Among two routes of equal freshness, smaller hop-count is preferred.
- Property formally verified is loop freedom
 - Above conditions mean a lot of cases need to be checked

Searching for loop formation

- The 3-node network shown previously, is run in SPIN.
 - $\Omega(!((\text{next}_D(A)==B) \land (\text{next}_D(B)==A)))$
- Four ways of loop formation are found.
- Standard does not cover these cases.
- Formal verification can aid protocol design.

Ways of loop formation

- To get an idea of case-analysis required, loops can be formed by:
 - Route reply from B to A getting dropped.
 - B deleting route on expiry.
 - B keeping route but marks it as expired.
 - A not detecting a crash of B.
- Loop was avoided by:
 - B keeping route as expired, incrementing the sequence number and never deleting it.
 - Is a good indicator of a loop-free solution.

Guaranteeing AODV loop freedom

- Based on the avoidance of loops for 3 nodes, we assume:
 - Nodes never delete routes, incrment sequence number of expired routes, detect crashes immediately.
- Based on these assumptions, loop freedom is proved.
- Theorem: Consider an arbitrary network of nodes running AODVv2. If all nodes conform to above assumption, there will be no routing loops.

Abstraction

- Abstract sequence number is {GR, EQ, LT}
- Abstract hop count is {GR, EQ, LT}
- Abstract next pointer is {EQ, NE}
- Lemma 9: If $t_1 \le t_2$ and for all t: $t_1 < t \le t_2$. $\neg \operatorname{restart}(n)(t)$, then: $\operatorname{seqno_d}(n)(t_1) \le \operatorname{seqno_d}(n)(t_2)$
- Lemma 10: If $t_1 \le t_2$ and seqno_d $(n)(t_1)$ =seqno_d $(n)(t_2)$, and for all t: $t_1 < t \le t_2$. \neg restart(n)(t), then hops_d $(n)(t_1) \ge$ hops_d $(n)(t_2)$

Adding to abstraction

- The following lemma involves two nodes.
- Abstract sequence number is {GR, EQ, LT} x {EQ, NE}
- Abstract hop count is {GR, EQ, LT} x {EQ, NE}
- Abstract next pointer is $\{EQ, NE\}$ x $\{EQ, NE\}$
- Lemma 11: If $\text{next}_{d}(\underline{n})(t)=n'$, then there exists a time $lut \leq t$, such that:
 - $\overline{\operatorname{seqno}_{d}(n)(t)} = \overline{\operatorname{seqno}_{d}(n)(lut)}$
 - $-1 + hops_d(n)(t) = hops_d(n')(lut)$
 - For all t': lut < t' ≤ t. \neg restart(n')(t').

Conclusion

- Specific technical contributions
 - First proof of correctness of the RIP standard.
 - Statement and automated proof of a sharp realtime bound on RIP convergence
 - Automated proof of loop-freedom for AODV.