Formal verification of distance vector routing protocols
Routing in a network

(Find the cheapest route from Source to Destination)

\[L(i, j) = \text{Cost of direct link } i \rightarrow j. \]

\[R(a, b) = \text{Cost of route from } a \text{ to } b. \]

\[R(a, b) = \min \{ L(a, k) + R(k, b) \} \]
Outline

• RIP (Routing Information Protocol)
 – Internet routing protocol

• AODV (Ad-hoc On-demand Distance Vector routing)
 – Used for mobile ad-hoc networking.
Distance-vector routing in RIP

Initially
A: 0 B: 5 C: \(\infty\)
A: 5 B: 0 C: 7
A: \(\infty\) B: 5 C: 0

After exchange
A: 0 B: 5 C: 12
A: 5 B: 0 C: 7
A: 12 B: 5 C: 0
Routing table: Each node maintains the cost of route to every other node
Initially: All nodes know cost to neighbors
Desired Final Goal: All nodes know cost to all other nodes

while(1)
{
 Nodes periodically send their routing table to every neighbor;
 R(a, b) = min{ L(a, k) + R(k, b) };
}
Count to Infinity

After exchange

A: 0 B: 5 C: 12
A: 5 B: 0 C: 7
A: 12 B: 5 C: 0

C: 12
C: 12+5=17
C: 17+5=22
Poisoned reverse

Works for loops of two routers (adds more cases for Verification)

RIP limitation: Doesn’t work for loops of three or more routers
Infinity = 16

• Since we can’t solve the loop problem
 – Set Infinity to 16
• RIP is not to be used in a network that has more than 15 hops.
Convergence

- Convergence:
 - All nodes eventually agree upon routes

- Divergence:
 - Nodes exchange routing messages indefinitely.

- Ignore topology changes
 - We are concerned only with the period between topology changes.
Some definitions

- Universe is modeled as a bipartite graph
 - Nodes are partitioned into routers and networks
 - Interfaces are edges.
 - Each router connects to at least two networks.
 - Routers are neighbors if they connect to the same network.
- Actually, we can do away with bipartite graph by assuming that router = network (i.e. each network has one router).
- An entry for destination d at a router r has:
 - $\text{hops}(r)$: Current distance estimate
 - $\text{nextR}(r)$: next router on the route to d.
 - $\text{nextN}(r)$: next network on the route to d.
More definitions

• \(D(r) = 1 \) if \(r \) is connected to \(d \)
 \[= 1 + \min \{ D(s) | s \text{ is a neighbor of } r \} \]

• \(k \)-circle around \(d \) is the set of routers:
 \[C_k = \{ r | D(r) \leq k \} \]

• **Stability:** For \(1 \leq k \leq 15 \), universe is **\(k \)-stable** if:
 (S1): Every router \(r \) in \(C_k \) has \(\text{hops}(r) = D(r) \)
 Also, \(D(\text{nextR}(r)) = D(r) - 1 \).
 (S2): For every router \(r \) outside \(C_k \), \(\text{hops}(r) > k \).
Convergence

- Aim of routing protocol is to expand k-circle to include all routers
- A router r at distance $k+1$ from d is $(k+1)$-stable if it has an optimal route:
 - $\text{Hops}(r) = k+1$ and $\text{nextR}(r)$ is in C_k.
- Convergence theorem (Correctness of RIP)
 - For any $k < 16$, starting from an arbitrary state of the universe, for any fair sequence of messages, there is a time t_k, such that the universe is k-stable at all times $t \geq t_k$.
Tools

• HOL (higher order logic)
 – Theorem prover (more expressive, more effort)
• SPIN
 – Model checker (less expressive, easier modeling)
• Number of routers is infinite
 – SPIN would have too many states
 – States reduced by using abstraction
Lemmas in convergence proof

- Proved by induction on k.
 - Lemma 1: Universe is initially 1-stable. (Proved in HOL).
 - Lemma 2: Preservation of Stability. For any $k < 16$, if the universe is k-stable at some time t, then it is k-stable at any time $t' \geq t$. (Proved in HOL).
 - Lemma 3: For any $k < 15$ and router r such that $D(r) = k + 1$, if the universe is k-stable at some time t_k, then there is a time $t_{r,k} \geq t_k$ such that r is $(k+1)$-stable at all times $t \geq t_{r,k}$. (Proved in SPIN)
 - Lemma 4: Progress. For any $k < 15$, if the universe is k-stable at some time t_k, then there is a time $t_{k+1} \geq t_k$ such that the universe is $(k+1)$-stable at all times $t \geq t_{k+1}$. (Proved in HOL).
Abstraction

- To reduce state-space for SPIN
- Abstraction examples:
 - If property P holds for two routers, then it will hold for arbitrarily many routers.
 - Advertisements of distances can be assumed to be k or $k+1$.
- Abstraction should be:
 - **Finitary**: should reduce system to finite number of states
 - **Property-preserving**: Whenever abstract system satisfies the property, concrete system also satisfies the property
Abstraction of universe

Concrete system with many routers

Abstract system with 3 routers

hops > k+1

hops = k+1

hops < k+1

Router processes Updates

Hop-count is \{LT, EQ, GR\}

Advertiser send updates
Bound on convergence time

- **Theorem:** A universe of radius R becomes 15-stable within time $= \min\{15, R\} \star \Delta$. (Assuming there were no topology changes).

- After Δ, weakly 2-stable
- After 2Δ, weakly 3-stable
- After 3Δ, weakly 4-stable
- After 4Δ, weakly 5-stable
- …
- After $(R-1)\Delta$, weakly R-stable
- After $R\Delta$, R-stable
Weak stability

• Universe is weakly k-stable if:
 – Universe is k-1 stable
 – For all routers on k-circle: either r is k-stable or $\text{hops}(r) > k$.
 – For all routers r outside $C_k (\mathcal{D}(r) > k)$,
 $\text{hops}(r) > k$.

• By using weak stability, we can prove a sharp bound
Lemmas in Proof of timing bound

• **Lemma 5**: Preservation of weak stability. For any $2 \leq k \leq 15$, if the universe is weakly k-stable at some time t, then it is weakly k-stable at any time $t' \geq t$.

• **Lemma 6**: Initial Progress. If the topology does not change, the universe becomes weakly 2-stable after Δ time.

• **Lemma 7**: For any $2 \leq k \leq 15$, if the universe is weakly k-stable at some time t, then it is k-stable at time $t + \Delta$.
Lemma 8: Progress. For any $2 \leq k \leq 15$, if the universe is weakly k-stable at some time t, then it is weakly $(k+1)$-stable at time $t + \Delta$.
AODV

Routes are computed on-demand to save bandwidth.
AODV

- Each route request has a sequence number for freshness.
- Among two routes of equal freshness, smaller hop-count is preferred.
- Property formally verified is loop freedom
 - Above conditions mean a lot of cases need to be checked
Searching for loop formation

• The 3-node network shown previously, is run in SPIN.
 • $\Omega(!((next_D(A)==B) \land (next_D(B)==A)))$
• Four ways of loop formation are found.
• Standard does not cover these cases.
• Formal verification can aid protocol design.
Ways of loop formation

- To get an idea of case-analysis required, loops can be formed by:
 - Route reply from B to A getting dropped.
 - B deleting route on expiry.
 - B keeping route but marks it as expired.
 - A not detecting a crash of B.

- Loop was avoided by:
 - B keeping route as expired, incrementing the sequence number and never deleting it.
 - Is a good indicator of a loop-free solution.
Guaranteeing AODV loop freedom

- Based on the avoidance of loops for 3 nodes, we assume:
 - Nodes never delete routes, increment sequence number of expired routes, detect crashes immediately.
- Based on these assumptions, loop freedom is proved.
- Theorem: Consider an arbitrary network of nodes running AODVv2. If all nodes conform to above assumption, there will be no routing loops.
Abstraction

• Abstract sequence number is \{GR, EQ, LT\}
• Abstract hop count is \{GR, EQ, LT\}
• Abstract next pointer is \{EQ, NE\}
• Lemma 9: If \(t_1 \leq t_2\) and for all \(t\): \(t_1 < t \leq t_2\), \(\neg \text{restart}(n)(t)\), then:

\[
\text{seqno}_d(n)(t_1) \leq \text{seqno}_d(n)(t_2)
\]

• Lemma 10: If \(t_1 \leq t_2\) and \(\text{seqno}_d(n)(t_1) = \text{seqno}_d(n)(t_2)\), and for all \(t\): \(t_1 < t \leq t_2\), \(\neg \text{restart}(n)(t)\), then \(\text{hops}_d(n)(t_1) \geq \text{hops}_d(n)(t_2)\)
Adding to abstraction

• The following lemma involves two nodes.
• Abstract sequence number is \{GR, EQ, LT\} x \{EQ, NE\}
• Abstract hop count is \{GR, EQ, LT\} x \{EQ, NE\}
• Abstract next pointer is \{EQ, NE\} x \{EQ, NE\}
• Lemma 11: If next_d(n)(t)=n’, then there exists a time lut \leq t, such that:
 – seqno_d(n)(t) = seqno_d(n)(lut)
 – 1 + hops_d(n)(t) = hops_d(n’)(lut)
 – For all t’: lut < t’ \leq t . ¬ restart(n’)(t’).
Conclusion

• Specific technical contributions
 – First proof of correctness of the RIP standard.
 – Statement and automated proof of a sharp real-time bound on RIP convergence
 – Automated proof of loop-freedom for AODV.