A virtual machine-based platform for trusted computing

Presented by: David Rager
November 10, 2004
Why there exists a need

- Commodity OS too complex to build securely upon
- Commodity OS poorly isolate apps
- Only weak mechanisms for peer authentication, making secure dist. apps difficult
- No trusted path between users and programs (authentication)
Current Solutions

“Closed box” systems
Good for limiting interaction but inflexible
Terra

- Trusted Virtual Machine Monitor
- “Secure” applications
 - High-assurance
 - Tamper-resistant
 - General-purpose platform
- Provide “open” or “closed-box” VMs
- Run existing software – highly compatible
- Trusted Quake to come....
Architecture
Features List

- Isolation – multiple applications in isolation
- Extensibility – small vs. large OS
- Efficiency – virtualizable hardware costs very little
- Compatibility – can run many OS’s
- Security – relatively simple program
- Root Secure – cannot enter modify closed boxes
- Attestation – verifiable binaries
- Trusted Path
3 Means to Attestation

Certifying the Chain

- Private key embedded
- Signed by hardware vendor
- Hardware certifies firmware
- Firmware certifies bootloader
- Bootloader certifies TVMM
- TVMM certifies VMs
3 Means to Attestation

A component wanting to be certified:

- Component generates public/private key
- Component makes ENDORSE API call to lower level component
- Lower level component generates and signs certificate containing:
 - SHA-1 hash of attestable parts of higher comp.
 - Higher comp’s public key and application data
3 Means to Attestation

Certifying VM itself

- TVMM signs hash of all persistent data that defines the VM
- Includes: BIOS, executable code, constant data of the VM
- Does not include: temporary data
- This difference is application defined
An Attestation Example

Remote server verifies:

- Hardware vendor’s certificate
- All hashes in certificate chain in remote server’s list of authorized software
- Hash of VM’s attested storage is on list of authorized applications (valid version of Quicken)
Concerns

- **Vendor key revocation**
 - Extracting the vendor key from tamper-resistant hardware and publishing

- **Privacy**
 - Use Privacy Certificate Authority (PCA)?
 - PCA translates Hardware ID into random num
 - Group signatures (allows revocation)

- **Interoperability of software**
 - Attestation allows software to only operate under limited conditions (monopoly power)

- **Digital Rights Management**
 - Only play music on software that enforces limits
Platform Security

- “root” secure
- Independent OS/application vulnerability
- Attested software !--> Secure software (duh)
Storage Options

- Encrypted disks
 - HMAC
 - Encryption
- Integrity-checked disks
 - HMAC
- Raw disks
- A disk’s hash makes up the primary ID of a VM
Storage Attestation

- **Ahead-of-Time attestation**
 - done during bootup
 - Computations for 1 GB of data take 8 seconds on 2.4 GHz
 - Single corrupt bit prevents booting

- **Optimistic attestation**
 - Assumes will attest correctly
 - Halts VM immediately on failed attestation
Device Drivers

- Too large to be correct
- Protect TVMM via hardware memory protection and restricting access to sensitive interfaces
- Inherently insecure when outside TVMM (other OS’s could spy on comm by exploiting drivers)
Hardware Support

- Sealed storage (key saved on disk)
- Can attest booted OS
- HW virtualization (make graphics cards and gigabit NICs fast)
- Secure counter (ideally a secure clock)
- Real-time resource management
Prototype Implementation

- VMware GSX Server 2.0.1 w/ Debian
- Comm btw VMs and TVMM’s done with VMware serial device
- Secure storage
 - Ahead-of-Time trivial
 - Optimistic must hash entire block
- OpenSSL Library for certificate mgmt
Trusted Quake

- Closed-box VM boots Quake directly
- Attests to each other that hosts (clients and servers) running same version

Boot times:
- No attestation: 26.6 seconds
- Ahead-of-Time: 57.1 seconds
- Optimistic: 27.3 seconds
- Optimistic + encryption: 29.1 seconds
- No subjective difference in performance between ahead and optimistic
Trusted Quake (cont’d)

- Quake maintains shared secret for comm
 - Prevents aiming proxies
- Binary client integrity
 - Prevents mods that make characters further away seem larger than they are
- Server integrity
 - Prevents server from offering unfair advantages to some
 - Only allows trusted clients to connect
Trusted Quake (cont’d)

Can’t prevent:

- Bugs
- Network DOS attacks (lag help)
- Out-of-band collusion (telephone)
Trusted Access Points (TAPs)

- Can secure corporate VPN endpoints
- Prevents source forging
- Prevents DOS attacks
- Scalability
Conclusion

Both “open-box” and “closed-box”

Hardware support helpful and even required
 - Requires tamper-resistant hardware

Optimistic attestation better

Like current VMware products, but with emphasis on security

Provides peer attestation
Resources

Terra: A Virtual Machine-Based Platform for Trusted Computing