
November 29, 2004

An Executable
Model for JFKr
An ACL2 approach to key-establishment
protocol verification

Presented by: David Rager
November 22, 2004

November 29, 2004

About ACL2

J S Moore and Matt Kaufmann
ACL2 - A Computational Logic for
Applicative Common Lisp
Applicative – functional
Hierarchical

Prove lemmas to prove larger theorems
Doubles as an executable model

November 29, 2004

Diffie-Helman

Model based off a state containing a list of
“knowledge”
From “knowledge” compute diffie-helman
components
From diffie-helman components, show:

Forward secrecy - yes
Authentication - no
Replay Attack - yes
DoS - no
ID Protection - no

November 29, 2004

Basic DH Model Parts
1. If an actor has neither of the two nonces used in a DH

computation, it can not derive the DH key.
2. An intruder does not begin with either of the two

relevant nonces.
3. Nonces are not released during the communication

(requires induction).
4. Since nonces are not released during communication

and the intruder has neither of the two relevant
nonces, the intruder can not obtain the DH key

Should be easy

November 29, 2004

Knowledge-state Attempt #1

Contained redundant data
Should trim to basic building blocks

'((A (nonce a)
(exp (nonce g) (nonce a))
(exp (nonce g) (nonce b))
(exp (nonce g) (mult (nonce a) (nonce b))))

(B (nonce b)
(exp (nonce g) (nonce a))
(exp (nonce g) (nonce b))
(exp (nonce g) (mult (nonce a) (nonce b))))

(I (exp (nonce g) (nonce a))
(exp (nonce g) (nonce b))))

November 29, 2004

Knowledge-state Attempt #2

The need to move forward preempted
developing this more

‘(;; I is for initiator
(I (nonce x)

(base g)
(mod b)
(term (mod (exp g y) b))))

;; R is for Responder
(R (nonce y)

(base g)
(mod b)
(term (mod (exp g x) b))))

;; N is for intruder
(N (base g)

(mod b)
(term (mod (exp g x) b)))
(term (mod (exp g y) b)))))

November 29, 2004

Onto JFKr

I R

Ni, xi
xi=gdi

Ni, Nr, xr, gr, tr

xr=gdr tr=hashKr(xr,Nr,Ni,IPi)

Ni, Nr, xi, xr, tr, ei, hi

ei=encKe(IDi,ID’r,sai,sigKi(Nr,Ni,xr,xi,gr))

xi
dr=xr

di=x Ka,e,v=hashx(Ni,Nr,{a,e,v})

hi=hashKa(“i”,ei)

er, hr
“hint” to responder which identity to use

derive a set of keys from shared secret and nonces

check integrity before decrypting

Same dr for
every connection

DH group

If initiator knows
group g in advance

er=encKe(IDr,sar,sigKr(xr,Nr,xi,Ni)) hr=hashKa(“r”,er)

real identity of the responder

[Aiello et al.] and Shmatikov

November 29, 2004

JFKr Properties

Secrecy (via DH like key agreement)
Prevention of DoS (via cookie)
Forward secrecy (use of nonce for
randomization)
Authentication (public/private key signatures)
ID Protection (ID not revealed until protocol
nearing completion)

November 29, 2004

What I Did

Executable model
1200 lines of ACL2 code
Relatively low global constant usage

November 29, 2004

Capturing Perfect Cryptography

First idea:
Make all knowledge broadcast in previous
transmissions a constant > 100
Make all private knowledge < 100
Show that the attacker never gains something
< 100

November 29, 2004

Capturing Perfect Cryptography

Second idea:
Assign a probability threshold for what is
acceptable
Requires tracking probability of a “crack”
cumulatively
Could use to show mathematical weakness in
encryption schemes

November 29, 2004

Capturing Perfect Cryptography

Third idea:
Create generic functions “encapsulated” together with
some other functions
These functions don’t begin with any definitions
Through instantiation of the function set, can prove
that there exist functions that satisfy certain properties
Useful for specifying mysterious properties like keyed-
hash and digital signatures
Can specify “perfect” encryption

None of these ideas were actually used by me

November 29, 2004

Capturing Perfect Cryptography
My Version:

Computed a hash of an integer list:

Signatures similar
Symmetric keys modeled with one + key value

Encryption was an addition operation and decryption was a subtraction
operation

Asymmetric keys modeled with +/- key values
Encryption and decryption were same
+ for encryption
- for decryption

(defun compute-hash (int-list key acc)
(if (atom int-list)

acc
(compute-hash (cdr int-list)

key
(* key (+ acc (car int-list))))))

November 29, 2004

Main Function
Uses “honest” participants
Chose to make it an explicit calling of recursion instead of a case
statement

(defun run-honest (network-s initiator-s responder-s)
(mv-let
(network-s-after-1 initiator-s-after-1)
(step1-honest network-s initiator-s)

(mv-let
(network-s-after-2 responder-s-after-2)
(step2-honest network-s-after-1 responder-s)

… left out part so it would fit …

(mv-let
(network-s-after-5 initiator-s-after-5)
(step5-honest network-s-after-4 initiator-s-after-3)

(mv-let
(network-s-after-6 responder-s-after-6)
(step6-honest network-s-after-5 responder-s-after-4)
(mv network-s-after-6

initiator-s-after-5
responder-s-after-6))))))))

November 29, 2004

A Simple Honest Step Function
; doesn't matter who responder is
(defun step1-honest (network-s my-s); resp-s) ; doesn't matter who responder is

(let* ((Ni (nonce-mine my-s))
(Xi (compute-public-dh-value

g
(dh-exponent my-s)
b))

;; updates are alists
(network-update (list (cons 'Ni Ni)

(cons 'Xi Xi)
(cons 'Src-ip (ip my-s))))

(my-update
(list (cons 'cost-cpu (+ (cost-cpu my-s) 1))

(cons 'cost-mem (+ (cost-mem my-s) 1))
(cons 'public-dh-value-mine Xi)
(cons 'role 'initiator))))

(mv
(acons 1 network-update network-s)
(append my-update my-s))))

November 29, 2004

A Simple Dishonest Step Function
(defun step1-dishonest (network-s my-s) ; doesn't matter who responder is

(let* ((Ni -1)
(Xi -1)

(Src-ip (ip my-s))

;; updates are alists
(network-update (list (cons 'Ni Ni)

(cons 'Xi Xi)
(cons 'Src-ip Src-ip)))

(my-update
(list (cons 'cost-cpu (+ (cost-cpu my-s) 0))

(cons 'cost-mem (+ (cost-mem my-s) 0)))))

(mv
(acons 1 network-update network-s)
(append my-update my-s))))

November 29, 2004

A More Complex Step Function…
;; responder is processing and sending message
(defun step2-honest (network-s my-s)
(let* ((Ni (ni-msg1 network-s))

(Nr (nonce-mine my-s))
(Src-ip (Src-ip-msg1 network-s))

;;(Xi (xi-msg1 network-s))

(Xr (compute-public-dh-value *g* (dh-exponent my-s) *b*))

(Gr *g*)

(Tr (compute-hash (list Xr Nr Ni src-ip)
(private-key my-s)
0))

(network-update
(list (cons 'Ni Ni)

(cons 'Nr Nr)
(cons 'Xr Xr)
(cons 'Gr Gr)
(cons 'Tr Tr)
(cons 'src-ip (ip my-s))))

;; no real update to my state, since I'm throwing it away - stateless
(my-update
(list (cons 'cost-cpu (+ (cost-cpu my-s) 2))

(cons 'cost-mem (+ (cost-mem my-s) 0))
(cons 'public-dh-value-mine Xr))))

(mv
(acons 2 network-update network-s)
(append my-update my-s))))

November 29, 2004

Example
Script:

(defconst *initiator-beg-state*
(list
(cons 'nonce-mine *initiator-nonce*)
(cons 'dh-exponent

initiator-dh-exponent)
(cons 'ip *initiator-ip*)
(cons 'private-key *initiator-private-key*)
(cons 'cost-cpu 0)
(cons 'cost-mem 0)
(cons 'id-mine *initiator-id*)
(cons 'sa-mine *initiator-sa*)))

(step1-honest nil *initiator-beg-state*)

RESULTS:

(((1 (NI . 200)
(XI . 202942)
(SRC-IP . 100001)))

((COST-CPU . 1)
(COST-MEM . 1)
(PUBLIC-DH-VALUE-MINE . 202942)
(ROLE . INITIATOR)
(NONCE-MINE . 200)
(DH-EXPONENT . 5091)
(IP . 100001)
(PRIVATE-KEY . 12481)
(COST-CPU . 0)
(COST-MEM . 0)
(ID-MINE . 50)
(SA-MINE . 412)))

November 29, 2004

DOS Non-deterministic Function

(defun run-dos-interleaved (network-s initiator-s
responder-s)

(mv-let
(network-s-after-1 initiator-s-after-1)
(if (evenp (random-int))

(step1-dishonest network-s initiator-s)
(step1-honest network-s initiator-s))

(mv-let
(network-s-after-2 responder-s-after-2)
(step2-honest network-s-after-1 responder-s)
(mv network-s-after-2 initiator-s-after-1

responder-s-after-2))))

November 29, 2004

Mem DoS Thm
(defthm run-dos-interleaved-mem-safe-generic
(implies (and (beginning-statep initiator-s)

(beginning-statep responder-s))
(mv-let (network init resp)

(run-dos-interleaved nil initiator-s responder-s)
(declare (ignore network))
(and (<= (cost-mem resp)

(cost-mem init)))))
:hints (("Goal" :in-theory (disable

DH-EXPONENT
ID-MINE
IP
NONCE-MINE
PRIVATE-KEY
SA-MINE))))

Currently proves in 60 seconds.

November 29, 2004

Future Work

Model man in the middle attack
Form encapsulate functions for perfect
encryption
Prove termination of the protocol
If JFKr terminates for both parties, then they
agree on the key
One party terminates iff the other party
terminates

November 29, 2004

Conclusions

Showed safety from memory DoS attacks
Separation of actor states allows better
inductive reasoning
ACL2 proficiency increased

November 29, 2004

Resources

Davis, Jared for ACL2 help.
Kaufmann, Matt and Moore, J Strother. ACL2
FAQ. 2004.
Levy, Benjamin (translator). Diffie-Helman
Method for Key Agreement. 1997.
Paulson, Lawrence C. Proving Properties by
Induction. 1997.
Shmatikov, Vitaly. Just Fast Keying. 2004.

	An Executable Model for JFKr
	About ACL2
	Diffie-Helman
	Basic DH Model Parts
	Knowledge-state Attempt #1
	Knowledge-state Attempt #2
	Onto JFKr
	JFKr Properties
	What I Did
	Capturing Perfect Cryptography
	Capturing Perfect Cryptography
	Capturing Perfect Cryptography
	Capturing Perfect Cryptography
	Main Function
	A Simple Honest Step Function
	A Simple Dishonest Step Function
	A More Complex Step Function…
	Example
	DOS Non-deterministic Function
	Mem DoS Thm
	Future Work
	Conclusions
	Resources

