
slide 1

0x1A Great Papers in

Computer Security

Vitaly Shmatikov

CS 380S

http://www.cs.utexas.edu/~shmat/courses/cs380s/

slide 2

Problem: Lack of Diversity

Stack smashing and return-to-libc exploits need to
know the (virtual) address to hijack control

• Address of attack code in the buffer

• Address of a standard kernel library routine

Same address is used on many machines

• Slammer infected 75,000 MS-SQL servers using same
code on every machine

Idea: introduce artificial diversity

• Make stack addresses, addresses of library routines, etc.
unpredictable and different from machine to machine

slide 3

ASLR

Address Space Layout Randomization

Randomly choose base address of stack, heap,
code segment, location of Global Offset Table

• Randomization can be done at compile- or link-time, or
by rewriting existing binaries

Randomly pad stack frames and malloc’ed areas

Other randomization methods

• Randomize system call ids or instruction set

slide 4

PaX

Linux kernel patch

Enables executable/non-executable memory
pages

Any section not marked as executable in ELF
binary is non-executable by default

• Stack, heap, anonymous memory regions

Access control in mmap(), mprotect() prevents
unsafe changes to protection state at runtime

Randomizes address space layout

slide 5

Non-Executable Pages in PaX

In older x86, a page cannot be directly marked
as non-executable

PaX marks each page as “non-present” or
“supervisor level access”

• This raises a page fault on every access

Page fault handler determines if the fault
occurred on a data access or instruction fetch

• Instruction fetch: log and terminate process

• Data access: unprotect temporarily and continue

slide 6

mprotect() in PaX

mprotect() is a Linux kernel routine for
specifying desired protections for memory pages

PaX modifies mprotect() to prevent:

• Creation of executable anonymous memory mappings

• Creation of executable and writable file mappings

• Making executable, read-only file mapping writable

– Except when relocating the binary

• Conversion of non-executable mapping to executable

slide 7

Access Control in PaX mprotect()

In standard Linux kernel, each memory mapping
is associated with permission bits

• VM_WRITE, VM_EXEC, VM_MAYWRITE, VM_MAYEXEC

– Stored in the vm_flags field of the vma kernel data structure

– 16 possible write/execute states for each memory page

PaX makes sure that the same page cannot be
writable AND executable at the same time

• Ensures that the page is in one of the 4 “good” states

– VM_MAYWRITE, VM_MAYEXEC, VM_WRITE | VM_MAYWRITE,
VM_EXEC | VM_MAYEXEC

• Also need to ensure that attacker cannot make a region
executable when mapping it using mmap()

slide 8

PaX ASLR

User address space consists of three areas

• Executable, mapped, stack

Base of each area shifted by a random “delta”

• Executable: 16-bit random shift (on x86)

– Program code, uninitialized data, initialized data

• Mapped: 16-bit random shift

– Heap, dynamic libraries, thread stacks, shared memory

– Why are only 16 bits of randomness used?

• Stack: 24-bit random shift

– Main user stack

slide 9

Base-Address Randomization

Only the base address is randomized

• Layouts of stack and library table remain the same

• Relative distances between memory objects are not
changed by base address randomization

To attack, it’s enough to guess the base shift

A 16-bit value can be guessed by brute force

• Try 215 (on average) overflows with different values for
addr of known library function – how long does it take?

– In “On the effectiveness of address-space randomization”
(CCS 2004), Shacham et al. used usleep() for attack (why?)

• If address is wrong, target will simply crash

ASLR in Windows

Vista and Server 2008

Stack randomization

• Find Nth hole of suitable size (N is a 5-bit random value),
then random word-aligned offset (9 bits of randomness)

Heap randomization: 5 bits

• Linear search for base + random 64K-aligned offset

EXE randomization: 8 bits

• Preferred base + random 64K-aligned offset

DLL randomization: 8 bits

• Random offset in DLL area; random loading order

slide 10

Example: ASLR in Vista

Booting Vista twice loads libraries into different locations:

ASLR is only applied to images for which

the dynamic-relocation flag is set

slide 11

Bypassing Windows ASLR

Implementation uses randomness improperly,
thus distribution of heap bases is biased

• Ollie Whitehouse’s Black Hat 2007 paper

• Makes guessing a valid heap address easier

When attacking browsers, may be able to insert
arbitrary objects into the victim’s heap

• Executable JavaScript code, plugins, Flash, Java
applets, ActiveX and .NET controls…

Heap spraying

• Stuff heap with multiple copies of attack code

slide 12

slide 13

A. Sotirov and M. Dowd

 Bypassing Browser Memory Protections:
Setting back browser security by 10 years

(Black Hat 2008)

Java Heap Spraying

JVM makes all of its allocated memory RWX:
readable, writeable, executable (why?)

• Yay! DEP now goes out the window…

100MB applet heap, randomized base in a
predictable range

• 0x20000000 through 0x25000000

Use a Java applet to fill the heap with (almost)
100MB of NOP sleds + attack code

Use your favorite memory exploit to transfer
control to 0x25A00000 (why does this work?)

slide 14

[Sotirov and Dowd]

Information Leaks Break ASLR

User-controlled .NET objects are not RWX

But JIT compiler generates code in RWX memory

• Can overwrite this code or “return” to it out of context

• But ASLR hides location of generated code…

• Call MethodHandle.GetFunctionPointer() … .NET itself
will tell you where the generated code lives!

ASLR is often defeated by information leaks

• Pointer betrays an object’s location in memory

– For example, a pointer to a static variable reveals DLL’s
location… for all processes on the system! (why?)

• Pointer to a frame object betrays the entire stack
slide 15

[Sotirov and Dowd]

.NET Address Space Spraying

Webpage may embed .NET DLLs

• No native code, only IL bytecode

• Run in sandbox, thus no user warning (unlike ActiveX)

• Mandatory base randomization when loaded

Attack webpage include a large (>100MB) DLL

slide 16

[Sotirov and Dowd]

Dealing with Large Attack DLLs

100MB is a lot for the victim to download!

Solution 1: binary padding

• Specify a section with a very large VirtualSize and very
small SizeOfRawData – will be 0-padded when mapped

• On x86, equivalent to add byte ptr [eax], al - NOP sled!

– Only works if EAX points to a valid, writeable address

Solution 2: compression

• gzip content encoding

– Great compression ratio, since content is mostly NOPs

• Browser will unzip on the fly

slide 17

[Sotirov and Dowd]

Spraying with Small DLLs

Attack webpage includes many small DLL binaries

Large chunk of address space will be sprayed with
attack code

slide 18

[Sotirov and Dowd]

Turning Off ASLR Entirely

Any DLL may “opt out” of ASLR

• Choose your own ImageBase, unset
IMAGE_DLL_CHARACTERISTICS_DYNAMIC_BASE flag

Unfortunately, ASLR is enforced on IL-only DLL

How does the loader know a binary is IL-only?

slide 19

if(((pCORHeader->MajorRuntimeVersion > 2) ||

 (pCORHeader->MajorRuntimeVersion == 2 && pCORHeader->MinorRuntimeVersion >= 5)) &&

(pCORHeader->Flags & COMIMAGE_FLAGS_ILONLY))

{

pImageControlArea->pBinaryInfo->pHeaderInfo->bFlags |= PINFO_IL_ONLY_IMAGE;

...

}

Set version in the header to anything below 2.5

ASLR will be disabled for this binary!

[Sotirov and Dowd]

Bypassing IL Protections

Embedded .NET DLLs are expected to contain IL
bytecode only - many protection features

• Verified prior to JIT compilation and at runtime, DEP

• Makes it difficult to write effective shellcode

… enabled by a single global variable

• mscorwks!s_eSecurityState must be set to 0 or 2

• Does mscorwks participate in ASLR?

Similar: disable Java bytecode verification

• JVM does not participate in ASLR, either

• To disable runtime verification, traverse the stack and
set NULL protection domain for current method

slide 20

No!

[Dowd and Sotirov, PacSec 2008]

slide 21

Overflowing buffers on heap can change pointers
that point to important data

• Illegitimate privilege elevation: if program with
overflow has sysadm/root rights, attacker can use it to
write into a normally inaccessible file

– Example: replace a filename pointer with a pointer into a
memory location containing the name of a system file (for
example, instead of temporary file, write into AUTOEXEC.BAT)

Sometimes can transfer execution to attack code

• Example: December 2008 attack on XML parser in
Internet Explorer 7 - see
http://isc.sans.org/diary.html?storyid=5458

Heap Overflow

vtable

Function Pointers on the Heap

Compiler-generated function pointers
(e.g., virtual method table in C++ code)

Suppose vtable is on the heap next to a string object:

ptr

data

Object T FP1

FP2

FP3

vtable

method #1

method #2

method #3

p
tr

buf[256]

d
a
ta

object T
slide 22

Heap-Based Control Hijacking

Compiler-generated function pointers
(e.g., virtual method table in C++ code)

Suppose vtable is on the heap next to a string object:

ptr

data

Object T FP1

FP2

FP3

vtable

method #1

method #2

method #3

p
tr

buf[256]

d
a
ta

object T

vtable

slide 23

shell
code

Problem?

 <SCRIPT language="text/javascript">

 shellcode = unescape("%u4343%u4343%...");

 overflow-string = unescape(“%u2332%u4276%...”);

 cause-overflow(overflow-string); // overflow buf[]

 </SCRIPT?

p
tr

buf[256]

d
a
ta

object T

vtable

slide 24

shell
code

Where will the browser place
the shellcode on the heap???

slide 25

Use JavaScript to spray heap with shellcode

Then point vtable ptr anywhere in the spray area

Heap Spraying
h
e
a
p

vtable

NOP slide shellcode

heap spray area

[SkyLined 2004]

 var nop = unescape(“%u9090%u9090”)

 while (nop.length < 0x100000) nop += nop

 var shellcode = unescape("%u4343%u4343%...");

 var x = new Array ()

 for (i=0; i<1000; i++) {

 x[i] = nop + shellcode;

 }

Pointing a function pointer anywhere in the heap will
cause shellcode to execute

JavaScript Heap Spraying

slide 26

Use a sequence of JavaScript allocations and free’s
to make the heap look like this:

Allocate vulnerable buffer in JavaScript and
 cause overflow

slide 27

Placing Vulnerable Buffer
[Safari PCRE exploit, 2008]

object O

free blocks

heap

Heap Spraying Exploits

 Improvements: Heap Feng Shui [Sotirov, Black Hat Europe 2007]

• Reliable JavaScript-based heap exploits against Internet
Explorer without spraying

slide 28

slide 29

Aurora Attacks

2009 attacks of Chinese origin on Google and
several other high-tech companies

• State Department cables published on WikiLeaks claim
the attacks were directed by Chinese Politburo

Phishing emails exploit a zero-day vulnerability in
IE 6 to install a malicious payload (Hydraq)

Goal: gain access to software management
systems and steal source code

Compromised machines establish SSL-like
backdoor connections to C&C servers

slide 30

It All Starts with an Email…

A targeted, spear-phishing email is sent to
sysadmins, developers, etc. within the company

Victims are tricked into visiting a page hosting this
Javascript:

It decrypts and executes the actual exploit

slide 31

Aurora Exploit (1)
http://www.symantec.com/connect/blogs/trojanhydraq-incident-analysis-aurora-0-day-exploit

Decrypts into this code…

This code sprays the heap with
0x0C0D bytes + shellcode

slide 32

Aurora Exploit (2)
http://www.symantec.com/connect/blogs/trojanhydraq-incident-analysis-aurora-0-day-exploit

3. Deletes the image

2. Creates an image object and
calls this code when image is loaded

1. Sets up an array of
two hundred “COMMENT” objects

4. Sets up a timer to
call this code every 50 milliseconds

slide 33

Aurora Exploit (3)
http://www.symantec.com/connect/blogs/trojanhydraq-incident-analysis-aurora-0-day-exploit

Overwrites memory that belonged to
the deleted image object with 0x0C0D

Accesses the deleted image

Aurora Exploit (4)

When accessing this image object, IE 6
executes the following code:

MOV EAX,DWORD PTR DS:[ECX]

CALL DWORD PTR DS:[EAX+34]

This code calls the function whose address is
stored in the object… Ok if it’s a valid object!

But object has been deleted and its memory has
been overwritten with 0x0C0D0C0D… which
happens to be a valid address in the heap spray
area  control is passed to shellcode

slide 34

http://www.symantec.com/connect/blogs/trojanhydraq-incident-analysis-aurora-0-day-exploit

Aurora Tricks

0x0C0D does double duty as a NOP instruction and
as an address

• 0x0C0D is binary for OR AL, 0d – effectively a NOP – so
an area filled with 0x0C0D acts as a NOP sled

– AL is the lower byte of the EAX register

• When 0x0C0D0C0D is read from memory by IE6, it is
interpreted as an address… which points into the heap
spray area, likely to an 0x0C0D instruction

Bypasses DEP (Data Execution Prevention) – how?

Full exploit code:

http://wepawet.iseclab.org/view.php?hash=1aea206aa64ebeabb07237f1e2230d0f&type=js

slide 35

Info Leak Era of Exploitation

GS + DEP + SafeSEH/SEHOP + ASLR =
 modern memory attack must find out addresses

Lots of techniques – see Fermin Serna’s talk at
Black Hat 2012

• Massaging the heap / heap feng shui to produce
predictable heap layouts

– Includes cleverly triggering garbage collection heuristics

• Various cases of use-after-free

• Tricking existing code into writing addresses into
attacker-controlled memory

• Cool leak via Flash BitMap histogram (CVE-2012-0769)

slide 36

slide 37

D. Blazakis

 Interpreter Exploitation

(WOOT 2010)

Facing Better Memory Protection

So you discovered way to overwrite a function
pointer somewhere in a modern browser…

K00l! L33T! But…

• Address space is randomized – where to point?

• DEP – can’t execute data on the heap!

Remember ActionScript?

• JavaScript-like bytecode in Flash files

Just-in-time (JiT) compiler will allocate writable
memory and write executable x86 code into it

• But how to get ActionScript bytecode to compile into
shellcode?

slide 38

Constants in x86 Binary
B8

D9

D0

54

3C

var y = (

 0x3c54d0d9 ^

 0x3c909058 ^

 0x3c59f46a ^

 0x3c90c801 ^

 0x3c9030d9

 …

slide 39

MOV EAX, 3C54D0D9

XOR EAX, 3C909058

XOR EAX, 3C59F46A

XOR EAX, 3C90C801

XOR EAX, 3C9030D9

35

58

90

90

3C

35

6A

F4

59

3C

35

01

C8

90

3C

35

D9

30

…

compiles
into

Unintended Instructions Strike Again
B8

D9

D0

54

3C

slide 40

MOV EAX, 3C54D0D9

XOR EAX, 3C909058

XOR EAX, 3C59F46A

XOR EAX, 3C90C801

XOR EAX, 3C9030D9

35

58

90

90

3C

35

6A

F4

59

3C

35

01

C8

90

3C

35

D9

30

…

Suppose execution
starts here instead FNOP

PUSH ESP

CMP AL, 35

CMP AL, 35

CMP AL, 35

CMP AL, 35

POP EAX
NOP
NOP

PUSH -0C

POP ECX

ADD EAX, ECX

NOP

FSTENV DS:[EAX]

This shellcode implements

a standard trick for

learning its own location

in address space, ie, EIP value:

save the address of the current

instruction (normally used for

floating point exceptions),

then read it

Making XORs Disappear

…

3C

slide 41

35

… XOR opcode

First byte of
attacker-controlled
constant

A “no-op” instruction
CMP AL, …

… that takes one operand

slide 42

Next Stage

See paper for details of heap spraying to figure
out where JIT put generated code

• Exploits behavior of Flash VM heap implementation

JIT code contains function pointers

Initial shellcode uses these function pointers to
find the VirtualProtect call in the Flash VM …

… then uses VirtualProtect to mark a memory
region as executable

… then copies the actual payload into this region
and jumps to it… Done?

slide 43

Inferring Addresses

To trigger the exploit in the first place, need to
know the address to jump to!

To infer address of a given object, exploit the
implementation of ActionScript hash tables

• ActionScript “dictionary” = hash table of key/value pairs

• When the key is a pointer to an object, it is treated as
an integer when inserting it into dictionary

Idea #1: fill a table with integer keys, insert
 the pointer, see which integers are next to it

• Problem: collisions! Insertion place ≠ hash(address)

2

4

6

address
8

10

slide 44

Integer Sieve

Two tables: one filled with even integers, the
other with odd integers… insert pointer into both

1

3

5

7

9

Hash(address) Hash(address)

Collision will happen in
exactly one of the tables (why?)

In the table with collision, ActionScript
uses quadratic probe (why?)
to find next place to try inserting

This insertion will not collide (why?)

Search the table to find the pointer –
integers before and after will give interval for address value

slide 45

Unintended Instructions Redux

English shellcode - Mason et al. (CCS 2009)

• Convert any shellcode into an English-looking text

Encoded payload

Decoder uses only a subset of x86 instructions

• Those whose binary representation corresponds to
English ASCII characters

– Example: popa - “a”

 push %eax - “P”

Additional processing and padding to make
combinations of characters look like English text

slide 46

English Shellcode: Example
[Mason et al.]

