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Attacking Cryptographic Schemes
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@ Cryptanalysis
e Find mathematical weaknesses in constructions
o Statistical analysis of plaintext / ciphertext pairs

® Side-channel attacks

e Exploit characteristics of implementations
e Power analysis

e Electromagnetic radiation analysis

e Acoustic analysis

e Timing analysis
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[imi Attack
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® Basic idea: learn the system’s secret by observing
how long it takes to perform various computations

@ Typical goal: extract private key

@ Extremely powerful because isolation doesn’t help
e Victim could be remote
e Victim could be inside its own virtual machine
e Keys could be in tamper-proof storage or smartcard

@ Attacker wins simply by measuring response times

slide 3



RSA Cryptosystem
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& Key generation:
e Generate large (say, 512-bit) primes p, g
e Compute n=pqg and ¢(n)=(p-1)(g-1)
e Choose small e, relatively prime to ¢(n)
— Typically, e=3 (may be vulnerable) or e=216+1=65537 (why?)
e Compute unique d such that ed = 1 mod ¢(n)
e Public key = (e,n); private key = d

— Security relies on the assumption that it is difficult to compute
roots modulo n without knowing p and g

@ Encryption of m (simplified!): ¢ = me mod n
@ Decryption of c: cdmod n = (me&)d modn =m
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How RSA Decryptlon Works
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# RSA decryption: compute y* mod n
e This is @ modular exponentiation operation

# Naive algorithm: square and multiply

Let sog = 1.

For k=0 upto w—1:
f (bit k of ) is 1 then
Let Rjp = (st -y) mod n.

Else
Let Ry = sg.
Let s;4+1 = RZ mod n.
EndFor.

Return (Ry,—1).
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Kocher’s Observation
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Whether iteration takes a long time
Let sp = 1 depends on the k" bit of secret exponent

For k=10 upto w—l

This takes a while
it k of :L' then to compute
Let = y) mod D

Else
Let Ry :@ This is instantaneous
Let $x+1 = R; mod n.
EndFor.

Return (R,_1).
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Epr0|t|ng Tlmlng Informatlon
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# Different timing given operands
€ Assumption / heuristic: timings of subsequent

multiplications are independent Exact

e Given that we know the first k-1 bits of x ...<[timin9 ]
Given a guess for the kth bit of x ... Exact J
.. Time for remaining bits independent (84€SS

® Given measurement of total time can see
whether there is correlation between
“time for kt" bit is long” and “total time is long”
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Outllne of Kocher S Attack
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@ Idea: guess some bits of the exponent and
predict how long decryption will take

@ If guess is correct, will observe correlation; if
incorrect, then prediction will look random

e This is a signal detection problem, where signal is
timing variation due to guessed exponent bits

e The more bits you already know, the stronger the
signal, thus easier to detect (error-correction property)
# Start by guessing a few top bits, look at
correlations for each guess, pick the most
promising candidate and continue
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D. Brumley and D. Boneh

Remote Timing Attacks are Practical

(USENIX Security 2003)




RSA in OpenSSL
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€ OpenSSL is a popular open-source toolkit

e mod_SSL (in Apache = 28

% of HTTPS market)

e stunnel (secure TCP/IP servers)

e SNFS (secure NFS)
e Many more applications

® Kocher’s attack doesn’t work against OpenSSL

e Instead of square-and-mu
sliding windows and two d

ifferent multiplication
ponentiation

algorithms for modular ex

— CRT = Chinese Remainder Theorem
— Secret exponent is processed in chunks, not bit-by-bit

tiply, OpenSSL uses CRT,
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Chinese Remainder Theorem
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®n = n.n,..n,
where gcd(n;,n;)=1 when i # ]
® The system of congruences
X = X; mod n; = ... =X, mod n,
e Has a simultaneous solution x to all congruences
e There exists exactly one solution x between 0 and n-1

@ For RSA modulus n=pqg, to compute x mod n
it's enough to know x mod p and x mod g
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RSA Decryption With CRT
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@ To decrypt ¢, need to compute m=c? mod n

# Use Chinese Remainder Theorem (why?)
=d mod (p-1) ]

.Cl
OCZ

= d mod (g-1)

e ginv=glmodp
e Compute m; = cd1 mod p; m, = c®2 mod q
e Compute m = m,+(qginv*(m,-m,) mod p)*q

>~ these are precomputed

e
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Montgomery Reduction
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@ Decryption requires computing m, = c92 mod q
€ This is done by repeated multiplication

e Simple: square and multiply (process d, 1 bit at a time)
e More clever: sliding windows (process d, in 5-bit blocks)

®In either case, many multiplications modulo g

€ Multiplications use Montgomery reduction
e Pick some R = 2k

e To compute x*y mod g, convert x and y into their
Montgomery form xR mod g and YR mod g

e Compute (xR * yR) * Rl = zZR mod g

— Multiplication by R1 can be done very efficiently e 13



Schindler’s Observation
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# At the end of Montgomery reduction, if zZR > q,
then need to subtract g
e Probability of this extra step is proportional to ¢ mod g

@ If cis close to g, a lot of subtractions will be done

€ If c mod g = 0, very few subtractions
e Decryption will take longer as c gets closer to g, then
become fast as c passes a multiple of g
# By playing with different values of ¢ and observing
how long decryption takes, attacker can guess g!

e Doesn’t work directly against OpenSSL because of
sliding windows and two multiplication algorithms
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Integer Multiplication Routines

€ 30-40% of OpenSSL running time is spent on
integer multiplication

¢ If integers have the same number of words n,
OpenSSL uses Karatsuba multiplication
e Takes O(n'o923)

¢ If integers have unequal number of words n and
m, OpenSSL uses normal multiplication
e Takes O(nm)
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Summary of T|me Dependenues
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¥

discontinuity when

gj’ gmodg=20
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effect E
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1. ClientHello SSL
Regular client > server
2. ServerHello

. | o)

B (send public key) 5 g
3. ClientkeyExchange Puy o
(encrypted under public key) Immmmmmm 18

\ /

Exchange data encrypted with new shared key
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Attacking SSL Handshake

Attacker

L AN S SR e ¥ oL

1. ClientHello SSL
>  server

2. ServerHello
(send public key)

3. Record time t, =

Send guess g or g;;  f===e==sa :
>

4. Alert

5. Record time t,
Compute t,—t,
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Attack Overview
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® Initial guess g for g between 2-11 and 2°12 (why?)
& Try all possible guesses for the top few bits

@ Suppose we know i-1 top bits of g. Goal: it bit.
e Set g =<known i-1 bits of g>000000

e Set g,,=<known i-1 bits of g>100000 - note: g<g,,
— If g<qg<g,,; then the it bit of q is 0
— If g<g;,<q then the it" bit of q is 1

€ Goal: decide whether g<g<g,,; or g<g;,<q

guess of o 9 try ghito decide hit |

oo
1| 0] 1 0D
1 23
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Two Possibilities for g,
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Decryption time _ — — #Reductions
4 — — Mult routine

Value of ciphertext
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T|m|ng Attack Detalls
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®What is “large” and “small”?
o Know from attacking previous bits

@ Decrypting just g does not work because of
sliding windows
e Decrypt a neighborhood of values near g

e Will increase difference between large and small
values, resulting in larger 0-1 gap

@ Attack requires only 2 hours, about 1.4 million
queries to recover the private key

e Only need to recover most significant half bits of g
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Impact of Neighborhood Size
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Extracting RSA Private Key
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Works On The Internet
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Defenses
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# Bad: require statically that all decryptions take
the same time

e For example, always do the extra "dummy” reduction
e ... but what if compiler optimizes it away?

€ Bad: dynamically make all decryptions the same
or multiples of the same time “quantum”

e Now all decryptions have to be as slow as the slowest
decryption

€ Good: Use RSA blinding
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® Instead of decrypting ciphertext ¢, decrypt a
random ciphertext related to c

e Compute x' = c*re mod n, r is random
e Decrypt x’ to obtain m’
e Calculate original plaintext m = m’/r mod n
@ Since r is random, decryption time is random

9 2-10% performance penalty
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Blinding Works
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Tine difference in CPU cycles
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