CS 380S

Ox1A Great Papers In
Computer Security

Vitaly Shmatikov

http://www.cs.utexas.edu/~shmat/courses/cs380s/

Attacking Cryptographic Schemes

AN P e G ST B e W P S S ST e VT T TP S G ST S N T I O G ST B R N TV PR O S ST R A

@ Cryptanalysis
e Find mathematical weaknesses in constructions
o Statistical analysis of plaintext / ciphertext pairs

® Side-channel attacks

e Exploit characteristics of implementations
e Power analysis

e Electromagnetic radiation analysis

e Acoustic analysis

e Timing analysis

slide 2

[imi Attack
AN P i G ST B e W T P i T ST B e

(ST VS P S S ST e VS TP R G ST B R N W R PR O G ST R A

® Basic idea: learn the system’s secret by observing
how long it takes to perform various computations

@ Typical goal: extract private key

@ Extremely powerful because isolation doesn’t help
e Victim could be remote
e Victim could be inside its own virtual machine
e Keys could be in tamper-proof storage or smartcard

@ Attacker wins simply by measuring response times

slide 3

RSA Cryptosystem

O TP i G ST e VS T TP G ST e N T TP P G ST B R W P O G S ST B R W R PR R G ST

& Key generation:
e Generate large (say, 512-bit) primes p, g
e Compute n=pqg and ¢(n)=(p-1)(g-1)
e Choose small e, relatively prime to ¢(n)
— Typically, e=3 (may be vulnerable) or e=216+1=65537 (why?)
e Compute unique d such that ed = 1 mod ¢(n)
e Public key = (e,n); private key = d

— Security relies on the assumption that it is difficult to compute
roots modulo n without knowing p and g

@ Encryption of m (simplified!): ¢ = me mod n
@ Decryption of c: cdmod n = (me&)d modn =m

slide 4

How RSA Decryptlon Works

S TP G TN S N T TP O G ST e N T TP P G ST B R P P S G ST B S W O RV PR N G ST A

RSA decryption: compute y* mod n
e This is @ modular exponentiation operation

Naive algorithm: square and multiply

Let sog = 1.

For k=0 upto w—1:
f (bit k of) is 1 then
Let Rjp = (st -y) mod n.

Else
Let Ry = sg.
Let s;4+1 = RZ mod n.
EndFor.

Return (Ry,—1).

slide 5

Kocher’s Observation

AN P e G ST B e W P S S ST e VT T TP S G ST S N T I O G ST B R N TV PR O S ST R A

Whether iteration takes a long time
Let sp = 1 depends on the k" bit of secret exponent

For k=10 upto w—l

This takes a while
it k of :L' then to compute
Let = y) mod D

Else
Let Ry :@ This is instantaneous
Let $x+1 = R; mod n.
EndFor.

Return (R,_1).

slide 6

Epr0|t|ng Tlmlng Informatlon

AN P e G ST B e W P S S ST e VT T TP S G ST S N T I O G ST B R N TV PR O S ST R A

Different timing given operands
€ Assumption / heuristic: timings of subsequent

multiplications are independent Exact

e Given that we know the first k-1 bits of x ...<[timin9]
Given a guess for the kth bit of x ... Exact J
.. Time for remaining bits independent (84€SS

® Given measurement of total time can see
whether there is correlation between
“time for kt" bit is long” and “total time is long”

slide 7

Outllne of Kocher S Attack

LI TP S G TS R N T TP O G N e N T I O G ST B R W TV PR i S ST B R O R PR R G ST R A

@ Idea: guess some bits of the exponent and
predict how long decryption will take

@ If guess is correct, will observe correlation; if
incorrect, then prediction will look random

e This is a signal detection problem, where signal is
timing variation due to guessed exponent bits

e The more bits you already know, the stronger the
signal, thus easier to detect (error-correction property)
Start by guessing a few top bits, look at
correlations for each guess, pick the most
promising candidate and continue

slide 8

D. Brumley and D. Boneh

Remote Timing Attacks are Practical

(USENIX Security 2003)

RSA in OpenSSL

O TP i G ST e VS T TP G ST e N T TP P G ST B R W P O G S ST B R W R PR R G ST

€ OpenSSL is a popular open-source toolkit

e mod_SSL (in Apache = 28

% of HTTPS market)

e stunnel (secure TCP/IP servers)

e SNFS (secure NFS)
e Many more applications

® Kocher’s attack doesn’t work against OpenSSL

e Instead of square-and-mu
sliding windows and two d

ifferent multiplication
ponentiation

algorithms for modular ex

— CRT = Chinese Remainder Theorem
— Secret exponent is processed in chunks, not bit-by-bit

tiply, OpenSSL uses CRT,

slide 10

Chinese Remainder Theorem

AN P e G ST B e W P S S ST e VT T TP S G ST S N T I O G ST B R N TV PR O S ST R A

®n = n.n,..n,
where gcd(n;,n;)=1 when i #]
® The system of congruences
X = X; mod n; = ... =X, mod n,
e Has a simultaneous solution x to all congruences
e There exists exactly one solution x between 0 and n-1

@ For RSA modulus n=pqg, to compute x mod n
it's enough to know x mod p and x mod g

slide 11

RSA Decryption With CRT

O TP i G ST e VS T TP G ST e N T TP P G ST B R W P O G S ST B R W R PR R G ST

@ To decrypt ¢, need to compute m=c? mod n

Use Chinese Remainder Theorem (why?)
=d mod (p-1)]

.Cl
OCZ

= d mod (g-1)

e ginv=glmodp
e Compute m; = cd1 mod p; m, = c®2 mod q
e Compute m = m,+(qginv*(m,-m,) mod p)*q

>~ these are precomputed

e

slide 12

Montgomery Reduction

AN P e G ST B e W P S S ST e VT T TP S G ST S N T I O G ST B R N TV PR O S ST R A

@ Decryption requires computing m, = c92 mod q
€ This is done by repeated multiplication

e Simple: square and multiply (process d, 1 bit at a time)
e More clever: sliding windows (process d, in 5-bit blocks)

®In either case, many multiplications modulo g

€ Multiplications use Montgomery reduction
e Pick some R = 2k

e To compute x*y mod g, convert x and y into their
Montgomery form xR mod g and YR mod g

e Compute (xR * yR) * Rl = zZR mod g

— Multiplication by R1 can be done very efficiently e 13

Schindler’s Observation

AN P e G ST B e W P S S ST e VT T TP S G ST S N T I O G ST B R N TV PR O S ST R A

At the end of Montgomery reduction, if zZR > q,
then need to subtract g
e Probability of this extra step is proportional to ¢ mod g

@ If cis close to g, a lot of subtractions will be done

€ If c mod g = 0, very few subtractions
e Decryption will take longer as c gets closer to g, then
become fast as c passes a multiple of g
By playing with different values of ¢ and observing
how long decryption takes, attacker can guess g!

e Doesn’t work directly against OpenSSL because of
sliding windows and two multiplication algorithms

slide 14

3

s L3

==

3

==

Reductlon Tlmlng Dependency

==

Decryptlon
time : :
o
//. /
Ly ya
i | 7

VY /
/ |
v s s

q 20

Value of ciphertext c

slide 15

Integer Multiplication Routines

€ 30-40% of OpenSSL running time is spent on
integer multiplication

¢ If integers have the same number of words n,
OpenSSL uses Karatsuba multiplication
e Takes O(n'o923)

¢ If integers have unequal number of words n and
m, OpenSSL uses normal multiplication
e Takes O(nm)

slide 16

Summary of T|me Dependenues

P RO G T A W T PR O G ST B A W R O D ST A W O Y P RO D ST P A R R PR R ST

¥

discontinuity when

gj’ gmodg=20
g<q g>q é giﬁfggt[i}ngigﬂ.m'l‘len
Montgomery | Longer Shorter E
effect E
* q 2Iq 3lq p 4Iq 5IC|
values g between 0 and 8q
Multiplication | Shorter Longer Decryption
effeCt Time
g is the decryption value (same as c) . I 1
. . GOINA
Different effects... but one will always
dominate! :
Karatsuba }

kg

slide 17

D . t. - t .
O P I AT S TN P P Y S ST B R

ph- SN BR

Decryption time
A

Decryption Time

LA FEN S W e X

“ .&) -~ .;:7‘

- — #Reductions
Mult routine

d
Value of ciphertext

slide 18

AN P P G ST e W T P i S S T B R O T P O G ST S S T R PR RN

ST T Al TaN A B W ST
ADA RIS AN S B N LR g

1. ClientHello SSL
Regular client > server
2. ServerHello

. | o)

B (send public key) 5 g
3. ClientkeyExchange Puy o
(encrypted under public key) Immmmmmm 18

\ /

Exchange data encrypted with new shared key

slide 19

Attacking SSL Handshake

Attacker

L AN S SR e ¥ oL

1. ClientHello SSL
> server

2. ServerHello
(send public key)

3. Record time t, =

Send guess g or g;; f===e==sa :
>

4. Alert

5. Record time t,
Compute t,—t,

slide 20

Attack Overview

AN P e G ST B e W P S S ST e VT T TP S G ST S N T I O G ST B R N TV PR O S ST R A

® Initial guess g for g between 2-11 and 2°12 (why?)
& Try all possible guesses for the top few bits

@ Suppose we know i-1 top bits of g. Goal: it bit.
e Set g =<known i-1 bits of g>000000

e Set g,,=<known i-1 bits of g>100000 - note: g<g,,
— If g<qg<g,,; then the it bit of q is 0
— If g<g;,<q then the it" bit of q is 1

€ Goal: decide whether g<g<g,,; or g<g;,<q

guess of o 9 try ghito decide hit |

oo
1| 0] 1 0D
1 23

slide 21

Two Possibilities for g,

AN P e G ST B e W P S S ST e VT T TP S G ST S N T I O G ST B R N TV PR O S ST R A

Decryption time _ — — #Reductions
4 — — Mult routine

Value of ciphertext

slide 22

T|m|ng Attack Detalls

L TP G ST e N I P G ST B e W T P S G S TS B R N TP R G ST B S N W R PR O G ST R A

®What is “large” and “small”?
o Know from attacking previous bits

@ Decrypting just g does not work because of
sliding windows
e Decrypt a neighborhood of values near g

e Will increase difference between large and small
values, resulting in larger 0-1 gap

@ Attack requires only 2 hours, about 1.4 million
queries to recover the private key

e Only need to recover most significant half bits of g

slide 23

Impact of Neighborhood Size

D P R G ST B e W P P S S T e VS TP S G S T e VS T TP O G ST e N T P i G

Je+07F T T L a— T T T T T T
zero—one gap when a bit of qg=a
zero—one gap when a bit of g=1

2.9e+87 |

£ o2es+a7? |
—

X}

=

o
=
[
“1 . 5e+07 [

=
B

@

=}

=

o

S le+87F |
[
[
g

g Zero-one gap
-— Se+06
o

8 .
_EE+BE 1 1 1 1 1 1 1 1 1

188 288 Faa <188 blil] 588 B8 il

Heighborhood siz=e

988

18848

slide 24

Extracting RSA Private Key

AN P e G ST B e W P S S ST e VT T TP S G ST S N T I O G ST B R N TV PR O S ST R A

1.5e+87

1le+87 [

Tine difference in CFU cycles

-1le+B7 [

=1.3e+B7F

Se+B6

=Se+B6 -

Key 1 {g=8%
Key 1 {g=1%

Montgomery reduction

/ dominates

Zero-one gap

Multiplication routine dominates

—w

1 1
a 58 188 158

Bits puessed of factor q

2008

1
2508

slide 25

Works On The Internet

AN P e G ST B e W P S S ST e VT T TP S G ST S N T I O G ST B R N TV PR O S ST R A

2e+B7F T T T T T
Apache+nod_55L - canpus backbone
Apache+nod_S55L - one switch
1.5e+87F | J
1e+87F 1
@
ﬁ - - - -
[T}
: N Similar timing on
Se+06
=
5 WAN vs. LAN
=
-~ / I
= a
=]
-
et
=
o
g =-5e+B6 -
w
S
-—
—
=-1e+B7F]
-1 _5Se+B7F | .
—Das@F 1 1 1 1 1

a bal s] 188 158 288 2908
Bits guessed of factor q

slide 26

Defenses

AN P e G ST B e W P S S ST e VT T TP S G ST S N T I O G ST B R N TV PR O S ST R A

Bad: require statically that all decryptions take
the same time

e For example, always do the extra "dummy” reduction
e ... but what if compiler optimizes it away?

€ Bad: dynamically make all decryptions the same
or multiples of the same time “quantum”

e Now all decryptions have to be as slow as the slowest
decryption

€ Good: Use RSA blinding

slide 27

ORI P e G ST e W P P S S ST e

ST B A W T TP S G SIS B R N T TP R G ST S N W R PR O G ST R A

® Instead of decrypting ciphertext ¢, decrypt a
random ciphertext related to c

e Compute x' = c*re mod n, r is random
e Decrypt x’ to obtain m’
e Calculate original plaintext m = m’/r mod n
@ Since r is random, decryption time is random

9 2-10% performance penalty

slide 28

Blinding Works

AN P e G ST B e W P S S ST e VT T TP S G ST S N T I O G ST B R N TV PR O S ST R A

Tine difference in CPU cycles

Je+86

2e+06

1e+B86

=1e+86

—-2e+06

—3e+B86

=qe+86

=5e+06

=Ge+86

=Fe+d6

=de+B6

Apache with blinding ¢(bit=8}
Apache with blinding {(bit=1}

a4

188 158 288

Bits guessed of factor q

2358

slide 29

