The End of Anonymity

Vitaly Shmatikov
Tastes and Purchases

- Amazon.com
- Last.fm
- Hulu
- Netflix
Social Networks
Health Care and Genetics
Web Tracking
Solution: Anonymity!

“… breakthrough technology that uses social graph data to dramatically improve online marketing … "Social Engagement Data" consists of anonymous information regarding the relationships between people”

“The critical distinction … between the use of personal information for advertisements in personally-identifiable form, and the use, dissemination, or sharing of information with advertisers in non-personally-identifiable form.”
Phew...

Search: "we do not collect personally identi..."
“Privacy-Preserving” Data Release

Data

1. \(x_1\)
2. \(x_2\)
3. \(x_3\)
 ...
4. \(x_{n-1}\)
5. \(x_n\)

“anonymization”
“de-identification”
“sanitization”

Privacy!
Some Privacy Disasters

What went wrong?

- Netflix Settles Privacy Lawsuit, Cancels Prize Sequel
- AOL Proudly Releases Massive Amounts of Private Data
- THE CHRONICLE of Higher Education: Harvard’s Privacy Meltdown, Revisited: Controversial Facebook Data Yield New Paper
The Myth of the PII

• Data are “anonymized” by removing personally identifying information (PII)
 – Name, Social Security number, phone number, email, address… what else?

• Problem: PII has no technical meaning
 – Defined in disclosure notification laws (if certain information is lost, consumer must be notified)
 – In privacy breaches, any information can be personally identifying
The Curse of Dimensionality

- Row = user record
- Column = dimension
- Thousands or millions of dimensions
 - Netflix movie ratings: 35,000
 - Amazon purchases: 10^7
Sparsity and “Long Tail”

Netflix Prize dataset:
Considering just movie names, for 90% of records there isn’t a single other record which is more than 30% similar.

Average record has no “similar” records
Privacy Threats

Global surveillance

Spammers
Abusive advertisers and marketers

Phishing

Employers, insurers, stalkers, nosy friends
It’s All About the Aux

What can the adversary learn by combining this with auxiliary information?

Information available to adversary outside of normal data release process

No explicit identifiers
De-anonymizing Sparse Datasets

Auxiliary information
De-anonymization Objectives

• Fix some target record r in the original dataset
• Goal: learn as much about r as possible
• Subtler than “identify r in the released dataset”
 – Don’t fall for the k-anonymity fallacy!
 • Silly example: released dataset contains k copies of each original record – this is k-anonymous!
 – Can’t identify the “right” record, yet the released dataset completely leaks everything about r
Aux as Noisy Projection
How Much Aux Is Needed?

• How much does the adversary need to know about a record to find a very similar record in the released dataset?
 – Under very mild sparsity assumption, $O(\log N)$, where N is the number of records

• What if not enough Aux is available?
 – Identifying a small number of candidate records similar to the target still reveals a lot of information
De-Anonymization in Practice

- Sweeney (1998):
 Massachusetts hospital discharge dataset + voter database
- Narayanan and Shmatikov (2006):
 Netflix Prize dataset + IMDb
- Narayanan and Shmatikov (2009):
 social networks
Welcome!

The Netflix Prize seeks to substantially improve the accuracy of predictions about how much someone is likely to love a movie based on their movie preferences. Improve it enough and you win one (or more) Prizes. Winning the Netflix Prize improves our ability to connect people to the movies they love.

Read the Rules to see what is required to win the Prizes. If you are interested in joining the quest, you should create a team.

You should also read the frequently-asked questions about the Prize. And check out how various teams are doing on the Leaderboard.

Good luck and thanks for helping!
De-anonymizing the Netflix Dataset

- 500K users, 18,000 movies
- 213 dated ratings per user, on average
- Two is enough to reduce to 8 candidate records
- Four is enough to identify uniquely (on average)
- Works even better with relatively rare ratings
 - “The Astro-Zombies” rather than “Star Wars”

Long Tail effect: most people watch obscure crap
Exploiting Data Structure
“Jefferson High”: Romantic and Sexual Network

Real data!
Phone Call Graphs

Examples of outsourced call graphs

<table>
<thead>
<tr>
<th>Country</th>
<th>Nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hungary</td>
<td>2.5M</td>
</tr>
<tr>
<td>France</td>
<td>7M</td>
</tr>
<tr>
<td>India</td>
<td>3M</td>
</tr>
</tbody>
</table>

3,000 companies providing wireless services in the U.S

2 trillion edges
Structural De-anonymization

Goal: structural mapping between two graphs

For example, Facebook vs. anonymized phone call graph
Winning the IJCNN/Kaggle Social Network Challenge

• “Anonymized” graph of Flickr used as challenge for a link prediction contest

• De-anonymization = “oracle” for true answers
 – 57% coverage
 – 98% accuracy

[Narayanan, Shi, Rubinstein]
More De-Anonymization

- Social networks – again and again
- Stylometry (writing style)
- Location data
 - De Montjoye et al. (2013): mobility traces from a cell phone carrier - 4 points is enough
- Credit card transaction meta-data
 - De Montjoye et al. (2015) – 4 purchases is enough
Lesson #1: De-anonymization Is Robust

- 33 bits of entropy
 - 6-8 movies, 4-7 friends, etc.
- Perturbing data to foil de-anonymization often destroys utility
- We can estimate confidence even without ground truth
- Accretive and iterative: more de-anonymization → better de-anonymization
Lesson #2:
“PII” Is Technically Meaningless

PII is info “with respect to which there is a reasonable basis to believe the information can be used to identify the individual.”

Any piece of data can be used for re-identification!

Narayanan, Shmatikov
CACM column, 2010

“blurring of the distinction between personally identifiable information and supposedly anonymous or de-identified information”