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Tastes and Purchases 

slide 2 



Social Networks 
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Health Care and Genetics 
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Web Tracking 
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Solution:  Anonymity! 

“… breakthrough technology that 

uses social graph data to dramatically 

improve online marketing …  

"Social Engagement Data" consists of 

anonymous information regarding the 

relationships between people” 

“The critical distinction … between the use of 

personal information for advertisements in 

personally-identifiable form, and the use, 

dissemination, or sharing of information with 

advertisers in non-personally-identifiable form.” 
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Phew… 
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“Privacy-Preserving” Data Release 
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Privacy! 
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Some Privacy Disasters 

What went wrong? 
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• Data are “anonymized” by removing personally 

identifying information (PII) 

– Name, Social Security number, phone number, email, 

address… what else? 

• Problem: PII has no technical meaning 

– Defined in disclosure notification laws (if certain 

information is lost, consumer must be notified) 

– In privacy breaches,  any information can be 

personally identifying 

The Myth of the PII 
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The Curse of Dimensionality 
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• Row = user record 

• Column = dimension 

• Thousands or millions 

of dimensions 

– Netflix movie ratings: 

35,000 

– Amazon purchases: 107 



Similarity 

Netflix Prize dataset: 

Considering just movie names, 

for 90% of records there isn’t a 

single other record which is 

more than 30% similar 

Average record has no “similar” records 

Sparsity and “Long Tail” 
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Global surveillance 

Phishing Employers, insurers, 

stalkers, nosy friends 

Spammers 

Abusive advertisers and marketers 

Privacy Threats 
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It’s All About the Aux 
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No explicit identifiers 

What can the adversary 

learn by combining this 

with auxiliary information? 

 
Information available to  

adversary outside of  

normal data release process 



De-anonymizing Sparse Datasets 

Auxiliary 

information 
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De-anonymization Objectives 

• Fix some target record r in the original dataset 

• Goal:  learn as much about r as possible 

• Subtler than “identify r in the released dataset” 

– Don’t fall for the k-anonymity fallacy! 

• Silly example: released dataset contains k copies of each 

original record – this is k-anonymous! 

– Can’t identify the “right” record, yet the released 

dataset completely leaks everything about r  
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Aux as Noisy Projection 
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How Much Aux Is Needed? 

• How much does the adversary need to know 

about a record to find a very similar record in 

the released dataset? 

– Under very mild sparsity assumption, O(log N), 

where N is the number of records 

• What if not enough Aux is available? 

– Identifying a small number of candidate records 

similar to the target still reveals a lot of information 
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De-Anonymization in Practice 

• Sweeney (1998):  

   Massachusetts hospital discharge dataset + 

voter database 

• Narayanan and Shmatikov (2006):  

   Netflix Prize dataset + IMDb 

• Narayanan and Shmatikov (2009):  

   social networks 
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De-anonymizing the Netflix Dataset 

• 500K users, 18,000 movies 

• 213 dated ratings per user, on average 

• Two is enough to reduce to 8 candidate records 

• Four is enough to identify uniquely (on average) 

• Works even better with relatively rare ratings 
• “The Astro-Zombies” rather than “Star Wars”  

 Long Tail effect: 
most people watch obscure crap 
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Exploiting Data Structure 
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“Jefferson High”:  

Romantic and Sexual Network 

Real data! 
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Phone Call Graphs 

2 trillion edges 

Examples of outsourced  

call graphs 

Hungary 2.5M nodes 

France 7M nodes 

India 3M nodes 

3,000 companies providing 

wireless services in the U.S 
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Structural De-anonymization 

Goal: structural mapping between two graphs 

For example, Facebook vs. anonymized phone call graph 
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Winning the IJCNN/Kaggle  

Social Network Challenge 

• “Anonymized” graph of 

Flickr used as challenge for 

a link prediction contest 

• De-anonymization = 

“oracle” for true answers 

– 57% coverage 

– 98% accuracy 

 

[Narayanan, Shi, Rubinstein] 

? 
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• Social networks – again and again 

• Stylometry (writing style) 

• Location data 

– De Montjoye et al. (2013): mobility traces from a 

cell phone carrier - 4 points is enough 

• Credit card transaction meta-data 

– De Montjoye et al. (2015) – 4 purchases is enough 

More De-Anonymization 
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Lesson #1: 

De-anonymization Is Robust 

• 33 bits of entropy 

– 6-8 movies, 4-7 friends, etc. 

• Perturbing data to foil de-anonymization 

often destroys utility 

• We can estimate confidence even without 

ground truth 

• Accretive and iterative:  

 more de-anonymization   

 better de-anonymization 
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PII is info “with respect to which there is a reasonable basis to 

believe the information can be used to identify the individual.” 

Lesson #2: 

“PII” Is Technically Meaningless 

Any piece of data can be used  

for re-identification! 

Narayanan, Shmatikov 

CACM column, 2010 

“blurring of the distinction between personally 

identifiable information and supposedly 

anonymous or de-identified information” 
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