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Health Care and Genetics
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Web Tracking
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Solution: Anonymity!

33 “... breakthrough technology that )
dCross uses social graph data to dramatically
improve online marketing ...

o " s
ﬂIlIEII ::‘* LOTAME "Social Engagement Data" consists of

anonymous information regarding the

opinmind' Qelationships between people” )

ﬂ‘The critical distinction ... between the use of
personal information for advertisements in
personally-identifiable form, and the use,
dissemination, or sharing of information with

\advertisers in non-personall*—identifiable form.”
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Phew...

GOUS[E "we do not collect personally identi’- n

Search About 72,900 000 results (0.24 seconds)
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“Privacy-Preserving” Data Release
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o “de-identification”

Data “sanitization”
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Some Privacy Disasters

Forbes =L=EE AOL Proudly Releases Massive

- Amounts of Private Data
Netflix Settles Privacy Lawsuit,
Cancels Prize Sequel

£ Tavlor Bulev. Forbes Staff

Ehe New Jork Eimes

WORLD U.5. N.Y. [ REGIOBUSINESS TECHNOLOGY SCIENCE HEALTH| SPORTS

otect Medical Data

What went wrong?

W

Back to the Future: NIH to Revisit Genomic Data-
Sharing Policy

THECHRONICLE — rarger

Harvard’s Privacy Meltdown, Revisited: Controversial Facebook Data
Yield New Paper
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The Myth of the PII

* Data are “anonymized” by removing personally
identifying information (PlII)

— Name, Social Security number, phone number, email,
address... what else!

* Problem: Pll has no technical meaning

— Defined in disclosure notification laws (if certain
information is lost, consumer must be notified)

— In privacy breaches, any information can be
personally identifying
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The Curse of Dimensionality
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Privacy Threats

Spammers

Global surveillance  Apysive advertisers and marketers

Phishing Employers, insurers,
stalkers, nosy friends
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It’s All About the Aux
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No explicit identifiers
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De-anonymizing Sparse Datasets

information
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De-anonymization Objectives

* Fix some target record r in the original dataset
* Goal: learn as much about r as possible

* Subtler than “identify r in the released dataset”
— Don’t fall for the k-anonymity fallacy!

* Silly example: released dataset contains k copies of each
original record — this is k-anonymous!

— Can’t identify the “right” record, yet the released
dataset completely leaks everything about r
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Aux as Noisy Projection
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How Much Aux Is Needed?

* How much does the adversary need to know
about a record to find a very similar record in

the released dataset!?

— Under very mild sparsity assumption, O(log N),
where N is the number of records

* What if not enough Aux is available?

— Identifying a small number of candidate records
similar to the target still reveals a lot of information
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De-Anonymization in Practice

* Sweeney (1998):

Massachusetts hospital discharge dataset +
voter database

* Narayanan and Shmatikov (2006):
Netflix Prize dataset + IMDb
* Narayanan and Shmatikov (2009):

social networks
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De-anonymizing the Netflix Dataset

500K users, 18,000 movies

2|3 dated ratings per user, on average

Two is enough to reduce to 8 candidate records

Four is enough to identify uniquely (on average)

Works even better with relatively rare ratings

e “The Astro-Zombies’’ rather than “Star Wars”

"—

Long Tail effect:
most people watch obscure crap
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Exploiting Data Structure
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Phone Call Graphs

v 2 trillion edges

Examples of outsourced
call graphs 3,000 companies providing

wireless services in the U.S

Hungary 2.5M nodes
France /M nodes
India 3M nodes
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Structural De-anonymization

Goal: structural mapping between two graphs

For example, Facebook vs. anonymized phone call graph
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Winning the |JCNN/Kaggle
Social Network Challenge

[Narayanan, Shi, Rubinstein]

* “Anonymized” graph of
Flickr used as challenge for
a link prediction contest

* De-anonymization =
“oracle” for true answers

— 577% coverage

— 98% accuracy
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More De-Anonymization

Social networks — again and again
Stylometry (writing style)
Location data

— De Montjoye et al. (201 3): mobility traces from a
cell phone carrier - 4 points is enough

Credit card transaction meta-data
— De Montjoye et al. (2015) — 4 purchases is enough
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Lesson #1:
De-anonymization Is Robust
33 bits of entropy

— 6-8 movies, 4-7 friends, etc.

Perturbing data to foil de-anonymization
often destroys utility

We can estimate confidence even without
ground truth

Accretive and iterative:
more de-anonymization =2
better de-anonymization
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Lesson #2:
“PII”" Is Technically Meaningless

Pll is info “with respect to which there is a reasonable basis to
believe the information can be used to identify the individual.”

R

Any piece of data can be used
HIPAA for re-identification!

Health Insuraq;:e iczrttability .
v [ Narayanan, Shmatikov }

CACM column, 2010

“blurring of the distinction between personally\
identifiable information and supposedly
anonymous or de-identified information” )
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