CS 6431

Data Privacy

Vitaly Shmatikov

Public Data Conundrum

- Health-care datasets
 - Clinical studies, hospital discharge databases ...
- Genetic datasets
 - \$1000 genome, HapMap, DeCODE ...
- Demographic datasets
 - U.S. Census Bureau, sociology studies ...
- Search logs, recommender systems, social networks, blogs ...
 - AOL search data, online social networks, Netflix movie ratings, Amazon ...

Basic Setting

Examples of Sanitization Methods

Input perturbation

• Add random noise to database, release

Summary statistics

- Means, variances
- Marginal totals
- Regression coefficients
- Output perturbation
 - Summary statistics with noise
- Interactive versions of the above methods
 - Auditor decides which queries are OK, type of noise

Data "Anonymization"

How?

Remove "personally identifying information" (PII)

• Name, Social Security number, phone number, email, address... what else?

Problem: PII has no technical meaning

- Defined in disclosure notification laws
 - If certain information is lost, consumer must be notified
- In privacy breaches, any information can be personally identifying
 - Examples: AOL dataset, Netflix Prize dataset

Latanya Sweeney's Attack (1997)

Massachusetts hospital discharge dataset

SSN	Name	vnicity	Date Of Birth	Sex	ZIP	Marital Status	Problem
			09/27/64	female	02139	divorced	hypertension
	8		09/30/64	female	02139	divorced	obesity
		asian	04/18/64	male	02139	married	chest pain
	ŝ	asian	04/15/64	male	02139	married	obesity
	8	black	03/13/63	male	02138	married	hypertension
		black	03/18/63	male	02138	married	shortness of breath
	ŝ.	black	09/13/64	female	02141	married	shortness of breath
		black	09/07/64	female	02141	married	obesity
	81	white	05/14/61	male	02138	single	chest pain
	8	white	05/08/61	male	02138	single	obesity
		white	09/15/61	female	02142	widow	shortness of breath

Voter List

Name	Address	City	ZIP	DOB	Sex	Party	
		·····					
		400000000000000000000000000000000000000				contraction and a second	
Sue J. Carlson	1459 Main St.	Cambridge	02142	9/15/61	female	democrat	

Figure *k*-dentifying anonymous data by linking to external data

Public voter dataset

Observation #1: Dataset Joins

- Attacker learns sensitive data by joining two datasets on common attributes
 - Anonymized dataset with sensitive attributes
 - Example: age, race, symptoms
 - "Harmless" dataset with individual identifiers
 - Example: name, address, age, race
- Demographic attributes (age, ZIP code, race, etc.) are very common in datasets with information about individuals

Observation #2: Quasi-Identifiers

Sweeney's observation:

(birthdate, ZIP code, gender) uniquely identifies 87% of US population

- Side note: actually, only 63% [Golle, WPES '06]
- Publishing a record with a quasi-identifier is as bad as publishing it with an explicit identity

Eliminating quasi-identifiers is not desirable

• For example, users of the dataset may want to study distribution of diseases by age and ZIP code

k-Anonymity

- Proposed by Samarati and/or Sweeney (1998)
- Hundreds of papers since then
 - Extremely popular in the database and data mining communities (SIGMOD, ICDE, KDD, VLDB)
- NP-hard in general, but there are many practically efficient k-anonymization algorithms
- Most based on generalization and suppression

Anonymization in a Nutshell

 Dataset is a relational table
Attributes (columns) are divided into quasi-identifiers and sensitive attributes

Generalize/suppress quasi-identifiers, don't touch sensitive attributes (keep them "truthful")

k-Anonymity: Definition

Any (transformed) quasi-identifier must appear in at least k records in the anonymized dataset

- k is chosen by the data owner (how?)
- Example: any age-race combination from original DB must appear at least 10 times in anonymized DB

 Guarantees that any join on quasi-identifiers with the anonymized dataset will contain at least k records for each quasi-identifier

Two (and a Half) Interpretations

- Membership disclosure: Attacker cannot tell that a given person in the dataset
- Sensitive attribute disclosure: Attacker cannot tell that a given person has a certain sensitive attribute
- Identity disclosure: Attacker cannot tell which record corresponds to a given person

This interpretation is correct, assuming the attacker does not know anything other than quasi-identifiers <u>But this does not imply any privacy!</u> Example: k clinical records, all HIV+

Achieving k-Anonymity

Generalization

- Replace specific quasi-identifiers with more general values until get k identical values
 - Example: area code instead of phone number
- Partition ordered-value domains into intervals

Suppression

- When generalization causes too much information loss – This is common with "outliers" (come back to this later)
- Lots of algorithms in the literature
 - Aim to produce "useful" anonymizations ... usually without any clear notion of utility

Generalization in Action

Curse of Dimensionality

[Aggarwal VLDB '05]

- Generalization fundamentally relies on spatial locality
 - Each record must have k close neighbors
- Real-world datasets are very sparse
 - Many attributes (dimensions)
 - Netflix Prize dataset: 17,000 dimensions
 - Amazon customer records: several million dimensions
 - "Nearest neighbor" is very far

◆Projection to low dimensions loses all info ⇒
k-anonymized datasets are useless

k-Anonymity: Definition

Does not say anything about the computations that are to be done on the data

Membership Disclosure

▲With large probability, quaci_identifier is unique

With large probability, quasi-identifier is unique in the population

- But generalizing/suppressing quasi-identifiers in the dataset does not affect their distribution in the population (obviously)!
 - Suppose anonymized dataset contains 10 records with a certain quasi-identifier ...

... and there are 10 people in the population who match this quasi-identifier

 k-anonymity may <u>not</u> hide whether a given person is in the dataset

Sensitive Attribute Disclosure

Intuitive reasoning:

- k-anonymity prevents attacker from telling which record corresponds to which person
- Therefore, attacker cannot tell that a certain person has a particular value of a sensitive attribute

This reasoning is fallacious!

3-Anonymization

Caucas	78712	Flu		Caucas	787XX	Flu
Asian	78705	Shingles		Asian/AfrAm	78705	Shingles
Caucas	78754	Flu 5		Caucas	787XX	Flu
Asian	78705	Acne		Asian/AfrAm	78705	Acre
AfrAm	78705	Acne		Asian/AfrAm	78705	Agne
Caucas	78705	Flu		Caucas	787XX	Flu
			-			

This is 3-anonymous, right?

Joining With External Database

Problem: sensitive attributes are not "diverse" within each quasi-identifier group

Another Attempt: I-Diversity

[Machanavajjhala et al. ICDE '06]

Caucas	787XX	Flu
Caucas	787XX	Shingles
Caucas	787XX	Acne
Caucas	787XX	Flu
Caucas	787XX	Acne
Caucas	787XX	Flu
Asian/AfrAm	78XXX	Flu
Asian/AfrAm	78XXX	Flu
Asian/AfrAm	78XXX	Acne
Asian/AfrAm	78XXX	Shingles
Asian/AfrAm	78XXX	Acne
Asian/AfrAm	78XXX	Flu

Entropy of sensitive attributes within each quasi-identifier group must be at least L

Still Does Not Work

Try Again: t-Closeness

[Li et al. ICDE '07]

Caucas	787XX	Flu
Caucas	787XX	Shingles
Caucas	787XX	Acne
Caucas	787XX	Flu
Caucas	787XX	Acne
Caucas	787XX	Flu
Asian/AfrAm	78XXX	Flu
Asian/AfrAm	78XXX	Flu
Asian/AfrAm	78XXX	Acne
Asian/AfrAm	78XXX	Shingles
Asian/AfrAm	78XXX	Acne
Asian/AfrAm	78XXX	Flu

Distribution of sensitive attributes within each quasi-identifier group should be "close" to their distribution in the entire original database

Trick question: Why publish quasi-identifiers at all??

Anonymized "t-Close" Database

Caucas	787XX	HIV+	Flu
Asian/AfrAm	787XX	HIV-	Flu
Asian/AfrAm	787XX	HIV+	Shingles
Caucas	787XX	HIV-	Acne
Caucas	787XX	HIV-	Shingles
Caucas	787XX	HIV-	Acne

A BARRING MADE WARRENT A

This is k-anonymous, I-diverse and t-close...

...so secure, right?

What Does Attacker Know?

Issues with Syntactic Definitions

What adversary do they apply to?

- Do not consider adversaries with side information
- Do not consider probability
- Do not consider adversarial algorithms for making decisions (inference)

Any attribute is a potential quasi-identifier

• External / auxiliary / background information about people is very easy to obtain

Classical Intution for Privacy

- Dalenius (1977): "If the release of statistics S makes it possible to determine the value [of private information] more accurately than is possible without access to S, a disclosure has taken place"
 - Privacy means that anything that can be learned about a respondent from the statistical database can be learned without access to the database
- Similar to semantic security of encryption
 - Anything about the plaintext that can be learned from a ciphertext can be learned without the ciphertext

Problems with Classic Intuition

- Popular interpretation: prior and posterior views about an individual shouldn't change "too much"
 - What if my (incorrect) prior is that every Cornell graduate student has three arms?
- How much is "too much?"
 - Can't achieve cryptographically small levels of disclosure and keep the data useful
 - Adversarial user is <u>supposed</u> to learn unpredictable things about the database

Absolute Guarantee Unachievable

- Privacy: for some definition of "privacy breach,"
 - \forall distribution on databases, \forall adversaries A, \exists A'
 - such that $Pr(A(San)=breach) Pr(A'()=breach) \le \varepsilon$
 - For reasonable "breach", if San(DB) contains information about DB, then some adversary breaks this definition

Example

- I know that you are 2 inches taller than the average Russian
- DB allows computing average height of a Russian
- This DB breaks your privacy according to this definition... even if your record is <u>not</u> in the database!

Differential Privacy

Absolute guarantees are problematic

• Your privacy can be "breached" (per absolute definition of privacy) even if your data is not in the database

 Relative guarantee: "Whatever is learned would be learned regardless of whether or not you participate"

• Dual: Whatever is already known, situation won't get worse

Indistinguishability

Which Distance to Use?

• Problem: ε must be large

- Any two databases induce transcripts at distance $\leq n\epsilon$
- To get utility, need $\varepsilon > 1/n$
- Statistical difference 1/n is not meaningful!
 - Example: release a random point from the database
 - San($x_1,...,x_n$) = (j, x_j) for random j
 - For every i, changing x_i induces statistical difference 1/n
 - But some x_i is revealed with probability 1
 - Definition is satisfied, but privacy is broken!

Formalizing Indistinguishability

Definition: San is ϵ -indistinguishable if

 \forall A, \forall <u>DB</u>, <u>DB</u>' which differ in 1 row, \forall sets of transcripts S

p(San(DB) \in S) \in (1 ± ϵ) p(San(DB') \in S)

Equivalently,
$$\forall$$
 S: $\frac{p(San(DB) = S)}{p(San(DB') = S)} \in 1 \pm \varepsilon$

Laplacian Mechanism

 Intuition: f(x) can be released accurately when f is insensitive to individual entries x₁, ... x_n

• Global sensitivity $GS_f = max_{neighbors x,x'} ||f(x) - f(x')||_1$

• Example: $GS_{average} = 1/n$ for sets of bits

• Theorem: $f(x) + Lap(GS_f/\varepsilon)$ is ε -indistinguishable

Noise generated from Laplace distribution

Lipschitz

constant of f

Sensitivity with Laplace Noise

$\frac{\text{Theorem}}{If A(x) = f(x) + \mathsf{Lap}\left(\frac{\mathsf{GS}_f}{\varepsilon}\right) \text{ then } A \text{ is } \varepsilon \text{-indistinguishable.}}$

Laplace distribution $Lap(\lambda)$ has density $h(y) \propto e^{-\frac{||y||_1}{\lambda}}$

Sliding property of $\operatorname{Lap}\left(\frac{\operatorname{GS}_{f}}{\varepsilon}\right)$: $\frac{h(y)}{h(y+\delta)} \leq e^{\varepsilon \cdot \frac{\|\delta\|}{\operatorname{GS}_{f}}}$ for all y, δ *Proof idea:* A(x): blue curve A(x'): red curve $\delta = f(x) - f(x') \leq \operatorname{GS}_{f}$

Differential Privacy: Summary

San gives ε-differential privacy if for all values of DB and Me and all transcripts t:

