
Exploiting Memory

Vitaly Shmatikov

CS 6431

slide 2

Famous Internet Worms

Morris worm (1988): overflow in fingerd

• 6,000 machines infected (10% of existing Internet)

CodeRed (2001): overflow in MS-IIS server

• 300,000 machines infected in 14 hours

SQL Slammer (2003): overflow in MS-SQL server

• 75,000 machines infected in 10 minutes (!!)

Sasser (2004): overflow in Windows LSASS

• Around 500,000 machines infected Responsible for user

authentication in Windows

slide 3

… And The Band Marches On

Conficker (2008-09): overflow in Windows RPC

• Around 10 million machines infected (estimates vary)

Stuxnet (2009-10): several zero-day overflows +
same Windows RPC overflow as Conficker

• Windows print spooler service

• Windows LNK shortcut display

• Windows task scheduler

Flame (2010-12): same print spooler and LNK
overflows as Stuxnet

• Targeted cyberespionage virus

slide 4

Buffer is a data storage area inside computer
memory (stack or heap)

• Intended to hold pre-defined amount of data

• Simplest exploit: supply executable code as “data”, trick
victim’s machine into executing it

– Code will self-propagate or give attacker control over machine

Attack can exploit any memory operation and need
not involve code injection or data execution

• Pointer assignment, format strings, memory allocation
and de-allocation, function pointers, calls to library
routines via offset tables …

Memory Exploits

slide 5

Stack Buffers

Suppose Web server contains this function
 void func(char *str) {

 char buf[126];

 strcpy(buf,str);

 }

When this function is invoked, a new frame
(activation record) is pushed onto the stack

Allocate local buffer

(126 bytes reserved on stack)

Copy argument into local buffer

Top of

stack

Stack grows this way

buf sfp
ret

addr str

Local variables

Frame of the

calling function

Execute code
at this address
after func() finishes

Arguments Pointer to
previous
frame

slide 6

What If Buffer Is Overstuffed?

Memory pointed to by str is copied onto stack…
 void func(char *str) {

 char buf[126];

 strcpy(buf,str);

 }

If a string longer than 126 bytes is copied into
buffer, it will overwrite adjacent stack locations

strcpy does NOT check whether the string

at *str contains fewer than 126 characters

buf str

This will be interpreted
as return address!

overflow
Top of

stack
Frame of the

calling function

slide 7

Executing Attack Code

Suppose buffer contains attacker-created string

• For example, str points to a string received from the
network as the URL

When function exits, code in the buffer will be

 executed, giving attacker a shell

• Root shell if the victim program is setuid root

code str Frame of the
calling function

ret

Attacker puts actual assembly

instructions into his input string, e.g.,

binary code of execve(“/bin/sh”)

In the overflow, a pointer back into the buffer

appears in the location where the program

expects to find return address

Top of

stack

int foo (void (*funcp)()) {
 char* ptr = point_to_an_array;
 char buf[128];
 gets (buf);
 strncpy(ptr, buf, 8);
 (*funcp)();
}

String
grows

Stack
grows

int bar (int val1) {
 int val2;
 foo (a_function_pointer);
}

Attacker-
controlled
memory

Most popular
target

val1

val2

arguments (funcp)

return address

Saved Frame Pointer

pointer var (ptr)

buffer (buf)

Stack Corruption: General View

slide 8

args (funcp)

return address

PFP

pointer var (ptr)

buffer (buf)

Attack code

① Change the return address to point
to the attack code. After the
function returns, control is
transferred to the attack code.

② … or return-to-libc: use existing
instructions in the code segment
such as system(), exec(), etc. as
the attack code.

①

② set stack pointers to
return to a dangerous
library function

“/bin/sh”

system()

Attack #1: Return Address

slide 9

slide 10

Cause: No Range Checking

strcpy does not check input size

• strcpy(buf, str) simply copies memory contents into
buf starting from *str until “\0” is encountered,
ignoring the size of area allocated to buf

Many C library functions are unsafe

• strcpy(char *dest, const char *src)

• strcat(char *dest, const char *src)

• gets(char *s)

• scanf(const char *format, …)

• printf(const char *format, …)

slide 11

C uses function pointers for callbacks: if pointer to
F is stored in memory location P, then another
function G can call F as (*P)(…)

Function Pointer Overflow

attack code

Buffer with attacker-supplied

input string

Callback

pointer

Legitimate function F

overflow

(elsewhere in memory)

args (funcp)

return address

SFP

pointer var (ptr)

buffer (buf)

 Attack code

Syscall pointer

 Global Offset Table

①

②

Attack #2: Pointer Variables

slide 12

① Change a function pointer to point to
attack code

② Any memory, on or off the stack, can be
modified by a statement that stores a
value into the compromised pointer

strcpy(buf, str);

 *ptr = buf[0];

slide 13

Home-brewed range-checking string copy
 void notSoSafeCopy(char *input) {
 char buffer[512]; int i;

 for (i=0; i<=512; i++)

 buffer[i] = input[i];

 }

 void main(int argc, char *argv[]) {

 if (argc==2)

 notSoSafeCopy(argv[1]);

 }

Off-By-One Overflow

1-byte overflow: can’t change RET, but can
change saved pointer to previous stack frame

• On little-endian architecture, make it point into buffer

• Caller’s RET will be read from buffer!

 This will copy 513
characters into the
buffer. Oops!

 args (funcp)

return address

SFP

pointer var (ptr)

buffer (buf)

Attack code

Fake return

address

Fake SFP

Attack #3: Frame Pointer

Change the caller’s saved frame
pointer to point to attacker-controlled
memory. Caller’s return address will be
read from this memory.

slide 14

Arranged like a

real frame

Buffer Overflow: Causes and Cures

“Classic” memory exploit involves code injection

• Put malicious code at a predictable location in
memory, usually masquerading as data

• Trick vulnerable program into passing control to it

– Overwrite saved EIP, function callback pointer, etc.

Idea: prevent execution of untrusted code

• Make stack and other data areas non-executable

• Digitally sign all code

• Ensure that all control transfers are into a trusted,
approved code image

slide 15

WX / DEP

Mark all writeable memory locations as non-
executable

• Example: Microsoft’s DEP - Data Execution Prevention

• This blocks most (not all) code injection exploits

Hardware support

• AMD “NX” bit, Intel “XD” bit (in post-2004 CPUs)

• OS can make a memory page non-executable

Widely deployed

• Windows (since XP SP2), Linux (via PaX patches),
OpenBSD, OS X (since 10.5)

slide 16

Issues with WX / DEP

Some applications require executable stack

• Example: JavaScript, Flash, Lisp, other interpreters

JVM makes all its memory RWX – readable,
writable, executable (why?)

• Can spray attack code over memory containing Java
objects (how?), pass control to them

Some applications don’t use DEP

• For example, some Web browsers

Attack can start by “returning” into a memory
mapping routine and make the page containing
attack code writeable

slide 17

What Does WX Not Prevent?

Can still corrupt stack …

• … or function pointers or critical data on the heap, but
that’s not important right now

As long as “saved EIP” points into existing code,
WX protection will not block control transfer

This is the basis of return-to-libc exploits

• Overwrite saved EIP with the address of any library
routine, arrange memory to look like arguments

Does not look like a huge threat

• Attacker cannot execute arbitrary code

• … especially if system() is not available
slide 18

return-to-libc on Steroids

Overwritten saved EIP need not point to the
beginning of a library routine

Any existing instruction in the code image is fine

• Will execute the sequence starting from this instruction

What if the instruction sequence contains RET?

• Execution will be transferred to… where?

• Read the word pointed to by stack pointer (ESP)

– Guess what? Its value is under attacker’s control! (why?)

• Use it as the new value for EIP

– Now control is transferred to an address of attacker’s choice!

• Increment ESP to point to the next word on the stack

slide 19

Chaining RETs for Fun and Profit

Can chain together sequences ending in RET

• Krahmer, “x86-64 buffer overflow exploits and the
borrowed code chunks exploitation technique” (2005)

What is this good for?

Answer [Shacham et al.]: everything

• Turing-complete language

• Build “gadgets” for load-store, arithmetic,

 logic, control flow, system calls

• Attack can perform arbitrary computation using no
injected code at all!

slide 20

[Shacham et al.]

Image by Dino Dai Zovi slide 21

Ordinary Programming

Instruction pointer (EIP) determines which
instruction to fetch and execute

Once processor has executed the instruction, it
automatically increments EIP to next instruction

Control flow by changing value of EIP

slide 22

Return-Oriented Programming

Stack pointer (ESP) determines which instruction
sequence to fetch and execute

Processor doesn’t automatically increment ESP

• But the RET at end of each instruction sequence does

slide 23

No-ops

No-op instruction does nothing but advance EIP

Return-oriented equivalent

• Point to return instruction

• Advances ESP

Useful in a NOP sled (what’s that?)

slide 24

Immediate Constants

Instructions can encode constants

Return-oriented equivalent

• Store on the stack

• Pop into register to use

slide 25

Control Flow

slide 26

Ordinary programming

• (Conditionally) set EIP to new value

Return-oriented equivalent

• (Conditionally) set ESP to new value

Gadgets: Multi-instruction Sequences

Sometimes more than one instruction sequence
needed to encode logical unit

Example: load from memory into register

• Load address of source word into EAX

• Load memory at (EAX) into EBX
slide 27

“The Gadget”: July 1945

slide 28

Gadget Design

Testbed: libc-2.3.5.so, Fedora Core 4

Gadgets built from found code sequences:

• Load-store, arithmetic & logic, control flow, syscalls

Found code sequences are challenging to use!

• Short; perform a small unit of work

• No standard function prologue/epilogue

• Haphazard interface, not an ABI

• Some convenient instructions not always available

slide 29

Conditional Jumps

cmp compares operands and sets a number of
flags in the EFLAGS register

• Luckily, many other ops set EFLAGS as a side effect

jcc jumps when flags satisfy certain conditions

• But this causes a change in EIP… not useful (why?)

Need conditional change in stack pointer (ESP)

Strategy:

• Move flags to general-purpose register

• Compute either delta (if flag is 1) or 0 (if flag is 0)

• Perturb ESP by the computed delta

slide 30

Phase 1: Perform Comparison

neg calculates two’s complement

• As a side effect, sets carry flag (CF)
if the argument is nonzero

Use this to test for equality

 sub is similar, use to test if one
number is greater than another

slide 31

Phase 2: Store 1-or-0 to Memory

slide 32

 Clear ECX

 EDX points to destination

 adc adds up its operands & the carry flag;

 result will be equal to the carry flag (why?)

 Store result of adc into destination








Two’s-complement
negation:

0 becomes 0…0;

1 becomes 1…1

Bitwise AND with delta

(in ESI)

slide 33

Phase 3: Compute Delta-or-Zero

Phase 4: Perturb ESP by Delta

slide 34

Finding Instruction Sequences

Any instruction sequence ending in RET is useful

Algorithmic problem: recover all sequences of
valid instructions from libc that end in a RET

At each RET (C3 byte), look back:

• Are preceding i bytes a valid instruction?

• Recur from found instructions

Collect found instruction sequences in a trie

slide 35

ret }

Unintended Instructions

c7

45

d4

01

00

00

00

f7

c7

07

00

00

00

0f

95

45

c3

movl $0x00000001, -44(%ebp)

test $0x00000007, %edi

setnzb -61(%ebp)

add %dh, %bh

movl $0x0F000000, (%edi)

xchg %ebp, %eax
inc %ebp }

}

slide 36

Actual code from ecb_crypt()

x86 Architecture Helps

Register-memory machine

• Plentiful opportunities for accessing memory

Register-starved

• Multiple sequences likely to operate on same register

Instructions are variable-length, unaligned

• More instruction sequences exist in libc

• Instruction types not issued by compiler may be
available

Unstructured call/ret ABI

• Any sequence ending in a return is useful

slide 37

SPARC: The Un-x86

Load-store RISC machine

• Only a few special instructions access memory

Register-rich

• 128 registers; 32 available to any given function

All instructions 32 bits long; alignment enforced

• No unintended instructions

Highly structured calling convention

• Register windows

• Stack frames have specific format

slide 38

ROP on SPARC

Use instruction sequences that are suffixes of real
functions

Dataflow within a gadget

• Structured dataflow to dovetail with calling convention

Dataflow between gadgets

• Each gadget is memory-memory

Turing-complete computation!

• “When Good Instructions Go Bad: Generalizing Return-
Oriented Programming to RISC” (CCS 2008)

slide 39

Proposed ROP Defenses

Eliminate code sequences with RET

Look for violations of LIFO call-return order

• kBouncer - winner of 2012 MS BlueHat Prize ($200K)

• Observation about legitimate RETs:
they return to instructions right after CALLs

• Modern Intel CPUs store sources and targets of last 4-16
branches in special registers

– Direct hardware support, zero overhead

• When application enters the kernel (system call), check
that the target of every recorded RET follows a CALL

– Why check only on kernel entry?

slide 40

Defeating ROP Defenses

“Jump-oriented” programming

• Use update-load-branch sequences instead of returns +
a trampoline sequence to chain them together

• “Return-oriented programming w/o returns” (CCS 2010)

Craft a separate function call stack and call
legitimate functions present in the program

• Checkoway et al.’s attack on Sequoia AVC Advantage
voting machine

• Harvard architecture: code separate from data  code
injection is impossible, but ROP works fine

– Similar issues on some ARM CPUs (think iPhone)

slide 41

[Checkoway et al.]

slide 42

Embed “canaries” (stack cookies) in stack frames
and verify their integrity prior to function return

• Any overflow of local variables will damage the canary

Choose random canary string on program start

• Attacker can’t guess what the value of canary will be

Terminator canary: “\0”, newline, linefeed, EOF

• String functions like strcpy won’t copy beyond “\0”

StackGuard

Top of

stack
buf sfp

ret
addr

Local variables

Pointer to
previous
frame

Frame of the
calling function

Return

execution to
this address

canary

StackGuard Implementation

StackGuard requires code recompilation

Checking canary integrity prior to every function
return causes a performance penalty

• For example, 8% for Apache Web server

StackGuard can be defeated

• A single memory copy where the attacker controls
both the source and the destination is sufficient

slide 43

Defeating StackGuard

Suppose program contains *dst=buf[0] where
attacker controls both dst and buf

• Example: dst is a local pointer variable

slide 44

buf sfp RET

Return execution to
this address

canary dst

sfp RET canary BadPointer, attack code

&RET

Overwrite destination of memory copy with RET position

slide 45

ProPolice / SSP

Rerrange stack layout (requires compiler mod)

args

return address

SFP

CANARY

arrays

local variables

Stack
growth

 No arrays or pointers

Ptrs, but no arrays

String
growth

Cannot overwrite any pointers

by overflowing an array

[IBM, used in gcc 3.4.1; also MS compilers]

exception handler records

slide 46

What Can Still Be Overwritten?

Other string buffers in the vulnerable function

Any data stored on the stack

• Exception handling records

• Pointers to virtual method tables

– C++: call to a member function passes as an argument “this”
pointer to an object on the stack

– Stack overflow can overwrite this object’s vtable pointer and
make it point into an attacker-controlled area

– When a virtual function is called (how?), control is transferred
to attack code (why?)

– Do canaries help in this case?

 (Hint: when is the integrity of the canary checked?)

slide 47

Code Red Worm (2001)

A malicious URL exploits buffer overflow in a
rarely used URL decoding routine in MS-IIS …

… the stack-guard routine notices the stack has
been smashed, raises an exception, calls handler

… pointer to exception handler located on the
stack, has been overwritten to point to CALL EBX
instruction inside the stack-guard routine

… EBX is pointing into the overwritten buffer

… the buffer contains the code that finds the
worm’s main body on the heap and executes it

[Chien and Szor, “Blended Attacks”]

Safe Exception Handling

Exception handler record must be on the stack of
the current thread

Must point outside the stack (why?)

Must point to a valid handler

• Microsoft’s /SafeSEH linker option: header of the binary
lists all valid handlers

Exception handler records must form a linked list,
terminating in FinalExceptionHandler

• Windows Server 2008: SEH chain validation

• Address of FinalExceptionHandler is randomized (why?)

slide 48

SEHOP

SEHOP: Structured Exception Handling
Overwrite Protection (since Win Vista SP1)

Observation: SEH attacks typically corrupt the
“next” entry in SEH list

SEHOP adds a dummy record at top of SEH list

When exception occurs, dispatcher walks up list
and verifies dummy record is there; if not,
terminates process

slide 49

slide 50

Configuration parameters

• Example: directory names that confine remotely
invoked programs to a portion of the file system

Pointers to names of system programs

• Example: replace the name of a harmless script with
an interactive shell

• This is not the same as return-to-libc (why?)

Branch conditions in input validation code

None of these exploits violate the integrity of the
program’s control flow

• Only original program code is executed!

Non-Control Targets
[Chen et al. “Non-Control-Data Attacks Are Realistic Threats”]

slide 51

SSH Authentication Code

Loop until one of
the authentication
methods succeeds

detect_attack() prevents
checksum attack on SSH1…

…and also contains an
overflow bug which permits
the attacker to put any value
into any memory location

write 1 here

 Break out of authentication
loop without authenticating
properly

[Chen et al. “Non-Control-Data Attacks Are Realistic Threats”]

slide 52

Two’s Complement

Binary representation of negative integers

Represent X (where X<0) as 2N-|X|

• N is word size (e.g., 32 bits on x86 architecture)

0 0 0 0 … 0 1

0 1 1 1 … 1 1

1 1 1 1 … 1 1

1 1 1 1 … 1 0

1 0 0 0 … 0 0

1

231-1

-1

-2

-231

 231 ??

slide 53

Integer Overflow

static int getpeername1(p, uap, compat) {

// In FreeBSD kernel, retrieves address of peer to which a socket is connected

 …

 struct sockaddr *sa;

 …

 len = MIN(len, sa->sa_len);

 … copyout(sa, (caddr_t)uap->asa, (u_int)len);

 …

}

Checks that “len” is not too big

Copies “len” bytes from
kernel memory to user space

Negative “len” will always pass this check…

… interpreted as a huge
unsigned integer here

… will copy up to 4G of
 kernel memory

slide 54

ActionScript Exploit

ActionScript 3 is a scripting language for Flash

• Basically, JavaScript for Flash animations

• For performance, Flash 9 and higher compiles scripts
into bytecode for ActionScript Virtual Machine (AVM2)

Flash plugins are installed on millions of
browsers, thus a perfect target for attack

• Internet Explorer and Firefox use different Flash
binaries, but this turns out not to matter

Exploit published in April 2008

• “Leveraging the ActionScript Virtual Machine”

[Dowd]

call SWF_GetEncodedInteger ; Scene Count

mov edi, [ebp+arg_0]

mov [esi+4], eax

mov ecx, [ebx+8]

sub ecx, [ebx+4]

cmp eax, ecx

jg loc_30087BB4

…

push eax

call mem_Calloc

Processing SWF Scene Records (1)

How much memory is needed to store scenes

Code that allocates memory
for scene records:

Total size of the buffer
Offset into the buffer

Is there enough memory in the buffer?
(signed comparison)

What if scene count is negative?

Tell mem_Calloc how many bytes to allocate

Interprets its argument as unsigned integer

Supplied as part of SWF file from
 potentially malicious website

mem_Calloc fails (why?) and
returns NULL

slide 55

Processing SWF Scene Records (2)

Scene records are copied as follows:

• Start with pointer P returned by allocator

• Loop through and copy scenes until count ≤ 0

• Copy frame count into P + offset, where offset is
determined by scene count

– Frame count also comes from the SWF file

– It is a “short” (16-bit) value, but written as a 32-bit DWORD

Attacker gains the ability to write one short value
into any location in memory (why?)

• … subject to some restrictions (see paper)

• But this is not enough to hijack control directly (why?)

slide 56

slide 57

ActionScript Virtual Machine (AVM2)

Register-based VM

• Bytecode instructions write and read from “registers”

“Registers”, operand stack, scope stack allocated
on the same runtime stack as used by Flash itself

• “Registers” are mapped to locations on the stack and
accessed by index (converted into memory offset)

• This is potentially dangerous (why?)

Malicious Flash script could hijack browser’s host

• Malicious bytecode can write into any location on the
stack by supplying a fake register index

• This would be enough to take control (how?)

slide 58

AVM2 Verifier

ActionScript code is verified before execution

All bytecodes must be valid

• Throw an exception if encountering an invalid bytecode

All register accesses correspond to valid locations
on the stack to which registers are mapped

For every instruction, calculate the number of
operands, ensure that operands of correct type
will be on the stack when it is executed

All values are stored with correct type information

• Encoded in bottom 3 bits

Relevant Verifier Code

…

if(AS3_argmask[opCode] == 0xFF) {

 … throw exception …

}

…

opcode_getArgs(…)

…

void opcode_getArgs(…) {

 DWORD mask=AS3_argmask[opCode];

 …

 if(mask <=0) { … return … }

 … *arg_dword1 = SWF_GetEncodedInteger(&ptr);

 if(mask>1) *arg_dword2 = SWF_GetEncodedInteger(&ptr);

}

Invalid bytecode

Determine operands

Number of operands for each opcode
is defined in AS3_argmask array

slide 59

slide 60

Executing Invalid Opcodes

If interpreter encounters an invalid opcode, it
silently skips it and continues executing

• Doesn’t really matter because this can’t happen

– Famous last words…

• AS3 code is executed only after it has been verified,
and verifier throws an exception on invalid bytecode

But if we could somehow trick the verifier…

• Bytes after the opcode are treated as data (operands)
by the verifier, but as executable code by interpreter

• This is an example of a TOCTTOU (time-of-check-to-
time-of-use) vulnerability

slide 61

Breaking AVM2 Verifier

slide 62

Breaking AVM2 Verifier

Pick an invalid opcode

Use the ability to write into arbitrary memory to
change the AS3_argmask of that opcode from
0xFF to something else

AVM2 verifier will treat it as normal opcode and
skip subsequent bytes as operands

• How many? This is also determined by AS3_argmask!

AVM2 interpreter, however, will skip the invalid
opcode and execute those bytes

Can now execute unverified ActionScript code

slide 63

Further Complications

Can execute only a few unverified bytecodes at a
time (why?)

• Use multiple “marker” opcodes with overwritten masks

Cannot directly overwrite saved EIP on the
evaluation stack with the address of shellcode
because 3 bits are clobbered by type information

• Stack contains a pointer to current bytecode (codePtr)

• Move it from one “register” to another, overwrite EIP

• Bytecode stream pointed to by codePtr contains a jump
to the actual shellcode

Read the paper for more details

