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Intrusion Detection Techniques

AN P e G ST B e W P S S ST e VT T TP S G ST S N T I O G ST B R N TV PR O S ST R A

® Misuse detection
e Use attack “signatures” - need a model of the attack
e Must know in advance what attacker will do (how?)
e Can only detect known attacks

€ Anomaly detection

e Using a model of normal system behavior, try to
detect deviations and abnormalities

e Can potentially detect unknown attacks
@ Which is harder to do?
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Level of Monitoring

AN P e G ST B e W P S S ST e VT T TP S G ST S N T I O G ST B R N TV PR O S ST R A

@ Which types of events to monitor?
e OS system calls «
e Command line
o Network data (e.g., from routers and firewalls)
o Keystrokes
e File and device accesses
e Memory accesses

# Auditing / monitoring should be scalable
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System CaII Interp05|t|on

AN P e G ST B e W P S S ST e VT T TP S G ST S N T I O G ST B R N TV PR O S ST R A

# Observation: all sensitive system resources are
accessed via OS system call interface

e Files, sockets, etc.

# Idea: monitor all system calls and block those
that violate security policy
e Inline reference monitors

e Language-level

— Example: Java runtime environment inspects the stack of the
function attempting to access a sensitive resource to check
whether it is permitted to do so

e Common OS-level approach: system call wrapper
— Want to do this without modifying OS kernel (why?)
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Pollcy DeS|gn

S TP G TN S N T TP O G ST e N T TP P G ST B R P P S G ST B S W O RV PR N G ST A

@ Designing a good system call policy is not easy

€ When should a system call be permitted and
when should it be denied?

€ Example: ghostscript
e Needs to open X windows

e Needs to make X windows calls

e But what if ghostscript reads characters you type in
another X window?
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[Garfinkel. “Traps and Pitfalls:

Tra pS a nd Pltfa I IS Practical Problems in System Call

Interposition Based Security Tools".
NDSS 2003]

LI TP R S T B R N TP S G S T B e N R P i G ST B A W R

@ Incorrectly mirroring OS state

# Overlooking indirect paths to resources
e Inter-process sockets, core dumps

® Race conditions (TOCTTOU)
e Symbolic links, relative paths, shared thread meta-data

# Unintended consequences of denying OS calls

e Process dropped privileges using setuid but didn't check
value returned by setuid... and monitor denied the call

€ Bugs in reference monitors and safety checks
e What if runtime environment has a buffer overflow?
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Incorrectly Mirroring OS State

AN P e G ST e W P O S ST B e VS Y TP R G T B S N W R P O G ST P A O YR [ G a rfl n ke I ]

Policy: “process can bind TCP sockets on port 80,
but cannot bind UDP sockets”

X = socket(UDP, ...) Monitor: “X is a UDP socket”
Y = socket(TCP, ...) Monitor: Y is a TCP socket”

close(Y)
dup2(X,Y) Monitor’s state now inconsistent with OS
bind(Y, ...) Monitor: “Y is a TCP socket, Ok to bind”

Oops!
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TOCTTOU in Syscall Interposition

AN P e G ST B e W P S S ST e VT T TP S G ST S N T I O G ST B R N TV PR O S ST R A

@ User-level program makes a system call
e Direct arguments in stack variables or registers
e Indirect arguments are passed as pointers

® Wrapper enforces some security policy

e Arguments are copied into kernel memory and analyzed
and/or substituted by the syscall wrapper

€ What if arguments change right here?
@ If permitted by the wrapper, the call proceeds

e Arguments are copied into kernel memory
o Kernel executes the call
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Epr0|t|ng TOC'ITOU Conditions

s s wsssweecemmeene oo [Watson. “Exploiting Concurrency
Vulnerabilities in System Call Wrappers”.

¢ Forced wait on disk I/O | woor 20071

e Example: rename()
— Attacker causes the target path of rename() to page out to disk
— Kernel copies in the source path, then waits for target path
— Concurrent attack process replaces the source path
— Postcondition checker sees the replaced source path

®\oluntary thread sleeps

e Example: TCP connect()
— Kernel copies in the arguments
— Thread calling connect() waits for a TCP ACK
— Concurrent attack process replaces the arguments
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TOC'ITOU via a Page Fault

W PR G TS R VN TP O G ST e VS T TP G T e N W P O G ST e O R L [Watson]

Exploitable race

window as
memaory IS paged L
Aftacker
forces renam e() GEWTK
target path system call postcondition
into swap
Process 1 kemel =
el R Kemel Kernel sleeps idvwapper
acket, copies while paging copies replaced
ﬁt’?'ﬁs unmodified target path back source path for
Ak source path into memaory use withiDS
paths
T arget
Y #
Path Jhom eko ent
shared
Mermaory
Source
Path lhom ekolforaard Mhomekolnbox
Attacker replaces
source pathin memotry
while kernel is pading
Process 2 —— r—

slide 12



TOCTTOU on Sysjail

AN P e G ST e W P O S ST B e VS Y TP R G T B S N W R P O G ST P A O YR [Wa tSO n]

Process 1 kernel
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Exploitable race
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I i
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Sysjail copies bind() system call
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original address operation
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- _—#

P 2 replaces address in
shared memory from
second processor
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Mltlgatlng TOC'ITOU

S TP G TN S N T TP O G ST e N T TP P G ST B R P P S G ST B S W O RV PR N G ST A

€ Make pages with syscall arguments read-only
e Tricky implementation issues
e Prevents concurrent access to data on the same page

# Avoid shared memory between user process,
syscall wrapper and the kernel

e Argument caches used by both wrapper and kernel

e Message passing instead of argument copying (why
does this help?)

€ Atomicity using system transactions
@ Integrate security checks into the kernel?
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Interp05|t|on + Statlc AnaIyS|s

W PR i T B A W T P R R ST e W PR O i T W PR O i T PR O AN A

1. Analyze the program to determine its expected
system call behavior

2. Monitor actual behavior

3. Flag an intrusion if there is a deviation from the
expected behavior

o System call trace of the application is constrained to
be consistent with the source or binary code

e Main advantage: a conservative model of expected
behavior will have zero false positives
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s s1 \\ 4 n
rivial “Bag-O’Calls” Mode
(NS 50N LA R T TA IR S W0 N LA SRS TA NS 40 N LA R T A TN S 0D e N LA S A

MR LA NG B SN LA

@ Determine the set S of all system calls that an
application can potentially make
e Lose all information about relative call order

® At runtime, check for each call whether it
belongs to this set

# Problem: large number of false negatives
o Attacker can use any system call from S

® Problem: |S| very big for large applications
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Ca I Ig ra p h M Od e' [Wagner and Dean. “Intrusion Detection

R TS s Vid Static AnaIYSiS". Oakland 2001]

@ Build a control-flow graph of the application by
static analysis of its source or binary code

@ Result: non-deterministic finite-state automaton
(NFA) over the set of system calls
e Each vertex executes at most one system call

e Edges are system calls or empty transitions

o Implicit transition to special "“Wrong” state for all
system calls other than the ones in original code;
all other states are accepting

@ System call automaton is conservative
o Zero false positives!
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NFA Example

AN P i G ST B e W P O S ST B R VS TP i G ST B S N T R PR O i ST R A [Wa g n e r a n d Dea n ]

x ? getuid() : geteuid(); ntrv(g) v - Entrv
x++; Eniry(g) g\ T Entry ()

} —

g { close() ~c getuid() |
fd = open("foo", O_RDONLY); ~ eteuid
£(0); close(fd); f(1); \—@ ~ if/ 0

exit(0); T ' - _
} (B0 () — — )

e Monitoring is O(|V|) per system call

e Problem: attacker can exploit impossible paths
— The model has no information about stack state!
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Another NFA Example

AN P P G ST e W P P O S ST B e VS TP R G T B R W R PR O G ST P e O R R [ G i ffi n ]

mysetuid

e

setuid

log

void
mysetuid (uid t uid)
{

setuid (uid) ;

log(“Set UID”, 7);
}

log
@

write
void
log (char *msg,
int len)
{

write (fd, msg, len);

}

myexec

oo’

exec

O—

void
myexec (char *src)

{
log (“Execing”, 7);
exec (“/bin/1s”) ;
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NFA Permits Impossible Paths

AN P e G ST B e W P S S ST e VT T TP S G ST S N T I O G ST B R N TV PR O S ST R A

mysetuid

e

setuid ( , lg{ m

< e

G

c
log
< C
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NFA Modeling Tradeoffs

O TP i G ST e VS T TP G ST e N T TP P G ST B R W P O G S ST B R W R PR R G ST

€ A good model should be...

e Accurate: closely models expected execution
e Fast: runtime verification is cheap

Inaccurate

Accurate

Slow

Fast

NFA
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Abstract Stack Model

AN P e G ST B e W P S S ST e VT T TP S G ST S N T I O G ST B R N TV PR O S ST R A

@ NFA is not precise, loses stack information

® Alternative: model application as a context-free
language over the set of system calls
e Build a non-deterministic pushdown automaton (PDA)

e Each symbol on the PDA stack corresponds to single
stack frame in the actual call stack

o All valid call sequences accepted by PDA; enter
“"Wrong” state when an impossible call is made
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PDA Example

Y P B T N P A T B R I P T B I R P I T W P 0 [G|ff|n]
nﬁtuid
setuid myexec
. e
& <
push A : push B
log write 10g
< g

pop A pop B l
cxec

slide 23



Another PDA Example

AN P P G ST e W P O S ST B e VS P P S G S TS B S NS R P R G ST B R [Wa g n e r a n d Dea n ]

while (true)
case pop() of

f(int x) { Entry(f) 1= getuid() Exit(f) Entry(f) = push(Exit(f)): push(getuid())
x ? getuid() : geteuid(); | geteuid() Exit(f) Entry(f) = push(Exit(f)): push(geteuid())
X+ Exit(f) =€ Exit(f) = no-op

} Entry(g) ::= open() v Entry(g) = push(v); push(open())

g0 { v = Entry(f) o' v = push(v'); push(Entry(f))
£d = open("foo", O_RDONLY); v’ = close() w v’ = push(w); push(close())
£(0); close(fd); £(1); w = Entry(f) w'’ w = push(w'); push(Entry(f))
exit (0): w' n= exit() Exit(g) w' = push(Exit(g)); push(exit())

} Bxit(g) = e Fxit(g) = no-op

a € ¥ = read and consume a from the input
otherwise = enter the error state, \Wrong
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PDA Modeling Tradeoffs

O TP i G ST e VS T TP G ST e N T TP P G ST B R W P O G S ST B R W R PR R G ST

# Non-deterministic PDA has high cost
e Forward reachability algorithm is cubic in

automaton size

e Unusable for online checking

Inaccurate

Accurate

Slow

PDA

Fast

NFA
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Dyck Model

LI O S ST B A T

LI O S ST B A T

CEN PR

[Giffin et al. “Efficient Context-Sensitive
Intrusion Detection”. NDSS 2004]

® Idea: make stack updates (i.e., function calls and
returns) explicit symbols in the alphabet
e Result: stack-deterministic PDA

€ At each moment, the monitor knows where the
monitored application is in its call stack
e Only one valid stack configuration at any given time

® How does the monitor learn about function calls?

e Use binary rewriting to instrument the code to issue
special "null” system calls to notify the monitor
— Potential high cost of introducing many new system calls

e Can't rely on instrumentation if application is corrupted
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Example of Dyck Model

P N T S P i o ¢ T B PP i 2 ¢ G B P P i 2 T B Ml W R P i [G|ff|n]

nﬁtuid
setuid myexec
log
e

/

A

O-

! exec
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System Call Processing Complexity

AN P P G ST B e W P P O S ST B e VS T TP R G T B S W W R P O G ST e O R PR N [ G i ffi n ]

Time & Space
Model/ Complexity
NFA O(n)
PDA O(nm2)
Dyck O(n)

n Is state count

m 1S transition count

slide 28



Runtime Bounds Checking

AN P e G ST B e W P S S ST e VT T TP S G ST S N T I O G ST B R N TV PR O S ST R A

Referent object = buffer to which pointer points
e Actual size is available at runtime!

1. Modified pointer representation
o Pointer keeps information about its referent object
e Incompatible with external code, libraries, etc. ®
2. Special table maps pointers to referent objects
e Check referent object on every dereference
e What if a pointer is modified by external code? ®

3. Keep track of address range of each object

e For every pointer arithmetic operation, check that the
result points to the same referent object e 9



[Jones and Kelly. “*Backwards-Compatible Bounds
JOneS- Kel Iy Checking for Arrays and Pointers in C Programs”.

s ———— -] Automated and Algorithmic Debugging 1997]

€ Pad each object by 1 byte

e C permits a pointer to point to the byte right after an
allocated memory object

€ Maintain a runtime tree of allocated objects
@ Backwards-compatible pointer representation

@ Replace all out-of-bounds addresses with special
ILLEGAL value (if dereferenced, program crashes)

@ Problem: what if a pointer to an out-of-bounds
address is used to compute an in-bounds address
e Result: false alarm
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Example of a False AIarm

AN P e G ST B e W P S S ST e VT T TP S G ST S N T I O G ST B R N TV PR O S ST R A

-

referent object (4 bytes)

: I

{

A

A
char *p, *q, *r, *s; T
>3

out of bounds!

Sissetto p . ma”OC(4)’
ILLEGQ;:I — p+1;
= p+5;

Note: this code works even though
it's technically illegal in standard C
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Ru wasSe- La m [Ruwase and Lam. “A Practical Dynamic

e e e ene ensssmrcesn o BUFfEr Overflow Detector”. NDSS 2004]

@ Instead of ILLEGAL, make each out-of-bounds
pointer point to a special OOB object
e Stores the original out-of-bounds value
e Stores a pointer to the original referent object

# Pointer arithmetic on out-of-bounds pointers
e Simply use the actual value stored in the OOB object

@ If a pointer is dereferenced, check if it points to
an actual object. If not, halt the program!
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N3 N Y S g LY

NG Ao Nl AR A TENA B o N YA RTINS B o N YO RTINS R o N YO
LRSI PO N TIEL as TR WO RO S TN 0s TR WO RO S TN 0s TR WO RO S TN 0s el

referent object (4 bytes)
' - I

! A
char *p, *q, *r, *s; T (I
p = malloc(4);
q=p+l;

S = p+5; > !
F = 5-3; OOB object

Value of r is
in bounds

Note: this code works even though
it's technically illegal in standard C
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.

Performance Issues

b IO SRR S B S NS TP R G T B S N W P O G ST R A

# Checking the referent object table on every

pointer arithmetic operation is very expensive

@ Jones-Kelly: 5x-6x slowdown

\ 4

\ 4

e Tree of allocated objects grows very big

Ruwase-Lam: 11x-12x slowdown if enforcing
pounds on all objects, up to 2x if only strings

Unusable in production code!
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D h U rJ atl Ad Ve [Dhurjati and Adve. "Backwards-compatible

Array Bounds Checking for C with
s s wssssescesm) \fery Low Overhead”. ICSE 2006]

@ Split memory into disjoint pools
e Use aliasing information
e Target pool for each pointer known at compile-time
e Can check if allocation contains a single element (why
does this help?)
@ Separate tree of allocated objects for each pool
e Smaller tree = much faster lookup; also caching

@ Instead of returning a pointer to an OOB, return
an address from the kernel address space
e Separate table maps this address to the OOB
e Don't need checks on every dereference (why?)
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OOB Pointers: Ruwase-Lam

r=q-15; r=p+5

*r= ... ; //no bounds overflow  Check if r is out of bounds

*q = ... ; /[ overflow @if q is out of@

Runtime error

Check on every dereference
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OOB Pointers: Dhurjati-Adve

p = malloc(10 * sizeof(int));

r=q-15; r=p+5
*r = ... ; //no bounds overflow  No software check necessary!
*q = ...; // overflow No software check necessary!

Runtime error
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Baggy Bou nds [Akritidis et al. "Baggy Bounds Checking”.

== USENIX Security 2009]

® Allocators pad objects to align pointers

® Insight: to prevent “bad” out-of-bounds memory
accesses, it is enough to check allocation bounds,
not the precise object bounds

e What is a “"bad” out-of-bounds access?

Object Padding Next object
s N e - ~ 7 > I
Out-of-bounds access to padding is harmless
(is this true?)
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Very EfflClent Bounds Representatlon

SRS ST R s R annsancanesewnasss [ Akritidis et al.]

# Storing the pointer to the object and its size
requires at least 8 bytes per object

® Instead, use a custom allocator to pad and align
objects to powers of 2 = then it's enough to
store log of object’s size in the bounds table
= log2(alloc_size) ... this takes 1 byte per object and
can be used to compute its size and base pointer:
alloc_size =1 << e
base = p & ~(alloc_size-1)
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Very EfflClent Bounds Table

AR S R SR e ssrermmsose waasses. [ AKritidis et al.]

® Partition memory into slots and align allocated
objects to slot boundaries

e Thus each slot can belong to at most 1 object

€ Bounds table = contiguous array of 1-byte
entries (an entry per each slot)

€ Given an address p, finding its entry takes a
single memory lookup

e p>>|og2(slot_size) + constant table base = address
of the corresponding entry in the bounds table

e No need for tree traversal!
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Very EfflClent Bounds Checkmg

smesmnssee [ AKritidis et al.]

€ Given a pointer arithmetic operation ...
P'=p+i

¢ ... perform a very efficient check
(p”p)>>BoundsTable[p>>log2(slot_size)] ==

# This checks whether p and p’ have the same
prefix with only log(alloc_size) least significant
bytes modified
* No need to check against lower and upper bounds!
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Handling Out-of-Bounds Pointers

AN P P G ST e W P P S S ST B e VS T P TP G ST e N T TP O G ST B R T [ A kr‘ i ti d I S et a I ]
L ]

# Use a variant of Dhurjati-Adve technique to
prevent OOB pointers from being dereferenced

e Restrict the program to lower half of address space,
set the most significant bit of OOB pointers to 1, thus
all OOB look as if they point into kernel space

® Find the original referent object by checking
whether the OOB pointer is in the top or bottom
half of a slot (how does this work?)

e Only works within slot_size/2 of the original object

e On 64-bit architectures, can do better by using
“spare” bits to tag each pointer with its bounds info
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Baggy Bounds Check on x86

S P i T N S P i o T B A A A P Y o T B R N I P Y TS B [ Akr|t|d|s et al ]

mov eax, buf

shr eax 4
mov al, byte ptr [TABLE+eax] s Al e (SN
char *p = buf[i];

mov ebx, buf
Check if p and buf differ in at most

Xor ebx, p
shr ebx. al - log(object size) least significant bytes
jz ok
p = slowPath(buf, p) If buf is out of bounds,
ok: recover the referent object,

remove OOB mark
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Reference Monitor

AN P e G ST B e W P S S ST e VT T TP S G ST S N T I O G ST B R N TV PR O S ST R A

# Observes execution of the program/process
o At what level? Possibilities: hardware, OS, network

® Halts or confines execution if the program is about
to violate the security policy
e What's a “security policy™?

e Which system events are relevant to the policy?
— Instructions, memory accesses, system calls, network packets...

# Cannot be circumvented by the monitored process
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Enforceable Security Policies

AN P R G ST B e W P O S ST e VS TP S G ST e N T TP O G ST B R [ S C h n e i d e r 1 9 9 8 ]

® Reference monitors can only enforce
safety policies
e Execution of a process is a sequence of states

o Safety policy is a predicate on a prefix of the sequence

— Policy must depend only on the past of a particular execution;
once it becomes false, it's always false

® Not policies that require knowledge of the future

e "If this server accepts a SYN packet, it will eventually
send a response”

@ Not policies that deal with all possible executions
e “This program should never reveal a secret”
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Reference Monitor Implementation
Kernelized Wrapper Modified program
P RM Program
(Gl Program RM
Lt Lt Lt
RM Kernel Kernel
Kernel

Integrate reference monitor into
program code during compilation
or via binary rewriting

— Policies can depend on application semantics
— Enforcement doesn't require context switches in the kernel
— Lower performance overhead
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What Makes a Process Safe?

AN P e G ST B e W P S S ST e VT T TP S G ST S N T I O G ST B R N TV PR O S ST R A

® Memory safety: all memory accesses are “correct”

e Respect array bounds, don‘t stomp on another process'’s
memory, don't execute data as if it were code

@ Control-flow safety: all control transfers are
envisioned by the original program

e No arbitrary jumps, no calls to library routines that the
original program did not call

@ Type safety: all function calls and operations have
arguments of correct type
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OS as a Reference Monitor

AN P e G ST B e W P S S ST e VT T TP S G ST S N T I O G ST B R N TV PR O S ST R A

# Collection of running processes and files
e Processes are associated with users
e Files have access control lists (ACLs) saying which
users can read/write/execute them
€ 0OS enforces a variety of safety policies
o File accesses are checked against file's ACL
e Process cannot write into memory of another process

e Some operations require superuser privileges
— But may need to switch back and forth (e.g., setuid in Unix)

e Enforce CPU sharing, disk quotas, etc.
€ Same policy for all processes of the same user
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Hardware Mechanisms: TLB

AN P e G ST B e W P S S ST e VT T TP S G ST S N T I O G ST B R N TV PR O S ST R A

€ TLB: Translation Lookaside Buffer

e Maps virtual to physical addresses
e Located next to the cache

e Only supervisor process can manipulate TLB

— But if OS is compromised, malicious code can abuse TLB to
make itself invisible in virtual memory (Shadow Walker)

€ TLB miss raises a page fault exception
e Control is transferred to OS (in supervisor mode)
e OS brings the missing page to the memory

@ This is an expensive context switch
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AN P i G ST e W T P S S ST B R S T P P R G ST B A e W R L

Time

P N LSRG AN S B [Morrisett]

User Process . Kernel
calls f=fopen(“foo”) :

library executes “break-
T saves context, flushes TLB, etc.

trap _
: checks UID against ACL, sets up IO
buffers & file context, pushes ptr to
context on user’s stack, etc.

restores context, clears supervisor bit
calls fread(f,n,&buf) 4“1

library executes “break \ saves context, flushes TLB, etc.

checks f is a valid file context, does
disk access into local buffer, copies
results into user’s buffer, etc.

/ restores context, clears supervisor bit
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Modern Hardware Meets Securlty

AN P e G ST e W P P S ST B R S T P i S ST W PR O S ST S S W R LY WANTIEN

® Modern hardware: large number of registers, big
memory pages

® Isolation = each process should live in its own
hardware address space

¢ ... but the performance cost of inter-process
communication is increasing
e Context switches are very expensive

e Trapping into OS kernel requires flushing TLB and
cache, computing jump destination, copying memory

@ Conflict: isolation vs. cheap communication
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Software Fault Isolation (SFI)

O I T S P S 2 G B Y B P i 2 G B M [Wahbe et al_ SOSP 1993]

@ Processes live in the same hardware address
space; software reference monitor isolates them
e Each process is assigned a logical “fault domain”

e Check all memory references and jumps to ensure they
don't leave process’s domain

@ Tradeoff: checking vs. communication

o Pay the cost of executing checks for each memory
write and control transfer to save the cost of context
switching when trapping into the kernel
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Fault Domains

AN P e G ST B e W P S S ST e VT T TP S G ST S N T I O G ST B R N TV PR O S ST R A

@ Process’s code and data in one memory segment
o Identified by a unique pattern of upper bits
e Code is separate from data (heap, stack, etc.)
e Think of a fault domain as a “sandbox”

# Binary modified so that it cannot escape domain

e Addresses are masked so that all memory writes are to
addresses within the segment
— Coarse-grained memory safety (vs. array bounds checking)

e Code is inserted before each jump to ensure that the
destination is within the segment

@ Does this help much against buffer overflows?
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Verlfymg Jumps and Stores

R G T B A W VPR R G T B A W VPR O i ST B A O R O D ST P A O R L RO G ST A

@ If target address can be determined statically,
mask it with the segment’s upper bits
e Crash, but won't stomp on another process’s memory

@ If address unknown until runtime, insert checking
code before the instruction

@ Ensure that code can’t jump around the checks

e Target address held in a dedicated register

e Its value is changed only by inserted code, atomically,
and only with a value from the data segment
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Simple SFI Example
® Fault domain = from 0x1200 to Ox12FF
# Original code: write x
® Naive SFI: X:=X& OOFF\> convert x into an address that
X :=x | 1200 lies within the fault domain
B /\_,, write X — V-\7hat if the code jumps right here?
@ Better SFI.: tmp := x & O0FF
tmp :=tmp | 1200
write tmp
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Inline Reference Monitor

AN P e G ST B e W P S S ST e VT T TP S G ST S N T I O G ST B R N TV PR O S ST R A

@ Generalize SFI to more general safety policies
than just memory safety
e Policy specified in some formal language

e Policy deals with application-level concepts: access to
system resources, network events, etc.

— “No process should send to the network after reading a file”,
“No process should open more than 3 windows”, ...

@ Policy checks are integrated into the binary code
e Via binary rewriting or when compiling

® Inserted checks should be uncircumventable
e Rely on SFI for basic memory safety
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CFI Control FIow Integrity

s s wsaswe) [ Abadi et al. “Control-Flow Integrity”. CCS 2005]

€ Main idea: pre-determine control flow graph
(CFG) of an application
e Static analysis of source code
e Static binary analysis <« CFI
e Execution profiling
o Explicit specification of security policy

® Execution must follow the pre-determined
control flow graph
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CFI: Binary Instrumentation
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# Use binary rewriting to instrument code with
runtime checks (similar to SFI)

@ Inserted checks ensure that the execution always

stays within the statically determined CFG

e \WWhenever an instruction transfers control, destination
must be valid according to the CFG

# Goal: prevent injection of arbitrary code and
invalid control transfers (e.g., return-to-libc)

e Secure even if the attacker has complete control over
the thread’s address space
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sort2 () : sort(): 1e():
Ly
bool 1t(int x, int y) { g B § pr Label 17
return x < y; / 2
} call sort”] call 17,RY]
e et 23
& TN
return x > y; 2 g ~ t():
“ ;g—
} A ~ N label 17
call sort e ret 55 '\\
-~
. . . - by g
sort2(int al[l, int b[], int len) label co&F N
{ ret 23
sort( a, len, 1t ); g
, sort( b, len, gt ); ot
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CFI: Control Flow Enforcement
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@ For each control transfer, determine statically its
possible destination(s)

@ Insert a unique bit pattern at every destination

e Two destinations are equivalent if CFG contains
edges to each from the same source
— This is imprecise (why?)
e Use same bit pattern for equivalent destinations

@ Insert binary code that at runtime will check
whether the bit pattern of the target instruction
matches the pattern of possible destinations
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CFI: Example of Instrumentation
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Original code

Source Destination
Opcode bytes Instructions Opcode bytes Instructions
FF El jmp ecx ; computed jump 8B 44 24 04 mov eax, [espt4] ; dst

Instrumented code

B8 77 56 34 12 345677h ; load ID-1 3E OF 18 05 ; label
40 n¢ eax ; add 1 for ID 78 56 34 12 3 ID
39 41 04 5 [ecx+4], es ; compare w/dst 8B 44 24 04 ; dst
75 13 jne abel ; 1f V= fail

FF E1 jmp ; jump to label

Abuse an x86 assembly instruction to

Jump to the destination only if insert “12345678" tag into the binary
the tag is equal to "12345678"
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CFI: Preventing Circumvention
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# Unique IDs

e Bit patterns chosen as destination IDs must not appear
anywhere else in the code memory except ID checks
# Non-writable code
e Program should not modify code memory at runtime
— What about run-time code generation and self-modification?
# Non-executable data
e Program should not execute data as if it were code

® Enforcement: hardware support + prohibit system
calls that change protection state + verification at
load-time
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Improving CFI Precision
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@ Suppose a call from A goes to C, and a call from B
goes to either C, or D (when can this happen?)

e CFI will use the same tag for C and D, but this allows
an “invalid” call from A to D

e Possible solution: duplicate code or inline
e Possible solution: multiple tags

@ Function F is called first from A, then from B;
what's a valid destination for its return?

o CFI will use the same tag for both call sites, but this
allows F to return to B after being called from A

e Solution: shadow call stack
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CFI: Security Guarantees
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® Effective against attacks based on illegitimate
control-flow transfer

o Stack-based buffer overflow, return-to-libc exploits,
pointer subterfuge

@ Does not protect against attacks that do not
violate the program’s original CFG
e Incorrect arguments to system calls
e Substitution of file names
e Other data-only attacks
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P055|ble Executlon of Memory

- By s - [Erlingsson]

h h

Possible control

flow destination Possible Execution of Memory
|:| Safe code/data

Data memory {

Code memotry
for function A

for function B

Code memory {

l l |
X86 XBEMNX RISC/INX x86/CFI
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WIT: Write Integrity Testing

O PR I S+ AT B P Y o A B AN B P T T B i | [Akr|t|d|5 et al. “Preventing
_ _ _ Memory Error Exploits with WIT".
€ Combines static analysis ... |oakiand 2008]

e For each memory write, compute the set of memory
locations that may be the destination of the write

e For each indirect control transfer, compute the set of
addresses that may be the destination of the transfer

e "Color table” assigns matching colors to instruction
(write or jump) and all statically valid destinations
— Is this sound? Complete?

¢ ... with dynamic enforcement

e Code is instrumented with runtime checks to verify
that destination of write or jump has the right color
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WIT: Write Safety Analysis
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& Start with off-the-shelf “points-to” analysis
e Gives a conservative set of possible values for each ptr

€ A memory write instruction is “safe” if...

e It has no explicit destination operand, or destination
operand is a temporary, local or global variable

— Such instructions either modify registers, or a constant number
of bytes starting at a constant offset from the frame pointer or
the data segment (example?)

e ... or writes through a pointer that is always in bounds
— How do we know statically that a pointer is always in bounds?

@ Safe instructions require no runtime checks
€ Can also infer safe destinations (how?) .



WIT Runtlme Checks
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@ Statically, assign a distinct color to each unsafe
write instruction and all of its possible destinations

o What if some destination can be written by two
different instructions? Any security implications?

€ Add a runtime check that destination color
matches the statically assigned color

e What attack is this intended to prevent?

€ Same for indirect (computed) control transfers

o Except for indirect jumps to library functions (done
through pointers which are protected by write safety)

e How is this different from CFI? Hint: think RET address
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WIT Addltlonal Protectlons
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€ Change layout of stack frames to segregate safe
and unsafe local variables

@ Surround unsafe objects by guards/canaries
e What attack is this intended to prevent? How?

® Wrappers for malloc()/calloc() and free()
e malloc() assigns color to newly allocated memory

o free() is complicated
— Has the same, statically computed color as the freed object
— At runtime, treated as an unsafe write to this object
— Reset color of object to 0 (what attack does this prevent?)
— Several other subtle details and checks
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WIT Handllng L|brar|es
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# Basic WIT doesn't work for libraries (why?)

® Instead, assign the same, standard color to all
unsafe objects allocated by library functions and
surround them by guards
e Different from the colors of safe objects and guards
e What attack does this not prevent?

@ Wrappers for memory copying functions

* For example, memcpy() and strcpy()

e Receive color of the destination as an extra argument,
check at runtime that it matches static color
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Native Client

R i TN B A N I I S B A R P YO [Yee et a|_ “Native C|ient”_ Oak|and 2009]

€ Goal: download an x86 binary and run it “safely’

e Much better performance than JavaScript, Java, etc.

@ ActiveX: verify signature, then unrestricted
e Critically depends on user’s understanding of trust

€ .NET controls: IL bytecode + verification

# Native Client: sandbox for untrusted x86 code
o Restricted subset of x86 assembly
o SFI-like sandbox ensures memory safety
o Restricted system interface
e (Close to) native performance

4
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NaCISandbox
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® Code is restricted to a subset of x86 assembly
e Enables reliable disassembly and efficient validation

e No unsafe instructions

— syscall, int, ret, memory-dependent jmp and call, privileged
instructions, modifications of segment state ...

@ No loads or stores outside dedicated segment

e Address space constrained to 0 mod 32 segment
e Similar to SFI

@ Control-flow integrity
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Constraints for NaCl Binaries

TN AL 2T,
- - .. - - ,_2 Do TN VN0 b

Cl1

2

C3

C4

C5

Co

Once loaded into the memory, the binary is not writable,
enforced by OS-level protection mechanisms during execu-
tion.

The binary is statically linked at a start address of zero, with
the first byte of text at 64K.

All indirect control transfers use a naclijmp psendo-
instruction {defined below).

The binary is padded up to the nearest page with at least
one hlt instruction (0xfd),

The binary contains no instructions or pseudo-instructions
overlapping a 32-byte boundary.

All valid instruction addresses are reachable by a fall-
through disassembly that starts at the load (base) address.
All direct control transfers target valid instructions.

slide 73



Control-Flow Integrity in NaCl
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@ For each direct branch, statically compute target
and verify that it’s a valid instruction
e Must be reachable by fall-through disassembly

@ Indirect branches must be encoded as
and %eax, 0xffffffe0
jmp *%eax
e Guarantees that target is 32-byte aligned
e Works because of restriction to the zero-based segment
o Very efficient enforcement of control-flow integrity

®No RET
e Sandboxing sequence, then indirect jump
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Interacting with Host Machine
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@ Trusted runtime environment for thread creation,
memory management, other system services

€ Untrusted — trusted control transfer: trampolines

o Start at 0 mod 32 addresses (why?) in the first 64K of
the NaCl module address space
— First 4K are read- and write-protected (why?)

o Reset registers, restore thread stack (outside module’s
address space), invoke trusted service handlers

@ Trusted — untrusted control transfer: springboard
e Start at non-0 mod 32 addresses (why?)
e Can jump to any untrusted address, start threads
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Other Aspects of NaCl Sandbox
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¥ No hardware exceptions or external interrupts
e Because segment register is used for isolation, stack
appears invalid to the OS = no way to handle
@ No network access via OS, only via JavaScript in
browser
e No system calls such as connect() and accept()
e JavaScript networking is subject to same-origin policy

€ IMC: inter-module communication service
o Special IPC socket-like abstraction

e Accessible from JavaScript via DOM object, can be
passed around and used to establish shared memory
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