
Security of

Mobile Applications

Vitaly Shmatikov

CS 6431

Structure of Android Applications

This is a very brief and incomplete summary

• See Enck et al. “Understanding Android Security”

Applications include multiple components

• Activities: user interface

• Services: background processing

• Content providers: data storage

• Broadcast receivers for messages from other apps

Intent: primary messaging mechanism for
interaction between components

slide 2

Explicit Intents

slide 3

Yelp
Map
App

Name: MapActivity

To: MapActivity

Only the specified destination receives this message

Implicit Intents

slide 4

Yelp

Map
App

Handles Action: VIEW

Implicit Intent
Action: VIEW

Browser
App

Handles Action: VIEW

Android Security Model

Based on permission labels
 assigned to applications and components

Every app runs as a separate user

• Underlying Unix OS provides system-level isolation

Reference monitor in Android middleware
mediates inter-component communication

slide 5

Access permitted if labels
assigned to the invoked
component are in the collection
of invoking component

Mandatory Access Control

Permission labels are set (via manifest) when app
is installed and cannot be changed

Permission labels only restrict access to
components, they do not control information flow
– means what?

Apps may contain “private” components that
should never be accessed by another app
(example?)

If a public component doesn’t have explicit
permissions listed, it can be accessed by any app

slide 6

System API Access

System functionality (eg, camera, networking) is
accessed via Android API, not system components

App must declare the corresponding permission
label in its manifest + user must approve at the
time of app installation

Signature permissions are used to restrict access
only to certain developers

• Ex: Only Google apps can directly use telephony API

slide 7

Refinements

Permission labels on broadcast intents

• Prevents unauthorized apps from receiving these
intents – why is this important?

Pending intents

• Instead of directly performing an action via intent,
create an object that can be passed to another app,
thus enabling it to execute the action

• Invocation involves RPC to the original app

• Introduces delegation into Android’s MAC system

slide 8

Unique Action Strings

slide 9

Common developer pattern

Showtime
Search

Results UI

IMDb App
Handles Actions:
willUpdateShowtimes,
showtimesNoLocationError

Implicit Intent
Action: willUpdateShowtimes

Eavesdropping

slide 10

[Felt et al. “Analyzing Inter-Application
Communication in Android”. Mobisys 2011]

Showtime
Search

Malicious
Receiver

IMDb App

Handles Action:
willUpdateShowtimes,
showtimesNoLocationError

Implicit Intent
Action: willUpdateShowtimes

Eavesdropping App

Intent Spoofing

slide 11

[Felt et al.]

Malicious
Component

Results UI

IMDb App

Handles Action:
willUpdateShowtimes,
showtimesNoLocationError

Action:
showtimesNoLocationError

Malicious
Injection
App

Also man-in-the-middle

System Broadcast

slide 12

[Felt et al.]

Component App 1

Handles Action: BootCompleted

Component App 2

Handles Action: BootCompleted

Component App 3

System
Notifier

Action:
BootCompleted

Event notifications
broadcast by the system
(can’t be spoofed)

Broadcast receivers
make components
publicly accessible

Exploiting Broadcast Receivers

slide 13

[Felt et al.]

Handles Action:
BootCompleted

Malicious
Component

Malicious
App

Component

App 1

To:
App1.Component

Real World Example: ICE

slide 14

[Felt et al.]

Allows doctors access to medical
information on phones

Contains a component that listens
for the BootCompleted system
broadcast

On receipt of this intent, exits the
app and locks the screen

Permissions: Not Just Android

slide 15

All mobile OSes, HTML5 apps, browser extensions…

Permission Re-Delegation

An application with a permission performs a
privileged task on behalf of an application
without permission

slide 16

[Felt et al. “Permission Re-Delegation: Attacks
and Defenses”. USENIX Security 2011]

API

Malware
Settings

app

TurnOnWifi()

Permission System

turnOnWifi()

API

Permission System

Public service
for receiving
UI messages

pressButton(0)

Malware
Settings

app

turnOnWifi()

User
pressed
button

Examples of Re-Delegation

Permission re-delegation is an example of a
“confused deputy” problem

The “deputy” app may accidentally expose
privileged functionality…

… or intentionally expose it, but the attacker
invokes it in a surprising context

• Example: broadcast receivers in Android

… or intentionally expose it and attempt to reduce
the invoker’s authority, but do it incorrectly

• Remember postMessage origin checks?

slide 17

[Felt et al.]

Mobile Apps in Web Languages

slide 18

Hybrid App Development

slide 19

WebView

Embedded browser in smartphone apps

Basic same origin policy inside the browser +
holes in the browser sandbox allowing Web
code to invoke native functionality

• Camera, contacts, file system, etc.

Multiple “bridges” between Web and local code

• JavaScript interfaces to local objects

• Interception of browser events (eg, special URLs)

• Other custom and ad-hoc schemes

slide 20

[Luo et al. “Attacks on WebView in
the Android System”. ACSAC 2011]

Invoking Java from JavaScript

slide 21

[Luo et al.]

Invoking JavaScript from Java

slide 22

[Luo et al.]

The Hybrid Security Model

slide 23

Attacks from Malicious App

slide 24

[Luo et al.]

JavaScript injection
Event sniffing and hijacking

Attack from Malicious Web Content

slide 25

[Luo et al.]

Frame Confusion

slide 26

[Luo et al.]

What is the origin of
this JavaScript object?

Android

Java code

It Gets Worse

slide 27

[Luo et al.]

Java Reflection API…

accessible from Web side

Showing this content is
Ok, only native access
should be blocked

Simple Fixes Don’t Work

Most hybrid frameworks don’t even attempt to
verify whether access request comes from an
authorized Web origin

PhoneGap attempts to filter based
 on developer-provided whitelist

• Mediation either incomplete (does not catch iframe
loads) or too strict (prohibits even loading of
content from other origins, breaks look-and-feel)

• Incorrect origin checks

– Broken regexes bite again – anchoring bugs, etc.

slide 28

[Georgiev et al. “Breaking and Fixing Origin-Based Access Control
in Hybrid Web/Mobile Application Frameworks”. NDSS 2014]

State of the Union

Convergence of Web and mobile programming

Complex, poorly understood software stacks with
badly fitting security policies

New classes of vulnerabilities

• Worst case: Web advertiser gets to inject arbitrary code
into mobile apps running on your phone!%#$!

Evolving defenses

• Our capability-based NoFrak defense is being integrated
into PhoneGap, but that’s just the first step…

slide 29

