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Web applications need to reject invalid inputs 

• “Credit card number should be 15 or 16 digits” 

• “Expiration date in the past is not valid” 

Traditionally done at the server 

• Round-trip communication, increased load 

Better idea (?): do it in the browser using  
   client-side JavaScript code 

User Input Validation 
[Bisht et al. “NoTamper: Automatic Blackbox Detection of Parameter 
Tampering Opportunities in Web Applications”. CCS 2010] 
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Client-Side Validation 

onSubmit= 
   validateCard(); 

   validateQuantities(); 

Validation Ok? 

reject 
inputs 
 

Yes No 

send inputs 
to server 
 

[Bisht et al.] 
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Problem: Client Is Untrusted 

Previously rejected 
values sent to server 

Inputs must be 
re-validated at 
server! 

[Bisht et al.] 
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Online Shopping 

Vulnerability: malicious client submits negative quantities  

          for unlimited shopping rebates 

Client-side constraints:  

     quantity1 ≥ 0  

     quantity2 ≥ 0  

 

Server-side code:  

     total  =  quantity1 * price1 +  

                  quantity2 * price2 

CodeMicro.com 
 

Two items in cart: price1 = $100, price2 = $500 

quantity1 = -4, quantity2 = 1, total = $100 (rebate of $400 on price2) 

[Bisht et al.] 
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Online Banking 

Client-side constraints:  

   from IN (Accnt1, Accnt2) 

   to IN (Accnt1, Accnt2) 

Server-side code:  

    transfer money from  to 

 

 

SelfReliance.com 

Vulnerability: malicious client submits arbitrary account  

         numbers for unauthorized money transfers 

[Bisht et al.] 
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IT Support 

Vulnerability: update arbitrary account 

Client-side constraints:  

     userId == 96 (hidden field) 

 

Server-side code:  

     Update profile with id 96 

     with new details 

Inject a cross-site scripting (XSS) payload in admin account, 

cookies stolen every time admin logged in 

Hidden  
Field 

 

 

[Bisht et al.] 
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Content Management 

Vulnerability: malicious client sets make_install_prn cookie, 

                    creates fake admin account 

Server-side code:  

   privilege = non-admin;  

   if ( _COOKIE[‘make_install_prn’]      

      == 1 ) 

    privilege = admin;  

[Bisht et al.] 
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Cashier-as-a-Service 

 

PayPal, Amazon Payments, 
Google Checkout, etc. 

Web store 

Shopper 

Joint decision: 

is an order 

appropriately paid? 

[Wang et al.  “How to Shop for Free Online: Security Analysis of 
Cashier-as-a-Service Based Web Stores”. Oakland 2011] 



 

slide 10 

nopCommerce + Amazon Simple Pay 
[Wang et al.] 

 

(and seller Mark) 

Jeff,  

I want to buy this 
DVD. 

Shopper Chuck 

Amazon (CaaS) 

Jeff 

Chuck, pay in Amazon 
with this signed letter:  

 

 

 

 

 

Dear Amazon,  

order#123 is $10, when it is 
paid, text me at 425-111-2222.  

 [Jeff’s signature] 

Amazon, I want to pay 
with this letter 

 

 

 

 

 

Dear Amazon,  

order#123 is $10, when it is 
paid, text me at 425-111-
2222.  [Jeff’s signature] 
[Mark’s signature] 

Hi, $10 has been paid for 
order#123.  

 [Amazon’s signature] 

Great, I will ship 
order#123! 

 Anyone can register an Amazon 
seller account, so can Chuck 

• Purchase a $25 MasterCard gift 
card by cash, register under a fake 
address and phone number 

• Create seller accounts in PayPal, 
Amazon and Google using the card 

 Chuck’s trick 

• Check out from Jeff, but pay to 
“Mark” (Chuck himself) 

• Amazon tells Jeff that payment 
has been successful 

• Jeff is confused, ships product 
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Interspire + PayPal Express 

Message A redirects to 
store.com/finalizeOrder?[orderID1]store 

Session 1: pay for a cheap order (orderID1), 
but prevent the merchant from finalizing it 
by holding Message B

 

Expensive order is checked out but the cheap one is paid! 

Message A 

Message B 

Message B calls store.com/finalizeOrder?[orderID1]store [orderID2]store 

store  

 

Session 2: place an expensive order 
(orderID2) , but skip the payment step

 

Message A 

 

Message A redirects to 
store.com/finalizeOrder?[orderID2]store 

store  

 

[Wang et al.] 
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Side-Channel Leaks 
[Chen et al.  “Side-Channel Leaks in Web Applications: 
a Reality Today, a Challenge Tomorrow”. Oakland 2010] 

 

encrypted! 

privacy problems solved? 

Attacker can still see the number of packets, 

size of each packet, time between packets… 



 

Search using encrypted Wi-Fi (WPA / WPA2) 

Example: user types “l-i-s-t” on his laptop… 
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[Chen et al.] 

821 

 910 
822 

 931 
823 

 995 
824 

 1007 

Consequence: any eavesdropper knows our search queries 

Attacker’s effort linear in the size of query 

Each additional letter of query… 

…different size of suggestion list 



 

Entering health records 

• By typing – auto-suggestion 

• By mouse – a tree structure of elements 

Finding a doctor 

• Dropdown list  
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[Chen et al.] 

Online Medical Application 

 

2000x reduction in ambiguity Uniquely identify the specialty 



 

Wizard-style questionnaire 

• Tailor the questions based on previous inputs 

Which forms you work on reveal filing status, 
big medical bills, adjusted gross income… 

Knowing the state machine of the application 
the eavesdropper can infer sensitive information 

• Especially by combining information learned from 
multiple state machines 

 

slide 15 

[Chen et al.] 

Tax Preparation Application 
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[Chen et al.] 

Child Credit State Machine 

Entry page of 
deductions & 

credits 
Summary of 
deductions & 

credits 

Full credit 

Not eligible 

Partial credit 

All transitions have unique traffic patterns 

Consult the IRS instruction:     

$1000 for each child  

Phase-out starting from $110,000. For every $1000 income, lose $50 credit. 
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[Chen et al.] 

Student Loan Interest State Machine 

Entry page of 
deductions & 

credits 

Summary of 
deductions & 

credits 

Full credit 

Not eligible 

Partial credit 

Enter your paid 
interest 

 

Even worse, most decision procedures for credits/deductions have 
asymmetric paths: eligible – more questions, not eligible – no more questions 
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[Chen et al.] 

Some Identifiable AGI Thresholds 

Disabled Credit 

$24999 

Retirement Savings 

$53000 

IRA Contribution 

$85000 $105000 

College Expense 

$116000 

$115000 
Student Loan Interest 

$145000 

First-time Homebuyer Credit $150000 $170000 

Earned Income Credit 
$41646 

Child Credit 
$110000 

Adoption Expense $174730 $214780 

$130000 or $150000 or $170000 … 

$0 
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[Chen et al.] 

Online Investments  

Which funds you invest in?  

 Each price history curve is a 
GIF image from MarketWatch 

• Anyone in the world can get 
them from this website 

 Just compare the image sizes!   

Your investment allocation? 

 Can see the size of the pie 
chart, but hundreds of pie 
charts have the same image… 
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[Chen et al.] 

Change Over Time Is Revealing! 

 800 charts  80 charts  8 charts 1 chart 
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Financial institution updates your pie chart every day after market close. 

Mutual fund prices are public knowledge. 



 

Still have the asymmetric path problem 

Google’s responses are compressed, destination 
networks may or may not uncompress responses 

• For example, Microsoft gateways uncompress and 
inspect Web traffic, but university does not 

• Round before compression – university still sees 
distinguishable sizes; after compression – Microsoft does 

Random padding is not appropriate 

• If user checks several times, repeated random padding 
of the same responses quickly degrades effectiveness 

• Images come from MarketWatch, not site itself 
slide 21 

[Chen et al.] 

Rounding?  Padding? 



 

Trends in Software Design 

 

Applications rely on OS abstractions to improve 
their safety and reliability 

• “Process”, “User” 

Case study: Web browsers 

slide 22 

 

 xbank.com quickdate.com 

Fork a new  

process 

OS isolation 

Fork a new  

process 

[Jana and Shmatikov. “Memento: Learning Secrets 
from Process Footprints”. Oakland 2012] 



 

Unintended Consequences 

 

            Good 

• Better isolation 

• Better reliability 

– Others not affected if 
one process crashes 

• Better safety  

            Bad 

Leaks more info to 
concurrent processes 
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Introduced in the 1980s 

cat 
/proc/1/ 

status 

ps 

top –p 1 

Tom Killian 
"Processes as Files” 
(1984) 
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ProcFS in Multi-User OS 



 

“Noone Uses Multi-User OS Anymore” 

slide 25 



 

Multi-User Isolation 

UNIX multi-users in the 1980s 
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cat 
/proc/1/ 

status 

ps 

top –p 1 



 

Android Sandboxing 

Android “multi-users” today 
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cat 
/proc/1/ 

status 

ps 

top –p 1 



 

Android Apps as “Users” 

• Different apps run as different users  

 

 

Android uses OS 
 “user” abstraction  
to isolate applications 
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ProcFS Did Not Go Away 

Android “multi-users” today 

ProcFS API is still unchanged! 
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cat 
/proc/1/ 

status 

ps 

top –p 1 



 

This Is Not Just About Android 
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What Can Be Learned from ProcFS? 

No permissions needed to read any world-
readable file in ProcFS … 

• IP addresses of network connections 

• Value of stack pointer 

• Various statistics 

– Packet counters 

– Number of context switches / CPU scheduling statistics 

– Memory usage 

“Peeping Tom” attacks 

TCP sequence  
number inference 

Keystroke sniffing 

“Memento” attacks 

 

WTF?! 
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Putting Memory Streams Together 

 

slide 32 



 

Memprint: Stream of Memory Usage 

 

10568 KB 
15976 KB 

11632 KB 65948 KB 

49380 KB 

48996 KB 

60280 KB 60820 KB 59548 KB 
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Sniffing Memory Footprints 

2050 

zero-permission  

malicious process 

OS isolation 

browser  

process 

alloc 1  alloc 2  

OS free page pool 

used page count memprint 

2050 

Parsing JavaScript… 

Rendering images… 
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Sniffing Memory Footprints 

2056 

zero-permission  

malicious process 

OS isolation 

browser  

process 

alloc 1  alloc 2  

OS free page pool 

used page count memprint 

brk/mmap 

2050 2056 

Parsing JavaScript… 

Rendering images… 
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Sniffing Memory Footprints 

2080 

zero-permission  

malicious process 

OS isolation 

browser  

process 

alloc 1  alloc 2  

OS free page pool 

used page count memprint 

brk/mmap 

2056 2050 2080 

Parsing JavaScript… 

Rendering images… 
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Loading BeNaughty.com in Chrome 
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Loading BeNaughty.com in Chrome 



 

Loading BeNaughty.com in Chrome 

slide 39 



 

Full Attack 

OS isolation 

browser 
zero-permission  

app 

/proc/pid/statm 

memprint 

memprint  
database 
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Why the Attack Works 

Memprints are unique - for up to 43% of Alexa top 100,000 pages 

• Can tune recognition to achieve zero false positives 

Memprints are stable across repeated visits to the 
same page 

 

 

memprints are  

OS/browser-
dependent but  

machine-
independent 

 
slide 41 



 

Cross-Page Similarity 

Different from  

others Similar to 

themselves 

w
e
b
 p

a
g
e
 I

D
 

web page ID 

similarity = 
Jaccard index 
of memprints 
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Other Privacy Leaks 

Fine-grained memory dynamics reveal 
membership in dating sites, interest in medical 
conditions, etc. 

Dynamics of CPU scheduling reveal individual 
keystrokes 

General problem: fine-grained resource usage 
statistics are correlated with secrets 

• These statistics are visible across isolation boundary 

• Their dynamics are a high-bandwidth side channel  
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