
Security Issues

in Web Applications

Vitaly Shmatikov

CS 6431

slide 2

Web applications need to reject invalid inputs

• “Credit card number should be 15 or 16 digits”

• “Expiration date in the past is not valid”

Traditionally done at the server

• Round-trip communication, increased load

Better idea (?): do it in the browser using
 client-side JavaScript code

User Input Validation
[Bisht et al. “NoTamper: Automatic Blackbox Detection of Parameter
Tampering Opportunities in Web Applications”. CCS 2010]

slide 3

Client-Side Validation

onSubmit=
 validateCard();

 validateQuantities();

Validation Ok?

reject
inputs

Yes No

send inputs
to server

[Bisht et al.]

slide 4

Problem: Client Is Untrusted

Previously rejected
values sent to server

Inputs must be
re-validated at
server!

[Bisht et al.]

slide 5

Online Shopping

Vulnerability: malicious client submits negative quantities

 for unlimited shopping rebates

Client-side constraints:

 quantity1 ≥ 0

 quantity2 ≥ 0

Server-side code:

 total = quantity1 * price1 +

 quantity2 * price2

CodeMicro.com

Two items in cart: price1 = $100, price2 = $500

quantity1 = -4, quantity2 = 1, total = $100 (rebate of $400 on price2)

[Bisht et al.]

slide 6

Online Banking

Client-side constraints:

 from IN (Accnt1, Accnt2)

 to IN (Accnt1, Accnt2)

Server-side code:

 transfer money from  to

SelfReliance.com

Vulnerability: malicious client submits arbitrary account

 numbers for unauthorized money transfers

[Bisht et al.]

slide 7

IT Support

Vulnerability: update arbitrary account

Client-side constraints:

 userId == 96 (hidden field)

Server-side code:

 Update profile with id 96

 with new details

Inject a cross-site scripting (XSS) payload in admin account,

cookies stolen every time admin logged in

Hidden
Field

[Bisht et al.]

slide 8

Content Management

Vulnerability: malicious client sets make_install_prn cookie,

 creates fake admin account

Server-side code:

 privilege = non-admin;

 if (_COOKIE[‘make_install_prn’]

 == 1)

 privilege = admin;

[Bisht et al.]

slide 9

Cashier-as-a-Service

PayPal, Amazon Payments,
Google Checkout, etc.

Web store

Shopper

Joint decision:

is an order

appropriately paid?

[Wang et al. “How to Shop for Free Online: Security Analysis of
Cashier-as-a-Service Based Web Stores”. Oakland 2011]

slide 10

nopCommerce + Amazon Simple Pay
[Wang et al.]

(and seller Mark)

Jeff,

I want to buy this
DVD.

Shopper Chuck

Amazon (CaaS)

Jeff

Chuck, pay in Amazon
with this signed letter:

Dear Amazon,

order#123 is $10, when it is
paid, text me at 425-111-2222.

 [Jeff’s signature]

Amazon, I want to pay
with this letter

Dear Amazon,

order#123 is $10, when it is
paid, text me at 425-111-
2222. [Jeff’s signature]
[Mark’s signature]

Hi, $10 has been paid for
order#123.

 [Amazon’s signature]

Great, I will ship
order#123!

 Anyone can register an Amazon
seller account, so can Chuck

• Purchase a $25 MasterCard gift
card by cash, register under a fake
address and phone number

• Create seller accounts in PayPal,
Amazon and Google using the card

 Chuck’s trick

• Check out from Jeff, but pay to
“Mark” (Chuck himself)

• Amazon tells Jeff that payment
has been successful

• Jeff is confused, ships product

slide 11

Interspire + PayPal Express

Message A redirects to
store.com/finalizeOrder?[orderID1]store

Session 1: pay for a cheap order (orderID1),
but prevent the merchant from finalizing it
by holding Message B

Expensive order is checked out but the cheap one is paid!

Message A

Message B

Message B calls store.com/finalizeOrder?[orderID1]store [orderID2]store

store

Session 2: place an expensive order
(orderID2) , but skip the payment step

Message A

Message A redirects to
store.com/finalizeOrder?[orderID2]store

store

[Wang et al.]

slide 12

Side-Channel Leaks
[Chen et al. “Side-Channel Leaks in Web Applications:
a Reality Today, a Challenge Tomorrow”. Oakland 2010]

encrypted!

privacy problems solved?

Attacker can still see the number of packets,

size of each packet, time between packets…

Search using encrypted Wi-Fi (WPA / WPA2)

Example: user types “l-i-s-t” on his laptop…

slide 13

[Chen et al.]

821

 910
822

 931
823

 995
824

 1007

Consequence: any eavesdropper knows our search queries

Attacker’s effort linear in the size of query

Each additional letter of query…

…different size of suggestion list

Entering health records

• By typing – auto-suggestion

• By mouse – a tree structure of elements

Finding a doctor

• Dropdown list

slide 14

[Chen et al.]

Online Medical Application

2000x reduction in ambiguity Uniquely identify the specialty

Wizard-style questionnaire

• Tailor the questions based on previous inputs

Which forms you work on reveal filing status,
big medical bills, adjusted gross income…

Knowing the state machine of the application
the eavesdropper can infer sensitive information

• Especially by combining information learned from
multiple state machines

slide 15

[Chen et al.]

Tax Preparation Application

slide 16

[Chen et al.]

Child Credit State Machine

Entry page of
deductions &

credits
Summary of
deductions &

credits

Full credit

Not eligible

Partial credit

All transitions have unique traffic patterns

Consult the IRS instruction:

$1000 for each child

Phase-out starting from $110,000. For every $1000 income, lose $50 credit.

slide 17

[Chen et al.]

Student Loan Interest State Machine

Entry page of
deductions &

credits

Summary of
deductions &

credits

Full credit

Not eligible

Partial credit

Enter your paid
interest

Even worse, most decision procedures for credits/deductions have
asymmetric paths: eligible – more questions, not eligible – no more questions

slide 18

[Chen et al.]

Some Identifiable AGI Thresholds

Disabled Credit

$24999

Retirement Savings

$53000

IRA Contribution

$85000 $105000

College Expense

$116000

$115000
Student Loan Interest

$145000

First-time Homebuyer Credit $150000 $170000

Earned Income Credit
$41646

Child Credit
$110000

Adoption Expense $174730 $214780

$130000 or $150000 or $170000 …

$0

slide 19

[Chen et al.]

Online Investments

Which funds you invest in?

 Each price history curve is a
GIF image from MarketWatch

• Anyone in the world can get
them from this website

 Just compare the image sizes!

Your investment allocation?

 Can see the size of the pie
chart, but hundreds of pie
charts have the same image…

slide 20

[Chen et al.]

Change Over Time Is Revealing!

 800 charts  80 charts  8 charts 1 chart

S
iz

e
 o

f
d
a
y
 1

S
iz

e
 o

f
d
a
y
 2

;

P
ri
ce

s
o
f

th
e
 d

a
y

S
iz

e
 o

f
d
a
y
 3

;

P
ri
ce

s
o
f

th
e
 d

a
y

S
iz

e
 o

f
d
a
y
 4

;

P
ri
ce

s
o
f

th
e
 d

a
y


 8

0
0
0
0
 c

h
a
rt

s

Financial institution updates your pie chart every day after market close.

Mutual fund prices are public knowledge.

Still have the asymmetric path problem

Google’s responses are compressed, destination
networks may or may not uncompress responses

• For example, Microsoft gateways uncompress and
inspect Web traffic, but university does not

• Round before compression – university still sees
distinguishable sizes; after compression – Microsoft does

Random padding is not appropriate

• If user checks several times, repeated random padding
of the same responses quickly degrades effectiveness

• Images come from MarketWatch, not site itself
slide 21

[Chen et al.]

Rounding? Padding?

Trends in Software Design

Applications rely on OS abstractions to improve
their safety and reliability

• “Process”, “User”

Case study: Web browsers

slide 22

 xbank.com quickdate.com

Fork a new

process

OS isolation

Fork a new

process

[Jana and Shmatikov. “Memento: Learning Secrets
from Process Footprints”. Oakland 2012]

Unintended Consequences

 Good

• Better isolation

• Better reliability

– Others not affected if
one process crashes

• Better safety

 Bad

Leaks more info to
concurrent processes

slide 23

Introduced in the 1980s

cat
/proc/1/

status

ps

top –p 1

Tom Killian
"Processes as Files”
(1984)

slide 24

ProcFS in Multi-User OS

“Noone Uses Multi-User OS Anymore”

slide 25

Multi-User Isolation

UNIX multi-users in the 1980s

slide 26

cat
/proc/1/

status

ps

top –p 1

Android Sandboxing

Android “multi-users” today

slide 27

cat
/proc/1/

status

ps

top –p 1

Android Apps as “Users”

• Different apps run as different users

Android uses OS
 “user” abstraction
to isolate applications

slide 28

ProcFS Did Not Go Away

Android “multi-users” today

ProcFS API is still unchanged!

slide 29

cat
/proc/1/

status

ps

top –p 1

This Is Not Just About Android

slide 30

What Can Be Learned from ProcFS?

No permissions needed to read any world-
readable file in ProcFS …

• IP addresses of network connections

• Value of stack pointer

• Various statistics

– Packet counters

– Number of context switches / CPU scheduling statistics

– Memory usage

“Peeping Tom” attacks

TCP sequence
number inference

Keystroke sniffing

“Memento” attacks

WTF?!

slide 31

Putting Memory Streams Together

slide 32

Memprint: Stream of Memory Usage

10568 KB
15976 KB

11632 KB 65948 KB

49380 KB

48996 KB

60280 KB 60820 KB 59548 KB

slide 33

Sniffing Memory Footprints

2050

zero-permission

malicious process

OS isolation

browser

process

alloc 1 alloc 2

OS free page pool

used page count memprint

2050

Parsing JavaScript…

Rendering images…

slide 34

Sniffing Memory Footprints

2056

zero-permission

malicious process

OS isolation

browser

process

alloc 1 alloc 2

OS free page pool

used page count memprint

brk/mmap

2050 2056

Parsing JavaScript…

Rendering images…

slide 35

Sniffing Memory Footprints

2080

zero-permission

malicious process

OS isolation

browser

process

alloc 1 alloc 2

OS free page pool

used page count memprint

brk/mmap

2056 2050 2080

Parsing JavaScript…

Rendering images…

slide 36

Loading BeNaughty.com in Chrome

slide 37

slide 38

Loading BeNaughty.com in Chrome

Loading BeNaughty.com in Chrome

slide 39

Full Attack

OS isolation

browser
zero-permission

app

/proc/pid/statm

memprint

memprint
database

slide 40

Why the Attack Works

Memprints are unique - for up to 43% of Alexa top 100,000 pages

• Can tune recognition to achieve zero false positives

Memprints are stable across repeated visits to the
same page

memprints are

OS/browser-
dependent but

machine-
independent

slide 41

Cross-Page Similarity

Different from

others Similar to

themselves

w
e
b
 p

a
g
e
 I

D

web page ID

similarity =
Jaccard index
of memprints

slide 42

Other Privacy Leaks

Fine-grained memory dynamics reveal
membership in dating sites, interest in medical
conditions, etc.

Dynamics of CPU scheduling reveal individual
keystrokes

General problem: fine-grained resource usage
statistics are correlated with secrets

• These statistics are visible across isolation boundary

• Their dynamics are a high-bandwidth side channel

slide 43

