
Formal Analysis of Authentication in
Bluetooth Device Pairing

Richard Chang and Vitaly Shmatikov

The University of Texas at Austin

Abstract. Bluetooth is a popular standard for short-range wireless com-
munications. Bluetooth device pairing enables two mobile devices to au-
thenticate each other and establish a secure wireless connection.
We present a formal analysis of authentication properties of Bluetooth
device pairing. Using the ProVerif cryptographic protocol verifier, we first
analyze the standard device pairing protocol specified in the Bluetooth
Core Specification, which relies on short, low-entropy PINs for authenti-
cation. Our analysis confirms a previously known attack guessing attack.
We then analyze a recently proposed Simple Pairing protocol. Simple
Pairing involves Diffie-Hellman-based key establishment, in which au-
thentication relies on a human visual channel : owner(s) of the mobile
devices confirm the established keys by manually comparing the respec-
tive hash values of the parameters used to generate each key, as displayed
on the devices’ screens. This form of authentication presents an interest-
ing modeling challenge. We demonstrate how to formalize it in ProVerif.
Our analysis shows that authentication can fail when the same device is
involved in concurrent Simple Pairing sessions. We discuss the implica-
tions of this authentication failure for typical Bluetooth usage scenarios.
We then refine our model to incorporate session identifiers, and prove
that the authentication properties of Simple Pairing hold in the new
model.
Out-of-band human verification based on image- or audio-matching is
increasingly used for authentication of mobile devices. This study is
the first step towards automated analysis of formal models of human-
authenticated protocols.

1 Introduction

Bluetooth radios are becoming ubiquitous in mobile devices such as cell
phones, laptops, and even many modern cars. Over one billion Bluetooth-
enabled devices have been shipped to date [5]. These devices are often
used to store users’ private data. For example, a user may enjoy the con-
venience of being able to wirelessly transfer contact data between his or
her laptop and a mobile phone, but probably does not want that contact
data to be publicly available to all Bluetooth devices in range. The Blue-
tooth specification [4] supports the establishment of pairwise symmetric

keys to allow two devices to securely communicate with each other. The
process by which a pair of devices establishes the initial symmetric key
is called device pairing. The device pairing process comprises authentica-
tion, generation of the initialization key, and generation of the link key.

Our main contribution is a formal, tool-supported security analysis
of two Bluetooth device pairing protocols. The Simple Pairing protocol
presents an interesting challenge to formal verification methods because
it relies on out-of-band, human authentication (explained in more detail
below). Human-verifiable protocols based on image- or audio-matching
are becoming increasingly popular for mobile device authentication [12,
13, 7]. Although cryptographic security proofs have been manually derived
for similar protocols [9, 15], we view our work as the initial step in applying
formal methods to this class of protocols.

The first protocol we analyze is the device pairing protocol defined
by the Bluetooth Specification [4]. We will refer to this protocol as stan-
dard pairing. The second is a recently proposed protocol called Simple
Pairing [6]. Informally, the security properties we verify for both pairing
protocols are (1) key secrecy for the initialization key, and (2) authenti-
cation of session participants. Intuitively, our key secrecy property states
that upon successfully completing a device pairing between devices A and
B, the initialization key is known only to A and B. Our authentication
property states that, if A has completed a device pairing in which A be-
lieves that it has successfully paired with B, then it has indeed paired
with B (and vice versa). To support our analysis, we use ProVerif, an
automated verifier for cryptographic protocols [3].

As a warm-up exercise, intended to demonstrate the capabilities of for-
mal verification tools as applied to the security analysis of wireless proto-
cols, we use ProVerif to re-discover a known vulnerability in the standard
pairing protocol which allows an attacker to impersonate a Bluetooth de-
vice after eavesdropping on a successful pairing session. The attack is a
guessing attack against the low-entropy, human-memorable shared secret
which is used to generate the initialization key [8].

The main part of this paper is devoted to the analysis of the Simple
Pairing protocol, which was designed to rectify vulnerabilities caused by
the use of low-entropy secrets in the standard pairing protocol. For key
establishment, Simple Pairing uses plain, unauthenticated Diffie-Hellman
key exchange. Authentication relies on an interesting out-of-band mecha-
nism. Each device computes a short cryptographic hash of the established
key and displays it on the device’s screen. The two devices’ owner(s) vi-
sually compares the displayed values and manually confirms that they

match. In other words, authentication is done via key confirmation on a
secure human channel, i.e., a human “equality oracle.” In this paper, we
present the first formal model for this type of authentication amenable to
automated analysis. While there are other protocols in the literature that
employ similar human authentication mechanisms [12, 13], to the best of
our knowledge none of them have been formally analyzed.

When analyzing our model of human key confirmation, ProVerif was
unable to prove that the authentication conditions hold. Further manual
analysis revealed that the failure is due to an interaction between concur-
rent protocol sessions. Authentication requires that the keys established
by the two participants be equal in any successfully completed protocol
session. The hash value displayed by a Bluetooth device does not indicate
in which session of the protocol the underlying key was established. As
our formal analysis shows, even if the human “equality oracle” confirms
that two keys (or, more precisely, their hashes) are equal, these keys might
not have been established in the same session.

We emphasize that the specification of the Simple Pairing protocol
does not appear to allow any input from the user other than a confirma-
tion that two hash values are equal. In this sense, our symbolic model
is an appropriate abstraction of user interaction in Simple Pairing. At
the same time, the “attack” in the symbolic model is fundamentally con-
current, and only works if the same device is simultaneously engaged in
multiple Simple Pairing sessions. Many real Bluetooth implementations
can only conduct a single pairing session at any given time—even though
this is not required by the actual specification, which, by default, appears
to permit concurrent executions.

The failure of authentication in our formal model indicates the lack
of precision in the Simple Pairing specification. Either the specification
should rule out concurrent sessions outright, or it should explicitly re-
quire that the hash values presented to the user be accompanied by ses-
sion identifiers or other means of distinguishing the values established in
different sessions. We discuss this further in section 4.3. This may have
implications for other wireless protocols, which are secure when multiple
instances are executed sequentially, but insecure when they are executed
concurrently.

We modify our model to incorporate explicit session identifiers into the
equality tests, i.e., in the modified protocol the human oracle is asked to
verify not only that the key hashes match, but also that they correspond
to the same protocol session. ProVerif has been able to verify both key
secrecy and authentication in the modified protocol.

Organization of the paper. Section 2 gives a brief overview of ProVerif.
Section 3 describes standard Bluetooth device pairing and our analysis
thereof. Section 4 describes the new Simple Pairing protocol based on a
human visual channel, and our analysis. Conclusions are in section 5.

2 Analysis Methodology

For our formal verification of Bluetooth device pairing, we use ProVerif, a
cryptographic protocol verifier developed by Bruno Blanchet (see [2] for a
detailed overview of the syntax and semantics of ProVerif). ProVerif uses
a resolution-based solving algorithm which is sound, but not complete.
The general approach employed by ProVerif is as follows. The protocol
to be verified is specified in a process calculus, explained in more detail
below. Each protocol role is represented by a separate process. The com-
plete protocol is modeled by the parallel composition of an unbounded
number of copies of the individual protocol role processes.

ProVerif automatically translates these processes into a set of first-
order logic formulas (Horn clauses) which abstractly represent the proto-
col. The solving algorithm takes these clauses as input and determines the
set of facts that an attacker can learn from protocol executions. Properties
to be verified are modeled as derivability queries. For example, secrecy of
a key k can be modeled as a derivability query for the attacker’s knowl-
edge k : if ProVerif’s solving algorithm terminates and the set of attacker
knowledge does not include k, then k has been proved to be secret. Such
proofs are sound even with an unbounded number of sessions and without
an a priori bound on the structural size of messages sent by the attacker.

The process calculus used to specify protocols is an extension of
the π-calculus. Among the extensions are function symbols that model
cryptographic operations as symbolic “black boxes.” Messages are rep-
resented by abstract terms. Terms are names, variables, or constructor
applications. Constructors are functional symbols used to build terms.
For example, encryption is modeled by a constructor: given term m rep-
resenting a message, and term k representing a symmetric key, the term
encrypt(m, k) represents the encryption of m under k generated by the
application of the encrypt constructor. The process calculus also includes
destructors, which are functional symbols that manipulate terms. The de-
cryption destructor, decrypt, is modeled by the following reduction rule:
decrypt(encrypt(m, k), k)→ m. Other cryptographic primitives are mod-
eled symbolically in a very similar fashion. Communication is modeled by

named “channels,” and sending and receiving messages is modeled by
inputing and outputting terms over channels.

ProVerif uses the so called Dolev-Yao model of an attacker. The at-
tacker can eavesdrop or intercept any message sent over the network, com-
pute new messages, and send them to protocol participants. In ProVerif’s
formalism, the attacker’s knowledge is represented by a set of terms. Let
us call this set A. If a process P sends a term M over channel c, and
c ∈ A (i.e., the channel is public and readable by the attacker, modeled
symbolically by the fact that the attacker knows its name), then M is
added to A. The attacker can also apply constructors to elements of A,
generating new elements for A, and send elements of A over channels in
A.

After a protocol has been specified as a set of processes using the
process calculus described above, ProVerif automatically translates these
processes into a set of Horn clauses. Essentially, these Horn clauses repre-
sent the attacker’s potential knowledge from protocol executions as a set
of implications. A special predicate attacker(M) is used in these clauses
to represent the fact that an attacker knows the term M . Another predi-
cate mess(c,M) is used to represent the fact that a message M has been
sent by a process over the channel c. The ability of the attacker to receive
message M ′ from the network is represented by the following Horn clause:
mess(c,M ′) ∧ attacker(c)⇒ attacker(M ′), which basically encodes part
of the attacker model above. If a message is sent over a channel that the
attacker can read, then the attacker receives that message.

To see how constructors and destructors are translated into Horn
clauses, recall the encryption/decryption example above. The encrypt
constructor is translated into the following clause:

attacker(m) ∧ attacker(k)⇒ attacker(encrypt(m, k)).
The decrypt destructor is translated into the following clause:
attacker(decrypt(m, k)) ∧ attacker(k)⇒ attacker(m)
The solving algorithm employed by ProVerif applies resolution-based

theorem proving to this set of clauses to determine the derivability of facts
(not unlike logic programming in Prolog). Modeling and verifying basic
secrecy properties is relatively straightforward. If one wishes to verify that
a private symmetric key, ks, used in a protocol’s specification is secret, the
derivation query attacker(ks) is given as input to the solving algorithm.
The solving algorithm applies resolution with free selection to the set of
Horn clauses obtained by translating the process calculus specification.
If the algorithm terminates and the attacker’s knowledge set does not
include attacker(ks), then secrecy of ks is preserved by the protocol.

ProVerif supports verification of security properties other than basic
secrecy. Most of these properties are based on the notion of equivalence
between processes. For example, consider strong secrecy. Intuitively, a
value is strongly secret if the attacker cannot observe any difference be-
tween a process where this value is used, and an “ideal” process where a
completely different value (e.g., a fresh random nonce) is used in the same
position. (This definition of secrecy is similar in spirit to cryptographic
definitions of secrecy, which are based on real-or-random indistinguisha-
bility.) If, in fact, there is an observable difference between the real and
ideal processes—for example, some destructor application succeeds for
one and fails for the other—then a special “bad” fact is derivable. There-
fore, strong secrecy properties are modeled as derivability of this fact.
ProVerif also supports verification of weak secrecy (useful for reasoning
about low-entropy secrets, as we show in our model for standard pair-
ing) and the so called “correspondence assertions” (used for modeling
authentication, and also employed in our models).

While ProVerif’s solving algorithm is not guaranteed to terminate, if
it does terminate, the resulting proof is valid for an unbounded number
of sessions. Also, as our analysis of Simple Pairing shows, failure to prove
a protocol secure can be used to identify attack traces associated with
potential vulnerabilities.

3 Standard Pairing

This section presents the results of our analysis of the Bluetooth standard
pairing protocol. We provide an overview of the protocol, discuss the
interesting aspects of formal modeling, and present the results of our
ProVerif-based analysis, including the guessing attack found by ProVerif.

3.1 Overview of Standard Pairing

The standard pairing protocol aims to enable a pair of Bluetooth devices,
A and B, to generate a symmetric initialization key, Kinit, mutually au-
thenticate each other, and generate a link key. The link key that is gener-
ated during a standard pairing session is derived using the initialization
key. The protocol specification provides a number of ways for the link
key to be generated. One device’s unit key can be used as the link key
by sending it to the other device under encryption of the initialization
key, or each device can generate a random number, send this number un-
der encryption of the initialization key to the other device, after which

Initiating Device A

Generate random na

Kinit = e22(BD_ADDRA, PIN, na)

Generate random AU_RANDB

verify that
SRES1 = e1(Kinit, BD_ADDRA, AU_RANDB)

na

AU_RANDB

SRES1

Non-Initiating Device B

Kinit = e22(BD_ADDRA, PIN, na)

SRES1 = e1(Kinit, BD_ADDRA, AU_RANDB)

Generate random AU_RANDA
AU_RANDA

SRES2 = e1(Kinit, BD_ADDRB, AU_RANDA)

SRES2

verify that
SRES2 = e1(Kinit, BD_ADDRB, AU_RANDA)

Fig. 1. Sequence diagram for Bluetooth standard pairing

the pair of random numbers are used to generate the link key. In some
scenarios introduced in newer versions of the specification the link key is
generated before mutual authentication is performed, while in others the
link key is generated after mutual authentication is performed using the
initialization key. Each of these scenarios suffers from the same problem.
An offline guessing attack against the low-entropy secret used to generate
the initialization key allows an attacker to impersonate a Bluetooth de-
vice. We illustrate this attack using the simplest version, which matches
the paper [8] where this attack was first discovered.

The sequence diagram for this protocol appears in Figure 1. Initially,
both devices share a low-entropy, human-memorable secret value, PIN .
A and B also have access to the each other’s Bluetooth device addresses.
We call these addresses BD ADDRA and BD ADDRB for A and B, re-
spectively. The device that initiates the standard pairing session is called

the initiating device. Assume, without loss of generality, that A is the
initiating device. B is then the “non-initiating” device (this awkward ter-
minology is borrowed from the Bluetooth product literature).

A begins the protocol by generating a random nonce na and sending it
to B. Both devices then compute the initialization key Kinit as a function
of na, BD ADDRA, and PIN (we omit the details of the key generation
function, as it has been extensively studied—e.g., see [14, 11, 10]). A and
B then execute a two-way challenge-response for authentication. First, A
authenticates itself to B. B generates a new random value AU RANDB

and sends it to A. Upon receiving the new random value, A computes the
response as a function of Kinit, BD ADDRA, and AU RANDB. A sends
this value to B, which verifies the response. The process is repeated with
roles reversed to provide mutual authentication.

It is clear from the protocol specification that if an attacker knows the
shared PIN value, then both secrecy and authentication will be violated.
Key secrecy is violated because all of the parameters used to compute
Kinit are known to the attacker. Additionally, to successfully impersonate
a device it is sufficient to know Kinit and the device’s (public) Bluetooth
address.

3.2 Analysis of Standard Pairing

As described in section 3.1, breaking secrecy of PIN is sufficient to vio-
late both secrecy and authentication of standard pairing. Therefore, our
analysis focuses on secrecy of PIN .

Modeling secrecy of PIN is fairly subtle. In the standard pairing
protocol, PIN is intended to be human-memorable, and therefore has
low entropy. In practice, 4-digit PINs are used. The main property of
low-entropy secrets that we need to model is that they are guessable.
If an attacker is able to guess a PIN value and verify his or her guess
offline, this could constitute a real attack because exhaustively attempting
to verify all 4-digit numbers is computationally feasible.

ProVerif supports reasoning about guessing attacks [3]. Modeling this
requires declaring term t in question as a weaksecret. While executing its
solving algorithm, ProVerif attempts to prove an observational equiva-
lence between the attacker’s knowledge given a correctly guessed value
for t and the attacker’s knowledge given a fresh value. Intuitively, should
be no observable difference between a process in which the guessed se-
cret is used, and a process in which a different value is used instead. If
observational equivalence holds, then there is no guessing attack. In our

ProVerif model for standard pairing, however, observational equivalence
fails.

Msg 1. A → B : na

Msg 2. B → A : AU RANDB

Msg 3. A → B : e1(e22(BD ADDRA, P IN, na), BD ADDRA, AU RANDB)

Fig. 2. Standard Paring Guessing Attack Messages

The attack found by ProVerif is essentially the same offline guessing
attack as described in [8]. Figure 2 shows a transcript of messages that an
attacker can use to perform a guessing attack on the shared secret PIN
value. An attacker can eavesdrop on a successful standard pairing session
between A and B and use these three messages to verify a guessed PIN
value offline. Verification works as follows. First, the attacker guesses a
value for PIN , say, PINg. Then the attacker tries to recompute the third
message using PINg. In order to compute this message, he or she must
know BD ADDRA, na, and AU RANDB. BD ADDRA is A’s Bluetooth
address, which is public. The values of na and AU RANDB are learned
by the attacker from the first and second messages, respectively. To verify
whether his guess PINg is correct, the attacker uses these values to com-
pute e1(e22(BD ADDRA, P INg, na), BD ADDRA, AU RANDB) and com-
pares the result to the third message.

4 Simple Pairing

This section presents of the results of our analysis of the Simple Pairing
protocol. We give an overview of the protocol, discuss the authentication
scheme used in Simple Pairing, and present the results of our ProVerif-
based analysis.

The most interesting aspect of our analysis is our formal model of
the “human visual channel,” which is essentially a secure equality ora-
cle which enables two Bluetooth devices (or, more precisely, their human
owner) to test the established keys for equality. Because equality testing
is based on the visual comparison of two numbers, a network attacker
cannot interfere with it. Intuitively, a visual channel provides a secure
“ideal functionality” for comparing two values for equality. This ideal
functionality is then leveraged into complete authentication of the key
establishment protocol. Similar mechanisms are used for device authen-
tication in other protocols [12, 13].

Initiating Device A

Generate random na Generate random nb

cb= f1(PKb,PKa, nb, 0)

verify that cb= f1(PKb,PKa, nb, 0)
else abort

va= g(PKa,PKb,na,nb) vb= g(PKa,PKb,na,nb)

PKa

PKb

cb
na

nb

User verifies va= vb

Non-Initiating Device B

Fig. 3. Sequence diagram for Bluetooth Simple Pairing

4.1 Overview of Simple Pairing

One of the goals of the Simple Pairing protocol is shared with standard
pairing: to enable a pair of Bluetooth devices, A and B, to authenticate
each other and generate a symmetric initialization key Kinit. The differ-
ences are as follows. First, Simple Pairing has several distinct association
models based on the device’s hardware capabilities. Second, under most
of these association models Simple Pairing does not use any shared secrets
at all, let alone low-entropy PINs. The protocol we analyze in this pa-
per uses the Numeric Comparison association model [6]. This association
model is designed for pairing Bluetooth devices that have displays, such
as a cell phone and a laptop. Authentication involves a human oracle:
the user is asked to examine the screens of both devices and confirm that
they display the same number.

As before, assume that A is the initiating device. First, A and B ex-
change Elliptic Curve Diffie-Hellman public values PKA and PKB. Then
A and B generate random values na and nb, respectively. B computes a
commitment value cb which is a collision-resistant function of both Diffie-
Hellman values and nb, and sends cb to A. A sends na to B. B sends

its nonce nb to A. A re-computes the commitment value cb and checks
whether it is equal to the commitment value previously received from B.
Note that there is no authentication so far, i.e., an attacker who controls
the communication medium can easily substitute different values into A’s
and B’s messages.

To verify that the parties’ views of the conversation match, each device
computes a cryptographic hash H(PKA, PKB, na, nb) of the two Diffie-
Hellman public values PKA and PKB, and the two nonces na and nb. The
hash value is truncated to a 6 decimal digits, which are displayed on the
device’s screen. The user is asked to check whether the numbers displayed
on the two screens are equal. If the user confirms equality, the devices are
considered authenticated, and the symmetric key Kinit is derived from
the joint Diffie-Hellman value and the nonces in the usual way.

4.2 Analysis of Simple Pairing

Our formal model of the Simple Pairing protocol includes a model of
the human equality oracle. We formalize it as a special process with two
private channels which the attacker cannot read or write. Privacy of the
channels between the devices and the equality testing process is very
important: it models the fact that the user is looking directly at the screen
of the Bluetooth device, and the network-based attacker cannot force him
to see a number which is different from what the device is displaying.
The oracle process reads a value from each channel and outputs a special
constant on each channel if the values are equal.

To model secrecy of each device’s key, we use standard secrecy in
ProVerif, as opposed to weak secrecy. Secrecy of the key values is handled
as a derivation query, as mentioned previously.

Modeling authentication is more interesting, and requires correspon-
dence assertions. In [1], the ProVerif process calculus is extended to allow
processes to emit special begin and end events that are parameterized
by protocol terms. To express authentication of A to B, we modify B’s
process so that it emits an end(B) event upon successful completion of
a Simple Pairing session, modeling the fact that B has completed a Sim-
ple Pairing session. Similarly, A’s process is modified to emit a begin(B)
event immediately after public keys are exchanged, modeling the fact that
A has started a simple pairing session in which it believes it is pairing
with B.

Authentication properties can be expressed as an implication of the
following form: if end(B) is output, then begin(B) is output. ProVerif
supports two types of implication properties, injective and non-injective.

The non-injective version of this property says that if end(B) is out-
put, then at least one begin(B) event is output. The injective version is
stronger and says that for every end(B) event, there should be a matching
begin(B) event.

In our analysis, we model both the injective and non-injective versions
of two types of authentication properties, which we call weak and strong
authentication. Weak authentication is modeled by the implication con-
ditions in which the begin and end events are parameterized only by the
participants’ identities. If weak authentication holds, then each partici-
pant is not mistaken about the identity of the other participant in the
protocol, but other session parameters do not necessarily match. Strong
authentication, on the other hand, is modeled by the implication condi-
tions in which the events are parameterized by all data values used in
computing the challenge-response values.

We consider all four types of authentication properties for both A-to-
B and B-to-A authentication, modeled modeled as eight correspondence
assertion queries. The results of running the ProVerif tool on our Simple
Pairing model to check these properties appear in Table 1.

Table 1. Simple Pairing Authentication Properties

Property Result

A-to-B Injective Weak Authentication FAILS

B-to-A Injective Weak Authentication FAILS

A-to-B Non-Injective Weak Authentication HOLDS

B-to-A Non-Injective Weak Authentication HOLDS

A-to-B Injective Strong Authentication FAILS

B-to-A Injective Strong Authentication FAILS

A-to-B Non-Injective Strong Authentication FAILS

B-to-A Non-Injective Strong Authentication FAILS

In our Simple Pairing model, the non-injective weak authentication
properties were proved by ProVerif, but all other authentication proper-
ties failed, including injective weak authentication and all strong authen-
tication properties. Manually examination of ProVerif’s output reveals
that the violating derivations involve concurrent execution of multiple
Simple Pairing sessions between A and B, and correspond to the situa-
tion where the human user’s key confirmation is interpreted as successful
authentication in a different protocol session.

An example of a protocol trace which violates all four strong authenti-
cation properties appears in Figure 4. This trace contains messages from
two concurrent sessions in which A and B attempt to pair. O represents
the equality oracle in our model. Events used by ProVerif to handle cor-
respondence assertions also appear in the trace. They do not correspond
to actual messages sent in the protocol; we show them to aid the reader
in understanding how the properties are violated.

The first part of the trace consists of messages 1 through 7, in which A
initiates a Simple Pairing session with B. This session pauses execution
immediately after both A and B send their hashes, va and vb respec-
tively, to O. Because this is an uncorrupted session, these values will be
the same, and the oracle will eventually return ok to both devices. Mes-
sages 1’ through 7’ represent a different session, running concurrently,
where again A initiates a Simple Pairing Session with B. In this session,
message 4’ is actually a corrupted message from an attacker impersonat-
ing A, represented by I(A). Instead of receiving A’s real nonce for this
session, n′

a, B receives ni. Because A and B’s view of A’s nonce in the
second session differs, the pairing should fail in this session. Specifically,
the hashes generated for the human verification step will differ; the keys
generated for this session will not agree; and therefore, O should not re-
turn ok to A and B. Messages 6’ and 7’ consist of A and B sending their
hashes to O for equality verification. At this point in the execution of both
sessions, all participants are expecting to receive a reply from O over their
respective private channels. Messages 8 and 9 represents a pair of equality
confirmation messages to A and B from the first session. In this trace,
both instances of A receive message 8 from O and output end events cor-
responding to a successful Simple Pairing session completion. Similarly,
both instances of B receive message 9 from O and output the appropriate
end events. The strong authentication correspondence assertions for the
second session are violated by this trace. At the end of this transcript, the
event endBconfirm(PKa, PKb, ni, n

′
b) appears but there is no correspond-

ing beginBconfirm(PKa, PKb, ni, n
′
b) message. This represents a viola-

tion of both the injective and non-injective versions of B-to-A strong au-
thentication. A similar unmatched endAconfirm(PKa, PKb, n

′
a, n

′
b) event

from the second session appears in the transcript which violates both ver-
sions of A-to-B strong authentication.

4.3 Interpreting the Results of Formal Analysis

What do the results of our formal analysis imply about the security of
Bluetooth Simple Pairing, as deployed on real-world mobile devices?

Msg 1. A → B : PKa

event beginAparam(PKa).
Msg 2. B → A : PKb

event beginBparam(PKb).
Msg 3. B → A : f1(PKb, PKa, nb, 0)
Msg 4. A → B : na

event beginAconfirm(PKa, PKb, na, nb).
Msg 5. B → A : nb

event beginBconfirm(PKa, PKb, na, nb).
Msg 6. A → O : va

Msg 7. B → O : vb

Msg 1’. A → B : PKa

event beginAparam(PKa).
Msg 2’. B → A : PKb

event beginBparam(PKb).
Msg 3’. B → A : f1(PKb, PKa, n′b, 0)
Msg 4’. I(A) → B : ni

event beginAconfirm(PKa, PKb, ni, n
′
b).

Msg 5’. B → A : n′b
event beginBconfirm(PKa, PKb, n

′
a, n′b).

Msg 6’. A → O : v′a
Msg 7’. B → O : vi

Msg 8. O → A : ok
event endAparam(PKa).
event endAparam(PKa).
event endAconfirm(PKa, PKb, na, nb).
event endAconfirm(PKa, PKb, n

′
a, n′b).

Msg 9. O → B : ok
event endBparam(PKb).
event endBparam(PKb).
event endBconfirm(PKa, PKb, na, nb).
event endBconfirm(PKa, PKb, ni, n

′
b).

Fig. 4. Simple Paring trace in which strong authentication is violated

Formal verification has been very successful in analyzing (and discov-
ering bugs in) a broad class of network protocols such as SSL/TLS and
IKE, which are intended to operate in Internet-like environments, where
concurrent execution of multiple instances of the same protocol is a fact
of life (e.g., a single Web server may be carrying out hundreds of concur-
rent TLS sessions). Therefore, protocol analysis tools such as ProVerif are
designed to prove that secrecy and authentication hold for an unbounded
number of concurrent and sequential sessions. In ProVerif, this is modeled
by allowing unbounded replication of the authenticating processes.

This strong notion of security is certainly appropriate for Internet
security protocols. Bluetooth, on the other hand, is designed for more

constrained environments. In particular, it is not clear whether any Blue-
tooth device ever has the need to carry out concurrent pairing sessions,
or is even capable of doing it. The Simple Pairing white paper does not
address concurrent executions at all, nor does it forbid the same device
from being engaged in concurrent sessions.

The failure of authentication discovered by ProVerif and illustrated
by the trace in Figure 4 represents a genuine attack when the same device
is engaged in concurrent sessions. In this scenario, the number displayed
on the screen for human verification may not have been computed in the
session which the user is trying to authenticate.

Effectively, our analysis shows that if the same device is allowed to
execute multiple concurrent instances of Simple Pairing, then its user
interaction component must associate session identifiers with the hash
values it displays to the user (and thus deviate from the Simple Pair-
ing specification). If concurrent executions are not permitted, then this
restriction should be clearly spelled out in the protocol specification. Oth-
erwise, Simple Pairing or a similar protocol may end up being deployed
in a setting where concurrent executions are a possibility, e.g., when the
same mobile phone is trying to pair simultaneously with a music player
and a laptop.

One may argue that no “reasonable” implementation would support
concurrent sessions without giving the user a means of distinguishing hash
values produced in different sessions. This may or may not be true, since
such an implementation would not be compliant with the current Simple
Pairing specification, in which user interaction is limited to displaying two
values and asking whether they are equal. It is hard to guess, let alone
analyze formally, under what circumstances a “reasonable” implementor
might deviate from the protocol specification. It is better to explicitly
include all restrictions in the specification.

Normally user interaction is not considered as part of the specification,
but in protocols where authentication relies on human input (e.g., all
protocols authenticated via short authenticated string), security depends
on correctness of user interaction, that is, representing the right state of
the right instance of the protocol to the user. Our analysis points out not
so much an inherent flaw of Simple Pairing, but how important it is that
the user interaction piece of the system match the underlying protocol
precisely.

4.4 Fixing the Simple Pairing Protocol

The vulnerability discovered in our model involves the human user’s key
confirmation from one session being interpreted as successful authenti-
cation in a different session. Therefore, we propose a minor modification
to the Simple Pairing protocol, in which session identifiers are included
in the messages to and from the human oracle. These identifiers allow
each “instance” of a device in a given session to correctly identify which
confirmation messages correspond to its session.

We built a process calculus model for the modified Simple Pairing
protocol, in which each instance of the same device (i.e., when the same
device is participating in multiple instances of the protocol) is assigned a
unique session identifier. We also added a check to ensure that each session
instance only accepts human oracle responses associated this instance’s
session identifier. Therefore, there is no possibility that an instance ac-
cepts an oracle response intended for a different instance (recall that the
channel between the human oracle and the instance is the device’s physi-
cal interface, presumed to be secure). In the new model, ProVerif was able
to prove both the injective and non-injective versions of weak and strong
authentication, even in the case of an unbounded number of concurrent
sessions.

5 Conclusions

We have presented an automated, tool-supported analysis of two Blue-
tooth authentication protocols—one based on low-entropy PINs, the other
based on human verification of equality. For the standard protocol, our
analysis confirms a previously known guessing attack. For the new Simple
Pairing protocol, we discover a potential vulnerability caused concurrent
executions of authentication, and show how to fix the problem by adding
explicit session identifiers to the protocol.

From the verification perspective, our main contribution is a formal
model for a non-standard form of authentication, which is based not on
cryptography, but on access to a “human oracle” who visually checks
whether the key confirmation values derived by the two devices match.
This is an increasingly popular device authentication technique [12, 13].
We expect that our work will serve as the first step towards richer formal
models of human authentication.

An interesting topic for future work is to develop a proper crypto-
graphic (rather than symbolic) proof of security for Simple Pairing. In

such a proof, human oracles can be modeled as a secure ideal functional-
ity for equality testing, and the protocol can be proved secure relative to
this functionality.

References

1. B. Blanchet. From secrecy to authenticity in security protocols. In Proc. SAS,
2002.

2. B. Blanchet. Automatic proof of strong secrecy for security protocols. In Proc.
IEEE S&P, 2004.

3. B. Blanchet, M. Abadi, and C. Fournet. Automated verification of selected equiv-
alences for security protocols. In Proc. LICS, 2005.

4. Bluetooth Special Interest Group. Specification of the Bluetooth system. http://
www.bluetooth.com/NR/rdonlyres/1F6469BA-6AE7-42B6-B5A1-65148B9DB238/

840/Core v210 EDR.zip, 2004.
5. Bluetooth Special Interest Group. Bluetooth wireless technology surpasses one

billion devices. http://www.bluetooth.com/Bluetooth/Press/SIG/BLUETOOTH

WIRELESS TECHNOLOGY SURPASSES ONE BILLION DEVICES.htm, 2006.
6. Bluetooth Special Interest Group. Simple pairing whitepaper. http://www.

bluetooth.com/NR/rdonlyres/0A0B3F36-D15F-4470-85A6-F2CCFA26F70F/0/

SimplePairing WP V10r00.pdf, 2006.
7. M. Goodrich, M. Sirivianos, J. Solis, G. Tsudik, and E. Urzun. Human-verifiable

authentication based on audio. In Proc. ICDCS, 2006.
8. M. Jakobsson and S. Wetzel. Security weaknesses in Bluetooth. In Proc. CT-RSA,

2001.
9. S. Laur and K. Nyberg. Efficient mutual data authentication using manually

authenticated strings. In Proc. CANS, 2006.
10. O. Levy and A. Wool. A uniform framework for cryptanalysis of the Bluetooth E0

cipher. In Proc. SecureComm, 2005.
11. Y. Lu and S. Vaudenay. Cryptanalysis of Bluetooth keystream generator two-level

E0. In Proc. ASIACRYPT, 2004.
12. J. McCune, A. Perrig, and M. Reiter. Seeing-is-believing: Using camera phones

for human-verifiable authentication. In Proc. IEEE S&P, 2005.
13. N. Saxena, J.-E. Ekberg, K. Kostiainen, and N. Asokan. Secure device pairing

based on a visual channel. In Proc. IEEE S&P, 2006.
14. J. Vainio. Bluetooth security. http://www.niksula.cs.hut.fi/∼jiitv/bluesec.

html, 2000.
15. S. Vaudenay. Secure communications over insecure channels based on short au-

thenticated strings. In Proc. CRYPTO, 2005.

