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Abstract
We present a new approach to verifying that a com-

pletely untrusted, platform-as-a-service cloud is cor-

rectly executing an outsourced Web application.

1 Introduction

Web applications such as blogs, wikis, and online so-

cial networks are increasingly hosted on third-party,

“platform-as-a-service” (PaaS) clouds. The owner out-

sources the execution of his application to a cloud

provider—for example, Microsoft’s Azure or Google’s

App Engine—and is periodically billed for the applica-

tion’s consumption of CPU time and network bandwidth.

In a PaaS environment, the owner does not have much

control or visibility into the provider’s server infrastruc-

ture, virtual machines, data-center and network architec-

ture, etc. The cloud is completely untrusted.

We describe a new approach to (1) verifying that

cloud-hosted, interactive Web applications (webapps)

are executed correctly, and (2) measuring the frequency

and severity of violations without any trusted compo-

nents in the cloud.

Our approach may be useful in several scenarios. First,

the owner may want to determine whether his webapp is

executed correctly by a particular PaaS cloud. Faults in

the execution of a cloud-hosted webapp can result from

bugs and/or misconfiguration anywhere in the provider’s

stack: network, OS, Web server, database back-end, etc.

A malicious provider may try to reduce its expenses by

executing the webapp incorrectly or incompletely. Our

approach is agnostic to the source of potential faults and

enables the webapp’s owner to detect the consequences

of faults in the opaque layers of the provider’s infrastruc-

ture without direct access to these layers.

Second, the webapp’s owner can use our approach to

measure how the number of violations increases with the

number of users and/or requests and thus estimate the

scalability of his webapp in a given PaaS cloud.

Third, our approach can be used to compare the qual-

ity of service from different cloud providers by measur-

ing the number of respective violations. Cloud-hosted

webapps often rely on storage services supplied by the

cloud provider. To achieve high scalability, these stor-

age layers typically support only eventual consistency, a

very weak form of consistency without any bounds on

the time it may take for the storage to reach a consistent

state. As a consequence, webapps relying on cloud stor-

age may occasionally provide inconsistent responses to

users’ requests. For webapps of the type considered in

this paper, the frequency and severity of consistency vi-

olations are key metrics for estimating the quality of a

cloud provider’s service.

The problem of verifying the execution of cloud-

hosted webapps is different from the problem of veri-

fying outsourced computation [3, 4]. The latter deals

with non-interactive computation, where a single party

supplies the computation and its inputs and verifies that

the cloud provider performed the computation correctly.

By contrast, webapps such as blogs and social networks

are fundamentally interactive and involve an exchange

of information with many users other than the webapp’s

owner. In a PaaS environment, the owner does not have

access to the virtual machine(s) hosting his webapp and

cannot directly observe its interactions with other users.

Key ideas. EVE, our prototype system for verifying the

execution of cloud-hosted webapps, is based on two in-

sights. First, we exploit the observation that many com-

mon webapps consist of a stateless front-end running on

a Web server and a storage back-end (implemented as

a database or key-value store) for keeping the persistent

state. In webapps of this type, the front-end simply con-

verts HTTP requests into reads and writes to/from the

back-end and presents the results as HTML content. All

webapp operations can thus be represented in terms of

reads and writes to an object store, with or without ac-

cess control. For a large class of webapps, this property



allows us to reduce the problem of verifying whether an

application is executing correctly to the problem of veri-

fying whether an object store is consistent.

Second, multi-user webapps require collaborative ver-

ification. EVE depends on a few cooperating users

called “witnesses” who keep logs of their interaction

with the cloud-hosted webapp. Under standard fault

models (e.g., random faults) and as long as witnesses

are indistinguishable by the cloud provider from regular

users, deviations from the application’s expected behav-

ior will be detected with high probability.

In EVE, the cloud is completely untrusted. The key

distinction from other systems for verifiable or account-

able cloud computation is that EVE aims to verify the

externally visible I/O behavior of the cloud-hosted we-

bapp, as opposed to the actual computation performed

inside the cloud. Verifying the latter requires a source of

trust that is not controlled by the cloud provider (for ex-

ample, a trusted hypervisor or hardware module). PaaS

providers today do not support this model. Furthermore,

enforcement based on trusted cloud components ends at

the virtual-machine boundary and does not detect net-

work faults after packets have left the virtual machine.

By contrast, EVE measures the “black-box” behavior of

the cloud-hosted webapp from the end user’s point of

view and is thus deployable on existing PaaS platforms.

2 Related Work

GridCop [8] uses compiler-based techniques and peri-

odic beacon exchanges to check the progress and cor-

rectness of a remotely executing program. It trusts the

cloud provider’s infrastructure such as the JVM and OS.

By contrast, EVE is designed to verify Web applications

executing in a completely untrusted cloud.

Several proposals [2, 6] rely on trusted hardware

(“Trusted Platform Module” or TPM) to detect modifi-

cations in remotely executing programs. Existing PaaS

platforms such as Google’s App Engine do not provide

access to their internal TPMs, thus TPM-based tech-

niques cannot be used to verify applications whose ex-

ecution has been outsourced to one of these platforms.

Pioneer [7] uses fine-grained delay variations to de-

tect modifications in programs running on a remote host.

This technique only works in smaller networks where

network delays are negligible and does not appear to be

applicable to PaaS scenarios.

Accountable virtual machines (AVMs) [5] ensure cor-

rect execution of remote processes. AVMs rely on the

server to record all incoming and outgoing messages.

Existing PaaS platforms do not provide this functional-

ity to their clients. By contrast, EVE does not rely on

any trusted components inside the cloud, nor assumes

anything about the virtual machine in which the applica-

tion is executed. Because EVE operates at a higher level

and has better visibility into the application’s semantics,

it can record only those application-specific operations

that are important for verification.

3 Verification Methodology

3.1 Object-store semantics of webapps

EVE represents the semantics of webapp operations in

terms of reads and writes to an abstract “object store”

whose interface is similar to a standard key-value store.

We found that this mapping from application-level oper-

ations to one or more object-store operations is straight-

forward for many common webapps. In our WordPress

case study, we constructed the mappings manually (see

Section 4.2), but they can also be generated automati-

cally. This is a topic for future work.

In the object store, objects are identified by unique ids

and have properties whose values are either arrays, or

single values. By default, any property that has not been

written to has value NULL. The result of an operation on

an object is success or failure.

Each write specifies the values for all properties of

the target object. Partial writes are modeled by read-

ing all of the object’s property values, modifying some

of them, and writing all property values back into the

object. A “create” operation is simply a write with the

desired value for the creation-time property. A “delete”

operation is a write that sets the values of all properties

to NULL. We assume that the webapp keeps track of the

identity of the user (userid or IP address) who performed

the last write by storing it in a special property of the

object and returns this identity with every read.

3.2 Client logs

Each client participating in verification as a “witness”

(see Section 3.3) maintains a log of its interactions with

the cloud-hosted webapp. In the log, every webapp

operation is represented in terms of object-store opera-

tions. Of course, the client observes only HTTP requests

and responses, not the actual object-store operations per-

formed in the cloud, but the mappings described in Sec-

tion 3.1 are used to convert the former into the latter.

Each entry in the log contains the following: (1) begin

timestamp, (2) end timestamp, (3) operation type (read

or write), (4) result (success or failure), (5) object id, (6)

values of the object’s properties, including the identity

of the user who performed the last write of this object.

All timestamps are generated by the client. We assume

that clients’ clocks are loosely synchronized. The cor-

rectness guarantee provided by EVE’s verification pro-



cedure decreases gradually as the skew between clients’

clocks increases.

Logging is automated by instrumenting the webapp’s

client-side code. Once a user agrees to become a witness,

his logs are automatically and transparently sent to the

verifier running on a separate server maintained by the

webapp’s owner or one of the clients. The cloud provider

cannot tamper with the logs: either they are sent over a

network connection that does not traverse the provider

(e.g., email or peer-to-peer), or their integrity is crypto-

graphically protected by an HMAC or digital signature.

To avoid key distribution, the current prototype of EVE

relies on the former mechanism.

3.3 Collaboration

Collaborative verification of multi-user webapps in EVE

depends on a subset of users (witnesses) who keep logs

of their interaction with the webapp and periodically

send them to the verifier, as described in Section 3.2.

The verifier checks whether the logs are consistent with

the intended operation of the webapp using the efficient

streaming algorithm described in Section 3.4.

Witnesses can be recruited using incentives—for ex-

ample, free use of the webapp. They behave like normal

users in all other respects. It is important that the cloud

provider not be able to distinguish witnesses from regular

users; otherwise, a malicious provider may avoid detec-

tion by executing the webapp incorrectly only for regu-

lar users. If faults occur randomly and independently for

each user with probability pe and the fraction of indis-

tinguishable witnesses among users is pw, then the prob-

ability that a faulty cloud provider successfully avoids

detection after n interactions is (1− pepw)n.

3.4 Streaming verification of consistency

There are different types of consistency. Atomicity re-

quires any read of an object to return the values of the lat-

est write to that object. With multi-user webapps, how-

ever, clients may not know the order in which the webapp

processes concurrent writes (for example, simultaneous

comments to a popular blog post). It is not possible to

verify atomicity without an online central proxy mediat-

ing all interactions between the clients and the webapp,

which is unrealistic for cloud-hosting scenarios.

Instead, EVE verifies a weaker property. Regularity

requires any read of an object to return the value of ei-

ther the last write, or one of the concurrent writes. Our

consistency verification algorithm is similar to the algo-

rithm of Anderson et al. [1]. As in [1], we define three

possible relations between any two log entries A and B

referring to the same object:

Algorithm 1 Streaming verification of consistency

Collect client logs and add to existing log

Create object-specific logs based on objectid

for each object-specific log do

Sort the log based on begin timestamp

beginoffset = 0

Find a READ Rsep where offset(Rsep) >

min increment size and ((Rsep.beginTime) −
current time) > max delay

while no such read Rsep found do

sleep(t) and restart

end while

endoffset = offset(Rsep)
for all operations O such that O||Rsep do

endoffset = endoffset+1

end for

Verify consistency of partial object-specific

log(0,endoffset) using Algorithm 2

if partial object-specific log inconsistent then

return INCONSISTENT

else

for each operation O in partial object-specific

log(0,endoffset) do
if O < Rsep and O is not dictating write of Rsep

then

Remove O from log

end if

end for

end if

end for

A < B if A.endTime < B.beginTime

A > B if A.beginTime > B.endTime

A||B if (A.beginTime < B.endTime < A.endTime)

or (B.beginTime < A.endTime < B.endTime)

The algorithm of Anderson et al. is a relatively expen-

sive offline algorithm and does not scale with the number

of log entries. By contrast, our Algorithm 1 is a stream-

ing algorithm which is orders of magnitude faster for

large logs than the algorithm of Anderson et al. Instead

of verifying all log entries at once, our algorithm divides

the log into chunks and verifies each chunk separately.

To preserve correctness, some of the entries in a chunk

must overlap with those of the immediately following

chunk. Once a chunk is verified, its non-overlapping en-

tries can be removed from the log.

Our Algorithm 2 for verifying consistency of partial

object-specific logs by building precedence graphs is

similar to the corresponding algorithm of Anderson et

al. In collaborative verification, the verifier receives logs

only from collaborating witnesses. Verification is thus

partial and provides probabilistic guarantees (see Sec-

tion 3.3). Algorithm 2 only considers reads R where the



Algorithm 2 Verification of consistency of partial

object-specific logs

for all operations A and B such that A < B do

add an edge A→ B

end for

for every read R in input log do

Find R’s dictating write W such that

(W.property values==R.property values)

if no dictating writeW then

return INCONSISTENT

else if not (W ||R) then
Add an edgeW → R

end if

end for

for every writeW ′ and read R, whereW ′ < R do

Add an edge W ′ → W , where W is R’s dictating

write

end for

if any cycle in resulting graph then

return INCONSISTENT

else

return CONSISTENT

end if

user who performed the latest write on the object be-

longs to the witness set (recall that the identity of this

user is stored in a special property of the object and thus

returned with every read). If both witnesses and non-

witnesses perform writes on the same object, the veri-

fication algorithm effectively ignores the consequences

of non-witness writes because it cannot check their cor-

rectness. This does not break the overall probabilistic

guarantees of EVE. Because the cloud provider cannot

tell the difference between witnesses and non-witnesses,

faults cannot affect only non-witnesses.

In practice, webapps can suffer from temporary con-

sistency violations even during benign execution because

many popular back-ends are eventually-consistent key-

value stores which may occasionally provide inconsis-

tent results. Following Anderson et al., our algorithm,

too, not only detects consistency violations, but also ap-

proximately measures the extent of violations over a pe-

riod of time, thus enabling the webapp’s owner to esti-

mate the quality of the cloud provider’s service.

4 Case Study: WordPress

To illustrate the capabilities of EVE, we apply it to

WordPress, a popular blogging Web application. The

front-end of WordPress is a set of PHP scripts running on

a Web server, the back-end is a MySQL database. Word-

Press lets users publish blog posts and add comments to

other users’ posts. In our prototype, we only verify a

subset of the operations supported by full WordPress.

Because WordPress has a complex role-based access-

control model, we leave verification of access-control en-

forcement in cloud-hosted WordPress to future work.

4.1 Objects in WordPress

Our abstract “object store” model forWordPress involves

two types of objects: posts and comments. A post object

is a user-created blog post. It has six properties: postid,

content, authorname, isdraft, and timestamp. “postid” is

a unique identifier, “content” contains the content of the

post, “timestamp” contains the time when the post was

created. WordPress allows users to store unpublished

posts in the server as drafts. The “isdraft” property is

set to 1 if the post object is an unpublished draft.

A comment object has eight properties: commen-

tid, content, authorname, authorwebsite, timestamp, par-

ent postid, parent commentid, and depth. Similar to post

objects, “commentid” is a unique identifier, while “con-

tent” contains the content of the comment. WordPress as-

sociates each comment with the corresponding blog post,

whose postid identifier is stored in the “parent postid”

property of the comment object. Comments in Word-

Press can be nested to arbitrary depth, i.e., it possible to

add a comment to a comment. The “parent commentid”

property stores the commentid of the parent comment ob-

ject, while “depth” indicates the number of levels from

the top-level comment. For example, a comment added

directly to a post has depth 0, while a comment added to

a top-level comment has depth 1.

4.2 Mapping WordPress operations to

object-store operations

The key idea behind our approach is to map application

operations to object-store operations. Table 1 shows the

manually constructed mapping for common WordPress

operations. WordPress supports creation, modification,

and deletion of both posts and comments. Whenever

a user creates a new post or comment, WordPress re-

turns a unique identifier. The space of WordPress identi-

fiers for posts (id) overlaps with the space of identifiers

for comments (commentid). To make identifiers unique,

we prepend object type (0 for posts, 1 for comments) to

the WordPress-generated identifier and use the resulting

value as the object-store identifier (osid).

4.3 Experimental results

We set up a WordPress server and multiple clients who

interact with the server using XML-RPC. The server was

initialized with 8 blog posts. The clients randomly try

to read these posts or write comments to them and log



Table 1: Mapping WordPress operations to object-store operations

WordPress operations Object-store operations

readPost(user,wpid) readObj(user,osid)

id=createPost(user,content, writeObj(user,osid,content,authorname,. . . )

authorname,tags)

modifyPost(user,id,content) readObj(user,osid); writeObj(user,osid,content,authorname,. . . )

deletePost(user,id,content) writeObj(user,osid,NULL,NULL,. . . )

id=createDraft(user,content, writeObj(user,osid,content,authorname,isdraft=1)

authorname,tags)

modifyDraft(user,id,content) readObj(user,osid); writeObj(user,osid,content,authorname,isdraft=1)

createPostFromDraft(user,id) readObj(user,osid); writeObj(user,osid,content,authorname,isdraft=0)

readComment(user,commentid) readObj(user,osid)

commentid = createComment(user, writeObj(user,osid,. . . )

content,authorname,. . . )

deleteComment(user,commentid) writeObj(user,osid,NULL,NULL,. . . )

their interactions with the server. The resulting joint log

is submitted to EVE, which checks it for consistency.

To compare the performance of our consistency ver-

ification algorithm with the algorithm of Anderson et

al. [1], we implemented the latter as well. To keep the

comparison fair, in both cases the entire log is loaded

into memory and entries sorted before processing, al-

though EVE can first sort the log and then process

it incrementally for better performance. For this test,

min increment size in Algorithm 1 is set to 100. If an

Rsep is not found, then, instead of sleeping, Algorithm 1

is modified to process the rest of the entries together. All

tests were done on a laptop with an Intel Core Duo 2.00

GHz CPU and 2 GB RAM. Results are shown in Fig. 1,

demonstrating better scalability of our algorithm. When

the number of log entries exceeded 1600, the algorithm

of Anderson et al. ran out of memory.
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Figure 1: Performance comparison of EVE and Ander-

son et al.’s algorithm.

5 Future Work

5.1 Generating operation mappings

EVE is based on the observation that many Web appli-

cations can be “deconstructed” into a stateless front-end,

which is responsible for processing clients’ requests and

generating HTML responses, and an object-store back-

end, which is responsible for keeping the entire state of

the application. For such webapps, application-level op-

erations can be represented in terms of reads and writes

to the underlying object store. The problem of verifying

whether the application is executed correctly in a PaaS

cloud can then be reduced to the easier problem of ver-

ifying whether distributed reads and writes are correctly

reflected in a cloud-based object store.

One of the challenges for future development of EVE

is to automate this mapping from application-level op-

erations such as clients’ HTTP requests to object-store

operations. One option is to generate the mappings as

part of the application development process. Another

option is to add an extra layer of indirection by imple-

menting a “wrapper” library for each actual store. This

library would (1) perform the object-store operation by

submitting a query to a concrete SQL database or a key-

value store, and (2) generate an abstract representation

of this operation in a form suitable for verification using

the algorithms of Section 3.4. When deployed on a PaaS

cloud, the webapp would use an appropriate library on

top of a concrete object store as its storage back-end.

When the verifier receives a log of application-level

operations from “witness” clients, he replays these op-

erations to a special local version of the webapp whose

storage library has the same interface as described above

but whose implementation only contains (2). In other

words, it logs what the effect of an operation would have



been had it been executed over an actual object store.

The resulting logs are then checked for consistency.

In addition to automatically converting application op-

erations into object-store operations for a large class of

webapps, this approach also has the benefit of improv-

ing portability of webapps. If a webapp uses an ab-

stract object-store library interface as its back-end rather

than a concrete store, it can be transparently moved from

one object-store implementation to another without any

changes to the application code.

5.2 Dealing with malicious witnesses

The collaborative verification approach described in Sec-

tion 3.3 assumes that witnesses who submit logs for ver-

ification are honest. A malicious witness can potentially

send incorrect logs, producing false negatives (tell the

webapp’s owner that the webapp is being executed cor-

rectly even though the execution is faulty) or false pos-

itives (tell the owner that the execution is faulty even

though it is correct).

We are not concerned about false negatives because a

malicious witness only hurts himself if he receives incor-

rect outputs from the cloud but reports that everything is

Ok. Note that the cloud provider cannot collude with ma-

licious witnesses to hide all faults unless faults are lim-

ited to malicious witnesses (in this case, the damage from

incorrect execution does not affect honest users). False

fault reports, on the other hand, may unfairly “frame” the

cloud provider.

One possible approach to dealing with untrustworthy

witnesses is to have the verifier record the discrepancies

between the reports of individual witnesses and those of

the majority of witnesses. This helps detect witnesses

who consistently report faults while the majority ob-

serves only correct execution. Developing a robust rep-

utation scheme for this setting is a topic for future re-

search.

An alternative is cryptographically enforced account-

ability. If the server cryptographically signs all messages

and the client submits them with his log, the verifier can

check if the log is correct. This requires online cryptog-

raphy for every webapp operation.

5.3 Verifying access-control semantics

Some webapps involve access control (for example, only

the author of a blog post should be able to see it until

the post is published). For such webapps, it is necessary

to verify that the interaction between the witness and the

webapp satisfies the application’s access-control seman-

tics. Access-control information is stored in the back-end

just like any other persistent data and retrieved before al-

lowing or denying user-requested operations. Without

loss of generality, we assume that access-control infor-

mation is kept in special access-control objects. When-

ever a new user is added or privileges of an existing user

changed, the webapp writes to the corresponding access-

control object.

Reads from access-control objects are not performed

explicitly by users. Instead, any read or write on any

user-created object (including access-control objects)

also generates a read from the corresponding access-

control object of that user. These reads can then be

checked for consistency to ensure that access control is

being enforced correctly.
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