
Probabilistic polynomial-time semantics for a
protocol security logic?

Anupam Datta1, Ante Derek1, John C. Mitchell1, Vitaly Shmatikov2, and
Mathieu Turuani3

1 Dept. Computer Science, Stanford University, Stanford, CA
2 Dept. Computer Science, University of Texas, Austin, TX

3 LORIA-INRIA Nancy, France

Abstract. We describe a cryptographically sound formal logic for prov-
ing protocol security properties without explicitly reasoning about prob-
ability, asymptotic complexity, or the actions of a malicious attacker.
The approach rests on a new probabilistic, polynomial-time semantics
for an existing protocol security logic, replacing an earlier semantics that
uses nondeterministic symbolic evaluation. While the basic form of the
protocol logic remains unchanged from previous work, there are some in-
teresting technical problems involving the difference between efficiently
recognizing and efficiently producing a value, and involving a reinterpre-
tation of standard logical connectives that seems necessary to support
certain forms of reasoning.

1 Introduction

Security analysis of network protocols is a successful scientific area with two im-
portant but historically independent foundations, one based on logic and sym-
bolic computation, and one based on computational complexity theory. The sym-
bolic approach, which uses a highly idealized representation of cryptographic
primitives, has been a successful basis for formal logics and automated tools.
Conversely, the computational approach yields more insight into the strength
and vulnerabilities of protocols, but it is more difficult to apply and it involves
explicit reasoning about probability and computational complexity. The pur-
pose of this paper is to suggest that formal reasoning, based on an abstract
treatment of cryptographic primitives, can be used to reason about probabilistic
polynomial-time protocols in the face of probabilistic polynomial-time attacks.
We do this by proposing a new semantics for a variant of an existing logic. The

? This work was partially supported by NSF CyberTrust Grant 0430594, Collabora-
tive research: High-fidelity methods for security protocols, by the DoD University
Research Initiative (URI) program administered by the Office of Naval Research
under Grant N00014-01-1-0795, by OSD/ONR CIP/SW URI through ONR Grant
N00014-04-1-0725, by NSF CCR-0121403, Computational Logic Tools for Research
and Education, and by the NSF Cybertrust grant to the PORTIA project. M. Tu-
ruani’s activities at Stanford were also funded by a postdoctoral grant from INRIA.

new semantics brings forward some interesting distinctions that were not avail-
able in the coarser symbolic model, and also raises some apparently fundamental
issues about the inherent logic of asymptotic probabilistic properties.

The Protocol Composition Logic [2, 7, 8, 10] uses a modal operator similar
to Floyd-Hoare logic. Intuitively, the formula ψ [P]X ϕ means that if ψ is true
at some point in the execution of a protocol (in the presence of a malicious
attacker), then ϕ will be true after agent X performs the sequence P of actions.
The pre- and post-conditions may describe actions taken by various principals
and characterize the information that is available to or hidden from them. The
semantics we explore in this paper recasts the methods of [15] in a logical setting,
and reflects accepted modelling approaches used in the field of cryptography,
particularly [5, 17].

Our central organizing idea is to interpret formulas as operators on proba-
bility distributions on traces. Informally, representing a probability distribution
by a set of equi-probable traces (each tagged by the random sequence used to
produce it), the meaning of a formula ϕ on a set T of traces is the subset T ′ ⊆ T
in which ϕ holds. This interpretation yields a probability: the probability that ϕ
holds is the ratio |T ′|/|T |. Conjunction and disjunction are simply intersection
and union. There are several possible interpretations for implication, and it is
not clear at this point which will prove most fruitful in the long run. In the
present paper, we interpret ϕ =⇒ ψ as the union of ¬ϕ and the composition
of ψ with ϕ; the latter is also the conditional probability of ψ given ϕ. This
interpretation supports a soundness proof for a sizable fragment of the protocol
logic, and resembles the probabilistic interpretation of implication in [16]. Since
the logic does not mention probability explicitly, we consider a formula “true”
if it holds with asymptotically overwhelming probability.

In previous work [2, 7, 8, 10] over a symbolic semantic model, the atomic for-
mula Has(X, m) means that m is in the set of values “derivable,” by a simple
fixed algorithm, from information visible to X. The simple fixed algorithm is cen-
tral to what is called the Dolev-Yao model, after [9] and much subsequent work
by others. In replacing the symbolic semantics with a computational semantics
based on probabilistic polynomial time, we replace the predicate Has with two
predicates, Possess and Indist. Intuitively, Possess(X,m) means that there is an
algorithm that computes the value of m with high probability from information
available to X, while Indist(X,m) means that X cannot feasibly distinguish m
from a random value chosen according to the same distribution. However, certain
technical problems discussed in Section 7 lead us to work with slightly simplified
semantics of these predicates that capture our intuition most strongly when the
possessing principal is assumed honest (in the sense of following the protocol)
and the predicate Indist only appears with positive polarity. Fortunately, these
syntactic conditions are met in many formulas expressing authentication and
secrecy properties.

Several groups of researchers have either formulated connections between
symbolic logic and feasible probabilistic computation, or developed relationships
between symbolic and computational models. In particular, Abadi and Rogaway

Terms:

N ::= X̂ (name)
K ::= X (key)
S ::= s (session)
n ::= r (nonce)
T ::= (N, S) (thread)
V ::= x (term variable)
tB ::= V |K |T |N |n | 〈tB , tB〉 (basic term)
t ::= tB | {t}n

K |〈t, t〉 (term)

Actions:
a ::=
| new T, n
| V := enc T, t, K
| V := dec T, t, K
| match T, t/t
| send T, t
| receive T, V

Table 1. Syntax of protocol terms and actions

[1] propose a logical characterization of indistinguishability by passive eavesdrop-
pers that has been studied by a number of others, and Kapron and Impagliazzo
suggest a formal logic for reasoning about probabilistic polynomial-time indis-
tinguishability [13]. Some semantic connections between symbolic and computa-
tional models have been developed by a team at IBM Zurich, e.g., [3], with other
connections explored in a series of related papers by Micciancio, Warinschi, and
collaborators [15, 18, 6]. Herzog [11, 12] shows that if a protocol attack exists in
a Dolev-Yao model, there is an attack in a computational model. More recent
related work also appears in [14, 6].

Section 2 presents the syntax for defining roles of a protocol, while the syntax
of the logic appears in Section 3. Some axioms and proof rules are described in
Section 4, followed by a short proof example in Section 5. Section 6 presents the
probabilistic polynomial-time execution and attacker model. The semantics of
the logic are given in Section 7, and concluding remarks in Section 8.

2 Protocol Syntax

We use a simple “protocol programming language” based on [10, 7, 8] to represent
a protocol by a set of roles, such as “Initiator”, “Responder” or “Server”, each
specifying a sequence of actions to be executed by a honest participant. The
syntax of terms and actions is given in Table 1.

Names, sessions and threads: We use X̂, Ŷ , . . . as names for protocol partic-
ipants. Since a particular participant might be involved in more than one session
at a time, we will give unique names to sessions and use (X̂, s) to designate a
particular thread being executed by X̂. All threads of a participant X̂ share
the same asymmetric key denoted by X. As a notational convenience, we will
sometimes write X̃ for an arbitrary thread of X̂.

Terms, actions, and action lists: Terms name messages and their parts, such
as nonces, keys, variables and pairs. For technical reasons, we distinguish basic
terms from terms that may contain encryption. To account for probabilistic en-
cryption, encrypted terms explicitly identify the randomness used for encryption.
Specifically, {t}n

K indicates the encryption of t with key K using randomness n

Action Predicates:
a ::= Send(T, t) |Receive(T, t) |New(T, n)

Formulas:
ϕ ::= a | t = t | Start(T) |Possess(T, t) | Indist(T, t) |Fresh(T, t) |Honest(N) |

Start(T) |Contains(t, t) |ContainsOut(t, t, t) |DecryptsHonest(T, t) |
Source(T, t, t) |ϕ ∧ ϕ |ϕ ∨ ϕ | ∃V ar. ϕ | ∀V ar. ϕ | ¬ϕ |ϕ ⊃ ϕ |ϕ ⇒ ϕ

Modal formulas:
Ψ ::= ϕ [Strand]T ϕ

Table 2. Syntax of the logic

generated for the purpose of encryption. We write m ⊆ m′ when m is a subterm
of m′ ∈ t.

Actions include nonce generation, encryption, decryption, pattern matching,
and communication steps (sending and receiving). An ActionList consists of a
sequence of actions that contain only basic terms. This means that encryption
cannot be performed implicitly; explicit enc actions, written as assignment, must
be used instead. We assume that each variable will be assigned at most once,
at its first occurrence. For any s ∈ ActionList, we write s|X to denote the
subsequence of s containing only actions of a participant (or a thread) X.

Strands, roles, protocols and execution: A strand is an ActionList, con-
taining actions of only one thread. Typically we will use notation [ActionList]X̃
to denote a strand executed by thread X̃ and drop the thread identifier from the
actions themselves. A role is a strand together with a basic term representing
the initial knowledge of the thread. A protocol is a finite set of Roles, together
with a basic term representing the initial intruder knowledge.

An execution strand is a pair ExecStrand ::= InitialState(I); ActionList
where I is a data structure representing the initial state of the protocol, as
produced by the initialization phase from Section 6. In particular, this includes
the list of agents and threads, the public/private keys and honesty/dishonesty
tokens of each agent, and the roles played by each thread.

3 Logic Syntax

The syntax of formulas is given in Table 2. Protocol proofs will usually use modal
formulas of the form ψ[P]X̃ϕ, as explained intuitively in the introduction of
the paper. Most formulas have the same intuitive meaning in the computational
semantics as in the symbolic model [7, 8], except for predicates Possess and Indist.
We summarize the meaning of formulas informally below, with precise semantics
in the next section.

For every protocol action, there is a corresponding action predicate which
asserts that the action has occurred in the run. For example, Send(X̃, t) holds

in a run where the thread X̃ has sent the term t. Fresh(X̃, t) means that the
value of t generated by X̃ is “fresh” in the sense that no one else has seen any
messages containing t, while Honest(X̂) means that X̂ is acting honestly, i.e.,
the actions of every thread of X̂ precisely follows some role of the protocol. The
Source predicate is used to reason about the source of a piece of information,
such as a nonce. Intuitively, the formula Source(Ỹ , u, {m}r

X) means that the only
way for a thread X̃ different from Ỹ to know u is to learn u from the term {m}r

X ,
possibly by some indirect path.

The predicate Fresh is definable by Fresh(X̃, v) ≡ New(X̃, v)∧¬(∃u. Send(X̃, u)∧
Contains(u, v)) and classical implication is definable by A ⊃ B ≡ ¬A ∨B.

In the symbolic model [7, 8],the predicate Has states that a principal can
“derive” a message or its contents from the information gathered during protocol
execution. We use Possess(X̃, t) to state that it is possible to derive t by Dolev-
Yao rules from X̃’s view of the run and Indist(X̃, t) to state that no probabilistic
polynomial-time algorithm, given X̃’s view of the run, can distinguish t from a
random value from the same distribution. Typically, we use Possess to say that
some honest party obtained some secret, and Indist to say that the attacker does
not have any partial information about a secret.

4 Proof System

The proof system used in this paper is based on the proof system developed
in [7, 8, 2]. Some example axioms and rules are given in Table 3; the full presen-
tation is deferred to the extended version of this paper. These axioms express
reasoning principles that can be justified using complexity-theoretic reductions,
information-theoretic arguments, and asymptotic calculations. However, the ad-
vantage of the proof system is that its justification using cryptographic-style
arguments is a one-time mathematical effort; protocol proofs can be carried out
symbolically using the proof system without explicitly reasoning about prob-
ability and complexity. Another advantage of the axiomatic approach is that
different axioms and rules rest on different cryptographic assumptions. There-
fore, by examining the axioms and rules used in a specific proof, we can identify
specific properties of the cryptographic primitives that are needed to guarantee
protocol correctness. This provides useful information in protocol design because
primitives that provide weaker properties often have more efficient constructions.

Axioms: Axioms AN2 and AN3 capture some of the properties of nonce gen-
eration. Informally, AN2 states that if a thread X̃ generates a fresh nonce x
and does not perform any additional actions, then x is indistinguishable from a
random value for all other threads. The soundness of this axiom is established by
a simple information-theoretic argument. The informal interpretation of axiom
S1 (also called the “Source” axiom) is that, unless a ciphertext is decrypted,
a thread which does not possess the decryption key cannot extract any par-
tial information about the plaintext. The soundness of this axiom is proved by
a complexity-theoretic reduction. Specifically, we show that if an attacker can

Axioms:

AN2 : >[new x]X̃ Ỹ 6= X̃ ⇒ Indist(Ỹ , x)

AN3 : >[new x]X̃Fresh(X̃, x)

S1 : Source(Ỹ , u, {m}r
X) ∧ ¬DecryptsHonest(X̂, {m}r

X) ∧ Ẑ 6= X̂ ∧ Ẑ 6= Ŷ ∧
Honest(X̂) ∧ Honest(Ŷ) ⇒ Indist(Z̃, u)

Proof rules:

θ[P]Xϕ θ′ ⊃ θ ϕ ⊃ ϕ′

θ′[P]Xϕ′
G3

θ[P1]Xϕ ϕ[P2]Xψ
θ[P1P2]Xψ

SEQ

ϕ ϕ ⇒ ψ
ψ

MP
ϕ
∀x.ϕ

GEN

Table 3. Fragment of the proof system

break this property, then there is another attacker that can break the underlying
IND-CCA2 secure encryption scheme [4].

Inference rules: Inference rules include generic rules from modal logics (e.g.
G3), sequencing rule SEQ used for reasoning about sequential composition of
protocol actions and a rule (called the honesty rule) for proving protocol invari-
ants using induction. These rules are analogous to proof rules from our earlier
work [7, 8].

First-order axioms and rules: We use two implications: a conditional impli-
cation ⇒, discussed and defined precisely in section 7, and a classical implication
⊃ with A ⊃ B ≡ ¬A ∨B. While standard classical tautologies hold for classical
implication, some familiar propositional or first-order tautologies may not hold
when written using ⇒ instead of ⊃. However, modus ponens and the gener-
alization rule above are sound. The soundness of modus ponens relies on the
simple asymptotic fact that the sum of two negligible functions is a negligible
function. In future work, we hope to develop a more complete proof system for
the first-order fragment of this logic.

5 Example

In this section, we present a simple protocol and state a secrecy property that
can be proved using the proof system. The interested reader is referred to [10,
7, 8] for further explanation and examples. The two protocol roles are:

Init ≡ [new x; y := enc〈x, X̃〉, Y ; send X̂, Ŷ , y]X̃
Resp ≡ [receive z; match z/〈X̂, Ŷ , z′〉; z′′ := dec z′, Y]Ỹ

The initiator generates a new nonce and sends it encrypted to the responder.
The responder receives the message and recovers the nonce by decrypting the

ciphertext. We can prove that if X̃ completes the protocol with Ỹ , then x will
be a shared secret between them, provided both agents are honest. Formally,

Start(X̃)[Init]X̃Honest(X̂) ∧ Honest(Ŷ) ∧ (Z̃ 6= X̃) ∧ (Z̃ 6= Ỹ) ⇒ Indist(Z̃, x)

Since the meaning of Indist(Z̃, x) (formally defined in Section 7) is that Z̃ can-
not distinguish the secret nonce x from a randomly chosen nonce, this formula
expresses a standard form of secrecy used in the cryptographic literature.

The axiomatic proof uses AN2, a variant of S1, and modus ponens MP.
The proof idea is that at the point the initiator produces the nonce x, by AN2,
it is indistinguishable from random to everyone else other than X̃ and Ỹ . It
continues to remain indistinguishable since it appears on the network under
encryption with a public key whose corresponding private key is not available to
the attacker. This part of the reasoning is codified by an axiom that is similar to
S1 and relies on the fact that the encryption scheme used is IND-CCA2 secure.
Modus ponens is used in the general first-order reasoning involved in the proof.

6 Protocol Execution

Given a protocol, adversary, and value of the security parameter, we define a
set of protocol traces, each associated with the random bits that produce this
sequence of actions and additional randomness for algorithms used in the se-
mantics of formulas about the run. The definition proceeds in two phases. In the
initialization phase, we assign a set of roles to each principal, identify a subset
which is honest, and provide all entities with private-public key pairs and random
bits. In the execution phase, the adversary executes the protocol by interacting
with honest principals, as in the accepted cryptographic model of [5].

Initialization: We fix the protocol Q, adversary A, security parameter η, and
some randomness R of size polynomially bounded in η. Each principal and each
thread (i.e., an instance of a protocol role executed by the principal) is assigned
a unique bitstring identifier. We choose a sufficiently large polynomial number
of bitstrings i ∈ I ⊆ {0, 1}η to represent the names of principals and threads.
Randomness R is split into ri for each honest i ∈ I (referred to as “coin tosses
of honest party i”) and RA (referred to as “adversarial randomness”).

The adversary designates some of the principals as honest and the rest of
the principals as dishonest. Intuitively, honest principles will follow one or more
roles of the protocol faithfully. The adversary chooses a set of threads, and to
each thread it assigns a strand (a program to be executed by that thread), under
the restriction that all threads of honest principals are assigned roles of protocol
Q.

The key generation algorithm K of a public-key encryption scheme (K, E ,D)
is run on 1η for each participant a using randomness ra, and producing a public-
private key pair (pka, ska). The public key pka is given to all participants and to
the adversary A; the private key is given to all threads belonging to this principal
and to the adversary if the principal is dishonest.

Generating Computational Traces: Following [5], we view an agent i trying
to communicate with agent j in protocol session s as a (stateful) oracle Πs

i,j . The
state of each oracle is defined by a mapping λ from atomic symbols to bitstrings
(with variables and nonces renamed to be unique for each role) and a counter c.
Each oracle proceeds to execute a step of the protocol as defined by actions in
the corresponding role’s action list, when activated by the adversary.

We omit the details of communication between the adversary and the oracles,
and focus on computational interpretation of symbolic protocol actions. Let ac

be the current action in the ActionList defining some role of participant i in
session s, i.e., Thread = (i′, s′) where i = λ(i′), s = λ(s′).

If ac = (new (i′, s′), v), then update λ so that λ(v) = NonceGen(Ri),
where NonceGen is a nonce generation function(e.g., NonceGen simply ex-
tracts a fresh piece of Ri). If ac = (v := enc (i′, s′), j, u), then update λ so
that λ(v) = E(λ(u), pkj , Ri) where E(λ(u), pkj , Ri) is the result of executing the
public-key encryption algorithm on plaintext λ(u) with public key pkj and fresh
randomness extracted from Ri. For brevity, we omit computational interpreta-
tion of decryption and matching (pairing, unpairing, and equality-test) actions.
Sending a variable send (i′, s′), v is executed by sending λ(v) to the adversary,
and receiving receive (i′, s′), v is executed by updating λ so that λ(v) = m
where m is the bitstring sent by the adversary.

At any time during the protocol execution, the adversary A may record any
internal, private message on a special knowledge tape. This tape is not read by
any participant of the protocol. However, its content will be made available to the
test algorithms used to decide if a given security formula containing Indist(...)
is valid or not. Let K be [(i1,m1), .., (in,mn)] the list of messages mk written by
A on the knowledge tape, indexed by the number of actions ik already executed
when mk was written (position in the protocol execution). This index will be
useful to remember a previous state of the knowledge tape.

At the end of the protocol execution, the adversary A outputs a pair of
integers (p1, p2) on an output tape. When the security formula is a modal formula
θ[P]Xϕ, these two integers represent two positions in the protocol execution
where the adversary claims that the formula is violated, i.e. that θ is true in p1

but ϕ is false in p2, with P between p1 and p2. Let O be this pair (p1, p2) of
integers written on the output tape.

The symbolic trace of the protocol is the execution strand e ∈ ExecStrand
which lists, in the order of execution, all honest participant actions and the
dishonest participant’s send and receive actions. This strand contains two
parts: InitialState(I) stores the initialization data, and the rest is an ordered
list of all exchanged messages and honest participants’ internal actions.

Definition 1. (Computational Traces) Given a protocol Q, an adversary A,
a security parameter η, and a sequence of random bits R ∈ {0, 1}p(η) used
by the honest principals and the adversary, a run of the protocol is the tuple
〈e, λ, O,K, R〉 where e is the symbolic execution strand, λ : Term(e) → {0, 1}p(η)

maps the symbolic terms in e to bitstrings, O is the pair of integers written on

the output tape, and K is the indexed list of messages written on the knowledge
tape. Finally, p(x) is a polynomial in x.

A computational trace is a run with two additional elements: RT ∈ {0, 1}p(η),
a sequence of random bits used for testing indistinguishability, and σ : FV ar(ϕ) →
{0, 1}p(η), a substitution that maps free variables in a formula to bitstrings. The
set of computational traces is

TQ(A, η) = {〈e, λ,O, K,R, RT , σ〉 |R, RT chosen uniformly}.

Definition 2. (Participant’s View) Given a protocol Q, an adversary A, a se-
curity parameter η, a participant X̃ and a trace t = 〈e, λ, O,K, R, RT , σ〉 ∈
TQ(A, η), V iewt(X̃) represents X̃ ′s view of the trace. It is defined precisely as
follows:

If X̂ is honest, then V iewt(X̃) is the initial knowledge of X̃, a representation
of e|X̃ and λ(x) for any variable x in e|X̃ . If X̂ is dishonest, then V iewt(X̃) is the
union of the knowledge of all dishonest participants X̃ ′ after the trace t (where
V iewt(X̃ ′) is defined as above for honest participants) plus K, the messages
written on the knowledge tape by the adversary.

The following three definitions are used in the semantics of the predicate
Indist(). Informally, based on some trace knowledge K, the distinguisher D tries
to determine which of two bitstrings is the value of a symbolic term. One of the
bitstrings will be the computational value of the term in the current run, while
the other will be a random bitstring of the same structure, chosen in a specific
way. The order of the two bitstrings presented to the distinguisher is determined
by an LR Oracle using a random selector bit.

Definition 3. (LR Oracle) The LR Oracle [4] is used to determine the order
in which two bitstrings are presented depending on the value of the selector bit,
i.e. LR(s0, s1, b) = 〈sb, s1−b〉.

Definition 4. (Distinguishing test input) Let u be a symbolic term and σ be a
substitution that maps variables of u to bitstrings. We construct another bitstring
f(u, σ, r), whose symbolic representation is the same as u. Here, r is a sequence
of bits chosen uniformly at random. The function f is defined by induction over
the structure of the term u.

– Nonce u : f(u, σ, r) = r
– Name/Key u : f(u, σ, r) = σ(u)
– Pair u = 〈u1, u2〉 : f(〈u1, u2〉, σ, r1; r2) = 〈f(u1, σ, r1), f(u2, σ, r2)〉
– Encryption u = {v}n

K : f({v}n
K , σ, r1; r2) = E(f(v, σ, r1), σ(K), r2)

Definition 5. (Distinguisher) A distinguisher D is a polynomial time algorithm
which takes as input a tuple 〈K, t, 〈s0, s1〉, R, η〉, consisting of knowledge K, sym-
bolic term t, two bitstrings s0 and s1, randomness R and the security parameter
η, and outputs a bit b′.

The next definition is used while defining semantics of modal formulas. Given
a set T of traces and a strand P of actions executed by a thread X̃, the set TP

includes only those traces from T which contain P . Pre(TP) is obtained from TP

by taking the initial segment of each trace upto the point where P starts. The
precondition of a modal formula is evaluated over this set. Post(TP) is similarly
defined; the only difference is now the trace is cut at the point that P ends. The
postcondition of a modal formula is evaluated over this set. The begin and end
positions are determined by the component O in the trace.

Definition 6. (Splitting computational traces) Let T be a set of computational
traces and t = 〈e, λ,O, K,R, RT , σ〉 ∈ T . O = 〈p1, p2〉, e = InitialState(I); s,
and s = s1; s2; s3 with p1, p2 the start and end positions of s2 in s. Given a
strand P executed by participant X̃, we denote by TP the set of traces in T for
which there exists a substitution σ′ which extends σ to variables in P such that
σ′(P) = λ(s2 |X̃). The complement of this set is denoted by T¬P and contains all
traces which do not have any occurrence of the strand P . We define the set of
traces Pre(TP) = {t[s ← s1,K ← K≤p1 , σ ← σ′] | t ∈ TP }, where K≤p is the
restriction of the knowledge tape K to messages written before the position p. We
define the set of traces Post(TP) = {t[s ← s1; s2,K ← K≤p2 , σ ← σ′] | t ∈ TP }.

7 Computational Semantics

The semantics of a formula ϕ on a set T of computational traces is a subset T ′ ⊆
T that respects ϕ in some specific way. For many predicates and connectives, the
semantics is essentially straightforward. For example, an action predicate such
as Send selects a set of traces in which a send occurs. However, the semantics of
predicates Indist and Possess is inherently more complex.

Intuitively, an agent possesses the value of an expression (such as another
agent’s nonce or key) if the agent can compute this value from information it
has seen, with high probability. If an agent is honest, and therefore follows the
rules of the protocol, then it suffices to use a simple, symbolic algorithm for
computing values from information seen in the run of a protocol. For dishonest
agents, we would prefer in principle to allow any probabilistic polynomial-time
algorithm. However, quantifying over such algorithms, in a way that respects
the difference between positive and negative occurrences of the predicate in a
formula, appears to introduce some technical complications. Therefore, in the
interest of outlining a relatively simple form of computational semantics, we
will use a fixed algorithm. This gives a useful semantics for formulas where
Possess(X̃, u) is used under the hypothesis that X̂ is honest. We leave adequate
treatment of the general case for future work.

Intuitively, an agent has partial information about the value of some expres-
sion if the agent can distinguish that value, when presented, from a random value
generated according to the same distribution. More specifically, an agent has par-
tial information about a nonce u if, when presented with two bitstrings of the
appropriate length, one the value of u and the other chosen randomly, the agent

has a good chance of telling which is which. As with Possess, there are technical
issues associated with positive and negative occurrences of the predicate. For
positive occurrences of Indist, we should say that no probabilistic polynomial-
time algorithm has more than a negligible chance, where as for ¬Indist(. . .) we
want to say that there exists a probabilistic polynomial-time distinguisher. In
order to present a reasonably understandable semantics, and establish a useful
basis for further exploration of computational semantics of symbolic security
logics, we give an interpretation that appears accurate for formulas that have
only positive occurrences of Indist and could be somewhat anomalous for formu-
las that contain negative occurrences. This seems adequate for reasoning about
many secrecy properties, since these are expressed by saying that at the end of
any run of the protocol, a value used in the run is indistinguishable from random.

Conditional implication θ ⇒ ϕ is interpreted using the negation of θ and
the conditional probability of ϕ given θ. This non-classical interpretation of
implication seems to be essential for relating provable formulas to cryptographic-
style reductions involving conditional probabilities. In particular, the soundness
proof for the “source” axiom S1, not proved in this conference paper, uses the
conditional aspect of this implication in a fundamental way. On the other hand,
⇒ coincides with ⊃ in formulas where Indist does not appear on the right hand
size of the implication.

We inductively define the semantics |[ϕ]| (T, D, ε) of a formula ϕ on the set
T of traces, with distinguisher D and tolerance ε. The distinguisher and toler-
ance are not used in any of the clauses except for Indist, where they are used to
determine whether the distinguisher has more than a negligible chance of distin-
guishing the given value from a random value. In definition 7 below, the tolerance
is set to a negligible function of the security parameter and T = TQ(A, η) is the
set of traces of a protocol Q with adversary A.

–
∣∣∣
[
Send(X̃, u)

]∣∣∣ (T, D, ε) is the collection of all 〈e, λ, O, K, R, RT , σ〉 ∈ T such

that some action in the symbolic execution strand e has the form send Ỹ , v
with λ(Ỹ) = σ(X̃) and λ(v) = σ(u). Recall that σ maps formula variables to
bitstrings and represents the environment in which the formula is evaluated.

– |[a(· , ·)]| (T,D, ε) for other action predicates a is similar to Send(X̃, u).

–
∣∣∣
[
Honest(X̂)

]∣∣∣ (T,D, ε) is the collection of all 〈e, λ,O, K,R, RT , σ〉 ∈ T where

e = InitialState(I); s and σ(X) is designated honest in the initial config-
uration I. Since we are only dealing with static corruptions in this paper,
the resulting set is either the whole set T or the empty set φ depending on
whether a principal is honest or not.

–
∣∣∣
[
Start(X̃)

]∣∣∣ (T, D, ε) includes all traces 〈e, λ, O,K, R,RT , σ〉 ∈ T where e =

InitialState(I); s and λ(s)|σ(X̃) = ε. Intuitively, this set contains traces in
which X̃ has executed no actions.

– |[Contains(u, v)]| (T, D, ε) includes all traces 〈e, λ, O, K,R, RT , σ〉 ∈ T such
that there exists a series of decryptions with {λ(k) | k ∈ Key} and projections

(π1,π2) constructing σ(v) from σ(u). This definition guarantees that the
result is the whole set T if v is a symbolic subterm of u.

– |[ContainsOut(u, v, t)]| (T,D, ε) includes all traces 〈e, λ, O, K, R, RT , σ〉 ∈ T
such that there exists a series of projections (π1,π2) and decryptions with
{λ(k) | k ∈ Key}, where σ(t) is never decomposed, creating σ(v) from σ(u).
This definition ensures that the result is the whole set T if v is a symbolic
subterm of u but is not a subterm of t.

– |[θ ∧ ϕ]| (T, D, ε) = |[θ]| (T, D, ε) ∩ |[ϕ]| (T, D, ε).
– |[θ ∨ ϕ]| (T, D, ε) = |[θ]| (T, D, ε) ∪ |[ϕ]| (T, D, ε).
– |[¬ϕ]| (T, D, ε) = T \ |[ϕ]| (T, D, ε) .
– |[∃x. ϕ]| (T, D, ε) =

⋃
β(|[ϕ]| (T [x ← β], D, ε)[x ← σ(x)])

with T [x ← β] = {t[σ[x ← β]] | t = 〈e, λ, O,K, R,RT , σ〉 ∈ T}, and β any
bitstring of polynomial size.

– |[θ ⇒ ϕ]| (T,D, ε) = |[¬θ]| (T,D, ε)∪ |[ϕ]| (T ′, D, ε), where T ′ = |[θ]| (T, D, ε).
Note that the semantics of ϕ is taken over the set T ′ given by the semantics
of θ, as discussed earlier in this section.

– |[u = v]| (T, D, ε) includes all traces 〈e, λ, O, K,R, RT , σ〉 ∈ T such that
σ(u) = σ(v).

–
∣∣∣
[
DecryptsHonest(Ỹ , {u}r

X)
]∣∣∣ (T, D, ε) = |[ϕ]| (T,D, ε) with ϕ = Honest(X̂)∧

∃v. v := dec Ỹ , {u}r
X .

–
∣∣∣
[
Source(Ỹ , u, {m}r

X)
]∣∣∣ (T, D, ε) = |[∃v.∀w. ϕ]| (T, D, ε) with :

ϕ = New(Ỹ , u) ∧ Contains(m, u)
∧ Contains(v, {m}r

X) ∧ Send(Ỹ , v)
∧ ¬ContainsOut(v, u, {m}r

X)
∧ (v 6= w ∧ Contains(w, u)) ⇒ ¬Send(Ỹ , w)

–
∣∣∣
[
Possess(X̃, u)

]∣∣∣ (T,D, ε) includes all traces t = 〈e, λ,O, K,R, RT , σ〉 ∈ T

such that σ(u) can be built from V iewt(σ(X̃)) with the Dolev-Yao deduction
rules.

–
∣∣∣
[
Indist(X̃, u)

]∣∣∣ (T, ε, D) = T if

|{D(V iewt(σ(X̃)), u, LR(σ(u), f(u, σ, r), b), RD, η) = b | t ∈ T}|
|T | ≤ 1

2
+ ε

and the empty set φ otherwise. Here, the random sequence b; r; RD = RT ,
the testing randomness for the trace t.

– |[θ[P]X̃ϕ]| (T,D, ε) = T¬P ∪ |[¬θ]| (Pre(TP), D, ε) ∪ |[ϕ]| (Post(TP), D, ε)
with T¬P , Pre(TP), and Post(TP) as given by Definition 6.

Definition 7. A protocol Q satisfies a formula ϕ, written Q |= ϕ, if ∀A provid-
ing an active protocol adversary, ∀D providing a probabilistic-polynomial-time
distinguisher, ∀ν giving a negligible function, ∃N, ∀η ≥ N ,

| |[ϕ]| (T,D, ν(η)) | / |T | ≥ 1− ν(η)

where |[ϕ]| (T,D, ν(η)) is the subset of T given by the semantics of ϕ and T =
TQ(A, η) is the set of computational traces of protocol Q generated using adver-
sary A and security parameter η, according to Definition 1.

Theorem 1. (Soundness) ∀Q, ∀ϕ, Q ` ϕ ⇒ Q |= ϕ

8 Conclusion and Future Work

We propose a computational semantics for a variant of the Protocol Composi-
tion Logic presented in [2, 7, 8, 10]. The associated soundness theorem implies
that it is possible to reason symbolically, and at a high level, about probabilistic
polynomial-time security properties. Although omitted from this conference pa-
per, the soundness proof uses a combination of information-theoretic arguments,
calculations about negligible functions, and cryptographic-style reductions in-
volving encryption. While the semantics given here has some imperfections, such
as an interpretation of indistinguishability that only seems appropriate for for-
mulas where Indist appears with positive polarity, the general approach seems
promising. We look forward to future efforts to lift certain restrictions on the
logic, explore the semantics and axiomatization of logical connectives over proba-
bilistic polynomial-time interpretations, and extend the approach suggested here
to additional cryptographic primitives, such as signatures and hash functions.
One interesting research direction might be to develop a version of this seman-
tics based on information-theoretic security, since that may provide some useful
insight into problems we encountered in developing the semantics.

Acknowledgments: Thanks to Bogdan Warinschi, Andre Scedrov, and Dan
Boneh for many insightful comments and suggestions.

References

1. M. Abadi and P. Rogaway. Reconciling two views of cryptography (the compu-
tational soundness of formal encryption). Journal of Cryptology, 15(2):103–127,
2002.

2. M. Backes, A. Datta, A. Derek, J. C. Mitchell, and M. Turuani. Compositional
analysis of contract signing protocols. In Proceedings of 18th IEEE Computer
Security Foundations Workshop. IEEE, 2005. To appear.

3. M. Backes, B. Pfitzmann, and M. Waidner. A universally composable crypto-
graphic library. Cryptology ePrint Archive, Report 2003/015, 2003.

4. M. Bellare, A. Boldyreva, and S. Micali. Public-key encryption in a multi-user
setting: Security proofs and improvements. In Advances in Cryptology - EURO-
CRYPT 2000, Proceedings, pages 259–274, 2000.

5. M. Bellare and P. Rogaway. Entity authentication and key distribution. In Pro-
ceedings of the 13th Annual International Cryptology Conference on Advances in
Cryptology (CRYPTO ’93), pages 232–249. Springer-Verlag, 1994.

6. V. Cortier and B. Warinschi. Computationally sound, automated proofs for se-
curity protocols. In Proceedings of 14th European Symposium on Programming
(ESOP’05), Lecture Notes in Computer Science, pages 157–171. Springer-Verlag,
2005.

7. A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic. A derivation system for secu-
rity protocols and its logical formalization. In Proceedings of 16th IEEE Computer
Security Foundations Workshop, pages 109–125. IEEE, 2003.

8. A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic. A derivation system and
compositional logic for security protocols. Journal of Computer Security, 2005. To
appear.

9. D. Dolev and A. Yao. On the security of public-key protocols. IEEE Transactions
on Information Theory, 2(29):198–208, 1983.

10. N. Durgin, J. C. Mitchell, and D. Pavlovic. A compositional logic for proving
security properties of protocols. Journal of Computer Security, 11:677–721, 2003.

11. J. Herzog. The Diffie-Hellman key-agreement scheme in the strand-space model. In
Proceedings of 16th IEEE Computer Security Foundations Workshop, pages 234–
247, 2003.

12. J. Herzog. Computational Soundness for Standard Assumptions of Formal Cryp-
tography. PhD thesis, MIT, 2004.

13. R. Impagliazzo and B. M. Kapron. Logics for reasoning about cryptographic con-
structions. In Proceedings of the 44th Annual IEEE Symposium on Foundations of
Computer Science (FOCS ’03), pages 372–383. IEEE, 2003.

14. R. Janvier, L. Mazare, and Y. Lakhnech. Completing the picture: Soundness of
formal encryption in the presence of active adversaries. In Proceedings of 14th
European Symposium on Programming (ESOP’05), Lecture Notes in Computer
Science, pages 172–185. Springer-Verlag, 2005.

15. D. Micciancio and B. Warinschi. Soundness of formal encryption in the presence
of active adversaries. In Theory of Cryptography Conference - Proceedings of TCC
2004, volume 2951 of Lecture Notes in Computer Science, pages 133–151. Springer-
Verlag, 2004.

16. N. J. Nilsson. Probabilistic logic. Artificial Intelligence, 28(1):71–87, 1986.
17. V. Shoup. On formal models for secure key exchange (version 4). Technical Report

RZ 3120, IBM Research, 1999.
18. B. Warinschi. A computational analysis of the Needham-Schroeder(-Lowe) proto-

col. In Proceedings of 16th Computer Science Foundation Workshop, pages 248–
262. ACM Press, 2003.

