
Efficient Anonymity-Preserving Data Collection

Justin Brickell and Vitaly Shmatikov
Department of Computer Sciences
The University of Texas at Austin

Austin, TX, USA

jlbrick@cs.utexas.edu, shmat@cs.utexas.edu

ABSTRACT
The output of a data mining algorithm is only as good as its
inputs, and individuals are often unwilling to provide accu-
rate data about sensitive topics such as medical history and
personal finance. Individuals may be willing to share their
data, but only if they are assured that it will be used in an
aggregate study and that it cannot be linked back to them.
Protocols for anonymity-preserving data collection provide
this assurance, in the absence of trusted parties, by allow-
ing a set of mutually distrustful respondents to anonymously
contribute data to an untrusted data miner.

To effectively provide anonymity, a data collection proto-
col must be collusion resistant, which means that even if all
dishonest respondents collude with a dishonest data miner
in an attempt to learn the associations between honest re-
spondents and their responses, they will be unable to do so.
To achieve collusion resistance, previously proposed proto-
cols for anonymity-preserving data collection have quadrat-
ically many communication rounds in the number of re-
spondents, and employ (sometimes incorrectly) complicated
cryptographic techniques such as zero-knowledge proofs.

We describe a new protocol for anonymity-preserving, col-
lusion resistant data collection. Our protocol has linearly
many communication rounds, and achieves collusion resis-
tance without relying on zero-knowledge proofs. This makes
it especially suitable for data mining scenarios with a large
number of respondents.

Categories and Subject Descriptors
E.3 [Data]: Data Encryption; H.2.8 [Information Sys-
tems]: Database Applications—Data Mining

General Terms
Algorithms, Security
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1. INTRODUCTION
Consider a scenario in which a data miner wishes to collect

data from a large set of respondents for use in a data min-
ing experiment. The miner queries each respondent, who
in turn transmits her response back to the miner. If the re-
spondents are willing to truthfully answer the miner’s query,
then the miner is able to proceed with his experiment. In
some cases, however, a respondent’s willingness to answer
truthfully is dependent on a guarantee that her answer will
be used only in the aggregate and cannot be linked back to
her. For example, the miner may be conducting a survey on
illegal activities, or on sensitive medical conditions. If the
miner can convince the respondent that her response will
be anonymous among her peer respondents then she will
participate truthfully in the survey; otherwise, she will not.

Data collected with the simple query/response protocol
described above will not be anonymous, because the data
miner can easily observe which respondent transmits which
response. One way to achieve anonymity would be to shuffle
the responses, so that the miner receives the responses in a
random order. This is easy to do with the assistance of a
trusted third-party shuffler, as the respondents can submit
their responses to the shuffler, who collects all responses and
then forwards them to the miner in a random order.

The goal of this research is to achieve the same security
guarantees without the need for trusted parties. We give
a protocol that allows mutually distrustful respondents to
submit their responses to an untrusted data miner in a man-
ner which guarantees that their responses will be received
by the miner, but that the probability that the miner can
link a response to a respondent is essentially no better than
random guessing. Furthermore, our protocol is collusion
resistant. Even if all malicious respondents freely share in-
formation with the malicious miner, they will be unable to
learn the associations between honest respondents and their
responses. This strong form of collusion resistance is impor-
tant in online data collection scenarios where respondents
cannot communicate directly with one another, and there-
fore are unable to determine whether other respondents are
genuine participants, or shills set up by a malicious miner.

Our protocol consists of two parts. In the first part, re-
spondents encrypt their responses and shuffle them under
encryption, so that it will be impossible to determine which
encrypted response belongs to which respondent. In the
second part, the integrity of the shuffle is verified, and the
respondents provide information to the data miner so that
he can decrypt the responses.

In order to be practical for use in data mining applications



with large numbers of respondents, protocols for anonymous
data collection need to be efficient as well as secure. In the
online data collection scenario, it is especially important to
limit the number of messages that must be transmitted be-
tween the data miner and the respondents. Our protocol
requires that the data miner send and receive only O(N)
messages when there are N respondents. Furthermore, our
protocol does not rely on zero-knowledge proofs. The most
efficient currently known zero-knowledge proofs for verifiable
shuffles [13, 15] require 7 rounds of communication for each
proof. Moreover, it is unclear whether these proofs preserve
their properties when composed in parallel. Therefore, if
multiple proofs are needed at any step of the protocol, they
have to be carried sequentially, rendering the communica-
tion complexity of the protocol impractical.

Related Work
The problem of collecting data so that the miner is unable
to link any honest respondent to her response was investi-
gated by Yang et al. [21]. Their solution is to choose t of
N respondents as “leaders,” and have respondents encrypt
their responses with the leaders’ public keys. Each of the
leaders shuffles and rerandomizes the ciphertexts, proving
to every respondent in zero-knowledge that the shuffle has
been carried out correctly. This protocol requires O(t2) zero-
knowledge proofs, each of which involves several rounds of
communication. (To achieve the same anonymity guaran-
tees as our protocol, t should be equal to N , in which case
communication complexity is quadratic in the number of re-
spondents.) The protocol of Yang et al. does not achieve
collusion resistance because if the last leader is corrupt and
colludes with the data miner, they can break the anonymity
of all honest respondents. This attack is due to an incorrect
use of zero-knowledge proofs, and is explained in detail in
Appendix A.

A related problem is secure multiparty computation, in
which several parties wish to compute a function on their
joint input, but without revealing their input to one an-
other. There are generic protocols [22, 11] that allow any
polynomial functionality to be computed securely in the
semi-honest [9] model, but they are too inefficient for prac-
tical data mining purposes. Several papers [14, 5, 20] have
given efficient special-purpose protocols for the computa-
tion of particular data mining functionalities. The scenario
in this paper is different from a secure multiparty compu-
tation scenario, because the respondents do want to reveal
their inputs to the data miner. Our security property is un-
linkability rather than secrecy of inputs, that is, we want
to prevent the data miner from learning which input came
from which respondent.

Instead of submitting their responses anonymously within
a peer group, respondents submitting sensitive data might
randomly perturb their responses. In this case, privacy
would be based on the inexactness of the responses, rather
than on the lack of association between respondent and re-
sponse. Several methods for random perturbation have been
proposed and their applicability to data mining problems
investigated [2, 1]. In all perturbation-based privacy meth-
ods, there is an inherent tradeoff. The more perturbed the
data are, the more privacy is guaranteed, but the less use-
ful the collected data are for data mining applications. By
contrast, our techniques provide the data miner with exact,
unperturbed responses.

Respondents submitting data using randomized response
lie with a certain probability, so that the data miner is never
certain of the truthfulness of a sensitive response. Data min-
ing algorithms must be modified to accept randomized re-
sponse data. For instance, Du and Zhan [8] modify the pop-
ular ID3 decision tree classification algorithm. By contrast,
after a successful execution of our algorithm the data miner
knows the exact responses and can use any unmodified data
mining algorithm.

Research on k-anonymization [17, 16] observes that in
some cases the information contained in the anonymous re-
sponse may be specific enough to identify the respondent if
the malicious data miner has access to auxiliary information
such as a voter or census database. This problem is orthog-
onal to the problem investigated in this paper. If responses
and respondents are linkable by content, then no amount of
shuffling in an anonymity-preserving data collection proto-
col will make them unlinkable. Likewise, if responses and
respondents are linkable by the collection procedure, then
no amount of k-anonymization will make them unlinkable.
In this paper we assume that responses and respondents are
not linkable by content.

Finally, so-called mix networks such as onion routing [18,
7] have been proposed to enable anonymous communications
on public networks. Mix networks aim to hide the identities
of message senders, and thus seem to be a poor match for
data mining scenarios, where the data miner may need to
know exactly who the respondents are. Using a mix net-
work to collect responses while ensuring that respondents
are members of a well-defined set and that each respondent
contributes no more than one response requires complicated
cryptographic techniques such as group signatures, and is
unlikely to be efficient for practical use. Also, because of the
possibility that one or more network nodes may be compro-
mised, mix networks provide only probabilistic anonymity
guarantees, whereas our goal in this paper is cryptographi-
cally strong anonymity.

2. PRELIMINARIES
In this section we define cryptographic concepts and no-

tation that are used throughout the remainder of the paper.

2.1 Public-Key Encryption
We take the standard definition of a public-key cryptosys-

tem from [3]. A public-key (or “asymmetric”) encryption
scheme AE = (K, E ,D) consists of three algorithms, as fol-
lows:

• A randomized key generation algorithm K which re-
turns a pair (x, y) of keys. These are the private and
public keys, respectively.

• A (possibly randomized) encryption algorithm E ,
which takes a public key y and a plaintext m, and
returns a ciphertext C. To denote encryption we will
write

C = {m}y.

• A deterministic decryption algorithm D, which takes a
private key x and a ciphertext C to return a message
m. We will denote this as

m = decx(C).



We require that decx({m}y) = m. This means that the
owner of the private key x can recover a message encrypted
with the public key y.

Many times in this paper we will need to serially encrypt
a text under multiple public keys yN , ..., yi, and we will use
the following notation to make this less cumbersome:

{m}yN :yi

def
= {...{{m}yN }yN−1 ...}yi .

At times throughout this paper we will refer to a “security
parameter” ρ. The security parameter has a specific cryp-
tographic meaning, but intuitively can be thought of as the
length of the key in bits [10].

2.2 Indistinguishability Under Adaptive Cho-
sen Ciphertext Attack

We require that the cryptosystem used in our protocol
have the property of indistinguishability under adaptive
chosen ciphertext attack (IND-CCA2) [3]. Intuitively, this
means that it is impossible to learn any information a
plaintext m from an encryption {m}y, even when given
access to a decryption oracle for all ciphertexts other than
{m}y. Although IND-CCA2 is a very strong property, there
are cryptosystems that are known to satisfy it [6, 4].

In our definition of an IND-CCA2 encryption scheme, we
will make use of the distinguishing game.

2.2.1 The Distinguishing Game
The distinguishing game is played between a challenger

and an oracle. This game is slightly different from, but
equivalent to, the standard adaptive chosen ciphertext
game [3].

1. The oracle chooses a keypair (x, y), and gives y to the
challengers.

2. The challenger may encrypt polynomially many mes-
sages m using y. The challenger may also choose poly-
nomially many ciphertexts C and send them to the
oracle, who sends back decx(C).

3. The challenger chooses two plaintexts m0 and m1.

4. The oracle chooses a bit b ∈ {0, 1} uniformly at ran-
dom, and returns the ordered pair ({mb}y, {mb̄}y).

5. The challenger may encrypt polynomially many mes-
sages m using y. The challenger may also choose
polynomially many ciphertexts C 6= {mb}y, {mb̄}y and
send them to the oracle, who sends back decx(C).

6. The challenger attempts to guess whether b = 0 or
b = 1.

Let A be a polynomial-time challenger. Then

Pr[A(m0, m1, 0) = 1]

is the probability that A outputs 1 when the bit b = 0, and

Pr[A(m0, m1, 1) = 1]

is the probability that A outputs 1 when the bit b = 1. In
both cases, the probability is taken over the randomness of
the key generation in step 1. The challenger’s advantage is
equal to

Pr[A(m0, m1, 1) = 1]− Pr[A(m0, m1, 0) = 1].

Now we can define indistinguishability under adaptive cho-
sen ciphertext attack as follows:

Definition 1. A cryptosystem is IND-CCA2 if, for all
probabilistic polynomial-time challengers, the advantage in
the distinguishing game is negligible (dominated by 1

f(ρ)
,

where f is any polynomial and ρ is a security parameter).

2.3 Digital Signatures
We use the standard definition of digital signature

schemes from [3]. A digital signature scheme DS =
(K, sig, VF) consists of three algorithms:

• The randomized key generation algorithm K, which
returns a pair (u, v) of keys. These are the private and
public keys, respectively.

• The (possibly randomized) signing algorithm sig,
which takes a private key u and a message m to
produce a signature σ = sigu{m}.

• The deterministic verification algorithm VF, which
takes a public key v, a message m, and a candidate
signature σ. VF returns 1 if σ is a valid signa-
ture of m with key u, and 0 otherwise. That is,
VF(v, m, sigu{m}) returns 1.

The desired security property for a digital signature scheme
is unforgeability, which means that without the private key
u, it is computationally infeasible to produce a signature
sigu(m) for a message m that one has not previously seen
signed with u. For a more formal treatment, see [3].

3. PROBLEM SPECIFICATION
The anonymity-preserving data collection protocol takes

place between a large set of mutually distrustful parties.
One of these parties has a special role and is denoted the
“data miner,” while the other N parties have interchange-
able roles and are denoted “respondents.” Each respondent
i, 1 ≤ i ≤ N has a response di. All responses are assumed
to be of identical length. The goal of the protocol is for
the miner to learn the responses from each respondent, but
without being able to determine which response came from
which respondent. In other words, the miner should learn a
random permutation of the set {d1, ..., dN}, but should not
learn anything about that permutation.

We assume that during the protocol, all participants re-
main online. Each respondent has a secure communica-
tion channel with the data miner. These are reasonable
assumptions in a scenario where the respondents are using
a Web interface to communicate with a server operated by
the data miner. We assume that prior to the protocol exe-
cution each respondent i has obtained a public encryption
key pair (xi, yi) for an IND-CCA2 encryption scheme, and
a signature key pair (ui, vi) for a secure (unforgeable) signa-
ture scheme. Each respondent and the data miner knows the
public keys yi and vi for all respondents. Likewise, the data
miner has a public key pair (xDM , yDM ), and the public key
yDM is known to all respondents.

In a practical implementation, the distribution of these
public keys is delegated to a trusted certification authority,
whose job is to associate individuals with their public keys.
Note that this is the only assumption of trust required by
the protocol. There are several businesses providing trusted
certification authority functionality, so this is a reasonable
(and standard) assumption.



4. PROTOCOL CORRECTNESS
We prove the correctness of our protocol in the malicious

model [9], where protocol participants may deviate arbitrar-
ily from the protocol specification. In this model any partic-
ipant can prevent the protocol from completing by refusing
to participate, so we are unable to prove that the protocol
always terminates, much less that it always terminates with
correct results. Instead, we prove that if the protocol ter-
minates, certain properties are maintained. In this section,
we give three properties that together define a correct proto-
col for anonymity-preserving data collection in the malicious
model.

4.1 Collusion Resistant Anonymity
In an online data collection scenario, a respondent knows

nothing about her peer-respondents except their public keys.
Some (or all) of the other participants may be shills con-
trolled by the data miner who exist only to lure honest par-
ticipants into a false sense of anonymity. Because dishonest
respondents colluding with the data miner is a legitimate
threat, we require that our protocol be collusion resistant.
This means that even if k of the N respondents are corrupt
and in collusion with the data miner, the data miner will be
unable to determine which of the N − k honest participant
responses belongs to which honest participant. Of course
the data miner will be able to determine whether a response
comes from an honest respondent or a colluding respondent,
because a colluding respondent can tell the data miner which
response is hers. Note that if there is only a single honest
respondent, the data miner will be able to collude with all
other respondents and learn her response.

We formalize our notion of anonymity for a data collection
protocol when k out of the N respondents are dishonest by
defining an “anonymization game” which is similar to the
distinguishing game given in section 2.2.1. The anonymiza-
tion game is played between a challenger and an oracle, who
participate in the data collection protocol together. The
challenger plays the roles of the data miner and the k dis-
honest colluding respondents, while the oracle plays the role
of the honest respondents. The challenger is assumed to
not know the private keys of any honest respondent. The
protocol is anonymous if the challenger can win the game
only with negligible probability. Prior to playing the game,
the challenger may choose plaintext responses for all hon-
est respondents and give them to the oracle, who will then
participate in the anonymity-preserving data collection pro-
tocol using those responses for the honest respondents. The
challenger may repeat this process polynomially many times.
Then the actual game begins, and the following happens:

1. The challenger chooses two honest participants hα and
hβ , and two plaintext responses m0 and m1. He also
chooses a plaintext response dhi for each other honest
participant hi.

2. The oracle chooses a bit b ∈ {0, 1} uniformly at ran-
dom. Then the oracle sets dhα = mb and dhβ = mb̄.

3. The oracle participates in the anonymity protocol with
the response of honest respondent hi as dhi . The ora-
cle plays the role of all honest respondents. The chal-
lenger plays the role of the data miner and all dishonest
respondents, and he may deviate arbitrarily from the
protocol specification.

4. After observing the protocol run, the challenger
guesses whether b = 0 or b = 1.

Let D be a probabilistic polynomial-time challenger. Then

Pr[D(m0, m1, hα, hβ , 0) = 1]

is the probability that D outputs 1 when the bit b = 0, and

Pr[D(m0, m1, hα, hβ , 1) = 1]

is the probability that D outputs 1 when the bit b = 1. In
both cases, the probability is taken over the randomness of
the key generation and encryption algorithms used by the
oracle. The challenger’s advantage is equal to

Pr[D(m0, m1, hα, hβ , 1) = 1]−Pr[D(m0, m1, hα, hβ , 0) = 1].

Definition 2. A data collection protocol is anonymous
if, for all probabilistic polynomial-time challengers, the ad-
vantage in the anonymity game is negligible.

Note that this definition is valid only when there are at least
two honest respondents, which corresponds to our notion
that it is impossible for any anonymity to exist when there
is only a single honest respondent.

4.2 Integrity
Ideally, we would like to ensure that an honest data miner

always receives an unaltered response from each respondent.
However, this is difficult in a protocol where responses pass
through every respondent during the anonymization process,
as any of those respondents could be malicious (but not in
collusion with the data miner) and choose to substitute some
subset of the responses with other data while they are under
her control. Since it seems difficult to provide authenticity
guarantees on the responses while maintaining anonymity,
we are satisfied to detect the occurrence of substitutions.
We will say that our protocol maintains integrity if, at the
end of protocol execution with an honest data miner, one of
the following two statements is true:

1. The data miner has the correct plaintext responses for
all honest respondents, or

2. The data miner is informed that some honest respon-
dent’s response has been substituted.

We are unable to make integrity claims when the data miner
is dishonest, as a dishonest data miner has the power to cor-
rupt whichever responses he wishes. However, the assump-
tion is that the data miner is genuinely interested in learning
the responses, and therefore has no such incentive.

4.3 Confidentiality
In our scenario, the respondents are taking part in a con-

fidential survey with the data miner. The data miner should
learn all plaintext responses at the end of the protocol, but
a respondent should not learn any response other than her
own. If the data miner is dishonest, then he can reveal the
set of responses {d1, ..., dN} after they have been decrypted,
even though he will not know which response belongs to
which respondent. We want to insure that dishonest behav-
ior on the part of the data miner is the only way that the
set of plaintext responses can be revealed. In other words,
no coalition of dishonest respondents should be able to learn
any response belonging to an honest respondent if the miner
is honest.



5. EFFICIENT ANONYMOUS DATA COL-
LECTION

In this section we present our protocol for Anonymous
Data Collection. We then prove that it satisfies all of the
properties stated in section 4, and is therefore secure in the
malicious model.

5.1 Protocol Setup
Prior to the protocol execution, the participants must

learn one another’s public encryption keys and public signa-
ture keys. As is standard in cryptographic protocols, the as-
sociations between identities and keys are handled by a cer-
tification authority. The certification authority is a trusted
party with whom every participant is assumed to have a se-
cure communication channel. To learn the public encryption
key yi and verification key vi for respondent i, participants
query the certification authority who responds with (yi, vi).
Likewise, participants learn the public encryption key yDM

for the data miner.
The participants must also all agree upon a canonical or-

dering of the respondents. This can be done, for instance,
by having each respondent sign an ordering sent by the data
miner, and then verifying the signatures of all other respon-
dents.

Note that this setup needs only to be done once, and
afterwards the protocol participants can perform multiple
protocol executions with no need to make additional contact
with the certification authority.

5.2 The Protocol
Our protocol for anonymous data collection is shown in

Algorithm 1. It consists of 5 phases: keypair generation,
data submission, anonymization, verification, and decryp-
tion. These phases are described in more detail below.

Generation of Temporary Keypairs
In this phase, every respondent i chooses a fresh secondary
key pair (wi, zi) which is distinct from the primary key pair
(xi, yi) that is registered with the certification authority.
Each respondent i then self-certifies her secondary public
key zi by sending the message

zi,timestamp, sigui{zi,timestamp}

to the data miner, who forwards these messages to the other
respondents. In this way every respondent learns the second
public key zi for each other respondent i, which is guaran-
teed to be freshly chosen by i because signatures are not
forgeable.

Data Submission
In the data submission phase, respondents encrypt their re-
sponses first with the data miner’s public key, then with
all respondents’ secondary public keys, and finally with all
respondents’ primary public keys. The encryptions are ap-
plied in the canonical ordering determined during the pro-
tocol setup. The primary key encryptions are stripped off
during the anonymization phase. Because the cooperation of
all respondents is necessary to remove the secondary key en-
cryptions, every respondent will have a chance to abort the
protocol before anonymity is compromised if the anonymiza-
tion phase did not go according to protocol specification.

Anonymization
In the anonymization phase, the respondents take turns
shuffling the encrypted responses and removing a level of en-
cryption. Since every level of encryption must be removed in
order for the verification to pass, every respondent is ensured
an opportunity to shuffle the encrypted responses. If two ci-
phertexts are identical, this means a dishonest participant
has attempted to duplicate a response, and the protocol is
aborted.

Verification
In this phase the respondents verify that the shuffles have
been done correctly. By taking advantage of the fact that
each respondent knows one of the responses, this is done
without the use of zero-knowledge proofs. Each respondent
i signs a message only if he sees his own ciphertext, C′

i =
{C′′

i }zN :z1 among the set of permuted ciphertexts. These
signatures are then verified by all respondents. If all of the
signatures verify, an honest respondent can reason as follows:

• Every other honest respondent saw her ciphertext in
the set of permuted ciphertexts.

• My own shuffle step must have included ciphertexts
from all honest respondents.

• Since I performed a random shuffle and did not reveal
the permutation, a dishonest data miner cannot know
which honest ciphertext belongs to me.

Since the respondent knows her ciphertext is anonymous
among the honest respondents’ ciphertexts, she gives the
data miner her secondary private key.

Decryption
In this phase the data miner uses the respondents’ sec-
ondary private keys and his own private key to decrypt the
responses. He learns the plaintext responses, but not the
associations between responses and respondents.

5.3 Security Arguments
In this section we argue that the security properties in-

troduced in section 4 are satisfied by the protocol given in
algorithm 1.

5.3.1 Anonymity
An intuitive argument for the anonymity of the protocol

is that the data miner and colluding respondents have two
choices for their behavior. On the one hand, they can behave
honestly, in which case they will learn the final decrypted
plaintexts, but they will not learn the associations between
C′ and C ciphertexts. On the other hand, they can behave
dishonestly and learn some associations between C′ and C
ciphertexts, but then the verification phase will fail and they
will not learn the decryptions of the C′ ciphertexts.

Our proof is in two parts. First, we show that when hon-
est respondents receive ciphertexts for decryption in phase
2, then either there is exactly one copy of the correct ci-
phertext for each honest participant, or the deviation from
the protocol is detected and the protocol is aborted before
the challenger is able to win the verification game. Sec-
ond, we show that a challenger who can win the anonymity
game while maintaining the above property can also win



• Phase 0: Secondary Keypair Generation. For i = 1, ..., N

– Respondent i chooses a public key pair (wi, zi).

– Respondent i sends to the data miner:

zi,timestamp, sigui{zi,timestamp}

– The data miner forwards to all other respondents:

zi,timestamp, sigui{zi,timestamp}

– If any signature fails to verify, the protocol is aborted.

• Phase 1: Data submission. For i = 1, ..., N :

– Respondent i encrypts his data di first with the
miner’s public key, and then with all respondent’s sec-
ondary public keys:

C′′
i = {di}yDM

C′
i = {C′′

i }zN :z1

– Respondent i stores C′
i for later use, and encrypts

again with all respondent’s primary public keys:

Ci = {C′
i}yN :y1

– Respondent i sends the ciphertext Ci to the miner

The miner sets the initial values of (D1, ..., DN ) as
(C1, ..., CN )

• Phase 2: Anonymization. For i = 1, ..., N :

– The miner sends (D1, ..., DN ) which are encrypted un-
der the keys yi, ..., yN to respondent i.

– If any ciphertext is included more than once in
(D1, ..., DN ), then respondent i aborts the protocol.

– Respondent i uses her private key xi to strip off the
ith level of encryption, and permutes the pieces. Her
output is (R1, ..., RN ) where

Rj = decwi [Dπ(j)]

where π is a random permutation on {1, ..., N}.
– Respondent i sends (R1, ..., RN ) to the data miner.

– The data miner sets (D1, ..., DN ) = (R1, ..., RN ).

• Phase 3: Verification. At the beginning of this phase,
the data miner holds (D1, ..., DN ). If the participants
have behaved honestly, this should be a permutation of
(C′

1, ..., C′
N ).

– The data miner sends (D1, ..., DN ) to all participants.

– Each participant i verifies that C′
i is included among

(D1, ..., DN ). If it is, she sends sigui{(D1, ..., DN )}
to the data miner.

– The data miner forwards the signatures
sigui{(D1, ..., DN )}, i = 1, ..., N to all respon-
dents.

– Each respondent i verifies the signatures. If they all
verify, respondent i sends his secondary private key
wi to the data miner.

• Phase 4: Decryption. Using the keys w1, ..., wN and xDM ,
the data miner removes the remaining levels of encryption
from D1, ..., DN , resulting in a permutation of the original
responses d1, ..., dN .

Algorithm 1: Protocol for Anonymous Data Collection

the distinguishing game, which is a contradiction because
the underlying encryption scheme is IND-CCA2.

Part 1: Suppose that during step hi of phase 2, hon-
est respondent hi receives ciphertexts (D1, ..., DN ), but that
there is some honest respondent hp for which the ciphertext
{C′

hp
}yN :yhi

appears either more than once or not at all. If
any ciphertext appears more than once, this is detected by
honest respondent hi and the protocol is aborted before the
challenger learns the secondary private keys.

Now we wish to show that if an honest ciphertext is dis-
honestly replaced so that it does not appear in step hi of
phase 2, then the verification in phase 3 will fail. Suppose
that honest participant hi does not receive {C′

hp
}yN :yhi

as

part of the set (D1, ..., DN ).
In this case it is infeasible for the challenger to learn

{C′
hp
}yN :yhi−1 because they did not give {C′

hp
}yN :yhi

to

participant hi. However, they must learn C′
hp

to satisfy
honest participant hp in the verification step. This is in-
feasible without the private key xhi . Therefore verification
fails and the protocol is aborted before the challenger learns
the secondary private keys.

Now we must show that the challenger cannot win the
anonymization game when he does not learn the secondary
private keys. It is possible that by duplicating or substi-
tuting ciphertexts of honest respondents, the challenger can
learn the partially-decrypted ciphertexts C′

hα
and C′

hβ
for

the honest respondents hα and hβ he has chosen in the game.
For example, the challenger could substitute known informa-
tion for all encrypted responses except Chα . Then after the
decryption phase, he would know C′

hα
. However, even if the

challenger learns C′
hα

and C′
hβ

, each of these ciphertexts is

encrypted with the key zhα (as well as the keys of all other
honest participants) which is unknown to the challenger.
Therefore determining which decrypts to m0 and which de-
crypts to m1 is exactly equivalent to the distinguishing game,
and cannot be done due to the assumption that the encryp-
tion scheme is IND-CCA2.

Part 2: Now suppose that the challenger honestly han-
dles all ciphertexts belonging to honest participants. Sup-
pose also that there is a probabilistic polynomial time algo-
rithm D that allows this challenger to win the anonymiza-
tion game with non-negligible probability. We will show
how to use D as a subroutine to probabilistic polynomial-
time algorithm A that wins the distinguishing game with
non-negligible probability. Because of the assumption that
the underlying encryption scheme is IND-CCA2, this is a
contradiction, and we will conclude that no such D exists.
Let the set of k honest respondents in the anonymization
protocol be H = {h1, ..., hk}. Let D be an algorithm that
allows the challenger to win the anonymization game with
non-negligible probability. Then there exist honest partici-
pants hα and hβ such that for some polynomial f , and for
sufficiently large values of ρ,

Pr[D(m0, m1, hα, hβ , 1) = 1]

− Pr[D(m0, m1, hα, hβ , 0) = 1]

>
1

f(ρ)
.

To apply D, A must simulate the oracle in the anonymiza-
tion game to reproduce the view of the challenger. We show
how A is able to do this.

Algorithm A begins by asking the distinguishing game



oracle to generate a keypair (xo, yo). A will use yo for yhk ,
the public key belonging to the last honest respondent hk. A
will be able to simulate all messages from honest respondents
despite not knowing xo or yo.

A applies D to learn its choices in step 1 of the anonymiza-
tion game. A therefore learns the following:

• Two honest participants hα and hβ , and two plaintext
responses m0 and m1

• A plaintext response dhi for each other honest respon-
dent hi

Then, for each honest respondent hi, A chooses

• (xhi , yhi), a primary keypair (not chosen for respon-
dent hk),

• (whi , zhi), a secondary keypair, and

• (uhi , vhi), a signature keypair

A selects plaintexts m0 and m1 to be the plaintext responses
for hα and hβ .

A is now ready to play the role of the oracle in the
anonymization game by simulating the messages of honest
participants in the protocol execution. For each phase of
the protocol, we will explain how A is able to reproduce the
messages sent in that phase.

Phase 0: A has all the necessary keys to reproduce this
phase exactly.

Phase 1: For all honest respondents hi other than hα and
hβ , A encrypts response dhi using the appropriate public
keys (and the encryption oracle to encrypt with yhk ) which
results in the ciphertext Ci. A then encrypts m0 and m1 in
a special way. First, A encrypts using the secondary public
keys:

m′
0 = {m0}zN :z1 , and

m′
1 = {m1}zN :z1 .

Next, A encrypts with all keys that come after hk in the
sequence:

M0 = {m′
0}yN :yhk−1 , and

M1 = {m′
1}yN :yhk−1 .

Next, A gives M0 and M1 to the distinguishing game oracle,
getting back:

Mb = {m′
b}yN :yhk

, and

Mb̄ = {m′
b̄}yN :yhk

.

Finally, A encrypts Mb and Mb̄ with the remaining public
keys to get the final encryptions:

Chα = {m′
b}yN :y1 , and

Chβ = {m′
b̄}yN :y1 .

Phase 2: For all honest participant rounds hi of phase 2
other than round hk, A has the key xhi necessary to decrypt
the ciphertexts (D1, ..., DN ) provided by the challenger (who
is playing the role of the miner). A permutes the resulting
decryptions and sends them to the challenger.

Round hk is more difficult, because A does not know
the key xhk . Here we must use our assumption that ev-
ery honest participant’s ciphertext appears exactly once in

(D1, ..., DN ). In particular, the ciphertexts

Mb = {m′
b}yN :yhk

, and

Mb̄ = {m′
b̄}yN :yhk

.

appear exactly once. For all ciphertexts Dj in (D1, ..., DN )
other than Mb and Mb̄, A may use the decryption oracle
provided by the distinguishing game to obtain decxhk

(Dj).
However, A is not allowed to use the decryption oracle on

Mb or Mb̄. Instead, when A sees the ciphertexts {m′
b}yN :yhk

and {m′
b̄}yN :yhk

, he can either simulate decryption as

{m′
0}yN :yhk−1 and {m′

1}yN :yhk−1 or

{m′
1}yN :yhk−1 and {m′

0}yN :yhk−1 ,

which are the values M0 and M1 known to A. Because A
sends the challenger a random permutation of the decryp-
tions, the challenger cannot distinguish between A making
the correct choice and permuting, or A making the incorrect
choice and permuting. Thus either choice will suffice, and
A may randomly choose one or the other.

Phases 3 and 4: A has all the necessary keys to reproduce
these phases exactly.

Now A simulates the view of the challenger and applies
D to the view. If D outputs 1, then A outputs 1, and if D
outputs 0, A outputs 0.

We will now analyze the probability of A outputting 1
if the distinguishing oracle chose b = 0 and if the distin-
guishing oracle chose b = 1. If b = 0, then the view of the
challenger is (m0, m1, hα, hβ , 0). If b = 1, then the view of
the challenger is (m0, m1, hα, hβ , 1). Let

p0 = Pr[D(m0, m1, hα, hβ , 0) = 1],

p1 = Pr[D(m0, m1, hα, hβ , 1) = 1].

Based on our assumption that D wins the anonymity game,
we have that p1 − p0 > 1

f(ρ)
. Now we make a simple substi-

tution,

Pr[A(m0, m1, 1) = 1]− Pr[A(m0, m1, 0) = 1]

= p1 − p0

>
1

f(ρ)
.

We conclude that A can win the distinguishing game with
non-negligible probability, which contradicts the IND-CCA2
property of the underlying encryption scheme.

5.3.2 Integrity
The honest respondents verify the presence of their C′

i

ciphertext in phase 3 of the protocol; all ciphertexts must
be present for any decryption to take place. When the sec-
ondary private keys are handed over to the data miner for
decryption, he can easily confirm whether the private key
wi actually corresponds to the public key zi by encrypting
data with zi and determining whether it decrypts with wi.
Then the data miner uses verified keys to decrypt verified
ciphertexts, and as a result learns the correct plaintext re-
sponses.

If the verification in phase 3 fails, then the data miner has
not received sigui(D1, ..., DN ) from some honest participant
hi. In this case the data miner learns that participant hi’s
response has been substituted. Thus our two-part definition
of integrity given in section 4.2 is satisfied.



5.3.3 Confidentiality
The inner-most level of encryption on each response is

with yDM . Therefore only the data miner can perform the
final decryption and learn the responses.

6. EFFICIENCY
Our protocol is efficient in terms of communication and

computational complexity. In this section we will quantify
the complexity of the protocol.

Computation
Operations requiring computation include key pair genera-
tion, encryption, decryption, signing, and signature verifica-
tion. In phase 0, each respondent generates 1 key pair, signs
1 message, and performs N signature verifications. In phase
1, each respondent performs 2N +1 encryptions. In phase 2,
each respondent performs N decryptions. In phase 3, each
respondent performs 1 signature and N signature verifica-
tions. In phase 4, the data miner performs N2 + N decryp-
tions. We conclude that the total computational complexity
is O(N2). Note, however, that the computational complex-
ity for each individual respondent is only O(N). This is
advantageous because the respondents are more likely to be
computationally bounded than the data miner.

Number of Communication Rounds
Phase 0 is parallelizable and requires 2 rounds. Phase 1 is
parallelizable and requires only 1 round. Phase 2 cannot be
parallelized and requires 2N rounds. Phase 3 can be paral-
lelized and requires 4 rounds. Phase 4 does not involve com-
munication. We conclude that the protocol requires O(N)
communication rounds.

Total Communication
Let us assume that the size of a response is S bits, the size
of a key is T bits, and that the size of a signature is Q bits.
Phase 0 requires the transmission of N2 signatures and keys,
for a total of (Q + T )N2 bits. In phase 1, N S-bit cipher-
texts are transmitted. In each iteration of phase 2 , 2SN
bits are transmitted, for a total of 2SN2 bits. Phase 3 trans-
mits SN2 bits for the broadcast of (D1, ..., DN ), (Q + T )N
bits to transmit signatures and keys to the miner, and QN2

bits to broadcast the signatures from the miner back to
the respondents. We conclude that the protocol transmits
O((Q+S +T )N2) bits. Since Q and T are constant param-
eters of the cryptosystem, we can simplify this to O(SN2)
bits.

7. CONCLUSIONS
We have presented an efficient protocol for anonymity-

preserving data collection that does not rely on zero-
knowledge proofs to be secure in the malicious model. We
have provided anonymity by having the respondents func-
tion as mix-servers which shuffle the set of responses. The
critical insight of our research is that by taking advantage
of the fact that each respondent/mix-server knows her own
response, we can confirm the validity of the shuffles without
using zero-knowledge proofs. In a traditional mix-net sce-
nario, the mix-servers and the data providers are distinct
entities, so validity confirmation of this type is not possible.
It is our hope that the data-mining community will find

our protocol useful when collecting sensitive data from
respondents.
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APPENDIX

A. AN ATTACK ON THE YZW PROTOCOL
In this appendix, we show an attack against the data col-

lection protocol of Yang et al. [21, section 5.2]. We will
refer to this protocol as the YZW protocol. This protocol
is intended to be collusion resistant so that t − 1 dishonest
leaders (out of t total leaders), in collusion with a dishonest
data miner, cannot learn any associations between honest
respondents and their responses. Due to a subtle flaw in
the use of zero-knowledge proofs, it is actually possible for
a single dishonest leader to collude with the data miner and
learn all associations.

This appendix is organized as follows. In section A.1 we
provide a complete description of the malicious-model ver-
sion of the protocol from [21]. Then, in section A.2, we ex-
plain how the protocol has misused zero-knowledge proofs,
and how this can be exploited by a malicious data miner
and a malicious respondent to break anonymity of all hon-
est respondents. Finally, in section A.3, we argue that even
with correct zero-knowledge proofs, the YZW protocol still
has impractical communication complexity.

A.1 Description of the YZW protocol
Unlike our protocol, which is compatible with any IND-

CCA2 cryptosystem, the YZW protocol relies on the El-
Gamal encryption scheme. In ElGamal, the public key is
(p, g, gx) and the private key is x, where p is a large ran-
dom prime, g is the generator of the multiplicative group
of integers modulo p, and x is a random integer such that
1 ≤ x ≤ p − 2. A ciphertext of message m is a pair (gk

mod p, m · (gx)k mod p), where k is a random integer such
that 1 ≤ k ≤ p− 2.

An important property of ElGamal ciphertexts is that
they can be easily rerandomized without access to the pri-
vate key, i.e., given a ciphertext (C(1), C(2)), it is easy to

produce, without decrypting, another ciphertext (C(1) · gk′

mod p, C(2) · (gx)k′ mod p) which encrypts the same plain-
text. Moreover, given two ciphertexts, it is not feasible to
determine whether they encrypt the same plaintext.

The protocol also makes use of the following three zero-
knowledge proofs, which are intended to prevent any of the
protocol participants from deviating from the protocol:

• PoK(C), where C is an ElGamal ciphertext. This is a
proof of knowledge of the plaintext of C.

• PoR((C1, ..., CN ), (C′
1, ..., C

′
N )), where all Ci and C′

i are
ElGamal ciphertexts. This is a proof that (C′

1, ..., C
′
N )

is a permuted rerandomization of (C1, ..., CN ).

• PoD(q, C(2), y), where C(2) is the second component of
an ElGamal ciphertext and y = gx mod p is a public
key. This is a proof that q = (C(2))x, where x is the
private key corresponding to y.

We restate the protocol below. There are N respondents,
of whom t are designated as “leaders.” Each leader i has an
ElGamal key pair, in which xi is the private key, and the
public key includes yi = gxi . The public key is known to
all respondents, while the private key xi is known only to
leader i. Let

y =

tY
y=1

yi

be the product of all public yi values. The protocol consists
of three phases:

• Phase 1: N -round data submission.
For i = 1, ..., N

– Respondent i encrypts his data di using the public
key y to produce the ciphertext Ci:

Ci
def
= (C

(1)
i , C

(2)
i ) = (yridi, g

ri),

where ri is picked uniformly at random.

– Respondent i produces a proof zi = PoK(Ci), prov-
ing that he knows the plaintext of Ci.

– Respondent i sends Ci and zi to the miner, who
forwards (Ci, zi) to all other respondents.

– Each respondent verifies the proof sent by respon-
dent i and if it is missing or invalid, the protocol is
aborted.

– The data miner sets the initial values of (D1, ..., DN )
to be (C1, ..., CN ).

• Phase 2: t-round anonymization.
For i = 1, ..., t

– The miner sends (D1, ..., DN ) to leader i.

– Leader i rerandomizes and permutes the data, so
that (R1, ..., RN ) is a permuted rerandomization of
(D1, ..., DN ).

– Leader i generates a proof

wi = PoR((D1, ..., DN ), (R1, ..., RN )).

– Leader i sends (R1, ..., RN ) and wi to the miner,
who forwards them to all other respondents.

– Each respondent verifies the proof sent by leader
i and if it is missing or invalid, the protocol is
aborted.

– The miner sets the new values of (D1, ..., DN ) =
(R1, ..., RN ).

• Phase 3: Decryption

– The miner sends (D1, ..., DN ) to all leaders.

– Each leader i computes partial decryptions: for j =
1, ..., N ,

pj,i = (D
(2)
j )xi .

– Each leader i computes a proof

vj,i = PoD(pj,i, D
(2)
j , yi).

– Each leader i sends pj,i and vj,i to the miner, for
j = 1, ..., N . The miner forwards them to the other
participants.

– Each participant verifies the proof sent by leader
i, and if it is missing or invalid the protocol is
aborted.

– The miner computes the final decryptions: for j =
1, ..., N

d′
j = D

(1)
j /

tY
i=1

pj,i.



A.2 Attacking the YZW protocol
The flaw in the YZW protocol is that the zero-knowledge

proof of permuted rerandomization PoR is not a proof of
knowledge. It guarantees that the plaintexts of two cipher-
text sets are the same, but this is not enough for anonymity.
As long as (C′

1, ..., C
′
N ) is some permuted rerandomization

of (C1, ..., CN ), then an attacker can provide the required
proof even if he does not know the actual permutation.

In this section, we show how this can be exploited by a
malicious data miner who colludes with the last leader and
substitutes original ciphertexts (for which associations with
respondents are known) for the honestly permuted cipher-
texts. This enables them to pass all proofs required by the
protocol, and then learn all associations between respon-
dents and responses. Collusion resistance thus fails com-
pletely: it is sufficient for the data miner to corrupt the last
leader in order to completely break security of the protocol.

1. All participants behave honestly until the beginning of
the tth round of phase 2, when it is leader t’s turn to
rerandomize and permute the data.

2. At the beginning of the tth round, the data miner sends
leader t both the current values of (D1, ..., DN ) and
the original values of (C1, ..., CN ) exactly as they were
collected from the respondents during phase 1. Leader
t produces (R1, ..., RN ) by rerandomizing and applying
a permutation πt to (C1, ..., CN ), not (D1, ..., DN ) as
the protocol specifies. Because (R1, ..., RN ) is also a
permuted rerandomization of (D1, ..., DN ), leader t is
able to produce the proof

PoR((D1, ..., DN ), (R1, ..., RN )),

even though he does not know the permutation to pro-
duce (R1, ..., RN ) from (D1, ..., DN ).

3. The proof PoR((D1, ..., DN ), (R1, ..., RN )) from leader
t is verified by all other leaders, who then decrypt in
phase 3. The data miner learns all plaintext responses
permuted only by πt

4. Leader t tells πt to the data miner, who is then able to
associate responses to respondents.

It may appear that this attack is caused simply by an im-
precise description of PoR given in [21], and that any actual
implementation of the PoR proof would not allow a party
to pass the proof PoR((D1, ..., DN ), (R1, ..., RN )) without
knowing the permutation. Unfortunately, the implementa-
tion suggested in [21] (and originally proposed in [12]) allows
precisely this attack.

The proof in [12, 21] relies on the multiplicative homomor-

phism property of ElGamal. If (C
(1)
1 , C

(2)
1 ) and (C

(1)
2 , C

(2)
2 )

are ElGamal encryptions of plaintexts P1 and P2, then

(C
(1)
1 C

(1)
2 , C

(2)
1 C

(2)
2 )

is an ElGamal encryption of P1P2. In order to prove that
two sets of ciphertexts (C1, ..., CN ) and (R1, ..., RN ) decrypt
to the same set of plaintexts, participants are asked to prove
that the products of the ciphertexts

(

NY
i=1

C
(1)
i ,

NY
i=1

C
(2)
i ) and

(

NY
i=1

R
(1)
i ,

NY
i=1

R
(2)
i ),

decrypt to the same values (which are products of the origi-
nal plaintexts). If plaintexts are chosen in such a way that it
is difficult to find a set of plaintexts with the same product
as the original, then equality of the products of plaintexts
implies equality of the plaintexts themselves.

The reason the protocol of [21] fails is that the above
statement about equality of products is true, and a mali-
cious leader can prove it, even if he does not know the per-
mutation. In [19], Wikström presents a clever attack that
effectively allows the kth leader to present a convincing zero-
knowledge proof that his output (R1, ..., RN ) is a permuted
rerandomization of the output from the k−1st leader, when
in fact (R1, ..., RN ) is a permuted rerandomization of the
original ciphertexts in their original order. (In [19], the at-
tack is described in the context of mix networks, but it also
works in the anonymous data collection setting with very
slight modifications.)

A.3 Fixing the YZW Protocol
The YZW protocol can potentially be fixed by substi-

tuting zero-knowledge proofs of knowledge for the incorrect
proofs of [12]. Research on so called verifiable shuffles [13,
15] has led to zero-knowledge proofs in which a participant in
an ElGamal rerandomization protocol proves not only that
the output ciphertexts decrypt to the same set of plaintexts
as the input ciphertexts, but also that the prover knows the
the permutation from input ciphertexts to output cipher-
texts.

Requiring this additional proof of knowledge makes the at-
tack described above impossible, since a malicious last leader
will no longer be able to rerandomize original input cipher-
texts instead of the ciphertexts provided by the previous
leader and pass the proof of knowledge. Fixing the YZW
protocol in this way, however, still requires O(N2) commu-
nication rounds and the use of expensive zero-knowledge
proofs, where N is the number of participants. It is not
clear whether the proofs of [13, 15] can be carried out in
parallel (in general, zero-knowledge proofs do not preserve
their properties under concurrent composition), and execut-
ing them sequentially results in a protocol with impracti-
cal communication complexity. By contrast, our protocol
achieves the same security guarantees with O(N) communi-
cation rounds and without any zero-knowledge proofs.


