Security Against Probe-Response Attacks in
Collaborative Intrusion Detection

Vitaly Shmatikov and Ming-Hsiu Wang

The University of Texas at Austin

ABSTRACT

Probe-response attacks are a new threat for collaborative
intrusion detection systems. A probe is an attack which is
deliberately crafted so that its target detects and reports it
with a recognizable “fingerprint” in the report. The attacker
then uses the collaborative infrastructure to learn the detec-
tor’s location and defensive capabilities from this report.

We analyze the fundamental tradeoff between the ability
of a collaborative network to detect epidemic threats and se-
curity of individual participants against probe-response at-
tacks. We then design and evaluate a collaborative detection
system which provides protection against probe-response at-
tacks. Unlike previously proposed collaborative detection
networks, our system supports alert sharing while limiting
exposure of members’ identities.

1. INTRODUCTION

As network attacks grow in severity and sophistication,
collaborative intrusion detection systems (CIDS) have at-
tracted much interest. Collecting data from multiple points
in the Internet is essential for correlating malicious activity
and extracting robust attack signatures. Operational exam-
ples include repositories such as DShield [8], DeepSight [22],
myNetWatchman [17], IMS [9], and CAIDA [4]. Many ar-
chitectures have also been proposed for decentralized infor-
mation sharing between Internet monitors [6, 11, 2, 23, 14,
15, 1, 12].

Probe-response attacks are the dark side of collaborative
intrusion detection. They turn the usual attack detection
game on its head. The attacker wants to be detected because
he knows that he will be able to use the CIDS as an oracle
to analyze the resulting security alert.

Some probe-response attacks aim to map out the regions
of the IP address space that are being watched by honey-
pots and “Internet telescopes,” to better avoid them when
spreading malware or stage a denial of service attack on
them [3, 21]. The attacker probes each address of inter-
est with a special attack whose characteristics are likely to

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

LSAD’ 07, August 27, 2007, Kyoto, Japan.

Copyright 2007 ACM 978-1-59593-785-8/07/0008 ...$5.00.

be recognizable in the resulting alert, should the probe be
detected. For example, he probes different ports at differ-
ent target addresses. By analyzing the alerts reported to a
collaborative detection center such as DShield, the attacker
then learns which probes have been detected and thus which
IP addresses are being monitored.

The other type of probe-response attacks, first described
in [13], has a somewhat different goal. Consider, for exam-
ple, a financial institution. Its IP addresses are known and
likely to be monitored. The attacker uses the probe-response
attack to learn the target’s security posture: how is a partic-
ular type of attack detected, which version of what intrusion
detection system is running at a particular IP address, and
so on. To the best of our knowledge, the two types of probe-
response attacks have not been explicitly differentiated in
the research literature, but both present serious risks to the
Internet monitors who share information with potentially
untrusted peers or potentially vulnerable analysis centers.

Probe-response attacks exploit the paradox of collabora-
tive security. For accurate Internet-scale threat detection,
each monitor should reveal his detailed local observations to
other monitors. To be safe from probe-response attacks, the
monitor should not reveal whether he detected an attack.
The more useful the reports are for collaborative detection,
the more useful they are for an attacker. On the one hand,
collaborative detection works best with many diverse mon-
itors. On the other hand, there may not be any observable
difference between an honest monitor and a compromised
monitor who is quietly leaking his peers’ observations to an
attacker.

To protect collaborating monitors from probe-response at-
tacks, it is necessary (at the very least) to prevent the at-
tacker from observing rare alerts. The probe-response at-
tack in its most basic form exploits the fact that responses
to probes have recognizable “fingerprints”—a unique port
number, unique Snort rule, and so on—which enable the at-
tacker to recognize them among the alerts collected by the
CIDS. If every monitor’s observations are reported to the
entire community, security against probe-response appears
unachievable.

Trusting a central authority to collect and sanitize alerts
may not be robust. Even if the authority suppresses rare
alerts, it is still the single point of failure: security of the
entire system depends on a single node not being compro-
mised. It is also inherently vulnerable to insider attacks.

Decentralized CIDS are potentially more robust, but usu-
ally insecure against probe-response attacks. Attacks of the
type studied in [3, 21] aim to discover the identities of the

collaborating monitors. Most of the previously proposed
peer-to-peer detection networks require monitors’ identities
to be public (to route the alerts), and are thus immediately
vulnerable. If a CIDS is to keep the monitors’ identities se-
cret, it must solve the following problems: (1) How does a
monitor select a peer to send an alert to if peers’ identities
are secret? (2) How is an alert routed to the selected peer
without revealing it to the attacker? and (3) How are the
monitors prevented from learning each other’s IP addresses?
Of course, suppressing rare alerts impairs the ability of a
CIDS to detect low-rate and polymorphic attacks. We ar-
gue that there is a fundamental tradeoff between security
against probe-response and the ability to detect stealthy at-
tacks, and show how to detect epidemic phenomena while
protecting contributors from probe-response attacks.

Our contributions. Our first contribution is a gossip-
based architecture for collaborative intrusion detection. It
achieves security against probe-response in a fully decentral-
ized fashion. The attacker has a very low chance of ob-
serving responses to low-density probes (i.e., attacks that
affect only a tiny fraction of the monitors), while informa-
tion about high-density attacks, such as genuine malware
outbreaks, is propagated to all monitors. This greatly de-
creases the efficacy of probe-response attacks by forcing the
attacker to stage epidemic-scale probes which yield very im-
precise information about the detecting monitors.

Our second contribution is a set of techniques for alert
sharing in networks with hidden membership. By contrast,
previous CIDS assumed that membership is public, reveal-
ing exactly the information that probe-response attacks aim
to elicit in the first place. Our DHT-based split-route mech-
anism enables alert distribution while revealing only a small
fraction of peers’ identities to any given monitor, and with-
out assuming that monitors share cryptographic keys.

Our third contribution is a quantitative analysis of the
basic tradeoff between a CIDS’ ability to detect attacks and
security of individual monitors against probe-response. We
show that a decentralized CIDS must either sacrifice its abil-
ity to detect low-rate threats (including early stages of zero-
day attacks), or else expose collaborators to probe-response
attacks. This can be viewed as a fundamental limitation of
collaborative intrusion detection.

Organization of the paper. We discuss related work in
section 2. In section 3, we present an overview of probe-
response attacks and the motivation behind our system. The
architecture of our system is described in section 4, and the
adaptations for public- and hidden-membership networks
are in section 5. Our evaluation is presented in section 6.
Challenges and future directions appear in section 7.

2. RELATED WORK

Probe-response attacks are first mentioned in [13]; in [3,
21], it is shown how a (somewhat different) probe-response
attack can be used to infer the locations of passive Internet
monitors. Some countermeasures, e.g., publishing only top
lists, sampling, and delayed reporting, are proposed, but
they apply to trusted repositories such as DShield [8] rather
than distributed detection networks.

Distributed intrusion detection has been the subject of
many papers [6, 11, 2, 23, 14, 15, 1, 12, 5]. To enable the
monitors to share their observations, these systems assume
that they know each other’s identities, and thus reveal ex-

actly the information that probe-response attacks aim to
discover. In [1], alerts are cryptographically protected, but
monitors’ locations are not; the system also relies on trusted
monitors and a trusted aggregation authority. By contrast,
we are interested in a completely decentralized detection net-
work that hides both the honest monitors’ locations and the
contents of their alerts from malicious network members.
DOMINO [23] is superficially similar to our system in that
it, too, uses DHT, but its focus is substantially different.
CDDHT is a hybrid system that routes different types of
alerts in a peer-to-peer fashion to aggregation centers [12].

3. PROBE-RESPONSE ATTACKS

Probe-response attacks target one or a small number of
IP addresses. The attack is crafted so that the intrusion
alert, if any, generated by the targeted system contains a
unique mark. For example, an unusual port number can
be used as the mark, with different IP addresses attacked
on different ports. Port numbers are usually preserved even
in anonymized alerts, to enable detection of port scanning
sources and correlation of worm instances attacking open
network services on a specific port.

In contrast to the usual intrusion detection scenario, the
attacker wants the attack to be detected. He exploits the
basic assumption of collaborative intrusion detection that
detected attacks are reported to a public repository or sent
to peers. In either case, the alert becomes available to other
monitors, some of which are controlled by the attacker. By
recognizing the marked alert, the attacker confirms that the
targeted IP address is indeed monitored. Detailed analysis
of the alert can further reveal how the attack was detected,
the make and model of the target’s intrusion detection sys-
tem, and possibly even the target’s network topology and
enabled network services. In effect, the attacker exploits the
detection network to create a feedback loop.

Probe-response attacks were first described in [13]; in [3,
21], it was shown how to exploit DShield and CAIDA alert
repositories to learn the locations of “network telescopes”
watching unused IP addresses. Probe-response attacks can
also aim to discover the detector’s capabilities rather than
its location. For example, if a given address is watched by
an obsolete version of Snort, the protected network may be
vulnerable to a recent exploit. The basic pattern—inserting
a unique mark into each attack and recognizing it among
the collected alerts—remains the same.

Probe-response attacks need not target a small number
of addresses. The attacker may launch large-scale attacks
(indistinguishable from “genuine” outbreaks), then use sta-
tistical analysis of the resulting alerts to find commonalities
in their detection patterns. This requires substantially more
resources than targeted probes.

Our goal is not to develop a fail-proof defense against
every imaginable attack whose aim is to “smoke out” the In-
ternet monitors. Instead, we show the difficulties and trade-
offs in securing collaborative detection networks against ba-
sic, narrowly targeted probe-response attacks. Achieving
even the necessary (let alone sufficient) conditions for secu-
rity against low-rate probe-response challenges the network’s
ability to detect “genuine” attacks.

Adversary model. We focus on a decentralized intrusion
detection network comprising a large number of monitors.
The adversary may join the network and/or compromise

some fraction of the monitors, but we will assume an up-
per bound on the number of adversary-controlled monitors.
Without such a bound, no defense against probe-response is
possible in the absence of a trusted central authority. De-
fenses against “sybil” attacks [7] are beyond the scope of this
paper. In a real-world deployment, the bound on the num-
ber of malicious monitors can be achieved, for example, via
a pay-to-join scheme with IP address verification.

By assumption, the attacker’s observations are limited to
the union of the local observations of the monitors he con-
trols. We assume that he cannot eavesdrop on the mes-
sages between honest monitors, except those that are routed
through an attacker-controlled monitor.

A probe is a specially crafted attack on one or more hon-
est monitors. A response is the alert generated by an at-
tacked monitor and reported to some of its peers in the de-
tection network. We assume that the mark associated with
the probe is recognizable in the response, and the environ-
ment is free from noise. Therefore, if any attacker-controlled
monitor observes the response, the probe-response attack
has succeeded. If anything, these assumptions strengthen
our attacker. Moreover, it is often possible to filter out the
noise by increasing the number of probes [3].

Defenses against probe-response. There is a fundamen-
tal conflict at the heart of decentralized intrusion detection.
The only incentive for Internet monitors to share informa-
tion is to obtain access to other monitors’ observations (per-
haps in an aggregated form). Since the adversary can join
the network or corrupt an existing member, we must as-
sume that he has the same access to the data as any other
member. Preventing malicious monitors from participating
in alert sharing is unrealistic in a truly distributed setting.

To be secure against probe-response attacks, the network
must rapidly disseminate reports of genuine attacks to all
members, while not distributing the alerts resulting from
probes that target very few members. (This condition is
necessary, but not sufficient.) Since a single member, given
his local observations, cannot reliably tell the difference be-
tween a widespread attack and a probe (the two may look
exactly the same, e.g., each involves a malware instance ar-
riving at a certain port), the problem seems impossible.

Our approach is to design an alert propagation mechanism
that exploits the difference between the events observed by
many monitors and those observed only by a few. For ex-
ample, the fact that a single monitor somewhere is attacked
on port 1434 is of little interest to the entire community.®
By contrast, if multiple monitors are attacked on port 1434,
this could be an indication of a worm outbreak, and the cor-
responding alert should be propagated to as many members
as possible to enable pre-emptive defense.

To break the attacker’s feedback loop, it is necessary (but
not sufficient) to stop him from observing responses to tar-
geted probes. The attacker can increase his chances of ob-
serving the response by probing multiple addresses with the
same attack, but these observations are less useful because
the attacker will not know which of the probed IP addresses
generated it. This does not rule out probe-response attacks,
but at least makes them more expensive.

!This is a great simplification. Even a single-host attack
may reveal useful data about new vulnerabilities and ex-
ploits. Nevertheless, if every host reports all local obser-
vations to the entire community, security against probe-
response seems unachievable.

Number of

. ‘+1 -5 10 25 +50‘
Monitors:

> 1
é 09 //" /7
2 08
<
a 0.7 d
2 06 1
7
205 1
£ 04
g o
> 03 J
§ 02
o
2o1 /x/x//// |
< o - - :

0.001 0.01 0.1 1

Monitor Witnessing Probability

Figure 1: Adversary vs. monitor witnessing proba-
bility.

What does security against probe-response mean?
Security against probe-response can be characterized by the
relationship between attack density a (i.e., the fraction of
the monitors attacked using the same probe) and the adver-
sary’s “witnessing” probability paw, t.e., the probability that
an attacker-controlled monitor observes the response.

When attack density is low, the witnessing probability
should be very low. Alerts corresponding to very rare at-
tacks should “die off” in the network before they reach a
non-trivial fraction of monitors. There is no doubt that this
decreases effectiveness of collaborative detection, but it is a
necessary condition for security against probe-response at-
tacks. We quantify the tradeoff in section 6.

Attacks observed by more than a few of the monitors
should be reported to all members of the detection network.
Let pmw be the probability that a random monitor, whether
honest or malicious, witnesses the response. The absolute
minimum functionality one should expect from a CIDS is
detection of widespread, epidemic threats. For this, high at-
tack densities should be associated with p,,. values that are
close to 1. Since honest and malicious monitors cannot be
reliably distinguished, pg., will be high when p,., is high.

For example, consider

(@={ 0 if0<ac<t
Pawl@® =91, ift<a<1

If the CIDS realizes this ideal detection function, all at-
tacks whose density exceeds the epidemic threshold t are
reported to all members, while reports of lower-density at-
tacks are extinguished. Increasing ¢ achieves better security
against probe-response, but also increases the false nega-
tive rate, i.e., the probability that a genuine attack is not
detected by the network. Note that the threshold is global:
each monitor’s local observations may be below ¢. Achieving
this global threshold function in a fully decentralized setting
is a non-trivial challenge.

The relationship between pq. (probability that an adver-
sarial monitor witnesses the response) and pm. (probability
that a random monitor witnesses the response) is shown in
fig. 1. Even though in our alert propagation protocol the
chances of two monitors observing an alert are not inde-
pendent (see section 4), at low attack densities pmw can be
approximated as independent for all monitors. Under this
assumption, paw = 1 — (1 — pmw)?, where A is the num-
ber of adversarial monitors. At higher attack densities, our
protocol leads to a stronger dependency between py,., for
each monitor m, and this equation overestimates pg.,. Note

that pq. increases dramatically with small increases in pma .
For the network to be partially secure against even the most
basic probe-response attacks, pmw must be very low when
attack density is low.

Assumptions about the monitors. Since our focus is
on the generic security of collaborative intrusion detection
against probe-response attacks, we abstract away from the
actual intrusion detection functionality of each monitor and
the exact alert format. It is essential, however, that there
exist some similarity metric between the alerts generated by
different monitors to enable them to determine whether two
or more alerts correspond to similar attacks.

We are aware that such a metric may be problematic for
polymorphic attacks. Probe-response attacks, however, fun-
damentally exploit the fact that the target does detect the
probe. We expect that there will be at least some common-
alities between the monitors’ individual observations. For
example, with rule-based intrusion detectors, the alert may
include the rule that was triggered by the attack along with
source IP addresses and port numbers. Typical identifiers
for various types of attacks can be found in [12], and tech-
niques for (privacy-preserving) alert matching in [20].

We stress that our goal in this paper is not to design a
CIDS that can reliably detect zero-day polymorphic attacks.
We show that even a much weaker task—detecting conven-
tional attacks, which are observed in exactly the same way
by different monitors—conflicts with security against probe-
response attacks, and quantify the tradeoff.

4. GOSSIP-BASED CIDS

We now describe the architecture of our collaborative in-
trusion detection system (CIDS), comprising a network of
monitors. For any attack, an honest monitor can be in one
of four states: unaware (neither detected the attack himself,
nor received any alerts about it), detected (observed the at-
tack first-hand), alerted (has not seen the attack, but has
been notified by one or more peers about it), and confirmed
(learned that the attack is widespread). In our system, a
monitor may send an alert to his peers in two situations:
alert generation, which takes place when the monitor expe-
riences the attack first-hand, and alert propagation, when he
has received alerts about the attack from his peers.

Alert generation. Upon detecting an attack, the monitor
flips ng biased coins, each of which turns up “heads” with
probability ps. These parameters are, respectively, the on-
detection fanout and on-detection alerting probability. For
each “heads,” the monitor sends an alert to some random
member of the detection network. If members’ identities
are hidden, the alert is routed as described in section 5.
Each alert includes a pseudoId field (e.g., a fresh random
number), which is unique for each detection event and un-
linkable to the monitor’s identity. If the monitor observes
the same attack more than once, he does not generate a new
alert of his own, but may still propagate alerts about this
attack received from other members (see below).

Even though we aim to achieve a global threshold for alert
dissemination, there is no local threshold (unlike in previ-
ously proposed CIDS). Even a single attack may result in
an alert being sent. With probability (1 — pq)™¢, no alerts
are sent, thus the absence of an alert no longer indicates
that the probe has not been detected.

Alert propagation. When a monitor who has not ob-

served the attack first-hand receives an alert about it from
a peer monitor, he creates n, copies of the alert (n, is the
propagation fanout). For each copy, he randomly selects a
peer and re-advertises the alert to him with probability p,.
The value of p, is a critical parameter. If attack density is
low, then p, should be low, so that alerts corresponding to
very rare events die off before reaching an adversarial moni-
tor. If attack density appears to be high, p, should be high.

Attack density is estimated using pseudolds, which are
unique, yet anonymous for each detecting monitor. The
number of distinct pseudoIds indicates how many distinct
monitors observed an instance of a given attack. For each
attack, the monitor maintains a list of pseudoIds associated
with the alerts reporting this attack. When the monitor re-
advertises an alert, he picks a pseudoId at random from the
list. If he previously observed the attack first-hand, he uses
the same unique pseudoId that he generated then.

Let k£ be the number of distinct pseudoIds. We use dif-
ferent functions for the monitors who observed the attack
first-hand (fattacked) and those who only heard about it from
other monitors (fattacked)-

The principle behind our choice of functions is as follows.
Sattacked 18 exponential to achieve a sharp difference between
the (low) probability of a random node learning about a low-
density attack and the (high) probability of learning about
a high-density attack. feattackeda 18 a threshold function so
that (i) if many distinct monitors observed the attack (k is
high), then propagation is accelerated; (ii) otherwise, the
alert should “die off” in the network.

_ [BFY o<k <~y
fatmc}mi(k) B { 1, otherwise (ﬂ > 1) (1)
0 if0<k<rT
fwattacked(k) = { p otherwise (P < 1)

In section 6, we explain these functions further, and show
how adjusting their parameters affects the tradeoff between
security against probe-response and ability to detect attacks.

Because pseudoIds are simply long random numbers, the
attacker may try to “flush out” the response to his probe
by flooding the CIDS with fake pseudoIds. This increases
honest monitors’ estimates of attack density and improves
the attacker’s probability of observing an alert, but the ob-
served alert is overwhelmingly likely to carry one of the fake
pseudolds, yielding no information about the probe’s target.

Fig. 2 shows what each monitor does after (i) detecting
an attack and (ii) receiving an alert from another monitor.

To establish a more consistent view across the monitors,
we set a confirmation threshold c¢. An honest monitor only
considers an attack confirmed if he has seen at least c¢ dis-
tinct pseudoIds for that attack. Regardless of the threshold,
even a single response observed by a malicious monitor is
sufficient for the probe-response attack to succeed.

Termination of alert propagation. To prevent the in-
finite cycling of alerts through the network, each monitor
can only re-advertise an alert about a given attack k times,
where k is the number of distinct pseudoIds he has seen in
association with this attack. Alerts whose pseudoId has al-
ready been re-advertised are discarded. Each monitor thus
sends at most nK alerts, where n = max(ng,n-), K is the
total number of pseudoIds, i.e., the number of monitors who
observed the attack first-hand. Since K < M, where M is
the total number of monitors, the total number of alerts is

OnDet ectIntrusion (Intrusion i) {
hasDetect[i] = true;
pseudol d = randon();
nyPseudol ds[i] = pseudol d;
for 0.. ng- 1
with probability pqg

send al ert(pseudold[i], i);

OnReceiveAlert (Alert a) {

if pseudoldSet[a.i].contains(a.pseudold)
return;
pseudol dSet[a.i] = pseudoldSet[a.i] O a.pseudold;

k = pseudoldSet[a.i].size();
if(hasDetect(a.i)) {

pr = fanacked(k)v
pseudol d = nyPseudol ds[i]
} else {

pr = f«altacked(k) ;
pseudold = random el enent in pseudoldSet[a.i];

}
for 0.. n, -1
with probability p,

send al ert(pseudold, i);

Figure 2: Monitors’ algorithms in pseudocode.

bounded by nM?. To foil an attacker who floods the network
with fake pseudoIds, monitors can also stop re-advertising
the attack after they have seen some fixed number of alerts.

5. HIDING CIDSMEMBERSHIP

We consider two distinct kinds of probe-response attacks.
The first, described in [13], assumes that the monitors’ lo-
cations are known, and aims to reveal their detection capa-
bilities. The second, described in [3, 21], targets detection
networks with hidden members, such as Internet telescopes
watching “dark” IP addresses. Previously proposed peer-to-
peer detection systems assume that members’ identities are
public, and are thus inherently vulnerable to probe-response
attacks of the latter kind.

In a CIDS with public membership, alert propagation is
straightforward. A monitor chooses a peer at random (per-
haps biasing his selection in favor of trusted peers), and
sends the alert via normal IP routing. Standard techniques
can be used for confidentiality, authentication, and integrity,
provided the monitors share a symmetric key, or the sender
has the recipient’s certified public key.

In the threat model of [3, 21], however, finding the peers’
IP addresses is the main purpose of the attack! This raises
a technical challenge: how to route alerts when peers’
locations are not known? Specifically, (1) How does the
monitor select a random peer? (2) How does the monitor
send an alert to the selected peer without revealing it to
the adversary? and (3) How to prevent the monitors from
learning each other’s IP addresses?

Selecting a random peer. Following [23, 12], we use a

Figure 3: Disjoint routes in DHT keyspace.

distributed hash table (DHT') to manage CIDS membership.
DHT keyspace is typically represented as a circle. Upon join-
ing, each monitor is mapped to a random key on this circle,
which must be unlinkable to the monitor’s true identity. It
can be computed, for example, as an HMAC of the moni-
tor’s IP address with the monitor’s secret key. Each monitor
is responsible for some fraction of the DHT keyspace.

To send an alert to a random peer, the monitor picks a
random value in the DHT keyspace. The alert is then routed
to the monitor responsible for the region of the keyspace
containing this value, just like in a normal DHT lookup.

DHT does not guarantee uniform peer selection. Each
monitor’s selection probability is proportional to the range
of the keyspace that he is responsible for. For monitors clus-
tered on the circle, this probability is small. Note, however,
that to increase his chance of being selected, the adversary
must choose a point furthest from all other monitors. This
distance is bounded by the largest interval between the keys
of the honest monitors. There exist DHT protocols which
ensure uniformly random peer selection [10], but in our ex-
periments, non-uniform selection did not lead to a significant
increase in the adversary’s probability of observing the alert.

Routing alerts. Using DHT means that an alert may tran-
sit through several monitors on its way to the destination.
If any of them is controlled by the adversary, he will observe
the alert and the probe-response attack will succeed. De-
fense is difficult since the sender and the recipient don’t know
each other’s identity, let alone share cryptographic keys.

We rely on the disjoint path defense. Two routes are dis-
joint if their only common nodes are the origin and the des-
tination. To route an alert a, the sender generates a random
number 7 of the same length as a, and sends r on one route,
and a®r on the other, where @ is the bitwise xor. Upon
receiving the two messages, the destination reconstructs the
alert by xoring them together. (Optionally, a hash can be
included for integrity.) The adversary will not be able to re-
construct the alert from the eavesdropped messages unless
both routing paths contain an attacker-controlled monitor.
This approach easily extends to multiple routes.

Creating disjoint DHT routes. Consider a monitor S
sending an alert to a random DHT address z, and R who is
responsible for z (see fig. 3). The positions of S and R on
the DHT keyspace circle split it into the minor and major
arcs, which are clearly disjoint.

In conventional DHT, each intermediate node M routes
the message to the neighbor which is closest to R. We mod-
ify the protocol by annotating each routing request with
either A, or B. M routes messages marked A to the neigh-
bor who lies in the [M, R] interval, and messages marked B

4 Monitor Witnessing M Confirmation ‘

[N

o
©

*u
. -~
£ 06
3 o
2
u
S04 -
u
0.2 “‘
. K
0 .M — ‘ ‘
0 0.1 0.2 0.3 0.4 0.5 0.6
Attack Density
(a) Conservative alert propagation
‘ & Monitor Witnessing s Confirmation ‘
1 ane
Ll
.
08 .
 §
'
2 06 o
= b
3
] * <—
2 o4 -
[0
- X7 Epidemic threshold is
02 - shifted lower with more
. .:' conservative propagation
e T
0 L : — . .
0 0.1 0.2 03 0.4 05 0.6

Attack Density

(b) Aggressive alert propagation

Figure 4: Sample detection curves in a public-
membership network.

to the neighbor who lies outside the [M, R] interval. In both
cases, the distance to R decreases at each hop. Route B is
likely to have higher latency, but eventually reaches R.

An alternative protocol is Salsa [18], which is specifically
designed to create multiple disjoint routes. Salsa divides the
DHT keyspace into groups. Each node knows all members
of his group. To create a route, he asks a random set of
group members to independently find paths to the destina-
tion. The routes created by different group members are
only weakly correlated, and disjoint with high probability.

The number of groups is an important parameter. A large
number of small groups results in longer routes, increasing
the probability that all routes contain a malicious node.
Moreover, if a monitor finds himself in a group of his own, he
cannot create disjoint paths. On the other hand, the smaller
each group, the fewer “contacts” each monitor has. In Salsa,
with groups of size n, each monitor knows the IP address of
every peer in his group, and log,(n) peer outside his group.
These contacts are the monitors whose IP addresses would
be revealed to a dishonest monitor when he joins the CIDS.

6. EVALUATION

To evaluate the CIDS with public membership, we use an
event-driven simulator implemented in Java. For the DHT-
based CIDS with hidden membership, we use the p2psim [19]
simulator for Chord [16] (to simulate standard DHT) and
the Java simulator for Salsa [18] (to simulate disjoint-path
routing). Each result is an average of 1000 simulations of a
network with 500 monitors.

0.7
0.6 q
2 051
2
8
£ 04
=
o
‘£ 0.3
o
]
a 0.2 4
w
0.1 |
0 T T
0.001 0.01 0.1 1
On-Detection Alerting Probability

Figure 5: Tuning the epidemic threshold.

‘0 .2% Compromised ® 1% Compromised 2% Compromised » 5% Compromised ‘

Adversary Witnessing Probability
CO0O00O00000
OFRr NWHRUON®ORE

Attack Density

Figure 6: Adversary witnessing probability for a
public-membership network.

Public membership. Fig. 4(a) shows the relationship be-
tween attack density and the probability of a random moni-
tor learning about the attack, given the on-detection proba-
bility pg = 0.15, and parameters of equation (1) set as v = 5,
T=4, p=.7 and 8 = 1.23. (These values are chosen for
illustration; below, we explain how adjusting the parameters
affects the tradeoffs.) The system is secure against probe-
response attacks in the following sense. If few monitors have
been attacked, the probability of the attacker observing the
response is very small. Only if attack density exceeds 30%,
alerts start propagating widely. Fig. 4(a) also shows the ef-
fect of attack confirmation (with threshold set to 5). When
attack density is between 15% and 30%, multiple monitors
see the alerts, but not consider the attack confirmed.

Fig. 4(b) shows the curve for ps = 0.25, v = 5, 7 = 4,
p=.9, B =1.01. With the more aggressive alert propaga-
tion function, the epidemic threshold has shifted lower (i.e.,
lower attack densities are needed to alert all monitors in the
network). The tuning of the epidemic threshold by varying
pa is further illustrated in fig. 5.

Fig. 6 shows the attacker’s probability of seeing a response
to his probe under various assumptions about the fraction of
the compromised monitors. Even if the attacker controls half
of the monitors, his probability of observing the response to
a single-target probe is only 7.5%.

The adversary may attack more monitors. If he probes 50
monitors, i.e., 10% of the network, his chance of seeing the
response is 2% when .2% of the network is compromised. If
he controls 5% of the network, then the probability is 40%.
Security against probe-response attacks is hard to achieve
when the attacker controls a large fraction of the network.
Note, however, that the attack is relatively ineffectual in this
case, since the IP address subspace that must be attacked
to hit 50 monitors is relatively large, and the attacker learns

1 oo ee
g .
5 0.8 1
32
5 .t
2 0.6
7]
&
£ *
2 04
>
> >
.
202
< o *®
olesee? : : : :
0 0.1 0.2 0.3 0.4 0.5 0.6
Attack Density

Figure 7: Adversary witnessing probability for
Chord with eavesdropping.

‘0 .2% Compromised ® 1% Compromised 2% Compromised » 5% Compromised

Adversary Witnessing Probability
OO0 0000000

z

oORNMNWhUoON®OR
*
*

o
o
[
o
N

0.3 0.4 0.5 0.6
Attack Density

Figure 8: Adversary witnessing probability for Salsa
with disjoint path defense.

only that some point in this subspace is being monitored.

Hidden membership. Fig. 7 shows the effect of malicious
monitors eavesdropping on the alerts routed through, but
not addressed to them. Security depends on route length,
since longer routes have a higher chance of containing at
least one attacker-controlled monitor. These results depend
heavily on the specifics of the DHT routing protocol.

Fig. 8 shows the probability that the attacker observes a
response to his probe when alerts are routed by Salsa. In
our simulations, we used groups with 64 monitors in each;
on average, each monitor knows IP addresses of 14 peers.
Adversary witnessing probability is slightly worse than in
the public-membership network because disjoint paths offer
only partial protection against eavesdropping. Effectiveness
of the eavesdropping defense is quantified in fig. 9 by com-
paring the adversary witnessing probability when disjoint
paths are used vs. standard DHT routing.

Fig. 10 shows the difference between a public-membership
network and a hidden-membership network with Salsa rout-
ing. Due to non-uniform peer selection, the curve for the
Salsa model does not reach 1. Fig. 10 shows that there
is a tradeoff between slightly better security against probe-
response attacks in a public-membership network and pro-
tection of monitors’ identities in a hidden-membership net-
work.

Adjusting parameters. Fig. 11 shows the impact of vari-
ous parameters of our system on the global detection curve.
The lower the on-detection alerting probability and fanout,
the flatter the slope of the curve in the low attack density
region, which is where probe-response attacks occur.

This is the fundamental tradeoff of our system and,

Salsa with Disjoint Path Defense ® Salsa with Eavesdropping
1
£ 091 o
208 o*
0. -+
*
£ 07 -
) o8 *
2 0.6 = &
@ *®
£ 0.5 e
£ 04 MR
203 s *
S
802 o
] Go®
S0 gl
o LT . . ‘ ‘
0 0.1 0.2 0.3 0.4 0.5 0.6
Attack Density

Figure 9: Defending against eavesdropping.

‘ + Public Membership Model = Salsa w/ Disjoint Path Defense ‘
1
o

> 09 :_..
3 08 L]
£ 07 .
g g R Curve doesn't approach
o 0.6 - 1 due to non-uniform
@ 4 e f 5 lection with DHT
ﬁ 0.5 Better security in a public - e e cionWIt B I8
£ 04+ membership model Se
H =
5 03 —
£ 02 g
= 01 3

. e

0 T T T T T

0 0.1 0.2 0.3 0.4 0.5 0.6
Attack Density

Figure 10: Monitor witnessing probability for a
hidden-membership network with Salsa vs. public-
membership network.

we argue, of any decentralized collaborative detection net-
work. Suppressing alert propagation at low attack densities
provides better security against probe-response attacks, but
also increases the false negative rate, i.e., the probability
that a genuine, stealthy attack will not be detected.

The (8 parameter of futiackea affects the lower bend of the
detection curve. As (3 increases, the curvature of the bend
also increases, and the epidemic threshold shifts lower. The
~v parameter determines the granularity of the propagation
function. Increasing « alone shifts the epidemic threshold
higher as it will take more alerts to obtain the same re-
advertisement probability, imposing additional bandwidth
and alert processing costs.

For foattacked, the T parameter determines how fast the
non-attacked monitors pitch into the gossiping. Ideally, this
should occur only if the epidemic threshold has been ex-
ceeded. A lower threshold increases the propagation rate,
but too low a value may cause premature alert flooding or,
even worse, flooding in response to a targeted probe. Sim-
ilarly, p affects the rate of alert propagation once the non-
attacked monitors started participating. The effect of 7 and
p is most pronounced in the slope of the detection curve at
the epidemic threshold and the curvature of the upper bend.

7. CONCLUSIONSAND FUTURE WORK

We have (1) presented the first characterization of what it
means for a collaborative intrusion detection system (CIDS)
to be secure against basic probe-response attacks, (2) pro-
posed and evaluated a gossip-based CIDS that achieves our
definition of security, and (3) demonstrated the fundamen-
tal tradeoff between security against probe-response attacks

Epidemic Threshold. |
Affected by all parameters :

Upper bend. Should
0.8 have steep curvature.
L Adjust witht andp

3
g
o 06 Probe-response
2 attack region.
§ 0.4 Needs to be flat. E
g Adjust with n,and g -
S 0.2+ w
= __.-'<_J Lower bend. Should
o cosesn=t™” have steep curvature.
o i " " Adjust with 3 andy
0 0.1 0.2 0.3 L 4.6
Attack Density

Figure 11: Impact of parameters on the detection
curve.

and the system’s ability to detect attacks. The main techni-
cal contribution is the design of the first decentralized CIDS
that supports detection of epidemic attacks while limiting
exposure of monitors’ identities.

We do not claim to have achieved the Holy Grail of dis-
tributed detection of all low-rate, stealthy, polymorphic in-
trusions, while preventing any probe-response attack, in-
cluding massive attacks with subsequent statistical analy-
sis. Our goal was to show that defending against even the
basic probe-response requires compromises. In particular,
suppression of reports about low-density attacks appears to
be a necessary price to pay, which inevitably decreases the
network’s ability to detect low-rate threats.

Lifetime of alerts is an important parameter. An adver-
sary may evade detection by waiting until old alerts are
purged before attacking the next target. The “memory” of
each monitor should be comparable to the attack propaga-
tion rate. This is an interesting topic of future research.

Selecting alert destinations uniformly at random may not
be the best way to avoid disclosing them to the adversary.
In a public-membership network, it may be more secure or
efficient to bias selection in favor of trusted or geographically
proximate peers.

Other defenses against probe-response attacks may in-
volve deliberately introducing uncertainty into alerts. For
example, instead of saying “I observed an intrusion on port
4000,” a monitor may say “I observed an intrusion on port
2000, 3000, 4000, or 5000.” The techniques of [3] require
simultaneous probing of different addresses at different port
numbers. Using fake ports in the alerts will provide signif-
icant confusion, although it may not be sufficient to defeat
a sophisticated attack. If, on the other hand, an epidemic
attack is occurring, then a large number of monitors will
report the same attack with independent statistical noise in
each alert, and standard noise filtering techniques can be
used to determine the true port targeted by the attack.

Acknowledgements. This material is based upon work
supported by the National Science Foundations under grants
CNS-0509033 and 11S-0534198, and by the Department of
Defense under Contract No. H98230-05-C-1650.

8. REFERENCES

[1] M. Allman, E. Blanton, V. Paxson, and S. Shenker.
Fighting coordinated attackers with
cross-organizational information sharing. In Proc.
HotNets, 2006.

[2] K. Anagnostakis, M. Greenwald, S. Ioannidis,

A. Keromytis, and D. Li. A cooperative immunization
system for an untrusting Internet. In Proc. ICON,
2003.

[3] J. Bethencourt, J. Franklin, and M. Vernon. Mapping
Internet sensors with probe response attacks. In Proc.
USENIX Security, 2005.

[4] CAIDA. http://www.caida.org, 2007.

[5] S. Cheetancheri, J. Agosta, D. Dash, K. Levitt,

J. Rowe, and E. Schooler. A distributed host-based
worm detection system. In Proc. LSAD, 2006.

[6] H. Debar and A. Wespi. Aggregation and correlation
of intrusion-detection alerts. In Proc. RAID, 2001.

[7] J. Douceur. The Sybil attack. In Proc. IPTPS, 2002.

[8] DShield. http://www.dshield.org, 2006.

[9] Internet Motion Sensor.
http://ims.eecs.umich.edu/, 2006.

[10] V. King, S. Lewis, and J. Saia. On algorithms for
choosing a random peer. Technical Report
TR-~CS-2004-31, Dept. of Computer Science,
University of New Mexico, 2005.

[11] C. Kriigel, T. Toth, and C. Kerer. Decentralized event
correlation for intrusion detection. In Proc. ICISC,
2001.

[12] Z. Li, Y. Chen, and A. Beach. Towards scalable and
robust distributed intrusion alert fusion with good
load balancing. In Proc. LSAD, 2006.

[13] P. Lincoln, P. Porras, and V. Shmatikov.
Privacy-preserving sharing and correlation of security
alerts. In Proc. USENIX Security, 2004.

[14] M. Locasto, J. Parekh, A. Keromytis, and S. Stolfo.
Towards collaborative security and P2P intrusion
detection. In Proc. IAW, 2005.

[15] D. Malan and M. Smith. Host-based detection of
worms through peer-to-peer cooperation. In Proc.
WORM, 2005.

[16] R. Morris, D. Karger, F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer
lookup service for Internet applications. In Proc.
SIGCOMM, 2001.

[17] myNetWatchman. http://www.mynetwatchman. com,
2006.

[18] A. Nambiar and M. Wright. Salsa: a structured
approach to large-scale anonymity. In Proc. CCS,
2006.

[19] p2psim. http://pdos.csail.mit.edu/p2psim/, 2005.

[20] J. Parekh, K. Wang, and S. Stolfo. Privacy-preserving
payload-based correlation for accurate malicious traffic
detection. In Proc. LSAD, 2006.

[21] Y. Shinoda, K. Ikai, and M. Itoh. Vulnerabilities of
passive Internet threat monitors. In Proc. USENIX
Security, 2005.

[22] Symantec. DeepSight threat management system.
http://tms.symantec.com, 2006.

[23] V. Yegneswaran, P. Barford, and S. Jha. Global
intrusion detection in the DOMINO overlay system. In
Proc. NDSS, 2004.

