Contract Signing, Optimism, and Advantage*

Rohit Chadha? John C. Mitchell® Andre Scedrov ©
Vitaly Shmatikov ¢

A University of Sussex
b Stanford University
¢ University of Pennsylvania

dSRI International

Abstract

A contract signing protocol lets two parties exchange digital signatures on a pre-
agreed text. Optimistic contract signing protocols enable the signers to do so with-
out invoking a trusted third party. However, an adjudicating third party remains
available should one or both signers seek timely resolution. We analyze optimistic
contract signing protocols using a game-theoretic approach and prove a fundamen-
tal impossibility result: in any fair, optimistic, timely protocol, an optimistic player
yields an advantage to the opponent. The proof relies on a careful characterization
of optimistic play that postpones communication to the third party.

1 Introduction

A variety of contract signing protocols have been proposed in the literature, in-
cluding gradual-release two-party protocols [6,8,15] and fixed-round protocols
that rely on an adjudicating “trusted third party” [2,4,22,30,33]. In this paper,
we focus on fixed-round protocols that use a trusted third party optimistically,
meaning that when all goes well, the third party is not needed. The reason
for designing optimistic protocols is that if a protocol is widely or frequently

* At the time of writing, Mitchell, Scedrov and Chadha were partially supported by
OSD/ONR CIP/SW URI “Software Quality and Infrastructure Protection for Dif-
fuse Computing” as ONR Grant N00014-01-1-0795. Additional support for Chadha
from NSF Grant CCR-0098096 and EU Global Computing project “MIKADO,”
for Mitchell from NSF Grant CCR-0121403, ITR/SY “Computational Logic Tools
for Research and Education,” for Scedrov from NSF Grant CCR-0098096, and for
Shmatikov from ONR under Grants N00014-02-1-0109 and N00014-01-1-0837.

Preprint submitted to Elsevier Science

used by many pairs of signers, the third party may become a performance
bottleneck. Depending on the context, seeking resolution through the third
party may delay termination, incur financial costs, or raise privacy concerns.
Obviously, the value of an optimistic protocol, as opposed to one that requires
a third party signature on every transaction, lies in the frequency with which
“optimistic” signers can complete the protocol without using the third party.

Some useful properties of contract signing protocols are fairness, which means
that either both parties get a signed contract, or neither does, and timeliness,
which generally means that each party has some recourse to avoid unbounded
waiting. The reason for using a trusted third party in fixed-round protocols is
a basic limitation [18,31] related to the well-known impossibility of distributed
consensus in the presence of faults [21]: no fixed-length two-party protocol can
be fair. Although there is a trivial protocol with a trusted third party, in which
both signers always send their signatures directly to it, protocols that are fair,
timely, and usefully minimize demands on the third party have proven subtle
to design and verify.

This paper refines previous models, formalizes properties from the literature on
fixed-round two-party contract signing protocols, and establishes relationships
between them. We use the set-of-traces semantics for protocols, defining each
instance of the protocol as the set of all possible execution traces, arranged in
a tree. The set of traces of a protocol is derived from a multiset rewriting [12]
presentation of the protocol, for concreteness, although other formalisms for
characterizing protocols and their sets of traces would give similar results.

Model for optimism. One modeling innovation is an untimed nondeterministic
setting that provides a set-of-traces semantics for optimism. Intuitively, opti-
mistic behavior in contract signing is easily described as a temporal concept:
an optimistic signer is one who waits for some period of time before contacting
the trusted third party. If Alice is optimistic, and Bob chooses to continue the
protocol by responding to Alice, then Alice will deliberately wait for Bob’s
message rather than contact the third party. Since the value of an optimistic
protocol lies in what it offers to an optimistic player, we evaluate protocols
subject to the assumption that one of the players follows an optimistic strat-
egy. As a direct way of mathematically characterizing the sequence of actions
that occur in optimistic play, we allow an optimistic player to deliberately
give his opponent control over whether the optimist waits for a message. In
other words, an optimistic player wishes to wait for a message. We allow an
optimistic player to act on this wish by entering a waiting state until the oppo-
nent’s move places the optimistic player in a non-waiting state. This gives us
a direct way of defining the set of traces associated with an optimistic signer,
while staying within the traditional nondeterministic, untimed setting.

Impossibility result. In evaluating protocol performance for optimistic players,

we prove that in every fair, timely protocol, an optimistic player suffers a
disadvantage. The importance of this result is that optimistic protocols are
only useful to the extent that signers may complete the protocol optimistically
without contacting the third party. In basic terms, our theorem shows that
whenever a protocol allows signers to avoid the third party, an optimistic
signer gives the other signer unilateral control over the outcome at some point
in the execution of the protocol.

To illustrate by example, consider an online stock trading protocol with signed
contracts for each trade. Suppose the broker starts the protocol, sending her
commitment to sell stock to the buyer at a specific price, and the buyer re-
sponds with his commitment. To ensure timely termination, the broker also
enjoys the ability to abort the exchange by contacting the trusted third party
(TTP) if the buyer has not responded. Once the buyer commits to the pur-
chase, he cannot use the committed funds for other purposes. Even if he has
the option to contact the TTP immediately, an optimistic buyer will wait for
some period of time for the broker to respond, hoping to resolve the trans-
action amicably and avoid the extra cost or potential delay associated with
contacting the TTP. This waiting period may give the broker a useful window
of opportunity. Once she has the buyer’s commitment, the broker can wait to
see if shares are available from a selling customer at a matching or lower price.
The longer the buyer is inclined to wait, the greater chance the broker has to
pair trades at a profit. If the broker finds the contract unprofitable, she can
abort the transaction by falsely claiming to the TTP that the buyer has not
responded. This broker strategy succeeds in proportion to the time that the
buyer optimistically waits for the broker to continue the protocol; this time
interval, if known exactly or approximately, gives the broker a period where
she can decide unilaterally whether to abort or complete the exchange.

Since our main result only involves one run of an arbitrary contract-signing
protocol, we do not need to consider sequences of protocol runs, or interleaving
of concurrent runs.

The paper is organized as follows. In section 2, we summarize our semantic
framework and define the class of two-party contract signing protocols with
trusted third party. In section 3, we formalize protocol properties such as fair-
ness, optimism, and timeliness. In section 4, we formalize optimistic behavior
of a participant, and show that the optimistic participant is at a disadvantage
in any fair, optimistic, timely protocol. The implications of the main theorem
for specific contract-signing protocols in the literature are discussed in sec-
tion 5, with related work discussed in section 6. We summarize our results in
section 7.

Acknowledgments. We are particularly grateful to D. Malkhi for pointing
out the vulnerability of optimistic players in fair exchange. We also thank

I. Cervesato, S. Even, D. Gollmann, S. Kremer, J.F. Raskin, C. Meadows, and
J. Millen for interesting and helpful discussions.

2 Model

2.1 Multiset rewriting formalism

Our protocol formalism is multiset rewriting with existential quantification,
MSR [12], which can be seen as an extension of some standard models of com-
putation, e.g., multiset transformation [5] and chemical abstract machine [7].
This formalism faithfully expresses the underlying assumptions of the un-
timed, nondeterministic, asynchronous model. A protocol definition in MSR
defines the set of all possible execution traces for any instance of the protocol.
Any other formalism, including [1,19] and others, that leads to an equiva-
lent set of traces would support the same results about protocols [16,13]. The
synchronous model with a global clock does not seem appropriate for our in-
vestigation because fixed-round contract signing protocols in the literature
[2,4,22,30,33] do not rely on a global clock.

MSR syntax involves terms, facts, and rules. To specify a protocol, first choose
a vocabulary, or first-order signature. We assume that our vocabulary contains
some basic sorts such as publicKey for public keys and msg for protocol mes-
sages. As usual, the terms over a signature are the well-formed expressions
produced by applying functions to arguments of the correct sort. A fact is a
first-order atomic formula over the chosen signature, without free variables.
Therefore, a fact is the result of applying a predicate symbol to ground terms
of the correct sort. A state is a finite multiset of facts.

A state transition is a rule written using two multisets of first-order atomic
formulas and existential quantification, in the syntactic form Fy, ..., F, —
dzy...32;.G4,...G,. The meaning of this rule is that if some state S contains
facts obtained by a ground substitution ¢ from first-order atomic formulas

Fy, ..., Fy, then one possible next state is the state S* that is similar to S,
but with facts obtained by o from Fi, ..., F; removed and facts obtained by
o from G4,...,G, added, where z4,...,z; are replaced by new symbols. If
there are free variables in the rule Fy,..., Fj, — dz;...32;.Gy,... G, these

are treated as universally quantified throughout the rule. In an application of
a rule, these variables may be replaced by any ground terms.

For example, consider state { P(f(a)), P(b)} and rule P(x) — 32.Q(f(z), 2)-
First, we instantiate this rule to P(f(a)) — 32.Q(f(f(a)), z). Applying the

rule, we choose a new value ¢ for z and replace P(f(a)) by Q(f(f(a)),c),

obtaining the next state {Q(f(f(a)),c), P(b)}.

A set of MSR rules is called a theory. In an interleaving semantics of concur-
rency, we can commute the order of application of transition rules that affect
independent parts of the system:

Proposition 1 Let S = S, W S, be a state such that

(i) S" = S} W Sy is obtained from S by the application of a transition rule t,
using ground substitution o .

(i1) S" = S} W S} is obtained from S’ by the application of a transition rule to
using ground substitution o,.

Then S" can also be obtained from S by the application of ty using oo followed
by the application of t; using os.

Proof: Follows immediately from the definition of MSR. O

2.1.1 Basic sorts

Protocol participants are identified with their public keys. We use the sort pub-
licKey for participants’ public keys, and let k, k', k., k1, . .. to range over values
of this sort. Sort msg is used for protocol messages, and we let my, my,... to
range over values of this sort.

In this paper, we are concerned with two-party protocols in which the partici-
pants exchange their signatures on pre-agreed contract texts. Sort contract Text
is used for the texts. We assume that participants use a globally unique iden-
tifier of the sort uniqueldentifier for each protocol instance. We use n,n’,... to
range over values of this sort. As mentioned earlier, we only need to consider
a single instance of the protocol.

Finally, we assume that our vocabulary contains the sort protocollnstance and
a function:

(., -, -, —,—) : publicKey x publicKey x publicKey x

contractText x uniqueldentifier — protocollnstance.

Each value of the sort protocollnstance identifies the two participants, the
trusted third party, pre-agreed contract text and the globally unique identifier
of the protocol instance. We use pd, pd', ... to range over values of protocol-
Instance. For example, protocol instance pd = (k,, k,, k;, m, n) describes the
protocol instance identified as n in which participants with public keys k, and
k. are attempting to exchange signatures on the pre-agreed text m with the
help of a trusted third party whose public key is k;.

2.1.2 Timers

In our model, timers are interpreted as local signals, used by participants to
decide when to quit waiting for a message from the other party in the proto-
col. They do not refer to any global time or imply synchronicity. Timers are
formalized by binary timer predicates, whose first argument is of the sort pub-
licKey and identifies the participant who receives its signal, while the second
argument is one of the following three constants of the sort timerState: unset,
set, and timed_out. We use ts,ts’, ... to range over constants of the sort timer-
State, and Z, 7, Z,, ... to range over timer predicates. For example, the fact
Z(k, unset) indicates that a timer Z belonging to the participant identified
with public key k£ in state unset.

2.2 Formal model of cryptography

Contract signing protocols usually employ cryptographic primitives such as
encryption, hash functions and more specialized constructs such as designated-
recipient signatures [22]. In general, the purpose of cryptography is to provide
messages that are meaningful to some parties, but not subject to arbitrary
(non-polynomial-time) computation by others. For example, encryption pro-
vides messages that are meaningful to any recipient with the decryption key,
but not subject to decryption by any agent who does not possess the decryp-
tion key. The logic-based formalism of MSR cannot capture subtle distinctions
between, for example, functions computable with high probability and func-
tions computable with low or negligible probability. Instead, we must model
functions as either feasibly computable, or not feasibly computable. In the
remainder of this paper, we assume some fixed theory Possess of rules that
characterize the computationally feasible operations on messages. It is as-
sumed implicitly that in any protocol model, the roles (see section 2.3.2) will
conform to the capabilities expressed in Possess, since no honest agent can
perform any computationally infeasible action, although we do not rely on this
assumption in any proof.

For each cryptographic operation used in a protocol, we assume that Possess
contains some MSR characterization of its computability properties. To give
a concrete framework for presenting these rules, let us assume some set of
predicates Has = {has®|a is any sort}. Since the sort « is determined by the
sort of the arguments to has®, we will not write the sort when it is either
irrelevant, or clear from context. Intuitively, a rule of the form

has(s1),...,has(sm), F1,..., F; — has(t1), ..., has(t,), F1, ..., F}

means that if an agent possesses data si,...,s,,, then under conditions spec-

ified by facts Fy,..., Fj, it is computationally feasible for him to also learn
ty,...,t,. For example, we shall always assume that if an agent possesses z,
then it can make as many copies as it desires. This can be expressed by the
following rule:

has(x) — has(x), has(x)

The familiar “Dolev-Yao” [17,32] rules given in [12] can be expressed as:

has(zx), has(k) — has(encrypt(k, z))
has(encrypt(k, z)), has(k™"), Keypair(k, k') — has(x)

Intuitively, these rules say that if an agent possesses a message and an encryp-
tion key, it is computationally feasible for the agent to possess the encryption
of the message with the key. Conversely, if an agent possesses an encrypted
message and the decryption key, then it is computationally feasible for the
agent to possess the plaintext. Similarly, we model invertible operations such
as pairing by MSR possession rules stating that a pair may be computed from
its parts and, conversely, given a pair, its parts may be computed.

As a disclaimer, we emphasize that the results in this paper are accurate state-
ments about a protocol using cryptographic primitives only to the extent that
Possess accurately characterizes the computationally feasible operations. In
particular, protocols that distinguish between low-order polynomial compu-
tation and high-order polynomial computation, or rely on probabilistic oper-
ations in some essential way, may fall outside the scope of our analysis and
may conceivably violate some of our results.

2.8 Protocol model

A protocol P is a contract signing protocol if it involves three parties, O
(originator), R (responder), and T (trusted third party), and enables O (re-
spectively, R) to obtain R’s signature (respectively, O’s signature) on some
pre-agreed text. For brevity, we will say signature as a shorthand for “signature
on the pre-agreed text,” use terms contract signing and signature exchange in-
terchangeably, and refer to O and R as signers. We assume that a contract
signing protocol cannot reach a state where each party (O or R) has the other’s
signature unless both parties (O and R) take some action. In particular, nei-
ther O nor R may obtain a binding contract without the other participating
in the protocol by executing at least one protocol step.

We specify the protocol by a MSR theory. Any sequence of rules consistent

with the theory corresponds to a valid execution trace of a protocol instance. If
execution traces are naturally arranged in trees, then the MSR theory defines
the set of all possible execution traces as a forest of trees. To obtain the
impossibility result, we choose any contract signing protocol P and fix it. We
assume that the contract text for each instance contains a unique identifier,
and consider only a run instance of P. Since only one instance is needed to
obtain our impossibility result, there is no need to consider repeated or parallel
runs of the protocol.

2.8.1 Communication

Following the standard assumption that the adversary controls the network
and records all messages, we model communication between O and R by a
unary network predicate N whose argument is of the sort msg. Once a fact
N(m) for some m is added to the state, it is never removed. As in contract
signing protocols in the literature [4,22], we assume that channels between
signers and T are inaccessible to the adversary and separate from the network
between O and R (by contrast, [26] considers security of contract signing pro-
tocols under relaxed assumptions about channel security). Channels between
signers and 7" are modeled by ternary TTPchannel predicates, whose argu-
ments are of the sort publicKey, publicKey and msg, respectively. For example,
tc(ky, ki, m) models the channel between O and T carrying message m.

2.53.2 Role theories

A role theory specifies one of the protocol roles such as O, R or T by giv-
ing a finite list of role state predicates that define the internal states of the
participant playing that role and the rules for advancing from state to state.
Role theory also contains another, disjoint list of timer predicates describing
the rules for the participant’s timers. A participant may advance his state by
“looking” at the state of his timers or the network (i.e., a timer or a network
predicate appears on the left side of the rule). He may also set his timer by
changing the timer’s state from unset to set, but he may not change it to
timed _out.

Definition 2 Theory A is a role theory for participant A with public key k,,
where k, is a constant of the sort publicKey, if it satisfies the following:

(i) A includes a finite list of predicates Ao, ..., An, called role state predicates,
and a finite list of timer predicates, called timers of A. The two lists are
disjoint.

(i1) Ao is a binary predicate whose arquments are of the sort publicKey and
protocollnstance, respectively. We call Ay the initial role state predicate.

(i1i) For each rule | — r in A,

(1) There is exactly one occurrence of a role state predicate in I, say A;, and
exactly one occurrence of a role state predicate in r, say Aj;. Furthermore,
i < j. If Ag occurs in I, then Ag(kq,p) € 1 for some term p of the sort
protocollnstance.

(2) If A; is a k-ary role state predicate occurring in [, and A; is an m-
ary role state predicate occurring in r, then m > k. Furthermore, if
Ai(ur, ... uy) € Land Aj(vy,...,v,) € 1, then u, and v, are the same
terms for all 1 < g < k.

(3) Let Ai(uy,...,ux) €1, Aj(v1,...,vp) € r. Let MSG be the set of terms
u such that N(u) or tc(ki, ko, u) € I for some TTPchannel predicate tc.
For each q, v, is derivable from uy, ... ,u, and MSG using the rules in
Possess (see section 2.2). Note that by the previous clause, u, and v,
are the same terms for all 1 < q < k.

(4) For each timer 7 of A,

(a) I and r each contain at most one occurrence of Z. Occurrences are
of the form Z(k,,ts), where ts is a constant of the sort timerState. If Z
occurs in r, then it occurs in [.

(b) If Z(k,, unset) € 1, then either Z(k,, unset) € r, or Z(k,, set) € r.
(¢c) If Z(kq, set) € 1, then Z(k,, set) € r.

(d) If Z(k,, timed_out) € 1, then Z(k,, timed_out) € r.

(5) If N(u) € I, where N is a network predicate and u is term of the sort msg,
then N(u) € r. If te(ky, ko, u) € I, where tc is a TTPchannel predicate,
and terms ky, ko, u are of the sort publicKey, publicKey, msg, respectively,
then te(ky, ko, u) € r.

(6) For any predicate P other than a role state, timer, network, or TTPchan-
nel predicate, atomic formula P(t1,...,t,) has the same occurrences in |
as in 7.

Definition 3 If 7 is a timer of the participant with public key k,,
then Z(ky, set) — Z(kq, timed_out) is the timeout rule of Z.

2.3.83 Protocol theory

Informally, a protocol theory P for a given protocol is the disjoint union of
six theories: O, R, T, Otimeouts: Rtimeouts: and Ttimeouts; Where O, R, T are
role theories, and Otimeouts; Rtimeouts; aNd Tiimeouts are the sets of timeout
rules for all timers of O, R, and T, respectively. For simplicity, we will combine
the role theory and the timeouts of T, and call it T = Ty U Tiimeouts-

Definition 4 Theory P is a protocol theory for signers O and R and trusted
third party T with public keys k,, k., k;, respectively, where k,, k., k; are con-
stants of the sort publicKey, if P = O W R W Tg W Otimeouts ¥ Ritimeouts &

Ttimeouts i where

(1) O,R,Tq are role theories for, respectively, O, R, T with respective public
keys ko, k., k;.

(2) At most one TTPchannel predicate, say tc, occurs in O. Fach occur-
rence of tc is of the form tc(k,, ki, m), where m is of the sort msg, and
te(ko, ki, m) cannot not occur in R.

(3) At most one TTPchannel predicate, say tc, occurs in R. Fach occur-
rence of tc is of the form te(k,, ky, m), where m is of the sort msg, and
te(ky, ky, m) cannot occur in O.

(4) If some TTPchannel predicate occurs in Tq, then it also occurs in O or
R.

(5) The role state predicates and the timers of O (respectively, R) do not
occur in R (respectively, O) and Tq. The role state predicates and the
timers of T do not occur in O or R.

(6) Otimeouts; Rtimeouts, 07d Tiimeouts are the sets of timeout rules of all
timers of O, R, and T, respectively.

2.3.4 Threat model

We are interested in guarantees provided by contract signing protocols when
one of the signers misbehaves in certain ways. The trusted third party, T, is
assumed to be honest. We will call the misbehaving signer the adversary. The
adversary does not necessarily follow the protocol, and may ignore the state of
the timers or stop prematurely. In principle, an adversary may gather messages
from the network, store them, decompose them into fragments and construct
new messages from the fragments. However, we shall only use the following
capabilities in our model: quitting the protocol prematurely, ignoring the state
of the timers and intercepting messages on the network. These abilities are
formalized by theories O¢preat and Rinrear containing dishonest rules for O
and R, respectively.

The proof of our impossibility result (see section 4) only requires that the
adversary may quit the protocol prematurely, ignore the state of the timers,
or intercept messages on the network. Since an adversary with additional
capabilities only needs these actions in order to take advantage of an optimistic
opponent, we thus obtain a stronger result than if we assumed a stronger
adversary. On the other hand, if we were interested in proving correctness of
a protocol against a more powerful adversary, we would need to extend the
theories O¢hreat a0d Rinhreat-

We now describe the rules of O¢preat in more detail. The rules of Ripreat are

symmetric. Quitting, that is refusing to take further part in protocol execu-
tion, is a form of dishonest behavior. To model quitting from some role state,

10

say (;, which is a k-ary predicate whose arguments are of the sort sy, ..., s
respectively, we introduce in our vocabulary a k-ary predicate Ogqyir; Whose
arguments are of the sort s;,...,s,. We also introduce k variables zq,,..., 2
of the sort sq,..., s, respectively, and add the following rule in Ogpreat:

Oi(l'l, A ,.’Ek) — Odquit,i(xly A ,.Z‘k), M(l{;o,.’ljl), c M(ko,.’ljk)

If a dishonest O has not quit the protocol, then O may disregard the state of
some or all of the timers that govern the behavior of honest O. For example,
suppose that the following rule is in O (here Z is a timer predicate, and j > 7):

O (1), Vi($1), ..., Vi(sk), Z(ko, ts) —
Oj(ﬁ)ﬂ Wl (t_l‘)a RS Wl(t_;)a Z(koa tsl)

Dishonest O may ignore timer Z:

O:(@), Vi($1), ... Va(si) — O,(@), Wi(51), ... Wi(f:)

If a dishonest O has not quit the protocol, then the dishonest O may also
intercept (gather) messages from the network (), or the channel between O
and trusted third party (¢c). In our model, we use binary predicates M whose
arguments are of the sort publicKey and msg, respectively, to represent the
additional memory of the dishonest participant.

Let x, 2" be variables of the sort msg. If O; is a k-ary role state predicate,

whose arguments are of the sort sq,...,sg, then pick £ variables x,, ...,z of
the sort sq,...,s; respectively. The rules for gathering messages are:
Oi('rla SR Jxk)J N(‘Z‘) — Oi('rla SR Jxk)J N(‘Z‘)J M(koa .’E)

Oi(1,. .., xx), tc(ko, by, v) — Oi(xy, ... xp), te(ko, kyy), M (ky,)

In the above rules, the presence of the role state predicate O; ensures that O
will not intercept messages after it has quit the protocol.

2.3.5 Initial set of facts
In addition to the protocol theory and dishonest rules for the participants, a

protocol specification also includes the initial set of facts, say Sy, describing
the initial state of the protocol execution. We assume that the participants

11

have agreed on the contract text m and globally unique protocol instance
identifier n. S, is a set that contains:

(1) Facts Og(k,, pd), Ro(k,, pd), To(ki, pd) exactly once, where Oy, Ry, T, are
the initial role states of O, R, and T, respectively, and pd is the term
(ko kyry ky, m,n). There is no other occurrence of a role state predicate in
So.

(2) For each timer predicate Z of O, R, or T', there is exactly one occurrence
of Z in Sj.

(3) For each timer predicate Z of O (respectively R, T), either Z(k,, unset)
(respectively, Z(k,, unset)), or Z(k,, set) (respectively, Z(k,, set)), but
not both.

(4) M(ky,m), M(ko,,n), M (k,,m), M(k,,n).

2.4 Traces and continuation trees

A state is a finite multiset of facts. For example, the initial state Sy may
include facts Og(ko, k, ', k., p) and Ry(k,, k', ko, p) modeling the initial states
of the originator and the responder in protocol p: each knows his own public
and private keys, and the opponent’s public key. A trace from state S is a
chain of nodes, with the root labeled by S, each node labeled by a state, and
each edge labeled by a triple (¢, 0, Q). Here Q is one of {O, R, T, O¢imeouts,
Riimeouts) Othreat; Rihreat}, ¢ € Q is a state transition rule, and o is a ground
substitution. If (t, o, Q) labels the edge from a node labeled by S; to a node
labeled by Ss, it must be the case that the application of to to S; produces
S,. Any state labeling a node in this chain is said to be reachable from S. We
will simply say that a state is reachable if it is reachable from the initial state
So.

An edge is a dishonest move of O if it is labeled by some t € Ogpreas- O is said
be honest in the trace if there are no dishonest moves of O in the trace. If S
is reachable by a trace in which O is honest, then S is reachable by honest O.
The definitions for R are symmetric.

Let the continuation tree, ctr, at state S be the tree of all possible traces from
S. This tree serves as a game tree that represents the complete set of possible
plays. We can see that ctr has finite depth, allowing us to reason by induction
on the height above the leaves of the tree. The reason that ctr has finite depth
is that we only consider a single run of a fixed-round protocol. A protocol
consists of a set of roles, and each role is a finite set of multi-set rewriting
rules, each rule expressing a step in the protocol. In the multi-set rewriting rule
framework, each rule in a role replaces a predicate indicating the current state
with a higher-numbered predicate indicating the subsequent state, preventing

12

any form of state looping. Further, the additional steps provided by the threat
model only allow a role to move forward in the execution of a protocol, or add
a fact to the set of facts known to a principal. The former action cannot lead
to looping, and the latter action need only be performed once per message
sent by honest parties. Thus the continuation tree from any state has finite
depth.

We use subtrees of ctr to characterize the results of certain restrictions on
protocol participants. Specifically, let ctrjo) be the tree obtained from ctr by
removing all edges in O U Ogpreat along with their descendants. The tree ctro;
gives the set of all possible plays if O stops participating in the protocol. The
definition of ctr(p), giving the set of all plays when R stops participating, is
similar. We will say that any edge ¢ in ctr that is labeled by a rule in O or
Othreat (respectively, R or Rinreat), is under O’s control (respectively, R’s
control). To model optimism of honest signers (see section 4), we will also
assume that all the edges in Otijmeouts U Rtimeouts are under control of the ad-
versary (dishonest participant). More specifically, our model of optimism gives
control over scheduling communication with the third party to the adversary.
However, some possible protocols may use other timeouts that are not under
control of the adversary.

3 Properties of Contract Signing Protocols

The MSR definition of the protocol determines the set of all possible execution
traces, giving rise to a continuation tree. To define protocol properties such as
fairness, optimism, timeliness, and advantage, we view the continuation tree
as a game tree containing all possible plays, and adapt the notion of strategy
from classical game theory.

For the remainder of the paper, we will assume that only one of the signers is
honest. We will use A to refer to the honest signer, i.e., A refers to either O,
or R, depending on which of them is honest. We'll use B to refer to the other,
dishonest signer.

When we mathematically characterize the degree of each player’s control over
the outcome of the protocol (see section 3.2.2), we will also need to consider
dishonest moves when reasoning about A’s control over the protocol. The
intuitive explanation is that honesty of A refers to A’s actual behavior in
the protocol (what A does according to the protocol specification), while A’s
control over the outcome refers to all potential behaviors by the signer in A’s
role (e.g., what A may do if B quits the protocol).

13

3.1 Strategies

Following [14], we formalize strategies as truncated continuation trees. Given
a set of edges F, let ctr\E be the tree obtained from continuation tree ctr
by removing the edges in E along with their descendants. Intuitively, if E is
a subset of edges of ctr under A’s control, then ctr\E is the set of possible
plays that result if A does not use transitions in F. Similarly, we can define
ctria\E (recall that ctr 4 is the tree of all plays if A stops participating in
the protocol).

Definition 5 Let S be a reachable state and let ctr be the continuation tree

from S. Let X C {A,B,T}.

(1) If E is a subset of edges of ctr such that each edge in E is under the control
of some p € X, then ctr\E is said to be a strategy for the coalition X.
If there are no dishonest moves of any p € X in ctr\E, then ctr\E is
said to be an honest strategy.

(2) If E is a subset of edges of ctria) such that each edge in E is under the
control of some p € X, then ctria\E is said to be an A-silent strategy
for the coalition X.

This definition corresponds to the standard game-theoretic notion of strategy.
E represents the plays that the coalition X considers unfavorable, and ctr\E
represents the continuations that X prefers. At any given state S’ in ctr\E,
an edge coming out of the node labeled by S’ indicates the next move for X
in accordance with the strategy ctr\F.

To define fairness and other properties, we are interested in strategies in which
the coalition X drives the protocol to a state in which some property holds:

Definition 6 If there is a strategy ctr\E from S for a coalition X such that
all leaf nodes of ctr\E are labeled by states S' that satisfy some property ¢(S'),
then X has a strategy from S to reach a state in which ¢ holds.

The definition for A-silent strategies is similar.

Since the players’ objective in the game is to obtain each other’s signatures,
we are interested in the states where A possesses B’s signature and the ones
where B possesses A’s signature. Formally, B possesses some term u in a
reachable state S if u is derivable, using the rules in Possess, from the terms
in B’s internal role state predicate B; in S and B’s additional memory in S
given to him by the threat model. Possession is always monotonic. Moreover,
possession of B increases in a transition only if B reads a message either
from the network or from the channel to 7. (A proof of this statement along
with the proof of monotonicity has been omitted for space considerations. The

14

detailed proofs are available at the ftp-site ftp://ftp.cis.upenn.edu/pub/
papers/scedrov/cmss_optimjlap.pdf). The definition for A is symmetric,
except that the threat model does not have to be considered.

Definition 7 If there is a strategy for coalition X such that all leaf nodes in
the strateqy are labeled by states in which A possesses B’s signature, then X
has a strategy from S to give A B’s signature. Moreover, if X = { A}, then A
15 said to have a strategy to obtain B’s signature.

3.2 Fairness, advantage, optimism, and timeliness

We now use the notion of strategy to define what it means for a contract sign-
ing protocol to be fair, optimistic, and timely, and what it means for a partic-
ipant to enjoy an advantage. The definitions are quite subtle. For example, we
need to draw the distinction between a strategy for achieving some outcome,
and a possibility that the outcome will happen under the right circumstances.
This requires introduction of a four-valued variable to characterize the degree
of each player’s control over the protocol game.

3.2.1 Fairness

Fairness is the basic symmetry property of an exchange protocol. There is a
known impossibility result [18,31] demonstrating that no deterministic two-
party protocol can be fair. Therefore, fairness requires introduction of at least
one other party, e.g., the trusted third party 7. Our definition is equivalent to a
common definition of fairness in terms of state reachability [22,14]. Intuitively,
a protocol is fair for the honest signer A, if, whenever B has obtained A’s
signature, A has a strategy in coalition with 7" to obtain B’s signature.

Definition 8 A protocol is fair for honest A if, for each state S reachable by
honest A such that B possesses A’s signature in S, the coalition of A and T
has an honest strategy from S to give A B’s signature.

In the remainder of this section, we show that this definition is equivalent to
the standard definition of fairness in terms of state reachability.

Definition 9 A state S reachable by honest A is potentially successful for A
if there is a finite trace tr from S terminating in a state in which A has B’s
signature and each transition rule in tr s labeled by a rule in AUTUAimeouts-

Note that the existence of such a trace does not mean that A can always
obtain B’s signature regardless of what B does.

15

We now show that B’s timers do not affect whether a state is potentially
successful for A. The intuitive reason for this is the observation that the actions
of A and T do not depend on the state of B’s timers. Therefore, timeouts of
B do not affect A’s ability to contact T and obtain B’s signature even if B
has succeeded in obtaining A’s signature.

Proposition 10 Let S, S’ be reachable states such that S’ is obtained from
S by an application of t1 € Biimeouts followed by an application of t, € A U
Atimeouts U T. We can commute the order of application of t, and to, ie., S’
can also be obtained from S by an application of to, followed by an application

Of tl-

Proof: Timer predicates of B do not occur in A U Atjmeouts U T. Therefore,
t; and t5 affect independent parts of S and by proposition 1, we can commute
the order of application of #; and t,. O

Proposition 11 Suppose there is a trace tr from S that uses only transition
rules i A U Atimeouts U T U Biimeouts @nd terminates in a state in which A
has B’s signature. Then S is potentially successful for A.

Proof: By inductively applying proposition 10 to trace tr, we push the time-
outs of B towards the end of the trace and obtain trace ¢r’ from S which

(i) ends in a state in which A has B’s signature, and

(ii) uses only transition rules in A U Atimeouts U T followed by timeout rules
of B’s timers.

Timeouts of B do not affect terms in A’s possession. We conclude that ¢’ is a
trace from S that uses only transition rules in A U Atimeouts U T and ends in
a state in which A has B’s signature. Hence, S is potentially successful for A. O

We now state fairness in terms of reachability and show the equivalence of the
two definitions.

Proposition 12 A protocol is fair for honest A if and only if, for all states
S reachable by honest A such that B has A’s signature on the pre-agreed text
in S, the state S is potentially successful for A.

Proof: (=) Intuitively, if B quits the protocol after having received A’s signa-
ture, then a fair protocol must provide some means for A to get B’s signature.
This may involve contacting 7. In particular, if B has A’s signature in state
S, there must be a trace from S that involves only A, T" and timeouts of A
leading to a state in which A has B’s signature. Hence, there any state in
which B has A’s signature is potentially successful for A.

16

Suppose that the protocol is fair for honest A, and S is a state reachable by
honest A such that B has A’s signature in S. There are two possibilities: either
B is still participating in the protocol (B; occurs in S for some role state B;)
or B has dishonestly quit the protocol (Bygguit; occurs in S).

Consider the former case in which B has already quit the protocol in S, and
let ctr be the tree of all possible traces at S. Now, since B has quit, each edge
in ctr must be labeled by a rule in A UT U A timeouts U Btimeouts. Lhe coalition
of A and T controls all edges labeled by rules in A U T. If E' is a selection of
edges under the control of A and T, then, by definition, ctr\E is a strategy
for the coalition of A and T.

If the protocol is fair, then there must be a strategy for the coalition of A and
T to give A the signature of B. Therefore, there exists at least one selection of
edges E such that A has B’s signature in every leaf node of the tree ctr\ E. Pick
one such selection E, and any leaf node of ctr\ E. Consider the trace from the
root to the chosen leaf. This trace ends in a state in which A has B’s signature
and each transition is labeled by a rule in A U T U A¢imeouts U Btimeouts- BY
proposition 11, S is potentially successful for A.

If however, B has not quit the protocol in S, then let S* be the state obtained
from S using the rule of dishonest quitting in Bypreat- In S*, B still has A’s
signature (possession is monotonic), and hence by what we just proved, S*
must be potentially successful for A. This means that there is a trace, tr from
S* using just the transitions in A U Ajimeouts U T leading to a state in which
A has B’s signature.

The quitting rule in Byp,eq uses just the internal role states of B and B's
dishonest memory. These predicates do not occur in A U A tjmeouts UT. Hence,
by repeated application of proposition 1, we can commute the transition from
S to S* with the whole trace ¢r. In this way, we obtain a trace where all edges
are transitions in A U A¢imeouts U T, and the trace ends in a state in which A
has B’s signature. Therefore, S is potentially successful for A.

(<) Intuitively, once B has obtained A’s signature, he continues to possess it
in all subsequent states. Since every such state is potentially successful for A,
the coalition of A and T may safely perform any of the actions available to
them. Any state from which there are no possible continuations must also be
potentially successful for A. Since there are no further actions, A must have
B’s signature in that state.

Suppose S is a state reachable by honest A such that B has A’s signature in
S. Let ctr be the continuation tree at S. The coalition of A and T controls all
edges labeled by rules in A UT. To prove that the protocol is fair, we need to
show that there is a selection E of edges under A’s control such that in each
leaf node of ctr\E, A has B’s signature.

17

Let E be an empty set and consider the strategy ctr\FE = ctr. Pick a leaf node
N in the strategy and fix it. Let N be labeled by state S’. Since B has A’s
signature in S and possession is monotonic, B has A’s signature in S’ also.
Therefore, S’ is potentially successful, and there is a trace from S’ with edges
labeled by rules from A UT U A¢jmeouts leading to a state in which A has B’s
signature. Since ctr is the continuation tree, and N is a leaf node, there are
no further traces from S’. Therefore, A must have B’s signature in S’. Since
N is an arbitrary leaf node, ctr must be a strategy of the coalition of A and
T to give A B’s signature. O

3.2.2 Advantage

Intuitively, fairness says that either both players obtain what they want, or
neither does. This is not always sufficient, however. A player’s ability to decide
unilaterally whether the transaction happens or not can be of great value in
scenarios where resource commitment is important, such as online trading and
auction bidding.

To characterize the degree to which each participant controls the outcome of
the protocol in a given state, we define a pair of resolve functions rslv 4, rslvg
which associates each reachable state with a value in {0, %, 1,2}. We are inter-
ested in what a participant may do if his opponent quits the protocol. There-
fore, despite our assumption that A is honest, we will consider A’s dishonest
moves, including control over A’s own (but not B’s) timers, when reasoning
about A’s ability to control the outcome. Intuitively, our assumption that A is
honest is equivalent to stating that A follows the protocol specification, while
values of the rslv, function characterize all potential outcomes if B quits the

protocol, which may involve A making a dishonest move.

Definition 13 Define the resolve function rslv 4 for any reachable state S as
follows:

rslva(S) =2, if A has a strategy to obtain B’s signature,

=1, if rslva(S) # 2, but A has a B-silent strategy
to reach state S' such that rslv4(S") = 2,

%, if rslva(S) # {1,2}, but there is state S" reach-
able from S such that rslva(S") = 2, and no
transition on the S — S’ path is in BUBinreat,

=0, otherwise.
The strategies need not be honest. The definition of rslvg is symmetric.

Intuitively, rslv 4(S) = 2 if A can obtain B’s signature no matter what B does,

18

1 if A can obtain B’s signature provided B stops communicating and remains
silent, £ if there is a possibility (but no strategy) for A to obtain B’s signature
when B is silent, and 0 means that A cannot obtain B’s signature without
B’s involvement. The difference between 1 and % is essential. For example,
rslv4(S) = 1 if A can obtain B’s signature by sending a message to T as
long as B is silent, while rslvs(S) = 3 if B is silent, but some previously
sent message is already on the channel to 7', and the outcome of the protocol

depends on the race condition between this message and A’s message.

Given an initial state Sy, if rslv4(Sy) # 0 then there is a possibility for A to
obtain B’s signature without B ever participating in the protocol. We believe
that this is not meaningful because A might get B’s signature without B ever
indicating its willingness for the exchange. For this reason, we shall assume
that rslva(Sy) = 0. Similarly, we assume that rslvg(Sy) = 0.

Definition 14 B has an abort strategy in S if B has a strategy to reach a
state S' such that rslv4(S") = 0. B has a resolve strategy in S if B has a
strategy to reach a state S" such that rslvg(S") = 2. B has an advantage in
S if B has both an abort strategy and a resolve strategy.

It follows directly from definition 14 that if B has an advantage in S, then A
does not have an advantage in S, and vice versa.

3.2.3 Optimism

Intuitively, a protocol is optimistic if it enables two honest parties to exchange
signatures without involving the trusted third party, assuming they do not
time out waiting for each other’s messages. Such protocols potentially provide
a practical means of fair exchange between mistrusting agents without relying
on a third party in most instances.

Let S, S’ be reachable states such that S’ is obtained from S by a transition
in B U Binreat- We say that B sends a message to T in this transition if and
only if a fact created by this transition matches a term in the left hand side
of a rule in T.

Definition 15 A fair protocol is optimistic for B if

(1) If S,S" are reachable states such that S is obtained from S’ by a transition
in B, then honest B sends a message to T 1in this transition only if
Z (ky, timed_out) € S for some timer 7 of B.

(2) If A is honest and B controls the timeouts of both A and B, B has an
honest strategy at Sy such that
o All edges are labeled by transitions in A U B.
e Fuvery leaf node is labeled by a state in which B possesses A’s signature.

19

Any trace in this strategy is an optimistic trace. The definition of optimistic
for A is symmetric. A protocol is optimistic if it is optimistic for both signers.

Intuitively, the first condition implies that the protocol specification does not
permit honest signers to contact 7" nondeterministically, i.e., an honest signer
only contacts T after a timeout of some timer. Also, since the strategy men-
tioned in the second condition is from the initial state and contains no time-
outs, neither signer sends any messages to T while following an optimistic
trace. Therefore, our definition of optimism implies that the signers can com-
plete the exchange without involving T

3.2.4 Timeliness

We now formalize the following intuition: “one player cannot force the other
to wait for any length of time — a fair and timely termination can always be
forced by contacting the third party” [4]. Timeliness has been emphasized by
the designers of fair exchange protocols, since it is essential for practical use.
In any state of the protocol, each participant should be able to terminate the
exchange unilaterally. If he has not been able to obtain the other’s signature,
he can always reach a terminal state where he may stop and be sure that the
opponent will not be able to obtain his signature, either.

Definition 16 A fair, optimistic protocol is timely for B if in every state on
an optimistic trace B has an A-silent strategy to reach a state S’ such that
rslv4(S") = 0 or rslvg(S") = 2. A protocol is timely if it is timely for both
signers.

To illustrate the importance of timeliness, consider a protocol that is not
timely, e.g., the Boyd-Foo protocol [9]. In this protocol, originator O releases
some information that can be used by responder R to obtain O’s signature
from T at some later point. If R stops communicating, O is at his mercy. He
may have to wait, possibly forever, before he learns whether the exchange has
been successful.

For the rest of this paper, we assume that the protocol is fair, timely, and
optimistic for both signers.

4 Impossibility of Balance in Optimistic Protocols

As explained in the introduction, optimistic contract signing protocols are only
valuable insofar as they offer benefit to an optimistic participant. We say that
the honest participant A is optimistic if, in any state where he is permitted

20

by the protocol specification to contact trusted third party 7', he waits for B’s
response before contacting 7.

For example, consider the Garay-Jakobsson-MacKenzie contract signing pro-
tocol [22]. The protocol starts with O sending his designated-verifier signature
to R, and R responding with his own designated-verifier signature. While the
protocol specification permits R to contact 1" immediately with a resolve re-
quest, in reality R is likely to be optimistic, i.e., he will prefer to resolve
the protocol amicably by normal exchange with O instead of resorting to T" as
soon as he has an opportunity to do so. Therefore, after sending his designated-
verifier signature to O in the second message of the protocol, R will wait for
O'’s response for a relatively long time before contacting 7T". Since O has the
ability to contact T" with an abort request while R is waiting, at this point in
the protocol O enjoys advantage against R.

As this example demonstrates, the propensity of the optimistic participant to
wait for the opponent’s response before contacting 7' can be exploited by the
opponent. Recall that definition 15 implies that an honest participant only
contacts T' after some timer times out. We use this to model optimism of A by
giving B the ability to schedule the timeout rules of A by an “out-of-band”
signal. In any implementation of the protocol, B does not actually schedule A’s
timers. This is simply a technical device to restrict the set of execution traces
under consideration to those that may occur when one of the participants is
optimistic.

Definition 14 can thus be extended to cases where A is optimistic by permitting
B’s strategy to include control over timeouts of both A and B. This leads us
to the following protocol property:

Definition 17 If B does not have a strategy for reaching a state S where
B has an advantage against an optimistic A, the protocol is balanced for an
optimistic A.

If a protocol is balanced, then the optimism of a signer cannot be exploited
by a dishonest counterparty. As we will now show, balance cannot be achieved
by any fair, timely, optimistic protocol. Before we plunge into the details of
the proof, it is worth giving an informal summary. We consider the protocol
from the viewpoint of the dishonest signer B. Timeliness requires that B
has an abort strategy available in the beginning of the protocol so that he can
terminate the protocol if A quits early. This strategy may involve B contacting
the trusted third party 7. As long as A continues the normal execution of the
protocol, he does not contact 7' (this follows from the fact that the protocol
is optimistic), which implies that the abort strategy remains available to B.
In order for signature exchange to be successful, at some point in the normal
execution of the protocol A must send a message to B that gives B the ability

21

to obtain A’s signature. This is precisely the point where B has both the
strategy to obtain A’s signature and the strategy to abort the exchange. The
main part of the proof is formally identifying this point, and proving that it
exists in any fair, timely, optimistic protocol

The first observation underlying our proofis that, in the interleaving semantics
of concurrency used by our model, the order of application of state transition
rules that affect independent parts of the system can be commuted. The second
observation is that the strategies available to the dishonest player are not
negatively affected by messages sent to him by the honest player or by the
honest player’s timeouts because the dishonest player is free to ignore both. We
start with an auxiliary proposition, which follows directly from definition 13.

Proposition 18 If rslv4(S) > 0, then there exists a trace from S to S’ such
that rslv A(S") = 2 and no transition in this trace is in B U Bipreat-

Proof: If rslv4(S) = 2, let S’ = S and the trace is empty. If rslv 4(S) = 1, pick
any path in the tree corresponding to A’s B-silent strategy for reaching S’ such
that rslv 4 (S') = 2. If rslv 4(S) = 3, follows immediately from the definition. O

Proposition 19 Let S — S’ be a state transition not in B U Binreat. If
rslvg(S) = 2, then rslvg(S') = 2. If rslva(S) = 0, then rslva(S') = 0.

Proof: If rslug(S) = 2 then, by definition of a strategy, in any state S’
obtained by a transition not under control of B, B must also have a strategy.

Suppose rslv4(S) = 0 and rslvs(S’) > 0. By proposition 18, there exists a
trace from S’ to S” such that rslv,(S”) = 2 and no transition in the trace
is in B U Bipreat- Prepending the S — S’ transition to the path, we obtain
a trace from S to S” such that rslv4(S") = 2 and no transition on the trace
is in BUBypreat. Therefore, rslv 4(S) > %, which contradicts our assumption. O

Proposition 19 implies that if S — S’ is a transition in an optimistic trace
such that rslv4(S) = 0 and rslv4(S’) > 0, then it must be in B U Bipreat-
Similarly, if rslvg(S) = 0 and rslog(S') > 0, then S — S" is in A U Atpreat-
Intuitively, a player acquires some degree of control over the outcome of the
protocol for the first time only because of the other player’s move.

Since a timeout does not affect possession and a (potentially) dishonest A
can always ignore the state of timers, the following proposition holds. (The
proof has been omitted for space considerations, and is available at the ftp-site
ftp://ftp.cis.upenn.edu/pub/papers/scedrov/cmss_optimjlap.pdf.)

Proposition 20 Suppose S’ is obtained from S by a rule from Agtimeouts-

22

Then rslvo(S") = rslva(S).

Just like we defined ctrs) to be the tree obtained from ctr by removing all
edges in A U Agpreat, We define ctriaqy to be the tree obtained from ctr by
removing all edges in A U A¢preat U Atimeouts- If £ is a selection of edges
in ctri4q) under B’s control, then ctrja4\E is a strategy available to B if
A remains silent and no timers time out. We will call such a strategy weak
A-silent strategy.

Proposition 21 Let S — S’ be a state transition in Atimeouts- B has a weak
A-silent abort [resolve] strategy at S" if and only if B has a weak A-silent abort
[resolve] strategy at S.

Proof: The proof depends on the observation that the actions of B and T are
independent of timeouts of A, and the fact that a timeout of A does not change
rslv 4. Hence a weak A-silent abort [resolve| strategy at S can be mimicked at
S’ and vice-versa.

(=) We show that if B has a weak A-silent abort [resolve| strategy at S, then
it also has a weak A-silent abort [resolve] strategy at S’ by induction on the
height of continuation tree at S.

Base case: The height of the continuation tree at S is 0. Then there are no
states reachable from S and the proposition is vacuously true.

Induction hypothesis: Suppose the proposition is true for all reachable states
S such that the height of the continuation tree at S is < n.

Induction step: Now consider a reachable state S such that (1) the continuation
tree at S has height n+1, and (2) B has a weak A-silent abort [resolve] strategy
at S. Fix the weak A-silent abort [resolve] strategy at S. Let S’ be the state
obtained from S using a state transition in At¢jmeouts- WWe have to show that
B has a weak A-silent strategy at S’. Call the continuation tree at S" ctr'.

Consider the edges in ctr’ coming out of the root. Remove all edges that are
transitions in A UAimeouts- FFach of the remaining edges, if any, is a transition
in B U Biimeouts U T. It is easy to see that any such transition can also be
applied at S. For each remaining edge e do the following:

Let S” be the state obtained as a result of e. If a corresponding transition is
not present in the weak A-silent abort [resolve] strategy at S, then remove this
edge along with all of its descendants. If the transition is present in the weak
A-silent abort [resolve] strategy, then let S; be the state obtained by applying
this transition to S. We obtain that

(i) the height of the continuation tree at S; is < n,

(ii) B has a weak A-silent abort [resolve] strategy at Sy,

23

(iii) S” can be obtained from S; by a transition in Atimeouts-

By applying the induction hypothesis to S;, we conclude that B has a weak
A-silent abort [resolve| strategy at S”. Replace the continuation tree at S” by
this strategy. These operations produce a weak A-silent strategy for B at S'.
There are two cases:

Case 1: The height of this strategy is 0. It follows from construction that the
height of the weak A-silent abort [resolve] strategy at S is also 0. Therefore,
rslv4(S) = 0 [rslv4(S) = 1]. By proposition 20, 7slv4(S") = 0 [rslva(S') = 1].

Case 2: The height of this strategy is > 0. By construction, all leaf nodes are
labeled by states S such that rslv4(S") = 0 [rslv(S") = 1]. Therefore, B
has a weak A-silent abort strategy at S’. This completes the induction.

(<) Suppose B has a weak A-silent abort [resolve] strategy at S’. We prove
by induction on the height of the continuation tree at S that B also has a
weak A-silent abort strategy at S.

Base case: The height of the continuation tree at S is 0. Then there are no
states reachable from S and the proposition is vacuously true.

Induction hypothesis: Suppose the lemma is true for all reachable states S
such that the height of the continuation tree at S is < n.

Induction step: Consider a reachable state S such that (1) the continuation tree
at S has height n+ 1, (2) S’ is obtained from S by a transition in Atimeouts
and (3) B has a weak A-silent abort [resolve] strategy at S’. Fix the weak
A-silent abort [resolve] strategy at S’. Let ctr be the continuation tree at S.

Consider the edges in ctr coming out of the root. Remove all edges that are
labeled by transitions in A U Agimeouts along with their descendants. Each
remaining edge, if any, is a transition in B U Bjmeouts U T It is easy to see
that any such transition can also be applied at S’. For each remaining edge ¢
do the following:

Let S; be the state obtained as a result of e. If a corresponding transition is
not present in the weak A-silent abort [resolve] strategy at S’, then remove
this edge along with all descendants. If a corresponding transition is present
in the weak A-silent abort [resolve] strategy, then let S” be the state obtained
by applying this transition to S’. We obtain that

(i) the height of the continuation tree at Sy is < n,

(ii) S” can be obtained from S; by a transition in Atimeoutss

(iii) B has a weak A-silent abort [resolve| strategy at S”.

By applying the induction hypothesis to S;, we conclude that B has a weak

24

A-silent abort [resolve] strategy at S;. Replace the continuation tree at S; by
this strategy. These operations produce a weak A-silent strategy for B at S.
There are two cases:

Case 1: The height of this strategy is 0. It follows from the construction
that the height of the weak A-silent abort [resolve| strategy at S’ is also 0.
Therefore, rslv(S") = 0 [rslva(S") = 1]. By proposition 20, rslva(S) = 0
[rslva(S) = 1].

Case 2: The height of this strategy is > 0. By construction, all leaf nodes are
labeled by states Sy such that rslv 4 (Ss) = 0 [rslva(Ss) = 1]. Therefore, B has
a weak A-silent abort [resolve] strategy at S. This completes the induction. O

We now establish that the strategies available to the dishonest player are not
negatively affected by the honest player’s timeouts.

Proposition 22 B has an A-silent abort [resolve] strategy at S if and only if
B has a weak A-silent abort [resolve] strategy at S.

Proof: By proposition 21, a timeout of A does not affect the existence of
a weak A-silent abort strategy. We use this fact to construct A-silent abort
[resolve] strategies from weak A-silent [resolve] strategies by induction on the
height of continuation trees. Similarly, we construct weak A-silent abort [re-
solve] strategies from A-silent abort [resolve| strategies by induction.

(=) We start by proving that if B has an A-silent strategy, then B has a weak
A-silent strategy. The proof is by induction over the height of the continuation
tree at S.

Base case: The height of the continuation tree at S is 0. Therefore, no state
can be obtained from S. The proposition is vacuously true.

Induction hypothesis: Suppose the proposition is true for any state S such that
the height of the continuation tree at S is < n.

Induction step: Consider state S such that (1) the continuation tree at S
has height n + 1, and (2) B has an A-silent strategy at S. Let ctr be the
continuation tree at S (with all transitions in A U Ag¢preat removed). Fix the
A-silent strategy ctr\FE at S and consider the edges coming out of its root.
There are two cases:

Case 1: There is an edge labeled by a transition in A tjmeouts l€ading to state S’.
Then, by definition of the A-silent strategy, B must have an A-silent strategy
at S’. By the induction hypothesis, B also has a weak A-silent strategy at S'.
By proposition 21, B has a weak A-silent strategy at S'.

25

Case 2: No edges are labeled by a transition in Ag¢jmeouts- 1 hen remove all
edges of ctr originating from the root that are not present in ctr\ E. Call this
tree ctr'. If no edges remain, then rslv4(S) = 0 [rslvg(S) = 2] and we are
done. If there are some remaining edges, then for every child of the root in
ctr' tree, B must have an A-silent strategy. Hence if S’ is a child of the root
in S’, then we can use the induction hypothesis to replace the continuation
trees at S’ by a weak A-silent strategy.

(<) We now show that if B has a weak A-silent strategy, then B has an
A-silent strategy. The proof is by induction on the height of the continuation
tree at S.

Base case: The height of the continuation tree at S is 0. Therefore, no state
can be obtained from S. The proposition is vacuously true.

Induction hypothesis: Suppose the proposition is true for any state S such that
the height of continuation tree at S is < n.

Induction step: Now consider state S such that (1) the continuation tree at
S has height n + 1, and (2) B has a weak A-silent strategy at S. Let ctr
be the continuation tree at S. Fix the weak A-silent abort strategy ctr\E at
S and consider the edges coming out of its root. Remove all edges that are
transitions in A U Agpreat along with their descendants. For each remaining
edge e, perform the following operations:

Case 1: If e is a transition in T leading to state S’, then the strategy ctr\FE
must also contain this transition. Hence B has a weak A-silent strategy at
S’. By the induction hypothesis, B has a A-silent strategy at S’. Replace the
continuation tree at S’ by this strategy.

Case 2: If e is a transition in B U Byimeouts leading to state S’, then, as in
case 1, if this edge is part of the strategy at S, replace the continuation tree
at S’ by an A-silent strategy. If e is not part of the strategy, then remove this
edge along with its descendants.

Case 3: If e is a transition in Ajjmeouts resulting in state S’, then, by propo-
sition 21, B has a weak A-silent strategy at S. By the induction hypothesis,
replace the continuation tree at S’ by an A-silent strategy.

These operations produce an A-silent strategy for B at S’. There are two
possibilities:

Case A: The height of this strategy is 0. It follows from the construction that

the height of the weak A-silent strategy at S is also 0. Hence rslva(S) = 0
[rslvp(S) = 2| and we are done.

26

Case B: The height of this strategy is > 0. Then, by construction, all leaf
nodes are labeled by states S” such that rslv 4 (S") = 0 [rslvg(S") = 2].

Therefore, by induction, B has an A-silent abort [resolve| strategy at S. O

We now show that the strategies available to dishonest players are not nega-
tively affected by the honest player’s messages to the dishonest player.

Lemma 23 Let S — S’ be a transition in A U Aipreat- If B has an A-silent
abort [resolve] strategy in S, and A does not send a message toT in the S — S’
transition, then B has an A-silent abort [resolve] strategy in S'.

Proof: We rely on the observation that state transition rules affecting inde-
pendent, parts of the system may be commuted. Intuitively, moves of B and
T are independent of A’s internal state. Therefore, as long as A does not send
any messages to 7', B may ignore any message sent to him by A and follow
the same strategy in S” as in S. In light of proposition 22, all we need to show
is that B has a weak A-silent abort [resolve| strategy at S’ if B has a weak
A-silent abort [resolve| strategy at S. We prove this by induction on the height
of the continuation tree at S.

Base case: The height of the continuation tree at S is 0. The lemma is vacu-
ously true.

Induction hypothesis: Suppose the lemma is true for all states S such that the
height of the continuation tree at S is < n.

Induction step: Consider state S such that (i) the height of the continuation
tree at S'is n+ 1, and (ii) B has a weak A-silent abort [resolve] strategy at S.

Consider the continuation tree at S’, and remove all edges that are in A U
Aihreat U Agimeouts along with their descendants. For each remaining edge e
from S’ to some state S”, let ¢ be the state transition rule labeling e and
consider the following cases:

Case 1: t € T. Since no message is sent to 7" in the S — S’ transition, ¢ can
be applied at S as well, resulting in some state S. Observe that

(i) the height of the continuation tree at S is < n,

(ii) B has a weak A-silent strategy at S,

(iii) S” can be obtained from S by the same transition that labels S — S'.
All that is needed is to commute S — S’ and S’ — S” transitions.

By the induction hypothesis, B has a weak A-silent strategy at S”. Replace
the continuation tree at S” by this strategy.

27

Case 2: t € BU Bgpreat- There are three possibilities:

(2.1) t cannot be applied at S. Remove edge e along with its descendants.
(2.2) t can be applied at S, but it is not a part of the A-silent strategy at S.
Remove edge e along with its descendants.

(2.3) t can be applied at S, and it is a part of the A-silent strategy at S. Then,
as in Case 1, replace the continuation tree at S” by this strategy.

Case 3: t € Biimeouts- If T is not a part of the A-silent strategy at S, remove
edge e along with its descendants. If it is a part of the A-silent strategy, replace
the continuation tree at S” by this strategy.

By constructing the right continuation tree for any immediate descendant of
S’, we have constructed a weak A-silent strategy at S’. It remains to show
that it is indeed an abort [resolve] strategy. There are two possibilities:

Case A: The height of the constructed strategy is 0. From the construction, it
follows that the height of the weak A-silent abort [resolve] strategy at S is also
0. Therefore, rslva(S) = 0 [rslvp(S) = 2|. By proposition 19, rslv4(S’) = 0
[rslvp(S") = 2].

Case B: The height of the constructed strategy is > 0. By construction, all
leaf nodes are labeled by states S* such that rslv4(S*) = 0 [rslvp(S*) = 2].

We conclude that B has a weak A-silent abort [resolve] strategy at S’, which
completes the induction. O

We now use lemma 23 to show that for each strategy conditional on A remain-
ing silent, there is an equivalent unconditional strategy against an optimistic
A. The reason is that an optimistic A prefers to wait for B’s messages instead
of trying to contact T'. Therefore, B may ignore optimistic A’s messages and
proceed with the A-silent strategy, obtaining the desired protocol outcome.

Lemma 24 Let S be a reachable state that does not contain Z(k,, timed_out)
for any timer predicate Z. If B has an A-silent abort [resolve] strategy in state
S, then B has an abort [resolve] strategy against optimistic A in S.

Proof: Since B has an A-silent abort [resolve] strategy at S, B has a weak
A-silent abort [resolve] strategy at S by proposition 22. By lemma 23, if A
does not send a message to 7" in a transition from S, then B will still have the
weak A-silent abort [resolve] strategy in the resulting state. B can prevent an
optimistic A from contacting 7" by controlling A’s timeouts. Using these facts,
we show that B has an abort [resolve] strategy against an optimistic A which
works by ignoring messages from A and preventing A from contacting 7.

In particular, we show that if S is a reachable state such that (i) S does not

28

contain Z(k,, timed_out) for any timer predicate 7, and (ii) B has a weak
A-silent abort [resolve] strategy against an optimistic A, then B also has an
abort strategy against an optimistic A. The proof is by induction on the height
of the continuation tree at S.

Base case: The height of the tree is 0. By definition, the continuation tree ctr
is simply the root labeled by S. The only possible weak A-silent strategy for
B is ctr which is also a strategy against an optimistic A.

Induction hypothesis: Suppose the lemma is true for all states S such that the
height of the continuation tree at S is < n.

Induction step: Consider state S such that (i) B has a weak A-silent abort
[resolve] strategy at S, (ii) S does not contain any Z(k,, timed_out) for any
timer predicate 7, and (iii) the height of the continuation tree at S is n+1. Fix
the weak A-silent strategy, and let ctr be the continuation tree at S. Consider
the edges in ctr coming out of the root. Because A is optimistic, there are no
edges labeled by transitions in Atpreat- For each edge e, perform the following
operations:

Case 1: Edge e is a transition in A. Since S does not contain any timer predi-
cate Z(k,, timed_out) and the protocol is optimistic for A, A does not send any
messages to T in this transition. If the resulting state is S’, then by lemma 23
and proposition 21, B has a weak A-silent abort [resolve] strategy at S’. Since
the height of continuation tree at S’ is < n, B also has a abort [resolve]
strategy against optimistic B at S’ by the induction hypothesis. Replace the
continuation tree at S’ by this strategy.

Case 2: Edge e is a transition in BUTUB¢imeouts U Atimeouts- Let the resulting
state be S’. There are two possibilities:

(2.1) This transition is not in the weak A-silent strategy at S. Then edge e
must be labeled by a transition in B U Btjmeouts U Atimeouts- | herefore, B
controls this edge when playing against an optimistic A. Remove this edge
along with its descendants.

(2.2) This transition is in the weak A-silent strategy at S. Then B also has
a weak A-silent strategy at S’. By definition of weak A-silent strategies, e
cannot be labeled by a transition in A¢jmeouts- 1 herefore, S’ does not contain
7 (kq, timed_out). Since the height of the continuation tree at S’ is < n, the
induction hypothesis applies, and we conclude that B has a strategy at S’
Replace the continuation tree at S’ by this strategy.

These operations produce a strategy for B at S against an optimistic A. There
are two cases:

Case A: The height of this strategy is 0. It follows from the construction that
the height of the weak A-silent strategy at S is also 0. Therefore, rslv4(S) = 0

29

[rslvp(S) = 2| and this strategy is an abort [resolve] strategy.

Case B: The height of this strategy is > 0. By construction, all leaf nodes are
labeled by states S” such that rslv(S") = 0 [rslvp(S") = 2]. Therefore, the
strategy is an abort [resolve] strategy.

We conclude that B has an abort [resolve] strategy against an optimistic A.
O

To show our main impossibility result, we need one more proposition.

Proposition 25 Consider an optimistic protocol with initial state Sy. Let tr
be an trace in which A is optimistic such that

(1) the leaf node is labeled by state S’ in which B possesses A’s signature,
(2) each edge in tr is labeled by a transition in A UB.

Then there is a non-initial state S* in tr in which B has an A-silent abort
strategy against A.

Proof: We have rslvg(Sy) = 0 and rslvg(S’) = 2. Consider the first transition
S — S* on tr such that rslvg(S) = 0, rslvg(S*) > 0. Proposition 19 implies
that this must be a transition in A U Aipreat-

By definition 16, B has an A-silent strategy at S to reach a state S” such
that rslva(S") = 0 or rslvg(S") = 2. Since rslvg(S) = 0, it must be the case
that rslva(S") = 0, thus B has an A-silent abort strategy at S. The protocol
is optimistic for A, ¢r starts in the initial state Sy and no timeouts occur on
tr. Hence A does not send any messages to T in the transition from S to S*.
Hence, by lemma 23, B also has an A-silent abort strategy in S*. O

We are now ready to prove our main impossibility result: in any optimistic,
fair, timely protocol (potentially dishonest) B has a strategy to reach a state
where B enjoys an advantage against an optimistic A.

Theorem 26 (Impossibility of Balance) In a fair, optimistic, timely pro-
tocol between signers A and B, if A is optimistic, then B has a strategy for
reaching a non-initial state S* such that B has an advantage against A at S*.

Proof: Recall that if the protocol is optimistic, then B has an honest strategy
at Sy against an optimistic A such that:

(1) each leaf node in the strategy is labeled by a state in which B possesses
A’s signature, and

(2) all transitions in the strategy are in A U B.

As a consequence of proposition 25, every trace in this strategy contains a

30

non-initial state in which B has an A-silent abort strategy. Hence, in order to
reach the state in which he has advantage, B follows this strategy until it hits
the state in which he has an A-silent abort strategy. Then B lets A continue
the optimistic strategy until all optimistic actions of A are exhausted, reaching
some state S*. Since no timeouts happen, A does not send any messages to
T and, by repeated application of lemma 23, B still has the A-silent abort
strategy in S*. By lemma 24, B has an abort strategy against optimistic A
in §*. Since S* is a state in B’s optimistic strategy, B also has a resolve
strategy against an optimistic A in S*. Therefore, B has an advantage against
optimistic A in S*.

More precisely, assuming A and B are honest, let ctr be the continuation
tree at the initial state So. By definition of the optimistic protocol, there is a
selection of edges F in B U A¢imeouts U Btimeouts Such that in ctr\E

(1) each leaf node is labeled by a state in which B possesses A’s signature,
and (2) all transitions are in A U B.

Observe that no timeouts happen in the entire ctr\F tree. This implies that
Z(kq, timed_out) does not occur in any state, and A does not send any mes-
sages to 1" in any transition.

By proposition 25, for each trace in ctr\F there is a non-initial state S’ such
that B has an A-silent abort strategy. For any trace, pick the first node (count-
ing from the root) labeled by such a state, and let A be the collection of all
such nodes. By construction, every trace in ctr\E passes through some node
N in N. Moreover, two nodes from N may not occur in the same trace.

For each node N in N, consider the subtree of ctr\E rooted at N. In this
subtree, remove edges labeled by B along with their descendants. Observe that
in this new subtree (which is still a part of ctr\FE), all edges are labeled by
transitions in A, and A does not send any messages to T in these transitions.
Since N itself is labeled by a state in which B has an A-silent abort strategy,
by repeated application of lemma 23 we obtain that B has an A-silent abort
strategy in each leaf node of this subtree.

After performing this operation for each node N in N, we obtain a strategy
for B against an optimistic A. The reason for this is that E was a selection of
edges in B UBtimeouts U Atimeouts and the edges removed by our construction
are in B. By construction, this new strategy is a subtree of ctr\FE. We now
prove that this is the strategy required by the statement of the theorem.

Consider any leaf node S* of this strategy. By construction, the trace from S
to this node passes through some N in N. Therefore, B has an A-silent abort
strategy in S*. Since this node is also present in ctr\FE, Z(k,, timed_out) does
not occur in S*. By lemma 24, B has an abort strategy against optimistic A
at S*. Moreover, since S* is reached a part of the ctr\E strategy, B also has

31

a strategy to obtain optimistic A’s signature at S*. 0O

We emphasize that Theorem 26 applies equally to initiator and responder.
An optimistic participant is at a disadvantage regardless of the role he plays
in the protocol. For example, in the Garay-Jakobsson-MacKenzie abuse-free
contract signing protocol [22], the originator enjoys an advantage against the
responder, even though the responder is the first to receive information that
potentially enables him to obtain the originator’s signature. More generally,
on optimistic player is at a disadvantage against a malicious player, regardless
of whether the optimistic player is the originator or responder in the protocol.

5 Examples

In this section, we illustrate how our main impossibility theorem applies to
three optimistic contract signing protocols proposed in the literature. For each
protocol, we identify the point at which a dishonest participant has advantage
over an optimistic counterparty. The protocols we consider are the off-line fair
payment protocol of Boyd and Foo [9], the optimistic signature exchange pro-
tocol of Asokan, Shoup, and Waidner [4] (not to be confused with the protocol
of [3]), and the abuse-free contract signing protocol of Garay, Jakobsson, and
MacKenzie [22]. We discuss the common structure shared by all of these pro-
tocols, and informally suggest how advantage enjoyed by each of the protocol
participants decreases as message exchange progresses.

5.1 Verifiable convertible signature commitments

Fixed-round optimistic signature exchange protocols in the literature usually
employ various implementations of verifiable, convertible signature commit-
ments. Informally, a signature commitment is a cryptographic construction
that can be used by a signer to convince his counterparty (aka designated ver-
ifier [28]) that the signer has computed the requested signature without releas-
ing the signature itself. The recipient can verify the commitment, but cannot
convert it into a conventional, universally verifiable signature. The creator of
a signature commitment identifies the trusted third party as the designated
converter [11]. Computational properties of verifiable signature commitment
are such that nobody other than the designated verifier or the designated
converter will be convinced of its creator’s identity if shown the commitment.

A signature commitment may converted into a universally verifiable signature
by the designated converter. Typically, a third party trusted by both sign-

32

ers is chosen as the designated converter. The trusted third party is invoked
optimistically, only if one of the parties misbehaves or if there is a communi-
cation failure. The trusted third party then uses commitments exchanged by
the signers to resolve the protocol fairly.

Let vesca(m, B, T) abstractly denote the cryptographic primitive implement-
ing verifiable convertible signature commitment. [ts properties are as follows:
(a) vesea(m, B, T) can be created only by A;

(b) vesca(m, B, T) can be verified by B, but cannot be used as a proof of A’s
intentions. In the case of [4,9,22], this is true because vcsc is a zero-knowledge
proof which can be simulated by B;

(c) wvesca(m, B, T) can be converted into a universally verifiable signature
sig4(m) by T.

In the definition above, simulation is used in the cryptographic sense (see any
standard reference on foundations of cryptography such as [24]). Very infor-
mally, B can compute a proof which is indistinguishable by any probabilistic
polynomial-time algorithm from the signature commitment sent by A. There-
fore, B cannot use A’s commitment in lieu of A’s signature, because no third
party can determine whether it was computed by A or simulated by B. The
only exception is the designated converter T', who can convert A’s commitment
into an actual signature.

5.2 Generic optimistic contract signing protocol

All of the optimistic protocols we used as illustrations follow the same basic
logic, modulo minor variations and optimizations. Let us call the two signers O
(originator) and R (responder), and the trusted third party 7. There are three
subprotocols, which we will call exchange, abort, and resolve. In the protocol
description, when a participant A sends a message msg intended for B, it
will be abbreviated as A — B: msg. We use pd: protocollnstance to uniquely
identify a protocol instance.

Exchange subprotocol: The parties first exchange signature commitments
with 7" as the designated converter, and then actual signatures. This repre-
sents the optimistic flow of the protocol. If nothing goes wrong, it results in a
successful exchange of signatures without 7’s involvement.

O—R me; = vesco(pd, R, T)
O+ R mey = veser(pd, O,T)
O—R mes = Sigy(pd)
O+ R mey = sigp(pd)

33

Abort subprotocol: If O does not receive mes in response to his first mes-
sage, he has the option to time out and contact 7" with a request not to resolve
the current instance of the protocol in the future. When T receives this abort
request, it checks its permanent database of past actions. If T" has not pre-
viously been requested to resolve this instance of the protocol, 7" marks the
instance as aborted in the database and sends an abort token to O. If the
instance is already marked as resolved, this means that 7" has previously re-
solved this exchange in response to an earlier request (as described below). T'
must have obtained both sig,(pd) and sig,(pd). The latter is then released
to O. The exact formats of the abort request and the abort tokens depend on
the protocol. While R is usually not allowed to abort, he is allowed to time
out and quit if he does not receive me;.

O—T may = sig(abort, mey)

O«T may, = Has me; been resolved already?
Yes : sigp(pd)
No : sigp(abort, mey)

aborted|me;] := true

Resolve subprotocol: If O sends his signature to R in mes, but does not
receive R’s signature in return, he can appeal to T using R’s signature com-
mitment received in mey. T will convert R’s commitment into a universally
verifiable signature. Similarly, if R releases his commitment to O in mesy, but
does not receive (J’s signature in return, he can ask 7" to convert (O’s com-
mitment received in me; into a universally verifiable signature. As part of the
resolve request, the requester must release his own signature to 7" or send his
designated converter signature to T'. The exact format of the resolve request
depends on the protocol.

R(O) =T mry = veseo(pd, R, T), vesegr(pd, O, T)
R(O)« T mry = Has me; been aborted already?
Yes : sigy(abort, mey)

No : Convert vesco(pd, R, T), vescg(pd, R, T)

intO S/L..C]O (pd) 3 SZQR (pd)

resolved[me;] := true

34

5.3 Advantage in Asokan-Shoup-Waidner protocol

The Asokan-Shoup-Waidner optimistic protocol [4] follows the pattern of the
generic protocol described in section 5.2 with one additional message flow.
Prior to the main exchange subprotocol, R reduces his signature to a homo-
morphic pre-image (hpi) which can be verified in the same way signature is,
but at the same time preserves secrecy of the signature on which it is based
(see [4] for details). Also, for optimization, me; contains ordinary escrow of
sigo(pd) instead of a verifiable commitment. Ordinary escrow OrdEsco(pd, T')
can be converted into sig,(pd) by T, but R cannot verify this independently
of T'. R’s response contains a verifiable, convertible signature commitment in
the sense of section 5.1, implemented as a verifiable escrow VerEscg(pd,T).
O can verify independently of T that the escrow indeed contains sigz(pd) and
T will be able to convert it into sigp(pd) if necessary. The following picture
illustrates how advantage of each party decreases as message exchange in the
exchange subprotocol progresses.

O R

hpi(sig p(pd))

Advantage against

OrdEsco(pd, T) optimistic O

Advantage against VerEscr(pd, T)
-—
optimistic R
5190 (pd)
No advantage

No advantage 519 p(pd)

Even though O has sent OrdEsco(pd,T) in his first message, O still has an
advantage against an optimistic R until he sends out sigo(pd). This is because
O can abort by contacting 7" and ignoring all messages from R. An optimistic
R will prefer to wait for O’s response rather than contact 7" with a resolve re-
quest. If O wants to complete the exchange, he simply continues the exchange
subprotocol. The advantage flow of R can be similarly reasoned out.

5.4 Advantage in Garay-Jakobsson-MacKenzie protocol

The abuse-free contract signing protocol of Garay, Jakobsson, and MacKenzie
protocol [22] is very similar to the Asokan-Shoup-Waidner protocol. The only
essential difference between the two protocols is in the details of cryptographic
implementation, and is thus not reflected in our abstract model. In the ASW

35

protocol, verifiable convertible signature commitments are implemented via
verifiable escrows, which are constructed as interactive zero-knowledge proofs
of commitment to a signature. This means that B may be able to convince
some outside party C' that A is participating in the protocol as long as C' is
online and can observe the interaction between A and B.

By contrast, the GJM protocol uses private contract signatures (PCS), which
are non-interactive signature commitments. Therefore, B cannot prove to C'
that A is participating in the protocol. This property is known as abuse-
freeness. Even though a dishonest participant has advantage over an optimistic
counterparty in the GJM protocol, exploiting the advantage is more difficult
(e.g., a dishonest auctioneer cannot reveal an optimistic buyer’s bid to another
potential buyer).

O R

PCSo(pd, R,T) Advantage against
- optimistic O
Advantage against PCSg(pd,0,T)
optimistic R -~
519 (pd)
No advantage

No advantage sig p(pd)

5.5 Advantage in Boyd-Foo protocol

We now discuss a protocol derived from the Boyd-Foo protocol [9]. The pro-
tocol uses the Gennaro-Krawczyk-Rabin (GKR) scheme [23] for designated-
converter signatures. A designated-verifier extension of the scheme is also dis-
cussed in [23]. We will denote the designated-verifier, designated-converter
signature from O intended for R with converter T as S(pd, k,, k., k;). This can
be thought of as a realization of the vcse primitive discussed in section 5.1.

This protocol differs from the generic protocol in that only three messages are
used in the exchange protocol. The exchange protocol starts with O sending
S(pd, ko, kr, k) to R, who verifies (via an interactive zero-knowledge proof)
that it was indeed generated by O. R then sends back sigp(pd) to O. Finally,
O sends sigo(pd) to R. Hence, the exchange subprotocol is:

O—R me, = S(pd, ko, k,, ky)
R— O mey = sigr(pd)
O— R mes = sigo(pd)

36

There is no abort subprotocol, and only R can ask 7" to resolve after he has
sent sigr(pd). He does this by sending sigr ((S(pd, ko, kv, ki), sigr(pd))). T can
then convert S(pd, k,, k., k;) into a universally verifiable signature sigo(pd).
The resolve subprotocol for R is:

R—T mry = sigr((S(pd, ko, ky, ki), sig.(pd)))
T — R mry = sigo(pd)
T— 0 mrs = sigr(pd)

The protocol can be shown to be fair but not timely for O. If R does not
respond to meq, then O is left hanging. For the same reason, the protocol is
not balanced for honest O (nor hence for optimistic O, too). To abort, R never
responds to me;. To complete the exchange, R contacts T. Once R sends mry,
nobody has an advantage. The following picture describes the advantage flow
in this protocol:

O R

Advantage against

optimistic R me, Advantage against
- — — - —— — — 4 honest O
mes
-— === =

No advantage

No advantage
meso

Note that in this protocol, only one signer enjoys an advantage against an
optimistic opponent. This demonstrates that timeliness is essential in the proof
of the impossibility theorem 26.

6 Related work

Previous game-theoretic approaches to the study of fair exchange [14,26,27]
focused on formalizing fairness for the strongest possible honest player without
taking optimism into account. In [26], fairness is formalized as the existence
of a defense strategy for the honest player, which is not sufficient if the honest
player faces nondeterministic choices in the protocol, as is the case in the pro-
tocol of Garay et al. [22]. Another game-theoretic model was developed in [10],
but it focuses mainly on economic equilibria in fair exchange. Cryptographic
proofs of correctness by protocol designers [2,4,22] focus on basic fairness and
ignore the issues of optimism and fundamental asymmetry of communication
between the signers and the trusted third party.

37

7 Conclusions and Further Work

We have studied contract signing protocols in a game-theoretic model, giv-
ing precise, formal definitions of properties such as fairness and timeliness.
We characterized optimism of honest protocol participants using a form of
out-of-band signal that forces the optimistic player to wait for the opponent.
While the out-of-band signal does not correspond to any realistic mechanism
in distributed computation, it accurately reduces the set of protocol traces to
those where the optimistic player waits for the opponent instead of contacting
the trusted third party.

Our main result is that in any fair, optimistic, timely protocol, an optimistic
player yields an advantage to his opponent. This means that the opponent has
both a strategy to complete the signature exchange and a strategy to keep the
players from obtaining each other’s signatures. Since the protocol is fair, the
outcome for both players is the same, but the player with an advantage can
choose what this outcome is. This holds regardless of whether the optimistic
player is the first or second mover.

Since advantage cannot be eliminated, it appears that the best a protocol can
do to protect optimistic participants is prevent an opponent from proving to
any outside party that he has reached a position of advantage. This property
is identified in literature [22] as abuse-freeness. We are currently investigating
the formalization of abuse-freeness. Another direction for further investigation
involves the notion of trusted third party accountability. The relationship be-
tween our definitions and the cryptographic definitions of fairness [4] may also
merit further study. Finally, we believe that our techniques may prove useful
for investigating multi-party contract signing protocols.

References

[1] M. Abadi and A. Gordon. A calculus for cryptographic protocols: the spi-
calculus. Information and Computation, 143:1 70, 1999.

[2] N. Asokan, M. Schunter, and M. Waidner. Optimistic protocols for fair
exchange. In Proc. Jth ACM Conf. on Computer and Communications Security,
pages 7-17, 1997.

[3] N. Asokan, V. Shoup, and M. Waidner, Asynchronous protocols for optimistic
fair exchange, IEEE Symposium on Security and Privacy, 1998, pp. 86—99.

[4] N. Asokan, V. Shoup, and M. Waidner. Optimistic fair exchange of digital
signatures. IEEE Journal on Selected Areas in Communications, 18(4):593—
610, 2000.

38

[5] J. Banatre and D. Le Metayer. Computing by multiset transformation.
Communications of the ACM (CACM), 36(1):98 111, 1993.

[6] M. Ben-Or, O. Goldreich, S. Micali, and R. L. Rivest. A fair protocol for signing
contracts. IEEE Transactions on Information Theory, 36(1):40 46, 1990.

[7] G. Berry and D. Boudol. The chemical abstract machine. Theoretical Computer
Science, 96(1):217-248, 1992.

[8] D. Boneh and M. Naor. Timed commitments and applications. In Proc.
CRYPTO 00, pages 236-254, 2000.

9] C. Boyd and E. Foo. Off-line fair payment protocols using convertible
signatures. In Proc. ASTACRYPT 98, pages 271 285, 1998.

[10] L. Buttyan and J.-P. Hubaux. Toward a formal model of fair exchange — a game
theoretic approach. Technical Report SSC/1999/39, Swiss Federal Institute of
Technology (EPFL), Lausanne, Switzerland, December 1999.

[11] J. Boyar, D. Chaum, and I. B. Damgard, Convertible undeniable signatures,
Advances in Cryptology - Proceedings of CRYPTO ’90, 1990, pp. 189-205.

[12] I. Cervesato, N.A. Durgin, P. D. Lincoln, J. C. Mitchell, and A. Scedrov. A
meta-notation for protocol analysis. In Proc. 12th IEEE Computer Security
Foundations Workshop, pages 55-69, 1999.

[13] I. Cervesato, N.A. Durgin, P. D. Lincoln, J. C. Mitchell, and A. Scedrov. A
revisited comparison between strand spaces and multiset rewriting for security
protocol analysis. Journal of Computer Security, 2004. To Appear. Extended
abstract in ”Software Security — Theories and Systems. Mext-NSF-JSPS
International Symposium, ISSS 2002, Tokyo, Japan, 2002, Revised Papers.
Springer LNCS Volume 2609, Springer-Verlag, 2003, pages 356 383”.

[14] R. Chadha, M. Kanovich, and A. Scedrov. Inductive methods and contract
signing protocols. In Proc. 8th ACM Conf. on Computer and Communications
Security, pages 176-185, 2001.

[15] I. B. Damgard. Practical and provably secure release of a secret and exchange
of signatures. J. Cryptology, 8(4):201-222, 1995.

[16] N. Durgin and J. Mitchell. Analysis of security protocols. In Calculational
System Design, Series F: Computer and Systems Sciences, Vol. 175. 10S Press,
1999.

[17] D. Dolev and A. Yao. On the security of public-key protocols. In Proc. 22nd
Annual IEEE Symposium on Foundations of Computer Science, pages 350-357,
1981.

[18] S. Even and Y. Yacobi. Relations among public key signature schemes.
Technical Report 175, Computer Science Dept. Technion, Israel, March 1980.

[19] F.J. Thayer Fébrega, J. Herzog, and J. Guttman. Strand spaces: Why is a
security protocol correct? In Proc. IEEE Symposium on Security and Privacy,
pages 160 171, 1998.

39

[20] R. Fagin, J. Halpern, Y. Moses, and M. Vardi. Reasoning about Knowledge.
MIT Press, 1995.

[21] M. Fischer, N. Lynch, and M. Patterson. Impossibility of distributed consensus
with one faulty process. JACM, 32(2):374-382, 1985.

[22] J. Garay, M. Jakobsson, and P. MacKenzie. Abuse-free optimistic contract
signing. In Proc. CRYPTO ’99, pages 449-466, 1999.

[23] R. Gennaro, T. Rabin, and H. Krawczyk. RSA-based undeniable signatures,
Journal of Cryptology 13 (2000), no. 4, 397 416.

[24] O. Goldreich. Foundations of Cryptography: Basic Tools. Cambridge University
Press, 2001.

[25] J. Hintikka. Knowledge and Belief. Cornell University Press, 1962.

[26] S. Kremer and J.-F. Raskin. A game-based verification of non-repudiation and
fair exchange protocols. In Proc. CONCUR 01, pages 551-565, 2001.

[27] S. Kremer and J.-F. Raskin. Game analysis of abuse-free contract signing. In
Proc. 15th IEEE Computer Security Foundations Workshop, pages 206 220,
2002.

[28] M. Jakobsson, K. Sako, and R. Impagliazzo. Designated verifier proofs and
their applications. In Proc. EUROCRYPT 96, pages 143 154, 1996.

[29] R. Pucella and J. Halpern. Modeling adversaries in a logic for security protocol
analysis. In Formal Aspects of Security, 2002 (FASec "02).

[30] O. Markowitch and S. Saeednia. Optimistic fair exchange with transparent
signature recovery. In Proc. 5th International Conf. on Financial Cryptography,
pages 339 350, 2001.

[31] H. Pagnia and F. Gaertner. On the impossibility of fair exchange without
a trusted third party. Technical Report TUD-BS-1999-02, Department of
Computer Science, Darmstadt University of Technology, Germany, March 1999.

[32] T.Y.C. Woo and S.S. Lam. A semantic model for authentication protocols. In
Proc. IEEE Symposium on Security and Privacy, pages 178-194, 1993.

[33] J. Zhou and D. Gollmann. A fair non-repudiation protocol. In Proc. IEEE
Symposium on Security and Privacy, pages 55—-61, 1996.

[34] J. Zhou and D. Gollmann. Towards verification of non-repudiation protocols. In
Proc. International Refinement Workshop and Formal Methods Pacific, pages
370-380, 1998.

40

