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used by many pairs of signers, the third party may be
ome a performan
ebottlene
k. Depending on the 
ontext, seeking resolution through the thirdparty may delay termination, in
ur �nan
ial 
osts, or raise priva
y 
on
erns.Obviously, the value of an optimisti
 proto
ol, as opposed to one that requiresa third party signature on every transa
tion, lies in the frequen
y with whi
h\optimisti
" signers 
an 
omplete the proto
ol without using the third party.Some useful properties of 
ontra
t signing proto
ols are fairness, whi
h meansthat either both parties get a signed 
ontra
t, or neither does, and timeliness,whi
h generally means that ea
h party has some re
ourse to avoid unboundedwaiting. The reason for using a trusted third party in �xed-round proto
ols isa basi
 limitation [18,31℄ related to the well-known impossibility of distributed
onsensus in the presen
e of faults [21℄: no �xed-length two-party proto
ol 
anbe fair. Although there is a trivial proto
ol with a trusted third party, in whi
hboth signers always send their signatures dire
tly to it, proto
ols that are fair,timely, and usefully minimize demands on the third party have proven subtleto design and verify.This paper re�nes previous models, formalizes properties from the literature on�xed-round two-party 
ontra
t signing proto
ols, and establishes relationshipsbetween them. We use the set-of-tra
es semanti
s for proto
ols, de�ning ea
hinstan
e of the proto
ol as the set of all possible exe
ution tra
es, arranged ina tree. The set of tra
es of a proto
ol is derived from a multiset rewriting [12℄presentation of the proto
ol, for 
on
reteness, although other formalisms for
hara
terizing proto
ols and their sets of tra
es would give similar results.Model for optimism. One modeling innovation is an untimed nondeterministi
setting that provides a set-of-tra
es semanti
s for optimism. Intuitively, opti-misti
 behavior in 
ontra
t signing is easily des
ribed as a temporal 
on
ept:an optimisti
 signer is one who waits for some period of time before 
onta
tingthe trusted third party. If Ali
e is optimisti
, and Bob 
hooses to 
ontinue theproto
ol by responding to Ali
e, then Ali
e will deliberately wait for Bob'smessage rather than 
onta
t the third party. Sin
e the value of an optimisti
proto
ol lies in what it o�ers to an optimisti
 player, we evaluate proto
olssubje
t to the assumption that one of the players follows an optimisti
 strat-egy. As a dire
t way of mathemati
ally 
hara
terizing the sequen
e of a
tionsthat o

ur in optimisti
 play, we allow an optimisti
 player to deliberatelygive his opponent 
ontrol over whether the optimist waits for a message. Inother words, an optimisti
 player wishes to wait for a message. We allow anoptimisti
 player to a
t on this wish by entering a waiting state until the oppo-nent's move pla
es the optimisti
 player in a non-waiting state. This gives usa dire
t way of de�ning the set of tra
es asso
iated with an optimisti
 signer,while staying within the traditional nondeterministi
, untimed setting.Impossibility result. In evaluating proto
ol performan
e for optimisti
 players,2



we prove that in every fair, timely proto
ol, an optimisti
 player su�ers adisadvantage. The importan
e of this result is that optimisti
 proto
ols areonly useful to the extent that signers may 
omplete the proto
ol optimisti
allywithout 
onta
ting the third party. In basi
 terms, our theorem shows thatwhenever a proto
ol allows signers to avoid the third party, an optimisti
signer gives the other signer unilateral 
ontrol over the out
ome at some pointin the exe
ution of the proto
ol.To illustrate by example, 
onsider an online sto
k trading proto
ol with signed
ontra
ts for ea
h trade. Suppose the broker starts the proto
ol, sending her
ommitment to sell sto
k to the buyer at a spe
i�
 pri
e, and the buyer re-sponds with his 
ommitment. To ensure timely termination, the broker alsoenjoys the ability to abort the ex
hange by 
onta
ting the trusted third party(TTP) if the buyer has not responded. On
e the buyer 
ommits to the pur-
hase, he 
annot use the 
ommitted funds for other purposes. Even if he hasthe option to 
onta
t the TTP immediately, an optimisti
 buyer will wait forsome period of time for the broker to respond, hoping to resolve the trans-a
tion ami
ably and avoid the extra 
ost or potential delay asso
iated with
onta
ting the TTP. This waiting period may give the broker a useful windowof opportunity. On
e she has the buyer's 
ommitment, the broker 
an wait tosee if shares are available from a selling 
ustomer at a mat
hing or lower pri
e.The longer the buyer is in
lined to wait, the greater 
han
e the broker has topair trades at a pro�t. If the broker �nds the 
ontra
t unpro�table, she 
anabort the transa
tion by falsely 
laiming to the TTP that the buyer has notresponded. This broker strategy su

eeds in proportion to the time that thebuyer optimisti
ally waits for the broker to 
ontinue the proto
ol; this timeinterval, if known exa
tly or approximately, gives the broker a period whereshe 
an de
ide unilaterally whether to abort or 
omplete the ex
hange.Sin
e our main result only involves one run of an arbitrary 
ontra
t-signingproto
ol, we do not need to 
onsider sequen
es of proto
ol runs, or interleavingof 
on
urrent runs.The paper is organized as follows. In se
tion 2, we summarize our semanti
framework and de�ne the 
lass of two-party 
ontra
t signing proto
ols withtrusted third party. In se
tion 3, we formalize proto
ol properties su
h as fair-ness, optimism, and timeliness. In se
tion 4, we formalize optimisti
 behaviorof a parti
ipant, and show that the optimisti
 parti
ipant is at a disadvantagein any fair, optimisti
, timely proto
ol. The impli
ations of the main theoremfor spe
i�
 
ontra
t-signing proto
ols in the literature are dis
ussed in se
-tion 5, with related work dis
ussed in se
tion 6. We summarize our results inse
tion 7.A
knowledgments. We are parti
ularly grateful to D. Malkhi for pointingout the vulnerability of optimisti
 players in fair ex
hange. We also thank3



I. Cervesato, S. Even, D. Gollmann, S. Kremer, J.F. Raskin, C. Meadows, andJ. Millen for interesting and helpful dis
ussions.2 Model2.1 Multiset rewriting formalismOur proto
ol formalism is multiset rewriting with existential quanti�
ation,MSR [12℄, whi
h 
an be seen as an extension of some standard models of 
om-putation, e.g., multiset transformation [5℄ and 
hemi
al abstra
t ma
hine [7℄.This formalism faithfully expresses the underlying assumptions of the un-timed, nondeterministi
, asyn
hronous model. A proto
ol de�nition in MSRde�nes the set of all possible exe
ution tra
es for any instan
e of the proto
ol.Any other formalism, in
luding [1,19℄ and others, that leads to an equiva-lent set of tra
es would support the same results about proto
ols [16,13℄. Thesyn
hronous model with a global 
lo
k does not seem appropriate for our in-vestigation be
ause �xed-round 
ontra
t signing proto
ols in the literature[2,4,22,30,33℄ do not rely on a global 
lo
k.MSR syntax involves terms, fa
ts, and rules. To spe
ify a proto
ol, �rst 
hoosea vo
abulary, or �rst-order signature. We assume that our vo
abulary 
ontainssome basi
 sorts su
h as publi
Key for publi
 keys and msg for proto
ol mes-sages. As usual, the terms over a signature are the well-formed expressionsprodu
ed by applying fun
tions to arguments of the 
orre
t sort. A fa
t is a�rst-order atomi
 formula over the 
hosen signature, without free variables.Therefore, a fa
t is the result of applying a predi
ate symbol to ground termsof the 
orre
t sort. A state is a �nite multiset of fa
ts.A state transition is a rule written using two multisets of �rst-order atomi
formulas and existential quanti�
ation, in the synta
ti
 form F1; : : : ; Fk �!9x1 : : :9xj:G1; : : : Gn. The meaning of this rule is that if some state S 
ontainsfa
ts obtained by a ground substitution � from �rst-order atomi
 formulasF1; : : : ; Fk, then one possible next state is the state S� that is similar to S,but with fa
ts obtained by � from F1; : : : ; Fk removed and fa
ts obtained by� from G1; : : : ; Gn added, where x1; : : : ; xj are repla
ed by new symbols. Ifthere are free variables in the rule F1; : : : ; Fk �! 9x1 : : :9xj :G1; : : : Gn, theseare treated as universally quanti�ed throughout the rule. In an appli
ation ofa rule, these variables may be repla
ed by any ground terms.For example, 
onsider state fP (f(a)); P (b)g and rule P (x) �! 9z:Q(f(x); z).First, we instantiate this rule to P (f(a)) �! 9z:Q(f(f(a)); z). Applying therule, we 
hoose a new value 
 for z and repla
e P (f(a)) by Q(f(f(a)); 
),4



obtaining the next state fQ(f(f(a)); 
); P (b)g.A set of MSR rules is 
alled a theory. In an interleaving semanti
s of 
on
ur-ren
y, we 
an 
ommute the order of appli
ation of transition rules that a�e
tindependent parts of the system:Proposition 1 Let S = S1 ℄ S2 be a state su
h that(i) S 0 = S 01 ℄ S2 is obtained from S by the appli
ation of a transition rule t1using ground substitution �1.(ii) S 00 = S 01 ℄ S 02 is obtained from S 0 by the appli
ation of a transition rule t2using ground substitution �2.Then S 00 
an also be obtained from S by the appli
ation of t2 using �2 followedby the appli
ation of t1 using �2.Proof: Follows immediately from the de�nition of MSR. 22.1.1 Basi
 sortsProto
ol parti
ipants are identi�ed with their publi
 keys. We use the sort pub-li
Key for parti
ipants' publi
 keys, and let k; k0; ka; k1; : : : to range over valuesof this sort. Sort msg is used for proto
ol messages, and we let m1; m2; : : : torange over values of this sort.In this paper, we are 
on
erned with two-party proto
ols in whi
h the parti
i-pants ex
hange their signatures on pre-agreed 
ontra
t texts. Sort 
ontra
tTextis used for the texts. We assume that parti
ipants use a globally unique iden-ti�er of the sort uniqueIdenti�er for ea
h proto
ol instan
e. We use n; n0; : : : torange over values of this sort. As mentioned earlier, we only need to 
onsidera single instan
e of the proto
ol.Finally, we assume that our vo
abulary 
ontains the sort proto
olInstan
e anda fun
tion:h ; ; ; ; i : publi
Key� publi
Key� publi
Key�
ontra
tText� uniqueIdenti�er! proto
olInstan
e:Ea
h value of the sort proto
olInstan
e identi�es the two parti
ipants, thetrusted third party, pre-agreed 
ontra
t text and the globally unique identi�erof the proto
ol instan
e. We use pd; pd0; : : : to range over values of proto
ol-Instan
e. For example, proto
ol instan
e pd = hko; kr; kt; m; ni des
ribes theproto
ol instan
e identi�ed as n in whi
h parti
ipants with publi
 keys ko andkr are attempting to ex
hange signatures on the pre-agreed text m with thehelp of a trusted third party whose publi
 key is kt.5



2.1.2 TimersIn our model, timers are interpreted as lo
al signals, used by parti
ipants tode
ide when to quit waiting for a message from the other party in the proto-
ol. They do not refer to any global time or imply syn
hroni
ity. Timers areformalized by binary timer predi
ates, whose �rst argument is of the sort pub-li
Key and identi�es the parti
ipant who re
eives its signal, while the se
ondargument is one of the following three 
onstants of the sort timerState: unset ,set , and timed out . We use ts; ts0; : : : to range over 
onstants of the sort timer-State, and Z;Z1; Z2; : : : to range over timer predi
ates. For example, the fa
tZ(k; unset) indi
ates that a timer Z belonging to the parti
ipant identi�edwith publi
 key k in state unset .2.2 Formal model of 
ryptographyContra
t signing proto
ols usually employ 
ryptographi
 primitives su
h asen
ryption, hash fun
tions and more spe
ialized 
onstru
ts su
h as designated-re
ipient signatures [22℄. In general, the purpose of 
ryptography is to providemessages that are meaningful to some parties, but not subje
t to arbitrary(non-polynomial-time) 
omputation by others. For example, en
ryption pro-vides messages that are meaningful to any re
ipient with the de
ryption key,but not subje
t to de
ryption by any agent who does not possess the de
ryp-tion key. The logi
-based formalism of MSR 
annot 
apture subtle distin
tionsbetween, for example, fun
tions 
omputable with high probability and fun
-tions 
omputable with low or negligible probability. Instead, we must modelfun
tions as either feasibly 
omputable, or not feasibly 
omputable. In theremainder of this paper, we assume some �xed theory Possess of rules that
hara
terize the 
omputationally feasible operations on messages. It is as-sumed impli
itly that in any proto
ol model, the roles (see se
tion 2.3.2) will
onform to the 
apabilities expressed in Possess, sin
e no honest agent 
anperform any 
omputationally infeasible a
tion, although we do not rely on thisassumption in any proof.For ea
h 
ryptographi
 operation used in a proto
ol, we assume that Possess
ontains some MSR 
hara
terization of its 
omputability properties. To givea 
on
rete framework for presenting these rules, let us assume some set ofpredi
ates Has = fhas�j� is any sortg. Sin
e the sort � is determined by thesort of the arguments to has�, we will not write the sort when it is eitherirrelevant, or 
lear from 
ontext. Intuitively, a rule of the formhas(s1); : : : ; has(sm); F1; : : : ; Fj �! has(t1); : : : ; has(tn); F1; : : : ; Fjmeans that if an agent possesses data s1; : : : ; sm, then under 
onditions spe
-6



i�ed by fa
ts F1; : : : ; Fj, it is 
omputationally feasible for him to also learnt1; : : : ; tn. For example, we shall always assume that if an agent possesses x,then it 
an make as many 
opies as it desires. This 
an be expressed by thefollowing rule:has(x) �! has(x); has(x)The familiar \Dolev-Yao" [17,32℄ rules given in [12℄ 
an be expressed as:has(x); has(k) �! has(en
rypt(k; x))has(en
rypt(k; x)); has(k�1);Keypair(k; k�1) �! has(x)Intuitively, these rules say that if an agent possesses a message and an en
ryp-tion key, it is 
omputationally feasible for the agent to possess the en
ryptionof the message with the key. Conversely, if an agent possesses an en
ryptedmessage and the de
ryption key, then it is 
omputationally feasible for theagent to possess the plaintext. Similarly, we model invertible operations su
has pairing by MSR possession rules stating that a pair may be 
omputed fromits parts and, 
onversely, given a pair, its parts may be 
omputed.As a dis
laimer, we emphasize that the results in this paper are a

urate state-ments about a proto
ol using 
ryptographi
 primitives only to the extent thatPossess a

urately 
hara
terizes the 
omputationally feasible operations. Inparti
ular, proto
ols that distinguish between low-order polynomial 
ompu-tation and high-order polynomial 
omputation, or rely on probabilisti
 oper-ations in some essential way, may fall outside the s
ope of our analysis andmay 
on
eivably violate some of our results.2.3 Proto
ol modelA proto
ol P is a 
ontra
t signing proto
ol if it involves three parties, O(originator), R (responder), and T (trusted third party), and enables O (re-spe
tively, R) to obtain R's signature (respe
tively, O's signature) on somepre-agreed text. For brevity, we will say signature as a shorthand for \signatureon the pre-agreed text," use terms 
ontra
t signing and signature ex
hange in-ter
hangeably, and refer to O and R as signers. We assume that a 
ontra
tsigning proto
ol 
annot rea
h a state where ea
h party (O or R) has the other'ssignature unless both parties (O and R) take some a
tion. In parti
ular, nei-ther O nor R may obtain a binding 
ontra
t without the other parti
ipatingin the proto
ol by exe
uting at least one proto
ol step.We spe
ify the proto
ol by a MSR theory. Any sequen
e of rules 
onsistent7



with the theory 
orresponds to a valid exe
ution tra
e of a proto
ol instan
e. Ifexe
ution tra
es are naturally arranged in trees, then the MSR theory de�nesthe set of all possible exe
ution tra
es as a forest of trees. To obtain theimpossibility result, we 
hoose any 
ontra
t signing proto
ol P and �x it. Weassume that the 
ontra
t text for ea
h instan
e 
ontains a unique identi�er,and 
onsider only a run instan
e of P . Sin
e only one instan
e is needed toobtain our impossibility result, there is no need to 
onsider repeated or parallelruns of the proto
ol.2.3.1 Communi
ationFollowing the standard assumption that the adversary 
ontrols the networkand re
ords all messages, we model 
ommuni
ation between O and R by aunary network predi
ate N whose argument is of the sort msg. On
e a fa
tN(m) for some m is added to the state, it is never removed. As in 
ontra
tsigning proto
ols in the literature [4,22℄, we assume that 
hannels betweensigners and T are ina

essible to the adversary and separate from the networkbetween O and R (by 
ontrast, [26℄ 
onsiders se
urity of 
ontra
t signing pro-to
ols under relaxed assumptions about 
hannel se
urity). Channels betweensigners and T are modeled by ternary TTP
hannel predi
ates, whose argu-ments are of the sort publi
Key, publi
Key and msg, respe
tively. For example,t
(ko; kt; m) models the 
hannel between O and T 
arrying message m.2.3.2 Role theoriesA role theory spe
i�es one of the proto
ol roles su
h as O, R or T by giv-ing a �nite list of role state predi
ates that de�ne the internal states of theparti
ipant playing that role and the rules for advan
ing from state to state.Role theory also 
ontains another, disjoint list of timer predi
ates des
ribingthe rules for the parti
ipant's timers. A parti
ipant may advan
e his state by\looking" at the state of his timers or the network (i.e., a timer or a networkpredi
ate appears on the left side of the rule). He may also set his timer by
hanging the timer's state from unset to set , but he may not 
hange it totimed out .De�nition 2 Theory A is a role theory for parti
ipant A with publi
 key ka,where ka is a 
onstant of the sort publi
Key, if it satis�es the following:(i) A in
ludes a �nite list of predi
ates A0; : : : ; An, 
alled role state predi
ates,and a �nite list of timer predi
ates, 
alled timers of A. The two lists aredisjoint.(ii) A0 is a binary predi
ate whose arguments are of the sort publi
Key andproto
olInstan
e, respe
tively. We 
all A0 the initial role state predi
ate.8



(iii) For ea
h rule l! r in A,(1) There is exa
tly one o

urren
e of a role state predi
ate in l, say Ai, andexa
tly one o

urren
e of a role state predi
ate in r, say Aj. Furthermore,i < j. If A0 o

urs in l, then A0(ka; p) 2 l for some term p of the sortproto
olInstan
e.(2) If Ai is a k-ary role state predi
ate o

urring in l, and Aj is an m-ary role state predi
ate o

urring in r, then m > k. Furthermore, ifAi(u1; : : : ; uk) 2 l and Aj(v1; : : : ; vm) 2 r, then uq and vq are the sameterms for all 1 � q � k.(3) Let Ai(u1; : : : ; uk) 2 l, Aj(v1; : : : ; vm) 2 r. Let MSG be the set of termsu su
h that N(u) or t
(k1; k2; u) 2 l for some TTP
hannel predi
ate t
.For ea
h q, vq is derivable from u1; : : : ; uk and MSG using the rules inPossess (see se
tion 2.2). Note that by the previous 
lause, uq and vqare the same terms for all 1 � q � k.(4) For ea
h timer Z of A,(a) l and r ea
h 
ontain at most one o

urren
e of Z. O

urren
es areof the form Z(ka; ts), where ts is a 
onstant of the sort timerState. If Zo

urs in r, then it o

urs in l.(b) If Z(ka; unset) 2 l, then either Z(ka; unset) 2 r, or Z(ka; set) 2 r.(
) If Z(ka; set) 2 l, then Z(ka; set) 2 r.(d) If Z(ka; timed out) 2 l, then Z(ka; timed out) 2 r.(5) If N(u) 2 l, where N is a network predi
ate and u is term of the sort msg,then N(u) 2 r. If t
(k1; k2; u) 2 l, where t
 is a TTP
hannel predi
ate,and terms k1; k2; u are of the sort publi
Key, publi
Key, msg, respe
tively,then t
(k1; k2; u) 2 r.(6) For any predi
ate P other than a role state, timer, network, or TTP
han-nel predi
ate, atomi
 formula P(t1; : : : ; tn) has the same o

urren
es in las in r.De�nition 3 If Z is a timer of the parti
ipant with publi
 key ka,then Z(ka; set)! Z(ka; timed out) is the timeout rule of Z.2.3.3 Proto
ol theoryInformally, a proto
ol theory P for a given proto
ol is the disjoint union ofsix theories: O;R;T0;Otimeouts;Rtimeouts, and Ttimeouts, where O;R;T0 arerole theories, and Otimeouts, Rtimeouts, and Ttimeouts are the sets of timeoutrules for all timers of O, R, and T , respe
tively. For simpli
ity, we will 
ombinethe role theory and the timeouts of T , and 
all it T = T0 [Ttimeouts.De�nition 4 Theory P is a proto
ol theory for signers O and R and trustedthird party T with publi
 keys ko; kr; kt, respe
tively, where ko; kr; kt are 
on-stants of the sort publi
Key, if P = O ℄ R ℄ T0 ℄ Otimeouts ℄ Rtimeouts ℄9



Ttimeouts, where(1) O;R;T0 are role theories for, respe
tively, O;R; T with respe
tive publi
keys ko; kr; kt.(2) At most one TTP
hannel predi
ate, say t
, o

urs in O. Ea
h o

ur-ren
e of t
 is of the form t
(ko; kt; m), where m is of the sort msg, andt
(ko; kt; m) 
annot not o

ur in R.(3) At most one TTP
hannel predi
ate, say t
, o

urs in R. Ea
h o

ur-ren
e of t
 is of the form t
(kr; kt; m), where m is of the sort msg, andt
(kr; kt; m) 
annot o

ur in O.(4) If some TTP
hannel predi
ate o

urs in T0, then it also o

urs in O orR.(5) The role state predi
ates and the timers of O (respe
tively, R) do noto

ur in R (respe
tively, O) and T0. The role state predi
ates and thetimers of T do not o

ur in O or R.(6) Otimeouts;Rtimeouts, and Ttimeouts are the sets of timeout rules of alltimers of O, R, and T , respe
tively.2.3.4 Threat modelWe are interested in guarantees provided by 
ontra
t signing proto
ols whenone of the signers misbehaves in 
ertain ways. The trusted third party, T , isassumed to be honest. We will 
all the misbehaving signer the adversary. Theadversary does not ne
essarily follow the proto
ol, and may ignore the state ofthe timers or stop prematurely. In prin
iple, an adversary may gather messagesfrom the network, store them, de
ompose them into fragments and 
onstru
tnew messages from the fragments. However, we shall only use the following
apabilities in our model: quitting the proto
ol prematurely, ignoring the stateof the timers and inter
epting messages on the network. These abilities areformalized by theories Othreat and Rthreat 
ontaining dishonest rules for Oand R, respe
tively.The proof of our impossibility result (see se
tion 4) only requires that theadversary may quit the proto
ol prematurely, ignore the state of the timers,or inter
ept messages on the network. Sin
e an adversary with additional
apabilities only needs these a
tions in order to take advantage of an optimisti
opponent, we thus obtain a stronger result than if we assumed a strongeradversary. On the other hand, if we were interested in proving 
orre
tness ofa proto
ol against a more powerful adversary, we would need to extend thetheories Othreat and Rthreat.We now des
ribe the rules of Othreat in more detail. The rules of Rthreat aresymmetri
. Quitting, that is refusing to take further part in proto
ol exe
u-tion, is a form of dishonest behavior. To model quitting from some role state,10



say Oi, whi
h is a k-ary predi
ate whose arguments are of the sort s1; : : : ; skrespe
tively, we introdu
e in our vo
abulary a k-ary predi
ate Odquit;i whosearguments are of the sort s1; : : : ; sk. We also introdu
e k variables x1; ; : : : ; xkof the sort s1; : : : ; sk respe
tively, and add the following rule in Othreat:Oi(x1; : : : ; xk) �! Odquit;i(x1; : : : ; xk);M(ko; x1); : : : ;M(ko; xk)If a dishonest O has not quit the proto
ol, then O may disregard the state ofsome or all of the timers that govern the behavior of honest O. For example,suppose that the following rule is inO (here Z is a timer predi
ate, and j > i):Oi(~u); V1(~s1); : : : ; Vk(~sk); Z(ko; ts) �!Oj(~u);W1(~t1); : : : ;Wl(~tl); Z(ko; ts0)Dishonest O may ignore timer Z:Oi(~u); V1(~s1); : : : ; Vk(~sk) �! Oj(~u);W1(~t1); : : : ;Wl(~tl)If a dishonest O has not quit the proto
ol, then the dishonest O may alsointer
ept (gather) messages from the network (N), or the 
hannel between Oand trusted third party (t
). In our model, we use binary predi
ates M whosearguments are of the sort publi
Key and msg, respe
tively, to represent theadditional memory of the dishonest parti
ipant.Let x; x0 be variables of the sort msg. If Oi is a k-ary role state predi
ate,whose arguments are of the sort s1; : : : ; sk, then pi
k k variables x1; : : : ; xk ofthe sort s1; : : : ; sk respe
tively. The rules for gathering messages are:Oi(x1; : : : ; xk); N(x) �! Oi(x1; : : : ; xk); N(x);M(ko; x)Oi(x1; : : : ; xk); t
(ko; kt; x) �! Oi(x1; : : : ; xk); t
(ko; kt; x);M(ko; x)In the above rules, the presen
e of the role state predi
ate Oi ensures that Owill not inter
ept messages after it has quit the proto
ol.2.3.5 Initial set of fa
tsIn addition to the proto
ol theory and dishonest rules for the parti
ipants, aproto
ol spe
i�
ation also in
ludes the initial set of fa
ts, say S0, des
ribingthe initial state of the proto
ol exe
ution. We assume that the parti
ipants11



have agreed on the 
ontra
t text m and globally unique proto
ol instan
eidenti�er n. S0 is a set that 
ontains:(1) Fa
ts O0(ko; pd); R0(kr; pd); T0(kt; pd) exa
tly on
e, where O0; R0; T0 arethe initial role states of O, R, and T, respe
tively, and pd is the termhko; kr; kt; m; ni. There is no other o

urren
e of a role state predi
ate inS0.(2) For ea
h timer predi
ate Z of O, R, or T , there is exa
tly one o

urren
eof Z in S0.(3) For ea
h timer predi
ate Z of O (respe
tively R; T ), either Z(ko; unset)(respe
tively, Z(kr;t; unset)), or Z(ko; set) (respe
tively, Z(kr;t; set)), butnot both.(4) M(ko; m);M(ko; n);M(kr; m);M(kr; n).2.4 Tra
es and 
ontinuation treesA state is a �nite multiset of fa
ts. For example, the initial state S0 mayin
lude fa
ts O0(ko; k�1o ; kr; p) and R0(kr; k�1r ; ko; p) modeling the initial statesof the originator and the responder in proto
ol p: ea
h knows his own publi
and private keys, and the opponent's publi
 key. A tra
e from state S is a
hain of nodes, with the root labeled by S, ea
h node labeled by a state, andea
h edge labeled by a triple ht; �;Qi. Here Q is one of fO, R, T, Otimeouts,Rtimeouts, Othreat, Rthreatg, t 2 Q is a state transition rule, and � is a groundsubstitution. If ht; �;Qi labels the edge from a node labeled by S1 to a nodelabeled by S2, it must be the 
ase that the appli
ation of t� to S1 produ
esS2. Any state labeling a node in this 
hain is said to be rea
hable from S. Wewill simply say that a state is rea
hable if it is rea
hable from the initial stateS0.An edge is a dishonest move of O if it is labeled by some t 2 Othreat. O is saidbe honest in the tra
e if there are no dishonest moves of O in the tra
e. If Sis rea
hable by a tra
e in whi
h O is honest, then S is rea
hable by honest O.The de�nitions for R are symmetri
.Let the 
ontinuation tree, 
tr, at state S be the tree of all possible tra
es fromS. This tree serves as a game tree that represents the 
omplete set of possibleplays. We 
an see that 
tr has �nite depth, allowing us to reason by indu
tionon the height above the leaves of the tree. The reason that 
tr has �nite depthis that we only 
onsider a single run of a �xed-round proto
ol. A proto
ol
onsists of a set of roles, and ea
h role is a �nite set of multi-set rewritingrules, ea
h rule expressing a step in the proto
ol. In the multi-set rewriting ruleframework, ea
h rule in a role repla
es a predi
ate indi
ating the 
urrent statewith a higher-numbered predi
ate indi
ating the subsequent state, preventing12



any form of state looping. Further, the additional steps provided by the threatmodel only allow a role to move forward in the exe
ution of a proto
ol, or adda fa
t to the set of fa
ts known to a prin
ipal. The former a
tion 
annot leadto looping, and the latter a
tion need only be performed on
e per messagesent by honest parties. Thus the 
ontinuation tree from any state has �nitedepth.We use subtrees of 
tr to 
hara
terize the results of 
ertain restri
tions onproto
ol parti
ipants. Spe
i�
ally, let 
tr[O℄ be the tree obtained from 
tr byremoving all edges in O[Othreat along with their des
endants. The tree 
tr[O℄gives the set of all possible plays if O stops parti
ipating in the proto
ol. Thede�nition of 
tr[R℄, giving the set of all plays when R stops parti
ipating, issimilar. We will say that any edge e in 
tr that is labeled by a rule in O orOthreat (respe
tively, R or Rthreat), is under O's 
ontrol (respe
tively, R's
ontrol). To model optimism of honest signers (see se
tion 4), we will alsoassume that all the edges in Otimeouts[Rtimeouts are under 
ontrol of the ad-versary (dishonest parti
ipant). More spe
i�
ally, our model of optimism gives
ontrol over s
heduling 
ommuni
ation with the third party to the adversary.However, some possible proto
ols may use other timeouts that are not under
ontrol of the adversary.
3 Properties of Contra
t Signing Proto
olsThe MSR de�nition of the proto
ol determines the set of all possible exe
utiontra
es, giving rise to a 
ontinuation tree. To de�ne proto
ol properties su
h asfairness, optimism, timeliness, and advantage, we view the 
ontinuation treeas a game tree 
ontaining all possible plays, and adapt the notion of strategyfrom 
lassi
al game theory.For the remainder of the paper, we will assume that only one of the signers ishonest. We will use A to refer to the honest signer, i.e., A refers to either O,or R, depending on whi
h of them is honest. We'll use B to refer to the other,dishonest signer.When we mathemati
ally 
hara
terize the degree of ea
h player's 
ontrol overthe out
ome of the proto
ol (see se
tion 3.2.2), we will also need to 
onsiderdishonest moves when reasoning about A's 
ontrol over the proto
ol. Theintuitive explanation is that honesty of A refers to A's a
tual behavior inthe proto
ol (what A does a

ording to the proto
ol spe
i�
ation), while A's
ontrol over the out
ome refers to all potential behaviors by the signer in A'srole (e.g., what A may do if B quits the proto
ol).13



3.1 StrategiesFollowing [14℄, we formalize strategies as trun
ated 
ontinuation trees. Givena set of edges E, let 
trnE be the tree obtained from 
ontinuation tree 
trby removing the edges in E along with their des
endants. Intuitively, if E isa subset of edges of 
tr under A's 
ontrol, then 
trnE is the set of possibleplays that result if A does not use transitions in E. Similarly, we 
an de�ne
tr[A℄nE (re
all that 
tr[A℄ is the tree of all plays if A stops parti
ipating inthe proto
ol).De�nition 5 Let S be a rea
hable state and let 
tr be the 
ontinuation treefrom S. Let X � fA;B; Tg.(1) If E is a subset of edges of 
tr su
h that ea
h edge in E is under the 
ontrolof some p 2 X, then 
trnE is said to be a strategy for the 
oalition X.If there are no dishonest moves of any p 2 X in 
trnE, then 
trnE issaid to be an honest strategy.(2) If E is a subset of edges of 
tr[A℄ su
h that ea
h edge in E is under the
ontrol of some p 2 X, then 
tr[A℄nE is said to be an A-silent strategyfor the 
oalition X.This de�nition 
orresponds to the standard game-theoreti
 notion of strategy.E represents the plays that the 
oalition X 
onsiders unfavorable, and 
trnErepresents the 
ontinuations that X prefers. At any given state S 0 in 
trnE,an edge 
oming out of the node labeled by S 0 indi
ates the next move for Xin a

ordan
e with the strategy 
trnE.To de�ne fairness and other properties, we are interested in strategies in whi
hthe 
oalition X drives the proto
ol to a state in whi
h some property holds:De�nition 6 If there is a strategy 
trnE from S for a 
oalition X su
h thatall leaf nodes of 
trnE are labeled by states S 0 that satisfy some property �(S 0),then X has a strategy from S to rea
h a state in whi
h � holds.The de�nition for A-silent strategies is similar.Sin
e the players' obje
tive in the game is to obtain ea
h other's signatures,we are interested in the states where A possesses B's signature and the oneswhere B possesses A's signature. Formally, B possesses some term u in area
hable state S if u is derivable, using the rules in Possess, from the termsin B's internal role state predi
ate Bi in S and B's additional memory in Sgiven to him by the threat model. Possession is always monotoni
. Moreover,possession of B in
reases in a transition only if B reads a message eitherfrom the network or from the 
hannel to T . (A proof of this statement alongwith the proof of monotoni
ity has been omitted for spa
e 
onsiderations. The14



detailed proofs are available at the ftp-site ftp://ftp.
is.upenn.edu/pub/papers/s
edrov/
mss_optimjlap.pdf). The de�nition for A is symmetri
,ex
ept that the threat model does not have to be 
onsidered.De�nition 7 If there is a strategy for 
oalition X su
h that all leaf nodes inthe strategy are labeled by states in whi
h A possesses B's signature, then Xhas a strategy from S to give A B's signature. Moreover, if X = fAg, then Ais said to have a strategy to obtain B's signature.3.2 Fairness, advantage, optimism, and timelinessWe now use the notion of strategy to de�ne what it means for a 
ontra
t sign-ing proto
ol to be fair, optimisti
, and timely, and what it means for a parti
-ipant to enjoy an advantage. The de�nitions are quite subtle. For example, weneed to draw the distin
tion between a strategy for a
hieving some out
ome,and a possibility that the out
ome will happen under the right 
ir
umstan
es.This requires introdu
tion of a four-valued variable to 
hara
terize the degreeof ea
h player's 
ontrol over the proto
ol game.3.2.1 FairnessFairness is the basi
 symmetry property of an ex
hange proto
ol. There is aknown impossibility result [18,31℄ demonstrating that no deterministi
 two-party proto
ol 
an be fair. Therefore, fairness requires introdu
tion of at leastone other party, e.g., the trusted third party T . Our de�nition is equivalent to a
ommon de�nition of fairness in terms of state rea
hability [22,14℄. Intuitively,a proto
ol is fair for the honest signer A, if, whenever B has obtained A'ssignature, A has a strategy in 
oalition with T to obtain B's signature.De�nition 8 A proto
ol is fair for honest A if, for ea
h state S rea
hable byhonest A su
h that B possesses A's signature in S, the 
oalition of A and Thas an honest strategy from S to give A B's signature.In the remainder of this se
tion, we show that this de�nition is equivalent tothe standard de�nition of fairness in terms of state rea
hability.De�nition 9 A state S rea
hable by honest A is potentially su

essful for Aif there is a �nite tra
e tr from S terminating in a state in whi
h A has B'ssignature and ea
h transition rule in tr is labeled by a rule in A[T[Atimeouts.Note that the existen
e of su
h a tra
e does not mean that A 
an alwaysobtain B's signature regardless of what B does.15



We now show that B's timers do not a�e
t whether a state is potentiallysu

essful for A. The intuitive reason for this is the observation that the a
tionsof A and T do not depend on the state of B's timers. Therefore, timeouts ofB do not a�e
t A's ability to 
onta
t T and obtain B's signature even if Bhas su

eeded in obtaining A's signature.Proposition 10 Let S; S 0 be rea
hable states su
h that S 0 is obtained fromS by an appli
ation of t1 2 Btimeouts followed by an appli
ation of t2 2 A [Atimeouts [T. We 
an 
ommute the order of appli
ation of t1 and t2, i.e., S 0
an also be obtained from S by an appli
ation of t2, followed by an appli
ationof t1.Proof: Timer predi
ates of B do not o

ur in A [Atimeouts [T. Therefore,t1 and t2 a�e
t independent parts of S and by proposition 1, we 
an 
ommutethe order of appli
ation of t1 and t2. 2Proposition 11 Suppose there is a tra
e tr from S that uses only transitionrules in A [Atimeouts [ T [Btimeouts and terminates in a state in whi
h Ahas B's signature. Then S is potentially su

essful for A.Proof: By indu
tively applying proposition 10 to tra
e tr, we push the time-outs of B towards the end of the tra
e and obtain tra
e tr0 from S whi
h(i) ends in a state in whi
h A has B's signature, and(ii) uses only transition rules in A [Atimeouts [T followed by timeout rulesof B's timers.Timeouts of B do not a�e
t terms in A's possession. We 
on
lude that tr0 is atra
e from S that uses only transition rules in A [Atimeouts [T and ends ina state in whi
h A has B's signature. Hen
e, S is potentially su

essful for A. 2We now state fairness in terms of rea
hability and show the equivalen
e of thetwo de�nitions.Proposition 12 A proto
ol is fair for honest A if and only if, for all statesS rea
hable by honest A su
h that B has A's signature on the pre-agreed textin S, the state S is potentially su

essful for A.Proof: ()) Intuitively, if B quits the proto
ol after having re
eived A's signa-ture, then a fair proto
ol must provide some means for A to get B's signature.This may involve 
onta
ting T . In parti
ular, if B has A's signature in stateS, there must be a tra
e from S that involves only A, T and timeouts of Aleading to a state in whi
h A has B's signature. Hen
e, there any state inwhi
h B has A's signature is potentially su

essful for A.16



Suppose that the proto
ol is fair for honest A, and S is a state rea
hable byhonest A su
h that B has A's signature in S. There are two possibilities: eitherB is still parti
ipating in the proto
ol (Bi o

urs in S for some role state Bi)or B has dishonestly quit the proto
ol (Bdquit;i o

urs in S).Consider the former 
ase in whi
h B has already quit the proto
ol in S, andlet 
tr be the tree of all possible tra
es at S. Now, sin
e B has quit, ea
h edgein 
tr must be labeled by a rule in A[T[Atimeouts[Btimeouts. The 
oalitionof A and T 
ontrols all edges labeled by rules in A [T. If E is a sele
tion ofedges under the 
ontrol of A and T , then, by de�nition, 
trnE is a strategyfor the 
oalition of A and T .If the proto
ol is fair, then there must be a strategy for the 
oalition of A andT to give A the signature of B. Therefore, there exists at least one sele
tion ofedges E su
h that A has B's signature in every leaf node of the tree 
trnE. Pi
kone su
h sele
tion E, and any leaf node of 
trnE. Consider the tra
e from theroot to the 
hosen leaf. This tra
e ends in a state in whi
h A has B's signatureand ea
h transition is labeled by a rule in A [T [Atimeouts [Btimeouts. Byproposition 11, S is potentially su

essful for A.If however, B has not quit the proto
ol in S, then let S� be the state obtainedfrom S using the rule of dishonest quitting in Bthreat. In S�, B still has A'ssignature (possession is monotoni
), and hen
e by what we just proved, S�must be potentially su

essful for A. This means that there is a tra
e, tr fromS� using just the transitions in A [Atimeouts [T leading to a state in whi
hA has B's signature.The quitting rule in Bthreat uses just the internal role states of B and B'sdishonest memory. These predi
ates do not o

ur in A[Atimeouts[T. Hen
e,by repeated appli
ation of proposition 1, we 
an 
ommute the transition fromS to S� with the whole tra
e tr. In this way, we obtain a tra
e where all edgesare transitions in A[Atimeouts [T, and the tra
e ends in a state in whi
h Ahas B's signature. Therefore, S is potentially su

essful for A.(() Intuitively, on
e B has obtained A's signature, he 
ontinues to possess itin all subsequent states. Sin
e every su
h state is potentially su

essful for A,the 
oalition of A and T may safely perform any of the a
tions available tothem. Any state from whi
h there are no possible 
ontinuations must also bepotentially su

essful for A. Sin
e there are no further a
tions, A must haveB's signature in that state.Suppose S is a state rea
hable by honest A su
h that B has A's signature inS. Let 
tr be the 
ontinuation tree at S. The 
oalition of A and T 
ontrols alledges labeled by rules in A[T. To prove that the proto
ol is fair, we need toshow that there is a sele
tion E of edges under A's 
ontrol su
h that in ea
hleaf node of 
trnE, A has B's signature.17



Let E be an empty set and 
onsider the strategy 
trnE = 
tr. Pi
k a leaf nodeN in the strategy and �x it. Let N be labeled by state S 0. Sin
e B has A'ssignature in S and possession is monotoni
, B has A's signature in S 0 also.Therefore, S 0 is potentially su

essful, and there is a tra
e from S 0 with edgeslabeled by rules from A[T[Atimeouts leading to a state in whi
h A has B'ssignature. Sin
e 
tr is the 
ontinuation tree, and N is a leaf node, there areno further tra
es from S 0. Therefore, A must have B's signature in S 0. Sin
eN is an arbitrary leaf node, 
tr must be a strategy of the 
oalition of A andT to give A B's signature. 23.2.2 AdvantageIntuitively, fairness says that either both players obtain what they want, orneither does. This is not always suÆ
ient, however. A player's ability to de
ideunilaterally whether the transa
tion happens or not 
an be of great value ins
enarios where resour
e 
ommitment is important, su
h as online trading andau
tion bidding.To 
hara
terize the degree to whi
h ea
h parti
ipant 
ontrols the out
ome ofthe proto
ol in a given state, we de�ne a pair of resolve fun
tions rslvA; rslvBwhi
h asso
iates ea
h rea
hable state with a value in f0; 12 ; 1; 2g. We are inter-ested in what a parti
ipant may do if his opponent quits the proto
ol. There-fore, despite our assumption that A is honest, we will 
onsider A's dishonestmoves, in
luding 
ontrol over A's own (but not B's) timers, when reasoningabout A's ability to 
ontrol the out
ome. Intuitively, our assumption that A ishonest is equivalent to stating that A follows the proto
ol spe
i�
ation, whilevalues of the rslvA fun
tion 
hara
terize all potential out
omes if B quits theproto
ol, whi
h may involve A making a dishonest move.De�nition 13 De�ne the resolve fun
tion rslvA for any rea
hable state S asfollows:rslvA(S) = 2, if A has a strategy to obtain B's signature,= 1, if rslvA(S) 6= 2, but A has a B-silent strategyto rea
h state S 0 su
h that rslvA(S 0) = 2,= 12 , if rslvA(S) 6= f1; 2g, but there is state S 0 rea
h-able from S su
h that rslvA(S 0) = 2, and notransition on the S ! S 0 path is in B[Bthreat,= 0, otherwise.The strategies need not be honest. The de�nition of rslvB is symmetri
.Intuitively, rslvA(S) = 2 if A 
an obtain B's signature no matter what B does,18



1 if A 
an obtain B's signature provided B stops 
ommuni
ating and remainssilent, 12 if there is a possibility (but no strategy) for A to obtain B's signaturewhen B is silent, and 0 means that A 
annot obtain B's signature withoutB's involvement. The di�eren
e between 1 and 12 is essential. For example,rslvA(S) = 1 if A 
an obtain B's signature by sending a message to T aslong as B is silent, while rslvA(S) = 12 if B is silent, but some previouslysent message is already on the 
hannel to T , and the out
ome of the proto
oldepends on the ra
e 
ondition between this message and A's message.Given an initial state S0, if rslvA(S0) 6= 0 then there is a possibility for A toobtain B's signature without B ever parti
ipating in the proto
ol. We believethat this is not meaningful be
ause A might get B's signature without B everindi
ating its willingness for the ex
hange. For this reason, we shall assumethat rslvA(S0) = 0. Similarly, we assume that rslvB(S0) = 0.De�nition 14 B has an abort strategy in S if B has a strategy to rea
h astate S 0 su
h that rslvA(S 0) = 0. B has a resolve strategy in S if B has astrategy to rea
h a state S 00 su
h that rslvB(S 00) = 2. B has an advantage inS if B has both an abort strategy and a resolve strategy.It follows dire
tly from de�nition 14 that if B has an advantage in S, then Adoes not have an advantage in S, and vi
e versa.3.2.3 OptimismIntuitively, a proto
ol is optimisti
 if it enables two honest parties to ex
hangesignatures without involving the trusted third party, assuming they do nottime out waiting for ea
h other's messages. Su
h proto
ols potentially providea pra
ti
al means of fair ex
hange between mistrusting agents without relyingon a third party in most instan
es.Let S, S 0 be rea
hable states su
h that S 0 is obtained from S by a transitionin B [Bthreat. We say that B sends a message to T in this transition if andonly if a fa
t 
reated by this transition mat
hes a term in the left hand sideof a rule in T.De�nition 15 A fair proto
ol is optimisti
 for B if(1) If S; S 0 are rea
hable states su
h that S is obtained from S 0 by a transitionin B, then honest B sends a message to T in this transition only ifZ(kb; timed out) 2 S for some timer Z of B.(2) If A is honest and B 
ontrols the timeouts of both A and B, B has anhonest strategy at S0 su
h that� All edges are labeled by transitions in A [B.� Every leaf node is labeled by a state in whi
h B possesses A's signature.19



Any tra
e in this strategy is an optimisti
 tra
e. The de�nition of optimisti
for A is symmetri
. A proto
ol is optimisti
 if it is optimisti
 for both signers.Intuitively, the �rst 
ondition implies that the proto
ol spe
i�
ation does notpermit honest signers to 
onta
t T nondeterministi
ally, i.e., an honest signeronly 
onta
ts T after a timeout of some timer. Also, sin
e the strategy men-tioned in the se
ond 
ondition is from the initial state and 
ontains no time-outs, neither signer sends any messages to T while following an optimisti
tra
e. Therefore, our de�nition of optimism implies that the signers 
an 
om-plete the ex
hange without involving T .3.2.4 TimelinessWe now formalize the following intuition: \one player 
annot for
e the otherto wait for any length of time | a fair and timely termination 
an always befor
ed by 
onta
ting the third party" [4℄. Timeliness has been emphasized bythe designers of fair ex
hange proto
ols, sin
e it is essential for pra
ti
al use.In any state of the proto
ol, ea
h parti
ipant should be able to terminate theex
hange unilaterally. If he has not been able to obtain the other's signature,he 
an always rea
h a terminal state where he may stop and be sure that theopponent will not be able to obtain his signature, either.De�nition 16 A fair, optimisti
 proto
ol is timely for B if in every state onan optimisti
 tra
e B has an A-silent strategy to rea
h a state S 0 su
h thatrslvA(S 0) = 0 or rslvB(S 0) = 2. A proto
ol is timely if it is timely for bothsigners.To illustrate the importan
e of timeliness, 
onsider a proto
ol that is nottimely, e.g., the Boyd-Foo proto
ol [9℄. In this proto
ol, originator O releasessome information that 
an be used by responder R to obtain O's signaturefrom T at some later point. If R stops 
ommuni
ating, O is at his mer
y. Hemay have to wait, possibly forever, before he learns whether the ex
hange hasbeen su

essful.For the rest of this paper, we assume that the proto
ol is fair, timely, andoptimisti
 for both signers.4 Impossibility of Balan
e in Optimisti
 Proto
olsAs explained in the introdu
tion, optimisti
 
ontra
t signing proto
ols are onlyvaluable insofar as they o�er bene�t to an optimisti
 parti
ipant. We say thatthe honest parti
ipant A is optimisti
 if, in any state where he is permitted20



by the proto
ol spe
i�
ation to 
onta
t trusted third party T , he waits for B'sresponse before 
onta
ting T .For example, 
onsider the Garay-Jakobsson-Ma
Kenzie 
ontra
t signing pro-to
ol [22℄. The proto
ol starts with O sending his designated-veri�er signatureto R, and R responding with his own designated-veri�er signature. While theproto
ol spe
i�
ation permits R to 
onta
t T immediately with a resolve re-quest, in reality R is likely to be optimisti
, i.e., he will prefer to resolvethe proto
ol ami
ably by normal ex
hange with O instead of resorting to T assoon as he has an opportunity to do so. Therefore, after sending his designated-veri�er signature to O in the se
ond message of the proto
ol, R will wait forO's response for a relatively long time before 
onta
ting T . Sin
e O has theability to 
onta
t T with an abort request while R is waiting, at this point inthe proto
ol O enjoys advantage against R.As this example demonstrates, the propensity of the optimisti
 parti
ipant towait for the opponent's response before 
onta
ting T 
an be exploited by theopponent. Re
all that de�nition 15 implies that an honest parti
ipant only
onta
ts T after some timer times out. We use this to model optimism of A bygiving B the ability to s
hedule the timeout rules of A by an \out-of-band"signal. In any implementation of the proto
ol,B does not a
tually s
hedule A'stimers. This is simply a te
hni
al devi
e to restri
t the set of exe
ution tra
esunder 
onsideration to those that may o

ur when one of the parti
ipants isoptimisti
.De�nition 14 
an thus be extended to 
ases where A is optimisti
 by permittingB's strategy to in
lude 
ontrol over timeouts of both A and B. This leads usto the following proto
ol property:De�nition 17 If B does not have a strategy for rea
hing a state S whereB has an advantage against an optimisti
 A, the proto
ol is balan
ed for anoptimisti
 A.If a proto
ol is balan
ed, then the optimism of a signer 
annot be exploitedby a dishonest 
ounterparty. As we will now show, balan
e 
annot be a
hievedby any fair, timely, optimisti
 proto
ol. Before we plunge into the details ofthe proof, it is worth giving an informal summary. We 
onsider the proto
olfrom the viewpoint of the dishonest signer B. Timeliness requires that Bhas an abort strategy available in the beginning of the proto
ol so that he 
anterminate the proto
ol if A quits early. This strategy may involve B 
onta
tingthe trusted third party T . As long as A 
ontinues the normal exe
ution of theproto
ol, he does not 
onta
t T (this follows from the fa
t that the proto
olis optimisti
), whi
h implies that the abort strategy remains available to B.In order for signature ex
hange to be su

essful, at some point in the normalexe
ution of the proto
ol A must send a message to B that gives B the ability21



to obtain A's signature. This is pre
isely the point where B has both thestrategy to obtain A's signature and the strategy to abort the ex
hange. Themain part of the proof is formally identifying this point, and proving that itexists in any fair, timely, optimisti
 proto
olThe �rst observation underlying our proof is that, in the interleaving semanti
sof 
on
urren
y used by our model, the order of appli
ation of state transitionrules that a�e
t independent parts of the system 
an be 
ommuted. The se
ondobservation is that the strategies available to the dishonest player are notnegatively a�e
ted by messages sent to him by the honest player or by thehonest player's timeouts be
ause the dishonest player is free to ignore both. Westart with an auxiliary proposition, whi
h follows dire
tly from de�nition 13.Proposition 18 If rslvA(S) > 0, then there exists a tra
e from S to S 0 su
hthat rslvA(S 0) = 2 and no transition in this tra
e is in B [Bthreat.Proof: If rslvA(S) = 2, let S 0 = S and the tra
e is empty. If rslvA(S) = 1, pi
kany path in the tree 
orresponding to A's B-silent strategy for rea
hing S 0 su
hthat rslvA(S 0) = 2. If rslvA(S) = 12 , follows immediately from the de�nition. 2Proposition 19 Let S ! S 0 be a state transition not in B [ Bthreat. IfrslvB(S) = 2, then rslvB(S 0) = 2. If rslvA(S) = 0, then rslvA(S 0) = 0.Proof: If rslvB(S) = 2 then, by de�nition of a strategy, in any state S 0obtained by a transition not under 
ontrol of B, B must also have a strategy.Suppose rslvA(S) = 0 and rslvA(S 0) > 0. By proposition 18, there exists atra
e from S 0 to S 00 su
h that rslvA(S 00) = 2 and no transition in the tra
eis in B [ Bthreat. Prepending the S ! S 0 transition to the path, we obtaina tra
e from S to S 00 su
h that rslvA(S 00) = 2 and no transition on the tra
eis inB[Bthreat. Therefore, rslvA(S) � 12 , whi
h 
ontradi
ts our assumption.2Proposition 19 implies that if S ! S 0 is a transition in an optimisti
 tra
esu
h that rslvA(S) = 0 and rslvA(S 0) > 0, then it must be in B [ Bthreat.Similarly, if rslvB(S) = 0 and rslvB(S 0) > 0, then S ! S 0 is in A [Athreat.Intuitively, a player a
quires some degree of 
ontrol over the out
ome of theproto
ol for the �rst time only be
ause of the other player's move.Sin
e a timeout does not a�e
t possession and a (potentially) dishonest A
an always ignore the state of timers, the following proposition holds. (Theproof has been omitted for spa
e 
onsiderations, and is available at the ftp-siteftp://ftp.
is.upenn.edu/pub/papers/s
edrov/
mss_optimjlap.pdf.)Proposition 20 Suppose S 0 is obtained from S by a rule from Atimeouts.22



Then rslvA(S 0) = rslvA(S).Just like we de�ned 
tr[A℄ to be the tree obtained from 
tr by removing alledges in A [ Athreat, we de�ne 
tr[A+℄ to be the tree obtained from 
tr byremoving all edges in A [ Athreat [ Atimeouts. If E is a sele
tion of edgesin 
tr[A+℄ under B's 
ontrol, then 
tr[A+℄nE is a strategy available to B ifA remains silent and no timers time out. We will 
all su
h a strategy weakA-silent strategy.Proposition 21 Let S ! S 0 be a state transition in Atimeouts. B has a weakA-silent abort [resolve℄ strategy at S 0 if and only if B has a weak A-silent abort[resolve℄ strategy at S.Proof: The proof depends on the observation that the a
tions of B and T areindependent of timeouts of A, and the fa
t that a timeout of A does not 
hangerslvA. Hen
e a weak A-silent abort [resolve℄ strategy at S 
an be mimi
ked atS 0 and vi
e-versa.()) We show that if B has a weak A-silent abort [resolve℄ strategy at S, thenit also has a weak A-silent abort [resolve℄ strategy at S 0 by indu
tion on theheight of 
ontinuation tree at S.Base 
ase: The height of the 
ontinuation tree at S is 0. Then there are nostates rea
hable from S and the proposition is va
uously true.Indu
tion hypothesis: Suppose the proposition is true for all rea
hable statesS su
h that the height of the 
ontinuation tree at S is � n.Indu
tion step: Now 
onsider a rea
hable state S su
h that (1) the 
ontinuationtree at S has height n+1, and (2) B has a weak A-silent abort [resolve℄ strategyat S. Fix the weak A-silent abort [resolve℄ strategy at S. Let S 0 be the stateobtained from S using a state transition in Atimeouts. We have to show thatB has a weak A-silent strategy at S 0. Call the 
ontinuation tree at S 0 
tr0.Consider the edges in 
tr0 
oming out of the root. Remove all edges that aretransitions inA[Atimeouts. Ea
h of the remaining edges, if any, is a transitionin B [ Btimeouts [ T. It is easy to see that any su
h transition 
an also beapplied at S. For ea
h remaining edge e do the following:Let S 00 be the state obtained as a result of e. If a 
orresponding transition isnot present in the weak A-silent abort [resolve℄ strategy at S, then remove thisedge along with all of its des
endants. If the transition is present in the weakA-silent abort [resolve℄ strategy, then let S1 be the state obtained by applyingthis transition to S. We obtain that(i) the height of the 
ontinuation tree at S1 is � n,(ii) B has a weak A-silent abort [resolve℄ strategy at S1,23



(iii) S 00 
an be obtained from S1 by a transition in Atimeouts.By applying the indu
tion hypothesis to S1, we 
on
lude that B has a weakA-silent abort [resolve℄ strategy at S 00. Repla
e the 
ontinuation tree at S 00 bythis strategy. These operations produ
e a weak A-silent strategy for B at S 0.There are two 
ases:Case 1: The height of this strategy is 0. It follows from 
onstru
tion that theheight of the weak A-silent abort [resolve℄ strategy at S is also 0. Therefore,rslvA(S) = 0 [rslvA(S) = 1℄. By proposition 20, rslvA(S 0) = 0 [rslvA(S 0) = 1℄.Case 2: The height of this strategy is � 0. By 
onstru
tion, all leaf nodes arelabeled by states S 000 su
h that rslvA(S 000) = 0 [rslvA(S 000) = 1℄. Therefore, Bhas a weak A-silent abort strategy at S 0. This 
ompletes the indu
tion.(() Suppose B has a weak A-silent abort [resolve℄ strategy at S 0. We proveby indu
tion on the height of the 
ontinuation tree at S that B also has aweak A-silent abort strategy at S.Base 
ase: The height of the 
ontinuation tree at S is 0. Then there are nostates rea
hable from S and the proposition is va
uously true.Indu
tion hypothesis: Suppose the lemma is true for all rea
hable states Ssu
h that the height of the 
ontinuation tree at S is � n.Indu
tion step: Consider a rea
hable state S su
h that (1) the 
ontinuation treeat S has height n+ 1, (2) S 0 is obtained from S by a transition in Atimeouts,and (3) B has a weak A-silent abort [resolve℄ strategy at S 0. Fix the weakA-silent abort [resolve℄ strategy at S 0. Let 
tr be the 
ontinuation tree at S.Consider the edges in 
tr 
oming out of the root. Remove all edges that arelabeled by transitions in A [ Atimeouts along with their des
endants. Ea
hremaining edge, if any, is a transition in B [ Btimeouts [ T. It is easy to seethat any su
h transition 
an also be applied at S 0. For ea
h remaining edge edo the following:Let S1 be the state obtained as a result of e. If a 
orresponding transition isnot present in the weak A-silent abort [resolve℄ strategy at S', then removethis edge along with all des
endants. If a 
orresponding transition is presentin the weak A-silent abort [resolve℄ strategy, then let S 00 be the state obtainedby applying this transition to S 0. We obtain that(i) the height of the 
ontinuation tree at S1 is � n,(ii) S 00 
an be obtained from S1 by a transition in Atimeouts,(iii) B has a weak A-silent abort [resolve℄ strategy at S 00.By applying the indu
tion hypothesis to S1, we 
on
lude that B has a weak24



A-silent abort [resolve℄ strategy at S1. Repla
e the 
ontinuation tree at S1 bythis strategy. These operations produ
e a weak A-silent strategy for B at S.There are two 
ases:Case 1: The height of this strategy is 0. It follows from the 
onstru
tionthat the height of the weak A-silent abort [resolve℄ strategy at S 0 is also 0.Therefore, rslvA(S 0) = 0 [rslvA(S 0) = 1℄. By proposition 20, rslvA(S) = 0[rslvA(S) = 1℄.Case 2: The height of this strategy is � 0. By 
onstru
tion, all leaf nodes arelabeled by states S2 su
h that rslvA(S2) = 0 [rslvA(S2) = 1℄. Therefore, B hasa weak A-silent abort [resolve℄ strategy at S. This 
ompletes the indu
tion. 2We now establish that the strategies available to the dishonest player are notnegatively a�e
ted by the honest player's timeouts.Proposition 22 B has an A-silent abort [resolve℄ strategy at S if and only ifB has a weak A-silent abort [resolve℄ strategy at S.Proof: By proposition 21, a timeout of A does not a�e
t the existen
e ofa weak A-silent abort strategy. We use this fa
t to 
onstru
t A-silent abort[resolve℄ strategies from weak A-silent [resolve℄ strategies by indu
tion on theheight of 
ontinuation trees. Similarly, we 
onstru
t weak A-silent abort [re-solve℄ strategies from A-silent abort [resolve℄ strategies by indu
tion.()) We start by proving that if B has an A-silent strategy, then B has a weakA-silent strategy. The proof is by indu
tion over the height of the 
ontinuationtree at S.Base 
ase: The height of the 
ontinuation tree at S is 0. Therefore, no state
an be obtained from S. The proposition is va
uously true.Indu
tion hypothesis: Suppose the proposition is true for any state S su
h thatthe height of the 
ontinuation tree at S is � n.Indu
tion step: Consider state S su
h that (1) the 
ontinuation tree at Shas height n + 1, and (2) B has an A-silent strategy at S. Let 
tr be the
ontinuation tree at S (with all transitions in A [Athreat removed). Fix theA-silent strategy 
trnE at S and 
onsider the edges 
oming out of its root.There are two 
ases:Case 1: There is an edge labeled by a transition inAtimeouts leading to state S 0.Then, by de�nition of the A-silent strategy, B must have an A-silent strategyat S 0. By the indu
tion hypothesis, B also has a weak A-silent strategy at S 0.By proposition 21, B has a weak A-silent strategy at S 0.25



Case 2: No edges are labeled by a transition in Atimeouts. Then remove alledges of 
tr originating from the root that are not present in 
trnE. Call thistree 
tr0. If no edges remain, then rslvA(S) = 0 [rslvB(S) = 2℄ and we aredone. If there are some remaining edges, then for every 
hild of the root in
tr0 tree, B must have an A-silent strategy. Hen
e if S 0 is a 
hild of the rootin S 0, then we 
an use the indu
tion hypothesis to repla
e the 
ontinuationtrees at S 0 by a weak A-silent strategy.(() We now show that if B has a weak A-silent strategy, then B has anA-silent strategy. The proof is by indu
tion on the height of the 
ontinuationtree at S.Base 
ase: The height of the 
ontinuation tree at S is 0. Therefore, no state
an be obtained from S. The proposition is va
uously true.Indu
tion hypothesis: Suppose the proposition is true for any state S su
h thatthe height of 
ontinuation tree at S is � n.Indu
tion step: Now 
onsider state S su
h that (1) the 
ontinuation tree atS has height n + 1, and (2) B has a weak A-silent strategy at S. Let 
trbe the 
ontinuation tree at S. Fix the weak A-silent abort strategy 
trnE atS and 
onsider the edges 
oming out of its root. Remove all edges that aretransitions in A [ Athreat along with their des
endants. For ea
h remainingedge e, perform the following operations:Case 1: If e is a transition in T leading to state S 0, then the strategy 
trnEmust also 
ontain this transition. Hen
e B has a weak A-silent strategy atS 0. By the indu
tion hypothesis, B has a A-silent strategy at S 0. Repla
e the
ontinuation tree at S 0 by this strategy.Case 2: If e is a transition in B [ Btimeouts leading to state S 0, then, as in
ase 1, if this edge is part of the strategy at S, repla
e the 
ontinuation treeat S 0 by an A-silent strategy. If e is not part of the strategy, then remove thisedge along with its des
endants.Case 3: If e is a transition in Atimeouts resulting in state S 0, then, by propo-sition 21, B has a weak A-silent strategy at S. By the indu
tion hypothesis,repla
e the 
ontinuation tree at S 0 by an A-silent strategy.These operations produ
e an A-silent strategy for B at S 0. There are twopossibilities:Case A: The height of this strategy is 0. It follows from the 
onstru
tion thatthe height of the weak A-silent strategy at S is also 0. Hen
e rslvA(S) = 0[rslvB(S) = 2℄ and we are done. 26



Case B: The height of this strategy is > 0. Then, by 
onstru
tion, all leafnodes are labeled by states S 00 su
h that rslvA(S 00) = 0 [rslvB(S 00) = 2℄.Therefore, by indu
tion, B has an A-silent abort [resolve℄ strategy at S. 2We now show that the strategies available to dishonest players are not nega-tively a�e
ted by the honest player's messages to the dishonest player.Lemma 23 Let S ! S 0 be a transition in A [Athreat. If B has an A-silentabort [resolve℄ strategy in S, and A does not send a message to T in the S ! S 0transition, then B has an A-silent abort [resolve℄ strategy in S 0.Proof: We rely on the observation that state transition rules a�e
ting inde-pendent parts of the system may be 
ommuted. Intuitively, moves of B andT are independent of A's internal state. Therefore, as long as A does not sendany messages to T , B may ignore any message sent to him by A and followthe same strategy in S 0 as in S. In light of proposition 22, all we need to showis that B has a weak A-silent abort [resolve℄ strategy at S 0 if B has a weakA-silent abort [resolve℄ strategy at S. We prove this by indu
tion on the heightof the 
ontinuation tree at S.Base 
ase: The height of the 
ontinuation tree at S is 0. The lemma is va
u-ously true.Indu
tion hypothesis: Suppose the lemma is true for all states S su
h that theheight of the 
ontinuation tree at S is � n.Indu
tion step: Consider state S su
h that (i) the height of the 
ontinuationtree at S is n+1, and (ii) B has a weak A-silent abort [resolve℄ strategy at S.Consider the 
ontinuation tree at S 0, and remove all edges that are in A [Athreat [ Atimeouts along with their des
endants. For ea
h remaining edge efrom S 0 to some state S 00, let t be the state transition rule labeling e and
onsider the following 
ases:Case 1: t 2 T. Sin
e no message is sent to T in the S ! S 0 transition, t 
anbe applied at S as well, resulting in some state Ŝ. Observe that(i) the height of the 
ontinuation tree at Ŝ is � n,(ii) B has a weak A-silent strategy at Ŝ,(iii) S 00 
an be obtained from Ŝ by the same transition that labels S ! S 0.All that is needed is to 
ommute S ! S 0 and S 0 ! S 00 transitions.By the indu
tion hypothesis, B has a weak A-silent strategy at S 00. Repla
ethe 
ontinuation tree at S 00 by this strategy.27



Case 2: t 2 B [Bthreat. There are three possibilities:(2.1) t 
annot be applied at S. Remove edge e along with its des
endants.(2.2) t 
an be applied at S, but it is not a part of the A-silent strategy at S.Remove edge e along with its des
endants.(2.3) t 
an be applied at S, and it is a part of the A-silent strategy at S. Then,as in Case 1, repla
e the 
ontinuation tree at S 00 by this strategy.Case 3: t 2 Btimeouts. If t is not a part of the A-silent strategy at S, removeedge e along with its des
endants. If it is a part of the A-silent strategy, repla
ethe 
ontinuation tree at S 00 by this strategy.By 
onstru
ting the right 
ontinuation tree for any immediate des
endant ofS 0, we have 
onstru
ted a weak A-silent strategy at S 0. It remains to showthat it is indeed an abort [resolve℄ strategy. There are two possibilities:Case A: The height of the 
onstru
ted strategy is 0. From the 
onstru
tion, itfollows that the height of the weak A-silent abort [resolve℄ strategy at S is also0. Therefore, rslvA(S) = 0 [rslvB(S) = 2℄. By proposition 19, rslvA(S 0) = 0[rslvB(S 0) = 2℄.Case B : The height of the 
onstru
ted strategy is > 0. By 
onstru
tion, allleaf nodes are labeled by states S� su
h that rslvA(S�) = 0 [rslvB(S�) = 2℄.We 
on
lude that B has a weak A-silent abort [resolve℄ strategy at S 0, whi
h
ompletes the indu
tion. 2We now use lemma 23 to show that for ea
h strategy 
onditional on A remain-ing silent, there is an equivalent un
onditional strategy against an optimisti
A. The reason is that an optimisti
 A prefers to wait for B's messages insteadof trying to 
onta
t T . Therefore, B may ignore optimisti
 A's messages andpro
eed with the A-silent strategy, obtaining the desired proto
ol out
ome.Lemma 24 Let S be a rea
hable state that does not 
ontain Z(ka; timed out)for any timer predi
ate Z. If B has an A-silent abort [resolve℄ strategy in stateS, then B has an abort [resolve℄ strategy against optimisti
 A in S.Proof: Sin
e B has an A-silent abort [resolve℄ strategy at S, B has a weakA-silent abort [resolve℄ strategy at S by proposition 22. By lemma 23, if Adoes not send a message to T in a transition from S, then B will still have theweak A-silent abort [resolve℄ strategy in the resulting state. B 
an prevent anoptimisti
 A from 
onta
ting T by 
ontrolling A's timeouts. Using these fa
ts,we show that B has an abort [resolve℄ strategy against an optimisti
 A whi
hworks by ignoring messages from A and preventing A from 
onta
ting T .In parti
ular, we show that if S is a rea
hable state su
h that (i) S does not28




ontain Z(ka; timed out) for any timer predi
ate Z, and (ii) B has a weakA-silent abort [resolve℄ strategy against an optimisti
 A, then B also has anabort strategy against an optimisti
 A. The proof is by indu
tion on the heightof the 
ontinuation tree at S.Base 
ase: The height of the tree is 0. By de�nition, the 
ontinuation tree 
tris simply the root labeled by S. The only possible weak A-silent strategy forB is 
tr whi
h is also a strategy against an optimisti
 A.Indu
tion hypothesis: Suppose the lemma is true for all states S su
h that theheight of the 
ontinuation tree at S is � n.Indu
tion step: Consider state S su
h that (i) B has a weak A-silent abort[resolve℄ strategy at S, (ii) S does not 
ontain any Z(ka; timed out) for anytimer predi
ate Z, and (iii) the height of the 
ontinuation tree at S is n+1. Fixthe weak A-silent strategy, and let 
tr be the 
ontinuation tree at S. Considerthe edges in 
tr 
oming out of the root. Be
ause A is optimisti
, there are noedges labeled by transitions in Athreat. For ea
h edge e, perform the followingoperations:Case 1: Edge e is a transition in A. Sin
e S does not 
ontain any timer predi-
ate Z(ka; timed out) and the proto
ol is optimisti
 for A, A does not send anymessages to T in this transition. If the resulting state is S 0, then by lemma 23and proposition 21, B has a weak A-silent abort [resolve℄ strategy at S 0. Sin
ethe height of 
ontinuation tree at S 0 is � n, B also has a abort [resolve℄strategy against optimisti
 B at S 0 by the indu
tion hypothesis. Repla
e the
ontinuation tree at S 0 by this strategy.Case 2: Edge e is a transition inB[T[Btimeouts[Atimeouts. Let the resultingstate be S 0. There are two possibilities:(2.1) This transition is not in the weak A-silent strategy at S. Then edge emust be labeled by a transition in B [ Btimeouts [ Atimeouts. Therefore, B
ontrols this edge when playing against an optimisti
 A. Remove this edgealong with its des
endants.(2.2) This transition is in the weak A-silent strategy at S. Then B also hasa weak A-silent strategy at S 0. By de�nition of weak A-silent strategies, e
annot be labeled by a transition in Atimeouts. Therefore, S 0 does not 
ontainZ(ka; timed out). Sin
e the height of the 
ontinuation tree at S 0 is � n, theindu
tion hypothesis applies, and we 
on
lude that B has a strategy at S 0.Repla
e the 
ontinuation tree at S 0 by this strategy.These operations produ
e a strategy for B at S against an optimisti
 A. Thereare two 
ases:Case A: The height of this strategy is 0. It follows from the 
onstru
tion thatthe height of the weak A-silent strategy at S is also 0. Therefore, rslvA(S) = 029



[rslvB(S) = 2℄ and this strategy is an abort [resolve℄ strategy.Case B : The height of this strategy is > 0. By 
onstru
tion, all leaf nodes arelabeled by states S 00 su
h that rslvA(S 00) = 0 [rslvB(S 00) = 2℄. Therefore, thestrategy is an abort [resolve℄ strategy.We 
on
lude that B has an abort [resolve℄ strategy against an optimisti
 A.2To show our main impossibility result, we need one more proposition.Proposition 25 Consider an optimisti
 proto
ol with initial state S0. Let trbe an tra
e in whi
h A is optimisti
 su
h that(1) the leaf node is labeled by state S 0 in whi
h B possesses A's signature,(2) ea
h edge in tr is labeled by a transition in A [B.Then there is a non-initial state S� in tr in whi
h B has an A-silent abortstrategy against A.Proof:We have rslvB(S0) = 0 and rslvB(S 0) = 2. Consider the �rst transitionS ! S� on tr su
h that rslvB(S) = 0; rslvB(S�) > 0. Proposition 19 impliesthat this must be a transition in A [Athreat.By de�nition 16, B has an A-silent strategy at S to rea
h a state S 00 su
hthat rslvA(S 00) = 0 or rslvB(S 00) = 2. Sin
e rslvB(S) = 0, it must be the 
asethat rslvA(S 00) = 0, thus B has an A-silent abort strategy at S. The proto
olis optimisti
 for A, tr starts in the initial state S0 and no timeouts o

ur ontr. Hen
e A does not send any messages to T in the transition from S to S�.Hen
e, by lemma 23, B also has an A-silent abort strategy in S�. 2We are now ready to prove our main impossibility result: in any optimisti
,fair, timely proto
ol (potentially dishonest) B has a strategy to rea
h a statewhere B enjoys an advantage against an optimisti
 A.Theorem 26 (Impossibility of Balan
e) In a fair, optimisti
, timely pro-to
ol between signers A and B, if A is optimisti
, then B has a strategy forrea
hing a non-initial state S� su
h that B has an advantage against A at S�.Proof: Re
all that if the proto
ol is optimisti
, then B has an honest strategyat S0 against an optimisti
 A su
h that:(1) ea
h leaf node in the strategy is labeled by a state in whi
h B possessesA's signature, and(2) all transitions in the strategy are in A [B.As a 
onsequen
e of proposition 25, every tra
e in this strategy 
ontains a30



non-initial state in whi
h B has an A-silent abort strategy. Hen
e, in order torea
h the state in whi
h he has advantage, B follows this strategy until it hitsthe state in whi
h he has an A-silent abort strategy. Then B lets A 
ontinuethe optimisti
 strategy until all optimisti
 a
tions of A are exhausted, rea
hingsome state S�. Sin
e no timeouts happen, A does not send any messages toT and, by repeated appli
ation of lemma 23, B still has the A-silent abortstrategy in S�. By lemma 24, B has an abort strategy against optimisti
 Ain S�. Sin
e S� is a state in B's optimisti
 strategy, B also has a resolvestrategy against an optimisti
 A in S�. Therefore, B has an advantage againstoptimisti
 A in S�.More pre
isely, assuming A and B are honest, let 
tr be the 
ontinuationtree at the initial state S0. By de�nition of the optimisti
 proto
ol, there is asele
tion of edges E in B [Atimeouts [Btimeouts su
h that in 
trnE(1) ea
h leaf node is labeled by a state in whi
h B possesses A's signature,and (2) all transitions are in A [B.Observe that no timeouts happen in the entire 
trnE tree. This implies thatZ(ka; timed out) does not o

ur in any state, and A does not send any mes-sages to T in any transition.By proposition 25, for ea
h tra
e in 
trnE there is a non-initial state S 0 su
hthat B has an A-silent abort strategy. For any tra
e, pi
k the �rst node (
ount-ing from the root) labeled by su
h a state, and let N be the 
olle
tion of allsu
h nodes. By 
onstru
tion, every tra
e in 
trnE passes through some nodeN in N . Moreover, two nodes from N may not o

ur in the same tra
e.For ea
h node N in N , 
onsider the subtree of 
trnE rooted at N . In thissubtree, remove edges labeled by B along with their des
endants. Observe thatin this new subtree (whi
h is still a part of 
trnE), all edges are labeled bytransitions in A, and A does not send any messages to T in these transitions.Sin
e N itself is labeled by a state in whi
h B has an A-silent abort strategy,by repeated appli
ation of lemma 23 we obtain that B has an A-silent abortstrategy in ea
h leaf node of this subtree.After performing this operation for ea
h node N in N , we obtain a strategyfor B against an optimisti
 A. The reason for this is that E was a sele
tion ofedges in B[Btimeouts[Atimeouts and the edges removed by our 
onstru
tionare in B. By 
onstru
tion, this new strategy is a subtree of 
trnE. We nowprove that this is the strategy required by the statement of the theorem.Consider any leaf node S� of this strategy. By 
onstru
tion, the tra
e from S0to this node passes through some N in N . Therefore, B has an A-silent abortstrategy in S�. Sin
e this node is also present in 
trnE, Z(ka; timed out) doesnot o

ur in S�. By lemma 24, B has an abort strategy against optimisti
 Aat S�. Moreover, sin
e S� is rea
hed a part of the 
trnE strategy, B also has31



a strategy to obtain optimisti
 A's signature at S�. 2We emphasize that Theorem 26 applies equally to initiator and responder.An optimisti
 parti
ipant is at a disadvantage regardless of the role he playsin the proto
ol. For example, in the Garay-Jakobsson-Ma
Kenzie abuse-free
ontra
t signing proto
ol [22℄, the originator enjoys an advantage against theresponder, even though the responder is the �rst to re
eive information thatpotentially enables him to obtain the originator's signature. More generally,on optimisti
 player is at a disadvantage against a mali
ious player, regardlessof whether the optimisti
 player is the originator or responder in the proto
ol.5 ExamplesIn this se
tion, we illustrate how our main impossibility theorem applies tothree optimisti
 
ontra
t signing proto
ols proposed in the literature. For ea
hproto
ol, we identify the point at whi
h a dishonest parti
ipant has advantageover an optimisti
 
ounterparty. The proto
ols we 
onsider are the o�-line fairpayment proto
ol of Boyd and Foo [9℄, the optimisti
 signature ex
hange pro-to
ol of Asokan, Shoup, and Waidner [4℄ (not to be 
onfused with the proto
olof [3℄), and the abuse-free 
ontra
t signing proto
ol of Garay, Jakobsson, andMa
Kenzie [22℄. We dis
uss the 
ommon stru
ture shared by all of these pro-to
ols, and informally suggest how advantage enjoyed by ea
h of the proto
olparti
ipants de
reases as message ex
hange progresses.5.1 Veri�able 
onvertible signature 
ommitmentsFixed-round optimisti
 signature ex
hange proto
ols in the literature usuallyemploy various implementations of veri�able, 
onvertible signature 
ommit-ments. Informally, a signature 
ommitment is a 
ryptographi
 
onstru
tionthat 
an be used by a signer to 
onvin
e his 
ounterparty (aka designated ver-i�er [28℄) that the signer has 
omputed the requested signature without releas-ing the signature itself. The re
ipient 
an verify the 
ommitment, but 
annot
onvert it into a 
onventional, universally veri�able signature. The 
reator ofa signature 
ommitment identi�es the trusted third party as the designated
onverter [11℄. Computational properties of veri�able signature 
ommitmentare su
h that nobody other than the designated veri�er or the designated
onverter will be 
onvin
ed of its 
reator's identity if shown the 
ommitment.A signature 
ommitment may 
onverted into a universally veri�able signatureby the designated 
onverter. Typi
ally, a third party trusted by both sign-32



ers is 
hosen as the designated 
onverter. The trusted third party is invokedoptimisti
ally, only if one of the parties misbehaves or if there is a 
ommuni-
ation failure. The trusted third party then uses 
ommitments ex
hanged bythe signers to resolve the proto
ol fairly.Let v
s
A(m;B; T ) abstra
tly denote the 
ryptographi
 primitive implement-ing veri�able 
onvertible signature 
ommitment. Its properties are as follows:(a) v
s
A(m;B; T ) 
an be 
reated only by A;(b) v
s
A(m;B; T ) 
an be veri�ed by B, but 
annot be used as a proof of A'sintentions. In the 
ase of [4,9,22℄, this is true be
ause v
s
 is a zero-knowledgeproof whi
h 
an be simulated by B;(
) v
s
A(m;B; T ) 
an be 
onverted into a universally veri�able signaturesigA(m) by T .In the de�nition above, simulation is used in the 
ryptographi
 sense (see anystandard referen
e on foundations of 
ryptography su
h as [24℄). Very infor-mally, B 
an 
ompute a proof whi
h is indistinguishable by any probabilisti
polynomial-time algorithm from the signature 
ommitment sent by A. There-fore, B 
annot use A's 
ommitment in lieu of A's signature, be
ause no thirdparty 
an determine whether it was 
omputed by A or simulated by B. Theonly ex
eption is the designated 
onverter T , who 
an 
onvert A's 
ommitmentinto an a
tual signature.5.2 Generi
 optimisti
 
ontra
t signing proto
olAll of the optimisti
 proto
ols we used as illustrations follow the same basi
logi
, modulo minor variations and optimizations. Let us 
all the two signers O(originator) and R (responder), and the trusted third party T . There are threesubproto
ols, whi
h we will 
all ex
hange, abort, and resolve. In the proto
oldes
ription, when a parti
ipant A sends a message msg intended for B, itwill be abbreviated as A ! B: msg. We use pd: proto
olInstan
e to uniquelyidentify a proto
ol instan
e.Ex
hange subproto
ol: The parties �rst ex
hange signature 
ommitmentswith T as the designated 
onverter, and then a
tual signatures. This repre-sents the optimisti
 
ow of the proto
ol. If nothing goes wrong, it results in asu

essful ex
hange of signatures without T 's involvement.O! R me1 = v
s
O(pd; R; T )O R me2 = v
s
R(pd;O; T )O! R me3 = sigO(pd)O R me4 = sigR(pd) 33



Abort subproto
ol: If O does not re
eive me2 in response to his �rst mes-sage, he has the option to time out and 
onta
t T with a request not to resolvethe 
urrent instan
e of the proto
ol in the future. When T re
eives this abortrequest, it 
he
ks its permanent database of past a
tions. If T has not pre-viously been requested to resolve this instan
e of the proto
ol, T marks theinstan
e as aborted in the database and sends an abort token to O. If theinstan
e is already marked as resolved, this means that T has previously re-solved this ex
hange in response to an earlier request (as des
ribed below). Tmust have obtained both sigO(pd) and sigR(pd). The latter is then releasedto O. The exa
t formats of the abort request and the abort tokens depend onthe proto
ol. While R is usually not allowed to abort, he is allowed to timeout and quit if he does not re
eive me1.O! T ma1 = sigO(abort ; me1)O T ma2 = Has me1 been resolved already?Yes : sigR(pd)No : sigT (abort ; me1)aborted [me1℄ := true
Resolve subproto
ol: If O sends his signature to R in me3, but does notre
eive R's signature in return, he 
an appeal to T using R's signature 
om-mitment re
eived in me2. T will 
onvert R's 
ommitment into a universallyveri�able signature. Similarly, if R releases his 
ommitment to O in me2, butdoes not re
eive O's signature in return, he 
an ask T to 
onvert O's 
om-mitment re
eived in me1 into a universally veri�able signature. As part of theresolve request, the requester must release his own signature to T or send hisdesignated 
onverter signature to T . The exa
t format of the resolve requestdepends on the proto
ol.R(O)! T mr1 = v
s
O(pd; R; T ); v
s
R(pd;O; T )R(O) T mr2 = Has me1 been aborted already?Yes : sigT (abort ; me1)No : Convert v
s
O(pd; R; T ); v
s
R(pd; R; T )into sigO(pd); sigR(pd)resolved [me1℄ := true34



5.3 Advantage in Asokan-Shoup-Waidner proto
olThe Asokan-Shoup-Waidner optimisti
 proto
ol [4℄ follows the pattern of thegeneri
 proto
ol des
ribed in se
tion 5.2 with one additional message 
ow.Prior to the main ex
hange subproto
ol, R redu
es his signature to a homo-morphi
 pre-image (hpi) whi
h 
an be veri�ed in the same way signature is,but at the same time preserves se
re
y of the signature on whi
h it is based(see [4℄ for details). Also, for optimization, me1 
ontains ordinary es
row ofsigO(pd) instead of a veri�able 
ommitment. Ordinary es
row OrdEs
O(pd; T )
an be 
onverted into sigO(pd) by T , but R 
annot verify this independentlyof T . R's response 
ontains a veri�able, 
onvertible signature 
ommitment inthe sense of se
tion 5.1, implemented as a veri�able es
row VerEs
R(pd; T ).O 
an verify independently of T that the es
row indeed 
ontains sigR(pd) andT will be able to 
onvert it into sigR(pd) if ne
essary. The following pi
tureillustrates how advantage of ea
h party de
reases as message ex
hange in theex
hange subproto
ol progresses.O R�hpi(sigR(pd))-OrdEs
O(pd; T ) Advantage againstoptimisti
 OAdvantage againstoptimisti
 R �VerEs
R(pd; T )-sigO(pd) No advantageNo advantage � sigR(pd)Even though O has sent OrdEs
O(pd; T ) in his �rst message, O still has anadvantage against an optimisti
 R until he sends out sigO(pd). This is be
auseO 
an abort by 
onta
ting T and ignoring all messages from R. An optimisti
R will prefer to wait for O's response rather than 
onta
t T with a resolve re-quest. If O wants to 
omplete the ex
hange, he simply 
ontinues the ex
hangesubproto
ol. The advantage 
ow of R 
an be similarly reasoned out.5.4 Advantage in Garay-Jakobsson-Ma
Kenzie proto
olThe abuse-free 
ontra
t signing proto
ol of Garay, Jakobsson, and Ma
Kenzieproto
ol [22℄ is very similar to the Asokan-Shoup-Waidner proto
ol. The onlyessential di�eren
e between the two proto
ols is in the details of 
ryptographi
implementation, and is thus not re
e
ted in our abstra
t model. In the ASW35



proto
ol, veri�able 
onvertible signature 
ommitments are implemented viaveri�able es
rows, whi
h are 
onstru
ted as intera
tive zero-knowledge proofsof 
ommitment to a signature. This means that B may be able to 
onvin
esome outside party C that A is parti
ipating in the proto
ol as long as C isonline and 
an observe the intera
tion between A and B.By 
ontrast, the GJM proto
ol uses private 
ontra
t signatures (PCS), whi
hare non-intera
tive signature 
ommitments. Therefore, B 
annot prove to Cthat A is parti
ipating in the proto
ol. This property is known as abuse-freeness. Even though a dishonest parti
ipant has advantage over an optimisti

ounterparty in the GJM proto
ol, exploiting the advantage is more diÆ
ult(e.g., a dishonest au
tioneer 
annot reveal an optimisti
 buyer's bid to anotherpotential buyer).O R-PCSO(pd; R; T ) Advantage againstoptimisti
 OAdvantage againstoptimisti
 R �PCSR(pd;O; T )-sigO(pd) No advantageNo advantage � sigR(pd)5.5 Advantage in Boyd-Foo proto
olWe now dis
uss a proto
ol derived from the Boyd-Foo proto
ol [9℄. The pro-to
ol uses the Gennaro-Kraw
zyk-Rabin (GKR) s
heme [23℄ for designated-
onverter signatures. A designated-veri�er extension of the s
heme is also dis-
ussed in [23℄. We will denote the designated-veri�er, designated-
onvertersignature from O intended for R with 
onverter T as S(pd; ko; kr; kt). This 
anbe thought of as a realization of the v
s
 primitive dis
ussed in se
tion 5.1.This proto
ol di�ers from the generi
 proto
ol in that only three messages areused in the ex
hange proto
ol. The ex
hange proto
ol starts with O sendingS(pd; ko; kr; kt) to R, who veri�es (via an intera
tive zero-knowledge proof)that it was indeed generated by O. R then sends ba
k sigR(pd) to O. Finally,O sends sigO(pd) to R. Hen
e, the ex
hange subproto
ol is:O! R me1 = S(pd; ko; kr; kt)R! O me2 = sigR(pd)O! R me3 = sigO(pd) 36



There is no abort subproto
ol, and only R 
an ask T to resolve after he hassent sigR(pd). He does this by sending sigR(hS(pd; ko; kr; kt); sigR(pd)i). T 
anthen 
onvert S(pd; ko; kr; kt) into a universally veri�able signature sigO(pd).The resolve subproto
ol for R is:R! T mr1 = sigR(hS(pd; ko; kr; kt); sigr(pd)i)T ! R mr2 = sigO(pd)T ! O mr3 = sigR(pd)The proto
ol 
an be shown to be fair but not timely for O. If R does notrespond to me1, then O is left hanging. For the same reason, the proto
ol isnot balan
ed for honest O (nor hen
e for optimisti
 O, too). To abort, R neverresponds to me1. To 
omplete the ex
hange, R 
onta
ts T . On
e R sends mr1,nobody has an advantage. The following pi
ture des
ribes the advantage 
owin this proto
ol:O RAdvantage againstoptimisti
 R -me1 Advantage againsthonest O� me3 No advantageNo advantage -me2 -Note that in this proto
ol, only one signer enjoys an advantage against anoptimisti
 opponent. This demonstrates that timeliness is essential in the proofof the impossibility theorem 26.6 Related workPrevious game-theoreti
 approa
hes to the study of fair ex
hange [14,26,27℄fo
used on formalizing fairness for the strongest possible honest player withouttaking optimism into a

ount. In [26℄, fairness is formalized as the existen
eof a defense strategy for the honest player, whi
h is not suÆ
ient if the honestplayer fa
es nondeterministi
 
hoi
es in the proto
ol, as is the 
ase in the pro-to
ol of Garay et al. [22℄. Another game-theoreti
 model was developed in [10℄,but it fo
uses mainly on e
onomi
 equilibria in fair ex
hange. Cryptographi
proofs of 
orre
tness by proto
ol designers [2,4,22℄ fo
us on basi
 fairness andignore the issues of optimism and fundamental asymmetry of 
ommuni
ationbetween the signers and the trusted third party.37



7 Con
lusions and Further WorkWe have studied 
ontra
t signing proto
ols in a game-theoreti
 model, giv-ing pre
ise, formal de�nitions of properties su
h as fairness and timeliness.We 
hara
terized optimism of honest proto
ol parti
ipants using a form ofout-of-band signal that for
es the optimisti
 player to wait for the opponent.While the out-of-band signal does not 
orrespond to any realisti
 me
hanismin distributed 
omputation, it a

urately redu
es the set of proto
ol tra
es tothose where the optimisti
 player waits for the opponent instead of 
onta
tingthe trusted third party.Our main result is that in any fair, optimisti
, timely proto
ol, an optimisti
player yields an advantage to his opponent. This means that the opponent hasboth a strategy to 
omplete the signature ex
hange and a strategy to keep theplayers from obtaining ea
h other's signatures. Sin
e the proto
ol is fair, theout
ome for both players is the same, but the player with an advantage 
an
hoose what this out
ome is. This holds regardless of whether the optimisti
player is the �rst or se
ond mover.Sin
e advantage 
annot be eliminated, it appears that the best a proto
ol 
ando to prote
t optimisti
 parti
ipants is prevent an opponent from proving toany outside party that he has rea
hed a position of advantage. This propertyis identi�ed in literature [22℄ as abuse-freeness. We are 
urrently investigatingthe formalization of abuse-freeness. Another dire
tion for further investigationinvolves the notion of trusted third party a

ountability. The relationship be-tween our de�nitions and the 
ryptographi
 de�nitions of fairness [4℄ may alsomerit further study. Finally, we believe that our te
hniques may prove usefulfor investigating multi-party 
ontra
t signing proto
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