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Abstract
Modern systems keep long memories. As we show in
this paper, an adversary who gains access to a Linux
system, even one that implements secure deallocation,
can recover the contents of applications’ windows, au-
dio buffers, and data remaining in device drivers—long
after the applications have terminated.

We design and implement Lacuna, a system that al-
lows users to run programs in “private sessions.” After
the session is over, all memories of its execution are
erased. The key abstraction in Lacuna is an ephemeral
channel, which allows the protected program to talk to
peripheral devices while making it possible to delete
the memories of this communication from the host. La-
cuna can run unmodified applications that use graphics,
sound, USB input devices, and the network, with only
20 percentage points of additional CPU utilization.

1. Introduction
Computers keep memories of users’ activities—whether
users want it or not. A political dissident may want to
upload text and photos to a social media site, watch a
forbidden video, or have a voice-over-IP conversation
without leaving incriminating evidence on her laptop.
A biomedical researcher may want to read a patient’s
file or run a data-mining computation on a database of
clinical histories and then erase all traces of the sensitive
data from his computer. You, the reader, may wish to
browse a medical, adult, or some other sensitive website
without your machine keeping a record of the visit.

None of the above are possible in modern computers.
Traces of users’ activities remain in application and OS
memory, file systems (through both direct and indirect
channels such as OS swap), device drivers, memories
of peripheral devices, etc. [7, 12, 17, 56]. Even when
applications such as Web browsers explicitly support
“private” or “incognito” mode, intended to leave no
evidence of users’ activities on the host machine, they
fail to achieve their objective because traces are kept by
system components outside the application’s control [1].

Secure memory deallocation (the eager clearing of
deallocated memory) [8] and secure file deletion [2,
4, 23] do not completely solve the problem because
they do not address the issue of a user’s data remain-
ing in long-lived shared servers (including the OS) on
that user’s machine. We show how to recover sensitive

data—including screen images of private documents
and SSH sessions—from memory that is not controlled
by the application and remains allocated even after the
application terminates: memory of the X server, kernel
device drivers, and the mixing buffer of the PulseAu-
dio audio server (see § 2). Furthermore, the PaX patch,
a common implementation of secure deallocation for
Linux [37], does not apply it pervasively and leaves
sensitive data, such as buffer cache pages, in memory.

In this paper, we describe the design and implementa-
tion of Lacuna, a system that protects privacy by erasing
all memories of the user’s activities from the host ma-
chine. Inspired by the “private mode” in Web browsers,
Lacuna enables a “private session” abstraction for the
whole system. The user may start multiple private ses-
sions, which run concurrently with each other and with
non-private computer activities. Within a private ses-
sion, the user may browse the Web, read documents,
watch video, or listen to audio. Once the private ses-
sion ends, all evidence, including application memory,
keystrokes, file data, and IP addresses of network con-
nections, is destroyed or made unrecoverable.

We use the term forensic deniability for the novel
privacy property provided by Lacuna: after the program
has terminated, an adversary with complete control of
the system and ability to threaten or coerce the user,
cannot recover any state generated by the program.

Lacuna executes private sessions in a virtual machine
(VM) under a modified QEMU-KVM hypervisor on a
modified host Linux kernel. Using a VM helps protect
applications that consist of many executables communi-
cating via inter-process communication (IPC), e.g., most
modern Web browsers.

After the VM is terminated, Lacuna erases its state
and all memories of its interaction with the devices. To
make the latter task tractable, Lacuna introduces a new
system abstraction, ephemeral channels. We support
ephemeral channels of two types. Encrypted channels
encrypt all data and erase the key when the channel is
destroyed. Hardware channels transfer data using hard-
ware, leaving no trace in host software—for example, by
having a guest OS directly read and write a hardware-
virtualized NIC. In both cases, application data is ex-
posed to hundreds of lines of code rather than millions,
making secure erasure feasible.

In summary, we make the following contributions:
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1. Demonstrate how sensitive data from terminated ap-
plications persists in the OS kernel and user-level
servers. This motivates forensic deniability as an in-
teresting privacy property that merits system support.

2. Design and implement ephemeral channels, an ab-
straction that allows a host kernel and hypervisor to
erase memories of programs executed within a VM.

3. Evaluate a full-system Lacuna prototype, based on
Linux and QEMU-KVM, that supports any Linux or
Windows program —including Web browsers, PDF
readers, and VoIP clients—and provides forensic de-
niability for workloads simultaneously accessing the
display, audio, USB keyboards, mice, and the net-
work, with minimal performance cost, e.g., 20 per-
centage points of additional CPU utilization.

2. Remembrance of things past
In this section, we describe two new attacks that re-
cover screen and audio outputs of applications after they
terminate. These outputs remain in allocated buffers at
user and kernel level, thus even properly implemented
secure deallocation would have not erased them. We
also show that a popular implementation of secure deal-
location (the Linux PaX patch) does not implement it
completely, leaving sensitive application data in system
memory caches and compromising forensic deniability.

2.1 Display
The following experiments were conducted on a recent
version of the Linux graphics stack: X.org X server
1.10.6 (referred to as X below), Nouveau open-source
NVIDIA GPU DRI2 module 0.0.16, kernel module
1.0.0, and Linux 3.3.0 with the PaX patch.

EXA caches in X server. Figure 1 is a visualization of
a particular data structure found in X’s heap after all ap-
plications terminated and no open windows remain on
the screen. It shows the screen outputs of several ap-
plications—an SSH client, a PDF viewer, and a Web
browser—that were not invoked concurrently and ter-
minated at different times.

The availability of the entire visual state of a window
from a terminated application within the memory of the
X server illustrates a general point. Modern systems
have deep software stacks that can retain the data of even
“secure” programs running on top of them.

In this specific case, the X server allocates memory
for its own use1 as part of the EXA acceleration layer, a
standard part of the modern X server architecture used
by many open-source GPU drivers. EXA accelerates 2D
graphical operations performed during screen updates

1 exaPrepareAccessReg mixed() allocates memory for each
pixel on the screen (file exa/exa migration mixed.c, line 203). The
pointer to the memory is stored in the Client data structure for X’s
own X client and referenced from the global array of pointers to the
Client data structures for all active X clients.

Figure 1. The display state of recently used applica-
tions cached in the X server after their termination.

when application windows are moved or their visibil-
ity changes. EXA uses the memory allocated by the X
server as a cache—for example, to cache the bitmap rep-
resentation of window contents when part of the window
is obscured. When an occluding window is relocated,
the exposed part of the screen is recovered by fetching
the bitmap from the EXA cache instead of redrawing the
entire application window (assuming that the window’s
contents are unchanged). The cache is not invalidated
when an application terminates, and is kept allocated
until the last X client terminates. Typically, the last X
client is an X window manager whose termination coin-
cides with the termination of the X server itself.

The EXA subsystem cache contains desktop contents
only for certain window managers which employ 2D
acceleration, such as TWM and FVMW2. We also re-
covered window bitmaps from an X server without any
window manager. With Xfce 4 and the Gnome/Unity en-
vironments, however, this memory buffer contains only
a static desktop wallpaper image. Furthermore, we ob-
served this leak when using the open-source Nouveau
graphics driver deployed by all major Linux distribu-
tions, but not with the proprietary NVIDIA driver be-
cause the latter does not use the EXA buffer.

TTM DMA driver memory pool. Window contents of
terminated applications can also be retrieved from ker-
nel memory, in a way that does not depend on X’s user-
space behavior. We exploit the TTM module, a gen-
eral memory manager for a Direct Rendering Manager
(DRM)2 subsystem used by most modern open-source
GPU drivers in Linux.

The TTM module manages a DMA memory pool for
transferring data between the host and GPU memories3.

2 http://dri.freedesktop.org/wiki/DRM
3 See drivers/gpu/drm/ttm/ttm page alloc dma.c in the Linux kernel
source.
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Scanning the pages in this memory pool reveals bitmaps
rendered on the screen by previously terminated appli-
cations, including the QEMU VM and VNC (used for
remote access to graphical desktops).

This technique works for the Gnome/Unity environ-
ment (the current Ubuntu default) and is likely indepen-
dent of the choice of window manager because all of
them use the kernel modules. The lifetime of data re-
covered this way is measured in hours if the system is
idle, but it is sensitive to the churn rate of windows on
the desktop and applications’ behavior. For example, the
display contents of a terminated VM remain in memory
almost intact after running various desktop applications,
such as terminal emulator and word processor, that do
relatively little image rendering. Only about half of the
contents remain after invoking a new VM instance, but
some remnants survive all the way until the DMA mem-
ory pool is cleared as a result of the X server’s termina-
tion or virtual console switch.

We also found a similar leak with the proprietary
NVIDIA driver when displaying static images outside
the QEMU VM. Its lifetime was limited to about 10
minutes. Without the driver’s source code, however, we
are unable to identify the exact reasons for the leak.

2.2 Audio
Most popular Linux distributions use the PulseAudio
server, which provides a uniform interface for advanced
audio functions like mixing and resampling. PulseAudio
uses shared memory segments of at most 64MB to com-
municate with applications. These segments are allo-
cated when applications create “PulseAudio streams” by
calling pa simple new and pa stream new. If an
application crashes or exits without freeing its segment
via pa simple free or pa stream free4, its au-
dio output remains in PulseAudio’s memory. PulseAu-
dio lazily garbage-collects segments whose owners have
exited, but only when a new shared segment is mapped.

Sound streams recovered from PulseAudio shared
segments after the application terminated are noisy be-
cause the PulseAudio client library stores memory man-
agement metadata inline with stream contents in the
same segment.5 Nevertheless, we were able to recover
up to six seconds of audio generated by Skype (suffi-
cient to reveal sensitive information about the conversa-
tion and its participants) and music players like mplayer.
In general, duration of the recovered audio depends on
the application’s and input file’s sampling rate.

2.3 “Secure” deallocation that isn’t
System caches. Not all system memory caches are
explicitly freed when no longer in use, thus secure deal-

4 See src/pulse/stream.c and src/pulse/simple.c in the PulseAudio
source.
5 See src/pulsecore/memblock.c in the PulseAudio source.

location is not sufficient for forensic deniability. For
example, PaX leaves file data read from disk in the sys-
tem buffer cache because those pages are not freed on
program exit. Buffer cache pages compromise foren-
sic deniability even for programs inside a VM. We ran
LibreOffice in an Ubuntu 11.10 guest VM on a host
without LibreOffice installed, then shut down the VM
and dumped the host’s physical memory. Examination
of the memory image revealed symbol names from
the libi18nisolang1gcc3.so library, disclosing
(with the help of apt-file) that LibreOffice had run.

Network data. Contrary to the advice from [8], PaX
does not clean sk buff structures which store network
packets. In general, PaX does not appear to eagerly erase
any kmem cache memory at all, which can completely
compromise forensic deniability. For example, we vis-
ited websites with Google Chrome in private mode run-
ning inside a VM with NAT-mode networking on a PaX-
enabled host. After closing Chrome and shutting down
the VM, a physical memory dump revealed complete
packets with IP, TCP, and HTTP headers.

3. Overview
The purpose of Lacuna is to execute applications within
private sessions, then erase all memories of execution
once the session is over. Lacuna runs applications in a
VM which confines their inter-process communications.
Applications, however, must interact with the user and
outside world via peripheral devices. If an application’s
data leaks into the memories of the kernel or shared,
user-level servers on the host, erasing it after the appli-
cation terminates becomes difficult or even impossible.

A key contribution of Lacuna is the ephemeral chan-
nel abstraction, depicted in Figure 2. Ephemeral chan-
nels connect the VM to hardware or small bits of soft-
ware so that only the endpoints see the data from private
sessions. The bulk of the kernel and user-level server
code does not see this data except possibly in encrypted
form. Ephemeral channels facilitate secure erasure af-
ter a private session is over because the unencrypted
data from the session (1) is confined into a few easy-
to-inspect paths, and (2) leaves the system only through
a few well-defined endpoints located as close as possible
to the hardware.

3.1 Usability properties
Run private and non-private applications concur-
rently. Users can perform sensitive tasks within a pri-
vate session concurrently with non-private tasks. For
example, a user can fill out a medical questionnaire or
visit her bank while continuing to poll for new email or
listening to music from a cloud service.

Incur extra costs only for private applications. La-
cuna is “pay as you go.” If the user is not concerned
about some application (for example, a computer game)
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Figure 2. Overview of ephemeral channels. Sensitive
data flow is shown for both types of channels. Hardware
ephemeral channels connect guest system software di-
rectly to hardware, while encrypted ephemeral channels
connect guest system software to small software proxies
on the host or peripheral device. Black boxes represent
unencrypted data, white boxes encrypted data.

leaving its data on her computer, the application exe-
cutes directly on the host OS and Lacuna does not im-
pose a performance overhead.

Minimize application, VM, and guest OS changes.
To implement ephemeral channels, Lacuna must change
the host OS and the virtual machine manager (VMM),
but it supports completely unmodified guest OSes and
applications. We were able to run Lacuna with a Mi-
crosoft Windows guest and watch streaming video using
Internet Explorer. However, in some cases minor modi-
fications to the guest OS yield privacy and performance
benefits (e.g., §5.3.3).

Improve with hardware support but keep legacy com-
patibility. Ephemeral channels benefit from special-
ized hardware. For example, single root I/O virtu-
alization (SR-IOV) network cards enable hardware
ephemeral channels for network packets. However, de-
vice support for virtualization is not yet commonplace;
SR-IOV is predominantly available in server-class net-
work cards. Lacuna is designed to take advantage of
hardware support when it exists, but also works on older
systems that lack such support.

Don’t interfere with VM-based security techniques.
Users can augment the security of an application be-
cause of its encapsulation in a VM, and Lacuna will not
interfere. For example, a user can wrap a Web browser
into a Lacuna VM confined by iptables so that it
can connect only to the range of IP addresses associated
with a particular bank.

Allow user to revoke protection from certain files. For
usability, Lacuna lets users save files from a private
session into the host system. This revocation of privacy

protection requires the user to explicitly identify the file
via a trusted dialog box. Such a dialog, which executes
under the control and with the privileges of the VMM
(not the guest OS), is often called a “powerbox” [45].
Lacuna also supports explicit, user-directed file import
from the host into a private session, but hides neither the
fact that import took place, nor the imported data.

3.2 Privacy properties
Our threat model is similar to the “private mode” in Web
browsers, which is familiar to many users and matches
their intuitive understanding of what it means for one’s
computer activities to remain private.

Suppose the user ends a private session at time Tuser,
all of its memories are erased by time Tclean, and the
OS reports the process exited at Texit (where Texit >
Tclean > Tuser). At time T > Texit, the computer is
seized by a local attacker who gains complete control
of the entire system, including the OS.

This adversary should not be able to extract any us-
able evidence of activities conducted in a private ses-
sion, except (1) the fact that the machine ran a private
session at some point in the past (but not which pro-
grams were executed during the session), and (2) which
devices were used during the session. He should not
be able to answer even binary questions (“Did the user
watch this video?”, “Did she browse that website?”, etc.)
any better than by random guessing. We refer to this
property as forensic deniability because it allows the
user to plausibly deny any computer activity that she
may have engaged in while in a private session.

Forensic deniability must be coercion-resistant (this
property is sometimes called “rubber-hose resistance”):
the user herself should not be able recover any evidence
from her private sessions. Lacuna does not persist se-
crets from one private session to another (e.g., a pro-
gram in a Lacuna VM cannot save encrypted state to be
reused during its next invocation). The attacker controls
the host, and if a secret is kept by the user instead—e.g.,
as a password or in a hardware device—she can be co-
erced to open the persistent state. To avoid keeping se-
crets with the user, the contents of the initial VM image
are not protected for privacy or integrity.

Lacuna aims to minimize the window from Tuser
(user completes the private session) to Tclean (all mem-
ories are erased). For example, we rejected any design
that requires searching the disk as part of sanitization.

3.3 Out-of-scope threats
In keeping with the browsers’ “private mode” abstrac-
tion, Lacuna is not intended to protect users’ privacy
against concurrent attackers. If the adversary runs on
the host concurrently with a private session (e.g., the
host has been compromised by malware before the pri-
vate session terminated), he can observe the user’s data
in memory and learn everything. We must also assume
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that the host operating system is not malicious. A mali-
cious or “pathologically buggy” OS could accidentally
persist the contents of memory, expose arbitrary secrets,
and not erase them when the private session terminates.

The concept of a “trusted computing base” (TCB) is
typically used in contexts where trusted and untrusted
components coexist on the same machine. It is not ap-
plicable in our threat model, where the attacker gains
access to the machine after the private session is over.
Before the session terminates, the TCB for Lacuna is
the entire system; after Tclean, the TCB is empty—any
software can be malicious. In Section 4.5, we discuss
resistance of Lacuna to side-channel attacks.

Lacuna makes its best effort to erase the peripher-
als’ memories, but it cannot prevent them from keeping
state that is not erasable via public APIs. For example,
Lacuna does not protect against a hypothetical GPU or
NIC that logs data in hardware and makes the logs avail-
able via an undocumented protocol.

Lacuna does not protect sensitive data stored outside
the system. For example, websites may keep evidence of
users’ visits and reveal it to third parties. An adversary
who seizes a router or modem that caches IP addresses
or DNS queries may recover traces of network activity
even after Tclean. Note that some local attackers—for
example, malware that compromises the machine after
the private session is over—do not have access to the
state kept in the network. Users concerned about net-
work surveillance can run Tor [53] inside a Lacuna VM.

4. Design
This section details the design of Lacuna. In the follow-
ing, “VMM” refers to Lacuna’s virtual machine man-
ager (which is a modified QEMU VMM in our proto-
type).

4.1 Constructing ephemeral channels
A Lacuna VM communicates with peripheral devices
via ephemeral channels. Lacuna uses two mechanisms
to construct ephemeral channels: encryption and hard-
ware. Table 1 lists all device types supported by our La-
cuna prototype and the corresponding channels.

Lacuna takes advantage of recent developments in
hardware. Hardware support for efficient virtualization
(e.g., nested page tables) allows fast execution of private
sessions in a VM, confining most forms of inter-process
communications. Lacuna relies on a programmable
GPU and obtains great performance benefits from hard-
ware support for encryption (§ 6). Ephemeral channels
based on dedicated hardware are only practical with an
IOMMU, otherwise a buggy guest kernel could dam-
age the host. Hardware ephemeral channels also benefit
from hardware virtualized peripheral devices which are
just becoming widely available.

Device Endpoints (C VMM, B host) HW
of the ephemeral channel

Display C Frame buffer
B CUDA routine on GPU

GPGPU

Audio C Sound card
B Lacuna software mixer

None

Network C Network card
B NIC driver

SR-IOV
NICs

USB input
devices

C USB controller
B USB generic host controller
driver

VT-d/
IOMMU

Table 1. Ephemeral channels implemented by Lacuna
and the corresponding hardware support, if any.

Hardware channels. A hardware ephemeral channel
can use either dedicated hardware, or hardware virtual-
ization support. To assign exclusive control of hardware
to the guest kernel, Lacuna uses peripheral component
interconnect (PCI) device assignment. Assigned devices
are not available to the host, thus host drivers need not
be modified. Because the host never handles the data
flowing to or from assigned devices (not even in en-
crypted form), this data leaves no trace in the host. Dedi-
cated hardware sometimes makes sense (e.g., USB con-
trollers), but can be expensive (e.g., multiple network
cards), awkward to use (e.g., multiple keyboards), or
even impossible (e.g., physical limitations on the num-
ber or topology of peripherals).

When available, hardware support for virtualization
combines the performance of dedicated hardware with
the economy and convenience of dynamic partitioning.
For example, a single-root I/O virtualization (SR-IOV)
network interface card (NIC) appears to software as
multiple NICs, each of which can be directly assigned to
a guest. Hardware virtualization is great when available,
but is not always an option, thus for some devices—for
example, GPUs and audio devices—Lacuna constructs
an encrypted channel instead.

Encrypted channels. Encrypted channels use standard
key exchange and encryption to establish a trusted chan-
nel over an untrusted medium, just like encryption is
used to secure network communication. An encrypted
channel connects the VMM with a small software proxy
for each piece of hardware. Only the VMM process and
the proxy handle raw data from the private session, the
rest of the system handles only encrypted data. When
the VM terminates, the OS zeroes its memory, the proxy
zeroes its own memory (if it has one), and the symmet-
ric key that encrypted the data in the channel is deleted.
Deleting the key cryptographically erases the data,
making it unrecoverable [4].

The software proxies are different for each class of
devices, but most Lacuna support is relatively device-
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independent and can be used for a variety of hardware
without the need to port low-level driver changes. For
example, Lacuna modifies the generic USB host con-
troller driver to encrypt packets from USB input devices;
the hypervisor decrypts the packets just before the vir-
tual keyboard device delivers them to the guest kernel.

One important question is whether we plugged all
possible leaks in the software that handles unencrypted
data. We believe we did, but that is not the point. The
system abstraction of ephemeral channels reduces the
auditing burden from impossible to feasible (i.e., about
1,000 lines in our prototype according to Table 3).

4.2 Ephemeral channels for specific device types
Our Lacuna prototype provides ephemeral channels for
display, audio, USB, and the network.

4.2.1 Display
All accesses by applications to a graphics card in a typ-
ical Linux desktop system are controlled by the X server.
X processes display requests and sends hardware-specific
commands and data to the GPU kernel-mode driver for
rendering. Even if a program is running inside a VM,
its graphical output is captured by the VMM and ren-
dered as a bitmap in a standard application window on
the host.6 The memory of the host’s X server may hold
the complete display from the private session, as shown
in Section 2.1. The problem of erasing graphical out-
put is thus not confined to a specific driver, but requires
in-depth analysis of the code of the X server, which is
notorious for its size and complexity.

Lacuna uses an ephemeral channel to remove trust
in all user-level servers and kernel-level drivers for dis-
play data. The VMM encrypts the virtual frame buffer
and sends it directly to GPU memory. GPU memory is
exclusively owned by the GPU and is not directly ad-
dressable from the CPU. Lacuna thus avoids exposure
of the display data to any code running on the CPU such
as GPU libraries, the X server, or the host kernel. The
VMM then invokes Lacuna’s CUDA routine which runs
entirely on the GPU, decrypts the data in GPU memory,
and renders it on the screen via an OpenGL shader. The
unencrypted display data is thus present only in VMM
memory and Lacuna-controlled GPU memory.

4.2.2 Audio
In Lacuna, audio functionality is split between mixing
and everything else (e.g., resampling, equalization, and
sound effects). A guest system processes and mixes its
own audio, then the VMM virtual sound card encrypts
it. To allow multiple VMs to share a single audio device
with each other and with non-private processes, the host
mixes all of these audio streams. Mixing an unlimited
number of audio streams in hardware is not practical and

6 Lacuna does not currently support 3D acceleration inside VMs.

not supported by most sound cards, so Lacuna provides
a hardware-agnostic software mixer that runs on the
host. The mixer decrypts guest audio just before the final
mix is written to the DMA buffer in the host sound card
driver. Each VM has an ephemeral channel for audio
input and another one for audio output. These channels
connect the VMM sound card device with the DMA
buffer in the sound card driver.

4.2.3 USB
Lacuna supports a wide variety of USB input devices—
including, at a minimum, keyboard and mouse7—with
ephemeral channels based on either PCI device assign-
ment (a hardware ephemeral channel), or encrypted
USB passthrough (an encrypted ephemeral channel).

Many USB input peripherals must communicate with
both private and non-private applications, but not at the
same time. For example, the user will not be typing into
both private and non-private windows simultaneously.
Therefore, Lacuna can dynamically switch control of
USB devices between the host and the guest.

Using PCI device assignment, Lacuna can assign an
entire host USB controller to a VM, thus avoiding any
handling of USB data on the host. However, device as-
signment requires an IOMMU. Furthermore, all devices
downstream of the controller (reachable via hubs) are
assigned to the same guest, which may be undesirable.

Using encrypted USB passthrough, Lacuna can switch
between host drivers and thus let the user toggle the des-
tination of input keystrokes between the private VM and
the host. This channel does not require an IOMMU and
allows device assignment at a per-port level.

Lacuna minimizes USB-related code modifications
by using features common across USB versions and de-
vices. The USB passthrough mode requires no modi-
fication to the lowest-level host controller drivers that
control specific USB port hardware on motherboards.
This mode takes advantage of the output format for USB
Human Interface Device (HID) class devices (which in-
clude all keyboards and mice) to determine when to re-
turn device control to the host, but in general can support
any device of this class.

4.2.4 Network
Network support is important for both usability and
privacy. Some of the attacks we consider (e.g., malware
infecting the host after the private session is over) do not
control the network, but can learn private information
from IP headers leaked by the VM.

Lacuna creates an ephemeral channel from the host
NIC driver to the VMM where it delivers the packet
to the virtual network card. This channel can be based
on either encryption, or SR-IOV hardware. Encrypted
ephemeral channels connect to the host in layer 2: each

7 Keyboard input can leak via TTY buffers [7].

6



VM connects to a software tap device, which connects
to the NIC via a software bridge. The entire packet, in-
cluding IP (layer-3) header, is encrypted while it passes
through the host. Hardware ephemeral channels based
on SR-IOV network cards give a VM direct control over
a virtual network PCI device in the card hardware that
multiplexes a single network connection.

To minimize the changes to specific device drivers,
we encapsulate most routines for MAC registration and
encryption/decryption in a generic, device-independent
kernel module, privnet. This module checks whether
a MAC address belongs to some VM and encrypts or
decrypts a packet when needed.

4.3 Clearing swap
Some users avoid swap. Ubuntu guidelines, however,
recommend enabling swap [54] to accommodate memory-
hungry programs, support hibernation, prevent program
termination in case of unforeseen disaster, and to al-
low the kernel to manage memory effectively. Lacuna
supports swap for greater usability.

Swapped-out memory must be encrypted lest it leaks
data from a private session. Existing solutions (dm-crypt
in Linux) associate a single, system-wide key with the
entire swap. This is unacceptable in our design because
when a private session ends, the key used to encrypt
this session’s swap must be erased. Erasing the key
would make any data swapped by a concurrent non-
private process undecryptable. There exists a research
system [42] that uses multiple rotating keys, but it must
swap in any live data upon key rotation, with negative
impact on performance.

Lacuna adds metadata so that swap code can recog-
nize pages associated with private sessions. These pages
are not shared and only they are encrypted upon swap.

4.4 Clearing stack memory
The kernel puts sensitive data in stack-allocated vari-
ables that can persist after the function returns [34]. We
take advantage of the fact that 64-bit Linux confines a
kernel thread’s activities to (a) its own kernel stack, and
(b) interrupt and exception stacks. When a private VM
terminates, Lacuna clears the thread’s kernel stack and
sends an inter-processor interrupt (IPI) to clear all per-
core interrupt and exception stacks.

PaX has a mechanism for zeroing the kernel stack on
every return from a system call, but Lacuna does not use
this technique because it has a significant performance
cost, e.g., a 20% drop in TCP throughput over a loop-
back connection in one experiment.

4.5 Mitigating side channels
In this section, we analyze two classes of side channels,
but a comprehensive study of side channels in Linux is
well beyond the scope of this paper. Note that a typical
side-channel attack assumes that the adversary monitors

some aspect of the system concurrently with the pro-
tected program’s execution. In our threat model, how-
ever, the adversary gains access to the system only after
the execution terminates. This dramatically reduces the
bandwidth of side channels because the adversary ob-
serves only a single value, as opposed to a sequence of
values correlated with the program’s execution.

Statistics. Linux keeps various statistics that can po-
tentially compromise forensic deniability. For instance,
/proc/net/dev keeps the number of bytes trans-
ferred by the NIC, while /proc/interrupts keeps
per-device received interrupt counts. These counters are
scattered through kernel code and data structures, mak-
ing it difficult to design a single mitigation strategy.

Low counts mean that the machine has not been used
for certain activities. For example, if the number of bytes
transferred over the network is low, then the machine
has not been used for streaming video. If the number of
keyboard and mouse interrupts is low, then the machine
has not been used to create a PowerPoint presentation.
High counts, on the other hand, may not convey much
useful information about activity in a private session
because all statistics are aggregates since boot.

Device metadata. Lacuna cannot hide that a particular
device was used during a private session, but in-memory
data structures that describe device activity can leak
additional information. For example, the USB request
block contains the length of the USB packet, which may
leak the type of the USB device or the type of data
transferred (e.g., photos have characteristic sizes).

Lacuna eliminates this side channel by carefully ze-
roing all metadata fields.

4.6 Design alternatives
We survey design alternatives that may appear to—but
do not—provide the same guarantees as Lacuna.

“Just use a virtual machine.” Running an application
in a VM and then erasing the VM’s memory when it ex-
its does not provide forensic deniability. As we show in
Section 2, programs running in a VM leave traces in the
host’s data structures, OS swap, and shared user-level
servers. Furthermore, saving data from the protected
program is essential for usability, but requires a secure
dialog (§5.5) that is not a standard feature of VMs.

“Just use secure deallocation.” All of our experi-
ments demonstrating recovery of sensitive data after the
program terminated were conducted on a Linux sys-
tem patched with PaX security modifications. One of
these modifications is secure deallocation: freed kernel
buffers are eagerly scrubbed of their contents. Secure
deallocation does not address the problem of sensitive
data in shared memory that remains allocated on pro-
gram exit, including X, PulseAudio, and the kernel.
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Additionally, PaX fails to scrub the kernel’s numer-
ous memory caches on deallocation, even though this is
a known data-lifetime hazard [8, 17]. Ephemeral chan-
nels make it easier to implement secure deallocation
correctly and comprehensively by limiting the num-
ber of memory locations potentially containing unen-
crypted program data. Rather than eagerly scrubbing
freed cache memory, which would harm performance
(e.g., over 10% reduction in throughput for our TCP
stream to localhost experiment), we manually audit the
(few) Lacuna code pathways that require secure dele-
tion to make sure they don’t use memory caches. Where
memory caches are unavoidable, unencrypted data is ei-
ther overwritten in place by encrypted data, or (as a last
resort) eagerly erased on being freed.

“Just use hardware.” Recent research [26, 50] pro-
posed comprehensive virtualization in hardware. These
approaches require static partitioning of resources that
would be very unattractive for the home user. For exam-
ple, the number of VMs must be fixed in advance, and
a fixed amount of RAM must be dedicated to each VM
whether it is used or not. By contrast, Lacuna can run
as many concurrent VMs as can be efficiently executed
by the underlying hardware (see §6.9 for empirical scal-
ability measurements). Lacuna, too, can take advantage
of hardware virtualization where available.

“Just reboot the machine.” Rebooting the machine
does not guarantee that no traces of application data
remain on disk or even in RAM [21]. More importantly,
rebooting has an unacceptable impact on usability. For
example, few users would be willing to reboot before
and after every online banking session.

5. Implementation
5.1 VMM setup and teardown
Lacuna builds upon the QEMU-KVM hypervisor and a
kernel patched with the secure deallocation portion of
the PaX patch. Lacuna securely tracks modifications to
the initial VM image via an encrypted diffs file, which is
created when the user starts a private session. To reduce
disk I/O, a small amount of image-modification meta-
data, such as translation tables between sector number
and diffs file offset, is kept in VMM memory and never
written to the diffs file. The rest of the metadata and all
writes to the image are encrypted before they are written
to the diffs file. When a session terminates, the key that
encrypts the diffs file is deleted and memory containing
the VMM address space is zeroed.

In keeping with its threat model, Lacuna does not
persist changes to the VM image. Therefore, software
updates during a private session (e.g., self-updates to a
Web browser) are lost after the session completes.

On teardown, the VMM must erase its image file
from the kernel page cache. We add a flag to the open

Operation Function
init Sets parameters that describe the cryp-

tographic algorithm to be used (e.g., key
size, cipher)

set iv Sets the initialization vector (IV) for a
channel direction

send kex msg Sends a key exchange message and re-
ceives a response

set activation Turns a context on or off—this is
needed when the use of a device that
cannot be multiplexed is toggled be-
tween a VM and the host

destroy Zeroes and frees memory associated
with a context

per backend Answers queries specific to a crypto-
graphic context type (e.g., obtains ids
for kernel cryptographic contexts)

Table 2. Interface for cryptographic contexts.

system call (O PRIVATE) that tracks all virtual disk
images opened by the VMM. On close, all private files
in the page cache are invalidated and zeroed by PaX.

5.2 Encrypted ephemeral channels
To implement encrypted ephemeral channels, the ker-
nel and programmable devices maintain cryptographic
contexts, one for each direction of each device’s logical
communication channel (input from the device or out-
put to the device). Our Lacuna prototype provides kernel
and GPU implementations. For symmetric encryption,
kernel cryptographic contexts use the Linux kernel’s
cryptographic routines, while GPU contexts use our own
implementation of AES. To establish a shared secret key
for each context, Lacuna uses the key exchange por-
tion of TLS 1.1. We ported the relevant parts of the Po-
larSSL [41] cryptographic library (SHA1, MD5, multi-
precision integer support) to run in the kernel.

These contexts are managed from userspace via
our libprivcrypt library; its interface is shown
in Table 2. We modified the QEMU VMM to use
libprivcrypt. On initialization, the VMM creates
cryptographic contexts in the kernel and GPU and es-
tablishes shared parameters (algorithm, IV, secret key),
allowing it to encrypt data destined to these contexts
and decrypt data originating from them. To encrypt and
decrypt, libprivcrypt uses libgcrypt [30] or
ported kernel code and Intel’s AES-NI hardware en-
cryption support.

When a private session terminates, even abnormally
(i.e., from SIGKILL or crash), all cryptographic con-
texts associated with it are zeroed, including those on
the GPU. This, along with zeroing of the VMM’s mem-
ory, ensures that all data that has passed through the
ephemeral channels is cryptographically erased.
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5.3 Ephemeral channels for specific device types
5.3.1 Display
The endpoints of the GPU ephemeral channel are the
VMM’s frame buffer for an emulated graphics card,
which stores the guest’s display image as a bitmap, and
the GPU. The VMM polls the frame buffer, and, upon
each update, encrypts the buffer contents and transfers
the encrypted data to GPU memory. Lacuna then in-
vokes its CUDA routine8 to decrypt the guest’s frame
buffer in the GPU, maps it onto an OpenGL texture, and
renders it on the host’s screen with an OpenGL shader.
The implementation consists of 10 LOC in the QEMU
UI module and SDL library, and an additional QEMU-
linked library for rendering encrypted frame buffers,
with 691 LOC of CPU code for GPU management and
725 lines of GPU decryption and rendering code.

5.3.2 Audio
Lacuna provides output and input audio channels for
each VM and a small (approximately 550 LOC) soft-
ware mixer that directly interacts with the audio hard-
ware’s DMA buffer (§4.2.2). We modified the widely
used Intel HD-audio driver to work with the mixer,
changing fewer than 50 lines of code. This driver works
for both Intel and non-Intel controller chips.9

Lacuna can send sound input to multiple VMs.
For output (playback), the host kernel keeps a sepa-
rate buffer for each VM to write raw encrypted audio.
Linux’s audio drivers provide a callback to update the
pointers indicating where the hardware should fetch the
samples from or where the application (e.g., PulseAu-
dio) should write the samples. Our mixer takes advan-
tage of this mechanism: upon pointer updates, samples
in each encrypted output buffer are decrypted, copied to
the DMA buffer between the old and new application
pointers, and then zeroed in the encrypted output buffer.
The DMA buffer is erased when the VM terminates.

5.3.3 USB
Lacuna’s USB passthrough mode encrypts data in USB
Report Buffers (URBs) as they are passed to system
software from hardware control. Packets destined for the
guest and the host may be interspersed, so Lacuna tracks
which URBs it should encrypt by associating crypto-
graphic contexts with USB device endpoints. An end-
point is one side of a logical channel between a device
and the host controller; communication between a single
device and the controller involves multiple endpoints.

We added 118 lines to the usbcore driver to en-
crypt URBs associated with cryptographic contexts as

8 While our implementation uses CUDA and is compatible only with
NVIDIA GPUs, similar functionality can be also implemented for
AMD GPUs using OpenCL [35].
9 http://www.kernel.org/doc/Documentation/
sound/alsa/HD-Audio.txt

they are returned from hardware-specific host controller
drivers. These URBs are decrypted in the VMM’s vir-
tual USB host controller before they are passed on to the
guest USB subsystem. Our prototype has been tested
only with USB 1.1 and 2.0 devices, but should work
with USB 3.0. It does not support USB mass storage
devices and less common USB device classes (such
as USB audio), but adding this support should require
a reasonably small effort because our mechanism is
largely agnostic to the contents of URBs.

When the user moves her mouse over a private VM’s
display and presses “Left-Control+Left-Alt”, Lacuna
engages a user-level USB driver, devio, to redirect the
keyboard and mouse ports to the VMM.10 The title bar
of the VMM window indicates whether the keyboard
and mouse input are redirected through ephemeral chan-
nels. When they are not redirected, the Lacuna VMM
refuses input to avoid accidental leaks.

The same key combination toggles control of the key-
board and mouse back to the host. The VMM’s virtual
hardware detects the key combination by understanding
the position of modifier key status in data packets com-
mon to USB HID devices. With a hardware ephemeral
USB channel, detecting the combination requires guest
OS modification (119 LOC). With hardware channels,
errors that freeze the guest currently leave no way of
restoring input to the host, but we believe that this lim-
itation is not intrinsic to our architecture (e.g., the host
could run a guest watchdog).

5.3.4 Network
Lacuna VMs are networked in layer 2, enabling encryp-
tion of entire layer-3 packets. Each VM is assigned its
own MAC address controlled by our privnet mod-
ule, which uses cryptographic contexts to do encryption
in Intel’s e1000e driver with 30 lines of glue code.

Outgoing packets are encrypted by the VMM. The
host kernel places them in an sk buff, the Linux net-
work packet data structure. The driver maps each sk -
buff to a DMA address for the NIC to fetch; right
before it tells the NIC to fetch, it queries privnet
whether the packets in the transmit queue come from
a Lacuna VM, and, if so, decrypts them in place.
The driver zeroes sk buffs on receipt of a “trans-
mission complete” interrupt. Because decryption takes
place right before the packets are written into hardware
buffers, packets from a VM cannot be received by the
host (and vice versa) at a local address.

For incoming packets, as soon as the driver receives
the interrupt informing it that packets are transferred
from the NIC to the kernel via DMA, it encrypts the
packets destined for the Lacuna VMs. Encryption is

10 The unmodified QEMU already uses this key combination for ac-
quiring exclusive control of the keyboard, but it takes events from the
X server and does not provide forensic deniability.
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done in place and overwrites the original packets. De-
cryption takes place in the VMM.

Although the layer-2 (Ethernet) header is not en-
crypted, its EtherType, an indicator of the layer-3 pro-
tocol it is encapsulating, is modified to prevent a check-
sum failure: a constant is added to it so that the result-
ing value is not recognized by the Linux kernel during
encryption, and subtracted again during decryption. As
a side benefit, this bypasses host IP packet processing,
improving performance (§6.6).

5.4 Encrypted per-process swap
Lacuna adds a new flag, CLONE PRIVATE, to the
clone system call. When this flag is set, the kernel al-
locates a private swap context, generates a random key,
and protects the swap contents for that kernel thread.

When an anonymous page is evicted from memory,
the kernel checks the virtual memory segment metadata
(VMA in Linux) to see whether the page is part of a
private process. If so, the kernel allocates a scratch page
to hold the encrypted data and allocates an entry in a
radix tree to track the private swap context. The tree
is indexed by the kernel’s swap entry so that it can
find the context on swap-in. Our implementation re-uses
much of the existing swap code path. To help distinguish
private pages during normal swap cache clean up, we
add an additional bit in the radix tree to indicate when
a particular entry may be removed and which entries to
purge during process cleanup.

5.5 User-controlled revocation of protection
For usability, Lacuna provides a mechanism that allows
the user to explicitly revoke protection from a file and
save it from a private session to the host, where it may
persist beyond the end of the session. This mechanism
raises a dialog box (“powerbox”) running under the con-
trol and with the privileges of the VMM [45]. This di-
alog enables the user to specify the destination on the
host, thus ensuring that all transfers from a private ses-
sion are explicitly approved by the user.

To implement this mechanism, we made a small
modification (74 lines of code) to the Qt framework11

so that a “Save” dialog box in private VMs presents the
user with an additional option to access a file in the host
file system. When this button is clicked, Qt makes a hy-
percall which causes the VMM to open a “File save”
dialog that lets the user write the file to the host. La-
cuna uses a QEMU virtual serial device to transfer data
between private applications and the host.

For importing data into the private session, Lacuna
provides command-line programs on the guest and host.
The host program writes to a UNIX socket, the VMM
reads it and writes into the same virtual serial device,

11 http://qt.nokia.com/

which is read by the guest program. These import utili-
ties are not currently connected to Qt functionality.

6. Evaluation
We evaluate both the privacy properties and perfor-
mance of Lacuna. We run all benchmarks except switch
latency on a Dell Studio XPS 8100 with a dual-core 3.2
GHz Intel Core i5 CPU, 12 GB of RAM, an NVIDIA
GeForce GTX 470, and an Intel Gigabit CT PCI-E NIC,
running Ubuntu 10.04 desktop edition. The swap parti-
tion is on a 7200 RPM, 250GB hard drive with an 8MB
cache. Switch latency to and from the private environ-
ment is benchmarked on a Lenovo T510 with a dual-
core 2.67 GHz Core i7 CPU and 8GB of RAM, running
Ubuntu 12.04 desktop edition. The Lenovo has a Mi-
crosoft USB keyboard (vendor/device ID 045e:0730)
and mouse (vendor/device ID 045e:00cb), as well as
an IOMMU, which is required for the PCI assignment-
based ephemeral channel. Both machines have AES-NI
and use it for all AES encryption except where indi-
cated. Our Lacuna prototype is based on the Linux 3.0.0
host kernel (with a port of the PaX patch’s CONFIG -
PAX MEMORY SANITIZE option) and QEMU 0.15.1.
The guest VM runs Ubuntu 10.04 desktop edition, with
2 GB RAM and the Linux 3.0.0 kernel to which small
modifications were made to support PCI assignment
(§5.3.3) and the experiments discussed below.

6.1 Validating privacy protection
Following the methodology of [8], we inject 8-byte “to-
kens” into the display, audio, USB, network, and swap
subsystems, then examine physical RAM for these to-
kens afterwards. Without Lacuna (but with QEMU and
PaX), the tokens are present after the applications exit.
With Lacuna, no tokens are found after the private ses-
sion terminates. This experiment is not sufficient to
prove forensic deniability, but it demonstrates that La-
cuna plugs at least the known leaks.

One subtlety occurred with the video driver. We use
the Nouveau open-source driver for the test without the
display ephemeral channel and the NVIDIA proprietary
driver for the test with the channel, because the NVIDIA
driver is required for CUDA execution. To inject to-
kens, we run a program that displays a static bitmap
inside a VM. With the ephemeral channel, no tokens
from the bitmap are found after VM termination. With-
out the channel, we detect the tokens12 after the VM ter-
mination—but not if we use the proprietary driver. This
driver does leak data from other applications, but not
from QEMU. Without the source code, we are unable to
identify the causes for this observed behavior.

12 The tokens are slightly modified due to the display format conver-
sion in QEMU, which adds a zero after every third byte.
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Subsystem LOC
Graphics 0 (725 CUDA)
Sound 200 (out), 108 (in)
USB 414
Network 208

Table 3. Lines of code (LOC) external to QEMU that
handle unencrypted data. Line counts were determined
by manual examination of data paths from interrupt
handler to encryption using SLOCCount [58].

Video Browser LibreOffice
QEMU 32.2± 7.4 25.9± 1.3 8.1± 1.2
Lacuna 49.7± 0.3

(∆17.5)
46.2± 1.5

(∆20.3)
21.1± 0.6

(∆13.0)

Table 4. CPU utilization (%) for benchmarks with en-
crypted network, video, and sound channels. The per-
formance of all benchmarks on Lacuna is identical to
unmodified QEMU. The increase in CPU utilization is
marked with ∆. Averages are calculated over 5 trials
with standard deviations as shown.

6.2 Measuring data exposure
To estimate the potential exposure of private-session
data, Table 3 shows the size of driver code that handles it
unencrypted. The graphics data is not exposed at all be-
cause it is encrypted by the VMM, which then transfers
it directly to the GPU memory and invokes the Lacuna
implementation of the CUDA decryption and GL ren-
dering routines on the GPU (implemented in 725 LOC).

6.3 Full-system benchmarks
We measure the overhead of Lacuna on a number of
full-system tasks: watching a 854 × 480 video with
mplayer across the network, browsing the Alexa top
20 websites, and using LibreOffice, a full-featured of-
fice suite, to create a document with 2,994 characters
and 32 images. We sample CPU utilization at 1 second
intervals. To avoid the effects of VM boot and to capture
application activity, we omit the first 15 samples and re-
port an average of the remaining samples.

The execution times of the video and LibreOffice
benchmarks on Lacuna are within 1% of base QEMU.
The performance of the browser benchmark varies due
to network conditions, but there is no difference in av-
erage execution time. The display—redrawn upon every
contents change at the maximum rate of 63 frames/s—is
not perceptibly sluggish in any of the benchmarks when
using the encrypted GPU channel. Table 4 shows the
CPU utilization of the workloads running on Lacuna and
on unmodified QEMU.

6.4 Clean-up time
The clean-up after a private VM terminates is comprised
of five concurrent tasks:

Clear VM memory. Lacuna uses PaX to zero VM
memory when the VM process exits and frees its address
space. To measure the worst-case window of vulnerabil-
ity, we run a program in the VM that allocates all 2 GB
of available VM memory, then send the VMM a signal
to terminate it and measure the time between signal de-
livery and process exit. Linux does not optimize process
exit, often rescheduling a process during its death. In
10 trials, unmodified Linux required 2.1 ± 0.1 s to ter-
minate a VM. The worst case we measured for Lacuna
(USB passthrough mode with keyboard and mouse) is
2.5± 0.2 s.

Clear buffered disk image. The Lacuna VMM opens
disk image files with a privacy flag so that the kernel
can securely deallocate all buffer cache pages for those
files when the VMM exits without affecting the page
cache contents for concurrent, non-private programs.
Only clean pages need to be deallocated and zeroed be-
cause a private Lacuna session does not persist the mod-
ified disk image. This operation takes 0.111±0.002 s in
our video benchmark.

Clear swap cache memory. Lacuna securely deallo-
cates freed swap cache pages. A benchmark program
allocates 12 GB of memory to force the system to
swap, writing out an average of 677.8 ± 33.4 MB to
the swap partition. However, because the swap cache is
used only for transient pages (those that have not com-
pletely swapped out or swapped in), the average number
of memory pages remaining in the swap cache at pro-
gram termination is only 50 or so (200KB). Clearing
this data takes only 68.9± 44.6 µs.

Clear kernel stacks. Lacuna zeroes the VMM’s kernel
stack, and also notifies and waits for each CPU to zero
their interrupt and exception stacks. In our video bench-
mark, this takes 15.8± 1.15 µs.

Clear GPU memory. Lacuna has a GPU memory
scrubber which uses the CUDA API to allocate all avail-
able GPU memory and overwrites it with zeros. A simi-
lar GPU memory scrubbing technique is used in NCSA
clusters.13 Our scrubber zeroed 1.5GB of GPU memory
in 0.170± 0.005 s.

6.5 Switch time
Table 5 shows how long it takes to switch into a private
session and how the switch time depends on the number
of devices and type of the ephemeral channel(s).

A significant portion of the switch time when using
encrypted USB passthrough results from disabling the

13 http://www.ncsa.illinois.edu/AboutUs/Directorates/ISL/software.html
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Channel type Switch time (s)
USB passthrough

keyboard only 1.4± 0.2
keyboard + mouse 2.3± 0.2

PCI assignment
keyboard only 2.4± 0.2

keyboard + mouse 3.8± 0.2

Table 5. Switch time for different numbers of peripher-
als and ephemeral channel types (averages over 5 trials).

peripheral USB drivers (0.8± 0.1 s for keyboard alone,
1.0 ± 0.2 s for keyboard and mouse) to allow devio
to take control. This time is affected by the number of
USB devices that must be disconnected. Interestingly,
it is also affected by the complexity of the USB device:
keyboards with media keys often show up as two devices
on the same interface, which necessitates disconnecting
two instances of the peripheral driver.

We noticed an interaction between the guest USB
drivers and QEMU that significantly affects switch time.
Linux’s USB drivers perform two device resets during
device initialization. These resets in the guest are partic-
ularly costly because each results in QEMU performing
an unnecessary (since QEMU has already performed a
reset) unbinding of the devio driver and the reattach-
ment of the device’s initial usbhid driver. Eliminating
QEMU’s action upon these resets cuts this component
of switch time by two thirds.

6.6 Network performance
We benchmark network performance between a private
VM and a gateway connected by a switch: netperf and
ping results are in Table 8, scp and netcat in Table 6.

There are several types of netperf tests. TCP STREAM
uses bulk transfer to measure throughput, the other types
measure latency. TCP RR (Request/Response) tests the
TCP request/respond rate, not including connection es-
tablishment. TCP CC (Connect/Close) measures how
fast the pair of systems can open and close a connec-
tion. TCP CRR (Connect/Request/Response) combines
a connection with a request/response transaction. Ping
measures round-trip time.

File size Transfer time (s)

scp Ephemeral + netcat
AES-NI Software

400MB 8.41 4.28 8.92
800MB 14.96 8.55 17.50

Table 6. netcat and scp test results.

Neither latency, nor throughput is significantly af-
fected when using AES-NI, except for a dip in through-
put for receiving 300 byte packets. For small packets,

No AES-NI PCI
encryption assignment

CPU util (%) 27.7±2.7 36.0±1.6 14.7±4.2

Table 7. CPU utilization for tap networking with-
out encryption, with encryption, and using PCI assign-
ment when transferring an 800MB file via netcat. The
throughput is 794±3 Mbps for all runs.

performance with AES-NI encryption is slightly bet-
ter than without encryption because encrypted packets
bypass some host processing (since they appear to be
of an unknown packet type). To verify this explana-
tion, we did an additional experiment where we changed
the EtherType of each packet without encrypting the
content. We measured over 120Mbps throughput when
sending 30-byte packets, which is about a 40% improve-
ment. Software encryption achieves roughly half the
throughput of AES-NI.

We also compare the file transfer time for netcat
using an encrypted ephemeral channel and scp without
using ephemeral channels (Table 6). File transfer with
AES-NI encryption is twice as fast as software-only scp.
These results also validate that our software encryption
performance is comparable to scp.

Table 7 shows the measurements of CPU utilization
when transferring an 800MB file using no encryption,
AES-NI, and PCI assignment. This benchmark was run
on a quad-core 3.6 GHz Dell OptiPlex 980 with 8 GB of
RAM and an Intel Gigabit ET NIC.

While all methods have nearly identical throughput,
PCI assignment significantly lowers CPU utilization.

6.7 Audio latency
To measure output latency from the VM to the sound
DMA buffer, we sent a known sequence through the
sound channel and measured host timestamps for send
and receive. The results are in Table 9, showing that
the latency of the encrypted ephemeral audio channel
is smaller than that of PulseAudio.

Latency (ms)
Ephemeral channel 23.5± 8.6
PulseAudio 57.5± 11.3

Table 9. Audio latency comparison (averages over 10
trials).

There are counterbalancing effects at play here. The
encrypted channel incurs additional computational over-
head, but bypasses PulseAudio mixing and shortens the
path from the VM to host audio DMA buffer.

6.8 Swap performance
Figure 3 compares the performance of plain Linux, La-
cuna without encrypted swap, Lacuna with encrypted
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Test type Netperf throughput (Mbps) Netperf latency−1 (Trans./s) Ping
TCP STREAM send TCP STREAM recv TCP RR TCP CC TCP CRR round-trip time (ms)

Packet size 1400 300 30 1400 300 30 1 1 1 1400 300 30
QEMU 788 516 86 827 829 226 5452 2530 2260 0.327 0.251 0.237
Lacuna 769 419 89 819 820 231 5312 2487 2180 0.366 0.253 0.219
HW encryption 2% 19% -4% 1% 1% -2% 3% 2% 4% 12% 1% -8%
Lacuna 373 242 54 373 370 168 5206 2264 2029 0.408 0.277 0.244
SW encryption 53% 53% 37% 55% 55% 26% 5% 11% 10% 25% 10% 0.3%

Table 8. Netperf and ping test results for unmodified QEMU and Lacuna with hardware-assisted (HW) AES-NI
encryption and software (SW) encryption. Reductions in performance are shown as percentages, where negative values
indicate better performance than QEMU.
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Figure 3. Average elapsed time for swap microbench-
marks (lower is better). This benchmark allocates a
buffer using malloc, touches each page in pseudoran-
dom order, and reads the pages of the buffer in order to
check correctness. The numbers above the bars indicate
relative slowdown relative to Linux.

swap, and dm-crypt-protected swap. In the first three
cases, a non-private process performs similarly to Linux.
Our encrypted swap differs from standard swap in two
ways whose effects are shown in the graph: it allocates
a scratch page and bookkeeping for every private page
swapped and encrypts the swapped-out pages.

dm-crypt has particularly bad performance in this
microbenchmark. We verified that our installation of
dm-crypt on ext4 adds, on average, 5% overhead
when running file-system benchmarks such as IOzone14

6.9 Scalability
Table 10 shows the performance of multiple concurrent
Lacuna VMs, all executing the LibreOffice workload
in a private session. The performance overhead of one
VM is negligible, but increases with eight concurrent
VMs because the CPU is overcommitted. Our attempt
to run more than eight VMs produced an unexplained
CUDA error. Non-private VMs scale to 24 instances
before Linux’s out-of-memory killer starts killing them.

14 http://www.iozone.org/.

Setup Running Time (s)
1 QEMU VM 189.3± 0.1
1 Lacuna VM 190.6± 0.1 (1.01×)
8 QEMU VMs 191.6± 0.1
8 Lacuna VMs 277.3± 1.1 (1.45×)

Table 10. Time to complete the LibreOffice workload
under contention from other VMs (averages over 5 tri-
als).

7. Related work
Lifetime of sensitive data. Copies of sensitive data can
remain in memory buffers, file storage, database sys-
tems, crash reports, etc. long after they are no longer
needed by the application [6, 7, 17, 46, 56], or leak
through accidentally disclosed kernel memory [22, 34].
To reduce the lifetime of sensitive data, Chow et al.
proposed secure deallocation of memory buffers [8]. In
Section 2, we demonstrate that secure deallocation alone
does not achieve forensic deniability. Chow et al. focus
on reducing average data lifetime, whereas forensic de-
niability requires minimizing worst-case data lifetime.
A recent position paper [24] identifies the problem of
worst-case data lifetime and suggests using information
flow and replay to solve it.

CleanOS [52] helps mobile applications protect their
secrets from future compromise by encrypting sensitive
data on the phone when the application is idle. It does
not prevent leaks through the OS and I/O channels.

Red/green systems. Lampson [27] discusses the idea
of two separate systems, only one of which ever sees
sensitive data (that one is red, the other green). Several
systems switch between “secure” and regular modes [5,
32, 47, 55]. They do not provide forensic deniability for
the red system and often require all activity on the green
system to cease when the red one is active. Pausing the
green system can disrupt network connections, e.g., to a
cloud music service. Lacuna supports concurrent, finely
interleaved private and non-private activities.
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Isolation. Xoar [9] and Qubes [43] break up the Xen
control VM into security domains to minimize its at-
tack surface and enforce the principle of least privi-
lege; Qubes also facilitates partitioning of user applica-
tions. These systems provide an implementation of an
inferior VM [40] (aka disposable VM) that isolates un-
trusted programs in a fast-booting,15 unprivileged, copy-
on-write domain. Although not designed for minimizing
data lifetime per se, these systems could be Lacuna’s
underlying virtualization mechanism instead of QEMU.
Lacuna’s ephemeral channels can support private ses-
sions regardless whether the underlying hypervisor is
monolithic or compartmentalized.

Tahoma [11] and the Illinois Browser OS [51] in-
crease the security of Web applications using a combi-
nation of hypervisors and OS abstractions. They do not
limit data lifetime within the host system.

Systems with multi-level security (MLS) and, in gen-
eral, mandatory access control (MAC) can control in-
formation flow to prevent information from disclosure.
Some MAC systems separate trusted and untrusted key-
board input [25] as Lacuna does. We are not aware of
any MAC, MLS, or more modern (e.g., [24, 31, 59])
system that provides deniability against an attacker who
compromises the system after a private session is over.

Encrypted file systems. Boneh and Lipton observed
that data can be “cryptographically erased” by encrypt-
ing it first and then erasing the key [4]. Many crypto-
graphic file systems use encryption to (1) protect the
data after the computer has been compromised, and/or
(2) delete the data by erasing the key [3, 15, 38, 39, 60].
Recently, encrypted file systems have been proposed for
secure deletion of flash memory [28, 29, 44]. Encrypted
file systems that derive encryption keys from user pass-
words are not coercion-resistant. ZIA relies on a hard-
ware token to provide the decryption key when the token
is in physical proximity to the machine [10].

In contrast to full-disk encryption, filesystem-level
encryption does not provide forensic deniability. For ex-
ample, the current implementation of the encrypted file
system in ChromeOS on a Cr-48 laptop is based on
eCryptfs [14] which reveals sizes of individual objects,
allowing easy identification of many visited websites in
the encrypted browser cache using standard fingerprint-
ing techniques based on HTML object sizes [13, 48].

Provos observed that application data stored in mem-
ory may leak out via OS swap and proposed encrypting
memory pages when they are swapped out [42]. We use
a similar idea in our implementation of encrypted swap.

Steganographic and deniable file systems. Stegano-
graphic and deniable file systems aim to hide the ex-
istence of certain files [18, 33, 36]. This is a stronger

15 4-5 seconds, per http://theinvisiblethings.
blogspot.com/2010/10/qubes-alpha-3.html

privacy property than forensic deniability. Czeskis et al.
showed that the OS and applications can unintention-
ally reveal the existence of hidden files [12]. Deniable
file systems can be used in combination with our system
for stronger privacy protection.

Data remanence. There has been much work on data
remanence in RAM, magnetic, and solid-state mem-
ory [19–21], as well as secure deletion techniques fo-
cusing on flash memory [28, 29, 44, 49, 57]. The latter
are complementary to our approach.

Digital rights management (DRM). The goal of DRM
is to restrict users’ control over digital content. Some
DRM systems encrypt application data which may re-
duce its lifetime, but any resulting deniability is inciden-
tal. For example, high-bandwidth digital content protec-
tion (HDCP) is a cryptographic protocol that prevents
content from being displayed on unauthorized devices,
but the content is still exposed to the X server and GPU
device drivers. DRM is controversial [16], and we be-
lieve that solutions for protecting user privacy should
not be based on proprietary DRM technologies.

8. Conclusion
We presented Lacuna, a system that makes it possible to
erase memories of programs’ execution from the host.
Lacuna runs programs in a special VM and provides
“ephemeral channels” through which they can securely
communicate with display, audio, and USB input de-
vices, with only 20 percentage points of CPU overhead.
Ephemeral channels limit the number of outlets through
which program data can leak into the host, prevent un-
wanted copying of the data, and allow easy erasure. The
abstraction presented to the user is a “private session,”
akin to the “private mode” in modern Web browsers al-
beit with much stronger privacy guarantees.
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