
SAFERPHP:
Finding Semantic Vulnerabilities in PHP Applications

Sooel Son

The University of Texas at Austin

samuel@cs.utexas.edu

Vitaly Shmatikov

The University of Texas at Austin

shmat@cs.utexas.edu

Abstract
Web applications are vulnerable to semantic attacks such as
denial of service due to infinite loops caused by malicious
inputs and unauthorized database operations due to missing
security checks. Unlike “conventional” threats such as SQL
injection and cross-site scripting, these attacks exploitbugs
in the logic of the vulnerable application and cannot be
discovered using data-flow analysis alone.

We give the first characterization of these types of vulner-
abilities in PHP applications, develop novel inter-procedural
algorithms for discovering them in PHP source code, and
implement these algorithms as part of SAFERPHP, a frame-
work for static security analysis of PHP applications. SAFER-
PHP uncovered multiple, previously unreported vulnerabil-
ities in several popular Web applications.

Categories and Subject Descriptors D.2.4 [Software Engi-
neering]: Software/Program Verification—Validation; F.3.2
[Logics and Meanings of Programs]: Semantics of Program-
ming Languages—Program analysis

Keywords Static analysis, data flow analysis, denial of ser-
vice, security checks, access control, PHP

1. Introduction
Web applications implemented in scripting languages such
as PHP are notoriously insecure. A recent report found secu-
rity issues in 64% of the analyzed websites, with an average
of 6 issues per website [32]. Classic Web-application vul-
nerabilities include SQL injection, cross-site scripting, SSI
injection, and cross-site request forgery [1, 3, 22, 29]. These
attacks involve injection of malicious commands into Web
content presented by the vulnerable application, queries sub-

Permission to make digital or hard copies of all or part of this work for personalor
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLAS’11 June 5, 2011, San Jose, California, USA.
Copyright c© 2011 ACM 978-1-4503-0830-4/11/06. . . $10.00

mitted by the application to a back-end database, or requests
sent by the browser to the application.

In this paper, we focus on entirely different classes of vul-
nerabilities which are caused by semantic bugs in the appli-
cation’s logic and—unlike injection vulnerabilities—cannot
be characterized simply in terms of undesirable data flows.
The first class of vulnerabilities is denial of service due to
infinite loops triggered by malicious network inputs. These
bugs enable a single packet to crash the server or cause ex-
traordinary resource consumption. The second class is miss-
ing authorization checks prior to sensitive database oper-
ations. PHP applications are especially prone to missing-
check vulnerabilities because they typically consist of multi-
ple files. Each file can be invoked directly from the network
by supplying its name as part of the URL and thus repre-
sents an unintended entry point, potentially introducing an
unchecked path to the sensitive operation.

This paper describes the design and implementation of
SAFERPHP, a new tool for static security analysis of PHP
applications. SAFERPHP is the first tool capable of auto-
matically inferring the PHP application’s authorization pol-
icy and finding missing authorization checks. The problem
of identifying security checks in PHP code is significantly
more difficult than in, say, Java libraries or SELinux be-
cause PHP checks are application-specific and cannot be rec-
ognized syntactically; instead, SAFERPHP recognizes them
by the semantic role they play in the application. Further-
more, SAFERPHP is the first security analysis tool to sup-
port object-oriented features of PHP.

At the core of SAFERPHP are several new static anal-
ysis algorithms. To find denial-of-service vulnerabilities,
SAFERPHP first uses standard taint analysis to find loops
whose execution can be influenced by network inputs.1 It
then employs new algorithms based on symbolic execu-
tion to determine if the attacker can prevent the loop from
terminating, thus causing denial of service. Taint analysis
also helps find calls to vulnerable library functions, misuses
of uninitialized variables, and SQL injection sites. To find

1 We emphasize that taint analysisper seis not enough, and standard taint-
based techniques for finding cross-site scripting and SQL injection sites
cannot be used for finding DoS vulnerabilities.

missing authorization checks, SAFERPHP uses several new
inter-procedural algorithms to analyze all calling contexts in
which sensitive database operations may be invoked, applies
semantic analysis of control dependencies to identify possi-
ble security checks, and verifies whether checks are consis-
tently present in all calling contexts. SAFERPHP found 49
previously unreported, remotely exploitable vulnerabilities
in popular PHP applications (including CVE-2010-2423 and
CVE-2010-2424), with very few false positives. These vul-
nerabilities were reported to the developers and we worked
with several of them to patch the vulnerable code.

2. Related work
Prior work on static security analysis of PHP applica-
tions focused primarily on data-flow (taint) analysis to find
cross-site scripting and SQL injection vulnerabilities, which
are characterized by unsanitized inputs flowing to the ap-
plication’s HTML output or back-end SQL queries [18–
20, 24, 31, 33]. Taint analysis alone is not sufficient for
finding either missing authorization checks, or denial-of-
service (DoS) vulnerabilities, which often involve tainted
inputs controlling execution of some part of the program (in
this paper, we focus on loops whose termination depends on
a tainted input). There are no “sinks” to serve as the targets
of taint analysis, nor is it enough to find program locations
that are control-dependent on tainted data because flagging
each one as a potential vulnerability would produce an over-
whelming number of false positives.

In this paper, we (1) characterize two new classes of
semantic vulnerabilities—DOS due to attacker-controlled
infinite loops and missing authorization checks—and (2)
present entirely new algorithms for statically finding these
vulnerabilities. The only component borrowed from previ-
ous literature is taint analysis, which is the preliminary step
before the main security analyses.

Static detection of DoS vulnerabilities and termination
analysis.Previous research on finding DoS vulnerabilities
focused on servers implemented in C. C code can be crashed
by a single buffer overflow (e.g., “inputs of death” [7, 21]).
Denial of service can also be caused by algorithmic com-
plexity attacks which exploit the worst-case behavior of
server data structures [10].

SAFER is a tool for finding recursive function calls in C
code where the depth of recursion is superlinear in the size
of the input [8]. By contrast, we focus on attacker-controlled
infinite loops. This is a very different problem. Except for
the preliminary taint analysis, our algorithms are new and
completely different from [8].

Non-terminating loops can be found by runtime analy-
sis [6], but only after the program has already entered the
loop. By contrast, SAFERPHP is a static analysis tool. Prov-
ing loop termination, while undecidable in general, is a sub-
ject of active research [5, 9]. Our techniques are somewhat
similar to those used for proving loopnon-termination [17],

but the approach used in [17] is not suitable for finding DoS
vulnerabilities because it depends ondynamicallyfinding
candidate loops. In our experience, DoS vulnerabilities tend
to occur on rarely executed paths and are unlikely to mani-
fest in normal execution. By contrast, SAFERPHPstatically
finds all loops whose termination is controlled by the at-
tacker and attempts to demonstrate the existence of inputs
that cause the loop not to terminate.

Finding missing authorization checks.Prior work on find-
ing missing authorization checks without a specification fo-
cused on Java [23, 28] and SELinux [14, 30]. All of these
analyses assume that authorization checks are syntactically
recognizable,e.g., as invocations of the Java security man-
ager [23, 28] or calls to functions such assecurity file -

permission andsecurity file mmap in SELinux [30].
Security invariants in Java can also be learned and enforced
using dynamic analysis [4, 15].

Verifying the presence of known security functions in
the call chain prior to every sensitive operation—as done
in [14, 23, 28, 30]—does not work for PHP applications.
In general, PHP authorization checks are not recognizable
syntactically because PHP does not have a standard set of
security functions (see Section 4.6). SAFERPHP is the first
system to use consistency analysis of control dependencies
in the whole-program control-flow graph to identify autho-
rization checkssemantically, by their role in the program,
without any specification or syntactic characterization ofthe
application’s authorization policy.

Balzarottiet al. proposed an approach for finding unin-
tended work flows caused by multiple PHP modules [2].
This analysis can find some missing checks but, in general,
is too coarse-grained: for example, a missing check on one
of the many execution paths leading to a sensitive operation
within the same module is not a multi-module workflow vi-
olation according to the definition of [2]. Therefore, many of
the vulnerabilities discovered by SAFERPHP could not have
been found using the tool described in [2].

3. Example vulnerabilities
The current prototype of SAFERPHP can discover five types
of vulnerabilities: denial of service (DoS) due to attacker-
controlled infinite loops, unauthorized access to sensitive
operations, SQL injection, misuse of uninitialized variables,
and DoS due to vulnerable PHP library functions. Example 1
illustrates all five types with simplified examples.

In a typical PHP application, authorization is usually re-
quired prior to to database, cookie, and file operations. In the
current prototype of SAFERPHP, we define sensitive oper-
ations to be all database operations other thanselect, but
extending it to other operations presents no conceptual diffi-
culties. Manyselects (e.g., those responsible for retrieving
credentials from the database when authenticating a user or
deciding if the IP address of an incoming request is black-
listed) can be legitimately reached without any check. In the

Example 1Illustrations of PHP vulnerabilities
Ln1: // No access check such as "if(!$logged_in) die;"
Ln2: if (isset($_GET[’post_id’]))

$post_id = $_GET[’post_id’];
Ln3: $sql="DELETE FROM blogdata WHERE post_id=$post_id";
Ln4: $query=mysql_query($sql)

or die("Cannot query the database.
");
Ln5: ...
Ln6: if(isset($varUninitialized))

echo($varUninitialized);
Ln7: ...
Ln8: if (isset($_GET[’content’]))$str=$_GET[’content’];
Ln9: if (isset($_GET[’eol’]))$eol=$_GET[’eol’];
Ln10: $encoded=chunk_split($str,76,$eol);
Ln11: $value=unserialize(stripslashes($_POST[$afield]));
Ln12: ...
Ln13: if(isset($_GET[’year’])) $year = $_GET[’year’];
Ln14: $i = 1962;
Ln15: while($i<=$year)
Ln16: {
Ln17: if($i < 3000){ processYear($i); }
Ln18: else { $i=$year; continue; }
Ln19: $i++;
Ln20: }

absence of a specification denoting which operations must
be protected, treatingselect as sensitive would have gen-
erated an overwhelming number of false positives.

If Line 1 is the program entry point, there is no autho-
rization check prior to the database operation on Line 3. By
typing the URL of this PHP file directly into the browser’s
address bar, a malicious user can execute a sensitive SQL
operation (deleting from the database). Note that this isnot
an instance of SQL injection.

Lines 13 to 20 are an example of a DoS vulnerability.
By controlling the value of $year, the adversary can cause
the loop to be executed any number of times. If $year>
3000, the loop becomes infinite, leading to excessive CPU
consumption and denial of service to legitimate users.

Lines 2 to 4 show an example of a SQL injection vulner-
ability. Here, unsanitized user inputpost id is used as part of
a SQL query, enabling the attacker to change the structure
of the query and execute an arbitrary SQL statement. See [1]
for a detailed explanation of SQL injection attacks.

In PHP applications, the initial assignment and uses of
a variable may occur in different files. If the attacker di-
rectly executes the PHP file containing only the uses, he may
supply his own initial value via a URL variable if “regis-
ter global” is set (see Section 5.3). Consider Line 6 of Exam-
ple 1. Even though$varUninitializedis not intended to hold
user inputs, the attacker may supply an initial value contain-
ing a malicious script, leading to cross-site scripting.

Lines 8 to 11 show two DoS vulnerabilities due to calls
to vulnerable library functions. Line 10 causes the PHP
interpreter whose version is lower than 5.2.3 to crash if the
lengths of $str and $eol are over 65534 [11]. Line 11 with
a specially crafted input will cause resource exhaustion in
PHP whose version is lower than 5.3.0 [12].

4. Static analysis framework
After parsing PHP source code, SAFERPHP builds the
whole-program call graph and control-flow graph (CFG),
then uses them to collect critical variables which control
reachability of sensitive database operations and to perform
inter-procedural, context-sensitive taint analysis. Informa-
tion about critical variables is used to find contexts in which
sensitive database operations may be executed without au-
thorization checks. Taint analysis is used to find loops whose
termination depends on external inputs; SAFERPHP uses
symbolic execution to determine if the attacker can cause a
loop not to terminate. Taint analysis is only a preliminary
step to finding DoS vulnerabilities, but it also helps discover
“conventional” vulnerabilities caused by unsanitized inputs.

4.1 Architecture of SAFERPHP

Our SAFERPHP prototype is based on an open-source PHP
compiler called PHC [26]. SAFERPHP employs only the
PHC front-end, which parses the source code and produces
AST (Abstract Syntax Tree), HIR, and MIR (respectively,
High and Medium Intermediate Representation). PHC pro-
vides APIs for plugins, which access the intermediate repre-
sentation of a parsed PHP program by traversing the syntax
tree and possibly modifying its nodes. We implemented a
plugin to re-format MIR for our purposes.

The modular structure of SAFERPHP is shown in Fig. 1.
The basic information about the program (CFG, call graph,
taint relations,etc.) is used by many different analyses. A
separate module is responsible for each type of analysis and
may depend on other modules. Security analysis of a PHP
program starts with reading its MIR and ends with generat-
ing a summary of potential vulnerabilities. Information com-
puted by the basic static analysis modules is fed into mod-
ules responsible for finding security vulnerabilities. Forex-
ample, call-graph information is used by the taint-analysis
module, whose output in turn is used to find SQL injection
vulnerabilities, potential infinite loops, and misuses of unini-
tialized variables. This design makes it easy to develop ad-
ditional analysis modules for other kinds of vulnerabilities.

4.2 Computing the control-flow graph

In SAFERPHP, the basic unit of control-flow analysis is a
function. Each function declaration is associated with one
control-flow graph (CFG). A set of control blocks which
does not belong to any function is the CFG of the main
function of a given file. When SAFERPHP encounters a
class declaration, it builds an internal data structure whose
identifier is the name of the class. It contains the set of
declared field variables and pointers to the CFGs of member
functions. A concatenation of the file (resp., class) name
and function name uniquely identifies the CFG of a function
(resp., member function) in the global namespace.

A typical PHP application consists of multiple files. It is
common practice in PHP programming to apply a merging

Figure 1: Architecture of SAFERPHP.

function such asinclude or require to reference another
file. For accurate analysis, it is essential to construct the
whole-program CFG by taking these functions into account.

It can be difficult to determine the arguments of merging
functions statically because of user inputs and undecidable
expressions. SAFERPHP collects partial information which
explicitly appears in the arguments and matches it to file
names. If there is only one match between statically possible
arguments and names, SAFERPHP merges the identified file
into the main program. If there are multiple possible matches
or no match, SAFERPHP asks the user which file is meant
to be included at the given point. After collecting reference
relations among source files, SAFERPHP uses theinclude
option of PHC to merge files into one MIR. The subsequent
analyses are based on this merged representation.

4.3 Computing the call graph

None of the previous tools for static security analysis of
PHP code handle object-oriented features of PHP. There
exist standard algorithms for building call graphs of object-
oriented programs [13, 16], but PHP presents challenges.

First, destinations of function calls may change at run-
time. For example,$foo() is an indirect call, in which the
called function may be changed during program execution
by changing the value of the string variable$foo. Assign-
ment of callback functions and function renaming further
complicate static call-graph construction.

Second, PHP is not statically typed. The type of a variable
can be changed dynamically by assigning to it a value of
a different type or calling a function. Consider a statement
$A− >foo(). To build the corresponding edge in the call
graph, it is necessary to determine statically the class whose
instance will be stored in variable $A at runtime. This can be
done based just on the function name, but, in general,foo()
may exist in several classes, or parent and children classes
may provide different implementations offoo().

When building the whole-program CFG, SAFERPHP
only considers direct function calls, in which the name of

the called function appears explicitly in the source code and
MIR. For non-member functions, SAFERPHP creates an
edge in the whole-program CFG from the callsite to the en-
try point of the function’s CFG. If the function is a member
function, additional analysis is needed due to the lack of
static information about the type of the owner variable.

SAFERPHP distinguishes class instances when analyz-
ing accesses to field variables of objects, but not when an-
alyzing calls to member functions. For each occurrence of
the new operator in the MIR, SAFERPHP creates a data
structure representing an instance. It has separate reserved
space for field variables and a list of pointers to the CFGs of
member functions. For example, consider these statements:
$A = newclassA(), $B = newclassA(). The fields of $A
and $B refer to different variables even though they have the
same name. The member functions of both instances, how-
ever, refer to the same CFGs.

After generating class instances, SAFERPHP propagates
them within each CFG through assignment statements. This
intra-procedural class analysis enables SAFERPHP to track
which instances are stored in which variable. To track in-
stances corresponding to “this” keyword, SAFERPHP also
stores instances associated with the owner variable for each
invocation of a member function.

Static class analysis is conservative, thus a variable may
be associated with asetof instances. SAFERPHP first checks
whether the member function being called is the same for all
instances associated with the variable. If so, only one func-
tion may be called at this callsite, regardless of which in-
stance is stored in the variable, and one call-graph edge is
sufficient. Otherwise, SAFERPHP chooses the first statically
feasible edge. We deliberately opted for this (generally un-
sound) approach instead of supporting multiple CFG edges
from a single callsite, which would have been more precise
at the cost of significantly increasing complexity of the anal-
ysis. In our experiments (see Section 6), even applications
that utilize object-oriented features of PHP do not contain
any callsites with more than one callee. Adding support for
non-deterministic CFGs would improve theoretical sound-
ness, but is unlikely to help discover any new security vul-
nerabilities of practical significance.

If the destination of a call-graph edge is an unidentified
function (i.e., it was not encountered in the first phase of
the analysis), we assume that it is a built-in PHP function.
A user-defined function may be misclassified as a built-
in function. In our experiments, fewer than 3% of method
invocations could not be resolved; most were caused by
plugin methods with missing bodies.

4.4 Taint analysis

The purpose of taint analysis is to determine whether a given
variable at a given point in the program contains a value
which came from an untrusted source and may be controlled
by the attacker. Formally,x is tainted at noden in a function
f under contextc if and only if there is at least one path

from the root that reachesn underc and the value ofx is
data-dependent on some user input;x is data-dependent on
y if and only if there exists a reaching definition of the form
x = e such thate is an expression containingy or another
variablez which is data-dependent ony [8]. In SAFERPHP,
a user input is the return value of any functionq ∈ Q through
which external inputs enter the program, or a global array
variables ∈ G pre-defined by SAFERPHP.

Term definitions

n, m : nodes in a CFG n
stat
−−−→ m : transition fromn to m via stat atn

T (c, f, n, x) : varx is tainted at noden in proceduref under calling contextc

Taint relation propagation rules

n
x:=y
−−−→ m, T (c, f, n, y)

T (c, f, m, x)

n
x:=a binop b
−−−−−−−−→ m, T(c,f,n,a or b)

T (c, f, m, x)

n
x:=y[any]
−−−−−−−→ m, T (c, f, n, y)

T (c, f, m, x)

n
x[any]:=y
−−−−−−−→ m, T (c, f, n, y)

T (c, f, m, x)

n
x→a:=y
−−−−−−→ m, T (c, f, n, y)

T (c, f, m, field a of x)

n
x:=y→a
−−−−−−→ m, T (c, f, n, field a of y)

T (c, f, m, x)

n
x:=r(y1,...,yi,...yk)
−−−−−−−−−−−−−−→ m, r /∈ Pidentified, T (c, f, n, yi))

T (c, f, m, x)

n
x:=r(y1,...,yi,...yk)
−−−−−−−−−−−−−−→ m, r ∈ Pidentified, T (c, f, n, yi)

T (r :: c, f, entry(r), argi)

n
x:=r(y)
−−−−−→ m, r ∈ P, T (r :: c, f, exit(r), retV al(r))

T (c, f, m, x)

Figure 2: Taint analysis rules.

SAFERPHP treats all files and direct user inputs as
tainted. Pre-defined taint sources are the global array vari-
ablesG = { GET , POST, COOKIE, REQUEST},
which typically contain unsanitized network inputs, and
the return values of external functions dealing with files:
Q = {fgets, file get contents, readfile, readlink, . . .}.
Database records are not considered tainted; it is common
for Web applications to operate on databases and tainting
the entire database would effectively taint all data values.
Therefore, SAFERPHP may miss attacks due to second-
order taints,i.e., if the database contains malicious values
stored by another application or directly by the attacker.

Taint analysis in SAFERPHP is inter-procedural and
context-sensitive. The call graph includes identified user-
defined functions (Section 4.3). For unidentified functions
(r /∈ Pidentified), SAFERPHP assumes that their return
values are tainted if any argument is tainted. To propagate
taint information, SAFERPHP computes the taint relation
T (c, f, n, x), denoting that variablex is tainted at noden in
proceduref under the calling contextc, using the rules of
Fig. 2.T propagates through assignments, with special rules
for arrays and field variables. If a tainted variable is assigned

to an array variable, SAFERPHP taints the entire array. If a
tainted variable is assigned to a field of an owner variable,
SAFERPHP taints the corresponding field of every possible
instance statically associated with this owner variable. To
compute the taint relation for the entire program, the rules
of Fig. 2 are applied until a fixed point is reached.

Our taint analysis employs intra-procedural alias analysis
(this is sufficient for our purposes). Each variable is asso-
ciated with an alias list. If a variable appears as the target
of an assignment containing &, the source variable is added
to its alias list and vice versa. For example, the$a =& $b

statement results in adding $b to the alias list of $a and $a
to the alias list of $b. If some taint inference rule marks $a
(resp., $b) as tainted, SAFERPHP consults the alias list and
also marks $b (resp., $a) as tainted.

4.5 Tainted loops and symbolic execution

To find denial-of-service vulnerabilities, SAFERPHP must
first find loops whose termination is potentially controlled
by the attacker via tainted variables. A loop is a set of nodes
that has at least one back edge [25],i.e., an edge whose
destination node dominates the source node. To compute
all loops in a CFG, SAFERPHP applies an analysis module
which, given a source, produces its dominators.

Algorithm 1 Deciding whether a loop is tainted
L: set of all nodes in one loop
E: set of CFG edges
p: procedure
TL: set of detected tainted loops TL
TS(d,p): true if node d is a branch and any variable used at node d is tainted

function computeTL(p, L)
{

for s ∈ L do
for (s, c) ∈ E do

if c /∈ L then
for d ∈ { n | n dominate s andn ∈ L} do

if TS(d,p) then
TL ← TL ∪{L};
break;

}

Algorithm 1 checks whether a loop is tainted. Assuming
there exists an edge exiting loopL, if the source node of
the exiting edge is dominated by a branch noden and there
exists a tainted variablex which controls the branching con-
dition in n, then loopL is tainted.

Flagging every tainted loop as a potential vulnerability
would produce a prohibitive number of false positives. To
find real vulnerabilities, SAFERPHP implements a new al-
gorithm: it performs intra-procedural symbolic executionof
all one-iteration paths within tainted loops, looking for paths
where the variables involved in the exit condition do not
change. This heuristic does not scale to the entire CFG, but
is feasible when applied only to tainted loops.

Symbols.SAFERPHP uses 7 symbols to represent variable
values during symbolic execution. SymbolInt represents an
integer constant and carries the same during symbolic exe-

Type of equivalence Equivalence condition
SymbolInt A ≡

SymbolInt B
Value of A = Value of B

SymbolRangeInt A
≡ SymbolInt B

Min value of A≤ Value of B≤ Max
value of A

SymbolRangeInt A
≡ SymbolRangeInt
B

There is an overlap between the ranges
of A and B

SymbolString A ≡

SymbolString B
Value of A = Value of B

SymbolBool A ≡

SymbolBool B
Bool value of A = Bool value of B or
Bool value of A or B is unknown

SymbolArbitraryInt
A ≡ SymbolArbi-
traryInt B

Variation of A = Variation of B and
Variable name of A = Variable name
of B

SymbolArbitrary A
≡ SymbolArbitrary
B

Update counter of A = Update counter
of B and Variable name of A = Vari-
able name of B

Table 1: Equivalence rules between symbols.

cution. SymbolString represents a string. SymbolBool rep-
resents a Boolean; its value is True, False, or Unknown.
SymbolRangeInt represents any integer value whose mini-
mum and maximum values are statically known. SymbolAr-
bitraryInt represents an arithmetic change in the value of a
variable. For example, after the$i = $i+2 statement, Sym-
bolArbitraryInt holds the name of the variable ($i) and the
change in its value (+2). A variable may be associated with
multiple symbols unless it’s a SymbolArbitrary.

SymbolArbitraryString represents any string whose min-
imum and maximum lengths are statically known. It carries
these lengths and the set of substrings contained in the string.
For example, after the statement$str = substr($str,

0, 3), str is either a BooleanFalse, or a string whose
length is between 0 and 3.

SymbolArbitrary represents a statically unknown value.
It carries the variable name and the update counter. During
symbolic execution, any statement which may modify this
variable increments the counter. For example, consider the
statement$c = functionA($c). If c is represented by a
SymbolArbitrary, then its update counter is incremented. If
c is not associated with any symbol, SAFERPHP assigns to
it a SymbolArbitrary symbol with the counter of 0.

Equivalence of symbols.To find attacker-controlled infinite
loops, SAFERPHP must decide if certain variables may be
equal at runtime by considering the symbols representing
their values during symbolic execution. The rules for symbol
equivalence (shown in Table 1) are necessarily conservative,
i.e., SAFERPHP determines if two variablesmay hold the
same value at runtime. This may lead to false positives. For
example, given two SymbolBools whose values are statically
unknown, SAFERPHP will conservatively decide that they
are equivalent. If two symbols do not satisfy any of the
conditions in Table 1, they are assumed to be not equivalent.

Symbolic transition rules. SAFERPHP includes a small in-
terpreter which takes as inputs a PHP statement and sym-
bolic values of variables involved in it. The interpreter em-
ploys 20 symbolic transition rules, representing the effect of
binary operators such as +, -, *, /,% and comparison opera-
tors. For example, consider the statement$a = $b + 2. If
there is only a SymbolInt symbol associated with variableb,
then the transition rule associates a SymbolInt with variable
a. If the operation in the statement does not match any of
the transition rules, then SAFERPHP associates a Symbol-
Arbitrary symbol with the target variable of the assignment.
If the target variable is also a SymbolArbitrary, SAFERPHP
increments its update counter.

Symbolic execution of built-in PHP functions such as
substr and strlen requires more precision. We imple-
mented symbolic transition rules for the ten most common
built-in string processing functions. (Of course, there are
many more built-in PHP functions; we leave their symbolic
modeling to future work.) If the built-in function is not one
of those currently supported by SAFERPHP, its return value
is represented as a SymbolArbitrary. We omit the complete
list of symbolic transition rules due to space limitations.

4.6 Collecting critical variables

PHP applications usually mediate access to sensitive opera-
tions such as database-modifying SQL queries by checking
that the user is logged in, authorized to perform the opera-
tion, etc. Unlike Java [23, 28], PHP has neither a standard
protection paradigm, nor a standard set of security-checking
functions or variables. The semantics of security checks are
highly application-specific. SAFERPHP takes advantage of
the following observations: (1) any check involves a branch
statement which depends on the value of somecritical vari-
able, (2) one of the branches corresponds to the failed check
and thus results innot reaching the sensitive operation, and
(3) any context in which the sensitive operation may be exe-
cuted must contain such a branch statement.

A variablev is critical if v or a variable holding a value
computed fromv appears in a branch statement which af-
fects reachability of a sensitive database operation. Rela-
tion SV (c, v, sp) denotes that variablev is critical with re-
spect to a sensitive program locationsp under calling con-
text c. Fig. 3 shows the rules for computingSV (c, v, sp).
If there is any (possibly inter-procedural) path reaching the
exit node from noden without passing through nodesp, sp
is control-dependenton n. CD(c, n) contains every node
which is control-dependent on noden under calling context
c. OP (c, v, n) denotes the target variable of an assignment
where one of the operands is variablev at noden under call-
ing contextc. OP ∗(c, v, n) denotes the final target variable
of the assignment at noden whose origin operand is vari-
ablev under calling contextc. ALIAS(vo, v) denotes that
two variables are aliases of each other (see Section 4.4).

Not all critical variables are associated with authoriza-
tion checks. To filter the list of critical variables, SAFERPHP

sp ∈ CD(c, n), n
x:=OP∗(c,v,n)
−−−−−−−−−−−→ m

SV (c, v, sp)

SV (c, vo, sp), ALIAS(vo, v)

SV (c, v, sp)

under context c, n
x:=y
−−−→ m

x = OP (c, y, n)

under context c, n
x:=a binop b
−−−−−−−−→ m

x = OP (c, a, n), x = OP (c, b, n)

under context c, n
x:=y[any]
−−−−−−−→ m

x = OP (c, y, n)

under context c, n
x[any]:=y
−−−−−−−→ m

x = OP (c, y, n)

under context c, n
x→a:=y
−−−−−−→ m

field a of x= OP (c, y, n)

under context c, n
x:=y→a
−−−−−−→ m

x = OP (c, field a of y, n)

under context c, n
x:=r(y1,...,yi,...yk)
−−−−−−−−−−−−−−→ m

x = OP (c, yi, n)

Figure 3: Rules for finding critical variables.

relies on the assumption that authorization checks must be
consistently performed inall calling contexts in which a sen-
sitive operation may be executed (Section 5.2). We stress the
novelty of this approach. It relies on inter-procedural anal-
ysis of the whole-program control-flow graph and, unlike
syntactic approaches such as AutoISES [30], discovers au-
thorization checks by their semantic role in the program.

5. Security analysis modules
5.1 Finding denial-of-service vulnerabilities

To find potential DoS vulnerabilities due to loops whose ter-
mination depends on unsanitized network inputs, SAFER-
PHP collects all tainted loops in the program and uses sym-
bolic execution (Section 4.5) to find paths which do not
change the variables involved in the loop termination con-
dition, as shown in Algorithm 2.

For each tainted loop, SAFERPHP finds the conditional
statement one of whose branches is a loop exit and collects
all variables which are directly related to the exit condition
(exit-condition variables). A variablex is “directly related”
to y at some program point if and only if there exists a reach-
ing definition of the formx = e such thate is an assign-
ment or a binary operation containingy or some variable
z which is directly related toy. After computing the set of
exit-condition variables, SAFERPHP computes every possi-
ble one-iterationinitial path from the head of the loop to
the conditional exit branch, as well as every possible one-
iterationexploring pathfrom the exit branch back to itself.

For illustration, consider Figure 4. Loop L consists of
blocks L1, L2, L3, L4, B2, B5. The exit node is the branch
block B5. SAFERPHP computes all variables which are di-
rectly related to variable $TLE2 in block B5: $i, $TLE2,
$TLE1 and $b. The set of initial paths consists of two paths:
L1 → B2 → L2 → L4 → B5 and L1 → B2 →
L3 → L4 → B5. The set of exploring paths also consists
of two paths:B5 → L1 → B2 → L2 → L4 → B5 and
B5 → L1 → B2 → L3 → L4 → B5.

Figure 4: An example of a tainted loop.

SAFERPHP then symbolically executes one of the ini-
tial paths, stores the resulting symbolic values of the exit-
condition variables, and symbolically executes one of the
exploring paths. If the values of the exit-condition variables
at the beginning and the end of the exploring path are not
equivalent (see Section 4.5), SAFERPHP tries another path,
and so on. Any path in which the symbolic values of the exit-
condition variables do not change is reported as a potential
vulnerability due to an attacker-controlled infinite loop.

This algorithm is a heuristic (the problem is undecidable
in general). It may miss attacks because it considers only
a single loop iteration—there may exist an infinite loop in
which the value of a loop variable decreases in one itera-
tion and increases in another one (we never observed such
a loop in a real-world PHP application). Some reported vul-
nerabilities may be false positives because our rules for sym-
bol equivalence are conservative. For example, if SAFER-
PHP cannot statically determine anything about the values
of some variables, it will declare that they are symboli-
cally equivalent even if their runtime values are never equal.
Our experience with SAFERPHP shows, however, that this
heuristic performs well in practice, finding previously un-
reported, remotely exploitable denial-of-service vulnerabili-
ties in real-world applications.

5.2 Finding missing authorization checks

Collecting calling contexts of sensitive database opera-
tions. SAFERPHP uses a predefined list of functions (e.g.,
mysql query) to find program locations (sinks) which ex-
ecute database operations. For each sink, SAFERPHP finds
all calling contexts by computing the control-flow and call

graphs of all of the application’s PHP files, assuming that
any of these files may be used as the program entry point.

Algorithm 2 Collecting infinite loop candidates
function determineLoopType(param LOOP)
{
set EXIT_COND_VAR = extractExitConditionVar(LOOP);
if(any variable of EXIT_COND_VAR is not tainted)

return NOT_TAINT_LOOP;
set INIT_PATHSET = extractAllInitialPaths(LOOP);
set PATHSET = extractAllExploringPaths(LOOP);

for(each INIT_PATH in INIT_PATHSET) {
for(every sequential statement STAT in INIT_PATH)
{ SymbolicExecution(STAT); }
set InitialSymbolValueSet=getSymbolStat(EXIT_COND_VAR);
for(each PATH in PATHSET) {
for(every sequential statement STAT in PATH)
{ SymbolicExecution(STAT); }
set AfterSymbolValueSet=getSymbolStat(EXIT_COND_VAR);
bool bInfiniteLoop = true;
for (each variable VAR in EXIT_COND_VAR) {
if(some value of VAR in InitalSymbolValueSet !=

some value of VAR in AfterSymbolValueSet)
bInfiniteLoop = false;

}
return bInfiniteLoop;

}
}

}

When generating call graphs, SAFERPHP records the
caller and callee at each callsite. It then uses depth-first
search, starting from the sink, to build a tree of calling con-
texts whose root is the sink and whose leaves are program
entry points (even with circular calling contexts, it is enough
to record each invoked function once, so the result is always
a tree). Fig. 5 shows two trees whose roots are different in-
vocations of the same database operation. For each calling
context, SAFERPHP first collects every defined constant and
branch node such that the constant appears at the branch
node dominating application exit calls and sinks. SAFER-
PHP then eliminates calling contexts that check undefined
constants because such a context cannot reach a sink. Then,
SAFERPHP inter-procedurally propagates string constants
and determines the type of the database operation at the sink.
If the operation isinsert, delete, update, or statically
unknown, it is considered sensitive.

Our main insight for recognizing authorization checks is
that they must be consistently present inall calling contexts
in which a sensitive database operation is executed. The
more contexts, the better for our analysis. If we consider
the context tree for each sensitive callsite separately (e.g.,
locations1 and 2 in Fig. 5), the callsite may have only
one context (e.g., location2 in Fig. 5), making it hard to
find inconsistencies. Therefore, for each sensitive operation,
we combine all contexts into one list without distinguishing
callsites (e.g., the tree ofmysql query in Fig. 5).

Collecting critical variables. For each calling context asso-
ciated with a sensitive database operation, SAFERPHP com-
putes the critical variables determining reachability of this
operation (see Section 4.6).

Algorithm 3 Collecting statements which may perform au-
thorization checks
C : context, the set of calls whose final destination is a sensitive operation
R(C) : RESULT = set of statements which may perform security checks in context C
CD(s) : set of statements on which statement s is control-dependent
BELONG(s) : set of all statements in the function containing s statement
CALL(s) : set of callees in statement s
ALLSTATS(p) : set of all statements in function p
EXITSTATS: pre-defined set of statementsdie, exit, header
DOM(a,b) : true if a dominates b; false otherwise
BRANCH(s) : true if statement s is a branch

function collectTargetBlocksInContext(C)
{

for s ∈ C do
for b ∈ CD(s) and BRANCH(b) do

R(C)← R(C)∪{b}
for stat ∈ BELONG(s) do

if DOM(stat, s) and CALL(stat) 6= φ then
for callee ∈ CALL(stat) do

visited← ø
collectBlocksInCallee(C, callee, visited)

}

function collectBlocksInCallee(C, p, visited)
{

if p ∈ visited then return
visited← visited∪{p}
for stat ∈ ALLSTATS(p) do

if DOM(stat, p.exit) or DOM(stat, EXITSTATS) then
if BRANCH(stat) then R(C)← R(C)∪{stat}
elseifCALL(stat) 6= φ then

for callee ∈ CALL(stat) do
collectBlocksInCallee(callee, visited)

}

First, SAFERPHP collects branch statements on which
each operation is control-dependent, as shown in Algo-
rithm 3. Authorization checks may be done via function
calls, thus SAFERPHP also considers every function whose
callsite dominates each sensitive operation in a calling con-
text. SAFERPHP also collects branch statements that domi-
nate page termination callsexit, die, andheader.

Next, SAFERPHP collects the names of variables which
explicitly appear in the set of branch statements com-
puted above. Because they affect reachability of sensi-
tive operations, they are good candidates for the set of
security-relevant variables. Ifb is a branch involving vari-
ablev, SAFERPHP collects all variablesvo such thatv =
OP (c, vo, b).

Finding inconsistencies.SAFERPHP has computed all con-
texts in which a sensitive database operation may be exe-
cuted and the set of critical variables for each context. This
set is guaranteed to include any variable which is checked
prior to the sensitive operation if the check affects whether
the operation is executed or not. If some variable is criti-
cal for a large fraction of contexts, but not all of them (the
threshold is a parameter of the system), SAFERPHP sig-
nals a potential missing check for all calling contexts in
which the variable isnotcritical. Furthemore, all calling con-
texts without any critical variables are flagged as vulnerabil-
ities because in such contexts, the sensitive operation canbe
reached without any checks whatsoever.

Figure 5: Example of collecting contexts of sensitive
database operations.

5.3 Finding other vulnerabilities

SQL injection. An ancillary benefit of taint analysis is de-
tection of SQL injection sites. This is not our focus, but we
show it to illustrate uses of the SAFERPHP framework. For
every callsite, the SQL injection module checks if (1) the
called function is a sensitive sink (i.e., a function perform-
ing an SQL query to the back-end database), and (2) any
argument is tainted. If so, SAFERPHP reports that this call-
site has a risk of SQL injection and, for tracking purposes,
provides the taint relation indicating the problem.

Vulnerable library functions. Many built-in PHP func-
tions, especially in the older versions of PHP, are vulnerable
to denial-of-service (DoS) attacks due to crashes or extraor-
dinary resource consumption when called with certain in-
puts. These functions typically have native implementations
and thus cannot be analyzed by SAFERPHP. Instead, we col-
lected information from the National Vulnerability Database
about DoS vulnerabilities reported for PHP since 2007 and
compiled a list of 30 vulnerable built-in functions.

SAFERPHP checks every invocation of a function whose
name is on this list and uses the taint analysis module to
determine which actual arguments, if any, are tainted at this

callsite. If the positions of the tainted arguments match the
pre-defined vulnerable positions in the function’s argument
list, SAFERPHP reports that the call is vulnerable to DoS,
along with the highest version of PHP affected.

Detecting vulnerable calls to built-in functions is simi-
lar to detecting SQL injection sites, but with different taint
sinks and an additional check for positions of tainted argu-
ments. For instance, the implementation of chunksplit in
PHP 5.2.3 crashes if the first and third arguments are longer
than 65,534 [11]. For every call to “chunksplit”, SAFER-
PHP checks whether the first and third arguments are tainted
and, if so, reports a vulnerability for PHP 5.2.3.

Misuses of uninitialized variables.Because the same vari-
able may appear in multiple files, it may be accessed be-
fore it has been initialized. If the “registerglobal” option is
turned on, the attacker may use a URL variable when invok-
ing the file to provide the initial value of his choice. This isa
known security issue and “registerglobal” is off by default
since PHP version 4.2.0. Nevertheless, it may be turned on
via htaccess file or by the administrator.

For every merged PHP file, SAFERPHP records the as-
signment and use positions of every variable. If (1) some use
precedes the first assignment and (2) this use is in the main
function, SAFERPHP flags the variable as vulnerable to in-
jection of values via URL.

6. Experimental evaluation
We evaluated SAFERPHP by applying it to a diverse set of
open-source PHP applications.

Missing authorization checks.As discussed in Section 5.2,
SAFERPHP first computes the list of critical variables which
affect reachability of sensitive database operations, then re-
ports all inconsistentvariables,i.e., those checked in more
than theθ fraction, but not all contexts in which the sen-
sitive operation is executed (5th column in Table 2). The
list of critical variables is further reduced by labeling (based
on variable names and names of functions performing the
checking) to eliminate variables unrelated to security (6th
column in Table 2). During the variable labeling step, we la-
bel $ SESSION, $COOKIE, and any variable whose name
or owner function name is related to authorization as poten-
tially relevant to security enforcement.

SAFERPHP flags all files containing calling contexts with
missing checks (2nd column in Table 2). SAFERPHP also
reports all calling contexts without any critical variables be-
cause they contain no checks prior to executing the sen-
sitive operation. Overall, SAFERPHP discovered 47 previ-
ously unreported and 14 known missing-check vulnerabili-
ties (the latter in phpCommunityCalendar).

There are several sources of false positives. First, a crit-
ical variable may be checked consistently prior to all sensi-
tive database operations, but have no security purpose (e.g.,
the application may access $SESSION or $COOKIE to re-

PHP application
No. of files with
vulnerabilities

No. of false
positives

No. of critical variables . . .

. . . appearing in
> θ fraction of
contexts

. . . appearing
inconsistently
(> θ, but not all
contexts)

. . . appearing incon-
sistently (after vari-
able labeling)

miniblog 1.0 (LOC: 800) 0 0 6 1 0
minibloggie 1.1 (LOC: 2287) 1 0 0 0 0
DNScript (LOC: 3150) 3 0 1 1 1
seo-board 1.1.0 (LOC: 3909) 1 2 11 11 1
minibb 2.4 (LOC: 6507) 0 0 7 6 0
mybloggie 2.1.6 (LOC: 8874) 1 0 12 9 2
phpCommunityCalendar 4.0.3
(LOC: 14131)

14 1 2 2 2

php-agenda 2.2.8 (LOC: 14352) 0 1 3 3 1
minibill 1.2.5 (LOC: 19711) 16 0 0 0 0
UseBB 1.0.11 (LOC: 21073) 0 0 7 0 0
GRboard 1.8.5 (LOC: 44103) 25 9 1 1 1
NovaBoard 1.1.3 (LOC: 34260) 0 0 3 2 0

Table 2: Experimental results for missing authorization checks (θ = .35).

trieve user information). Second, applications—especially if
implemented by multiple developers or evolved over time—
may use different variables in different parts of the code to
protect access to the same database operation. SAFERPHP
will report that all such variables are used inconsistently.
Third, an application may intentionally permit unchecked
access to a database-modifying operation,e.g., for logging or
updating the number of URL clicks. Finally, SAFERPHP is
occasionally unable to statically resolve the type of the SQL
query performed in the database operation and may thus treat
a harmlessselect as sensitive. Table 2 shows that the num-
ber of false positives is low for real-world PHP applications
and can be handled manually, by human analysis of flagged
variable names.

Attacker-controlled infinite loops. Results are in Table 3.
SAFERPHP found one known and two new (CVE-2010-
2423 and CVE-2010-2424), remotely exploitable denial-of-
service (DoS) vulnerabilities, shown in Examples 2, 3, and 4.
The known vulnerability occurs in PHPmailer 1.7.2 and 2.3
and is thus counted twice in the table.

Example 2 Attacker-controlled infinite loop in PHPmailer
1.7.2
$max_line_length = 998;
......
while(strlen($line) > $max_line_length) {

$pos = strrpos(substr($line,0,$max_line_length)," ");
$lines_out[] = substr($line,0,$pos);
$line = substr($line,$pos + 1);

if($in_headers) { $line = "\t" . $line; }
}

Example 2 shows a known DoS vulnerability in PH-
Pmailer 1.7.2 [27]. This code does not account for the
possibility of strrpos returning 0. If the value of $pos is

Example 3Another attacker-controlled infinite loop in PH-
Pmailer 1.7.2 and PHPmailer 2.3
while (strlen($word) > 0) {
$len = $length;
if ($is_utf8) {
$len = $this->UTF8CharBoundary($word, $len);
} elseif (substr($word, $len - 1, 1) == "=") {
$len--;
} elseif (substr($word, $len - 2, 1) == "=") {
$len -= 2;

}
$part = substr($word, 0, $len);
$word = substr($word, $len);

if (strlen($word) > 0) {
$message .= $part . sprintf("=%s", $this->LE);

} else {
$buf = $part;

}
}

0 and $inheader is true, the length of $line remains the
same in each loop iteration. Because $line is data-dependent
on user input, Example 2 is a tainted loop which the at-
tacker may cause to execute infinitely. SAFERPHP found
this vulnerability as follows. In this loop, $maxline length
and the return value of strlen($line) are exit-condition vari-
ables. At the loop head, the symbol stored in $line is
SymbolArbitraryString(0,Max,{}). After the call to strrpos,
$pos holds SymbolBool(false) and SymbolRangeInt(0, 998).
After the third statement, $line holds SymbolBool(false)
and SymbolArbitraryString(0,Max-1,{}). At the end of the
loop, $line holds SymbolArbitraryString(1,Max,{“\t”}) and
SymbolString(“\t”). Therefore, the initial symbolic value
of strlen($line) is RangeInt(0,Max) and its value after ex-
ploring one path is RangeInt(1,Max). Because these two
RangeInt values overlap and the symbolic value of another
exit-condition variable $maxline length does not change,

SAFERPHP concludes that this loop can be made infinite by
network inputs and reports a DoS vulnerability.

Example 4DoS vulnerability in simplehtmldom 1.1
function restore_noise($text) {

while(($pos=strpos($text, ’___noise___’))!==false) {
$key = ’___noise___’.$text[$pos+11].

$text[$pos+12].$text[$pos+13];
if (isset($this->noise[$key]))

$text = substr($text, 0, $pos).
$this->noise[$key].substr($text, $pos+14);

}
return $text;

}

Example 4 is a new vulnerability found by SAFERPHP
in simplehtmldom, a PHP library which parses HTML into
DOM data structures. In function restorenoise, $text is
tainted; thus, the loop is tainted. The exit-condition variable
is $pos. SAFERPHP found a path through the loop which
does not change symbolic values of $pos and $text: any
HTML attribute value containing the string “noise ”
causes an infinite loop. For instance, if a remote attacker
forces the application to parse his page which contains an
HTML tag: 〈 a href=“http://xyz.edu noise ” 〉, it will en-
ter an infinite loop.

Example 5Patched DoS vulnerability in PHPmailer 2.3
Ln1: $max_line_length = 998;
Ln2:
Ln3: while(strlen($line) > $max_line_length)
Ln4: {
Ln5: $pos = strrpos(substr($line,0,$max_line_length)," ");
Ln6:
Ln7: // Patch to fix DOS attack
Ln8: if(!$pos) {
Ln9: $pos = $max_line_length - 1;
Ln10: $lines_out[] = substr($line,0,$pos);
Ln11: $line = substr($line,$pos);
Ln12: } else {
Ln13: $lines_out[] = substr($line,0,$pos);
Ln14: $line = substr($line,$pos + 1);
Ln15: }
Ln16:
Ln17: if($in_headers) {
Ln18: $line = "\t" . $line;
Ln19: }
Ln20: }

There are several potential sources of false positives (as
Table 3 shows, their number is small in practice). First,
the symbolic equivalence rules (Section 4.5) are necessarily
conservative. Second, SAFERPHP conservatively evaluates
all static one-iteration paths, including paths that are never
executed due to runtime values of branch conditions. Third,
to keep analysis scalable, SAFERPHP only performs intra-
procedural symbolic execution. If another function or an
outer loop modifies an exit-condition variable and prevents
infinite looping, SAFERPHP may still report a vulnerability.

Example 5 is the patched version of Example 2. In Exam-
ple 2, infinite looping occurs when $pos=0. In Example 5,
this causes a different branch to be taken (Lines 9-11). Stati-
cally, SAFERPHP checks every one-iteration path, including
the infeasible path where the second branch (Lines 13-14) is

taken even though the branch condition on Line 8 is true.
After Line 5, $pos holds SymbolBool(false) and Symbol-
RangeInt(0,998). When the second branch is symbolically
evaluated with these values of $pos, the exit condition does
not change, resulting in a false positive.

Uninitialized variables and vulnerable built-in function s.
Table 4 shows the experimental results for finding calls to
built-in functions that may cause denial of service (because
the function contains a known vulnerability and a tainted ar-
gument appears in a certain position) and misuses of unini-
tialized variables.

A small fraction of the reported vulnerable calls to built-
in functions are false positives. To cause denial of service
via such a call, the attacker typically needs complete control
over the tainted argument,i.e., he must be able to assign an
arbitrary value to it. SAFERPHP does not analyze the “de-
gree” of taintedness and conservatively considers even par-
tially tainted values as completely controlled by the attacker.
If the attacker can only partially influence the value, he may
not be able to exploit the vulnerability.

For misuses of uninitialized variables, we do not rank
their severity. Some misuses are critical: for example, if an
uninitialized variable is used in a call toecho, the attacker
can inject arbitrary JavaScript code into this variable. Others
are less important: for example, if the uninitialized variable
is the source of an assignment whose target is rarely used, it
may not influence the application’s behavior at all. SAFER-
PHP simply reports all misuses of uninitialized variables,
leaving it to the programmer to analyze their severity.

7. Conclusion
We characterize two new classes of semantic vulnerabilities
in Web applications and present SAFERPHP, a static anal-
ysis framework for discovering them in PHP source code.
SAFERPHP employs several new algorithms, including (i)
a new type of symbolic execution to find denial-of-service
vulnerabilities due to attacker-controlled infinite loops, and
(ii) a new type of whole-program, inter-procedural analysis
to infer the application’s authorization policy and find miss-
ing checks prior to sensitive database operations. Ancillary
benefits of SAFERPHP include the ability to find vulnerable
calls to built-in PHP functions, misuses of uninitialized vari-
ables, and SQL injection vulnerabilities. When evaluated on
several open-source PHP applications, SAFERPHP discov-
ered multiple previously unreported, remotely exploitable
security vulnerabilities.

Funding acknowledgments.The research described in this
paper was partially supported by the NSF grants CNS-
0746888 and CCF-1018271, Google research award, and
the MURI program under AFOSR Grant No. FA9550-08-1-
0352.

PHP application
Total number of
loops

Found tainted
loops

False positives
Confirmed, remotely
exploitable vulnerabili-
ties

PHPmailer 1.7.2 (LOC: 3803) 30 10 0 2
PHPmailer 2.3 (LOC: 5186) 46 16 2 1
simplehtmldom 1.11 (LOC:
1306)

48 7 4 1

phpwebthings 1.5.6 (LOC:
44017)

563 325 2 0

minibloggie 1.1 (LOC: 2287) 23 6 0 0

Table 3: Experimental results for attacker-controlled infinite loops.

PHP application
Misuses of uninitial-
ized variables

Vulnerable built-in functions

Detected misuses Detected calls Remotely exploitable
PHPmailer 1.7.2 0 2 1
PHPmailer 2.3 0 2 1
simplehtmldom 1.11 0 0 0
phpwebthings 1.5.6 134 6 2
minibloggie 1.1 2 0 0

Table 4: Experimental results for vulnerable built-in functions and misuses of uninitialized variables.

References
[1] C. Anley. Advanced SQL injection in SQL server

applications. http://www.ngssoftware.com/papers/

advanced_sql_injection.pdf, 2002.
[2] D. Balzarotti, M. Cova, V. Felmetsger, and G. Vigna. Multi-

module vulnerability analysis of Web-based applications. In
CCS, 2007.

[3] A. Barth, C. Jackson, and J. Mitchell. Robust defenses for
cross-site request forgery. InCCS, 2008.

[4] M. Bond, V. Srivastava, K. McKinley, and V. Shmatikov. Ef-
ficient, context-sensitive detection of real-world semantic at-
tacks. InPLAS, 2010.

[5] A. Bradley, Z. Manna, and H. Sipma. Termination of polyno-
mial programs. InVMCAI, 2005.

[6] J. Burnim, N. Jalbert, C. Stergiou, and K. Sen. Looper:
Lightweight detection of infinite loops at runtime. InASE,
2009.

[7] C. Cadar, V. Ganesh, P. Pawlowski, D. Dill, and D. Engler.
EXE: Automatically generating inputs of death. InCCS, 2006.

[8] R. Chang, G. Jiang, F. Ivančić, S. Sankaranarayanan, and
V. Shmatikov. Inputs of coma: Static detection of denial-of-
serice vulnerabilities. InCSF, 2009.

[9] B. Cook, A. Podelski, and A. Rybalchenko. Termination
proofs for systems code.SIGPLAN Not., 41(6):415–426,
2006.

[10] S. Crosby and D. Wallach. Denial of service via algorithmic
complexity attacks. InUSENIX Security, 2003.

[11] CVE-2007-2872. http://www.securityfocus.com/

archive/1/archive/1/470244/100/0/threaded.
[12] CVE-2009-4418. http://web.nvd.nist.gov/view/

vuln/detail?vulnId=CVE-2009-4418.

[13] A. Diwan, K. McKinley, and J. Moss. Using types to analyze
and optimize object-oriented programs.ACM Trans. Program.
Lang. Syst., 23(1):30–72, 2001.

[14] A. Edwards, T. Jaeger, and X. Zhang. Runtime verification of
authorization hook placement for the Linux Security Modules
framework. InCCS, 2002.

[15] V. Felmetsger, L. Cavedon, C. Kruegel, and G. Vigna. Toward
automated detection of logic vulnerabilities in Web applica-
tions. InUSENIX Security, 2010.

[16] D. Grove, G. DeFouw, J. Dean, and C. Chambers. Call graph
construction in object-oriented languages.SIGPLAN Not.,
32(10):108–124, 1997.

[17] A. Gupta, T. Henzinger, R. Majumdar, A. Rybalchenko, and
R. Xu. Provig non-termination. InPOPL, 2008.

[18] Y. Huang, F. Yu, C. Hang, C. Tsai, D. Lee, and S. Kuo.
Securing Web application code by static analysis and runtime
protection. InWWW, 2004.

[19] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A static analysis
tool for detecting web application vulnerabilities. InS&P,
2006.

[20] N. Jovanovic, C. Kruegel, and E. Kirda. Precise alias analysis
for static detection of web application vulnerabilities. In
PLAS, 2006.

[21] M. Kenney. Ping of death. http://insecure.org/

sploits/ping-o-death.html, 1997.
[22] A. Klein. Cross site scripting explained.http://crypto.

stanford.edu/cs155/papers/CSS.pdf, 2002.
[23] L. Koved, M. Pistoia, and A. Kershenbaum. Access rights

analysis for Java. InOOPSLA, 2002.
[24] B. Livshits, A. Nori, S. Rajamani, and A. Banerjee. Merlin:

specification inference for explicit information flow problems.
In PLDI, 2009.

[25] S. Muchnik.Advanced Compiler Design and Implementation.
Morgan Kaufman, 1997.

[26] PHC. http://phpcompiler.org, 2009.
[27] CVE-2005-1807. http://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2005-1807, 2005.
[28] M. Pistoia, R. Flynn, L. Koved, and V. Sreedhar. Interprocedu-

ral analysis for privileged code placement and tainted variable
detection. InECOOP, 2005.

[29] Server Side Include (SSI) injection.http://capec.mitre.
org/data/definitions/101.html, 2007.

[30] L. Tan, X. Zhang, X. Ma, W. Xiong, and Y. Zhou. AutoISES:
automatically inferring security specifications and detecting
violations. InUSENIX Security, 2008.

[31] G. Wasserman and Z. Su. Sound and precise analysis of web
applications for injection vulnerabilities. InPLDI, 2007.

[32] WhiteHat Security. WhiteHat website security statistics re-
port. http://www.whitehatsec.com/home/resource/

stats.html, 2009.
[33] Y. Xie and A. Aiken. Static detection of security vulnerabili-

ties in scripting languages. InUSENIX Security, 2006.

