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Abstract —

We consider the so called “cryptographic protocols” whose
aim is to ensure some security properties when communica-
tion channels are not reliable. Such protocols usually rely on
cryptographic primitives. Even if it is assumed that the cryp-
tographic primitives are perfect, the security goals may not be
achieved: the protocol itself may have weaknesses which can
be exploited by an attacker. We survey recent work on decision
techniques for the cryptographic protocol analysis.

1. Introduction

Security questions are not new. They become increas-
ingly important, however, with the development of the In-
ternet. For example, the classical access control problem,
which has been studied in the context of operating sys-
tems (e.g.[Lam74, HRU76]), becomes more complex in a
distributed environment where communication channels are
not reliable.

How is it possible to secure communications on insecure
channels? As we will see, (perfect) cryptographic primitives
are a useful tool but security of the primitives does not guar-
antee security of the protocols. Several protocols had been
thought to be secure. . . until a simple attack was found (see
[CJ97] for a survey). Therefore, the question of whether a
protocol indeed achieves its security goals becomes crucial.

Until recently, most of the research in protocol analysis was
devoted to finding attacks on known protocols, but very few
works addressed proof techniques for protocol correctness.
This was partly due to the absence of adequate formal mod-
els for distributed communications in a hostile environment.
In the past 5 years or so, there were proposed several for-
mal models for security protocols (a rough description of
the models can be found in section 2.). This opened the
way for the use of formal methods and formal analysis of
protocols. In this survey, we address the problem of effec-
tiveness of such methods. What can we expect? For what
class of protocols are there decision algorithms for security
questions?

After explaining the communication and protocol models in
section 2., we discuss the attacker model in section 3.. We
then survey the techniques: general techniques (which do
not necessarily yield decision algorithms) in section 4., finite
state analysis (which is mainly useful for finding attacks, but
does not yield correctness proofs) in section 5., and, finally,
decision results are surveyed in the core of the paper, section
6..

2. Abstract protocol modeling

In the presence of insecure communication channels, an at-
tacker may be able to observe network traffic and/or inter-
cept messages, modify them in transit, and construct fake
messages. In this context, securing communication relies
on a set of basic functions that we will refer to as crypto-
graphic primitives. For example, an encryption primitive
can be used to encode messages prior to tranmission on an
insecure channel in such a way that the original message
content (cleartext) can only be retrieved by recipients who
possess the “right” decryption key. A number of crypto-
graphic primitives have been designed to achieve informa-
tion security goals such as secrecy, integrity, authentication,
etc.
The analysis techniques discussed in this survey assume per-
fect cryptography. This means that cryptographic primitives
are considered as black boxes satisfying certain properties,
as described in section 2.1. below. This assumption by it-
self does not ensure security of the protocols. Even if all
cryptographic primitives used by the protocol are perfectly
secure, the protocol itself may have weaknesses which can
be exploited by an attacker, as described, e.g., in the Clark
and Jacob survey [CJ97]. Typically, an attacker can observe
and/or participate in some of the protocol sessions and use
the knowledge obtained from these sessions when acting as
a participant in subsequent sessions, perhaps impersonating
some of the agents. We will give examples of this below.
This paper considers the following problem: is it possible
to decide, assuming perfect cryptography, whether a given
protocol is secure or not?
We must, of course, be more precise about what is a protocol
and what is meant by “secure.” Informally, a protocol is a
conversation between two or more agents (also called princi-
pals) that aims to guarantee certain security properties even
if a malicious party has access to the communication chan-
nel. A more formal definition is given in section 2.3.. In
section 2.4., we describe common security properties such
as secrecy and authentication, and give some examples.

2.1. Cryptographic primitives

In this section, we discuss abstract modeling of crypto-
graphic primitives such as encryption and one-way func-
tions. Other primitives such as digital signatures can be
modeled in a similar way.

Symmetric encryption. Suppose that Alice and Bob
share a secret value K, which is not known to anybody
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else. The problem of establishing such a shared secret is
beyond the scope of this survey —there are many protocols
for achieving this, going back to the Diffie-Hellman key ex-
change protocol [DH76]. If Alice wants to communicate
privately with Bob, she encrypts her messages with the se-
cret K, producing a (symmetrically encrypted) ciphertext,
which we will write as

�
m ���K . As part of the perfect encryp-

tion assumption, we assume that the attacker cannot learn
anything about m from

�
m � �K unless he knows K. In partic-

ular, an attacker cannot learn anything by comparing cipher-
texts.
Moreover, the attacker cannot construct

�
m ���K unless he

holds K and m. The attacker may be able, however, to obtain�
m ���K from messages sent by other participants and replay

it without learning m. Note that, in theory, the attacker can
build all possible keys given a particular key length, and try
to decrypt the message with every possible key. The per-
fect encryption assumption is an idealization of the fact that
the attacker has only a very low probability of obtaining the
cleartext of an encrypted message within a reasonable time.

Public-key encryption. The symmetric encryption
scheme is not practical in many situations since every pair
of principals willing to communicate must share a secret.
This is the motivation for public-key encryption schemes,
of which RSA [RSA78] is the best known. In a public-key
encryption scheme, every principal has its own key pair,
consisting of a public key K (used for encrypting messages),
and a private key K � 1 (used for decryption). Everybody
is allowed to learn the public key K, but the private key
is known to its owner only. Therefore, any principal can
encrypt messages with K, producing ciphertext

�
m ���K , but

only the principal who knows K � 1 can decrypt
�
m ���K to

retrieve m. The perfect encryption assumption in this case
states that, again, it is impossible to learn m from

�
m ���K

without knowing K � 1.

One-way functions. Suppose an agent wants to send a
long file and be sure that the file is not altered during com-
munication. This can be achieved by sending a digest of the
file in a secure way (e.g., digitally signed by the sender).
The recipient can then check the integrity of the received
message by computing its digest and comparing it with the
sender’s digest. For this purpose, many protocols make use
of one-way functions, also called digest functions or hash
functions. The most widely used hash functions are MD5
[R92] and SHA-1 [NIST94]. It is assumed that one-way
functions cannot be inverted in the sense that it is computa-
tionally infeasible to compute m given h � m 	 , or find m 
 such
that h � m 
�	
� h � m 	 .

Nonces. To prevent an attacker from recording messages
transmitted as part of one protocol session and replaying
them in another session, messages often include nonces. A
nonce is a value used no more than once for the same pur-
pose [HAC]. We assume that a nonce is a randomly gener-
ated value that satisfies the following properties:

Fresh If two nonces are generated by different principals or
at different times, then they are different.

Unpredictable An agent or the attacker cannot guess the
value of a nonce generated by another agent (although
it may able to learn it by analyzing protocol mes-
sages).

Many protocols only require freshness, in which case nonces
can be replaced by time stamps, which we will not consider
here.

The decision techniques surveyed in this paper assume,
unless explicitly stated otherwise, that neither encryption,
nor one-way functions satisfy any algebraic properties. If
viewed as term constructors, cryptographic operators form a
free term algebra. This assumption does not hold for many
functions used in cryptographic applications. For exam-
ple, xor is self-canceling ( ��������������������������	�	���� ), and ba-
sic RSA satisfies sigpk � A � �

�
m ���pk � A � 	�� m where sigpk � A � � x 	 is

agent A’s public-key signature of x. There is a wide class of
encryption schemes and hash functions, however, for which
the free algebra assumption is realistic.
To summarize our view of cryptography, we consider cryp-
tographic functions as abstract black boxes satisfying certain
properties. In our model, there is no notion of probability or
partial data - the attacker either does not know a value, or
knows all bits with 100% certainty. Cryptanalysis attacks
that rely on probabilistic properties of cryptographic func-
tions are beyond the scope of the methods considered in this
survey. In section 3.3., we briefly mention recent work on
more realistic formal models of cryptography.

2.2. Term algebra

In our abstract model, protocol messages are terms con-
structed out of:

� Plaintext messages m;

� Nonces;

� Pairing of two messages � M1 � M2 � (or, more generally,
tupling);

� One-way, unary functions applied to messages h � M 	 ;
� Encrypted messages constructed from plaintext M and

key k. In general, for symmetric encryption we can
view k as an arbitrary term, which provides support,
e.g., for symmetric session keys, i.e., keys which are
generated as part of each instance of the protocol.
We will distinguish between public-key and symmet-
ric encryption by using two distinct notations

�
M � �k

and
�
M ���k , respectively. Terms are constructed in the

same way in both cases, the only difference is de-
cryption: to decrypt

�
M ���k , it is necessary to know

k, whereas to decrypt
�
M ���k , it is necessary to know

k � 1.
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2.3. Protocol specification

A protocol is a process parametrized by a (fixed and finite)
set of agents who act as participants. Their names are given
as distinct variables (A � B ������� ). Protocol specification con-
sists of a finite sequence of rules of the form A � B : M
where message M is syntactically constructed as described
in section 2.2.. The intended (informal) meaning is that A
sends to B message M on a public, insecure channel. The
names which are used in the ith rule of the protocol refer to
the names used in previous steps of the protocol, often in a
somewhat ambiguous way, which has to be made precise in
the formal models. An instance of the protocol, also called
a session is the image of the protocol by a substitution as-
signing concrete values to all variables.

2.4. Security properties

While there are many properties that a security protocol may
aim to guarantee, in this survey we will be concerned mainly
with secrecy and authentication.

Secrecy There are many definitions of secrecy, and the re-
lationship between them is not clear [Aba99]. For the
purposes of this survey we will say that a protocol
preserves secrecy of a datum d is the attacker cannot
learn the value of d by interacting with the protocol
within the framework of the conventional Dolev-Yao
model as described in section 3.. The goal of protocol
analysis is then to determine if there exists a protocol
trace in which the attacker learns the value of d.

It is worth observing that this notion of secrecy is not
adequate for, e.g., electronic voting, where possible
values of the vote are known in advance and the goal
of the protocol is to preserve the confidentiality of the
association between a voter and his/her chosen value.

Authentication There are also many definitions of authen-
tication (see, e.g., [Low97]). In a nutshell, an event e
authenticates agent A if e can occur only if a previous
message originated from A. The purpose of authenti-
cation is to ensure another agent B that he is indeed
talking with A.

Both secrecy and authentication are trace properties, i.e.,
their violations can be found by looking at a single execu-
tion trace of the protocol. If the protocol process running in
parallel with the attacker process is viewed as a state transi-
tion system, the protocol analysis problem for trace proper-
ties can be stated as a reachability problem, i.e., the problem
of determining if the state in which the property is violated
is reachable from the protocol’s initial state.
There exist security protocols designed to achieve other
properties such as fairness, anonymity, non-repudiation, no
denial of service, among others, but they are beyond the
scope of this survey.

2.5. Example

The following protocol is perhaps the most (in)famous one
in the literature on formal analysis of security protocols. It’s
the (simplified) version of the Needham-Schroeder public-
key mutual authentication protocol [NS78]:

1 � A � B :
�
A � NA ���KB

2 � B � A :
�
NA � NB ���KA

3 � A � B :
�
NB ���KB

In the first message agent A (Alice) sends to agent B (Bob)
her name together with a nonce NA, encrypting the pair with
Bob’s public key KB. Bob replies by sending back nonce NA,
together with his own nonce NB, encrypting the pair with Al-
ice’s public key KA. Finally, Alice sends back Bob’s nonce
encrypted with KB.
The goal of the protocol is mutual authentication. After
completing the protocol, Alice and Bob should be confi-
dent that they are talking to each other. More formally, Al-
ice, upon receiving the second message, should be confident
that this message was indeed sent by Bob (since only Bob
could decrypt Alice’s first message and learn the value of
NA). Bob, upon receiving the third message, should be con-
fident that it was Alice who sent message

�
A � NA ���KB

in the
first step, since nobody but Alice could decrypt Bob’s mes-
sage and learn the value of NB. A related goal of the protocol
is to preserve the secrecy of nonces NA and NB.
Gavin Lowe [Low96] discovered that the protocol fails to
achieve secrecy and authentication due to the following (by
now very well-known) attack:

1 � 1 � A � I :
�
A � NA ���KI

The attacker, acting as a legitimate participant in the
protocol, is contacted by Alice

1 � 2 � I � B :
�
A � NA ���KB

The attacker starts a new session of the protocol
with Bob, pretending to be Alice

2 � 2 � B � � A 	 :
�
NA � NB ���KA

Bob replies to message 1.2 according to the proto-
col specification (Bob thinks that message 1.2 came
from Alice). Message 2.2 is intercepted by the at-
tacker

2 � 1 � I � A :
�
NA � NB ���KA

The attacker replies to message 1.1 using the inter-
cepted message 2.2. At this point Alice, who only
observed messages 1.1 and 2.1, believes that NB has
been generated by I.

3 � 1 A � I :
�
NB � �KI

Alice replies to I’s message 2.1 according to the
protocol specification

3 � 2 I � B :
�
NB ���KB

The attacker, again impersonating Alice, sends the
expected answer to message 2.2
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The authentication goals fail as follows:
� Upon reception of message 2.1, Alice should be con-

fident that the message has been constructed by I,
which is not the case.

� Upon reception of message 3.2, Bob should be confi-
dent that A sent the message

�
A � NA ���KB

, which is not
the case.

In other words, Bob thinks he is talking with Alice, while he
is talking with the attacker.
The secrecy goal fails as follows: NB should be a secret
shared by Alice and Bob only, while message 3.1 allows the
attacker to learn it.

3. Attacker model

It is typically assumed that the set of principals consists of
two disjoint sets: the honest principals and the attackers.
The attackers may include dishonest protocol participants.
For most protocols, it is sufficient to analyze the security
of the protocol against a single attacker that combines the
knowledge and abilities of all dishonest principals.
The honest participants are assumed to follow the rules of
the protocol as defined in the protocol specification in a
mechanistic way. What they do when they receive a message
which does not match their expectation is left unspecified.
It is assumed that they do not keep track of previously com-
pleted sessions and, more generally, that they do not play an
active role in detecting or tracing possible attacks.

3.1. Dolev-Yao model

A common attacker model used in formal analysis of se-
curity protocols is the so called Dolev-Yao model, inspired
by [DY83]. Following the convention, we used the term
Dolev-Yao somewhat loosely. Some of the attacker models
described below are in fact richer than the original Dolev-
Yao model.
We assume that the attacker can eavesdrop on, remove, and
arbitrarily schedule messages sent on public communication
channels. It can also create new messages from the pieces
of messages it already observed and insert them into the
channels. The attacker can split unencrypted messages into
pieces and decrypt encrypted terms if it knows the correct
decryption key. It is assumed that messages contain enough
redundancy so that the recipient can always determine if de-
cryption was successful (e.g., when the attacker decrypts an
encrypted nonce

�
N ���K with a key K 
 , he can always tell

whether K � K 
 ). In the Dolev-Yao model, the attacker has
the choice to intercept any message transmitted on a public
communication channel and possibly replace it with a mes-
sage constructed from his a priori knowledge and parts of
the messages previously sent by any participant in this or
other session of the protocol.
The steps taken by honest participants following the proto-
col specification and (non-deterministic) actions of the at-
tacker give rise to an abstract model of the protocol as a

state transition system (e.g., [MP95]). The general approach
taken in formal analysis of security protocols is to analyze
all feasible traces of the state transition system and deter-
mine for each trace whether all of the desired security prop-
erties are preserved. This task is complicated by the follow-
ing considerations:

� There can be arbitrarily many sessions (also known as
instances) of the protocol which can be interleaved in
an arbitrary way.

� One agent can participate in arbitrarily many sessions
at the same time. The memory of each agent is, there-
fore, unbounded (as has been mentioned, an agent’s
memory is limited to uncompleted sessions).

� The attacker can generate an unbounded number of
messages.

� Nonces have limited scope: honest principals forget
nonces as soon as the corresponding instance of the
protocol has completed.

Among the formal models for protocol traces, the most
widely used are CSP [H85, Ros94, Ros95, Low96, Sch96],
higher-order logic [Pau98], multiset rewriting [CDL+99,
CDL+00], and strand spaces [THG99]. For information
about the relation between different models, see [CDL+00].

3.2. Spi-calculus

In the spi-calculus [AG99] the behavior of honest proto-
col participants is formalized as a process in a special-
purpose process calculus (basically, an extension of π-
calculus [Mil92] with cryptographic operations). This pro-
cess can be replicated any number of times to model several
instances of the protocol running concurrently. The attacker
can observe and participate in any communication in any
possible way. The model, however, also relies on the perfect
cryptography assumption.
Protocol security can then be expressed as observational
equivalence of two systems. In the first system, an arbitrary
process A (which models the public network controlled by
the attacker) is run concurrently with the process modeling
the actual protocol. In the second system, A is run concur-
rently with a process modeling an idealized specification of
the protocol which is secure by design. If the two systems
are observationally equivalent in the process-calculus sense
(taking into account cryptographic operations, e.g.,

�
N � �K

and
�
N 
 � �K may not be distinguishable by the attacker who

does not know K), then the protocol is secure.
For example, secrecy can be modeled by considering an at-
tacker A that outputs a message on a designated channel
when it learns the secret. When run concurrently with the
ideal version of the protocol, A cannot possibly learn the se-
cret and thus never outputs on the channel. If A cannot learn
the secret from the actual protocol, it will not be able to out-
put on the channel when run concurrently with the protocol,
and the two systems will be observationally equivalent, i.e.

P
�
secret ��� A � obs P

�
any��� A �
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In addition to the notions of security supported by the Dolev-
Yao model, spi-calculus can be used to analyze implicit
flows since the attacker may perform comparisons between
observed messages and produce output depending on the
comparison results. For instance, the processes may test en-
crypted (unknown) values for equality and perfom actions
depending on the result of the test.

3.3. Probabilistic models

Recently, attempts have been made to develop analysis
techniques for more realistic formal models of cryptogra-
phy that go beyond the Dolev-Yao abstraction described in
section 3.1.. The goal is to replace “black-box” abstrac-
tions of cryptographic primitives with probabilistic mod-
els. These models include probabilistic polynomial-time
process calculus [LMMS98, LMMS99] and more traditional
(in the cryptographic sense) simulatability-based models
[PW00a, PW00b, PW01, Can00]. No tools have been devel-
oped so far for the mechanized analysis of realistic formal
security models.

4. General techniques

In general, there is no algorithm which takes a crypto-
graphic protocol as input and always outputs either “yes,
the protocol is secure,” or “the protocol is insecure and
here is an attack.” Both secrecy and authentication are
undecidable in the Dolev-Yao model, and so are proba-
bly all the interesting properties one might want to check
[DLMS99, AL00, CCM01]. We give more details on the
sources of undecidability below.
Despite this limitation, there exist semi-decision techniques
which can be automated in various ways. First, observe that
it is possible to design an algorithm which will always find
an attack (by the Dolev-Yao attacker) in finite time if an at-
tack exists and may not terminate if the protocol is correct.
This can be done by simply enumerating all traces of the
protocol’s state transition system. Then, in each state, it can
be decided if secrecy has been violated, as explained in sec-
tion 6.1..
Other semi-decision techniques and tools include, but
are not limited to, Paulson’s inductive method [Pau98],
NRL Protocol Analyzer [Mea96], Athena [Son99], and
abstraction-based techniques by Bolignano [Bol97, Bol98]
(this is by no means a comprehensive list).
There are several sources of undecidability. First, the proto-
col itself can simulate one step of computation for a univer-
sal computation model (e.g., a Turing machine): each state
of the machine is an agent who, upon reception of a configu-
ration, sends the next configuration to the appropriate state.
The attacker only has to bridge two successive sessions for-
warding the last message of one session to the appropriate
principal as the first message of the next session. That is
why decision methods have to either impose a bound on the
number of instances as in [AL00], or restrict manipulation

of the messages (e.g., impose a “single reference to previous
messages” restriction [CCM01]).
The second source of undecidability is the ability to generate
nonces, which may be used, roughly, to simulate arbitrar-
ily many memory locations and therefore encode machines
with unbounded memory [DLMS99]. Again, if the num-
ber of protocol instances is bounded in advance, this cannot
occur. In fact, it is sufficient to bound the total number of
nonces which are generated in any trace.
Even if it is assumed that there is a bounded number of in-
stances, it is not yet easy to design a decision algorithm
since, according to the Dolev-Yao model, the attacker still
has an unbounded number of possible choices at any point.
In particular, the number of messages that can be created by
the attacker is unbounded. An additional restriction bound-
ing the attacker’s memory allows development of finite-state
decision techniques.

5. Finite-state analysis

Bounding the number of instances and the number of times
each cryptographic operation can be applied by the attacker
yields finite-state analysis, which terminates. In this case
the protocol can be described by a finite state machine and
reachability properties such as secrecy and authentication
can be expressed formally, e.g., in some temporal logic. This
enables the use of finite-state model checking tools such as
FDR [Ros95, Low96], Murϕ [MMS97], and Brutus [CJM].
Lowe [Low99] gave a syntactic characterization of a class of
protocols such that, for every insecure protocol in the class,
there is an attack using a bounded number of sessions and a
bounded number of applications of cryptographic primitives
(therefore, there is a bound on the number of attacker oper-
ations and on the size of terms that the attacker may have
to construct). For this class, both the attacker’s memory and
the number of sessions can be bounded without sacrificing
completeness. This enables application of model checking.
Moreover, the bounds are quite small in practice.
This result can be seen as a decidability result for the class
of protocols which satisfy the assumptions in Lowe’s paper
[Low99]. Many of these assumptions are among prudent en-
gineering practices for security protocols proposed by Abadi
and Needham [AN96], but it is not realistic to assume that
they are satisfied by a particular cryptographic protocol. Fol-
lowing are some of the requirements defining the class:

� The intended recipient of a message should be able
to decompose the message into atomic pieces. This
means, for example, that he cannot use part of the
message as a black box to be included in the reply,
as done, e.g., in Kerberos [Kerb].

� Every message must contain (under encryption) the
name of the supposed sender.

� Message fields must contain enough redundancy so
that it is always possible to determine the type of the
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field. Type confusion between keys, names, nonces,
etc. should not be possible.

� There are no temporary secrets. The protocol should
be secure under the assumption that everything which
is sent in the clear is part of the attacker’s initial
knowledge.

Among Lowe’s requirements is also the restriction of pro-
tocols to atomic encryption keys which are either nonces,
or basic constants. It should not be possible to build new
keys out of existing ones. This assumption, however, is too
restrictive for the modeling of “real-world” key exchange
protocols such as SSL 3.0 [SSL] where it is typical for the
parties to compute symmetric keys as functions of the shared
secret material. In fact, reachability is decidable even in the
presence of constructed keys assuming the number of proto-
col instances is bounded (see section 6.3.).
Stoller [Sto00] demonstrated a more general class � of pro-
tocols for which it is possible to derive, from the protocol
specification, a theoretical upper bound on the number of
cryptographic function applications that have to be made by
the attacker. Stoller also gives a decision algorithm for mem-
bership in � . The algorithm is complicated due to the lack
of syntactic characterization of the protocol class.

6. Decision results for infinite-state
analysis

The protocol analysis techniques surveyed in this section
assume that there is a bounded number of protocol ses-
sions, but attacker computations are unbounded. In par-
ticular, there are no limits on the depth of terms that can
be constructed by the attacker. In all of the techniques, the
subject of the analysis is an idealized Dolev-Yao model of
the honest protocol participants running in parallel with an
attacker who controls the public communication channels.
This models execution of the protocol in a hostile environ-
ment (we will thus use terms “attacker” and “environment”
interchangeably). Therefore, every input to the honest pro-
cesses from the environment can be viewed as constructed
by the attacker.
Typically, specifications of protocol participants’ roles con-
tain variables. Variables represent data that the participant
does not possess prior to starting the protocol and receives
from the environment as part of the protocol. For example,
after initiating a key exchange with Bob, Alice may receive
a term encrypted with her public key. Since Alice does not
know the value of the term before receiving it, it will be de-
noted by a variable in the specification of Alice’s role in the
protocol.
For instance, in the Needham-Schroeder example from sec-
tion 2.5., Bob (i.e., any agent playing the role of Bob), upon
reception of message

�
X � Y � �KB

will send back
�
NB � X � �KY

.
Here X � Y are variables since, from Bob’s viewpoint, they
originated from the environment and their values are not
known to Bob apriori. X ranges over arbitrary data and Y

ranges over principal names (under the assumption that the
agents are able to distinguish principal names from other
data). In such a formulation, X could be, for instance, a
name or a key or a nonce. Some formalisms assume that
each piece of data comes annotated with its type, prevent-
ing type confusion attacks [CJ97]. In any case, Bob cannot
check that X has been generated by the agent whose name is
Y .

6.1. Symbolic protocol models

All of the analysis techniques considered in this section have
two main components:

Symbolic reduction The basic idea behind symbolic re-
duction is to avoid instantiating variables in the pro-
tocol specification unless necessary. This is done
by defining a symbolic state transition relation which
gives rise to the (finite) symbolic state space of the
honest protocol participants. Each symbolic state
summarizes an infinite number of concrete states that
can be obtained by instantiating variables in the sym-
bolic state specification. Protocol correctness condi-
tions are represented by constraints. A typical con-
straint is the requirement that every input term re-
ceived by the honest participants from the environ-
ment must be derivable from the environment’s ini-
tial knowledge combined with the terms sent by the
participants on public channels up to that point.

Knowledge analysis Each technique defines a deduction
system for determining whether a particular term can
be derived from a given set of terms. Obviously,
the deduction system depends on the chosen attacker
model. In the Dolev-Yao model, even though the set
of terms that can be constructed by the attacker from a
given finite initial knowledge is infinite, it is possible
to effectively compute a finite tree automaton which
accepts this set of terms. This is also true if the ini-
tial knowledge of the attacker is a regular set of terms
[Mon99, Gou00, AL00]. We will use notation � � T 	
for the infinite set of terms that can be derived by the
attacker from a particular set T of ground terms.

The protocol analysis problem is then reduced to deciding
whether the attacker can instantiate a protocol trace that
violates one of the protocol correctness conditions, i.e., if
there exists an instantiation of variables computable by the
attacker that satisfies the constraints implied by the faulty
trace.

6.2. Constructed vs. atomic keys

In the simplest Dolev-Yao-style model for symmetric en-
cryption, it is assumed that all symmetric keys are atomic -
either constants, or variables that can be instantiated only
to constants. This simplifies knowledge analysis, since the
set of terms � � T 	 that can be derived by the Dolev-Yao at-
tacker from a given term set T is equal to synth � analz � T 	�	
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where synth and analz are Paulson’s synthesis and analysis
closures of term sets. Roughly, analz � T 	 is the set of all
terms that can be obtained by breaking up and decrypting
terms in T , and synth � T 	 is all terms that can be obtained
by combining, encrypting, and hashing terms in T . With
atomic keys, analysis of a term is linear in the depth of the
term’s structure.
To analyze “real-world” protocols, it is often necessary to
extend the model with constructed symmetric keys. In a
typical key exchange scenario, two parties exchange a se-
cret, then each derives the shared symmetric key by hash-
ing parts of the shared secret together with nonces and other
data. An example of this is master key computation in the
SSL 3.0 handshake protocol [SSL].

6.3. Symbolic decision techniques

In this section, we describe several symbolic decision tech-
niques for security protocols and the assumptions they make
about protocols. Unless stated otherwise, all of the methods
assume a bounded number of protocol instances but impose
no bounds on the attacker’s knowledge set � . All results de-
scribed below hold for the scenarios in which a principal is
involved in several parallel sessions. Though only [Gou00]
explicitly considers an infinite initial knowledge of the at-
tacker, most of the results described below also apply in this
case.

Huima. The origin of symbolic protocol analysis can be
traced to the seminal work of Dolev and Yao [DY83] which
applied to a very restricted class of protocols. Huima’s pa-
per [Hui99] was the first to present a decision technique
for secrecy in cryptographic protocols without a bound on
attacker operations. The class of protocols considered in
[Hui99] is very general. Protocols are defined using an ad-
hoc process algebra formalism, somewhat similar to untyped
spi-calculus. Both symmetric and public-key encryption are
supported, and constructed keys are allowed.
A standard term rewrite system is defined, representing the
attacker’s ability to manipulate terms by splitting, decrypt-
ing with a known key, encrypting, etc. User-defined symbols
are given “semantics” by instantiating one of the pre-defined
relation templates. For example, after declaring symbols e
and d, the user can declare Psymenc � e � d 	 , meaning that for
any terms t1 and t2, d � t1 � e � t1 � t2 	�	 � t2. While the tem-
plates support explicit decryption operators (and, therefore,
a limited equational theory associated with the term alge-
bra), there is no support for commutative and associative
operators. See also [Mon99].
For each protocol participant, its local state is defined as
� p � Y � c � where p is the process representing the correspond-
ing protocol role, Y is a partial variable instantiation func-
tion from variable names to terms, and c is a counter used
to keep track of fresh values. A symbolic state of the entire
protocol is defined as a triple ��� ��� � � � where � is a func-
tion from participant names to their local states, � is the set
of terms known to the environment (attacker), and � is a list

of constraints that must be satisfiable in order for the state
to be reachable. Each constraint has one of the following
forms: Eq � t � t 
�	 , Ineq � t � t 
�	 , or InClos � t � M 	 where terms t � t 

and term set M may involve variable names. An InClos con-
straint represents the requirement that ground instances of
term t must be derivable, using the rewrite system, from the
ground instances of terms in M. Such a constraint is satisfi-
able iff there exists a substitution σ such that σ t � � � σM 	 .
(We write σ t for the term t in which all variables are re-
placed according to σ .)
Symbolic reduction is handled by defining a transition rela-
tion for symbolic global states that generates a finite sym-
bolic state space with associated constraints (e.g., if a par-
ticipant receives term x, then InClos � x � M 	 is added to the
constraint list, because the state can only be reached if the
environment is capable of generating x). Protocol correct-
ness conditions are also formulated as constraints (e.g., se-
crecy of term t can be expressed as � InClos � t � M 	 ), and the
two constraint lists are merged. Finally, each terminal sym-
bolic state is transformed in a certain way in order to decide
whether there exists a instantiation of variables that satisfies
all constraints simultaneously. Note that deciding the exis-
tence of an instantiation that satisfies an InClos � t � M 	 con-
straint requires deciding the knowledge analysis problem as
explained in section 6.1..
The paper contains no details of the algorithm used to de-
cide the constraint satisfaction problem apart from the list
of high-level properties that are supposed to guarantee ter-
mination, and the claim that the method is sound and com-
plete.

Amadio-Lugiez-Vanackère. Amadio et al.
[AL00, ALV01] use a untyped process algebra for-
malism similar to the spi-calculus [AG99] for specifying
protocols. Only symmetric-key encryption with atomic
keys is considered. Variables in key positions are handled
by brute-force enumeration of all possible substitutions.
The decision algorithm is proved NP-hard.
In this approach, symbolic reduction is combined with
knowledge analysis. A symbolic state of the protocol is a
triple � P� T � E 	 where P is the state of the process represent-
ing the honest participants, T is the finite set of terms repre-
senting the attacker’s knowledge, and E is an ordered list of
constraints x1 : T1 ������� � xn : Tn such that T1

�
�����

�
TN . Each

xi : Ti constraint corresponds to a point in the protocol execu-
tion where the accumulated knowledge of the environment
consists of terms in set Ti. The values of xi are the terms
which are sent to the honest protocol participants in a trace.
Such constraints are equivalent to Huima’s InClos � xi � Ti 	
constraints and are satisfiable iff there exists a substitution
σ such that σxi � synth � analz � σTi 	�	 , i.e., if, after σ in-
stantiates all free variables, xi is derivable from Ti using
operations available to the Dolev-Yao attacker (see section
3.1.). It is worth noting that the characterization of � � σTi 	
as synth � analz � σTi 	 	 is only valid if decryption keys are
atomic. For each symbolic reduction step, the algorithm
checks if the substitution required for the step is compati-
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ble with previous substitutions. The algorithm thus decides
whether there exists a single substitution that solves all xi : Ti
constraints simultaneously.
As in Huima’s approach, to account for the conditional it
is necessary to accumulate a separate set of equality con-
straints as symbolic reduction progresses. Equality con-
straints are solved by a separate set of rules.

Boreale. Boreale [Bor01] also formalizes abstract models
of protocols in a variant of spi-calculus, considering only
symmetric-key encryption. Only variables or atomic terms
may appear in key positions. The original paper [Bor01]
only deals with authentication properties, but the general
method can also be used to analyze any reachability prop-
erty, including secrecy. There is a publicly available analysis
tool (STAP), which also handles constructed keys.
The knowledge analysis problem for ground terms is de-
cided using a standard Dolev-Yao deduction system. Pro-
tocol execution by honest participants is modeled by a sym-
bolic transition relation that allows messages to contain free
variables. As in other methods, exhaustive enumeration of
all symbolic traces produces a finite symbolic state space of
the protocol.
Protocol analysis is then equivalent to deciding, for each
symbolic trace, if it can be solved, i.e., if there exists an in-
stantiation of variables in messages such that in the resulting
concrete trace every ground term sent by the environment is
derivable from the environment’s knowledge at that point
using the deduction system. This is the same as deciding the
satisfiability of Huima’s InClos constraints for a particular
symbolic trace.
The paper gives a refinement decision procedure that works
by gradually instantiating variables in the symbolic trace un-
til a solved form is obtained in which every sent term is
derivable by the environment. The key idea is that any sym-
bolic term can be decomposed into a finite number of irre-
ducible components by splitting pairs and decrypting if the
correct key is known to the environment. Therefore, for each
message sent by the environment, it is possible to (i) split the
sent term into its irreducible components, (ii) split all sym-
bolic terms known to the environment at that point into their
components. Since both sets are finite, the symbolic knowl-
edge analysis problem can be decided by checking that the
component set of the term is included, modulo unification,
in the component set known to the environment.
The refinement process is non-deterministic and may lead to
several different solved forms for the same symbolic trace.
Completeness is proved by demonstrating that every solu-
tion of the symbolic trace is a solution of at least one of the
solved forms produced by the algorithm.

Fiore-Abadi. Fiore and Abadi [FA01] are similar to Ama-
dio et al. and Boreale in that they use a variant of untyped
spi-calculus with symmetric-key encryption and decryption
and a free term algebra. The analysis method supports con-
structed keys, but completeness is proved only for atomic
keys.

The method creates a symbolic computation graph of the
honest protocol processes. Paths in the graph represent all
possible execution traces of the protocol, and some of them
may violate the desired security properties. To determine if
there exists a concrete execution trace of the protocol cor-
responding to the violating path, the paper gives an algo-
rithm for deciding the existence of realisers for all symbolic
inputs (i.e., message sends) to the process from the envi-
ronment. A realiser is a substitution for variables such that
every resulting ground input term can be derived by the envi-
ronment from the terms it already knows at that point. Once
again, this is equivalent to deciding the satisfiability of all
InClos � ti � Mi 	 constraints, or finding a substitution σ such
that σ ti � � � σMi 	 for all terms ti sent by the environment
at a point where it knows Mi.

Rusinowitch-Turuani. Rusinowitch and Turuani [RT01]
extend the work by Amadio et al. [AL00] in two direc-
tions. First, their model supports public keys as well as
constructed symmetric keys. Second, they show that the
symbolic knowledge analysis problem is NP-complete for
the Dolev-Yao attacker as long as the number of sessions is
bounded.
The main result of the paper is a polynomial bound on the
number of attacker operations that may be needed in or-
der to construct the substitution that realizes the attack. If
t � � � M 	 , i.e., if the term that must be sent by the envi-
ronment can be derived from the term set representing the
environment’s knowledge, then there exists a normal deriva-
tion of t from M that has a polynomial size. This is similar
in spirit to Lowe’s “small system” result [Low99], but with
significantly fewer restrictions on the protocol.
The polynomial bound on normal derivations is then used to
construct an NP-complete procedure for deciding the proto-
col insecurity problem. The procedure works by guessing a
ground substitution σ for all variables such that the size of
the σx term has a polynomial upper bound, then guessing a
polynomial sequence of attacker operations l1 ������� � lN , and fi-
nally checking that σ t � lN � ����� l1 � σM 	�	 . Such a procedure is
obviously impractical for real protocol analysis, but in addi-
tion to establishing complexity of the problem, the existence
of polynomial normal attacks supports the empirical obser-
vation that all Dolev-Yao attacks on cryptographic protocols
that have been discovered so far are relatively simple.

Comon-Cortier-Mitchell. Comon et al. [CCM01] con-
sider the Dolev-Yao protocol model with support for public
keys and constructed symmetric keys. There are two main
assumptions. The first one slightly relaxes the finite-sessions
requirement by assuming that only a bounded amount of
fresh data is generated in all sessions. This means that ei-
ther there is a finite number of sessions, or else the protocol
does not contain any nonce generation steps. This restriction
alone is not sufficient for decidability; it is still possible to
build a protocol simulating one transition step of a universal
computation model. The second restriction states, roughly,
that an agent can copy only one piece of any message he
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receives into any message he sends. This rules out, for in-
stance, simulation of two-stack machines.
The decision technique is based on a reduction to set
constraints (e.g.[CP97]), which in turn are reduced to an
automata-theoretic question. The resulting algorithm runs
in doubly exponential time.

Millen-Shmatikov. Millen and Shmatikov [MS01]
present a decision technique for reachability properties
based on constraint solving. Each honest protocol partici-
pant is specified as a semi-bundle in the strand space model
[THG99]. A semi-bundle is a strand (i.e., a protocol role)
parameterized with variables. The Prolog implementation
automatically generates all possible interleavings of the
semi-bundles.
Using parameterized strands to represent symbolic traces of
the protocol achieves a clean separation between the sym-
bolic reduction problem and the knowledge analysis prob-
lem. As in other approaches, deciding the latter is equiv-
alent to solving a system of constraints of the form ti : Ti,
where ti is a term, possibly containing variables, sent by the
attacker to the honest processes, and Ti is the set of terms
available to the attacker. These constraints are equivalent to
Huima’s InClos constraints, and are satisfiable if � σ such
that � i σ ti � � � σTi 	 , i.e., every term needed to the stage an
attack can be generated by the attacker.
The resulting constraint system is solved by applying a set of
constraint reduction rules. The constraint solving procedure
is terminating, sound, and complete even in the presence of
constructed keys. Unlike the Rusinowitch-Turuani proce-
dure [RT01], the algorithm is useful in practice and can be
applied to the analysis of real protocols.

7. Conclusion

Protocol analysis is a model checking problem [LSV01]:
given a model (the protocol) and a property, we want to de-
cide whether the model satisfies the property. As we have
seen, however, the model is an infinite state system, and
classical model checking techniques can only be used to
verify an approximate model. Nevertheless, as with infinite-
state model checking techniques, symbolic representation of
infinite sets of states (e.g., using constraints) and reasoning
about such representations may yield interesting decision re-
sults, some of which have been sketched above.
There are still a number of open questions, and more gener-
ally, several open areas of research. Let us mention two of
them as a conclusion:

� We considered only two particular security proper-
ties: secrecy and authentication. While the described
techniques may work for other trace properties, there
are several security goals which are not trace proper-
ties (for instance, anonymity and fairness). There is
currently no specification language (such as temporal
logic for reactive systems), which is rich enough to

express all desired security properties. Design of de-
cision algorithms for such properties is an open prob-
lem.

� We assumed that terms and messages are generated
by a free algebra. As mentioned above, this is an ap-
proximation since most cryptographic primitives sat-
isfy some algebraic properties. Which properties can
be supported by the model while preserving decidabil-
ity is an open question.

Acknowledgements

The authors are grateful to Jean Goubault-Larrecq and
Alexandre Boisseau for their comments on an early version
of this paper.
This work was partly supported DoD MURI “Semantic Con-
sistency in Information Exchange,” ONR Grant N00014-97-
1-0505, and NSF CCR-9629754.

References

[Aba99] M. Abadi. Security protocols and their properties. In Foun-
dations of Secure Computation (F.L. Bauer and R. Stein-
brueggen, eds.), NATO Science Series, IOS Press (2000),
pages 39–60. Volume for the 20th International Summer
School on Foundations of Secure Computation, held in Mark-
toberdorf, Germany (1999).

[AG99] M. Abadi and A. Gordon. A calculus for cryptographic
protocols: the spi calculus. Information and Computation,
148(1):1–70, 1999.

[AN96] M. Abadi and R. Needham. Prudent engineering practice for
cryptographic protocols. IEEE Transactions on Software En-
gineering, 22(1):6–15, 1996.

[AL00] R. Amadio and D. Lugiez. On the reachability problem in
cryptographic protocols. In Proc. CONCUR, vol. 1877 of Lec-
ture Notes in Computer Science, pages 380–394, 2000.

[ALV01] R. Amadio, D. Lugiez and V. Vanackère. On the symbolic
reduction of processes with cryptographic functions. Technical
Report 4147, INRIA, March 2001.

[Bol97] D. Bolignano. Towards a mechanization of cryptographic pro-
tocol verification. In Proc. 9th International Conference on
Computer Aided Verification (CAV), pages 131–142, 1997.

[Bol98] D. Bolignano. Integrating proof-based and model-checking
techniques for the formal verification of cryptographic pro-
tocols. In Proc. 10th International Conference on Computer
Aided Verification (CAV), pages 77–87, 1998.

[Bor01] M. Boreale. Symbolic Trace Analysis of Cryptographic Pro-
tocols In Proc. 28th International Conference on Automata,
Languages and Programming (ICALP), vol. 2076 of Lecture
Notes in Computer Science, Springer-Verlag, pages 667–681,
2001.

[Can00] R. Canetti. A unified framework for analyzing security of pro-
tocols. IACR Cryptology ePrint Archive 2000/067, December
2000, http://eprint.iacr.org

[CDL+99] I. Cervesato, N. Durgin, P.D. Lincoln, J.C. Mitchell, and
A. Scedrov. A meta-notation for protocol analysis. In Proc.
12th IEEE Computer Security Foundations Workshop, pages
55–69, 1999.

[CDL+00] I. Cervesato, N. Durgin, P.D. Lincoln, J.C. Mitchell, and
A. Scedrov. Relating strands and multiset rewriting for secu-
rity protocol analysis. In Proc. 13th IEEE Computer Security
Foundations Workshop, pages 35–51, 2000.

JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY 9



Hubert Comon and Vitaly Shmatikov

[CJ97] J. Clark and J. Jacob. A survey of authentication protocol lit-
erature: Version 1.0. Draft paper, 1997. Available at
//www-users.cs.york.ac.uk/ � jac

[CJM] E.M. Clarke, S. Jha and W. Marrero. Verifying security proto-
cols with Brutus. To appear in ACM Transactions in Software
Engineering Methodology.

[CCM01] H. Comon, V. Cortier, and J.C. Mitchell. Tree automata with
memory, set constraints and ping pong protocols. In Proc. 28th
International Conference on Automata, Languages and Pro-
gramming (ICALP), vol. 2076 of Lecture Notes in Computer
Science, Springer-Verlag, pages 682–693, 2001.

[CP97] W. Charatonik and A. Podelski. Set constraints with intersec-
tion. In Proc. IEEE Symposium on Logic in Computer Science,
Varsaw, 1997.

[DH76] W. Diffie and M. Hellman. New directions in cryptography.
IEEE Transactions on Information Theory, 22(6):644–654,
1976.

[DLMS99] N. Durgin, P.D. Lincoln, J.C. Mitchell and A. Scedrov. Un-
decidability of bounded security protocols. In Proc. FLOC
Workshop on Formal Methods in Security Protocols, Trento,
Italy, 1999.

[DY83] D. Dolev and A. Yao. On the security of public key proto-
cols. IEEE Transactions on Information Theory, 29(2):198–
208, 1983.

[FA01] M. Fiore and M. Abadi. Computing symbolic models for ver-
ifying cryptographic protocols. In Proc. 14th IEEE Computer
Security Foundations Workshop, pages 160–173, 2001.

[Gou00] J. Goubault-Larrecq. A method for automatic cryptographic
protocol verification. In Dominique Méry, Beverly Sanders,
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