Finite-State Analysis of Two Contract Signing
Protocols

Vitaly Shmatikov 2 John C. Mitchell ?

Computer Science Department, Stanford University, Stanford, CA 94305, U.S.A.

Abstract

Optimistic contract signing protocols allow two parties to commit to a previously
agreed upon contract, relying on a third party to abort or confirm the contract if
needed. These protocols are relatively subtle, since there may be interactions be-
tween the subprotocols used for normal signing without the third party, aborting the
protocol through the third party, or requesting confirmation from the third party.
With the help of Murey, a finite-state verification tool, we analyze two related con-
tract signing protocols: the optimistic contract signing protocol of Asokan, Shoup,
and Waidner, and the abuse-free contract signing protocol of Garay, Jakobsson, and
MacKenzie. For the first protocol, we discover that a malicious participant can pro-
duce inconsistent versions of the contract or mount a replay attack. For the second
protocol, we discover that negligence or corruption of the trusted third party may
allow abuse or unfairness. In this case, contrary to the intent of the protocol, the
cheated party is not able to hold the third party accountable. We present and ana-
lyze modifications to the protocols that avoid these problems and discuss the basic
challenges involved in formal analysis of fair exchange protocols.

1 Introduction

Contracts are an important part of business. If two parties wish to sign a con-
tract, but do not share other motives, then each may refuse to sign until the
other has demonstrated its commitment to the contract. While simultaneous

Email addresses: ~ shmat@Qresearch.bell-labs.com (Vitaly =~ Shmatikov),
mitchell@cs.stanford.edu (John C. Mitchell).
1 Current address: Bell Labs Research Silicon Valley, Lucent Technologies, 3180
Porter Drive, Palo Alto, CA 94304, U.S.A.
2 Supported in part by DoD MURI “Semantic Consistency in Information Ex-
change,” ONR Grant N00014-97-1-0505, and NSF CCR-9629754.

Preprint submitted to Elsevier Preprint 4 January 2001

commitment to contracts printed on paper can be achieved by sitting at a
table and signing identical paper copies, distributed contract signing over a
network is inherently asymmetric: someone has to send the first message. In
one contemporary style of contract signing protocols, two rounds of commu-
nication are used. In the first round, each party declares their willingness to
be bound by the contract. In the second, they each send some remaining data
needed to satisfy the definition of signed contract established by the proto-
col. If a trusted third party is able to enforce the contract based on partial
completion of the protocol, then it is possible to conduct distributed contract
signing so that various symmetric correctness conditions are satisfied. In op-
timistic contract signing, the third party is only needed in case of a dispute.
Otherwise, the protocol can be completed without involving the third party.

The most basic correctness condition for contract signing is called fairness.
A contract signing protocol is fair if, after completion of the protocol, either
both parties have a signed contract, or neither does. Another property is called
accountability: if any party cheats by not following the steps required by the
protocol, the resulting network messages will unambiguously show which party
has cheated. Accountability is particularly desirable for the trusted third party,
since the third party has the ability to resolve or abort a contract.

A more complex correctness condition, introduced in [GIJM99], has been called
abuse-freeness. This condition is intended to guarantee that neither party has
a specific kind of advantage over the other during the execution of the protocol.
To illustrate by example, suppose Alice agrees to sell her house to Bob and
Bob signs a contract containing a certain price. If Alice holds the contract
without signing, she can show the contract to a competing buyer Carol and
convince Carol that she needs to pay more than Bob if she wants the house.
This is disadvantageous for Bob, since information he provides to Alice as part
of signing an agreed contract is used to Alice’s advantage. In this scenario,
abuse is possible only if Bob’s signature on the contract is in a form that
Carol can read and understand; this is necessary since Alice must convince
Carol that she has the choice to accept Bob’s offer or turn Bob down and sign
a new contract with Carol. This kind of abuse can be prevented in physical
simultaneous transactions, but it is difficult to prevent in distributed protocols
since a sequential protocol has the potential to bind one party before the other.

In this paper, we describe the results of automated analysis of two optimistic
contract signing protocols. The first protocol was proposed by Asokan, Shoup,
and Waidner [ASWO98]; we shall refer to it as the ASW protocol. The ASW
protocol uses standard cryptography and special forms of contract to guaran-
tee fairness and accountability of the trusted third party. The second protocol
was proposed by Garay, Jakobsson, and MacKenzie [GIM99]; we shall refer
to it as the GJM protocol. It relies on a cryptographic construct called pri-
vate contract signature to guarantee abuse-freeness in addition to fairness and

third party accountability.

Using a finite-state enumeration tool called Murp, we verify correctness prop-
erties claimed for the protocols and uncover several weaknesses. The process of
using Murgp involves formulating the protocol and potential attacks in a simpli-
fied programming language and allowing Mury to exhaustively try all possible
attacks on all possible protocol runs (within certain bounds on the number of
protocol instances considered in a run). Since the number of states explored is
enormous, the only output of Mury that bears repeating in a technical paper
are the specific runs that lead to failure of one or more correctness conditions.
For those interested in the form of the input language, the general method for
analyzing security protocols, or the methods employed in the implementation
of Muryp, additional details may be found in [Dil96,Mur,MMS97|. Since the
most complicated issue in carrying out a Mury analysis of a contract signing
protocol are the high-level decisions on how to formalize the protocol, how
to account for dishonest participants or an external attacker, and how to for-
mulate the correctness conditions, the paper focuses on these issues and the
results of the analysis.

Our finite-state analysis of the ASW protocol shows that a malicious protocol
participant is able to obtain a valid contract while the honest participant, even
by requesting help from the trusted third party, can only obtain a replacement
contract which is inconsistent with the one possessed by the malicious partic-
ipant. The same protocol weakness also allows the intruder to stage a replay
attack.

Our finite-state analysis of the GJM protocol reveals an attack that leads
to the loss of abuse-freeness and third party accountability. Specifically, the
contract initiator, O, using a weak form of passive assistance (or information
leak) from the third party, is able to choose whether to reveal a completed
contract or accept an abort token provided by the third party. Furthermore,
if O chooses to reveal its completed contract, and the discrepancy with R’s
abort token is observed, it is not possible to determine whether the third party
participated in the inconsistency or not.

Although the sequences of actions demonstrating these weaknesses are rela-
tively short and easy to follow, the analysis is subtle in several respects. First,
both sequences involve interaction between the optimistic two-party transac-
tion normally used to sign a contract, the abort protocol used by one party
to time out and stop the protocol, and the resolve protocol used to request
enforcement by the third party. As a result of the number of possible interac-
tions between these three subprotocols, we did not suspect any problems until
our analysis tool uncovered violations of one of our correctness conditions.
Only then, after examining the traces provided, were we able to isolate spe-
cific aspects of the protocols that allow the attacks. More generally, the power

of finite-state analysis lies in the ability to consider all possible interleavings
of actions, including possible runs that are counterintuitive or not expected
by designers of the protocol. Although we do not wish to fault the authors
for an honest mistake, this point is supported by review of the GJM correct-
ness proof. The proof printed in [GJM99] proceeds by considering a number
of cases but overlooks the specific sequence of actions uncovered by our ex-
haustive brute-force analysis. While humans generally prefer to reason using
general concepts that seem to cover all of the relevant phenomena, finite-state
analysis examines all runs methodically and exhaustively, often uncovering
problems that could otherwise go undetected.

For both protocols, we suggest simple changes that prevent the attacks. For
the GJM protocol, the same repair was also proposed by the authors of the
protocol after we described the attack [Mac99]. The repaired protocols ap-
pear to be correct, at least within the accuracy of our model; Murp analysis
does not suggest any errors. We also show that some assumptions about the
communication channels can be relaxed without violating fairness or other
intended properties of the protocols.

There is some subtlety in the way that the basic protocol requirements, fair-
ness, abuse-freeness, and accountability, are specified. For example an abort
message from the trusted third party does not mean that no participant will
receive a contract. Abort simply means that the third party will not subse-
quently confirm the contract. This is inherent in optimistic two-party pro-
tocols: after the protocol has finished without involving the third party, one
of the parties can ask the third party to abort the protocol and the third
party, having received no previous messages, is engineered to oblige. Another
subtlety surrounds abuse-freeness, which is an assertion about choices at in-
termediate states in the execution of the protocol. Abuse-freeness is not a
property that can be determined by examining individual traces of protocol
execution independently. Since Murg is a trace-based tool, we had to devise
some extension of the protocol environment, involving an outside party who
issues sign and abort challenges, in order to automatically verify the states
in which one participant has the power to determine the eventual outcome of
the protocol.

Formal methods have been used to analyze the security properties of key
exchange and authentication protocols [KMM94,Ro0s95,Mea96b,Bol97,Pau98].
In particular, finite-state analysis has been successfully applied to protocols
such as Needham-Schroeder [Low96,Mea96a,MCJ97], Kerberos [MMS97], SSL
[MSS98], and others. However, less attention has been paid to other kinds of
protocols, such as fair exchange. In [HTWW96], Heintze et al. used the FDR
model checker to verify NetBill [CTS95] and a digital cash protocol inspired
by Digicash [Cha85,CFN88|. The correctness conditions they establish are dif-
ferent in character from the ones we consider here. Schneider [Sch98| analyzed

the CSP [R0s97,5ch96] model of the Zhou-Gollmann non-repudiation protocol
[ZG96], using process failures to express fairness as a liveness property. In our
approach, we model fairness by a set of state invariants as described in section
5.1, and verify a wider set of protocol properties.

The remainder of this paper is structured as follows: section 2 provides back-
ground on fair exchange protocols and the formal tool we used for our analysis,
section 3 describes the ASW protocol, and section 4 specifies the correctness
conditions for optimistic contract signing protocols. Section 5 deals with the
issues involved in formal modeling of fair exchange. Results of the analysis
and suggested repairs to the ASW protocol are presented in section 6. Sec-
tion 7 describes the GJM protocol, which is then analyzed in section 8. Brief
concluding remarks appear in section 9.

Preliminary accounts of the protocol analyses presented in this paper were
previously published in conference proceedings [SM00a,SMO0Ob].

2 Background

2.1 Qwverview of Mury

Murgp [Dil96] is a finite-state machine verification tool. Originally developed
for hardware verification, Murp has been successfully used for analyzing se-
curity protocols [MMS97,MSS98,5598]. The Muryp input language is a simple
high-level language for describing nondeterministic finite-state machines. The
input model consists of the description of variables that define the state of
the system and a set of guarded rules that represent actions. While there is
no explicit notion of process, a process can be implicitly modeled by a set of
related rules. Communication between processes is modeled by shared vari-
ables. The Mury system automatically checks, by explicit state enumeration,
if every reachable state of the model satisfies a given set of invariants.

To analyze a security protocol in Mury, it is necessary to combine the finite-
state model of the protocol expressed in the Mury language with the intruder
model, specify the start state of the protocol, and formally state protocol
invariants as boolean conditions that must be true in every state reachable
from the start state. The intruder model typically consists of a set of variables
that contain the intruder’s knowledge and a set of actions that the intruder
may take. We use a very simple, mechanical intruder model. The intruder is
assumed to have full control over the public network and allowed to take the
following actions: (1) overhear every message, decrypt encrypted messages if
it has the key, store parts of message in its internal database, (2) intercept

messages and remove them from the network, (3) generate messages using any
combination of its initial knowledge, parts of overheard messages, known keys,
and other data available to it. If at any moment there are several possible
actions that the intruder can take, one is chosen nondeterministically. The
Murg system will analyze all states that are reachable via any interleaving of
enabled actions.

Limitations of this approach include the fact that our intruder model has no
notion of partial information or probability. It cannot perform cryptanalysis
or statistical tests of the network traffic, and it follows the “black box” cryp-
tography model: an encrypted message can be read only if the decrypting key
is known, otherwise its contents are assumed to be invisible to the intruder
(who is still capable of storing the message and replaying it later in a different
context).

If Mury finds a reachable state in which an invariant is violated, it outputs the
sequence of rules leading to it from the start state. This sequence effectively
describes the attack. If Muryp fails to find an invariant violation, this is not a
proof that the protocol is correct. Since Mury can only consider finite models,
the number of protocol instances under analysis must be bounded. Therefore,
if an attack on the protocol requires a certain number of protocol instances and
the size of the analyzed model is less than the threshold, the attack will not
be discovered. Also, certain kinds of attacks, in particular attacks involving
cryptanalysis, are beyond the scope of the model. In the rest of the paper,
we refer to this intruder model as the Dolev-Yao intruder, following [DY83].
Some general discussion and complexity results regarding the model can be
found in [CDL*99,DM99].

A new-generation Murg, currently under development at Stanford, uses the
predicate abstraction method to model check infinite state spaces. It was used
by Satyaki Das to analyze multiple instances of the GJM protocol. This is
discussed in section 8.4 below.

2.2 Fair exchange

Intuitively, a protocol is fair if no protocol participant can gain an advantage
over other participants by misbehaving. For example, a protocol in which two
parties exchange one item for another is fair if it ensures that at the end of
the exchange, either each party receives the item it expects, or neither receives
any information about the other’s item [ASW98|]. There exists a large body
of literature on fair exchange protocols. Applications include online payment
systems, in which a payment is exchanged for an item of value, e.g. [CTS95],
contract signing, in which parties exchange commitments to a contractual text,

such as [BOGMR90,ASW98,GJM99], certified electronic mail, for example
[BT94,Z2G96,DGLW96], and other purposes. There are several varieties of fair
exchange protocols.

Gradual exchange protocols [BOGMR90,Dam95] work by having the parties
release their secrets in small installments, thus ensuring that at any given
moment no party has a significant advantage. The drawback of this approach
is that a large number of communication steps between the parties is re-
quired. Gradual exchange is also problematic if the items to be exchanged
have “threshold” value (either the item is valuable, or it is not).

Another category of fair exchange protocols is based on the notion of a trusted
third party, for example [CTS95,Z2G96,DGLW96]. The trusted third party su-
pervises communication between the protocol participants and ensures that
no participant receives the item it wants before releasing its own item. Varia-
tions of this approach include fair exchange protocols with a semi-trusted third
party [FR97]. The main drawback of the third party solution is that the third
party may become the communication bottleneck if it has to be involved in all
instances of the protocol in order to guarantee fairness. The protocol may also
need to impose demands on the communication channels, e.g., by requiring
that all messages are eventually delivered to their intended recipients.

Recently, several protocols have been proposed for optimistic fair exchange
[ASW98,BDM98,GJM99]. While the third party 7" may need to be trusted by
all parties to the exchange, 7" needs to act only if one of the parties misbe-
haves or there is a communication failure. This may ease the communication
bottleneck associated with T, making fair exchange more practical for realistic
applications.

The contract signing protocol of Garay, Jakobsson, and MacKenzie [GJM99]
extends the concept of fairness by introducing the notion of abuse-freeness. In-
formally, a protocol is abuse-free if neither participant can prove to an outside
party that it has the power to abort the protocol or successfully complete con-
tract negotiation. In financial applications, the ability to prove that one can
resolve or abort a particular contract negotiation may be as important as the
actual signing of a contract, making abuse-freeness critical for fair exchange
protocols to be deployed in the financial arena.

3 Asokan-Shoup-Waidner Protocol

In this section, we describe the optimistic contract signing protocol by Asokan,
Shoup, and Waidner [ASW98] (the ASW protocol). We start by giving a high-
level description of the objectives of the protocol and the assumptions under

which it operates, and then explain the protocol steps in detail. The notation
has been changed from the original paper to facilitate explanation.

It is worth noting that, intuitively, one might expect a contract to be a pair
of digital signatures of an agreed upon text, one signature from each party
negotiating the contract. This is not the case in the ASW protocol. Normal
termination without use of the third party will produce a contract that con-
tains two digital signatures and additional data generated in the run of the
protocol. However, the contracts produced by the third party are not neces-
sarily of this form. In order to understand the ASW protocol, it is important
to keep in mind not only the steps of each subprotocol (discussed below), but
also the forms of contract that the protocol designers have established for the
protocol.

3.1 Objectives

The ASW protocol is designed to enable two parties, called O (originator)
and R (responder), to obtain each other’s commitment on a previously agreed
contractual text. The protocol is asynchronous. As the exchange subprotocol
progresses, either participant may contact the trusted third party 7'. The third
party may decide, on the basis of communication it has received, whether to
issue a replacement contract or an abort token. Abort tokens are not a proof
that the exchange has been canceled, as explained below.

3.2 Assumptions

The protocol uses conventional, universally-verifiable digital signatures and a
hash function. We write S-Sig; (.. .) for a message signed by party 7 and assume
that all protocol participants have the ability to verify signatures produced by
any party. We also assume that there exists a collision-resistant one-way hash
function, hash().

Prior to executing the protocol, the parties are assumed to agree on each
other’s identity, the identity of the trusted third party 7', and the contrac-
tual text. It is also assumed that every protocol participant knows everybody
else’s signature verification key, which is typically the public key. This im-
plies that the protocol must be preceded by the “handshake” phase in which
a key exchange and/or authentication protocol is executed to establish the
shared initial knowledge. Since it is not necessary for the handshake protocol
to guarantee fairness, we do not consider it as part of this study.

The original paper [ASWO98] states that the communication channels between

any two protocol participants are assumed to be confidential, i.e., eavesdrop-
pers will not be able to determine the contents of messages traveling through
these channels. This can be achieved by encrypting all messages with the in-
tended recipient’s public key. It is also assumed that the channels between
each participant and the trusted third party 71" are resilient, i.e., any mes-
sage deposited into the channel will eventually be delivered to its intended
recipient. However, there are no time guarantees: the intruder can succeed
in delaying messages by an arbitrary, but finite amount of time. In section 6
below, we analyze the protocol under various assumptions about the quality
of communication channels.

Implicit in the protocol specification is the assumption that the trusted third
party T must maintain a permanent database with the status of every pro-
tocol run that it has ever been asked to abort or resolve. (Each run can be
identified by the first message me; — see below.) Abort and resolve requests
are processed by T on the first-come, first-served basis. Therefore, in order
to ensure fairness, 7" must always be able to determine whether a particular
instance of the protocol has been aborted or resolved already.

3.8 Protocol

The ASW protocol consists of three interdependent subprotocols: ezchange,
abort, and resolve. The parties (O and R) generally start the exchange by
following the exchange subprotocol. If both O and R are honest and there
is no interference from the network, each obtains a valid contract upon the
completion of the exchange subprotocol. The originator O also has the option
of requesting the trusted third party 7" to abort an exchange that O has
initiated. To do so, O executes the abort subprotocol with T'. Finally, both
O and R may each request that 7' resolve an exchange that has not been
completed. After receiving the initial message of the exchange protocol, they
may do so by executing the resolve subprotocol with T'.

At the end of the protocol, each party is guaranteed to end up with a valid
contract or an abort token. As described briefly above, the protocol definition
in [ASW98]| provides two forms of contract:

{me1, No, mes, Np} (standard contract)

S-Sigp{me;, mey} (replacement contract)

where mey, mes, No, Ni are defined below. Note that the protocol definition
does not consider a signed contractual text by itself a valid contract.

Abort tokens have the following form:

S-Sigr{aborted, ma; }

where ma, is defined below.

An abort token should not be interpreted as a proof that the exchange has
been canceled. The protocol does not prevent a dishonest O from obtaining
an abort token after signing the contract with R. (In this case, O may have
both the abort token and the contract, while R only has the contract). The
protocol is designed, however, to prevent one party from receiving only the
abort token in any situation where the other can receive a valid contract.

Exchange subprotocol. As mentioned earlier, it is assumed that prior to initi-
ating the exchange, the two parties agree on the contractual text (text) and
the identity of the trusted third party 7'. They are also assumed to know each
other’s public verification key. Specifically, O knows the key Vx that can be
used to verify messages signed by R, and R knows V.

When there is no delay or blockage of network messages and neither party
tries to cheat the other, O and R may create a contract by the following steps:

O—R me; = S-Sigo{Vo, Vg, T, text, hash(Np)}
R— O mey = S-Sigp{me1, hash(Ng)}

O—R mes = Np

R— O mes = Ng

In the first step of the subprotocol, O commits to the contractual text by hash-
ing a random number Ny, and signing a message that contains both hash(Np)
and text. No is called the contract authenticator. While O does not actually
reveal the value of the contract authenticator to the recipient of message me;,
O is committed to it. As in a standard commitment protocol, we assume that
the hash function is 2nd-preimage resistant: it is not computationally feasible
for O to find a different number N/, such that hash(N{,) = hash(Np).

In the second step, R replies with its own commitment. Finally, O and R
exchange the actual contract authenticators. At the end of the exchange, both
O and R obtain a standard contract of the form {me;, No, mey, Ng}.

Abort subprotocol. The initiator O may attempt to abort the exchange. An
honest O may do this if a reply from R is not received within a reasonable
amount of time. To abort, O sends an abort request to the trusted third party

10

T by signing the first message me; of the exchange together with aborted. We
assume that aborted is some predefined bit string.

Here are the steps of the abort subprotocol, with further description of 1’s
action below:

O—-T ma; = S-Sigp{ aborted, me; }

T— 0 mao, = Has me; been resolved already?
Yes : S-Sigy{me;, mey}
No : S-Sigy{aborted, ma, }

aborted = true

When T receives an abort request, 1" checks its permanent database of past
actions to decide how to proceed. If 1" has not previously been requested to
resolve this instance of the protocol, T" marks me; as aborted in its permanent
database and sends an abort token to O. If me; is already marked as resolved,
this means that 7" has previously resolved this exchange in response to an
earlier request (as described below). 7" must have obtained both me; and
meq. Therefore, in response to O’s abort request, T creates a replacement
contract S-Sigp{me;, me,} and sends it to O.

Since T stores the result of aborting (indicated by aborted := true) in its
permanent database, an abort token is effectively a promise by 7" that it will
not resolve this instance of the protocol in the future. As mentioned above, an
abort token is not a proof that the exchange has been aborted, as the parties
can complete contract signing without involving 7 if they follow the exchange
subprotocol.

It is useful to bear in mind that while an honest O may send an abort request
to T if it does not receive mes within a reasonable time, there is no guarantee
that O will be able to abort. If the exchange has been already resolved by
someone who knows both me; and mes, T will not grant the abort request
and will send O a replacement contract instead — even if O has not received
mes. Note also that even though R is not allowed to send abort requests to
T, this does not put R at a disadvantage since it has the option of simply
ignoring all messages from O.

Resolve subprotocol. Either party may request that 7" resolve the exchange.
In order to do so, the party must possess both me; and mes. Therefore, R can
send a resolve request at any time after receiving me;, and O can do so at any
time after receiving mes. When T’ receives a resolve request, it checks whether
me; is already marked as aborted. If it is, T" replies with the abort token,

11

otherwise it marks me; as resolved and generates a replacement contract by
counter-signing the resolve request.

Below, we show the resolve protocol between R and 7. The protocol between
O and T is symmetric.

R—T mry = {mey, mes}

T—R mre = Has me; been aborted already?
Yes : S-Sig;{aborted, may}
No : S-Sigp{me;, mey}

resolved := true

Although the generated contract has a different form than the contract pro-
duced by the ezchange subprotocol, the protocol design assumes that in any
transaction requiring a contract, either form would be accepted as binding. In
other words, the protocol designers consider the definition of contract to be
part of the protocol specification and choose to use two forms of valid contract
in their protocol. Note, however, that the specification does not indicate how
two contracts that have the same form but contain contradictory information
(e.g., different nonces) should be treated.

The first request received by 71" determines the permanent status of the pro-
tocol. After T resolves or aborts the protocol for the first time, it should send
identical replies in response to all future requests. If the first request to reach
T is an abort request from O, T’s response to all requests will be the abort
token. If the first request to reach 7T is a resolve request from O or R, T’s
response to all requests will be the replacement contract. This leads to an im-
plicit race condition which is not, however, a violation of fairness requirements
as defined in section 4.

4 Correctness conditions

In this section, we specify the correctness conditions that must be satisfied by
an optimistic contract signing protocol. To simplify the presentation, we com-
bine the guarantees for ASW [ASW98| and GJM [GJIM99] protocols into one
set, of properties. Even though the two papers employ slightly different termi-
nology, the fairness properties they consider are essentially identical, with the
exception of abuse-freeness. Both protocols claim that the properties will be
satisfied assuming that the communication channels are resilient, 7.e., messages
can be arbitrarily delayed and/or scheduled, but will be eventually delivered

12

to their intended recipients.

Fairness. Fairness for protocol participants involves several conditions:

e It is impossible for a corrupt participant to obtain a valid contract without
allowing the remaining participant to also obtain a valid contract. Another
way of stating this [ASW98] is that when the protocol has completed, either
both O and R have valid contracts, or neither one does.

e Once an honest participant obtains a cancelation message (i.e., an abort
token) from the trusted third party T, it is impossible for any other partic-
ipant to obtain a valid contract.

e Every honest participant is guaranteed to complete the protocol.

Trusted third party accountability. If the trusted third party 7" can be forced
to eventually send a valid reply to every request, then any participant who is
cheated as a result of 7”s misbehavior will be able to prove that T misbehaved
in an external dispute. It is not specified precisely what can serve as a proof of
misbehavior, but typically such proof consists of two contradictory messages
signed by T" [ASW97], e.g., an abort token and a replacement contract.

Abuse-freeness. The ASW protocol [ASW98] is not designed to guarantee
this property, but we mention it here for the sake of uniformity. A protocol
is abuse-free if it is impossible for a protocol participant, at any point in the
protocol, to be able to prove to an outside party that he has the power to
choose between aborting and successfully completing the contract. One of the
main contributions of [GIM99] is to introduce the notion of abuse-freeness to
electronic contract signing.

There are other properties supported by the protocols, such as timeliness and
non-repudiability, but we did not model them formally and omit them for the
purposes of this analysis.

5 Formal modeling

Section 2.1 described our general approach to protocol analysis, which involves
modeling protocol participants and the adversary as non-deterministic finite-
state machines. This allows violations of correctness conditions to be detected
by fully automated, exhaustive search of the resulting state space. In this
section, we focus on the modeling issues arising in the application of finite-
state analysis to fair exchange protocols.

13

Fair exchange protocols present several challenges. To begin with, fairness in-
variants may be difficult to express precisely, given only an informal protocol
specification. Second, since fair exchange protocols are designed to protect
honest participants from being cheated by a misbehaving counterpart, it is
necessary to model malicious or corrupt protocol participants in addition to
the standard network-based intruder. Third, fair exchange protocols with the
trusted third party typically provide a guarantee of third party verifiability
or accountability, promising that any loss of fairness resulting from the third
party’s corruption can be traced and proven to an outside arbiter. These guar-
antees are difficult to understand and formalize for automated verification.
There are also challenges associated with abuse-freeness.

5.1 Modeling fairness

Muryp, the finite-state verification tool we used to perform the analyses de-
scribed in this paper, can only search for violations of state invariants. In
general, liveness properties such as fairness cannot be expressed in the Muryp
language. This leads some researchers to prefer more expressive tools. For in-
stance, in [Sch98| fairness properties of the Zhou-Gollmann non-repudiation
protocol [ZG96] are expressed as predicates on process failures. However, the
fairness conditions defined in section 4 can be expressed as safety properties.

To formulate fairness as a safety property, we only verify fairness in the states
in which an honest participant cannot perform any action according to the
protocol specification. We will call such states participant-terminal. Here is
a (slightly simplified) sample of Murp code illustrating how fairness for the
originator O in the ASW protocol (see section 3.3) is formally expressed as a
Murp state invariant:

-- If R has 0’s nonce or a valid replacement contract,
-- then 0 must have R’s nonce or a valid replacement contract
rule "O has been cheated"

-- Fairness is not guaranteed if T is corrupt

I'badT[0.trustedPartyl) &

-- 0 finished protocol

O.state = M_DONE &

(

-- R has 0’s nonce

R.otherNonce = 0.ownNonce |

-- ... or a valid replacement contract

R.replacement.mel_commit.nl = 0.ownNonce

) &

(

14

-- 0 has the wrong nonce

0.otherNonce = 0.otherCommit.nl &
0.otherNonce != R.ownNonce) |

-- 0 does not have a replacement contract
isundefined(0.replacement)) |

-- 0’s replacement contract is wrong
0.replacement.me2_commit.nl != R.ownNonce))

)

==>

begin
error "R has 0’s nonce or a valid replacement contract,

but O doesn’t have R’s"
end;
end;
end;

The rule signals an error if R possesses O’s valid contract, but O does not have
R’s contract. Note that the rule is conditional on O’s being in state M_DONE,
i.e., it only fires if O has completed its execution sequence in the protocol.

5.2 Soundness

Monotonicity. The soundness of our formulation of fairness, explained in sec-
tion 5.1 above, follows from the fact that fairness for these protocols is mono-
tonic. In other words, if a run of a protocol ceases to be fair at some point,
then it remains unfair for the remainder of the run. More specifically, if the
protocol reaches a state Sg in which one party has a contract, and the other
has no means of obtaining one, then this condition will hold true in all sub-
sequent states no matter what actions the cheated party undertakes. If this
were not true and there existed a sequence of actions that brings the protocol
to a state in which the cheated party obtains a contract, then fairness would
not have been violated in state Sg, and we arrive at a contradiction.

Therefore, we need not be concerned with discovering fairness violations in
the intermediate states where they must be expressed as liveness properties
(e.g., “O has no means of obtaining a valid contract”, or “no contract will be
available to O in the future”). Every such violation is preserved in all subse-
quent states, some of which are participant-terminal. Therefore, we can simply
let the protocol run its course, and search for fairness violations only in the
participant-terminal states, where they can be expressed as safety properties
(e.g., “R has a contract, but O doesn’t”).

To complete the argument that our formulation is correct, we need to show

15

that every protocol instance will reach a participant-terminal state even if
fairness has been violated in an intermediate state. The argument relies on
the following three properties:

Finiteness. All execution sequences of the protocol are finite.

Progress of honest participants. For each honest protocol participant P and
each state S;, we can define S;|P to be the partial state consisting only of
P’s private state variables. S;|P can be thought of as P’s view of what is
happening in the protocol. Obviously, it is possible that S;|P = S;| P for some
7 and 7, 1.e., different states may project to the same partial state as far as P
is concerned.

For each honest participant P, the protocol specification provides a complete
ordering of S;|P. Each time P sends or receives a message, it progresses to
the next state, eventually reaching the end of its execution sequence. Once
P leaves a state, it cannot reach it again. For example, in the ASW protocol
(section 3.3), O starts in the partial state where it is ready to send message
mey, then progresses to the state where it has dispatched me; and is waiting
for mey, then to the state where it has received mes, sent mes, and is waiting
for me4, and finally reaches the participant-terminal state (represented by
O.state = M_DONE in the code sample above) where it has received mes and
considers the protocol completed.

Channel resilience. In the protocols discussed in this paper, all communication
channels are assumed to be resilient, i.e., it is guaranteed that every message
will be eventually delivered. Therefore, we can assume that every honest par-
ticipant will progress to the end of its execution sequence even if a successful
attack on fairness was staged in an intermediate state. In the example above,
this means the protocol will reach a state S* such that S*|O is considered
by O to be a terminal state, i.e., 0.state = M_DONE. Channel resilience is
a fairly realistic assumption for real-world networks. In fact, if channels are
non-resilient, then the intruder can defeat any protocol by simply intercepting
messages and preventing them from reaching their intended recipients.

The modeling technique presented in this section extends the applicability of
fully automated finite-state analysis to a large class of fairness properties while
keeping the formalism conceptually simple and restricted to safety properties.
There is an efficiency cost. If we could discover fairness violations immediately
in the states where they first occur instead of delaying the discovery until the
cheated participant reaches the end of its execution sequence, we would not
need to generate all the state subspaces rooted in the violating states. The
exact number of states that are generated unnecessarily cannot be estimated

16

in general as it depends on the particular protocol and the nature of the attack
that leads to the loss of fairness. Effectively, the tradeoff is between running
a simple, robust, well-understood finite-state analysis tool such as Muryp for a
bit longer, and modeling the entire protocol in a richer formalism that allows
direct expression of liveness properties.

5.8 Modeling trusted third party accountability

Accountability only holds if the trusted third party is guaranteed to send a
valid response to all requests. Also, O must be notified whenever R tries to
enforce a contract, and vice versa. If a protocol participant does not know
that it is being cheated, it cannot go after T' to prove its misbehavior.

Before formulating a formal protocol invariant that could be verified with the
help of Murp, it is necessary to determine what it means to be able to prove
T’s misbehavior. Based on our interpretation of the protocol description in
[ASW98], we believe that the cheated protocol participant can prove that 7T
misbehaved if and only if it can produce two documents, both signed by T,
that contradict each other. More specifically, the cheated participant must be
able to demonstrate an abort token signed by 7" and a replacement contract
for the same instance of the protocol, also signed by 7. Since 7' is supposed
to process all abort and resolve requests on the first-come, first-served basis
and the initial request determines the status of the protocol in perpetuity, it
should never be the case that 7" issues both an abort token and a replacement
contract for the same instance of the protocol.

Based on the above interpretation, we believe that third party accountability
is violated if and only if the following conditions hold (the conditions are
formulated assuming that O is the cheated party; the conditions for R are
symmetric):

e T is corrupt (see section 5.5).
e R has O’s contract authenticator.

e O has neither R’s contract authenticator, nor a replacement contract signed
by T.

If R has a replacement contract signed by 7" instead of a standard contract
with O’s contract authenticator, then 7" is always accountable! Suppose that
R tries to enforce its replacement contract. When O goes to T and requests
to either abort, or resolve the protocol, 7" must send O a valid response. If
T sends a replacement contract, then there is no fairness violation and O is
not cheated since both parties possess the same contract. If T' sends an abort
token, then O is indeed cheated (since R has a contract and O does not), but
O can then prove 7’s misbehavior by demonstrating its abort token and R’s

17

replacement contract, both signed by T'.

However, if R has a standard contract with O’s contract authenticator, then
R’s contract is not signed by 7', and O cannot prove T’s misbehavior since it
cannot produce two inconsistent documents signed by 7'. This case satisfies
the conditions listed above.

These conditions can be modeled by simple state invariants. Therefore, trusted
third party accountability can be verified with the help of Murp.

5.4 Modeling abuse-freeness

Unlike basic fairness, abuse-freeness is not a monotonic property, and cannot
be easily converted into a safety guarantee. Both fairness and abuse-freeness
are assertions about future executions. Fairness violations, however, are ez-
istential properties of traces and can thus be found by analyzing each trace
separately (e.g., “there exists a trace such that O has R’s valid contract, but
R cannot obtain O’s valid contract by following the protocol specification”).
Therefore, we can convert fairness conditions into safety properties to be eval-
uated in terminal states as described in section 5.1, and delay the discovery
of violations until the trace has completed.

Violations of abuse-freeness, on the other hand, are universal properties of
traces (“for all possible traces, one of the parties can a) determine the outcome
of the protocol, and b) prove this ability to an outside party”). They only occur
in intermediate states, before a particular execution sequence has been chosen
by the participants, and cannot be discovered by analyzing the terminal state
of an individual trace.

Our partial approach to verifying whether abuse-freeness is violated in the
protocol consists of two stages. First, we use Mury to determine whether any
protocol participant possesses the power to determine the outcome of the pro-
tocol regardless of the actions of the other party, assuming the other party is
honest and genuinely interested in signing the contract. This is done by aug-
menting the system with an additional outside party we call the Challenger.

In order to verify whether a participant P has the power at some point in
the protocol, we have it send a message to the Challenger asserting its control
over the outcome. The Challenger then nondeterministically chooses a desired
outcome: abort or successful contract completion. (It is a consequence of fair-
ness that there are only two possible outcomes: either 7" aborts and no one
receives a signed contract or both parties receive a signed contract.)

After receiving the Challenger’s request, P has to interact with the honest

18

participant in such a way so as to drive the protocol to the requested outcome.
If there exists a trace in which the outcome of the protocol is not consistent
with that requested by the Challenger, we conclude that P does not possess
the power to determine the outcome. The key idea here is that determining
whether P satisfies the Challenger’s request is a state invariant and can be
verified by Mure.

The second part of violation is that a participant P with the power to deter-
mine the outcome must be able to prove this to an outside arbiter. However,
we have not formulated a straightforward way of verifying properties such as
“P can prove something” in Murp. Therefore, we have only analyzed this part
of the protocol by informal means.

Our analysis of abuse-freeness of the original and repaired GJM protocols can
be found in sections 8.3 and 8.4, respectively.

5.5 Modeling corrupt participants

Fair exchange protocols must protect an honest participant from being cheated
by a malicious counterpart. Therefore, analysis of a fair exchange protocol
must consider the possibility of one or more participants becoming corrupt
and cooperating with the intruder. In our formal model, we keep the intruder
and the malicious protocol participant separate. This enables us to consider
several conceptual levels of corruption. Distinguishing between them is useful
for analyzing real-world implications of the protocols.

In the simplest case, the corrupt participant is assumed to share its private
key with the intruder, enabling the latter to sign and decrypt messages on
its behalf. This is equivalent to the intruder using the corrupt party as an
oracle for signing and decrypting messages. We will call such collaboration
with the intruder strong corruption. We do not consider the case when a party
divulges its private key to everybody since it can be represented by sending
all messages encrypted with that key in plaintext.

A weaker form of corruption occurs when a protocol participant does not share
its key with the intruder, and does not sign any messages it is not supposed
to sign in the normal course of the protocol. However, it may be willing to
engage the intruder’s help in obtaining an unfair advantage in the exchange
or contract signing process. This may involve accepting messages from the
intruder and lying to an outside party about their source, e.g., by claiming
that they arrived from the protocol counterpart or 7' through the standard
communication channels. We will call this weak corruption.

A weakly corrupt protocol participant is akin to a fence who is willing to

19

accept hot goods without asking too many questions but will not do anything
overtly illegal himself. A contract signing protocol that does not protect an
honest participant from being cheated by a weakly corrupt counterpart defeats
its own purpose and is largely useless. In the real world, it is impossible to be
sure that an untrusted agent is not weakly corrupt, ¢.e., that it is not acting in
collusion with the intruder who has control over the public network on which
the contract is negotiated.

The weakest form of corruption is the case when a participant, perhaps un-
intentionally, gives the intruder an ability to monitor (but not to modify or
re-schedule) all incoming network traffic. This kind of corruption does not re-
quire that the corrupt party has a malicious intent. All the intruder needs is
an oversight in network protection. For example, careless disposal of incoming
messages may enable the intruder to root through the garbage and read all
discarded messages. We will call this form of corruption accidental corruption.

6 Analysis of the ASW Protocol

In order to search for protocol errors, we implemented the exchange, abort, and
resolve subprotocols in the Murp language. The protocol was combined with
the standard intruder model described in section 2.1. The correctness condi-
tions of section 4 were stated as Murp invariants. During state exploration,
Murg checks that each invariant holds in every reachable state. Conditions
such as timeliness and non-repudiability cannot be trivially represented as
state invariants, and we have not verified them formally.

Our first attempt to analyze the protocol failed because according to the
protocol specification, the trusted third party 7 is always ready to accept
abort and resolve requests. Therefore, if one of the parties is strongly corrupt
(i.e., the intruder has access to its signing key — see section 5.5), then in
every state of the protocol the intruder can generate a new resolve or, if O
is the corrupt party, abort request and send it to 7T'. The trusted third party
will then add the request to its database, resulting in a new, larger state.
This makes the state space of the protocol infinite. The only solution is to
arbitrarily limit the number of times the intruder can generate a request to 7’
in the course of one instance of the protocol. This restriction is not necessary
if there are no corrupt parties, since there is only a finite number of frivolous
requests that can be computed by the intruder. However, Mury analysis is
slowed down considerably if in every state there is an enabled rule allowing
the intruder to send a request to 7.

This section describes the results of our analysis with the intruder limited to
no more than 2 requests to 7" per protocol instance. We only present analysis

20

of fairness and omit that of trusted third party accountability since we did
not discover any interesting behaviors in which accountability is violated.

6.1 Fairness

As a reminder, fairness guarantees that when the protocol has completed,
either both protocol participants have valid contracts, or neither one does
(see section 4).

Confidential channels, one instance of the protocol. First, we analyzed one run,
or instance of the protocol under the assumption that all communication chan-
nels are confidential. This prevents the intruder from learning anything from
the messages as they pass through the network. The only operation the in-
truder can perform in this setting is to store a message and replay it later.
Muryp did not discover any violations of fairness. It did discover that the in-
truder can achieve the following:

e Prevent O from aborting the protocol by delaying its abort request to 7’
until R computes mesy, and then submitting me; and mey (ostensibly from
R) to T, thus resolving the protocol. Then O will receive a replacement
contract in response to its abort request.

e Force O to submit an abort request to 7" by delaying me,.

e Force R (respectively, O) to submit a resolve request to 7' by delaying mes
(mmey).

e Resolve the protocol directly by submitting a resolve request to 7' once
both me; and mes have been sent into the network as part of the exchange
subprotocol.

None of the above, however, is a violation of fairness as defined in section 4.

Confidential channels, two instances of the protocol. After increasing the bound
on the number of protocol instances, Mury discovered the following replay

21

attack:

I observes an instance of the protocol

O—R me; = S-Sigo{Vo, Vg, T, text, hash(Np)}
R—O0O mey = S-Sigp{me;, hash(Ng)}

O—R mes = No

R — O mey = Np

Later ...

I - R me; = S-Sigy{Vo, Vg, T, text, hash(Np)}
R— 0 mey = S-Sigg{me;, hash(Ny)} (I intercepts)
I - R mes = Np

R— 0O mel, = Ny (I intercepts)

To stage this attack, the intruder must observe an instance of the protocol,
recording all messages sent by O. After the protocol completes, the intruder
can initiate another instance of the protocol by replaying the recorded me;.
R will respond with a new me), to which the intruder responds with the old
mes. The result of this attack is that the intruder can get R to commit to the
text of an old contract with O without O’s or T’s knowledge.

The protocol as described in [ASW98]| contains no protection against this kind
of attack. Perhaps this was a conscious decision on the part of the protocol
designers who did not intend the protocol to be secure against replay attacks.
If the contractual text contains a timestamp, expiration date, or some other
information that might help in determining its freshness, R may be able to
detect the attack. It can be argued that any well-written contract must contain
such information. However, this should be stated explicitly as part of the
protocol specification and not left for the protocol user to infer.

The replay attack discovered by Muryp is different from the simpler one in
which a malicious R keeps the old contract to which O had previously com-
mitted and tries to reuse it. In case of our replay attack, the new contract is
different from the old one. Recall that a standard contract is the combination
of me;, mes, and contract authenticators: {me;, mes, No, Ng}. Since me, is
different in the second instance of the protocol, the contract is different. This
implies that O cannot even obtain a valid replacement contract by requesting
it from the trusted third party since in order to do so, it needs me}, which it

22

never receives. In fact, O is not even aware that an exchange between R and
the intruder has taken place.

The replay attack succeeds even if both O and R are honest. Suppose that O is
a retailer who periodically purchases supplies from R online using the contract
signing protocol. All purchase contracts are exactly the same, as is often the
case in real life, and it is agreed (offline) that all contracts expire immediately
upon fulfillment (i.e., R receives the order, fills it, and forgets about it). Then
the intruder can use the replay attack to impersonate O and submit a false
purchase contract on its behalf, convincing R that O has committed to a new
purchase and providing R with a false proof of O’s commitment.

Note that there is no need for the intruder to involve the trusted third party
in the protocol in order to stage the replay attack. This means that there will
be no evidence of the attack such as could have been provided by a resolve
request kept by 7.

The main weakness of the protocol is the fact that O’s message mes3 that
contains the contract authenticator is sent in response to R’s commitment
message mes but is not related to it in any way, making it possible for the
intruder to replay an old mez. A small repair to the protocol that prevents
the attack is described in section 6.2.

Standard channels. After repairing the protocol to prevent the replay attack,
we performed Mury analysis without the confidentiality assumption on the
channels but still within the constraints of the standard Dolev-Yao intruder
model (see section 2.1). Muryp did not discover any new attacks. This can be
attributed to the fact that messages me; 2, may 2, and mry are all signed, and
mry contains signed messages as its components. Assuming that every proto-
col participant knows everybody else’s correct public key (this is a necessary
requirement for the protocol to succeed even in the absence of the intruder),
signatures prevents the intruder from modifying messages in transit. Since no
signing keys are transmitted as part of the protocol, the intruder cannot gain
the ability to sign messages unless one of the parties leaks its key. Therefore,
the intruder is just as powerful as in the case of confidential channels.

This result suggests that the channel confidentiality assumption can be re-
laxed. The protocol ensures fairness even if the channels are controlled by a
Dolev-Yao intruder.

Malicious protocol participant. Finally, we analyzed the protocol under the
assumption that one of the participants is malicious. Mury discovered the fol-
lowing attack, in which a malicious R obtains a contract which is inconsistent

23

with that obtained by O.

O—+R me; = S-Sigy{Vo, Vg, T, text, hash(Np)}
R— 0 mey = S-Sigg{me1, hash(Ng)}
R computes new random Ny and
mey = S-Sigp{mey, hash(Ny)},
but keeps them secret
O—R mes = Np
R sends nothing
O—=T mry = {mey, mes}

T -0 mry = S-Sigp{me;, mey}

In this attack, R computes two different responses mey and me, to O’s initial
message me; using different random numbers Np and Nj. It sends out mes
and keeps the other secret. After it receives O’s contract authenticator Nop,
R does not respond at all. It has already obtained a valid standard contract
{me1, No, mey, Ni}. Since O does not receive me, from R, it requests trusted
third party T to resolve the protocol. T issues a replacement contract by
counter-signing me; and mey. However, O’s contract is different from that
possessed by R because it contains the hash of a different random number:
Npg rather than Ny,

This is a problem, since each party possesses a valid contract, but the two
contracts are inconsistent. Recall that the protocol employs a non-standard
definition of contracts (section 3.3), according to which a valid contract is more
than a signed contractual text. Even though the contractual texts in the two
contracts are the same, the random numbers and commitments are different,
and it is unclear how the contracts should be enforced or interpreted, given
that both are valid according to the protocol specification. The original paper
[ASW98] does not say anything about how this situation should be handled.

This problem is caused by the same weakness of the protocol that makes the
replay attack possible. O’s contract authenticator Ny is sent in response to
meg but is not explicitly linked to it. This enables R to use Np with a different
message me; to form a valid contract without revealing its own commitment
to O. More generally, Murp analysis points to the fact that O’s half of the
contract contains no information that links it to R’s half of the contract. The
modification of the protocol described in section 6.2 prevents this attack, too.

24

6.2 Repairing the protocol

The ASW protocol can be repaired so as to prevent the attacks described
in section 6.1 by explicitly linking message mes with message mes. This is
a standard technique to ensure that an old mez cannot be replayed by the
intruder in response to a fresh mey and that R can obtain a standard contract
only with the same contract authenticator that it has sent to O as part of
mey. A similar change must be made to me, to prevent a symmetric replay
attack.

O—R me; = S-Sigy{Vo, Vg, T, text, hash(Np)}
R— O mey = S-Sigp{me;, hash(Ng)}

O—=R me3 = S-Sigo{No, hash(Ng)}

R—O0 mey = S-Sigg{ Vg, hash(Ng)}

The security of the repaired protocol against replay attacks is strengthened by
the fact that cryptographically secure signature schemes are necessarily inde-
terministic, therefore, even if the same text is signed in two separate instances
of the protocol, the resulting messages will be different.

7 Garay-Jakobsson-MacKenzie Protocol

In this section, we describe the abuse-free optimistic contract signing protocol
of Garay, Jakobsson, and MacKenzie [GIM99]. The protocol is closely related
to the ASW protocol described above. Both involve a 4-step exchange sub-
protocol, and similar abort and resolve subprotocols. Even though the two
protocols have similar structure, the actual contents of the messages differ.
Unlike the ASW protocol, the GJM protocol is designed to guarantee abuse-
freeness in addition to fairness and third party accountability.

This section follows the pattern of section 3. We start by briefly describing
the objectives of the GJM protocol, explain the properties of private contract
signatures (PCS), an innovation of Garay, Jakobsson, and MacKenzie used to
make contract signing abuse-free, and describe the protocol steps in detail.

25

7.1 Objectives and assumptions

The GJM protocol is designed to enable two parties, O and R, to exchange
signatures on a contractual text. It is assumed that prior to executing the
protocol, the parties agree on each other’s identity, the contractual text, and
the identity of the trusted third party 7T'. Every protocol participant is assumed
to know the correct signature verification key of the other party and 7'. As
above, we write S-Sig;(m) for the result of signing text m with the key of
party 2. It is also assumed that every participant has a private communication
channel with T'.

The protocol is asynchronous. As the exchange protocol progresses, either
participant may contact the trusted third party 7T'. The third party may decide,
on the basis of the communication it received, to either resolve the protocol
by issuing the other party’s signature, or “abort” the protocol by issuing an
abort token. As in the ASW protocol, abort tokens are not a proof that the
exchange has been canceled. The intruder may schedule messages and insert
its own messages in the network, but cannot delay messages sent between
participants and T indefinitely.

7.2 Private Contract Signatures

The GJM protocol relies on the cryptographic primitive called private contract
signature (PCS). We write PCSp(m, R, T) for party O’s private contract sig-
nature of text m for party R (known as the designated verifier) with respect
to third party 7'. The main properties of PCS are summarized below:

e PCSp(m, R, T) can be verified like a conventional signature, i.e., there exists
a probabilistic polynomial-time algorithm PCS-Ver such that
PCS-Ver(m, O, R, T, s) is true iff s =PCSp(m,R,T).

e PCSp(m, R, T) can be feasibly computed by either O, or R, but nobody else.
This is the key property of PCS that distinguishes it from a conventional,
universally-verifiable signature, as the latter can only be computed by O.
When the designated verifier R receives s = PCSo(m, R,T), he will be
convinced that s was computed by O, but, unlike O’s conventional signature,
s cannot be used by R to prove this to an outside party.

e PCSp(m, R,T) can be converted into a conventional signature by either
O, or T, but nobody else, including R. For the purposes of this study, we
focus on the third-party accountable version of PCS, in which the converted
signatures produced by O and T can be distinguished. We will call them
S-Sig,(m) and T-Sig,(m), respectively. Unlike PCS, converted signatures
are universally verifiable by anybody in possession of the correct signature

26

verification key.

An efficient discrete log-based PCS scheme is presented in [GJM99].

7.8 Protocol

The GJM protocol consists of three interdependent subprotocols: ezchange,
abort, and resolve. Message sequences are identical to those of the ASW pro-
tocol (see section 3.3). The parties (O and R) start the exchange by following
the exchange subprotocol. If both O and R are honest and there is no interfer-
ence from the network, they obtain each other’s signatures as the final steps of
the exchange subprotocol. The originator O also has the option of requesting
the trusted third party 7' to abort an exchange that O has initiated. To do
so, O executes the abort subprotocol with T'. Finally, both O and R may each
request that 7" resolve an exchange that has not been completed. After receiv-
ing the initial message of the exchange protocol, they may do so by executing
the resolve subprotocol with 7.

At the end of the protocol, each party is guaranteed to end up with the other
party’s universally-verifiable signature of the contractual text, or an abort
token signed by T" and O, of the form S-Sigy.(S-Sig,(m, O, R, abort)).

Exchange subprotocol. When there is no interference from the network and
neither party tries to cheat the other, O and R may exchange signatures by
the following steps:

O—R me; = PCSp(m, R,T)
R— O mey = PCSg(m,0,T)
O—+R mes = S-Sig,(m)
R— O mey = S-Sigg(m)

In the first step of this subprotocol, O commits to the contractual text m by
producing a private contract signature of m with R as the designated verifier.
The purpose of PCS is to convince R that O signed m, while depriving R of the
possibility to prove this to an outside party. In the second step, R replies with
its own PCS of m with O as the designated verifier. Finally, O and R exchange
their actual, universally-verifiable signatures of m. At end of the exchange,
both O and R obtain a signed contract of the form {S-Sig,(m), S-Sigg(m)}.

Abort subprotocol. As in the ASW protocol, O may attempt to abort the
exchange if it times out waiting for a reply from R. Here are the steps of the

27

subprotocol:

O—T ma; = S-Sigy(m, O, R, abort)
T—0 mas = Has O or R resolved already?
Yes : S-Sigg(m) if R has resolved, or
T-Sigg(m) if O has resolved
No : S-Sigy(may)

aborted := true

When T receives an abort request, 1T' checks its permanent database of past
actions to decide how to proceed. If T" has not previously been requested to
resolve this instance of the protocol, 7" marks m as aborted in its permanent
database and sends an abort token to O. If m is already marked as resolved,
this means that 7" has previously resolved this exchange in response to an ear-
lier request. As a result of the resolution procedure (described below), honest
T must have obtained both O’s and R’s universally-verifiable signatures of m.
Therefore, in response to O’s abort request, T' forwards O either S-Sigg(m)
or T-Sigp(m), either of which can serve as a proof that R indeed signed m.

An abort token is a promise by 7" that it will not resolve this instance of the
protocol in the future. It is not a proof that the exchange has been aborted,
as the parties can complete contract signing without involving 7" if they follow
the exchange subprotocol.

Resolve subprotocol. Either party may request that 7" resolve the exchange. In
order to do so, the party must possess the other party’s PCS of the contract
(with T" as the designated third party), and submit it to 7" along with its
own universally-verifiable signature of the contract. Therefore, R can send a
resolve request at any time after receiving me;, and O can do so at any time
after receiving mey. When T receives a resolve request, it checks whether the
contract is already marked as aborted. If it is, T replies with the abort token.
If the contract has been resolved by the other party, 7" replies with that party’s
signature. Finally, if the contract has been neither aborted, nor resolved by the
other party, T converts PCS into a universally-verifiable signature, sends it to
the requestor, and stores the requestor’s own signature in its private database.

Below, we show the resolve protocol between R and 7. The protocol between

28

O and T is symmetric.

R—>T mr; = PCSo(m, R, T), S-Sigg(m)
T—R mry = Has O aborted already?
Yes : Send S-Sig,(S-Sigp(m, O, R, abort))
No : Has O resolved already?
Yes : Send S-Sig,(m)
No : Store S-Sigg(m)
Convert PCSo(m, R, T) to T-Sig,(m)
Send T-Sig,(m)

resolved := true

As in the ASW protocol, the first request received by T determines the per-
manent status of the protocol.

7.4 Correctness conditions

Correctness conditions for the GJM protocol are effectively the same as those
for the ASW protocol, and can be found in section 4 above. In addition to
fairness, the GJM protocol is designed to be abuse-free.

There are actually two versions of the GJM protocol, one providing third party
accountability and the other not. The difference between the two protocols lies
in two versions of PCS. In our analysis, we focus on the case when the PCS
scheme provides third-party accountability, i.e., the distributions of S-Sig;(m)
and T-Sig;(m) are disjoint, and thus it is possible for the verifier to distinguish
whether the signature is a “real” signature of ¢, or a PCS of ¢ converted by 7'
Since the steps of the protocol do not allow 7" to both abort and resolve the
protocol, any PCS conversion performed by 7T after it aborted the protocol
(and vice versa) can be traced to T and serve as a proof of T’s misbehavior.

8 Analysis of the GJM Protocol

We used Murp to perform finite-state analysis of the GJM protocol. Since
abuse-freeness cannot be trivially represented as a state invariant, we em-
ployed a partial verification method described in section 5.4. Corrupt protocol

29

participants were modeled as described in section 5.5. In the rest of this sec-
tion, we analyze protocol correctness conditions, and suggest repairs to the
protocol.

8.1 Fairness

First, we analyzed the protocol under the assumption that both participants
are honest, i.e., neither tries to cheat the other. This also implies that neither
participant knowingly cooperates with the intruder. Murp discovered the same
execution sequences as for the ASW protocol (see section 6.1), none of which
is a violation of fairness as defined in section 4.

There is an important difference between the GJM protocol and the ASW
protocol. In the latter, the intruder can directly resolve the protocol by sub-
mitting a resolve request to 7' once both me; and me, have been sent into the
network as part of the exchange subprotocol. This is impossible in the GJM
protocol since resolve requests must include the originating party’s signature
on the contract which the intruder cannot compute without cooperating with
that party.

In the remainder of this subsection, we focus on the cases when at least one
of the protocol participants is malicious or corrupt. For brevity, we omit the
discussion of all combinations and concentrate on the most interesting insights
about the protocol revealed by our analysis.

Weakly corrupt O, intruder monitors R — T channel. We analyzed the protocol
under the assumption that party O is malicious, i.e., its intention is to cheat R
by obtaining R’s signature of the contractual text m without releasing its own
signature. O is weakly corrupt: it is willing to engage the intruder’s help in
obtaining R’s signature, but will not sign or decrypt messages for the intruder.

The intruder I is assumed to have the ability to eavesdrop on and delay
messages sent from R to T, but not to modify or remove them. Below we
analyze the protocol under the assumption that the communication channel
between R and T is inaccessible to the intruder.

30

Under these assumptions, Mury uncovered the following attack:

O—R me; = PCSo(m, R, T)
R— O mey = PCSg(m,0,T)

I intercepts mesg, or O receives and discards it

O—-T ma; = S-Sigp(m, O, R, abort)
R—T mr; = PCSp(m, R, T),S-Sigg(m)
I eavesdrops on mry, learns S-Sigp(m),

delays mry until T receives ma;

T—0 may = S-Sigp(S-Sigp(m, O, R, abort))

I intercepts mag, or O receives and hides it

T—R mry = S-Sigy(S-Sigy(m, O, R, abort))
I—-0 S-Sigp(m)

As a result, O obtains R’s signature of the contract S-Sigg(m), while R obtains
the abort token from 7.

Recall the second fairness condition from section 4: once a correct participant
(R) obtains an abort token from the trusted third party 7', it should be impos-
sible for any other participant to obtain a valid contract. This condition can
be approximated by the following safety invariant: “it is never the case that
the correct participant possesses the abort token, while some other participant
possesses a valid contract, if the abort token was received first.” Clearly, the
above attack violates this invariant.

The first fairness condition is violated as well: the corrupt participant (O)
obtained a valid contract without allowing the remaining participant (R) to
also obtain a valid contract. The reason for this is that the only information
from O that R has in its possession is PCSp(m, R, T) sent in message me;.
This PCS can be converted into a universally-verifiable signature either by O
(who won’t do this because it’s corrupt), or by 7' (who won’t do this because
it has already aborted the protocol, and must send abort tokens in response
to all requests). Therefore, R has no means to obtain O’s universally-verifiable
signature of the contractual text m.

Since the fairness conditions from section 4 do not hold, we believe this attack
is a bona fide violation of fairness. Even though it can be argued that R
implicitly agreed to sign the contract by sending its signature to 7" in message

31

mry, the fact that it received an abort token in response should guarantee that
a contract has not be signed. Note the asymmetry between R and O here —
since R may not initiate the abort subprotocol itself, the abort token serves as
a proof to R that the protocol has been canceled by O, assuming 7" is honest.
We also believe that this attack violates abuse-freeness (see section 8.3 below).

Weakly corrupt O, accidentally corrupt T". In order to stage the attack described
in the previous section, the intruder must be able to access the communication
channel between R and T'. The original paper [GJM99] specifies that commu-
nication between any participant and 7" is conducted over a private channel. In
this case, the intruder will not be able to eavesdrop on message mr; sent by R
to T in order to resolve the protocol, and will not be able to learn S-Sigz(m).
In fact, even if R and 7' communicate over a public network, encrypting mr;
with T”s public key will prevent the intruder from splitting it into parts and
reusing one of the parts to help O gain an unfair advantage. It is worth noting,
however, that the protocol specification in [GJM99] does not require that mr
be encrypted.

Now consider the case when the R — T channel is secure, but 71" is acciden-
tally corrupt, and I has passive access to all of its incoming communication
(see section 5.5 for our definition of accidental corruptness). This does not
require active cooperation with the intruder on the part of 7', just negligence
in handling messages it receives from protocol participants. I does not need
the ability to split messages into parts, remove them from the network, or
even insert its own messages into the network. I only needs to make sure that
T receives O’s abort request ma; before it receives R’s resolve request mr;.
Scheduling the network to achieve this is not difficult if malicious O sends ma,
to T' prior to sending me; to R, while honest R receives me;, generates mes
and then times out waiting for mez before sending mr; to 7. Having passive
access to T’s communication with R is sufficient for I to learn S-Sigp(m) and
divulge it to O. Therefore, the attack succeeds in this case.

8.2 Trusted third party accountability

Suppose that T is accidentally corrupt and I successfully stages the attack
described in section 8.1, causing R to lose fairness as a result. Since we are
analyzing a TTP-accountable version of the GJM protocol (see section 7.4), we
would like to verify whether the trusted third party 7" can be held accountable,
i.e., if R loses fairness because of 1”s misbehavior, it must be able to prove
the misbehavior to an arbiter or verifier in an external dispute.

For the purposes of our formal analysis, we followed the designers of the ASW
protocol [ASW98 ASW97] and assumed that the proof must consist of two

32

inconsistent messages signed by 7', e.g., an abort token and a converted PCS.
(Recall that in the TTP-accountable version of PCS, T-Sigy(m) obtained as
a result of T”s conversion of PCSg(m) is distinct from S-Sigg(m)). According
to the protocol specification, T must process all requests on the first-come,
first-served basis. Therefore, the first request received by 7' determines the
status of the contract in perpetuity, and it should never be the case that T
issues an abort token and a converted PCS signature for the same contract.

However, if R loses fairness as a result of T’s accidental corruption, it has no
means of proving to an outside party that 7" is corrupt. O is in possession
of genuine S-Sigp(m), not a converted PCS. If O is willing to lie about the
source of this signature, then R cannot pin the blame on 7. The only message
signed by T is the abort token, and in the absence of two inconsistent messages
signed by 7', it is unclear what R can use as a proof to hold 7" accountable.

Since abort requests are signed, R can prove that the abort token it received
from 7" was originally generated by O. But protocol specification allows for the
case when O obtains a valid signature of R after sending off its abort request.
This may happen if, for example, T received R’s resolve request before O’s
abort request, resolved the protocol, and forwarded R’s signature in response
to O’s abort request. O can also claim that it received R’s signature directly
from R.

At best, R can argue that either O, or T is lying: either O is lying that it
received R’s signature from 7" in response to its abort request, or 7" is lying
that it received O’s abort request before R’s resolve request (in the latter case,
T would not have sent the abort token in response to R’s request). This is a
very weak form of accountability — in effect, the cheated party in a 3-party
protocol is arguing that one of the other two is lying.

We believe that the difference between the possibilities (O is corrupt, or T’
is corrupt) is too significant to allow any confusion between the two. The
protocol is designed to withstand corrupt participants, so the fact that O is
corrupt is fairly trivial. 7', on the other hand, plays a crucial role due to its
ability to resolve or abort contract signings, and any negligence or dishonesty
on the part of 7" should be immediately detected and, if proved, should lead
to revocation of T’s authority to function as the trusted third party.

8.8 Abuse-freeness

We claim that the attack described in section 8.1 violates abuse-freeness of the
protocol by giving the originator O both the power to determine the outcome
of the protocol and the ability to prove this power to an outside arbiter A.

33

Suppose O uses A as a signature server — instead of signing messages to R
with its own private key, it asks A to do the signing with A’s private key
to which O has no access. This way A can keep track of all signed messages
generated by O in the protocol. If key certificates are used, then A can ini-
tiate the exchange subprotocol with R under its own name, and O, using an
intruder eavesdropping on the network and/or an accidentally corrupt 7', will
demonstrate that it can drive the protocol to the desired conclusion. In either
case, A is able to maintain the list of all signatures generated by the originator
of the exchange.

O obtains both S-Sig,(m) and S-Sig;(S-Sig,(m, O, R, abort)) by proceeding
as in section 8.1. At this point, O is free to decide whether to enforce the
contract using the former, or consider it aborted using the latter. Thus it has
the power to determine the outcome of the protocol. It can prove this power
by presenting both messages to A. Note that in this case an abort token will
convince A that O has the power to abort the protocol since A keeps track of
all signatures generated by O, and knows that at no point in the protocol did
O generate its signature on the contract, S-Sigg,(m). This is different from the
case, considered in section 3.3, where O initiates the abort subprotocol with T’
after releasing its signature, and, therefore, O’s possession of the abort token
cannot serve as a proof that O is capable of aborting the protocol.

The argument about T'TP accountability given in section 8.2 applies to abuse-
freeness as well as to fairness. If R is abused by O as a consequence of 1”s
accidental corruption, R cannot prove to an outside arbiter that 7" misbehaved.

8.4 Repairing the protocol

The basic error in the GJM protocol can be attributed to the fact that data
sent in the resolve subprotocol are exactly the same as data sent in the ez-
change subprotocol. The GJM protocol can therefore be repaired by replacing
the standard signature in each resolve request with PCS. This was indepen-
dently suggested by the authors of the protocol after we brought the attack
described in section 8.1 to their attention [Mac99].

In the repaired protocol, resolve requests from R to 71" will have the following
form (requests from O to T are symmetric):

mry = PCSp(m, R,T), PCSg(m, O, T)

Our analysis of the repaired protocol did not uncover any attacks. Mury con-
firmed that R still has the power to determine the outcome of the protocol
after receiving the first message from O (see section 5.4). However, the only

34

information in R’s possession at this point is PCSo(m, R, T), and R cannot
use it to prove anything to an outside arbiter due to the designated verifier
property of PCS (see section 7.2). We conclude that the repaired protocol
is abuse-free. By contrast, the ASW protocol is not abuse-free. In the ASW
protocol, R, too, has the power to determine the outcome after the first mes-
sage received from O, but since universally-verifiable signatures are used, this
power can be proved to an outside arbiter.

Unlike the original protocol, the repaired protocol is T'TP-accountable. In
the repaired protocol, T' never receives universally-verifiable signatures of the
contract from either O, or R. Any universally-verifiable signature leaked by
corrupt 7" must be the result of PCS conversion, and its origin can be traced
to T' if the TTP-accountable version of PCS is used.

Muryp analysis indicates that the private channel assumption for communica-
tion between protocol participants and 7" can be relaxed. Even if the intruder
can eavesdrop on messages exchanged with 7', the protocol is still fair and
abuse-free as long as the channels are resilient, i.e., every message is guar-
anteed to eventually reach its intended recipient. This is significant because
this implies that the repaired protocol does not need to operate on top of a
secrecy protocol, or use any form of encryption in order to guarantee fairness.
The protocol can still be subject to cryptographic attacks on PCS and signa-
ture schemes and/or other attacks that could not have been discovered in the
Mury model.

Additional analysis of the repaired protocol has been performed by Satyaki
Das using the new-generation Muryp tool that relies on predicate abstractions
to analyze infinite state spaces. It did not discover any attacks on an arbitrary
number of protocol instances executed by different principals.

9 Conclusions

This study shows how a finite-state analysis tool can be used to study contract
signing protocols and discover potential attacks and weaknesses. The main in-
sights into the protocols are a weakness in the Asokan-Shoup-Waidner protocol
and an error in the Garay-Jakobsson-MacKenzie protocol. In both cases, we
give simple changes to one or two messages that eliminate these problems.
Whatever usefulness the protocols might have in their original form, we be-
lieve that these small changes are clear improvements in the protocol that will
be useful to anyone who wishes to use these or related protocols in practice.
In addition, our Murp-based analysis clarifies the private-channel assumptions
needed to guarantee protocol correctness.

35

Several modeling challenges arose in this study, since the properties involved
in contract signing protocols are different and more subtle or more complex
than the correctness conditions for common secrecy and authentication proto-
cols studied extensively in the literature. The correctness properties for these
protocols are fairness, third-party accountability, and abuse-freeness. While
fairness and accountability can be determined from the traces of terminat-
ing protocol runs, abuse-freeness is not a trace-based property. The reason
is that abuse relies on intermediate states where one party has the power to
unilaterally determine whether or not a contract is produced. This is precisely
the kind of property that has motivated researchers in concurrency theory
to develop partial order models of concurrent systems [Hoa85,Mil95]. Since
Muryp is a trace-based tool, we can only formalize and check an approxima-
tion to abuse-freeness. More specifically, we conjectured the states of protocol
execution that allow one party power over the other and then verified our con-
jecture by Muryp analysis of a modified protocol environment. In this modified
environment, an outside observer called the Challenger nondeterministically
challenges one party to demonstrate power over the outcome of the protocol. If
that party succeeds in meeting every challenge, then that party must have the
power to determine the outcome. Moreover, verification that every challenge
is met is a trace-based property. We believe that this method for verifying
non-trace-based properties using trace-based tools may be useful for verifying
control-related properties of other protocols.

Fair exchange protocols are a new area of application for formal methods, and
specification of protocol guarantees in the form suitable for automated verifi-
cation is still a challenge, especially in the case of such non-trivial properties
as trusted third party accountability and abuse-freeness. We do believe that
as online fair exchange and contract signing protocols gain increasing accep-
tance and a correspondingly high level of assurance is expected from them,
formal techniques such as finite-state analysis will prove useful for uncovering
interesting insights and non-obvious attacks.

References

[ASW9T] N. Asokan, V. Shoup, and M. Waidner. Asynchronous protocols for
optimistic fair exchange. Technical Report RZ2976, IBM Research
Report, November 1997.

[ASW98] N. Asokan, V. Shoup, and M. Waidner. Asynchronous protocols for
optimistic fair exchange. In Proc. IEEE Symposium on Research in
Security and Privacy, pages 86-99, 1998.

[BDM98| Feng Bao, R. H. Deng, and Wenbo Mao. Efficient and practical fair
exchange protocols with off-line TTP. In Proc. IEEE Symposium on
Research in Security and Privacy, pages 77-85, 1998.

36

[BOGMR90] M. Ben-Or, O. Goldreich, S. Micali, and R. L. Rivest. A fair protocol

[Bol97]

[BT94]

[CDL*99]

[CFN88|

[Cha85]

[CTS95]

[Dam95]

[DGLWY6]

[Di196]

[DM99]

[DY83]

[FR97]

[GIMYY]

for signing contracts. IEEE Transactions on Information Theory,
36(1):40-46, 1990.

D. Bolignano. Towards a mechanization of cryptographic protocol
verification. In Proc. 9th International Conference on Computer Aided
Verification, pages 131-142, 1997.

A. Bahreman and J. D. Tygar. Certified electronic mail. In Proc.
Internet Society Symposium on Network and Distributed Systems
Security, pages 3—-19, 1994.

I. Cervesato, N. A. Durgin, P. D. Lincoln, J. C. Mitchell, and
A. Scedrov. A meta-notation for protocol analysis. In Proc. 12th
IEEE Computer Security Foundations Workshop, pages 55—69, 1999.

D. Chaum, A. Fiat, and M. Naor. Untraceable electronic cash. In
Proc. Advances in Cryptology — Crypto 88, pages 319-327, 1988.

D. Chaum. Security without identification: Transaction systems to
make big brother obsolete. Communications of the ACM, 28(10):1030—
1044, 1985.

B. Cox, J. D. Tygar, and M. Sirbu. NetBill security and transaction
protocol. In Proc. 1st USENIX Workshop on Electronic Commerce,
pages 77-88, 1995.

I. B. Damgard. Practical and provably secure release of a secret and
exchange of signatures. J. Cryptology, 8(4):201-222, 1995.

R. H. Deng, Li Gong, A. A. Lazar, and Weiguo Wang. Practical
protocols for certified electronic mail. J. Network and Systems
Management, 4(3):279-297, 1996.

D. Dill. The Murep verification system. In Proc. 8th International
Conference on Computer Aided Verification, pages 390-393, 1996.

N. A. Durgin and J. C. Mitchell. Analysis of security protocols. In
M. Broy and R. Steinbruggen, editors, Calculational System Design,
pages 369-395. 10S Press, 1999.

D. Dolev and A. Yao. On the security of public key protocols. IEEFE
Transactions on Information Theory, 29(2):198-208, 1983.

M. Franklin and M. Reiter. Fair exchange with a semi-trusted
third party. In Proc. 4th ACM Conference on Computer and
Communications Security, pages 1-6, 1997.

J. A. Garay, M. Jakobsson, and P. MacKenzie. Abuse-free optimistic
contract signing. In Proc. Advances in Cryptology — Crypto 99, pages
449-466, 1999.

37

[Hoa85]

[HTWW96]

[KMM94]

[Low96]

[Mac99]

[MCJ97]

[Mea96a]

[Mea96b]

[Mil95]

[MMS97]

[MSS98]

[Mur]

[Pau9s]

[Ros95]

[Ros97]

[Sch96]

C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall,
1985.

N. Heintze, J. D. Tygar, J. M. Wing, and H.-C. Wong. Model checking
electronic commerce protocols. In Proc. USENIX 1996 Workshop on
Electronic Commerce, pages 147-164, 1996.

R. Kemmerer, C. Meadows, and J. Millen. Three systems for
cryptographic protocol analysis. J. Cryptology, 7(2):79-130, 1994.

G. Lowe. Breaking and fixing the Needham-Schroeder public-key
protocol using CSP and FDR. In Proc. 2nd International Workshop on
Tools and Algorithms for the Construction and Analysis of Systems,
pages 147-166, 1996.

P. MacKenzie. Email communication, September 23, 1999.

W. Marrero, E. M. Clarke, and S. Jha. Model checking for security
protocols. Technical Report CMU-SCS-97-139, Carnegie Mellon
University, May 1997.

C. Meadows. Analyzing the Needham-Schroeder public-key protocol:
A comparison of two approaches. In Proc. European Symposium On
Research In Computer Security, pages 365-384, 1996.

C. Meadows. The NRL Protocol Analyzer: An overview. J. Logic
Programming, 26(2):113-131, 1996.

R. Milner. Communication and Concurrency. Prentice-Hall, 1995.

J. C. Mitchell, M. Mitchell, and U. Stern. Automated analysis of
cryptographic protocols using Mury. In Proc. IEEE Symposium on
Research in Security and Privacy, pages 141-151, 1997.

J. C. Mitchell, V. Shmatikov, and U. Stern. Finite-state analysis of
SSL 3.0. In Proc. 7th USENIX Security Symposium, pages 201-215,
1998.

http://verify.stanford.edu/dill/murphi.html.

L. Paulson. The inductive approach to verifying cryptographic
protocols. J. Computer Security, 6:85-128, 1998.

A. W. Roscoe. Modelling and verifying key-exchange protocols using
CSP and FDR. In Proc. 8th IEEE Computer Security Foundations
Workshop, pages 98-107, 1995.

A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-
Hall, 1997.

S. Schneider. Security properties and CSP. In Proc. IEEE Symposium
on Research in Security and Privacy, pages 174-187, 1996.

38

[Sch98]

[SM00a]

[SMOOb)]

[SS98]

[ZG96]

S. Schneider. Formal analysis of a non-repudiation protocol. In Proc.
11th IEEE Computer Security Foundations Workshop, pages 64-55,
1998.

V. Shmatikov and J. C. Mitchell. Analysis of a fair exchange protocol.
In Proc. Internet Society Symposium on Network and Distributed
Systems Security, pages 119-128, 2000.

V. Shmatikov and J. C. Mitchell. Analysis of abuse-free contract
signing. In Proc. 4th Annual Conference on Financial Cryptography,
2000.

V. Shmatikov and U. Stern. Efficient finite-state analysis for large
security protocols. In Proc. 11th IEEE Computer Security Foundations
Workshop, pages 106-115, 1998.

J. Zhou and D. Gollmann. A fair non-repudiation protocol. In Proc.
IEEE Symposium on Research in Security and Privacy, pages 55—61,
1996.

39

