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omAbstra
tWe present a pra
ti
al s
heme for Internet-s
ale 
ollaborative analysis of information se-
urity threats whi
h provides strong priva
yguarantees to 
ontributors of alerts. Wide-area analysis 
enters are proving a valu-able early warning servi
e against worms,viruses, and other mali
ious a
tivities. Atthe same time, prote
ting individual and or-ganizational priva
y is no longer optional intoday's business 
limate. We propose a setof data sanitization te
hniques that enable
ommunity alert aggregation and 
orrelation,while maintaining priva
y for alert 
ontribu-tors. Our approa
h is pra
ti
al, s
alable, doesnot rely on trusted third parties or se
uremultiparty 
omputation s
hemes, and doesnot require sophisti
ated key management.1 Introdu
tionOver the past few years, 
omputer virusesand worms have evolved from nuisan
es tosome of the most serious threats to Internet-
onne
ted 
omputing assets. Global infe
-tions su
h as Code Red and Code RedII [21, 40℄, Nimbda [30℄, Slammer [20℄,MBlaster [18℄, and MyDoom [17℄ are amongan ever-growing number of self-repli
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mali
ious 
ode atta
ks plaguing the Inter-net with in
reasing frequen
y. These atta
kshave 
aused major disruptions, a�e
ting hun-dreds of thousands of 
omputers worldwide.Re
ognition and diagnosis of these threatsplay an important role in defending 
omputerassets. Until re
ently, however, network de-fense has been viewed as the responsibility ofindividual sites. Firewalls, intrusion dete
-tion, and antivirus tools, are, for the mostpart, deployed in the mode of independentsite prote
tion. Although these tools su

ess-fully defend against low or moderate levels ofatta
k, no known te
hnology 
an 
ompletelyprevent large-s
ale 
on
erted atta
ks.There is an emerging interest in the devel-opment of Internet-s
ale threat analysis 
en-ters. Con
eptually, these 
enters are datarepositories to whi
h pools of volunteer net-works 
ontribute se
urity alerts, su
h as �re-wall logs, reports from antivirus software, andintrusion dete
tion alerts (we will use theterms analysis 
enter and alert repository in-ter
hangeably). Through 
olle
tion of 
ontin-ually updated alerts a
ross a wide and diverse
ontributor pool, one hopes to gain a perspe
-tive on Internet-wide trends, dominant intru-sion patterns, and in
e
tions in alert 
ontentthat may be indi
ative of new wide-spreadingthreats. The sampling size and diversity of
ontributors are thus of great importan
e, asthey impa
t the speed and �delity with whi
hthreat diagnoses 
an be formulated.We are interested in prote
ting sensitivedata 
ontained in se
urity alerts against ma-li
ious users of alert repositories and 
orruptrepositories. The risk of leaking sensitive in-



formation may negatively impa
t the size anddiversity of the 
ontributor pool, add legalliabilities to 
enter managers, and limit a
-
essibility of raw alert 
ontent. We 
onsidera three-way tradeo� between priva
y, utility,and performan
e: priva
y of alert 
ontribu-tors; utility of the analyses that 
an be per-formed on the sanitized data; and the per-forman
e 
ost that must be borne by alert
ontributors and analysts. Our obje
tive is asolution that is reasonably eÆ
ient, priva
y-preserving, and pra
ti
ally useful.We investigate several types of atta
ks,in
luding di
tionary atta
ks whi
h defeatsimple-minded data prote
tion s
hemes basedon hashing IP addresses. In parti
ular, wefo
us on atta
kers who may use the analysis
enter as a means to probe the se
urity pos-ture of a spe
i�
 
ontributor and infer sensi-tive data su
h as internal network topologyby analyzing (arti�
ially stimulated) alerts.We present a set of te
hniques for sanitizationof alert data. They ensure se
re
y of sensi-tive information 
ontained in the alerts, whileenabling a large 
lass of legitimate analysesto be performed on the sanitized alert pool.We then explain how trust requirements be-tween the alert 
ontributors and analysis 
en-ters 
an be further redu
ed by deploying anoverlay proto
ol for randomized alert routing,and give a quantitative estimate of anonymityprovided by this te
hnique. We 
on
lude bydis
ussing performan
e issues.2 Related WorkEstablished Internet analysis 
enters, su
has DShield [34℄ and Symante
's Deep-Sight [32℄ gather alerts from a diverse pop-ulation of sensors. For example, in April2003, DShield reported a 
ontributor poolof around 41,000 registered parti
ipants andaround 2000 regular submitters, who submita total of 5 to 10 million alerts daily [7℄. These
enters proved e�e
tive in re
ognizing short-term in
e
tions in alert 
ontent and volumethat may indi
ate wide-s
ale mali
ious phe-nomena [39℄, as well as the ability to tra
k im-portant se
urity trends that may allow sitesto better tune their se
urity postures [31℄.

Other resear
h has shown how to use dis-tributed se
urity information to infer Inter-net DoS a
tivity [22℄, and how to improvethe speed and a

ura
y of large-s
ale multi-enterprise alert analysis 
enters [38℄.Alert sharing 
ommunities have not yetenjoyed wide-s
ale adoption, in part due topriva
y 
on
erns of potential alert 
ontribu-tors and managers of 
ommunity alert repos-itories. Raw alerts may expose site-privatetopologi
al information, proprietary 
ontent,
lient relationships, and the site's defensive
apabilities and vulnerabilities. With thisin mind, established systems suppress sensi-tive alert 
ontent before it is distributed toanalysis 
enters (e.g., �eld suppression is a
on�gurable option in DShield's alert extra
-tion software). Even with these measures, or-ganizations su
h as DeepSight and DShieldmust be granted a substantial degree of trustby the alert produ
ers, sin
e suppression andanonymization must be balan
ed against theneed to maintain the utility of the alert.2.1 Pa
ket tra
e anonymizationSeveral approa
hes have been proposed foranonymization of Internet pa
ket tra
es [25,36, 24℄. For example, Pang and Paxson pro-posed a high-level language and tool [24℄ aspart of the Bro pa
kage, enabling anonymiza-tion of pa
ket header and 
ontent. They areinterested in wide-s
ale network tra
es su
has FTP sessions, while our appli
ation is alertmanagement. Further, we examine strategiesthat mitigate di
tionary atta
ks from adver-saries who 
an stimulate and then observealert produ
tion within the target's site.2.2 Database obfus
ationThe database 
ommunity has examinedthe problem of mining aggregate data whileprote
ting priva
y at the level of individualre
ords. One approa
h is to randomly per-turb the values in individual re
ords [1, 2℄and 
ompensate for the randomization at theaggregate level. This approa
h is potentiallyvulnerable to priva
y brea
hes. If a data item



is repeatedly submitted and perturbed (dif-ferently ea
h time), mu
h information aboutthe original value 
an be inferred. In our 
on-text, an atta
ker 
ould intentionally probethe same IP address using the same atta
kstrings. If the (randomly perturbed) reportsof the atta
k are disambiguated from otheralerts based on the atta
k's unique statisti
alaspe
ts, the atta
ker 
an use them to learnimportant details of the original alert.2.3 SMC s
hemesConsider two or more parties who wantto perform a joint 
omputation, but neitherparty is willing to reveal its input. This prob-lem is known as Se
ure Multiparty Computa-tion (SMC). It deals with 
omputing a proba-bilisti
 fun
tion in a distributed system whereea
h parti
ipant independently holds one ofthe inputs, while ensuring 
orre
tness of the
omputation and revealing no information toa parti
ipant other than his input and output.There exist general-purpose 
onstru
tionsthat 
onvert any polynomial 
omputation toa se
ure multiparty 
omputation [37℄. Re-
ent work has 
onsiderably improved the ef-�
ien
y of su
h 
omputations when an ap-proximate answer is suÆ
ient [13℄. Appli
a-tions in
lude priva
y-preserving data 
lassi�-
ation, 
lustering, generalization, summariza-tion, 
hara
terization, and asso
iation rulemining. Clifton et al. [8℄ present methodsfor se
ure addition, set union, size of set in-terse
tion, and s
alar produ
t. Lindell andPinkas [19℄ propose a proto
ol for se
ure de-
ision tree indu
tion, 
onsisting of many invo-
ations of smaller private 
omputations su
has oblivious fun
tion evaluation. Unfortu-nately, the 
ost of even the most eÆ
ientSMC s
hemes is too high for the purpose oflarge-s
ale se
urity alert distribution.3 Format of Se
urity AlertsNetwork data 
olle
ted to support threatanalysis, fault diagnosis, and intrusion re-port 
orrelation may range from simple MIB

statisti
s to detailed a
tivity reports pro-du
ed by 
omplex appli
ations su
h as intru-sion or anomaly dete
tion systems. So far,we have used the term se
urity alert looselyto refer to site-lo
al a
tivity produ
ed by anetwork se
urity 
omponent (sensor) as it re-ports on observed a
tivity or upon an a
tionit has taken in response to observed a
tivity.A se
urity alert 
an represent a very diverserange of information, depending on the typeof the se
urity devi
e that produ
ed it. Inthis se
tion, we 
onsider the typi
al 
ontent ofse
urity alerts from the three primary typesof alert 
ontributors used in the 
ontext ofInternet-s
ale threat analysis 
enters.Firewalls reside at the gateways of networks,and 
ontribute reports that indi
ate \deny"and \allow" a
tions for traÆ
 a
ross the gate-way boundary. Most typi
ally, �rewalls 
on-tribute alerts 
agging in
oming pa
kets thatwere denied. Volume, port, and sour
e distri-bution patterns of su
h pa
kets provide signif-i
ant insight into the probe and exploit tar-gets of mali
ious systems, new atta
k tools,and self-propagating mali
ious appli
ations.Intrusion dete
tion systems in
ludenetwork- and host-based systems, and mayemploy misuse or anomaly dete
tion. Unlike�rewalls, intrusion dete
tion reports may rep-resent a wide variety of event types, and 
anreport on anomalous phenomena that spanarbitrarily long durations of time or events.Antivirus software reports email- and �le-borne virus dete
tion on individual hosts.Reports in
lude virus type, infe
tion target,and the response a
tion, whi
h is typi
ally to
lean or quarantine the infe
tion.Table 1 summarizes the �elds that 
onsti-tute a typi
al �rewall (FW), intrusion dete
-tion (ID), or antivirus (AV) se
urity alert inits raw form, prior to data sanitization.4 Threat ModelTo support 
ollaborative threat analysis,the alert repository will be published, at leastpartially, and thus made available to the at-



Sour
e IP FW,ID Typi
ally refers to the sour
e IP address of the ma
hine that initiatedthe session or transferred the transa
tion that 
aused the alert to �re.In IDS alerts, this �eld may represent the vi
tim, not the atta
ker,sin
e some systems alert upon an atta
k reply rather than request.Sour
e Port FW,ID Sour
e TCP or UDP port of the ma
hine that initiated the session ortransferred the transa
tion that 
aused the alert to �re.Dest IP FW,ID,AV Typi
ally refers to the destination IP address of the ma
hine that ini-tiated the session or transferred the transa
tion that 
aused the alertto �re. In AV systems, Dest IP 
an identify the ma
hine in whi
h theinfe
tion is dis
overed.Dest Port FW,ID Destination TCP or UDP port of the ma
hine that initiated the sessionor transferred the transa
tion that 
aused the alert to �re.Proto
ol FW,ID Proto
ol type (e.g., UDP, TCP, ICMP).Timestamp FW,ID,AV May in
orporate in
ident start time, end time, in
ident report time.Sensor ID FW,ID,AV May in
orporate the brand and model of the sensor and a unique iden-ti�er for the individual instantiation of the sensor.Count FW,ID,AV Often used to represent some notion of repeated a
tivity, either at thealert or event (e.g., pa
ket) level.Event ID FW,ID,AV Uniquely de�nes the alert type for the given sensor.Out
ome FW,ID,AV Reports the status or disposition of the reported a
tivity. For �rewalls,it may report whether the log entry was asso
iated with an allow ordeny rule. For AV, it may indi
ate infe
tion disposition (e.g., Syman-te
's AV indi
ates whether the infe
ted �le is 
leaned or quarantined).Out
ome �elds for IDS tools are highly vendor-spe
i�
.Captured Data ID Some IDS sensors have the ability to report part or all of the data
ontent in whi
h the alert was applied.Infe
ted File AV Antivirus logs in
lude the identity of the �le that was infe
ted.Table 1: Summary of se
urity alert 
ontent.ta
ker. In the worst 
ase, the adversary maybe able to 
ompromise the alert repositoryand gain dire
t a

ess to raw alerts reportedto that repository. It is thus very importantto ensure that alerts are reported in a sani-tized form that preserves priva
y of sensitiveinformation about the produ
er's network. Inthis se
tion, we outline the goals of a typi
alatta
ker and the means he or she may employto subvert our alert sharing s
heme.4.1 Sensitive �eldsIP addresses. Any �eld that 
ontains anIP address su
h as Sour
e IP or Dest IP issensitive, sin
e it reveals potentially valu-able information about the internal topologyof the network under atta
k. Knowing therelationship between IP addresses and var-ious types of alerts may allow the atta
kerto tra
k propagation of the atta
k througha network whi
h is not normally visible tohim (e.g., lo
ated behind a �rewall). Eventhough the Sour
e IP �eld is usually asso
i-ated with the sour
e of the atta
k, it may (a)
ontain the address of an infe
ted system on

the internal network, or (b) identify organiza-tions that have a legitimate relationship withthe targeted network. For example, the at-ta
ker may be able to dis
over that atta
kinga parti
ular system in organization A leadsto alerts arriving from a sensor within orga-nization B with A's address in the Sour
e IP�eld, and thus learn that there is a relation-ship between the two organizations.Popular intrusion dete
tion systems su
has Snort [28℄ in
lude rules that are highlyprone to produ
ing false positives, while otherrules simply log se
urity-relevant events thatare not spe
i�
ally asso
iated with an atta
k.An atta
ker who is aware of su
h behavior
an 
losely analyze the sour
e IP addresses ofthese alerts to gain a sense of the sites withwhi
h the produ
er regularly 
ommuni
ates.Captured and infe
ted data. Data 
on-tained in Captured Data and Infe
ted File�elds are extremely sensitive. File names,email addresses, do
ument fragments, pie
esof IP addresses, appli
ation-spe
i�
 data andso on may leak private information stored oninfe
ted systems and reveal network topologyor site-spe
i�
 vulnerabilities.



4.2 Sensitive asso
iationsThe atta
ker may use 
ertain asso
iationsbetween the �elds of a se
urity alert to learnthe se
urity posture of the produ
er site.Con�gurations. Sensitive information in-
ludes the site's set of network servi
es,proto
ols, operating systems, and network-a

essible 
ontent residing within its bound-aries. While some of this information may berevealed through dire
t intera
tions with ex-ternal systems, the breadth of probing 
an bemonitored and 
ontrolled by the target site.Asso
iations between se
urity alert �elds that
ould potentially lead to undesirable dis
lo-sures in
lude [Sour
e IP, Sour
e Port, Proto-
ol℄ and [Dest IP, Dest Port, Proto
ol℄.Site vulnerabilities. Revealing the dispo-sition of unsu

essful atta
ks may be unde-sirable. Asso
iations between alert produ
ersand the Sensor ID, Event ID and Out
ome�elds may potentially lead to su
h dis
losures.Defense 
overage. Sites may not wantto reveal their dete
tion 
overage, in
lud-ing information about versions and 
on�gu-rations of se
urity produ
ts that are oper-ating within their boundaries. Atta
ks andprobes mounted against a site with the inten-tion of observing, potentially through indire
tinferen
e, whi
h sensors are running and theiralert produ
tion patterns, would seriously im-pa
t the site's se
urity posture. Asso
iationsbetween alert produ
ers and the Sensor IDand Event ID �elds are thus sensitive.In 
urrent pra
ti
e, these sensitivities arehandled in a variety of ways. Sensitive �eldsare often suppressed at the alert produ
er'ssite before the alert is forwarded to a remotealert repository. For example, the DShieldalert extra
tor provides various 
on�gurationoptions to suppress �elds and an IP bla
k-list that allows a site to suppress sensitiveaddresses. The se
ond approa
h is to ap-ply 
ryptographi
 hashing to �elds, allow-ing equality 
he
ks while maintaining a de-gree of 
ontent priva
y (this approa
h maybe vulnerable to di
tionary atta
ks, as ex-plained below). The third approa
h is sim-ply to trust the alert repository with ensuring

that neither 
ontent nor indire
t asso
iationsbe openly revealed.4.3 Potential atta
ksWe des
ribe several threats fa
ed by anyalert sharing s
heme, in the order of in
reas-ing severity. The atta
ker may laun
h atta
ksof several types simultaneously.Casual browsing. Alerts published by arepository may be 
opied, stored and sharedby any Internet user, and are thus foreverout of 
ontrol. The mildest atta
k is 
asualbrowsing, where a 
urious user looks for fa-miliar IP pre�xes and sensor IDs in the pub-lished alerts. This atta
k is easy to defendagainst, e.g., by hashing all sensitive data.Probe-response. A determined atta
kermay attempt to use the alert repository as averi�
ation ora
le. For example, he may tar-get a parti
ular system and then observe thealerts published by the repository to deter-mine whether the atta
k has been dete
ted,and, if so, how it was reported. By 
omparingIP addresses 
ontained in the reported alertwith that of the targeted system, the atta
kermay learn network topology, sensor lo
ations,and other valuable information.Di
tionary atta
ks. The atta
ker 
an pre-
ompute possible values of alerts that maybe generated by the targeted network, andthen sear
h through the data published bythe repository to �nd whether any of the a
-tual alerts mat
h his guesses. This atta
k isespe
ially powerful sin
e standard hashing ofIP addresses does not prote
t against it. Forexample, the atta
ker 
an simply 
omputehashes for all 256 IP addresses on the tar-geted subnet and 
he
k the published alertsto see if any of the hash values mat
h. Us-ing semanti
ally se
ure en
ryption on sensi-tive �elds is suÆ
ient to foil di
tionary at-ta
ks, but su
h en
ryption also makes 
ol-laborative analysis infeasible be
ause two en-
ryptions of the same plaintext produ
e dif-ferent 
iphertexts with overwhelming proba-bility. A polynomially-bounded analyst 
an-not feasibly perform equality 
omparisons un-less he knows the key or engages in further



intera
tion with the alert produ
er.Alert 
ooding. If the repository publishesonly the highest-volume alerts (or those sat-isfying any other group 
ondition), the at-ta
ker may target a parti
ular system andthen \
ush out" the stimulated alert by 
ood-ing the repository with fake alerts that mat
hthe expe
ted value of the alert produ
ed bythe targeted system. This involves eitherspoo�ng sour
e addresses of legitimate sen-sors, setting up a bogus sensor, or taking overan existing sensor. Flooding will 
ause therepository to publish the real alert along withthe fakes. The atta
ker 
an dis
ard the fakesand analyze the real alert.Repository 
orruption. Finally, the at-ta
ker may deliberately set up his own reposi-tory or take 
ontrol of an existing repository,perhaps in a manner invisible to the repos-itory administrator. This atta
k is parti
u-larly serious. It eliminates the need for alert
ooding and aggravates the 
onsequen
es ofprobe-response, sin
e it gives the atta
ker im-mediate a

ess to raw reported alerts, as wellas the ability to determine exa
tly (e.g., byinspe
ting in
oming IP pa
kets) where thealert has arrived from. We des
ribe sev-eral partial solutions in se
tion 6. Solutionsbased on sophisti
ated 
ryptographi
 te
h-niques su
h as oblivious transfer [26℄ 
ur-rently appear impra
ti
al. They providebetter theoreti
al priva
y at the 
ost of anuna

eptable de
rease in utility and perfor-man
e, but the balan
e may shift in favor of
ryptography-based solutions with the devel-opment of more pra
ti
al te
hniques.5 Alert Sharing Infrastru
tureTo enable open 
ollaborative analysis ofse
urity alerts and real-time atta
k dete
-tion, we propose to establish alert repositorieswhi
h will re
eive alerts from many sensors,some of them publi
 and lo
ated at visiblenetwork nodes and other hidden on 
orpo-rate networks deep behind �rewalls. A
hiev-ing this requires a robust ar
hite
ture for in-formation dissemination, ideally with no sin-gle point of failure (to provide higher reliabil-

ity in the fa
e of random faults and outages),no single point of trust (to provide strongerpriva
y guarantees against insider misuse inany one organization), and few if any leveragepoints for atta
kers.The 
ore of the proposed system is a set ofrepositories where alerts are stored and a
-
essed during analysis. Ea
h repository isvery simple: it a

epts alerts from anywhere,strips out sour
e information, and publishesthem immediately or after some delay. Thereis no 
ryptographi
 pro
essing and no keymanagement (unless the repository performsre-keying | see se
tion 6.2). As des
ribedin se
tion 6.3, multiple repositories make itmore diÆ
ult for the atta
ker to infer thesour
e of sanitized alerts. The repositoriesmay share alerts, but they are not required tobe syn
hronized, thus not every alert will bevisible to every analysis engine. For perfor-man
e reasons, analysis engines normally in-tera
t with a single repository or mirror site.Figure 1 shows the major data 
ows amonga small set of sensors, produ
ers, reposito-ries, and analysis engines. The sensor trape-zoids 
onsist of �rewalls, intrusion dete
-tion systems, antivirus software, and possi-bly other se
urity alert generators. The pro-du
er boxes represent lo
al 
olle
tion pointsfor an enterprise or part of an enterprise.These boxes perform the sanitization stepssu
h as hashing IP addresses, and are 
on-trolled by the reporting organization. Therepository 
ylinders represent publi
 or semi-publi
 databases 
ontaining reported data. Arepository may be 
ontrolled by a produ
er orby an analysis organization. The analysis di-amonds represent analysis servi
es whi
h pro-
ess the published alerts for histori
al trends,event frequen
y 
hanges, and other aggrega-tion or 
orrelation fun
tions.An enterprise (su
h as a major resear
h labfamed for 
omputer se
urity resear
h) maybe sensitive to publi
 dis
losure of possibleatta
ks, and wish to keep private even thevolume of alerts it generates. As des
ribedin se
tion 6.3, the repositories 
an option-ally form a randomized alert routing network.Although we have not implemented this fea-ture, randomized routing 
an provide stronganonymity guarantees for alert sour
es. A



Figure 1: Data 
ows in alert pro
essing.
Figure 2: Alert volume per sensor (semi logs
ale). Data 
ourtesy DShield.repository may also be 
on�gured so that onlyevents whose volume ex
eeds a 
ertain thresh-old are published. This will have relativelylittle impa
t on histori
al and in
e
tion anal-ysis (see se
tion 7), but may disable identi�-
ation of stealth atta
ks asso
iated with lowalert volumes.As shown in �gure 2, sensors vary greatly inthe volume of alerts they produ
e in a givenday, but the total alert volume is substan-tial. This graph depi
ts the number of alertsprodu
ed on a single day by 1,416 sensors re-porting to DShield. At the high end, over7 million alerts were produ
ed by one �re-wall, apparently experien
ing a 
ertain DoS-like atta
k. Several other sensors were nearor above a million alerts. The median sensorprodu
ed only 177 alerts.The total alert volume of 19,147,322 alertsreported on that day, a
ross a total of1,416 di�erent sensors from many organiza-tions spread over a wide geographi
 area,
onstrains pra
ti
al implementation 
hoi
es.In parti
ular, se
ure multiparty 
omputa-tion (SMC) approa
hes (see se
tion 2.3), andmany priva
y-preserving data mining te
h-

niques add impra
ti
al levels of overhead toalert analysis. With over a thousand report-ing sensors, naive SMC approa
hes wouldrequire tremendous network bandwidth andunsupportable CPU or 
ryptographi
 
opro-
essor performan
e for even moderate lev-els of analysis query traÆ
. It is possiblethat spe
ial-purpose SMC s
hemes developedspe
i�
ally for this problem would prove morepra
ti
al. In this paper, we propose simplesolutions whi
h enable a broad set of anal-yses on sanitized alerts that would normallyrequire raw alert data.6 Alert SanitizationWe propose several te
hniques that areused in 
ombination to prote
t the alert shar-ing infrastru
ture from threats des
ribed inse
tion 4. Some of the me
hanisms are \heav-ier" than others and impose higher 
om-muni
ation and 
omputational requirementson alert 
ontributors. On the other hand,they provide better prote
tion against seri-ous threats su
h as 
omplete 
orruption of thealert repository. The exa
t set of te
hniquesmay be sele
ted by ea
h organization or 
on-tributor pool individually, depending on thelevel of trust they are willing to pla
e in aparti
ular repository or set of repositories.6.1 Design requirementsWe do not 
onsider solutions that requirealert sour
es to trust the repository with pro-te
ting priva
y of the reported data. In the
ontext of 
ompletely open publi
 reposito-ries, as opposed to trusted servi
es su
h asDeepSight [32℄ and DShield [34℄, su
h solu-tions are both impra
ti
al (a 
ommer
ial en-terprise is unlikely to trust an open repositoryto be 
areful with business se
rets) and dan-gerous for the repository operator, as she maybe exposed to legal liability if the repository isatta
ked and private alert data 
ompromised.We also rule out solutions that requiresharing of se
ret keys between sensors. Anobvious solution might involve en
rypting



sensitive data with a 
ommon key to en-able alert 
omparison by infrastru
ture par-ti
ipants, while hiding the data from a 
asualobserver. This approa
h may solve the 
or-rupt repository problem, but it is vulnerableif the atta
ker signs up as a parti
ipant, gainsa

ess to the 
ommon key, and breaks priva
yof alerts generated by all other parti
ipants.Finally, solutions that require multiple pro-du
ers to 
ollaborate and/or intera
t to pro-te
t a single alert are impra
ti
al in our 
on-text. Given the volume of alerts, espe
iallywhen the network is under atta
k, the 
om-muni
ation overhead is likely to prove pro-hibitive. This eliminates me
hanisms basedon threshold 
ryptography [11, 14℄ su
h asproa
tive se
urity [15, 6℄, and se
ure mul-tiparty 
omputation (see se
tion 2.3) eventhough they are se
ure if a subset of parti
i-pants has been 
orrupted by the adversary.6.2 Basi
 priva
y prote
tionS
rubbing sensitive �elds. Before analert is sent to the repository, the pro-du
er must remove all sensitive informationnot needed for 
ollaborative analyses de-s
ribed in se
tion 7, in
luding all 
ontent inCaptured Data, Infe
ted File and Out
ome�elds. A more advan
ed version of our systemmay enable priva
y-preserving analysis basedon 
ommonalities in the Captured Data �eld,e.g., presen
e of \bad words" asso
iated witha parti
ular virus. Possible te
hniques in-
lude en
ryption with keyword-spe
i�
 trap-doors in the manner of [29, 5℄.The Sensor Id �eld may be either re-mapped to a unique persistent pseudonym(e.g., a randomly generated string) that leaksno information about the organization thatowns it, or repla
ed with just the make andmodel information. The Timestamp �eld isrounded up to the nearest minute. Althoughthis disables �ne-grained propagation analy-ses, it adds additional un
ertainty against at-ta
kers staging probe-response atta
ks.Hiding IP addresses. Suppose the atta
ker
ontrols the repository. He may laun
h an at-ta
k and then attempt to use the alert gen-

erated by the vi
tim's sensor to analyze theatta
k's propagation through the vi
tim's in-ternal network. Therefore, the produ
er musthide both Sour
e IP and Dest IP addressesbefore releasing the alert to the repository.En
rypting IP addresses under a keyknown only to the produ
er is una

eptable,as it hides too mu
h information. With asemanti
ally se
ure en
ryption s
heme, en-
rypting the same IP address twi
e will pro-du
e di�erent 
iphertexts, disabling 
ollabo-rative analysis. Hashing the address using astandard, universally 
omputable hash fun
-tion su
h as SHA-1 or MD5 enables di
tio-nary atta
ks. If the atta
ker 
ontrols therepository, he 
an target a system on a parti
-ular subnet and pre-
ompute hash values ofall possible IP addresses at whi
h sensors maybe lo
ated or to whi
h he expe
ts the atta
kto propagate. This is feasible sin
e the ad-dress spa
e in question is relatively small |either 256, or 65536 addresses (potentiallyeven smaller if the atta
ker 
an make an edu-
ated guess). The atta
ker veri�es his guessesby 
he
king whether the re
eived alert 
on-tains any of the pre-
omputed values.Our solution strikes a balan
e between pri-va
y and utility. The produ
er hashes allIP addresses that belong to his own net-work using a keyed hash fun
tion su
h asHMAC [3, 4℄ with his se
ret key. All IP ad-dresses that belong to external networks arehashed using a standard hash fun
tion su
has SHA-1 [23℄. This guarantees priva
y forIP addresses on the produ
er's own networksin
e the atta
ker 
annot verify his guesseswithout knowing the produ
er's key. In par-ti
ular, probe-response fails to yield any use-ful information. Of 
ourse, if these addressesappear in alerts generated by other organiza-tions, then no priva
y 
an be guaranteed.We pay a pri
e in de
reased fun
tionalitysin
e alerts about events on the network of or-ganization A that have been generated by A'ssensors 
annot be 
ompared with the alertsabout the same events generated by organiza-tion B's sensors. Re
all, however, that we areinterested in dete
ting large-s
ale events. If Ais under heavy atta
k, 
han
es are that it willbe dete
ted not only by A's and B's sensors,but also by sensors of C, D, and so on. Be-




ause A's network is external to B, C, and D,their alerts will have A's IP addresses hashedusing the same standard hash fun
tion. Thiswill produ
e the same value for every o

ur-ren
e of the same IP address, enabling mat
h-ing and 
ounting of hash values 
orrespond-ing to frequently o

urring addresses. Intu-itively, any subset of parti
ipants 
an mat
hand 
ompare their observations of events hap-pening in someone else's network. The 
ost ofin
reased priva
y is de
reased utility be
ausehashing destroys topologi
al information, asdis
ussed in se
tion 7.2. Naturally, an orga-nization 
an always analyze alerts referringto its own network, sin
e they are all hashedunder the organization's own key.An additional bene�t of using keyed hashesfor alerts about the organization's own eventsand plain hashes for other organizations'events is that the atta
ker 
annot feasibly de-termine whi
h of the two fun
tions was used.Even if the atta
ker 
ontrols the repositoryand dire
tly re
eives A's alerts, he 
annottell whether an alert refers to an event inA's or someone else's network. The atta
kermay still attempt to verify his guesses by pre-
omputing hashes of expe
ted IP addressesand 
he
king alerts submitted by other orga-nizations, but with hundreds of thousands ofalerts per hour and thousands of possible ad-dresses this task is ex
eedingly hard. Staginga targeted probe-response atta
k is also morediÆ
ult: the probe may never be dete
ted byanother organization's sensors, whi
h meansthat the response is never 
omputed usingplain hash, and the atta
ker 
annot stage adi
tionary atta
k at all. Finally, note thatkeyed hashes do not require PKI or 
ompli-
ated key management sin
e keys are neverex
hanged between sites.Re-keying by the repository. To pro-vide additional prote
tion against a 
asualobserver or an outside atta
ker when analert is published, the repository may repla
eall (hashed) IP addresses with their keyedhashes, using the repository's own privatekey. This is done on top of hashing by thealert produ
er, and preserves the ability to
ompare and mat
h IP addresses for equality,sin
e all se
ond-level hashes use the same key.This additional keyed hashing by the reposi-tory defeats all probe-response and di
tionary

atta
ks ex
ept when the atta
ker 
ontrols therepository itself and all of its keys, in whi
h
ase we fall ba
k on prote
tion provided bythe produ
er's keyed hashing.Randomized hot list thresholds. For 
ol-laborative dete
tion of high-volume events,it is suÆ
ient for the repository to publishonly the hot list of reported alerts that havesomething in 
ommon (e.g., sour
e IP ad-dress, port/proto
ol 
ombination, event id)and whose number ex
eeds a 
ertain thresh-old. As des
ribed in se
tion 4, this may bevulnerable to a 
ooding atta
k, in whi
h theatta
ker laun
hes a probe, and then attemptsto for
e the dire
tory to publish the targetedsystem's response, if any, by 
ooding it with\mat
hing" fake alerts based on his guessesof what the real alert looks like.Our solution is to introdu
e a slight ran-dom variation in the threshold value. For ex-ample, if the threshold is 20, the repository
hooses a random value T between 18 and 22,and, if T is ex
eeded, publishes only T alerts.If the atta
ker submits 20 fake alerts and ahot list of 20 alerts is published, the atta
kerdoesn't know if the repository re
eived 20 or21 alerts, in
luding a mat
hing alert from thevi
tim. There is a small risk that some alertswill be lost if their number is too small to trig-ger publi
ation, but su
h alerts are not usefulfor dete
ting high-volume events.Delayed alert publi
ation. If the alertdata is used only for resear
h on histori
altrends (see se
tion 7.1), delayed alert publi
a-tion provides a feasible defense against probe-response atta
ks. The repository simply pub-lishes the data several weeks or months later,without Timestamp �elds. The atta
kerwould not be able to use this data to 
orrelatehis probes with the vi
tim's responses.Examples of basi
 sanitization for di�erentalert types 
an be found in tables 2 through 4.6.3 Multiple repositoriesWe now des
ribe a \heavy-duty" solutionfor the 
orrupt repository problem. Instead ofusing a single alert repository, envision multi-



Field ID Raw firewall alert Sanitized firewall alertSour
e IP 172.16.30.2 0x16e9368fSour
e Port 1147 1147Dest IP 173.19.33.1 0x78a65237Dest Port 135 135Proto
ol 6 6Timestamp 09032003:01:03:10 09032003:01:03:00Sensor PIX-4-10060231 PIXCount 1 1Event ID Deny DenyOut
ome none noneCapture Data none noneInfe
ted File none noneTable 2: Example �rewall se
urity alert sanitization.Field ID Raw IDS alert Sanitized IDS alertSour
e IP 172.16.30.49 0xb09956
2Sour
e Port 1299 1299Dest IP 176.20.22.43 0xd6e79b79Dest Port 80 80Proto
ol 6 6Timestamp 10132003:11:41:09 10132003:11:41:00Sensor EM-HTTP-90209321 EM-HTTPCount 1 1Event ID CGI ATTACK CGI ATTACKOut
ome NO REPLY noneCapture Data /s
ripts/.%255
%255
./winnt/system32/
md.exe?/
+dir noneInfe
ted File none noneTable 3: Example IDS se
urity alert sanitization.Field ID Raw AV Alert Sanitized AV alertSour
e IP none noneSour
e Port none noneDest IP 176.30.22.11 0xb4dd
807Dest Port none noneProto
ol none noneTimestamp 11172003:09:39:00 11172003:09:39:00Sensor NORTON-AV-02209302 NORTON-AVCount 1 1Event ID W32.Sobig.F.Dam W32.Sobig.F.DamOut
ome Left alone noneCapture Data none noneInfe
ted File A0014566.pdf noneTable 4: Example antivirus se
urity alert sanitization.ple repositories, operated by di�erent ownersand distributed throughout the Internet (e.g.,open-sour
e 
ode for setting up a repositorymay be made available to anyone who wishesto operate one). We do not require the repos-itories to syn
hronize their alert datasets, sothe additional 
omplexity is low. Informationabout available repositories is 
ompiled intoa periodi
ally published list. An organiza-tion that wants to take advantage of the alertsharing infrastru
ture 
hooses one or morerepositories in any way it sees �t | randomly,on the basis of previously established trust, orusing a reputation me
hanism su
h as [9, 12℄.In this setting, it is insuÆ
ient for the at-ta
ker to gain 
ontrol of just one repositoryto laun
h a probe-response atta
k be
ausethe vi
tim may report his alert to a di�erentrepository. The 
osts for the atta
ker in
reaselinearly with the number of repositories. The


osts for alert produ
ers do not in
rease at all,sin
e the amount of pro
essing per alert doesnot depend on the number of repositories.While spreading alerts over several repos-itories de
reases opportunities for 
ollabo-rative analysis, real-time dete
tion of high-volume events is still feasible. If multiple sys-tems are under simultaneous atta
k, 
han
esare their alerts will be reported to di�er-ent repositories in suÆ
ient numbers to passthe \hot list" threshold and trigger publi
a-tion. By monitoring a suÆ
iently large sub-set of the repositories for simultaneous spikesof similar alerts, it will be possible to dete
tan atta
k in progress and adopt an appropri-ate defensive posture. Repositories may alsoengage in periodi
 or on-demand ex
hangesof signi�
ant perturbations in in
oming alertpatterns. This 
ould further help build an ag-gregate dete
tion 
apability, espe
ially as the



number of would-be repositories grows large.Randomized alert routing. For better pri-va
y, we propose to deploy an overlay pro-to
ol for randomized peer-to-peer routing ofalerts in the spirit of Crowds [27℄ or Onionrouting [33℄. Ea
h alert produ
er and repos-itory sets up a simple alert router outside its�rewall. The routers form a network. Whena bat
h of alerts is ready for release, the pro-du
er 
hooses one of the other routers at ran-dom and sends the bat
h to it. After re
eivingthe alerts, a router 
ips a biased 
oin and,with probability p (a parameter of the sys-tem), forwards the alert to the next randomlysele
ted router, or, with probability 1�p, de-posits it into a randomly sele
ted repository.The alert produ
er may also spe
ify the de-sired repository as part of the alert bat
h.Su
h a network is very simple to set upsin
e, in 
ontrast to full-blown anonymous
ommuni
ation systems su
h as Onion rout-ing, there is no need to establish return pathsor permanent 
hannels. The routers don'tneed to maintain per-alert state or use any
ryptography. All they need to do is ran-domly forward all re
eived alerts and peri-odi
ally update the table with the addressesof other routers in the network.When an alert enters the network, all ori-gin data is lost after the �rst hop. Evenif the atta
ker 
ontrols some of the routersand repositories, he 
annot be sure whetheran alert has been generated by its apparentsour
e or routed on behalf of another pro-du
er. This provides probabilisti
 anonymityfor alert sour
es whi
h is quanti�ed below.The disadvantage is the 
ommuni
ation over-head and in
reased laten
y for alerts beforethey arrive to the repository (note that thereis no 
ryptographi
 overhead).Anonymity estimates. To quantify theanonymity that alert 
ontributors will enjoyif the repositories and produ
ers form a ran-domized alert routing network, we 
omputethe in
rease in atta
ker workload as a fun
-tion of the average routing path length. If pis the probability of forwarding at ea
h hop,then the average path length m = 2 + p1�p .Reversing the equation, the forwarding prob-ability p must be equal to m�2m�1 to a
hieve the

average path length of m.Suppose the network 
ontains n routers,of whi
h 
 are 
ontrolled by the atta
ker.The probability that a random path 
on-tains a router 
ontrolled by the atta
ker is
(n�np+
p+p)n2�np(n�
) [27℄. For large n, this value is
lose to 
n , whi
h means that almost 1 � 
nalerts will not be observed by the atta
kerand thus remain 
ompletely anonymous.For ea
h of the 
n alerts that are ob-served by the atta
ker, the probability thatits apparent sour
e (the site from whi
han atta
ker-
ontrolled router has re
eived it)is the a
tual sour
e 
an be 
al
ulated asn�p(n�
�1)n [27℄. We interpret the inverse ofthis probability as the atta
ker workload. Forexample, if there is only a 25% 
han
e thatthe observed alert was produ
ed by its ap-parent sour
e, the atta
ker needs to perform4 times the testing to determine whether theapparent sour
e is the true origin. As ex-pe
ted, higher values of forwarding probabil-ity p provide better anonymity at the 
ostof in
reased laten
y (modeled as in
rease inthe average number of hops an alert has totravel before arriving to the repository). Thisrelationship is plotted (assuming n = 100routers) in �gure 3.7 Supported AnalysesAlert sanitization te
hniques des
ribed inse
tion 6 prote
t sensitive information 
on-tained in raw alerts, but still allow a widevariety of large-s
ale, 
ross-organization anal-yses to be performed on the sanitized data.7.1 Histori
al trend analysesThis 
lass of analyses seeks to understandthe statisti
al 
hara
teristi
s and trends inalert produ
tion that have been observed overvarious durations of time. For example, [31℄o�ers a 
ompendium of the trends observedin �rewall and intrusion dete
tion alert pro-du
tion from a sample set of over 400 organi-zations in 30 
ountries.



Figure 3: Estimated anonymity provided by randomized alert routing.Sour
e- and target-based. Given a largealert 
orpus, alert sour
es and targets maybe 
ategorized from various perspe
tives,su
h as event produ
tion patterns. Be
auseof priva
y-preserving data sanitization, geo-graphi
al information and domain types 
an-not be inferred from the published alerts.One possible solution is to rely on self-
lassi�
ation and allow 
ontributors to as-so
iate 
on
ise high-level pro�les with ea
halert, in
luding su
h attributes as 
ountry,business type, and so on (e.g., \an a
ademi
institution in California"). This will enablesome forms of trend/
ategori
al analysis, butwill also potentially make alert 
ontributorsmore vulnerable to di
tionary atta
ks.We do enable identi�
ation of (anonymous)sour
es produ
ing the greatest volume ofalerts and alerts with the greatest aggregateseverity. The a
tivity of egregious sour
es islikely to be reported by multiple organiza-tions, thus the 
orresponding address will behashed using a universally 
omputable hashfun
tion su
h as SHA-1. These sour
es 
an bebla
klisted by distributing �lters with the 
or-responding hash value. When installed, theywould �lter out all traÆ
 for whi
h the hashof the sour
e IP address mat
hes the pro-vided value. There is a 
ost to this �ltering,sin
e it requires the �rewall to hash the IPaddresses of all in
oming traÆ
 to determine

whi
h ones need to be �ltered out, althoughthis may be a

eptable when the network isunder a heavy atta
k (this hashing is benignas opposed to di
tionary atta
ks des
ribed inse
tion 4.3). Repositories should beware ofmali
ious bla
klisting 
aused by the atta
kersubmitting a large number of fake alerts im-pli
ating an inno
ent system.Port/proto
ol- and event produ
tion-based. These analyses may o�er help inunderstanding whi
h kinds of re
onnaissan
eare performed as a pre
ursor to a larger s
aleexploit, or help 
hara
terize the extent towhi
h an atta
k has spread.7.2 Event-driven analysesReal-time alert data published by alertrepositories o�ers 
ompelling value as asour
e of early warning signs that a new out-break of mali
ious a
tivity is emerging a
rossthe 
ontributor pool. The fo
us of this analy-sis is to identify signi�
ant 
hanges or suddenin
e
tions in alert produ
tion that may be in-di
ative of a 
urrently o

urring atta
k.� Intensity analysis identi�es extremelyaggressive sour
es 
ausing a large num-ber of alerts from multiple 
ontributors.



Although the sour
es remain anony-mous, hash values of their IP addresses
an be published and/or distributed to
ontributors to help them adjust their �l-tering poli
ies, as des
ribed above.� Sudden and widespread in
e
tions inthe volume and ratios of event IDs andDest Ports in the in
oming alert streamsmay indi
ate the emergen
e of a new in-trusion threat that is a�e
ting a growingsubset of the 
ontributor pool.� Aggregation of the volume and severityof alerts observed in the in
oming alertstreams may provide a basis from whi
hto 
apture an overall assessment or \De-f
on level" of the threats that the 
on-tributor pool is 
urrently fa
ing.A more 
hallenging task is to identifypropagation patterns in the o

urren
e ofevent IDs and volumes, whi
h is ne
essary toanalyze spreading behavior of Internet-s
aleintrusion a
tivity. Both hashing and keyedhashing destroy all topologi
al information inIP addresses, making it infeasible to deter-mine whether two sanitized alerts belong tothe same region of address spa
e. A possiblesolution may be o�ered by pre�x-preservinganonymization [36℄, but we leave these te
h-niques for future investigation.8 Performan
eAs illustrated in �gure 2, large volumes ofalert data are being generated, and alert pro-du
tion among members of the 
ontributorpool 
an vary greatly. Se
urity servi
es 
anprodu
e inundations of se
urity alerts whenthey are the target of a denial of servi
e at-ta
k, and when there is a widespread out-break of virulent worm or virus. During su
hperiods of signi�
ant stress, alert produ
tionand pro
essing 
an pose signi�
ant burden onsensors, repositories, and analysts, and thuslimit utility of the alerts. This is a signif-i
ant motivator for work on alert redu
tionmethods [35, 10℄, and pla
es 
onstraints onthe a

eptable 
osts of alert sanitization.

As we show below, the 
ost of providingpriva
y to alert produ
ers in our s
heme isvery low: there is a small impa
t on the per-forman
e of alert produ
ers, and virtually noimpa
t on the performan
e of supported anal-yses (of 
ourse, some analyses are disableddue to data sanitization). We argue that ours
heme provides a sensible three-way tradeo�between utility of alert analysis, performan
eof the alert sharing infrastru
ture, and pri-va
y of alert produ
ers.Performan
e of alert produ
ers. To un-derstand the CPU impa
t of alert sanitiza-tion, we ben
hmarked IP hashing on largealert 
orpuses under the s
heme proposed inse
tion 6.2, using SHA-1 on external IP ad-dresses (primarily Sour
e IP), and HMAC oninternal IP addresses (primarily Dest IP).The experiment was 
ondu
ted on aFreeBSD 1.4Ghz Intel Pentium III worksta-tion using Mark Shellor's free software im-plementation of SHA and HMAC. 1 We em-ployed two large alert repositories. Onerepository, produ
ed from our laboratory �re-wall, 
onsisted of 4,224,122 re
ords 
olle
tedover a three hour period during an intense ex-posure to the Kuang 2 virus [16℄. The se
ondrepository 
onsisted of 19,146,346 re
ords 
ol-le
ted over a 24 hour period by DShield.Table 5 presents the results of the IP ad-dress hiding s
heme on the DShield and lab-oratory alert 
orpuses, reported in CPU se
-onds per million re
ords. The baseline repre-sents the amount of se
onds, in CPU time,required to read the alerts from se
ondarystorage per 1 million re
ords. The hashed and
a
hed-8 times indi
ate the amount of CPUse
onds required to apply SHA and HMAChashing to the Sour
e IP and Dest IP �eldsper 1 million re
ords. The delta 
olumn rep-resents the di�eren
e between the baselinealert reporting performan
e and the sanitizedalert reporting performan
e.Ca
hed-8 represents a moderately opti-mized implementation with a very small
a
he holding the last 8 en
ountered IP ad-dresses. Be
ause our sanitization s
hemeis deterministi
, we 
an use the previously1Sour
e 
ode is available at http://sear
h.
pan.org/sr
/MSHELOR/Digest-SHA-4.1.0/sr
/



baseline hashed delta 
a
hed-8 deltaDShield.org 29.81 64.16 34.35 56.84 27.02Laboratory 75.80 110.34 34.54 106.20 30.40Table 5: CPU Impa
t of IP Hashing (se
onds per 1 million alerts).hashed IP addresses from the 
a
he. Ca
hingmakes sense in two 
ases:� The site is hit by a s
an a
ross its full IPaddress spa
e by a few infe
ted or mali-
ious external hosts. In this 
ase, a fewSour
e IP addresses will o

ur with regu-larity, resulting in a high 
a
he hit ratio.� The site is hit by distributed-denial-of-servi
e-type traÆ
 against a subset of itsvalid servers. In this 
ase, a few Dest IPaddresses will o

ur with regularity, re-sulting in a high 
a
he hit ratio.For the IP addresses not in the trusted do-main (to whi
h SHA is applied), 
a
hinga
hieved savings of about 65%.The results reveal that the performan
e im-pa
t is modest, less than the 
ost of I/O inour implementation. For a sensor produ
ing 1million alerts per hour, the additional hashingexpense is roughly 30 se
onds of CPU timeper hour. This overhead should be 
onsideredin the 
ontext of the mu
h larger task of alert
a
hing and periodi
 bat
hed transmission toa remote alert repository. Key managementis relatively 
heap in our 
ase: there is noneed for PKI and keys are never distributedoutside the produ
er's site.The expe
ted 
ost of randomized routing toanonymize alert sour
es depends on the pa-rameters of the routing network su
h as theforwarding probability and is roughly linearin the number of hops. There is no 
rypto-graphi
 pro
essing and alert routers are state-less (see se
tion 6.3).Performan
e of analysis. To a
hieve thebalan
e between priva
y and utility, our san-itization methods have been designed to haveminimal or no e�e
t on the performan
e ofprimary analyses. In parti
ular, sanitizedIP addresses are mapped into the same size

re
ord as the original IP addresses, and 
ross-alert 
omparisons 
an be 
arried out at therepository without any network intera
tion.Comparing hashes for equality takes the sametime as 
omparing IP addresses, so there iszero impa
t on performan
e.When a troublesome sour
e IP address isidenti�ed, this information may need to bepropagated ba
k to the produ
er (this isinfeasible in the randomized-routing settingdue to the high overhead of maintaining a re-turn path for ea
h alert). The produ
er mayopt to reveal the a
tual IP address of the of-fender. In the 
ase of a widespread atta
k,many sensors may 
omplain about a single IPaddress, and any of the vi
tims may 
hoose toreveal the sour
e of the threat, to enable de-fensive �lters to be tuned appropriately. Mea-suring the 
osts of su
h sele
tive revelation isbeyond the s
ope of this paper.9 Con
lusionsWe have des
ribed a broad set of priva
y
on
erns that limit the ability of sites to sharese
urity alert information, and enumerated anumber of data sanitization te
hniques thatstrike a balan
e between the priva
y of alertprodu
ers and the fun
tional needs of multi-site 
orrelation servi
es, without imposingheavy performan
e 
osts. Our te
hniques arepra
ti
al even for large alert loads, and, mostimportantly, do not require that alert 
ontrib-utors trust alert repositories to prote
t theirsensitive data. This enables 
reation of open
ommunity-a

ess repositories that will o�era better perspe
tive on Internet-wide trends,real-time dete
tion of emerging threats and asour
e of data for mali
ious 
ode resear
h.As a �rst prototype to demonstrate basi
alert sanitization with live sensors, we are de-veloping a Snort alert delivery plugin that im-



plements SHA/HMAC and �eld sanitizationdis
ussed in se
tion 6.2. We also plan to ana-lyze defenses against probe-response atta
ksin whi
h the atta
ker arti�
ially stimulatesan alert with a rare Event Id and then usesthis Event Id as a marker to re
ognize the re-sponse in the general alert traÆ
.A
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