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Abstract

We present a practical scheme for Internet-
scale collaborative analysis of information se-
curity threats which provides strong privacy
guarantees to contributors of alerts. Wide-
area analysis centers are proving a valu-
able early warning service against worms,
viruses, and other malicious activities. At
the same time, protecting individual and or-
ganizational privacy is no longer optional in
today’s business climate. We propose a set
of data sanitization techniques that enable
community alert aggregation and correlation,
while maintaining privacy for alert contribu-
tors. Our approach is practical, scalable, does
not rely on trusted third parties or secure
multiparty computation schemes, and does
not require sophisticated key management.

1 Introduction

Over the past few years, computer viruses
and worms have evolved from nuisances to
some of the most serious threats to Internet-
connected computing assets. Global infec-
tions such as Code Red and Code Red
IT [21, 40], Nimbda [30], Slammer [20],
MBlaster [18], and MyDoom [17] are among
an ever-growing number of self-replicating
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malicious code attacks plaguing the Inter-
net with increasing frequency. These attacks
have caused major disruptions, affecting hun-
dreds of thousands of computers worldwide.

Recognition and diagnosis of these threats
play an important role in defending computer
assets. Until recently, however, network de-
fense has been viewed as the responsibility of
individual sites. Firewalls, intrusion detec-
tion, and antivirus tools, are, for the most
part, deployed in the mode of independent
site protection. Although these tools success-
fully defend against low or moderate levels of
attack, no known technology can completely
prevent large-scale concerted attacks.

There is an emerging interest in the devel-
opment of Internet-scale threat analysis cen-
ters. Conceptually, these centers are data
repositories to which pools of volunteer net-
works contribute security alerts, such as fire-
wall logs, reports from antivirus software, and
intrusion detection alerts (we will use the
terms analysis center and alert repository in-
terchangeably). Through collection of contin-
ually updated alerts across a wide and diverse
contributor pool, one hopes to gain a perspec-
tive on Internet-wide trends, dominant intru-
sion patterns, and inflections in alert content
that may be indicative of new wide-spreading
threats. The sampling size and diversity of
contributors are thus of great importance, as
they impact the speed and fidelity with which
threat diagnoses can be formulated.

We are interested in protecting sensitive
data contained in security alerts against ma-
licious users of alert repositories and corrupt
repositories. The risk of leaking sensitive in-



formation may negatively impact the size and
diversity of the contributor pool, add legal
liabilities to center managers, and limit ac-
cessibility of raw alert content. We consider
a three-way tradeoff between privacy, utility,
and performance: privacy of alert contribu-
tors; utility of the analyses that can be per-
formed on the sanitized data; and the per-
formance cost that must be borne by alert
contributors and analysts. Our objective is a
solution that is reasonably efficient, privacy-
preserving, and practically useful.

We investigate several types of attacks,
including dictionary attacks which defeat
simple-minded data protection schemes based
on hashing IP addresses. In particular, we
focus on attackers who may use the analysis
center as a means to probe the security pos-
ture of a specific contributor and infer sensi-
tive data such as internal network topology
by analyzing (artificially stimulated) alerts.
We present a set of techniques for sanitization
of alert data. They ensure secrecy of sensi-
tive information contained in the alerts, while
enabling a large class of legitimate analyses
to be performed on the sanitized alert pool.
We then explain how trust requirements be-
tween the alert contributors and analysis cen-
ters can be further reduced by deploying an
overlay protocol for randomized alert routing,
and give a quantitative estimate of anonymity
provided by this technique. We conclude by
discussing performance issues.

2 Related Work

Established Internet analysis centers, such
as DShield [34] and Symantec’s Deep-
Sight [32] gather alerts from a diverse pop-
ulation of sensors. For example, in April
2003, DShield reported a contributor pool
of around 41,000 registered participants and
around 2000 regular submitters, who submit
atotal of 5 to 10 million alerts daily [7]. These
centers proved effective in recognizing short-
term inflections in alert content and volume
that may indicate wide-scale malicious phe-
nomena [39], as well as the ability to track im-
portant security trends that may allow sites
to better tune their security postures [31].

Other research has shown how to use dis-
tributed security information to infer Inter-
net DoS activity [22], and how to improve
the speed and accuracy of large-scale multi-
enterprise alert analysis centers [38].

Alert sharing communities have not yet
enjoyed wide-scale adoption, in part due to
privacy concerns of potential alert contribu-
tors and managers of community alert repos-
itories. Raw alerts may expose site-private
topological information, proprietary content,
client relationships, and the site’s defensive
capabilities and vulnerabilities. With this
in mind, established systems suppress sensi-
tive alert content before it is distributed to
analysis centers (e.g., field suppression is a
configurable option in DShield’s alert extrac-
tion software). Even with these measures, or-
ganizations such as DeepSight and DShield
must be granted a substantial degree of trust
by the alert producers, since suppression and
anonymization must be balanced against the
need to maintain the utility of the alert.

2.1 Packet trace anonymization

Several approaches have been proposed for
anonymization of Internet packet traces [25,
36, 24]. For example, Pang and Paxson pro-
posed a high-level language and tool [24] as
part of the Bro package, enabling anonymiza-
tion of packet header and content. They are
interested in wide-scale network traces such
as FTP sessions, while our application is alert
management. Further, we examine strategies
that mitigate dictionary attacks from adver-
saries who can stimulate and then observe
alert production within the target’s site.

2.2 Database obfuscation

The database community has examined
the problem of mining aggregate data while
protecting privacy at the level of individual
records. One approach is to randomly per-
turb the values in individual records [1, 2]
and compensate for the randomization at the
aggregate level. This approach is potentially
vulnerable to privacy breaches. If a data item



is repeatedly submitted and perturbed (dif-
ferently each time), much information about
the original value can be inferred. In our con-
text, an attacker could intentionally probe
the same IP address using the same attack
strings. If the (randomly perturbed) reports
of the attack are disambiguated from other
alerts based on the attack’s unique statistical
aspects, the attacker can use them to learn

important details of the original alert.

2.3 SMC schemes

Consider two or more parties who want
to perform a joint computation, but neither
party is willing to reveal its input. This prob-
lem is known as Secure Multiparty Computa-
tion (SMC). It deals with computing a proba-
bilistic function in a distributed system where
each participant independently holds one of
the inputs, while ensuring correctness of the
computation and revealing no information to
a participant other than his input and output.

There exist general-purpose constructions
that convert any polynomial computation to
a secure multiparty computation [37]. Re-
cent work has considerably improved the ef-
ficiency of such computations when an ap-
proximate answer is sufficient [13]. Applica-
tions include privacy-preserving data classifi-
cation, clustering, generalization, summariza-
tion, characterization, and association rule
mining. Clifton et al. [8] present methods
for secure addition, set union, size of set in-
tersection, and scalar product. Lindell and
Pinkas [19] propose a protocol for secure de-
cision tree induction, consisting of many invo-
cations of smaller private computations such
as oblivious function evaluation. Unfortu-
nately, the cost of even the most efficient
SMC schemes is too high for the purpose of
large-scale security alert distribution.

3 Format of Security Alerts

Network data collected to support threat
analysis, fault diagnosis, and intrusion re-
port correlation may range from simple MIB

statistics to detailed activity reports pro-
duced by complex applications such as intru-
sion or anomaly detection systems. So far,
we have used the term security alert loosely
to refer to site-local activity produced by a
network security component (sensor) as it re-
ports on observed activity or upon an action
it has taken in response to observed activity.
A security alert can represent a very diverse
range of information, depending on the type
of the security device that produced it. In
this section, we consider the typical content of
security alerts from the three primary types
of alert contributors used in the context of
Internet-scale threat analysis centers.

Firewalls reside at the gateways of networks,
and contribute reports that indicate “deny”
and “allow” actions for traffic across the gate-
way boundary. Most typically, firewalls con-
tribute alerts flagging incoming packets that
were denied. Volume, port, and source distri-
bution patterns of such packets provide signif-
icant insight into the probe and exploit tar-
gets of malicious systems, new attack tools,
and self-propagating malicious applications.

Intrusion detection systems include
network- and host-based systems, and may
employ misuse or anomaly detection. Unlike
firewalls, intrusion detection reports may rep-
resent a wide variety of event types, and can
report on anomalous phenomena that span
arbitrarily long durations of time or events.

Antivirus software reports email- and file-
borne virus detection on individual hosts.
Reports include virus type, infection target,
and the response action, which is typically to
clean or quarantine the infection.

Table 1 summarizes the fields that consti-
tute a typical firewall (FW), intrusion detec-
tion (ID), or antivirus (AV) security alert in
its raw form, prior to data sanitization.

4 Threat Model

To support collaborative threat analysis,
the alert repository will be published, at least
partially, and thus made available to the at-



Source_IP

FW,ID

Typically refers to the source IP address of the machine that initiated
the session or transferred the transaction that caused the alert to fire.
In IDS alerts, this field may represent the victim, not the attacker,
since some systems alert upon an attack reply rather than request.

Source_Port

FW,ID

Source TCP or UDP port of the machine that initiated the session or
transferred the transaction that caused the alert to fire.

Dest_IP

FW,ID,AV

Typically refers to the destination IP address of the machine that ini-
tiated the session or transferred the transaction that caused the alert
to fire. In AV systems, Dest_IP can identify the machine in which the
infection is discovered.

Dest_Port

FW,ID

Destination TCP or UDP port of the machine that initiated the session
or transferred the transaction that caused the alert to fire.

Protocol

FW,ID

Protocol type (e.g., UDP, TCP, ICMP).

Timestamp

FW,ID,AV

May incorporate incident start time, end time, incident report time.

Sensor_ID

FW,ID,AV

May incorporate the brand and model of the sensor and a unique iden-
tifier for the individual instantiation of the sensor.

Count

FW,ID,AV

Often used to represent some notion of repeated activity, either at the
alert or event (e.g., packet) level.

Event_ID

FW,ID,AV

Uniquely defines the alert type for the given sensor.

Outcome

FW,ID,AV

Reports the status or disposition of the reported activity. For firewalls,
it may report whether the log entry was associated with an allow or
deny rule. For AV, it may indicate infection disposition (e.g., Syman-
tec’s AV indicates whether the infected file is cleaned or quarantined).
Outcome fields for IDS tools are highly vendor-specific.

Captured_Data

1D

Some IDS sensors have the ability to report part or all of the data
content in which the alert was applied.

Infected_File AV

Antivirus logs include the identity of the file that was infected.

Table 1: Summary of security alert content.

tacker. In the worst case, the adversary may
be able to compromise the alert repository
and gain direct access to raw alerts reported
to that repository. It is thus very important
to ensure that alerts are reported in a sani-
tized form that preserves privacy of sensitive
information about the producer’s network. In
this section, we outline the goals of a typical
attacker and the means he or she may employ
to subvert our alert sharing scheme.

4.1 Sensitive fields

IP addresses. Any field that contains an
IP address such as Source IP or Dest_IP is
sensitive, since it reveals potentially valu-
able information about the internal topology
of the network under attack. Knowing the
relationship between IP addresses and var-
ious types of alerts may allow the attacker
to track propagation of the attack through
a network which is not normally visible to
him (e.g., located behind a firewall). Even
though the Source_IP field is usually associ-
ated with the source of the attack, it may (a)
contain the address of an infected system on

the internal network, or (b) identify organiza-
tions that have a legitimate relationship with
the targeted network. For example, the at-
tacker may be able to discover that attacking
a particular system in organization A leads
to alerts arriving from a sensor within orga-
nization B with A’s address in the Source_IP
field, and thus learn that there is a relation-
ship between the two organizations.

Popular intrusion detection systems such
as Snort [28] include rules that are highly
prone to producing false positives, while other
rules simply log security-relevant events that
are not specifically associated with an attack.
An attacker who is aware of such behavior
can closely analyze the source IP addresses of
these alerts to gain a sense of the sites with
which the producer regularly communicates.

Captured and infected data. Data con-
tained in Captured_Data and Infected_File
fields are extremely sensitive. File names,
email addresses, document fragments, pieces
of IP addresses, application-specific data and
so on may leak private information stored on
infected systems and reveal network topology
or site-specific vulnerabilities.



4.2 Sensitive associations

The attacker may use certain associations
between the fields of a security alert to learn
the security posture of the producer site.

Configurations. Sensitive information in-
cludes the site’s set of network services,
protocols, operating systems, and network-
accessible content residing within its bound-
aries. While some of this information may be
revealed through direct interactions with ex-
ternal systems, the breadth of probing can be
monitored and controlled by the target site.
Associations between security alert fields that
could potentially lead to undesirable disclo-
sures include [Source_IP, Source_Port, Proto-
col] and [Dest_IP, Dest_Port, Protocol].

Site vulnerabilities. Revealing the dispo-
sition of unsuccessful attacks may be unde-
sirable. Associations between alert producers
and the Sensor_ID, Event_ID and Outcome
fields may potentially lead to such disclosures.

Defense coverage. Sites may not want
to reveal their detection coverage, includ-
ing information about versions and configu-
rations of security products that are oper-
ating within their boundaries. Attacks and
probes mounted against a site with the inten-
tion of observing, potentially through indirect
inference, which sensors are running and their
alert production patterns, would seriously im-
pact the site’s security posture. Associations
between alert producers and the Sensor_ID
and Event_ID fields are thus sensitive.

In current practice, these sensitivities are
handled in a variety of ways. Sensitive fields
are often suppressed at the alert producer’s
site before the alert is forwarded to a remote
alert repository. For example, the DShield
alert extractor provides various configuration
options to suppress fields and an IP black-
list that allows a site to suppress sensitive
addresses. The second approach is to ap-
ply cryptographic hashing to fields, allow-
ing equality checks while maintaining a de-
gree of content privacy (this approach may
be vulnerable to dictionary attacks, as ex-
plained below). The third approach is sim-
ply to trust the alert repository with ensuring

that neither content nor indirect associations
be openly revealed.

4.3 DPotential attacks

We describe several threats faced by any
alert sharing scheme, in the order of increas-
ing severity. The attacker may launch attacks
of several types simultaneously.

Casual browsing. Alerts published by a
repository may be copied, stored and shared
by any Internet user, and are thus forever
out of control. The mildest attack is casual
browsing, where a curious user looks for fa-
miliar TP prefixes and sensor IDs in the pub-
lished alerts. This attack is easy to defend
against, e.g., by hashing all sensitive data.

Probe-response. A determined attacker
may attempt to use the alert repository as a
verification oracle. For example, he may tar-
get a particular system and then observe the
alerts published by the repository to deter-
mine whether the attack has been detected,
and, if so, how it was reported. By comparing
TP addresses contained in the reported alert
with that of the targeted system, the attacker
may learn network topology, sensor locations,
and other valuable information.

Dictionary attacks. The attacker can pre-
compute possible values of alerts that may
be generated by the targeted network, and
then search through the data published by
the repository to find whether any of the ac-
tual alerts match his guesses. This attack is
especially powerful since standard hashing of
IP addresses does not protect against it. For
example, the attacker can simply compute
hashes for all 256 IP addresses on the tar-
geted subnet and check the published alerts
to see if any of the hash values match. Us-
ing semantically secure encryption on sensi-
tive fields is sufficient to foil dictionary at-
tacks, but such encryption also makes col-
laborative analysis infeasible because two en-
cryptions of the same plaintext produce dif-
ferent ciphertexts with overwhelming proba-
bility. A polynomially-bounded analyst can-
not feasibly perform equality comparisons un-
less he knows the key or engages in further



interaction with the alert producer.

Alert flooding. If the repository publishes
only the highest-volume alerts (or those sat-
isfying any other group condition), the at-
tacker may target a particular system and
then “flush out” the stimulated alert by flood-
ing the repository with fake alerts that match
the expected value of the alert produced by
the targeted system. This involves either
spoofing source addresses of legitimate sen-
sors, setting up a bogus sensor, or taking over
an existing sensor. Flooding will cause the
repository to publish the real alert along with
the fakes. The attacker can discard the fakes
and analyze the real alert.

Repository corruption. Finally, the at-
tacker may deliberately set up his own reposi-
tory or take control of an existing repository,
perhaps in a manner invisible to the repos-
itory administrator. This attack is particu-
larly serious. It eliminates the need for alert
flooding and aggravates the consequences of
probe-response, since it gives the attacker im-
mediate access to raw reported alerts, as well
as the ability to determine exactly (e.g., by
inspecting incoming IP packets) where the
alert has arrived from. We describe sev-
eral partial solutions in section 6. Solutions
based on sophisticated cryptographic tech-
niques such as oblivious transfer [26] cur-
rently appear impractical. They provide
better theoretical privacy at the cost of an
unacceptable decrease in utility and perfor-
mance, but the balance may shift in favor of
cryptography-based solutions with the devel-
opment of more practical techniques.

5 Alert Sharing Infrastructure

To enable open collaborative analysis of
security alerts and real-time attack detec-
tion, we propose to establish alert repositories
which will receive alerts from many sensors,
some of them public and located at visible
network nodes and other hidden on corpo-
rate networks deep behind firewalls. Achiev-
ing this requires a robust architecture for in-
formation dissemination, ideally with no sin-
gle point of failure (to provide higher reliabil-

ity in the face of random faults and outages),
no single point of trust (to provide stronger
privacy guarantees against insider misuse in
any one organization), and few if any leverage
points for attackers.

The core of the proposed system is a set of
repositories where alerts are stored and ac-
cessed during analysis. Each repository is
very simple: it accepts alerts from anywhere,
strips out source information, and publishes
them immediately or after some delay. There
is no cryptographic processing and no key
management (unless the repository performs
re-keying see section 6.2). As described
in section 6.3, multiple repositories make it
more difficult for the attacker to infer the
source of sanitized alerts. The repositories
may share alerts, but they are not required to
be synchronized, thus not every alert will be
visible to every analysis engine. For perfor-
mance reasons, analysis engines normally in-
teract with a single repository or mirror site.

Figure 1 shows the major data flows among
a small set of sensors, producers, reposito-
ries, and analysis engines. The sensor trape-
zoids consist of firewalls, intrusion detec-
tion systems, antivirus software, and possi-
bly other security alert generators. The pro-
ducer boxes represent local collection points
for an enterprise or part of an enterprise.
These boxes perform the sanitization steps
such as hashing TP addresses, and are con-
trolled by the reporting organization. The
repository cylinders represent public or semi-
public databases containing reported data. A
repository may be controlled by a producer or
by an analysis organization. The analysis di-
amonds represent analysis services which pro-
cess the published alerts for historical trends,
event frequency changes, and other aggrega-
tion or correlation functions.

An enterprise (such as a major research lab
famed for computer security research) may
be sensitive to public disclosure of possible
attacks, and wish to keep private even the
volume of alerts it generates. As described
in section 6.3, the repositories can option-
ally form a randomized alert routing network.
Although we have not implemented this fea-
ture, randomized routing can provide strong
anonymity guarantees for alert sources. A



Figure 1: Data flows in alert processing.
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Figure 2: Alert volume per sensor (semi log
scale). Data courtesy DShield.

repository may also be configured so that only
events whose volume exceeds a certain thresh-
old are published. This will have relatively
little impact on historical and inflection anal-
ysis (see section 7), but may disable identifi-
cation of stealth attacks associated with low
alert volumes.

As shown in figure 2, sensors vary greatly in
the volume of alerts they produce in a given
day, but the total alert volume is substan-
tial. This graph depicts the number of alerts
produced on a single day by 1,416 sensors re-
porting to DShield. At the high end, over
7 million alerts were produced by one fire-
wall, apparently experiencing a certain DoS-
like attack. Several other sensors were near
or above a million alerts. The median sensor
produced only 177 alerts.

The total alert volume of 19,147,322 alerts
reported on that day, across a total of
1,416 different sensors from many organiza-
tions spread over a wide geographic area,
constrains practical implementation choices.
In particular, secure multiparty computa-
tion (SMC) approaches (see section 2.3), and
many privacy-preserving data mining tech-

niques add impractical levels of overhead to
alert analysis. With over a thousand report-
ing sensors, naive SMC approaches would
require tremendous network bandwidth and
unsupportable CPU or cryptographic copro-
cessor performance for even moderate lev-
els of analysis query traffic. It is possible
that special-purpose SMC schemes developed
specifically for this problem would prove more
practical. In this paper, we propose simple
solutions which enable a broad set of anal-
yses on sanitized alerts that would normally
require raw alert data.

6 Alert Sanitization

We propose several techniques that are
used in combination to protect the alert shar-
ing infrastructure from threats described in
section 4. Some of the mechanisms are “heav-
ier” than others and impose higher com-
munication and computational requirements
on alert contributors. On the other hand,
they provide better protection against seri-
ous threats such as complete corruption of the
alert repository. The exact set of techniques
may be selected by each organization or con-
tributor pool individually, depending on the
level of trust they are willing to place in a
particular repository or set of repositories.

6.1 Design requirements

We do not consider solutions that require
alert sources to trust the repository with pro-
tecting privacy of the reported data. In the
context of completely open public reposito-
ries, as opposed to trusted services such as
DeepSight [32] and DShield [34], such solu-
tions are both impractical (a commercial en-
terprise is unlikely to trust an open repository
to be careful with business secrets) and dan-
gerous for the repository operator, as she may
be exposed to legal liability if the repository is
attacked and private alert data compromised.

We also rule out solutions that require
sharing of secret keys between sensors. An
obvious solution might involve encrypting



sensitive data with a common key to en-
able alert comparison by infrastructure par-
ticipants, while hiding the data from a casual
observer. This approach may solve the cor-
rupt repository problem, but it is vulnerable
if the attacker signs up as a participant, gains
access to the common key, and breaks privacy
of alerts generated by all other participants.

Finally, solutions that require multiple pro-
ducers to collaborate and/or interact to pro-
tect a single alert are impractical in our con-
text. Given the volume of alerts, especially
when the network is under attack, the com-
munication overhead is likely to prove pro-
hibitive. This eliminates mechanisms based
on threshold cryptography [11, 14] such as
proactive security [15, 6], and secure mul-
tiparty computation (see section 2.3) even
though they are secure if a subset of partici-
pants has been corrupted by the adversary.

6.2 Basic privacy protection

Scrubbing sensitive fields. Before an
alert is sent to the repository, the pro-
ducer must remove all sensitive information
not needed for collaborative analyses de-
scribed in section 7, including all content in
Captured_Data, Infected_File and Outcome
fields. A more advanced version of our system
may enable privacy-preserving analysis based
on commonalities in the Captured_Data field,
e.g., presence of “bad words” associated with
a particular virus. Possible techniques in-
clude encryption with keyword-specific trap-
doors in the manner of [29, 5].

The Sensor_Id field may be either re-
mapped to a unique persistent pseudonym
(e.g., arandomly generated string) that leaks
no information about the organization that
owns it, or replaced with just the make and
model information. The Timestamp field is
rounded up to the nearest minute. Although
this disables fine-grained propagation analy-
ses, it adds additional uncertainty against at-
tackers staging probe-response attacks.

Hiding IP addresses. Suppose the attacker
controls the repository. He may launch an at-
tack and then attempt to use the alert gen-

erated by the victim’s sensor to analyze the
attack’s propagation through the victim’s in-
ternal network. Therefore, the producer must
hide both Source_IP and Dest_IP addresses
before releasing the alert to the repository.

Encrypting IP addresses under a key
known only to the producer is unacceptable,
as it hides too much information. With a
semantically secure encryption scheme, en-
crypting the same IP address twice will pro-
duce different ciphertexts, disabling collabo-
rative analysis. Hashing the address using a
standard, universally computable hash func-
tion such as SHA-1 or MDS5 enables dictio-
nary attacks. If the attacker controls the
repository, he can target a system on a partic-
ular subnet and pre-compute hash values of
all possible IP addresses at which sensors may
be located or to which he expects the attack
to propagate. This is feasible since the ad-
dress space in question is relatively small —
either 256, or 65536 addresses (potentially
even smaller if the attacker can make an edu-
cated guess). The attacker verifies his guesses
by checking whether the received alert con-
tains any of the pre-computed values.

Our solution strikes a balance between pri-
vacy and utility. The producer hashes all
IP addresses that belong to his own net-
work using a keyed hash function such as
HMAC [3, 4] with his secret key. All IP ad-
dresses that belong to external networks are
hashed using a standard hash function such
as SHA-1 [23]. This guarantees privacy for
IP addresses on the producer’s own network
since the attacker cannot verify his guesses
without knowing the producer’s key. In par-
ticular, probe-response fails to yield any use-
ful information. Of course, if these addresses
appear in alerts generated by other organiza-
tions, then no privacy can be guaranteed.

We pay a price in decreased functionality
since alerts about events on the network of or-
ganization A that have been generated by A’s
sensors cannot be compared with the alerts
about the same events generated by organiza-
tion B’s sensors. Recall, however, that we are
interested in detecting large-scale events. If A
is under heavy attack, chances are that it will
be detected not only by A’s and B’s sensors,
but also by sensors of C, D, and so on. Be-



cause A’s network is external to B, C, and D,
their alerts will have A’s IP addresses hashed
using the same standard hash function. This
will produce the same value for every occur-
rence of the same IP address, enabling match-
ing and counting of hash values correspond-
ing to frequently occurring addresses. Intu-
itively, any subset of participants can match
and compare their observations of events hap-
pening in someone else’s network. The cost of
increased privacy is decreased utility because
hashing destroys topological information, as
discussed in section 7.2. Naturally, an orga-
nization can always analyze alerts referring
to its own network, since they are all hashed
under the organization’s own key.

An additional benefit of using keyed hashes
for alerts about the organization’s own events
and plain hashes for other organizations’
events is that the attacker cannot feasibly de-
termine which of the two functions was used.
Even if the attacker controls the repository
and directly receives A’s alerts, he cannot
tell whether an alert refers to an event in
A’s or someone else’s network. The attacker
may still attempt to verify his guesses by pre-
computing hashes of expected IP addresses
and checking alerts submitted by other orga-
nizations, but with hundreds of thousands of
alerts per hour and thousands of possible ad-
dresses this task is exceedingly hard. Staging
a targeted probe-response attack is also more
difficult: the probe may never be detected by
another organization’s sensors, which means
that the response is never computed using
plain hash, and the attacker cannot stage a
dictionary attack at all. Finally, note that
keyed hashes do not require PKI or compli-
cated key management since keys are never
exchanged between sites.

Re-keying by the repository. To pro-
vide additional protection against a casual
observer or an outside attacker when an
alert is published, the repository may replace
all (hashed) IP addresses with their keyed
hashes, using the repository’s own private
key. This is done on top of hashing by the
alert producer, and preserves the ability to
compare and match IP addresses for equality,
since all second-level hashes use the same key.
This additional keyed hashing by the reposi-
tory defeats all probe-response and dictionary

attacks except when the attacker controls the
repository itself and all of its keys, in which
case we fall back on protection provided by
the producer’s keyed hashing.

Randomized hot list thresholds. For col-
laborative detection of high-volume events,
it is sufficient for the repository to publish
only the hot list of reported alerts that have
something in common (e.g., source IP ad-
dress, port/protocol combination, event id)
and whose number exceeds a certain thresh-
old. As described in section 4, this may be
vulnerable to a flooding attack, in which the
attacker launches a probe, and then attempts
to force the directory to publish the targeted
system’s response, if any, by flooding it with
“matching” fake alerts based on his guesses
of what the real alert looks like.

Our solution is to introduce a slight ran-
dom variation in the threshold value. For ex-
ample, if the threshold is 20, the repository
chooses a random value T" between 18 and 22,
and, if T' is exceeded, publishes only T alerts.
If the attacker submits 20 fake alerts and a
hot list of 20 alerts is published, the attacker
doesn’t know if the repository received 20 or
21 alerts, including a matching alert from the
victim. There is a small risk that some alerts
will be lost if their number is too small to trig-
ger publication, but such alerts are not useful
for detecting high-volume events.

Delayed alert publication. If the alert
data is used only for research on historical
trends (see section 7.1), delayed alert publica-
tion provides a feasible defense against probe-
response attacks. The repository simply pub-
lishes the data several weeks or months later,
without Timestamp fields. The attacker
would not be able to use this data to correlate
his probes with the victim’s responses.

Examples of basic sanitization for different
alert types can be found in tables 2 through 4.

6.3 Multiple repositories

We now describe a “heavy-duty” solution
for the corrupt repository problem. Instead of
using a single alert repository, envision multi-



[ Field ID | Raw firewall alert

[ Sanitized firewall alert

Source_IP 172.16.30.2 0x16c9368f
Source_Port 1147 1147
Dest_IP 173.19.33.1 0x78a65237
Dest_Port 135 135
Protocol 6 6
Timestamp 09032003:01:03:10 09032003:01:03:00
Sensor PIX-4-10060231 PIX
Count 1 1
Event_ID Deny Deny
Outcome none none
Capture_Data none none
Infected_File none none

Table 2: Example firewall security alert sanitization.

[ Field ID Raw IDS alert [ Sanitized IDS alert
Source_IP 172.16.30.49 0xb09956¢2
Source_Port 1299 1299
Dest_IP 176.20.22.43 0xd6e79b79
Dest_Port 80 80
Protocol 6 6
Timestamp 10132003:11:41:09 10132003:11:41:00
Sensor EM-HTTP-90209321 EM-HTTP
Count 1 1
Event_ID CGI_ATTACK CGI_ATTACK
Outcome NO_REPLY none
Capture_Data /scripts/.%25bc%25bbc. /winnt/system | none
32/cmd.exe?/c+dir
Tnfected File none none

Table 3: Example IDS security alert sanitization.

Field ID Raw AV Alert [ Sanitized AV alert
Source_IP none none
Source_Port none none
Dest_IP 176.30.22.11 0xb4ddc807
Dest_Port none none
Protocol none none
Timestamp 11172003:09:39:00 11172003:09:39:00
Sensor NORTON-AV-02209302 NORTON-AV
Count 1 1
Event_ID W32.Sobig.F.Dam W32.Sobig.F.Dam
Outcome Left alone none
Capture_Data none none
Infected_File A0014566.pdf none

Table 4: Example antivirus security alert sanitization.

ple repositories, operated by different owners
and distributed throughout the Internet (e.g.,
open-source code for setting up a repository
may be made available to anyone who wishes
to operate one). We do not require the repos-
itories to synchronize their alert datasets, so
the additional complexity is low. Information
about available repositories is compiled into
a periodically published list. An organiza-
tion that wants to take advantage of the alert
sharing infrastructure chooses one or more
repositories in any way it sees fit ~ randomly,
on the basis of previously established trust, or
using a reputation mechanism such as [9, 12].

In this setting, it is insufficient for the at-
tacker to gain control of just one repository
to launch a probe-response attack because
the victim may report his alert to a different
repository. The costs for the attacker increase
linearly with the number of repositories. The

costs for alert producers do not increase at all,
since the amount of processing per alert does
not depend on the number of repositories.

While spreading alerts over several repos-
itories decreases opportunities for collabo-
rative analysis, real-time detection of high-
volume events is still feasible. If multiple sys-
tems are under simultaneous attack, chances
are their alerts will be reported to differ-
ent repositories in sufficient numbers to pass
the “hot list” threshold and trigger publica-
tion. By monitoring a sufficiently large sub-
set of the repositories for simultaneous spikes
of similar alerts, it will be possible to detect
an attack in progress and adopt an appropri-
ate defensive posture. Repositories may also
engage in periodic or on-demand exchanges
of significant perturbations in incoming alert
patterns. This could further help build an ag-
gregate detection capability, especially as the



number of would-be repositories grows large.

Randomized alert routing. For better pri-
vacy, we propose to deploy an overlay pro-
tocol for randomized peer-to-peer routing of
alerts in the spirit of Crowds [27] or Onion
routing [33]. Each alert producer and repos-
itory sets up a simple alert router outside its
firewall. The routers form a network. When
a batch of alerts is ready for release, the pro-
ducer chooses one of the other routers at ran-
dom and sends the batch to it. After receiving
the alerts, a router flips a biased coin and,
with probability p (a parameter of the sys-
tem), forwards the alert to the next randomly
selected router, or, with probability 1 —p, de-
posits it into a randomly selected repository.
The alert producer may also specify the de-
sired repository as part of the alert batch.

Such a network is very simple to set up
since, in contrast to full-blown anonymous
communication systems such as Onion rout-
ing, there is no need to establish return paths
or permanent channels. The routers don’t
need to maintain per-alert state or use any
cryptography. All they need to do is ran-
domly forward all received alerts and peri-
odically update the table with the addresses
of other routers in the network.

When an alert enters the network, all ori-
gin data is lost after the first hop. Even
if the attacker controls some of the routers
and repositories, he cannot be sure whether
an alert has been generated by its apparent
source or routed on behalf of another pro-
ducer. This provides probabilistic anonymity
for alert sources which is quantified below.
The disadvantage is the communication over-
head and increased latency for alerts before
they arrive to the repository (note that there
is no cryptographic overhead).

Anonymity estimates. To quantify the
anonymity that alert contributors will enjoy
if the repositories and producers form a ran-
domized alert routing network, we compute
the increase in attacker workload as a func-
tion of the average routing path length. If p
is the probability of forwarding at each hop,
then the average path length m = 2 + 1%.
Reversing the equation, the forwarding prob-
ability p must be equal to m—:f to achieve the

average path length of m.

Suppose the network contains n routers,
of which ¢ are controlled by the attacker.
The probability that a random path con-

tains a router controlled by the attacker is
c(n—np+cp+p)
n?—np(n—c)
close to i, which means that almost 1 — =
alerts will not be observed by the attacker

and thus remain completely anonymous.

[27]. For large n, this value is

For each of the = alerts that are ob-
served by the attacker, the probability that
its apparent source (the site from which
an attacker-controlled router has received it)
is the actual source can be calculated as
W [27]. We interpret the inverse of
this probability as the attacker workload. For
example, if there is only a 25% chance that
the observed alert was produced by its ap-
parent source, the attacker needs to perform
4 times the testing to determine whether the
apparent source is the true origin. As ex-
pected, higher values of forwarding probabil-
ity p provide better anonymity at the cost
of increased latency (modeled as increase in
the average number of hops an alert has to
travel before arriving to the repository). This
relationship is plotted (assuming n = 100
routers) in figure 3.

7 Supported Analyses

Alert sanitization techniques described in
section 6 protect sensitive information con-
tained in raw alerts, but still allow a wide
variety of large-scale, cross-organization anal-
yses to be performed on the sanitized data.

7.1 Historical trend analyses

This class of analyses seeks to understand
the statistical characteristics and trends in
alert production that have been observed over
various durations of time. For example, [31]
offers a compendium of the trends observed
in firewall and intrusion detection alert pro-
duction from a sample set of over 400 organi-
zations in 30 countries.
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Figure 3: Estimated anonymity provided by randomized alert routing.

Source- and target-based. Given a large
alert corpus, alert sources and targets may
be categorized from various perspectives,
such as event production patterns. Because
of privacy-preserving data sanitization, geo-
graphical information and domain types can-
not be inferred from the published alerts.
One possible solution is to rely on self-
classification and allow contributors to as-
sociate concise high-level profiles with each
alert, including such attributes as country,
business type, and so on (e.g., “an academic
institution in California”). This will enable
some forms of trend/categorical analysis, but
will also potentially make alert contributors
more vulnerable to dictionary attacks.

We do enable identification of (anonymous)
sources producing the greatest volume of
alerts and alerts with the greatest aggregate
severity. The activity of egregious sources is
likely to be reported by multiple organiza-
tions, thus the corresponding address will be
hashed using a universally computable hash
function such as SHA-1. These sources can be
blacklisted by distributing filters with the cor-
responding hash value. When installed, they
would filter out all traffic for which the hash
of the source IP address matches the pro-
vided value. There is a cost to this filtering,
since it requires the firewall to hash the IP
addresses of all incoming traffic to determine

which ones need to be filtered out, although
this may be acceptable when the network is
under a heavy attack (this hashing is benign
as opposed to dictionary attacks described in
section 4.3). Repositories should beware of
malicious blacklisting caused by the attacker
submitting a large number of fake alerts im-
plicating an innocent system.

Port/protocol- and event production-
based. These analyses may offer help in
understanding which kinds of reconnaissance
are performed as a precursor to a larger scale
exploit, or help characterize the extent to
which an attack has spread.

7.2 Event-driven analyses

Real-time alert data published by alert
repositories offers compelling value as a
source of early warning signs that a new out-
break of malicious activity is emerging across
the contributor pool. The focus of this analy-
sis is to identify significant changes or sudden
inflections in alert production that may be in-
dicative of a currently occurring attack.

e Intensity analysis identifies extremely
aggressive sources causing a large num-
ber of alerts from multiple contributors.



Although the sources remain anony-
mous, hash values of their IP addresses
can be published and/or distributed to
contributors to help them adjust their fil-
tering policies, as described above.

e Sudden and widespread inflections in
the volume and ratios of event_IDs and
Dest_Ports in the incoming alert streams
may indicate the emergence of a new in-
trusion threat that is affecting a growing
subset of the contributor pool.

e Aggregation of the volume and severity
of alerts observed in the incoming alert
streams may provide a basis from which
to capture an overall assessment or “De-
fcon level” of the threats that the con-
tributor pool is currently facing.

A more challenging task is to identify
propagation patterns in the occurrence of
event_IDs and volumes, which is necessary to
analyze spreading behavior of Internet-scale
intrusion activity. Both hashing and keyed
hashing destroy all topological information in
IP addresses, making it infeasible to deter-
mine whether two sanitized alerts belong to
the same region of address space. A possible
solution may be offered by prefix-preserving
anonymization [36], but we leave these tech-
niques for future investigation.

8 Performance

As illustrated in figure 2, large volumes of
alert data are being generated, and alert pro-
duction among members of the contributor
pool can vary greatly. Security services can
produce inundations of security alerts when
they are the target of a denial of service at-
tack, and when there is a widespread out-
break of virulent worm or virus. During such
periods of significant stress, alert production
and processing can pose significant burden on
sensors, repositories, and analysts, and thus
limit utility of the alerts. This is a signif-
icant motivator for work on alert reduction
methods [35, 10], and places constraints on

3

the acceptable costs of alert sanitization.

As we show below, the cost of providing
privacy to alert producers in our scheme is
very low: there is a small impact on the per-
formance of alert producers, and virtually no
impact on the performance of supported anal-
yses (of course, some analyses are disabled
due to data sanitization). We argue that our
scheme provides a sensible three-way tradeoff
between utility of alert analysis, performance
of the alert sharing infrastructure, and pri-
vacy of alert producers.

Performance of alert producers. To un-
derstand the CPU impact of alert sanitiza-
tion, we benchmarked IP hashing on large
alert corpuses under the scheme proposed in
section 6.2, using SHA-1 on external IP ad-
dresses (primarily Source_IP), and HMAC on
internal IP addresses (primarily Dest_IP).

The experiment was conducted on a
FreeBSD 1.4Ghz Intel Pentium IIT worksta-
tion using Mark Shellor’s free software im-
plementation of SHA and HMAC. ! We em-
ployed two large alert repositories. One
repository, produced from our laboratory fire-
wall, consisted of 4,224,122 records collected
over a three hour period during an intense ex-
posure to the Kuang 2 virus [16]. The second
repository consisted of 19,146,346 records col-
lected over a 24 hour period by DShield.

Table 5 presents the results of the IP ad-
dress hiding scheme on the DShield and lab-
oratory alert corpuses, reported in CPU sec-
onds per million records. The baseline repre-
sents the amount of seconds, in CPU time,
required to read the alerts from secondary
storage per 1 million records. The hashed and
cached-8 times indicate the amount of CPU
seconds required to apply SHA and HMAC
hashing to the Source IP and Dest_IP fields
per 1 million records. The delta column rep-
resents the difference between the baseline
alert reporting performance and the sanitized
alert reporting performance.

Cached-8 represents a moderately opti-
mized implementation with a very small
cache holding the last 8 encountered IP ad-
dresses. Because our sanitization scheme
is deterministic, we can use the previously

LSource code is available at http://search.cpan.
org/src/MSHELOR/Digest-SHA-4.1.0/src/



baseline | hashed | delta | cached-8 | delta
DShield.org | 29.81 64.16 34.35 | 56.84 27.02
Laboratory 75.80 110.34 34.54 | 106.20 30.40

Table 5: CPU Impact of IP Hashing (seconds per 1 million alerts).

hashed IP addresses from the cache. Caching
makes sense in two cases:

e The site is hit by a scan across its full IP
address space by a few infected or mali-
cious external hosts. In this case, a few
Source_IP addresses will occur with regu-
larity, resulting in a high cache hit ratio.

e The site is hit by distributed-denial-of-
service-type traffic against a subset of its
valid servers. In this case, a few Dest_IP
addresses will occur with regularity, re-
sulting in a high cache hit ratio.

For the IP addresses not in the trusted do-
main (to which SHA is applied), caching
achieved savings of about 65%.

The results reveal that the performance im-
pact is modest, less than the cost of I/O in
our implementation. For a sensor producing 1
million alerts per hour, the additional hashing
expense is roughly 30 seconds of CPU time
per hour. This overhead should be considered
in the context of the much larger task of alert
caching and periodic batched transmission to
a remote alert repository. Key management
is relatively cheap in our case: there is no
need for PKI and keys are never distributed
outside the producer’s site.

The expected cost of randomized routing to
anonymize alert sources depends on the pa-
rameters of the routing network such as the
forwarding probability and is roughly linear
in the number of hops. There is no crypto-
graphic processing and alert routers are state-
less (see section 6.3).

Performance of analysis. To achieve the
balance between privacy and utility, our san-
itization methods have been designed to have
minimal or no effect on the performance of
primary analyses. In particular, sanitized
IP addresses are mapped into the same size

record as the original IP addresses, and cross-
alert comparisons can be carried out at the
repository without any network interaction.
Comparing hashes for equality takes the same
time as comparing IP addresses, so there is
zero impact on performance.

When a troublesome source IP address is
identified, this information may need to be
propagated back to the producer (this is
infeasible in the randomized-routing setting
due to the high overhead of maintaining a re-
turn path for each alert). The producer may
opt to reveal the actual IP address of the of-
fender. In the case of a widespread attack,
many sensors may complain about a single IP
address, and any of the victims may choose to
reveal the source of the threat, to enable de-
fensive filters to be tuned appropriately. Mea-
suring the costs of such selective revelation is
beyond the scope of this paper.

9 Conclusions

We have described a broad set of privacy
concerns that limit the ability of sites to share
security alert information, and enumerated a
number of data sanitization techniques that
strike a balance between the privacy of alert
producers and the functional needs of multi-
site correlation services, without imposing
heavy performance costs. Our techniques are
practical even for large alert loads, and, most
importantly, do not require that alert contrib-
utors trust alert repositories to protect their
sensitive data. This enables creation of open
community-access repositories that will offer
a better perspective on Internet-wide trends,
real-time detection of emerging threats and a
source of data for malicious code research.

As a first prototype to demonstrate basic
alert sanitization with live sensors, we are de-
veloping a Snort alert delivery plugin that im-



plements SHA/HMAC and field sanitization
discussed in section 6.2. We also plan to ana-
lyze defenses against probe-response attacks
in which the attacker artificially stimulates
an alert with a rare Event_Id and then uses
this Event_Id as a marker to recognize the re-
sponse in the general alert traffic.
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