=~ ARM Architecture

Reference Manual

ARMv7-A and ARMVv7-R edition
Errata markup

ARM

Copyright © 1996-1998, 2000, 2004-2011 ARM Limited. All rights reserved.
ARM DDI 0406B_errata_2011_Q2 (ID053111)

ARM editor
Sticky Note
ARM tests the PDF errata markups only in Adobe Acrobat and Acrobat Reader, and cannot guarantee that the markups will appear correctly in any other PDF reader.

In body text:
 • red strike-thru indicates a deletion
 • blue strike-thru indicates a replacement
 • a blue caret indicates an insertion.
For replacements and insertions, the new text appears if you hover the mouse pointer over the markup.

Double-clicking on any markup opens a message box that describes the markup.

To ensure you locate all markup you can choose to Show Comments List. By default this lists comments by page number, and appears as a separate pane below the document view. However, you can display the comments list in a separate window. See the Acrobat Help for more information.

ARM Architecture Reference Manual
ARMv7-A and ARMv7-R edition
Errata markup

Copyright © 1996-1998, 2000, 2004-2011 ARM Limited. All rights reserved.
Release Information

The following changes have been made to this document.

Change History

Date Issue Confidentiality Change
05 April 2007 A Non-Confidential New edition for ARMv7-A and ARMV7-R architecture profiles.
Document number changed from ARM DDI 0100 to ARM DDI 0406, contents restructured.
29 April 2008 B Non-Confidential Addition of the VFP Half-precision and Multiprocessing Extensions, and many clarifications
and enhancements.
November 2008 B Non-Confidential PDF with errata issued, errata identified as ARM_2008_Q4.
March 2009 B Non-Confidential PDF reissued with additional errata. Additional errata identified as ARM_2009_Q1.
July 2009 B Non-Confidential PDF reissued with additional errata. Additional errata identified as ARM_2009_Q2.
October 2009 B Non-Confidential PDF reissued with additional errata. Additional errata identified as ARM_2009_Q3.
February 2010 B Non-Confidential PDF reissued with additional errata. Additional errata identified as ARM_2009_Q4.
July 2010 B Non-Confidential PDF reissued with additional errata. Additional errata identified as ARM_2010_Q2.
October 2010 B Non-Confidential PDF reissued with additional errata. Additional errata identified as ARM_2010_Q3.
July 2011 B Non-Confidential PDF reissued with additional errata. Additional errata identified as ARM_2011_Q2.

From ARMv7, the ARM architecture defines different architectural profiles and this edition of this manual describes only
the A and R profiles. For details of the documentation of the ARMv7-M profile see Additional reading on page xxv.
Before ARMV?7 there was only a single ARM Architecture Reference Manual, with document number DDI 0100. The first
issue of this was in February 1996, and the final issue, Issue I, was in July 2005. For more information see Additional
reading on page Xxv.

Proprietary Notice

This ARM Architecture Reference Manual is protected by copyright and the practice or implementation of the
information herein may be protected by one or more patents or pending applications. No part of this ARM Architecture
Reference Manual may be reproduced in any form by any means without the express prior written permission of ARM.
No license, express or implied, by estoppel or otherwise to any intellectual property rights is granted by this ARM
Architecture Reference Manual.

Your access to the information in this ARM Architecture Reference Manual is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether implementations of the ARM
architecture infringe any third party patents.

Copyright © 1996-1998, 2000, 2004-2011 ARM Limited. All rights reserved. =~ ARM DDI 0406B_errata_2011_Q2

Non-Confidential ID053111

This ARM Architecture Reference Manual is provided “as is”. ARM makes no representations or warranties, either
express or implied, included but not limited to, warranties of merchantability, fitness for a particular purpose, or
non-infringement, that the content of this ARM Architecture Reference Manual is suitable for any particular purpose or
that any practice or implementation of the contents of the ARM Architecture Reference Manual will not infringe any third
party patents, copyrights, trade secrets, or other rights.

This ARM Architecture Reference Manual may include technical inaccuracies or typographical errors.

To the extent not prohibited by law, in no event will ARM be liable for any damages, including without limitation any
direct loss, lost revenue, lost profits or data, special, indirect, consequential, incidental or punitive damages, however
caused and regardless of the theory of liability, arising out of or related to any furnishing, practicing, modifying or any
use of this ARM Architecture Reference Manual, even if ARM has been advised of the possibility of such damages.

Words and logos marked with ® or TM are registered trademarks or trademarks of ARM Limited, except as otherwise
stated below in this proprietary notice. Other brands and names mentioned herein may be the trademarks of their
respective owners.

Copyright © 1996-1998, 2000, 2004-2011 ARM Limited
110 Fulbourn Road Cambridge, England CB1 9NJ

Restricted Rights Legend: Use, duplication or disclosure by the United States Government is subject to the restrictions
set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19.

This document is Non-Confidential but any disclosure by you is subject to you providing notice to and the
acceptance by the recipient of, the conditions set out above.

In this document, where the term ARM is used to refer to the company it means “ARM or any of its subsidiaries as
appropriate”.
Note

The term ARM is also used to refer to versions of the ARM architecture, for example ARMv6 refers to version 6 of the
ARM architecture. The context makes it clear when the term is used in this way.

Note

For this errata PDF, pages i to iii have been replaced, by an edit to the PDF, to include an updated Proprietary Notice, and
to include the errata PDFs in the Change History table. The remainder of the PDF is the original release PDF of issue B
of the document, with errata markups added.

ARM DDI 0406B_errata_2011_Q2 Copyright © 1996-1998, 2000, 2004-2011 ARM Limited. All rights reserved. iii
ID053111 Non-Confidential

iv Copyright © 1996-1998, 2000, 2004-2011 ARM Limited. All rights reserved. =~ ARM DDI 0406B_errata_2011_Q2
Non-Confidential ID053111

Contents
ARM Architecture Reference Manual
ARMv7-A and ARMv7-R edition

Preface
About this manualouiiiiiiiiiii s Xiv
Using this Manualccccveiiiiiiiiiic e XV
CONVENTIONS oiviiiiiiiiiieee e e e e e e e e e e e e e e s a bbb e e s aeeeees XViii
FUrther readingooooveieiieeeee e XX
TS0 | o= Tod R XXi
Part A Application Level Architecture
Chapter Al Introduction to the ARM Architecture
Al.l About the ARM arChit€CIUIecovvveeeeiieiiiiiiiiieree e Al-2
Al.2 The ARM and Thumb inStruCtion SEtSscccooeeveiiiiiiiiiviiiiecee e, Al1-3
Al.3 Architecture versions, profiles, and variantsccccccceeiiiiiieeennns Al-4
Al.4 ArchiteCture eXtENSIONSeieeiieeieeeeee e Al-6
Al5 The ARM memory MOlcooiiiiiiiiiiiiiiee e Al-7
Al.6 (7= o 10T PP PP SOPPPRRN Al-8

Chapter A2 Application Level Programmers’ Model
A2.1 About the Application level programmers’ modelccccevveeinns A2-2

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. \Y

Contents

A2.2
A2.3
A2.4
A2.5
A2.6
A2.7
A2.8
A2.9
A2.10
A2.11

ARM core data types and arithmeticcccccoiviiiniie, A2-3
ARM COIe reQISIEIS ...ttt A2-11
The Application Program Status Register (APSR)
EXeCUtion State regiStersccoiivieiiiie e
Advanced SIMD and VFP extensionsc.cccccoueeerniiennieesnneeennns
Floating-point data types and arithmetic
Polynomial arithmetic over {0,1}ccooiiiiiiiiiiiiee e
Coprocessor support
Execution environment SUPPOITcocvieeeeeiiiiieeeesiiireee e e siiee e
Exceptions, debug events and checkscccccveiiiiiiiiieiiniieenn.

Chapter A3 Application Level Memory Model

A3.1
A3.2
A3.3
A3.4
A3.5
A3.6
A3.7
A3.8
A3.9

AAreSS SPACEiiiiiiiiiieiit ettt e
AlIGNMENT SUPPOIE ettt
Endian supportccceeeiiiiieniieeeeee

Synchronization and semaphores
Memory types and attributes and the memory order model A3-24
ACCESS MGNLS i

Virtual and physical addressing
Memory access Ordercccocceeeeerennes
Caches and memory hierarchy

Chapter A4 The Instruction Sets

A4l
A4.2
A4.3
Ad.4
A4.5
A4.6
A47
A4.8
A4.9
A4.10
A4.11
A4.12
A4.13
A4.14

About the INSIIUCLION SELSeeeiiiii e
Unified Assembler Languagecoooovveeiiiiiiiiiieeiiieiee e
Branch inStruCtionScoooiiiiiiiiiii e
Data-processing instructions

Status register access instructions
Load/store inStructionsccceevveeens

Load/store multiple iNStruCtioNScc.eeieeiiiiiiieee e
Miscellaneous INSIIUCHIONSc..eeeeiiiiiiiieee e
Exception-generating and exception-handling instructions A4-24
COpProcessor iNSIIUCHIONScciviivvieeeiiiiiiee e e e e e
Advanced SIMD and VFP load/store instructions
Advanced SIMD and VFP register transfer instructions A4-29
Advanced SIMD data-processing operationscccceeeecveeeeeninnes A4-30
VFP data-processing inStruCtioNScooccuveeeeiiiiiieeeeniiiieee e A4-38

Chapter A5 ARM Instruction Set Encoding

A5.1
A5.2
A5.3
A5.4
A5.5
A5.6
A5.7

ARM instruction set encodingccccceeviiuiieieennninne
Data-processing and miscellaneous instructions
Load/store word and unsigned bytecccccoovieiieiiiiiiiee e,
Media INSIUCLIONSooiiiiiiiiiieiee e
Branch, branch with link, and block data transfer
Supervisor Call, and coprocessor instructions

Unconditional INSIIUCLIONSocuveiiiiiiiiiee e

Vi Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Contents

Chapter A6 Thumb Instruction Set Encoding

A6.1 Thumb instruction set encodingcccoocoeiieiiiiiiee e AB-2
A6.2 16-bit Thumb instruction encodingccceeeeiiiiiieienniiiee e, A6-6
A6.3 32-bit Thumb instruction encodingccooviiieeeiiiiiieeeerieee e A6-14

Chapter A7 Advanced SIMD and VFP Instruction Encoding
A7.1 OVEIVIEW ittt ettt ettt e et e e e e e st e e e e e snbneeeeeas
A7.2 Advanced SIMD and VFP instruction syntax
A7.3 Register encodingccccocvvrerivieriieeesiee e
A7.4 Advanced SIMD data-processing instructions
A7.5 VFP data-processing inStruCtioNScoeeeiiiiieeeniiiiiee e
A7.6 Extension register load/store inStructionsccccoecvveeeeinnineeenn.

A7.7 Advanced SIMD element or structure load/store instructions A7-27
A7.8 8, 16, and 32-bit transfer between ARM core and extension registers
A7-31
A7.9 64-bit transfers between ARM core and extension registers A7-32
Chapter A8 Instruction Details

A8.1 Format of instruction descriptions
A8.2 Standard assembler syntax fields
A8.3 Conditional execution
A8.4 Shifts applied t0 @ regiSter ...
A8.5 MEMOIY GCCESSES ..iiiiiiiiiririiiiiiieeee e e e s s s s ss bbbt rrreeeaeaeeaeeeeaeanaans
A8.6 Alphabetical list Of INSIUCLIONSc.eeeiviieiiiicieeeee e

Chapter A9 ThumbEE

A9.1 The ThumbEE inStruction Setcoccviiiiieiiiie e A9-2
A9.2 ThumbEE instruction set encodingccccevvveriieiiiee e A9-6
A9.3 Additional instructions in Thumb and ThumbEE instruction sets A9-7
A9.4 ThumbEE instructions with modified behaviorcccccceviinn A9-8
A9.5 Additional ThHUMbBEE inStructionsccccccveviiieiiiic e A9-14
Part B System Level Architecture
Chapter B1 The System Level Programmers’ Model
Bl.1 About the system level programmers’ modelccccccceeviieeennns B1-2
B1.2 System level concepts and terminologyccccoccveeeeiiniiieeeinniiineeen. B1-3
B1.3 ARM processor modes and core regiStersccceevvveeeeeiniiieeeeenins B1-6

B1.4 Instruction set Statescccovvevvveriieiie e
B1.5 The Security Extensions
B1.6 EXCEPLONS ..ocoviiiiiiieiee e
B1.7 Coprocessors and system control
B1.8 Advanced SIMD and floating-point SUPPOItccceeeeriiiiiieaennins B1-64
B1.9 Execution environment SUPPOItoccuveieeeriiirieeeeiiiiieee e B1-73

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. vii

Contents

Chapter B2

Chapter B3

Chapter B4

Chapter B5

Chapter B6

Part C

Chapter C1

Common Memory System Architecture Features

B2.1 About the memory system architectureccoccooeiiiiiiieeen e, B2-2
B2.2 CACNES e B2-3
B2.3 Implementation defined memory system featuresc.cccceee. B2-27
B2.4 Pseudocode details of general memory system operations B2-29

Virtual Memory System Architecture (VMSA)

B3.1 ADOULtthe VIMSA ... B3-2
B3.2 Memory access sequence B3-4
B3.3 Translation tablescoiiiiii B3-7
B3.4 Address mapping restrictions B3-23
B3.5 Secure and Non-secure address spaces B3-26
B3.6 Memory access control B3-28
B3.7 Memory region attributes ... B3-32
B3.8 VMSA Memory abortsoooiviiiiiiiie e B3-40
B3.9 Fault Status and Fault Address registers in a VMSA implementation
B3-48
B3.10 Translation Lookaside Buffers (TLBS)ccccoiiieiieiiiiiiiieceiiieeen, B3-54
B3.11 Virtual Address to Physical Address translation operations B3-63
B3.12 CP15 registers for a VMSA implementationcccccccveeevvivnnennn. B3-64
B3.13 Pseudocode details of VMSA memory system operations B3-156

Protected Memory System Architecture (PMSA)

B4.1 ADOUt the PMSA ..o
B4.2 MemMOry 8CCESS CONTIOluvviiiiiiiiiee et
B4.3 Memory region attributes ...

B4.4 PMSA Memory abortsooooiiiiiiiiiiiee e B4-13

B4.5 Fault Status and Fault Address registers in a PMSA implementation
B4-18

B4.6 CP15 registers for a PMSA implementationccccovcvveniieennne. B4-22

B4.7 Pseudocode details of PMSA memory system operations B4-79

The CPUID Identification Scheme
B5.1 Introduction to the CPUID scheme
B5.2 The CPUID FEQISEEISieieiiiiiiiee et ie ettt e e ee s

B5.3 Advanced SIMD and VFP feature identification registers B5-34

System Instructions
B6.1 Alphabetical list Of INSTIUCHIONScccoiiiiiiiiiii e B6-2

Debug Architecture

Introduction to the ARM Debug Architecture
Ci.1 Scope of part C of this manualcccceeviiiiiiiiei e C1-2
Cl1.2 About the ARM Debug architectureccccceeeeiiiiiiiiiiiiieee e, C1-3

viii

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Chapter C2

Chapter C3

Chapter C4

Chapter C5

Chapter C6

Chapter C7

Contents

C13 Security Extensions and debug ... C1-8
Cl4 ReQISter INLEITACEScooiiiiiiie e C1-9

Invasive Debug Authentication
c21 About invasive debug authenticationcccccceeiiiiiiiiiiniiieee s C2-2

Debug Events

C31 About debUQ BVENLS ...
C3.2 Software debug events

C3.3 Halting debug events
C34 Generation of debug events .
C35 Debug event prioritizationcccccooeiiiiie i

Debug Exceptions

C41 About debug eXCEPLIONSoocuuviiiieiiiiei e C4-2
C4.2 Effects of debug exceptions on CP15 registers and the DBGWFAR
C4-4

Debug State
C5.1 ADOUL DEDUQ SLAEcoiiiiiiiiie e
C5.2 Entering Debug state
C5.3 Behavior of the PC and CPSR in Debug state

C5.4 Executing instructions in Debug Statec.ccceviiiiniie e
C55 Privilege in Debug Stateooocueiiiiiiiiiieeeeee e
C5.6 Behavior of non-invasive debug in Debug state ...

C5.7 Exceptions in Debug statecccccovviieieeininnnnn.

C5.8 Memory system behavior in Debug state
C5.9 Leaving Debug Statecceeiiiiiiiieeiieeeeee e

Debug Register Interfaces

C6.1 About the debug register interfacesccccooveeviiiiriecnieese e

C6.2 Reset and power-down SUPPOITcccvvierieieiireeeiiee e e e

C6.3 Debug regiSter MAaPcooicueiiieiiiii et

C6.4 Synchronization of debug register updates .

C6.5 ACCESS PEIMISSIONSuuviiieeiiiiiiiiee it e e ettt e e et e e e e e enees

C6.6 The CP14 debug register interfacescccccceevvcvveieeeiiiiiiee e, C6-32
C6.7 The memory-mapped and recommended external debug interfaces

C6-43

Non-invasive Debug Authentication

C7.1 About non-invasive debug authenticationccccooveeiiiieniinrenne.
C7.2 v7 Debug non-invasive debug authentication
C7.3 Effects of non-invasive debug authentication
C7.4 ARMvV6 non-invasive debug authenticationcccccevviiiiiiinnnnn.

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ix

Contents

Chapter C8

Chapter C9

Chapter C10

Appendix A

Appendix B

Appendix C

Sample-based Profiling
c8.1 Program Counter SAmMPpPlingcoooeiiieiioiiieiee e C8-2

Performance Monitors

Ca.1 About the performance MoNItorsc.oooiiiiiiiiiiiiie e C9-2
C9.2 Status in the ARM architeCtureccccovevviriieeiiiie e C9-4
C9.3 Accuracy of the performance monitorsccccoovcvveeeiniiieneennnnn C9-5
C9.4 Behavior on oVerflow ...

C9.5 Interaction with Security Extensions

C9.6 Interaction With traCeccooceii e

Co.7 Interaction with power saving Operationsccccecceeeeeiiiieeeenennnns C9-9
Cc9.8 CP15 €9 regiSter Mapccceeeeeenieeeeeiniieeee e

C9.9 Access permissions

C9.10 EVENENUMDETSooiiiiiiiiiiiiiesieinc e

Debug Registers Reference
C10.1 Accessing the debug registers

C10.2 Debug identification registers

C10.3 Control and Status regiStersccccouveeriieeniiee e

C10.4 Instruction and data transfer registersccccoeceeeeiniiiieeeennee. C10-40
C10.5 Software debug event registers

C10.6 OS Save and Restore registers, v7 Debug onlycccccceeeennne C10-75
C10.7 Memory system control regiStersccccvvvvveeeiiiiiiieeeeeiiiiee e C10-80
C10.8 Management registers, ARMV7 ONlyccccooveiiiiiiiiiciiieeiiieee C10-88
C10.9 Performance monitor regiSIErSccccovveerieieeniee e C10-105

Recommended External Debug Interface

Al System integration SIgNAIScccceorieiiriiiiie e AppxA-2
A2 Recommended debug slave port AppxA-13
Common VFP Subarchitecture Specification

B.1 Scope of this apPeNdiXcc.eeeeiiiiiiiieie e AppxB-2
B.2 Introduction to the Common VFP subarchitecture AppxB-3
B.3 EXCepLion ProCeSSINGc.cvvvieeiiiiiiiee ettt AppxB-6
B.4 Support code reqUIrEMENTSccveveeeiiiiiieee e eier e AppxB-11
B.5 Context SWItChINGoovveeiiiiieie e AppxB-14
B.6 Subarchitecture additions to the VFP system registers AppxB-15
B.7 Version 1 of the Common VFP subarchitecture AppxB-23
B.8 Version 2 of the Common VFP subarchitecture AppxB-24
Legacy Instruction Mnemonics

(O Thumb instruction MNEMONICScooiiiiiiiiiiiiee e AppxC-2
C.2 Pre-UAL pseudo-instruction NOPcccooiiiieiiiniiiieiee e, AppxC-3

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Contents

Appendix D Deprecated and Obsolete Features

D.1 Deprecated featUreSoccueiiiiiiiiiiieee e AppxD-2
D.2 Deprecated terminologycoocueeieeiiiiiieee e AppxD-5
D.3 ODbsolete fEAUIEScoviveieiiiie e

D.4 Semaphore instructions

D.5 Use of the SP as a general-purpose registercccccceeevveennne AppxD-8
D.6 Explicit use of the PC in ARM iNStrucCtionsccccevvveeeninieenne AppxD-9
D.7 Deprecated Thumb iNStIUCLIONScoociveiiieiiiiiiee e AppxD-10

Appendix E Fast Context Switch Extension (FCSE)
E.l ADOUL the FCSE ..o
E.2 Modified virtual addresses
E.3 Debug and tracCecooouiiiieiiiiiie et

Appendix F VFP Vector Operation Support
F.1 About VFP VECIOr MOEcooiiiiiiiiiiiiiieiee e
F.2 Vector length and stride control
F.3 VFP register banksccccocveinneen.
F.4 VFP instruction type Selectioncccceevvieeiiiieiiiee s

Appendix G ARMv6 Differences

G.1 INtroduction t0 ARMVGccoiiiiiiieiiiiieee e AppxG-2
G.2 Application level register SUPPOItccceeeeiiiiiieeeiiiieee e AppxG-3
G.3 Application level memory SUppOrtccceeevviiieiieiiiiieiee e AppxG-6
G.4 Instruction set supportcccceeeee. AppxG-10
G.5 System level register support AppxG-16
G.6 System level memory model AppxG-20
G.7 System Control coprocessor (CP15) SUPPOItccccvvveeerineenne AppxG-29
Appendix H ARMv4 and ARMv5 Differences
H.1 Introduction to ARMv4 and ARMVSccooviiiieiiniiieee e, AppxH-2
H.2 Application level register SUPPOItcccveeeeeiiiiiiieeiiie e AppxH-4
H.3 Application level memory SUppOrtcccoovviiiieeiiiiiiieee e AppxH-6
H.4 Instruction set sUppoOrtccceeeveeennn. AppxH-11
H.5 System level register SUPPOITccceveiriieeiiiieiiieee e AppxH-18
H.6 System level memory modelcccocveeiiiiiiiiiiiiiie e, AppxH-21
H.7 System Control coprocessor (CP15) SUPPOItcccccvcvveeriineenns AppxH-31
Appendix | Pseudocode Definition

1.1 Instruction encoding diagrams and pseudocodec.ccccc.e.. AppxI-2
1.2 Limitations of pseudocode

1.3 Data tYPES oieiiieieiiei e

1.4 EXPreSSIONS ...eeiiiiiiiiiiie ettt AppxI-9
1.5 Operators and built-in functions AppxI-11
1.6 Statements and program structure AppxI-17
1.7 Miscellaneous helper procedures and functions Appxl-22

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. Xi

Contents

Appendix J Pseudocode Index
J.1 Pseudocode operators and KeywWordsccccceeeeieeeeeeeiiieeenn. AppxJ-2
J.2 Pseudocode functions and proceduresccceeeeeiiieeeeennnnn. AppxJ-6

Appendix K Register Index
K.1 REQISEr INAEX .o AppxK-2

Glossary

Xii Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Preface

This preface summarizes the contents of this manual and lists the conventions it uses. It contains the
following sections:

. About this manual on page xiv
. Using this manual on page xv
. Conventions on page xviii

. Further reading on page xx

. Feedback on page xxi.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. Xiii

Preface

About this manual

This manual describes the ARM®Vv7 instruction set architecture, including its high code density Thumb®
instruction encoding and the following extensionsto it:

. The System Control coprocessor, coprocessor 15 (CP15), used to control memory system
components such as caches, write buffers, Memory Management Units, and Protection Units.

. The optional Advanced SIMD extension, that provides high-performance integer and
single-precision floating-point vector operations.

. The optional VFP extension, that provides high-performance floating-point operations. It can
optionally support double-precision operations.

. The Debug architecture, that provides software access to debug featuresin ARM processors.

Part A describes the application level view of the architecture. It describes the application level view of the
programmers’ model and the memory model. It al so describesthe precise effects of each instructionin User
mode (the normal operating mode), including any restrictions on its use. Thisinformation is of primary
importance to authors and users of compilers, assemblers, and other programsthat generate ARM machine
code.

Part B describes the system level view of the architecture. It gives details of system registers that are not
accessible from User mode, and the system level view of the memory model. It also gives full details of the
effects of instructionsin privileged modes (any mode other than User mode), where these are different from
their effectsin User mode.

Part C describes the Debug architecture. Thisis an extension to the ARM architecture that provides
configuration, breakpoint and watchpoint support, and aDebug Communications Channel (DCC) to adebug
host.

Assembler syntax is given for the instructions described in this manual, permitting instructions to be
specified in textual form. However, this manual is not intended as tutorial material for ARM assembler
language, nor doesit describe ARM assembler language at anything other than avery basic level. To make
effective use of ARM assembler language, consult the documentation supplied with the assembler being
used.

Xiv Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Preface

Using this manual

The information in this manual is organized into four parts, as described below.

Part A, Application Level Architecture

Part A describes the application level view of the architecture. It contains the following chapters:

Chapter A1
Chapter A2

Chapter A3

Chapter A4

Chapter A5

Chapter A6

Chapter A7
Chapter A8

Chapter A9

Gives a brief overview of the ARM architecture, and the ARM and Thumb instruction sets.

Describes the application level view of the ARM programmers’ model, including the
application level view of the Advanced SIMD and V FP extensions. It describes the types of
vaue that ARM instructions operate on, the general-purpose registers that contain those
values, and the Application Program Status Register.

Describes the application level view of the memory model, including the ARM memory
types and attributes, and memory access control.

Describes the range of instructions available in the ARM, Thumb, Advanced SIMD, and
VFP instruction sets. It also contains some details of instruction operation, where these are
common to several instructions.

Gives details of the encoding of the ARM instruction set.
Gives details of the encoding of the Thumb instruction set.
Gives details of the encoding of the Advanced SIMD and VFP instruction sets.

Provides detailed reference information about every instruction available in the Thumb,
ARM, Advanced SIMD, and VFP instruction sets, with the exception of information only
relevant in privileged modes.

Provides detailed reference information about the ThumbEE (Execution Environment)
variant of the Thumb instruction set.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. XV

Preface

Part B, System Level Architecture

Part B describes the system level view of the architecture. It contains the following chapters:

Chapter B1
Chapter B2

Chapter B3

Chapter B4

Chapter B5
Chapter B6

Describes the system level view of the programmers' model.

Describes the system level view of the memory model features that are common to al
memory systems.

Describes the system level view of the Virtual Memory System Architecture (VMSA) that
ispart of al ARMVv7-A implementations. This chapter includes descriptions of all of the
CP15 System Control Coprocessor registersin aVMSA implementation.

Describesthe system level view of the Protected Memory System Architecture (PMSA) that
ispart of al ARMv7-R implementations. This chapter includes descriptions of al of the
CP15 System Control Coprocessor registersin a PMSA implementation.

Describes the CPUID scheme.

Provides detailed reference information about system instructions, and more information
about instructions where they behave differently in privileged modes.

Part C, Debug Architecture

Part C describes the Debug architecture. It contains the following chapters:

Chapter C1
Chapter C2
Chapter C3
Chapter C4
Chapter C5
Chapter C6
Chapter C7
Chapter C8
Chapter C9

Gives a brief introduction to the Debug architecture.
Describes the authentication of invasive debug.
Describes the debug events.

Describes the debug exceptions.

Describes Debug state.

Describes the permitted debug register interfaces.
Describes the authentication of non-invasive debug.
Describes sample-based profiling.

Describes the ARM performance monitors.

Chapter C10 Describes the debug registers.

XVi Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Part D, Appendices

Preface

This manual contains the following appendices:

Appendix A

Appendix B

Appendix C
Appendix D
Appendix E

Appendix F
Appendix G
Appendix H
Appendix |

Appendix J
Appendix K

Describes the recommended external Debug interfaces.

Note

This description is not part of the ARM architecture specification. It isincluded here only
as supplementary information, for the convenience of developers and users who might
require this information.

The Common V FP subarchitecture specification.

—— Note

This specification is not part of the ARM architecture specification. This sub-architectural
information isincluded here only as supplementary information, for the convenience of
devel opers and users who might require this information.

Describes the legacy mnemonics.
I dentifies the deprecated architectural features.

Describesthe Fast Context Switch Extension (FCSE). From ARMV6, the use of this feature
is deprecated, and in ARMv7 the FCSE is optional.

Describes the VFP vector operations. Use of these operations is deprecated in ARMV7.
Describes the differences in the ARMV6 architecture.

Describes the differences in the ARMv4 and ARMV5 architectures.

The formal definition of the pseudocode.

Index to definitions of pseudocode operators, keywords, functions, and procedures.

Index to register descriptions in the manual.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. XVii

Preface

Conventions

This manua employs typographic and other conventions intended to improve its ease of use.

General typographic conventions

typewriter Isused for assembler syntax descriptions, pseudocode descriptions of instructions,
and source code examples. In the cases of assembler syntax descriptions and
pseudocode descriptions, see the additional conventions below.

The typewriter styleisalso used in the main text for instruction mnemonicsand for
references to other items appearing in assembler syntax descriptions, pseudocode
descriptions of instructions and source code examples.

italic Highlights important notes, introduces specia terminology, and denotes internal
cross-references and citations.

bold Isused for emphasis in descriptive lists and el sewhere, where appropriate.

SMALL CAPITALS Are used for afew termsthat have specific technical meanings. Their meanings can
be found in the Glossary.

Signals
In general this specification does not define processor signals, but it doesinclude some signal examplesand
recommendations. It uses the following signal conventions:
Signal level The level of an asserted signal depends on whether the signal is active-HIGH or
active-L OW. Asserted means:
. HIGH for active-HIGH signals
. LOW for active-LOW signals.
Lower-casen At the start or end of asignal name denotes an active-L OW signal.
Numbers
Numbers are normally written in decimal. Binary numbers are preceded by Ob, and hexadecimal numbers
by ox and written in a typewriter font.
Bit values

Values of bits and hitfields are normally given in binary, in single quotes. The quotes are normally omitted
in encoding diagrams and tables.
Pseudocode descriptions

This manual uses aform of pseudocode to provide precise descriptions of the specified functionality. This
pseudocode iswritten in a typewriter font, and is described in Appendix | Pseudocode Definition.

Xviii Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Preface

Assembler syntax descriptions

This manual contains numerous syntax descriptions for assembler instructions and for components of
assembler instructions. These are shown in a typewriter font, and use the conventions described in
Assembler syntax on page A8-4.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. XiX

Preface

Further reading

This section lists publications from both ARM and third partiesthat provide more information on the ARM
family of processors.

ARM periodically provides updates and corrections to its documentation. See http://www.arm.com for
current errata sheets and addenda, and the ARM Freguently Asked Questions.

ARM publications

. ARM Debug Interface v5 Architecture Specification (ARM IHI 0031)
. ARMV7-M Architecture Reference Manual (ARM DDI 0403)

. CoreSight Architecture Specification (ARM IHI 0029)

. ARM Architecture Reference Manual (ARM DDI 0100I)

Note
— Issuel of the ARM Architecture Reference Manual (DDI 01001) was issued in July 2005 and
describes the first version of the ARMV6 architecture, and al previous architecture versions.
— Addison-Wesley Professional publish ARM Architecture Reference Manual, Second Edition
(December 27, 2000). The contents of this areidentical to Issue E of the ARM Architecture
Reference Manual (DDI 0100E). It describes ARMV5TE and earlier versions of the ARM
architecture, and is superseded by DDI 01001.

. Embedded Trace Macrocell Architecture Specification (ARM IHI 0014)
. CoreSght Program Flow Trace Architecture Specification (ARM [HI 0035).

External publications

The following books are referred to in this manual, or provide more information:

. IEEE Std 1596.5-1993, IEEE Sandard for Shared-Data Formats Optimized for Scalable Coherent
Interface (SCI) Processors, ISBN 1-55937-354-7

. IEEE Std 1149.1-2001, |IEEE Standard Test Access Port and Boundary Scan Architecture (JTAG)
. ANSI/IEEE Std 754-1985, IEEE Sandard for Binary Floating-Point Arithmetic
. JEP106, Standard Manufacturers Identification Code, JEDEC Solid State Technology Association

. The Java Virtual Machine Specification Second Edition, Tim Lindholm and Frank Yellin, published
by Addison Wesley (ISBN: 0-201-43294-3)

. Memory Consistency Models for Shared Memory-Multiprocessors, Kourosh Gharachorloo, Stanford
University Technical Report CSL-TR-95-685

XX

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Preface

Feedback

ARM welcomes feedback on its documentation.

Feedback on this manual

If you notice any errors or omissionsin this manual, send e-mail to errata@arm.com giving:

. the document title

. the document number

. the page number(s) to which your comments apply
. a concise explanation of the problem.

General suggestions for additions and improvements are also welcome.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. XXi

Preface

xXii Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Part A

Application Level Architecture

Chapter Al
Introduction to the ARM Architecture

This chapter introduces the ARM architecture and contains the following sections:
. About the ARM architecture on page A1-2

. The ARM and Thumb instruction sets on page A1-3

. Architecture versions, profiles, and variants on page A1-4

. Architecture extensions on page A1-6

. The ARM memory model on page A1-7

. Debug on page A1-8.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

Introduction to the ARM Architecture

Al.1 About the ARM architecture
The ARM architecture supports implementations across a wide range of performance points. It is
established as the dominant architecture in many market segments. The architectural simplicity of ARM
processorsleadsto very small implementations, and small implementations mean devices can have very low
power consumption. Implementation size, performance, and very low power consumption are key attributes
of the ARM architecture.
The ARM architecture is a Reduced Instruction Set Computer (RISC) architecture, asit incorporates these
typical RISC architecture features:
. alarge uniform register file
. aload/store architecture, where data-processing operations only operate on register contents, not

directly on memory contents
. simple addressing modes, with all load/store addresses being determined from register contents and
instruction fields only.

In addition, the ARM architecture provides:
. instructions that combine a shift with an arithmetic or logical operation
. auto-increment and auto-decrement addressing modes to optimize program loops
. Load and Store Multiple instructions to maximize data throughput
. conditional execution of almost all instructions to maximize execution throughput.
These enhancementsto abasic RISC architecture enable ARM processorsto achieve agood balance of high
performance, small code size, low power consumption, and small silicon area.
Except where the architecture specifies differently, the programmer-visible behavior of an implementation
must be the same as a simple sequentia execution of the program. This programmer-visible behavior does
not include the execution time of the program.

Al-2 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Introduction to the ARM Architecture

Al.2 The ARM and Thumb instruction sets

The ARM instruction set isaset of 32-bit instructions providing comprehensive data-processing and control
functions.

The Thumb instruction set was devel oped as a 16-bit instruction set with a subset of the functionality of the
ARM instruction set. It provides significantly improved code density, at a cost of some reduction in
performance. A processor executing Thumb instructions can change to executing ARM instructions for
performance critical segments, in particular for handling interrupts.

In ARMV6T2, Thumb-2 technology isintroduced. Thistechnology makesit possible to extend the original
Thumb instruction set with many 32-hit instructions. The range of 32-bit Thumb instructions included in
ARMVET2 permits Thumb codeto achieve performance similar to ARM code, with code density better than
that of earlier Thumb code.

From ARMv6T2, the ARM and Thumb instruction sets provide amost identical functionality. For more
information, see Chapter A4 The Instruction Sets.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. Al-3

Introduction to the ARM Architecture

A1.3 Architecture versions, profiles, and variants

The ARM and Thumb instruction set architectures have evolved significantly since they were first

developed. They will continueto be devel oped in the future. Seven major versions of theinstruction set have

been defined to date, denoted by the version numbers 1 to 7. Of these, the first three versions are now
obsolete.

ARMV7 provides three profiles:

ARMVT7-A Application profile, described in this manual. Implements atraditional ARM architecture
with multiple modes and supporting a Virtual Memory System Architecture (VM SA) based
on an MMU. Supportsthe ARM and Thumb instruction sets.

ARMV7-R Real-timeprofile, described in thismanual . Implementsatraditional ARM architecturewith
multiple modes and supporting a Protected Memory System Architecture (PM SA) based on
an MPU. Supports the ARM and Thumb instruction sets.

ARMV7-M Microcontroller profile, described in the ARMv7-M Architecture Reference Manual.
Implements a programmers model designed for fast interrupt processing, with hardware
stacking of registers and support for writing interrupt handlersin high-level languages.
Implementsavariant of the ARMv7 PM SA and supportsavariant of the Thumb instruction
Set.

Versions can be qualified with variant letters to specify additional instructions and other functionality that

areincluded as an architecture extension. Extensions are typically included in the base architecture of the

next version number. Provision is also made to exclude variants by prefixing the variant letter with x.

Some extensions are described separately instead of using avariant | etter. For details of these extensions see

Architecture extensions on page A1-6.

Thevalid variants of ARMv4, ARMV5, and ARMv6 are as follows:

ARMv4 The earliest architecture variant covered by this manual. It includes only the ARM
instruction set.

ARMvVAT Adds the Thumb instruction set.

ARMV5T Improvesinterworking of ARM and Thumb instructions. Adds count leading zeros (CLZ)
and software breakpoint (BKPT) instructions.

ARMVSTE Enhances arithmetic support for digital signal processing (DSP) agorithms. Adds preload
data (PLD), dual word load (LDRD), store (STRD), and 64-bit coprocessor register transfers
(MCRR, MRRC).

ARMVS5TEJ Addsthe BX] instruction and other support for the Jazelle® architecture extension.

ARMV6 Addsmany new instructionsto the ARM instruction set. Formalizes and revisesthe memory
model and the Debug architecture.

ARMV6K Adds instructions to support multi-processing to the ARM instruction set, and some extra
memory model features.

Al-4 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Introduction to the ARM Architecture

ARMV6T2 Introduces Thumb-2 technology, giving amajor development of the Thumb instruction set
to provide asimilar level of functionality to the ARM instruction set.

Note

ARMV6KZ or ARMV6Z are sometimes used to describe the ARMV6K architecture with the optional
Security Extensions.

For detailed information about versions of the ARM architecture, see Appendix G ARMv6 Differences and
Appendix H ARMv4 and ARMV5 Differences.

The following architecture variants are now obsolete:

ARMv1, ARMV2, ARMv2a ARMvV3, ARMV3G, ARMV3M, ARMV4xM, ARMv4TxM, ARMV5,
ARMvV5xM, ARMV5TxM, and ARMV5TEXP.

Contact ARM if you require details of obsolete variants.

Instruction descriptions in this manual specify the architecture versions that support them.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. Al-5

Introduction to the ARM Architecture

Al.4

Architecture extensions

This manual describes the following extensions to the ARM and Thumb instruction set architectures:

ThumbEE

VFP

Advanced SIMD

Security Extensions

Jazelle

Isavariant of the Thumb instruction set that is designed as atarget for dynamically
generated code. It is:

. arequired extension to the ARMv7-A profile
. an optional extension to the ARMV7-R profile.

Is afloating-point coprocessor extension to the instruction set architectures. There
have been three main versions of VFP to date:

. VFPv1lisobsolete. Details are available on request from ARM.
. VFPv2 is an optional extension to:

— the ARM instruction setinthe ARMV5TE, ARMV5TEJ, ARMvV6, and
ARMVvV6K architectures

— the ARM and Thumb instruction sets in the ARMVET2 architecture.

. VFPv3isan optional extension to the ARM, Thumb and ThumbEE
instruction setsin the ARMv7-A and ARMV7-R profiles.

VFPv3 can be implemented with either thirty-two or sixteen doubleword
registers, as described in Advanced SMD and VFP extension registers on
page A2-21. Where necessary, the terms VFPv3-D32 and VFPv3-D16 are
used to distinguish between these two implementation options. Where the
term VFPv3isused it covers both options.

VFPv3 can be extended by the half-precision extensions that provide
conversion functionsin both directions between hal f-precision floating-point
and single-precision floating-point.

Isan instruction set extension that provides Sngle Instruction Multiple Data
(SIMD) functionality. It is an optional extension to the ARMv7-A and ARMV7-R
profiles. When VVFPv3 and Advanced SIMD are both implemented, they use a
shared register bank and have some shared instructions.

Advanced SIMD can be extended by the half-precision extensions that provide
conversion functionsin both directions between half-precision floating-point and
single-precision floating-point.

Are aset of security featuresthat facilitate the development of secure applications.
They are an optional extension to the ARMv6K architecture and the ARMvV7-A
profile.

Is the Java bytecode execution extension that extended ARMV5TE to ARMV5TE.
From ARMV6 Jazelleis arequired part of the architecture, but is still often
described as the Jazelle extension.

Multiprocessing Extensions

Areaset of features that enhance multiprocessing functionality. They are an
optional extension to the ARMv7-A and ARMV7-R profiles.

Al-6

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Introduction to the ARM Architecture

Al15 The ARM memory model

The ARM architecture usesasingle, flat address space of 232 8-bit bytes. The address spaceisalso regarded
as 230 32-bit words or 231 16-bit halfwords.

The architecture provides facilities for:

faulting unaligned memory accesses

restricting access by applications to specified areas of memory

trandating virtual addresses provided by executing instructions into physical addresses
altering the interpretation of word and halfword data between big-endian and little-endian
optionally preventing out-of-order access to memory

controlling caches

synchronizing access to shared memory by multiple processors.

For more information, see:

.

Chapter A3 Application Level Memory Model

Chapter B2 Common Memory System Architecture Features
Chapter B3 Virtual Memory System Architecture (VMSA)
Chapter B4 Protected Memory System Architecture (PMSA).

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. Al-7

Introduction to the ARM Architecture

Al1.6 Debug
ARMV7 processors implement two types of debug support:

Invasive debug Debug permitting modification of the state of the processor. Thisisintended
primarily for run-control debugging.

Non-invasivedebug Debug permitting data and program flow observation, without modifying the state
of the processor or interrupting the flow of execution.

This providesfor:

. instruction and data tracing
. program counter sampling
. performance monitors.

For more information, see Chapter C1 Introduction to the ARM Debug Architecture.

Al1-8 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Chapter A2

Application Level Programmers’ Model

This chapter gives an application level view of the ARM programmers’ model. It contains the following
sections:

.

.

About the Application level programmers’ model on page A2-2
ARM core data types and arithmetic on page A2-3

ARM coreregisters on page A2-11

The Application Program Status Register (APSR) on page A2-14
Execution state registers on page A2-15

Advanced SMD and VFP extensions on page A2-20
Floating-point data types and arithmetic on page A2-32
Polynomial arithmetic over {0,1} on page A2-67

Coprocessor support on page A2-68

Execution environment support on page A2-69

Exceptions, debug events and checks on page A2-81.

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

A2-1

Application Level Programmers’ Model

A2.1

About the Application level programmers’ model
This chapter contains the programmers’ model information required for application development.

The information in this chapter is distinct from the system information required to service and support
application execution under an operating system. However, some knowledge of that system information is
needed to put the Application level programmers model into context.

System level support requires access to all features and facilities of the architecture, a mode of operation
referred to as privileged operation. System code determines whether an application runsin a privileged or
unprivileged manner. When an operating system supports both privileged and unprivileged operation, an
application usually runs unprivileged. This:

. permits the operating system to allocate system resourcesto it in aunique or shared manner

. provides a degree of protection from other processes and tasks, and so helps protect the operating
system from malfunctioning applications.

This chapter indicates where some system level understanding is helpful, and where appropriate it:
. gives an overview of the system level information

. gives references to the system level descriptionsin Chapter B1 The System Level Programmers’
Model and elsewhere.

The Security Extensions extend the architecture to provide hardware security features that support the
development of secure applications. For more information, see The Security Extensions on page B1-25.

A2-2

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

A2.2

Application Level Programmers’ Model

ARM core data types and arithmetic

All ARMV7-A and ARMV7-R processors support the following data types in memory:

Byte 8 hits
Halfword 16 bits
Word 32 hits

Doubleword 64 bits.

Processor registersare 32 bitsin size. Theinstruction set containsinstructions supporting the following data
types held in registers:

. 32-bit pointers

. unsigned or signed 32-bit integers

. unsigned 16-bit or 8-bit integers, held in zero-extended form

. signed 16-hit or 8-hit integers, held in sign-extended form

. two 16-bit integers packed into a register

. four 8-bit integers packed into a register

. unsigned or signed 64-bit integers held in two registers.

Load and store operations can transfer bytes, halfwords, or words to and from memory. Loads of bytes or
halfwords zero-extend or sign-extend the data asit isloaded, as specified in the appropriate |oad instruction.

Theinstruction setsinclude load and store operations that transfer two or more words to and from memory.
You can load and store doubl aNords usi ng these |nstruct|0ns The exclusive doubleword-load/stere

When any of the data types is described as unsigned, the N-bit data val ue represents a non-negative integer
in therange 0 to 2N-1, using normal binary format.

When any of these typesis described as signed, the N-bit data val ue represents an integer in the range -2N-1
to +2N-1-1, using two's complement format.

The instructions that operate on packed halfwords or bytes include some multiply instructions that use just
one of two halfwords, and Single Instruction Multiple Data (SIMD) instructions that operate on al of the
halfwords or bytesin parallel.

Direct instruction support for 64-bit integersislimited, and most 64-bit operations reguire sequences of two
or more instructions to synthesize them.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-3

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Sticky Note
This information about atomicity is incomplete and does not really belong in this section. See, instead, section A3.5.3 Atomicity in the ARM architecture, A3-26 [PDF page 140].

Application Level Programmers’ Model

A2.2.1 Integer arithmetic

Theinstruction set provides awide variety of operations on the valuesin registers, including bitwise logical
operations, shifts, additions, subtractions, multiplications, and many others. These operations are defined
using the pseudocode described in Appendix | Pseudocode Definition, usually in one of three ways:

. By direct use of the pseudocode operators and built-in functions defined in Operators and built-in
functions on page AppxI-11.

. By use of pseudocode helper functions defined in the main text. These can be located using the table
in Appendix J Pseudocode Index.

. By a sequence of the form:

1 Use of the SInt(), UInt(), and Int() built-in functions defined in Converting bitstrings to
integers on page Appx|-14 to convert the bitstring contents of the instruction operands to the
unbounded integers that they represent as two's complement or unsigned integers.

2. Use of mathematical operators, built-in functions and hel per functions on those unbounded
integers to calculate other such integers.

3. Useof either the bitstring extraction operator defined in Bitstring extraction on page AppxI-12
or of the saturation helper functions described in Pseudocode details of saturation on
page A2-9 to convert an unbounded integer result into a bitstring result that can be written to
aregister.

A2-4 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Programmers’ Model

Shift and rotate operations
The following types of shift and rotate operations are used in instructions:

Logical Shift Left

(LSL) moves each bit of a bitstring left by a specified number of bits. Zeros are shifted in at
the right end of the bitstring. Bits that are shifted off the left end of the bitstring are
discarded, except that the last such bit can be produced as a carry output.

Logical Shift Right

(LSR) moves each bit of abitstring right by a specified number of bits. Zeros are shifted in
at the left end of the bitstring. Bits that are shifted off the right end of the bitstring are
discarded, except that the last such bit can be produced as a carry output.

Arithmetic Shift Right

(ASR) moves each bit of abitstring right by aspecified number of bits. Copies of the |eftmost
bit are shifted in at the left end of the bitstring. Bits that are shifted off the right end of the
bitstring are discarded, except that the last such bit can be produced as a carry output.

Rotate Right (ROR) moves each hit of abitstring right by a specified number of bits. Each bit that is shifted
off the right end of the bitstring is re-introduced at the left end. The last bit shifted off the
right end of the bitstring can be produced as a carry output.

Rotate Right with Extend

(RRX) moves each hit of abitstring right by one bit. The carry input is shifted in at the left
end of the bitstring. The bit shifted off the right end of the bitstring can be produced as a
carry output.

Pseudocode details of shift and rotate operations
These shift and rotate operations are supported in pseudocode by the following functions:

// LSL_C()

(bits(N), bit) LSL_C(bits(N) x, integer shift)
assert shift > 0;
extended_x = x : Zeros(shift);
result = extended_x<N-1:0>;
carry_out = extended_x<N>;
return (result, carry_out);

bits(N) LSL(bits(N) x, integer shift)
assert shift >= 0;
if shift == 0 then
result = x;
else

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-5

Application Level Programmers’ Model

(result, -) = LSL_C(x, shift);
return result;

// LSR_C()
J/p—

(bits(N), bit) LSR_C(bits(N) x, integer shift)
assert shift > 0;
extended_x = ZeroExtend(x, shift+N);
result = extended_x<shift+N-1:shift>;
carry_out = extended_x<shift-1>;
return (result, carry_out);

bits(N) LSR(bits(N) x, integer shift)
assert shift >= 0;
if shift == @ then
result = x;
else
(result, -) = LSR_C(x, shift);
return result;

// ASR_CQ)
/] =======

(bits(N), bit) ASR_C(bits(N) x, integer shift)
assert shift > 0;
extended_x = SignExtend(x, shift+N);
result = extended_x<shift+N-1:shift>;
carry_out = extended_x<shift-1>;
return (result, carry_out);

bits(N) ASR(bits(N) x, integer shift)
assert shift >= 0;
if shift == 0 then
result = x;
else
(result, -) = ASR_C(x, shift);
return result;

// ROR_C()
J/—

(bits(N), bit) ROR_C(bits(N) x, integer shift)
assert shift != 0;
m = shift MOD N;
result = LSR(x,m) OR LSL(x,N-m);
carry_out = result<N-1>;
return (result, carry_out);

A2-6

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

ARM DDI 0406B

Application Level Programmers’ Model

bits(N) ROR(bits(N) x, integer shift)
if n == 0 then
result = x;
else
(result, -) = ROR_C(x, shift);
return result;

// RRX_C()

(bits(N), bit) RRX_C(bits(N) x, bit carry_in)
result = carry_in : x<N-1:1>;
carry_out = x<0>;
return (result, carry_out);

) X, bit carry_in)
RRX_C(x, shify);

(result, -)

bits(N) RRX(bits(N
return result;

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-7

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
carry_in

Application Level Programmers’ Model

Pseudocode details of addition and subtraction

In pseudocode, addition and subtraction can be performed on any combination of unbounded integers and
bitstrings, provided that if they are performed on two bitstrings, the bitstrings must be identical in length.
Theresult isanother unbounded integer if both operands are unbounded integers, and abitstring of the same
length asthe bitstring operand(s) otherwise. For the precise definition of these operations, see Addition and
subtraction on page Appx|-15.

The main addition and subtraction instructions can produce status information about both unsigned carry
and signed overflow conditions. This statusinformation can be used to synthesize multi-word additions and
subtractions. In pseudocode the AddwithCarry () function provides an addition with a carry input and carry
and overflow outputs:

// AddWithCarry()

(bits(N), bit, bit) AddwWithCarry(bits(N) x, bits(N) y, bit carry_in)
unsigned_sum = UInt(x) + UInt(y) + UInt(carry_in);

signed_sum = SInt(x) + SInt(y) + UInt(carry_in);
result = unsigned_sum<N-1:0>; // == signed_sum<N-1:0>
carry_out = if UInt(result) == unsigned_sum then ‘@’ else ‘1’;

overflow = if SInt(result) == signed_sum then ‘0’ else ‘1’;
return (result, carry_out, overflow);

An important property of the AddwithCarry() function isthat if:

(result, carry_out, overflow) = AddwithCarry(x, NOT(y), carry_in)

then:
. if carry_in == '1', then result == x-y with:

— overflow == '1" if signed overflow occurred during the subtraction

— carry_out == '1'" if unsigned borrow did not occur during the subtraction, that is, if x >= y
. if carry_in == '0', then result == x-y-1 with:

— overflow == '1'" if signed overflow occurred during the subtraction

— carry_out == '1" if unsigned borrow did not occur during the subtraction, that is, if x > y.

Together, these mean that the carry_in and carry_out bitsin AddwithCarry() calls can act as NOT borrow
flags for subtractions as well as carry flags for additions.

A2-8

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Programmers’ Model

Pseudocode details of saturation

Some instructions perform saturating arithmetic, that is, if the result of the arithmetic overflows the
destination signed or unsigned N-bit integer range, the result produced isthe largest or smallest valuein that
range, rather than wrapping around modulo 2N. Thisis supported in pseudocode by the SignedSatQ() and
UnsignedSatQ() functions when aboolean result is wanted saying whether saturation occurred, and by the
SignedSat() and UnsignedSat() functions when only the saturated result is wanted:

// SignedSatQ()
[/ ———

(bits(N), boolean) SignedSatQ(integer i, integer N)

if i > 2A(N-1) - 1 then

result = 2A(N-1) - 1; saturated = TRUE;
elsif i < -(2A(N-1)) then

result = -(2A(N-1)); saturated = TRUE;
else

result = i; saturated = FALSE;
return (result<N-1:0>, saturated);

// UnsignedSatQ()
/] =mmmm=mmmmees

(bits(N), boolean) UnsignedSatQ(integer i, integer N)
if i > 2AN - 1 then
result = 2AN - 1; saturated = TRUE;
elsif i < 0 then
result = 0; saturated = TRUE;
else
result = i; saturated = FALSE;
return (result<N-1:0>, saturated);

// SignedSat()
/] =mmmmm===s

bits(N) SignedSat(integer i, integer N)
(result, -) = SignedSatQ(i, N);
return result;

// UnsignedSat()
/] ==m=m=mmmmees

bits(N) UnsignedSat(integer i, integer N)
(result, -) = UnsignedSatQ(i, N);
return result;

SatQ(i, N, unsigned) returns either UnsignedSatQ(i,N) or SignedSatQ(i, N) depending on the value of its
third argument, and Sat (i, N, unsigned) returnseither UnsignedSat(i, N) or SignedSat(i, N) dependingon
the value of its third argument:

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-9

Application Level Programmers’ Model

// SatQ()
/] ======

(bits(N), boolean) SatQ(integer i, integer N, boolean unsigned)
(result, sat) = if unsigned then UnsignedSatQ(i, N) else SignedSatQ(i, N);
return (result, sat);

bits(N) Sat(integer i, integer N, boolean unsigned)
result = if unsigned then UnsignedSat(i, N) else SignedSat(i, N);
return result;

A2-10 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

A2.3

Application Level Programmers’ Model

ARM core registers

In the application level view, an ARM processor has:
. thirteen general-purposg32-bit registers, RO to R12

. three 32-bit registers, R13 to R15, that sometimes or always have a specia use.

Registers R13 to R15 are usually referred to by names that indicate their special uses:

SP, the Stack Pointer
Register R13 is used as a pointer to the active stack.

In Thumb code, most instructions cannot access SP. The only instructions that can access

SP are those designed to use SP as a stack pointer.

The use of SP for any purpose other than as a stack pointer is deprecated.

—— Note

Using SPfor any purpose other than as astack pointer islikely to break the requirements of
operating systems, debuggers, and other software systems, causing them to malfunction.

LR, theLink Register

Register R14 is used to store the return address from a subroutine. At other times, LR can

be used for other purposes.

When aBL or BLX instruction performs a subroutine call, LR is set to the subroutine return
address. To perform a subroutine return, copy LR back to the program counter. Thisis
typically donein one of two ways, after entering the subroutine with aBL or BLX instruction:

. Return with aBX LR instruction.

. On subroutine entry, store LR to the stack with an instruction of the form:

PUSH {<registers>,LR}
and use a matching instruction to return:
POP {<registers>,PC}

ThumbEE checks and handler callsuse LR in asimilar way. For details see Chapter A9

ThumbEE.

PC, the Program Counter
Register R15 is the program counter:

. When executing an ARM instruction, PC reads as the address of the current

instruction plus 8.

. When executing a Thumb instruction, PC reads as the address of the current

instruction plus 4.
. Writing an address to PC causes a branch to that address.
In Thumb code, most instructions cannot access PC.

See ARM core registers on page B1-9 for the system level view of SP, LR, and PC.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

A2-11

ARM_2009_Q3
Inserted Text

Application Level Programmers’ Model

Note

The names SP, LR and PC are preferred to R13, R14 and R15. However, sometimesit is simpler to use the
R13-R15 nameswhen referring to agroup of registers. For example, it issimpler to refer to Registers R8 to
R15, rather than to Registers R8 to R12, the SP, LR and PC. However these two descriptions of the group of
registers have exactly the same meaning.

A2.3.1 Pseudocode details of operations on ARM core registers
In pseudocode, theR[] function is used to:
. Read or write RO-R12, SP, and LR, using n == 0-12, 13, and 14 respectively.
. Read the PC, using n == 15.
This function has prototypes:
bits(32) R[integer n]
assert n >= 0 & n <= 15;
R[integer n] = bits(32) value
assert n >= 0 && n <= 14;
The full operation of this function is explained in Pseudocode details of ARM core register operations on
page B1-12.
Descriptions of ARM storeinstructionsthat store the PC value use the PCStorevalue() pseudocode function
to specify the PC value stored by the instruction:
// PCStoreValue()
Y ——
bits(32) PCStoreValue()
// This function returns the PC value. On architecture versions before ARMv7, it
// is permitted to instead return PC+4, provided it does so consistently. It is
// used only to describe ARM instructions, so it returns the address of the current
// instruction plus 8 (normally) or 12 (when the alternative is permitted).
return PC;
Writing an address to the PC causes either a simple branch to that address or an interworking branch that
a so selects the instruction set to execute after the branch. A simple branch is performed by the
BranchWritePC() function:
// BranchWritePC()
Y —
BranchWritePC(bits(32) address)
if CurrentInstrSet() == InstrSet_ARM then
if ArchVersion() < 6 && address<1:0> != ‘00’ then UNPREDICTABLE;
BranchTo(address<31:2>:'00");
else
BranchTo(address<31:1>:70’);
An interworking branch is performed by the BXwritePC() function:
A2-12 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Replacement Text
// BranchWritePC()
// ===============

BranchWritePC(bits(32) address)
 if CurrentInstrSet() == InstrSet_ARM then
 if ArchVersion() < 6 && address<1:0> != '00' then UNPREDICTABLE;
 BranchTo(address<31:2>:'00');
 elsif CurrentInstrSet() == InstrSet_Jazelle then
 if JazelleAcceptsExecute() then
 BranchTo(address<31:0>);
 else
 newaddress = address;
 newaddress<1:0> = UNKNOWN;
 BranchTo(newaddress);
 else
 BranchTo(address<31:1>:'0');

Application Level Programmers’ Model

// BXWritePC()
T

BXWritePC(bits(32) address)
if CurrentInstrSet() == InstrSet_ThumbEE then
if address<0> == ‘1’ then
BranchTo(address<31:1>:'0"); // Remaining in ThumbEE state
else
UNPREDICTABLE;
else
if address<@0> == ‘1’ then
SelectInstrSet(InstrSet_Thumb);
BranchTo(address<31:1>:’0’);
elsif address<l> == ‘@’ then
SelectInstrSet(InstrSet_ARM);
BranchTo(address);
else // address<1:0> == ‘10’
UNPREDICTABLE;

The LoadwritePC() and ALUWritePC() functionsare used for two cases where the behavior was systematically
modified between architecture versions:

// LoadWritePC()
/] ======m======

LoadWritePC(bits(32) address)
if ArchVersion() >= 5 then
BXWritePC(address);
else
BranchWritePC(address);

// ALUWritePC()
[

ALUWritePC(bits(32) address)
if ArchVersion() >= 7 && CurrentInstrSet() == InstrSet_ARM then
BXWritePC(address);
else
BranchWritePC(address);

Note

The behavior of the PC writes performed by the ALUWritePC() function is different in Debug state, where
there are more UNPREDICTABLE cases. The pseudocodein this section only handlesthe non-debug cases. For
more information, see Data-processing instructionswith the PC asthetarget in Debug state on page C5-12.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-13

Application Level Programmers’ Model

A2.4

The Application Program Status Register (APSR)

Program status is reported in the 32-bit Application Program Satus Register (APSR). The format of the
APSRis:

31 30 29 28 27 26 24 23 20 19 16 15 0

N|Z|C|V|Q SBAZZF/> Reserved GE[3:0] Reserved

In the APSR, the hits are in the following categories:

. Reserved bits are allocated to system features, or are available for future expansion. Unprivileged
execution ignores writes to privileged fields. However, application level software that writes to the
APSR must treat reserved bits as Do-Not-Modify (DNM) bits. For more information about the
reserved bits, see Format of the CPSR and SPSRs on page B1-16.

. Flags that can be set by many instructions:

N, bit [31] Negative condition code flag. Set to bit [31] of the result of the instruction. If the result
isregarded asatwo's complement signed integer, then N == 1if theresult is negative and
N == Qif itis positive or zero.

Z, bit [30] Zero condition codeflag. Setto 1if theresult of theinstructioniszero, and to 0 otherwise.
A result of zero often indicates an equal result from a comparison.

C, bit [29] Carry condition code flag. Set to 1 if the instruction results in a carry condition, for
example an unsigned overflow on an addition.

V, bit [28] Overflow condition code flag. Set to 1 if theinstruction resultsin an overflow condition,
for example a signed overflow on an addition.

Q, bit [27] Setto1toindicate overflow or saturation occurred in someinstructions, normally related
to Digital Signal Processing (DSP). For more information, see Pseudocode detail s of
saturation on page A2-9.

GEJ[3:0], bits[19:16]
Greater than or Equal flags. SIMD instructions update these flags to indicate the results

fromindividual bytes or halfwords of the operation. These flags can control alater SEL
instruction. For more information, see SEL on page A8-312.

. Bits [26:24] are RAZ/SBZP. Therefore, software can use MSR instructions that write the top byte of
the APSR without using aread, modify, write sequence. If it does this, it must write zerosto
bits [26:24].

Instructions can test the N, Z, C, and V condition code flags to determine whether the instruction isto be
executed. In this way, execution of the instruction can be made conditional on the result of a previous
operation. For more information about conditional execution see Conditional execution on page A4-3 and
Conditional execution on page A8-8.

In ARMvV7-A and ARMV7-R, the APSR isthe same register as the CPSR, but the APSR must be used only
toaccessthe N, Z, C, V, Q, and GE[3:0] bits. For more information, see Program Status Registers (PSRs)
on page B1-14.

A2-14

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Programmers’ Model

A2.5 Execution state registers
The execution state registers modify the execution of instructions. They control:

. Whether instructions are interpreted as Thumb instructions, ARM instructions, ThumbEE
instructions, or Java bytecodes. For more information, see |ISETSTATE.

. In Thumb state and ThumbEE state only, what conditions apply to the next four instructions. For
more information, see ITSTATE on page A2-17.

. Whether dataisinterpreted as big-endian or little-endian. For more information, see ENDIANSTATE
on page A2-19.

In ARMV7-A and ARMV7-R, the execution state registers are part of the Current Program Status Register.
For more information, see Program Satus Registers (PSRs) on page B1-14.

Thereisno direct accessto the execution state registers from application level instructions, but they can be
changed by side effects of application level instructions.

A2.5.1 ISETSTATE

The Jbit and the T bit determine the instruction set used by the processor. Table A2-1 shows the encoding

of these bits.
Table A2-1 J and T bit encoding in ISETSTATE
J T Instruction set state
0 0 ARM
0 1 Thumb
1 0 Jazele
1 1 ThumbEE
ARM state The processor executes the ARM instruction set described in Chapter A5 ARM
Instruction Set Encoding.
Thumb state The processor executes the Thumb instruction set as described in Chapter A6
Thumb Instruction Set Encoding.
Jazelle state The processor executes Javabytecodes as part of aJava MVirtual Machine (JVM). For

more information, see Jazelle direct bytecode execution support on page A2-73.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-15

Application Level Programmers’ Model

ThumbEE state The processor executes avariation of the Thumb instruction set specifically targeted
for use with dynamic compilation techniques associated with an execution
environment. This can be Java or other execution environments. Thisfeatureis
required in ARMv7-A, and optional in ARMv7-R. For more information, see

Thumb Execution Environment on page A2-69.

Pseudocode details of ISETSTATE operations

The following pseudocode functions return the current instruction set and select a new instruction set:

enumeration InstrSet {InstrSet_ARM, InstrSet_Thumb, InstrSet_lazelle, InstrSet_ThumbEE};

// CurrentInstrSet()
/] ====m==mmmm=e=m==

InstrSet CurrentInstrSet()
case ISETSTATE of
when ‘00’ result = InstrSet_ARM;
when ‘01’ result = InstrSet_Thumb;
when ‘10’ result = InstrSet_Jlazelle;
when ‘11’ result = InstrSet_ThumbEE;
return result;

// SelectInstrSet()
/] =======m=m======

SelectInstrSet(InstrSet iset)
case iset of
when InstrSet_ARM
if CurrentInstrSet() == InstrSet_ThumbEE then
UNPREDICTABLE;
else
ISETSTATE = ‘00’ ;
when InstrSet_Thumb
ISETSTATE = ‘01’;
when InstrSet_lazelle
ISETSTATE = ‘10°;
when InstrSet_ThumbEE
ISETSTATE = ‘11’;
return,

A2-16 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

ARM DDI 0406B

Application Level Programmers’ Model

A2.5.2 ITSTATE
76 54 3 210
IT[7:0]

Thisfield holds the If-Then execution state bits for the Thumb IT instruction. See IT on page A8-104 for a
description of the IT instruction and the associated I T block.

ITSTATE divides into two subfields:

IT[7:5] Holds the base condition for the current I T block. The base condition isthetop 3 bits of the
condition specified by the I T instruction.
This subfield is 0b000 when no IT block is active.

1T[4:0] Encodes:

. Thesizeof thelT block. Thisisthe number of instructionsthat areto be conditionally
executed. The size of the block isimplied by the position of the least significant 1in
thisfield, as shown in Table A2-2 on page A2-18.

. The value of the least significant bit of the condition code for each instruction in the
block.

Note

Changing the value of the least significant bit of a condition code from 0to 1 hasthe
effect of inverting the condition code.

This subfield is 0b00000 when no IT block is active.

When an I T instruction is executed, these bits are set according to the condition in the instruction, and the
Then and Else (T and E) parameters in the instruction. For more information, see IT on page A8-104.

Aninstructionin an IT block is conditional, see Conditional instructions on page A4-4 and Conditional
execution on page A8-8. The condition used is the current value of I1T[7:4]. When an instructioninan IT
block completesits execution normally, ITSTATE is advanced to the next line of Table A2-2 on page A2-18.

For details of what happens if such an instruction takes an exception see Exception entry on page B1-34.

Note

Instructions that can complete their normal execution by branching are only permitted in an IT block asits
last instruction, and so always result in ITSTATE advancing to normal execution.

Note

ITSTATE affects instruction execution only in Thumb and ThumbEE states. In ARM and Jazelle states,
ITSTATE must be '00000000', otherwise behavior is UNPREDICTABLE.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-17

Application Level Programmers’ Model

Table A2-2 Effect of IT execution state bits

IT bits 2
Note
[7:5] (4 81 [21 [1] [0]
cond base P1 P2 P3 P4 1 Entry point for 4-instruction I'T block
cond base P1 P2 P3 1 0 Entry point for 3-instruction IT block
cond base P1 P2 1 0 0 Entry point for 2-instruction I'T block
cond base P1 1 0 0 0 Entry point for 1-instruction IT block
000 0 0 0 0 0 Normal execution, notinan IT block

a. Combinations of the IT bits not shown in this table are reserved.

Pseudocode details of ITSTATE operations

ITSTATE advances after normal execution of an IT block instruction. This is described by the ITAdvance()

pseudocode function:

// ITAdvance()
// mmmmmmmmume

ITAdvance()
if ITSTATE<2:0> == ‘000’ then
ITSTATE.IT = ‘00000000’ ;
else

ITSTATE.IT<4:0> = LSL(ITSTATE.IT<4:0>, 1);

The following functions test whether the current instruction isin an IT block, and whether it is the last

instruction of an IT block:

// InITBlock()
// =

boolean InITBlock()
return (ITSTATE.IT<3:0> != ‘0000’);

// LastInITBlock()
/] ==mmmmmmmmmees

boolean LastInITBlock()
return (ITSTATE.IT<3:0> == ‘1000’);

A2-18

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

ARM DDI 0406B

Application Level Programmers’ Model

A2.5.3 ENDIANSTATE

ARMV7-A and ARMV7-R support configuration between little-endian and big-endian interpretations of
data memory, as shown in Table A2-3. The endianness is controlled by ENDIANSTATE.

Table A2-3 APSR configuration of endianness

ENDIANSTATE Endian mapping

0 Little-endian

1 Big-endian

The ARM and Thumb instruction sets both include an instruction to manipulate ENDIANSTATE:
SETEND BE Sets ENDIANSTATE to 1, for big-endian operation
SETEND LE Sets ENDIANSTATE to O, for little-endian operation.

The SETEND instruction is unconditional. For more information, see SETEND on page A8-314.

Pseudocode details of ENDIANSTATE operations
The BigEndian() pseudocode function tests whether big-endian memory accesses are currently selected.

// BigEndian()
1 m————

booTlean BigEndian()
return (ENDIANSTATE == ‘1’);

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-19

Application Level Programmers’ Model

A2.6

Advanced SIMD and VFP extensions
Advanced SIMD and VFP are two optional extensionsto ARMv?7.

Advanced SIMD performs packed Single Instruction Multiple Data (SIMD) operations, either integer or
single-precision floating-point. VFP performs single-precision or double-precision floating-point
operations.

Both extensions permit floating-point exceptions, such as overflow or division by zero, to be handled in an
untrapped fashion. When handled in this way, afloating-point exception causes a cumul ative status register
bit to be set to 1 and a default result to be produced by the operation.

The ARMV7 VFP implementation is VFPv3. ARMvV7 aso permits avariant of VFPv3, VFPv3U, that
supports the trapping of floating-point exceptions, see VFPv3U on page A2-31. VFPv2 also supports the
trapping of floating-point exceptions.

For more information about floating-point exceptions see Floating-point exceptions on page A2-42.

Each extension can beimplemented at anumber of levels. Table A2-4 shows the permitted combinations of
implementations of the two extensions.

Table A2-4 Permitted combinations of Advanced SIMD and VFP extensions

Advanced SIMD VFP

Not implemented Not implemented

Integer only Not implemented

Integer and single-precision floating-point Single-precision floating-point only2

Integer and single-precision floating-point Single-precision and double-precision floating-point

Not implemented Single-precision floating-point onlya

Not implemented Single-precision and double-precision floating-point

a Must be able to load and store double-precision data.

The optional half-precision extensions provide conversion functions in both directions between
half-precision floating-point and single-precision floating-point. These extensions can beimplemented with
any Advanced SIMD and VFP implementation that supports single-precision floating-point. The
half-precision extensions apply to both VFP and Advanced SIMD if they are both implemented.

For system-level information about the Advanced SIMD and VFP extensions see:
. Advanced SMD and VFP extension system registers on page B1-66
. Advanced SMD and floating-point support on page B1-64.

A2-20

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

A2.6.1

Application Level Programmers’ Model

Note

Before ARMV7, the VFP extension was called the Vector Floating-point Architecture, and was used for
vector operations. For details of these deprecated operations see Appendix F VFP Vector Operation
Support. From ARMV7:

. ARM recommends that the Advanced SIMD extension is used for single-precision vector
floating-point operations

. an implementation that requires support for vector operations must implement the Advanced SIMD
extension.

Advanced SIMD and VFP extension registers

Advanced SIMD and VFPv3 usethe sameregister set. Thisisdistinct fromthe ARM coreregister set. These
registers are generally referred to as the extension registers.

The extension register set consists of either thirty-two or sixteen doubleword registers, as follows:
. If VFPv2 isimplemented, it consists of sixteen doubleword registers.

. If VFPv3 isimplemented, it consists of either thirty-two or sixteen doubleword registers. Where
necessary the terms VFPv3-D32 and VFPv3-D16 are used to distinguish between these two
implementation options.

. If Advanced SIMD isimplemented, it consists of thirty-two doubleword registers. If both Advanced
SIMD and VFPv3 are implemented, VFPv3 must be implemented in its VFPv3-D32 form.

The Advanced SIMD and VFP views of the extension register set are not identical. They are described in
the following sections.

Figure A2-1 on page A2-22 shows the views of the extension register set, and the way the word,
doubleword, and quadword registers overlap.

Advanced SIMD views of the extension register set

Advanced SIMD can view thisregister set as:
. Sixteen 128-hit quadword registers, Q0-Q15.
. Thirty-two 64-bit doubleword registers, D0-D31. Thisview is also availablein VFPv3.

These views can be used simultaneously. For example, a program might hold 64-bit vectorsin DO and D1
and a 128-hit vector in Q1.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-21

Application Level Programmers’ Model

VFP views of the extension register set

In VFPv3-D32, the extension register set consists of thirty-two doubleword registers, that VFP can view as:
. Thirty-two 64-bit doubleword registers, Do-D31. Thisview is also available in Advanced SIMD.
. Thirty-two 32-bit single word registers, S0-531. Only half of the set is accessible in this view.

InVFPv3-D16 and VFPv2, the extension register set consists of sixteen doubleword registers, that VFP can

view as;

. Sixteen 64-bit doubleword registers, Do-D15.
. Thirty-two 32-hit single word registers, S0-S31.

In each case, the two views can be used simultaneously.

Advanced SIMD and VFP register mapping

D0-D15 D0-D31
S0-S31 VFPV2 or VFPv3-D32 or Q0-Q15
VFP only VFPv3-D16 Advanced SIMD Advanced SIMD only
sc | [1 """ 7 1
— DO — — DO —
S1
,,,,,,,,,,,,,,,,,,,,,,,,,, S QO —
S2
— D1 — — D1 —
S3
S4
— D2 — — D2 —
S5
,,,,,,,,,,,,,,,,,,,,,,,,,, S Q1 —
S6
— D3 —f — D3 —f
s7
s8 | [1 1
— D14 —| — D14 —|
S29
,,,,,,,,,,,,,,,,,,,,,,,,,, S Q7 —
S30
— D15 —| — D15 —|
S31
— D16 —
— D17 —
— D30 —
— Q15—
— D31 —|

Figure A2-1 Advanced SIMD and VFP register set

A2-22

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

ARM DDI 0406B

Application Level Programmers’ Model

The mapping between the registersis as follows:

. S<2n> mapsto the least significant half of D<n>

. S<2n+1> maps to the most significant half of D<n>
. D<2n> mapsto the least significant half of Q<n>

. D<2n+1> maps to the most significant half of Q<n>.

For example, you can access the least significant half of the elements of a vector in Q6 by referring to D12,
and the most significant half of the elements by referring to D13.

Pseudocode details of Advanced SIMD and VFP extension registers

The pseudocode function VFPSmal1RegisterBank() returns FALSE if all of the 32 registers DO-D31 can be
accessed, and TRUE if only the 16 registers DO-D15 can be accessed:

boolean VFPSmallRegisterBank()

In more detail, VFPSmal1RegisterBank():
. returns TRUE for aVFPv2 or VFPv3-D16 implementation
. for a VFPv3-D32 implementation:
— returns FALSE if CPACR.D32DIS ==
— returns TRUE if CPACR.D32DIS==1 and CPACR.ASEDIS ==
— resultsin UNPREDICTABLE behavior if CPACR.D32DIS == 1 and CPACR.ASEDIS == 0.

For details of the CPACR register, see:
. c1, Coprocessor Access Control Register (CPACR) on page B3-104 for aVMSA implementation
. c1, Coprocessor Access Control Register (CPACR) on page B4-51 for aPMSA implementation.

The S0-S31, D0-D31, and Q0-Q15 views of the registers are provided by the following functions:

// S[] - non-assignment form
//

bits(32) S[integer n]
assert n >= 0 & n <= 31;
if (n MOD 2) == @ then
result = D[n DIV 2]<31:0>;
else
result = D[n DIV 2]<63:32>;
return result;

// S[]1 - assignment form
//

S[integer n] = bits(32) value
assert n >= 0 & n <= 31;
if (n MOD 2) == @ then

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-23

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Replacement Text
// The 64-bit extension register bank for Advanced SIMD and VFP.

array bits(64) _D[0..31];

// Clone the 64-bit extension register bank to use as input to instruction pseudocode
// to avoid read-after-write for Advanced SIMD and VFP operations.

array bits(64) _Dclone[0..31];

// Din[] - non-assignment form
// ==================

bits(64) Din[integer n]
 assert n >= 0 && n <= 31;
 if n >= 16 && VFPSmallRegisterBank() then UNDEFINED;
 return _Dclone[n];

// Qin[] - non-assignment form
// ==================

bits(128) Qin[integer n]
 assert n >= 0 && n <= 15;
 return Din[2*n+1]:Din[2*n];

ARM_2011_Q2
Sticky Note
The replacement pseudocode defines an additional array, _Dclone[], that _D[] can be copied to, to avoiding possible read-after-write errors in instruction processing pseudocode.

In addition, the function Din[] returns a Doubleword register from the array _Dclone[], and the function Qin[] returns a Quadword register from the array.

Application Level Programmers’ Model

D[n DIV 2]<31:0> = value;
else

D[n DIV 2]<63:32> = value;
return;

// D[] - non-assignment form

//

bits(64) D[integer n]
assert n >= 0 & n <= 31;
if n >= 16 & VFPSmallRegisterBank() then UNDEFINED;
return _D[n];
// D[] - assignment form
//

D[integer n] = bits(64) value
assert n >= 0 & n <= 31;
if n >= 16 & VFPSmallRegisterBank() then UNDEFINED;
_D[n] = value;
return;

// Q[] - non-assignment form

//

bits(128) Q[integer n]
assert n >= 0 && n <= 15;
return D[2«n+1]:D[2xn];

// Q[] - assignment form
//

Q[integer n] = bits(128) value
assert n >= 0 & n <= 15;
D[2«n] = value<63:0>;
D[2xn+1] = value<127:64>;
return;

A2-24 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

A2.6.2

Application Level Programmers’ Model

Data types supported by the Advanced SIMD extension

When the Advanced SIMD extension is implemented, it can operate on integer and floating-point data. It
defines a set of data types to represent the different data formats. Table A2-5 shows the available formats.
Each instruction description specifies the data types that the instruction supports.

Table A2-5 Advanced SIMD data types

Data type specifier Meaning

.<size> Any element of <size> bits

.F<size> Floating-point number of <size> bits

I<size> Signed or unsigned integer of <size> bits
.P<size> Polynomial over {0,1} of degreelessthan <size>
.S<size> Signed integer of <size> bits

.U<size> Unsigned integer of <size> bits

The polynomial datatype is described in Polynomial arithmetic over {0,1} on page A2-67.

The .F16 data typeis the half-precision data type currently selected by the FPSCR.AHP bit, see Advanced
SMD and VFP systemregisters on page A2-28. It is supported only when the half-precision extensions are
implemented.

The .F32 datatype isthe ARM standard single-precision floating-point data type, see Advanced SMD and
VFP single-precision format on page A2-34.

The instruction definitions use a data type specifier to define the data types appropriate to the operation.
Figure A2-2 on page A2-26 shows the hierarchy of Advanced SIMD data types.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-25

Application Level Programmers’ Model

A2.6.3

6 |
.8 -
.P8
e | S
16 -
.P16
F16 %
.832
132
32 .U32
.F32
.164 ﬁgi
.64 .

T Supported only if the half-precision extensions are implemented

Figure A2-2 Advanced SIMD data type hierarchy

For example, amultiply instruction must distinguish between integer and floating-point data types.
However, some multiply instructions use modulo arithmetic for integer instructions and therefore do not
need to distinguish between signed and unsigned inputs.

A multiply instruction that generates adouble-width (long) result must specify theinput datatypesas signed
or unsigned, because for this operation it does make a difference.

Advanced SIMD vectors

When the Advanced SIMD extension isimplemented, aregister can hold one or more packed elements, all
of the same size and type. The combination of aregister and a data type describes avector of elements. The
vector is considered to be an array of elements of the data type specified in the instruction. The number of
elementsin the vector isimplied by the size of the data elements and the size of the register.

Vector indices are in the range 0 to (number of elements— 1). An index of O refers to the least significant
end of the vector. Figure A2-3 on page A2-27 shows examples of Advanced SIMD vectors:

A2-26

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2011_Q2
Sticky Note
The instructions that can operate on polynomials, VMUL and VMULL, operate only on the .P8 data type. However, VMULL produces a .P16 output.

ARM_2011_Q2
Highlight
See marginal note.

Application Level Programmers’ Model

127 0

E32 128-bit vector of single-precision

‘ F32 ‘ F32 ‘ -F32 ‘ (32-bit) floating-point numbers

131 [2] 1 [0]

‘ S16 ‘ S16 ‘ S16 ‘ S16 ‘ S16 ‘ S16 ‘ S16 ‘ S16 ‘128-bitvectorof16-bitsigned integers
B @ W o

63 0

‘ .832 ‘ .832 ‘ 64-bit vector of 32-bit signed integers
0l [0]

‘ U16 ‘ u16 ‘ u16 ‘ u16 ‘64-bitvectorof16-bit unsigned integers
B @ W o

Figure A2-3 Examples of Advanced SIMD vectors

Pseudocode details of Advanced SIMD vectors
The pseudocode function Elem[] is used to access the element of a specified index and size in a vector:

// Elem[] - non-assignment form

//

bits(size) Elem[bits(N) vector, integer e, integer size]
assert e >= 0 & (e+l)xsize <= N;
return vector<(e+l)«size-1l:exsize>;

// Elem[] - assignment form

//

Elem[bits(N) vector, integer e, integer size] = bits(size) value
assert e >= 0 & (e+l)xsize <= N;
vector<(e+l)«size-1l:exsize> = value;
return;

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-27

Application Level Programmers’ Model

A2.6.4

Advanced SIMD and VFP system registers

The Advanced SIMD and VFP extensions have a shared register space for system registers. Only one
register in this space is accessible at the application level, see Floating-point Status and Control Register
(FPCR).

See Advanced SMD and VFP extension system registers on page B1-66 for the system level description of
the registers.

Floating-point Status and Control Register (FPSCR)

The Floating-point Statusand Control Register (FPSCR) isimplemented in any system that implements one
or both of:

. the VFP extension
. the Advanced SIMD extension.

The FPSCR provides all necessary User level control of the floating-point system
The FPSCR is a 32-bit read/write system register, accessible in unprivileged and privileged modes.
The format of the FPSCR is:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 151413121110 9 8 7 6 5 4 3 2 1 0

. UNK/ UNK/
N|Z|C|V Stride Len SBZP SBZP

oc RMode J mE-] IXEJ IXC

AHP—— UFE—- UFC—-
DN UNK/SBZP OFE OFC
FZ—— DZE —— DzC
IOE ——— 10C

IDC

Bits[31:28] Condition code hits. These are updated on floating-point comparison operations. They are
not updated on SIMD operations, and do not affect SIMD instructions.

N, bit [31] Negative condition code flag.
Z, bit [30] Zero condition code flag.

C, bit [29] Carry condition code flag.

V, bit [28] Overflow condition code flag.

QC, bit [27] Cumulative saturation flag, Advanced SIMD only. Thisbit is set to 1 to indicate that an
Advanced SIMD integer operation has saturated since 0 was last written to this bit. For
details of saturation, see Pseudocode details of saturation on page A2-9.

Thevalueof thishitisignored by the VFP extension. If Advanced SIMD isnot implemented
thisbitis UNK/SBZP.

A2-28

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Programmers’ Model

AHP, bit[26] Alternative half-precision control bit:
0 |EEE half-precision format selected.
1 Alternative half-precision format selected.

For more information see Advanced SMD and VFP half-precision formats on page A2-38.
If the half-precision extensions are not implemented this bit is UNK/SBZP.

Bits[19,14:13,6:5]
Reserved. UNK/SBZP.

DN, bit [25] Default NaN mode control bit:
0 NaN operands propagate through to the output of a floating-point operation.
1 Any operation involving one or more NaNs returns the Default NaN.
For more information, see NaN handling and the Default NaN on page A2-41.
Thevalue of thishit only controls VFP arithmetic. Advanced SIMD arithmetic always uses
the Default NaN setting, regardless of the value of the DN hit.

FZ,bit[24] Flush-to-zero mode control bit:

0 Flush-to-zero mode disabled. Behavior of the floating-point system isfully
compliant with the | EEE 754 standard.
1 Flush-to-zero mode enabled.

For more information, see Flush-to-zero on page A2-39.

Thevalue of thishit only controls VFP arithmetic. Advanced SIMD arithmetic always uses
the Flush-to-zero setting, regardless of the value of the FZ bit.

RMode, bits[23:22]
Rounding Mode control field. The encoding of thisfield is:
0b00 Round to Nearest (RN) mode
0Ob01 Round towards Plus Infinity (RP) mode
0b10 Round towards Minus Infinity (RM) mode
Ob11 Round towards Zero (RZ) mode.
The specified rounding modeis used by almost all VVFP floating-point instructions.

Advanced SIMD arithmetic always uses the Round to Nearest setting, regardless of the
value of the RMode bits.

Stride, bits[21:20] and Len, bits[18:16]

Use of nonzero values of these fieldsis deprecated in ARMV7. For details of their usein
previous versions of the ARM architecture see Appendix F VFP Vector Operation Support.

The values of these fields are ignored by the Advanced SIMD extension.

Bits[15,12:8] Floating-point exception trap enable bits. These bits are supported only in VFPv2 and
VFPv3U. They are reserved, RAZ/SBZP, on a system that implements VFPv3.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-29

Application Level Programmers’ Model

The possible values of each bit are:
0 Untrapped exception handling sel ected
1 Trapped exception handling selected.

The values of these bits control only VFP arithmetic. Advanced SIMD arithmetic always
uses untrapped exception handling, regardless of the values of these bits.

For more information, see Floating-point exceptions on page A2-42.

IDE, bit [15] Input Denormal exception trap enable.
IXE, bit [12] Inexact exception trap enable.

UFE, bit [11] Underflow exception trap enable.
OFE, bit [10] Overflow exception trap enable.

DZE, bit [9] Division by Zero exception trap enable.
I0E, bit [8] Invalid Operation exception trap enable.

Bits[7,4:0] Cumulative exception flags for floating-point exceptions. Each of these bitsissetto 1to
indicate that the corresponding exception has occurred since 0 was last written to it. How
VFP instructions update these bits depends on the val ue of the corresponding exception trap
enable bits:

Trap enablebit =0

If the floating-point exception occurs then the cumulative exception flag is set
to 1.

Trap enablebit =1

If the floating-point exception occurs the trap handling software can decide
whether to set the cumulative exception flag to 1.

Advanced SIMD instructions set each cumulative exception flag if the corresponding
exception occurs in one or more of the floating-point calculations performed by the
instruction, regardless of the setting of the trap enable bits.

For more information, see Floating-point exceptions on page A2-42.

IDC, bit [7] Input Denormal cumulative exception flag.
IXC, bit [4] Inexact cumulative exception flag.

UFC, bit [3] Underflow cumulative exception flag.

OFC, bit [2] Overflow cumulative exception flag.

DZC, bit [1] Division by Zero cumulative exception flag.
10C, bit [0] Invalid Operation cumulative exception flag.

If the processor implements the integer-only Advanced SIMD extension and does not implement the VFP
extension, al of these hits except QC are UNK/SBZP.

Writes to the FPSCR can have side-effects on various aspects of processor operation. All of these
side-effects are synchronous to the FPSCR write. This meansthey are guaranteed not to bevisibleto earlier
instructionsin the execution stream, and they are guaranteed to be visible to later instructionsin the
execution stream.

A2-30

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

A2.6.5

Application Level Programmers’ Model

Accessing the FPSCR

You read or write the FPSCR using the VMRS and VMSR instructions. For more information, see VMRS on
page A8-658 and VM SR on page A8-660. For example:

VMRS <Rt>, FPSCR ; Read Floating-point System Control Register
VMSR FPSCR, <Rt> ; Write Floating-point System Control Register
VFPv3U

VFPv3 does not support the exception trap enable bitsin the FPSCR, see Floating-point Status and Control
Register (FPSCR) on page A2-28. All floating-point exceptions are untrapped.

The VFPv3U variant of the VFPv3 architecture implements the exception trap enable bitsin the FPSCR,
and provides exception handling as described in VFP support code on page B1-70. There is aseparate trap
enable hit for each of the six floating-point exceptions described in Floating-point exceptions on

page A2-42. The VFPv3U architecture is otherwise identical to VFPv3.

Trapped exception handling never causes the corresponding cumulative exception bit of the FPSCR to be
set to 1. If thisbehavior is desired, the trap handler routine must use a read, modify, write sequence on the
FPSCR to set the cumulative exception bit.

VFPv3U is backwards compatible with VFPv2.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-31

Application Level Programmers’ Model

A2.7 Floating-point data types and arithmetic

The VFP extension supports single-precision (32-bit) and double-precision (64-hit) floating-point data

types and arithmetic as defined by the |EEE 754 floating-point standard. It also supports the ARM Standard

modifications to that arithmetic described in Flush-to-zero on page A2-39 and NaN handling and the

Default NaN on page A2-41.

Trapped floating-point exception handling is supported in the VFPv3U variant only (see VFPv3U on

page A2-31).

ARM standard floating-point arithmetic means |EEE 754 floating-point arithmetic with the ARM standard

modifications and:

. the Round to Nearest rounding mode sel ected

. untrapped exception handling selected for all floating-point exceptions.

The Advanced SIMD extension only supports single-precision ARM standard floating-point arithmetic.

Note

Implementations of the VVFP extension require support code to be installed in the system if trapped

floating-point exception handling is required. See VFP support code on page B1-70.

They might also require support code to be installed in the system to support other aspects of their

floating-point arithmetic. It is IMPLEMENTATION DEFINED which aspects of VFP floating-point arithmetic

are supported in a system without support code installed.

Aspects of floating-point arithmetic that are implemented in support code are likely to run much more

slowly than those that are executed in hardware.

ARM recommends that:

. To maximize the chance of getting high floating-point performance, software developers use ARM
standard floating-point arithmetic.

. Software devel opers check whether their systems have support codeinstalled, and if not, observethe
IMPLEMENTATION DEFINED restrictions on what operations their VFP implementation can handle
without support code.

. VFP implementation devel opers implement at least ARM standard floating-point arithmetic in
hardware, so that it can be executed without any need for support code.

A2-32 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Programmers’ Model

A2.7.1 ARM standard floating-point input and output values

ARM standard floating-point arithmetic supports the following input formats defined by the |EEE 754
floating-point standard:

o Zeros.
. Normalized numbers.

. Denormalized numbers are flushed to 0 before floating-point operations. For details, see
Flush-to-zero on page A2-39.

. NaNs.
. Infinities.

ARM standard floating-point arithmetic supports the Round to Nearest rounding mode defined by the IEEE

754 standard.

ARM standard floating-point arithmetic supports the following output result formats defined by the IEEE

754 standard:

. Zeros.

. Normalized numbers.

. Results that are less than the minimum normalized number are flushed to zero, see Flush-to-zero on
page A2-39.

. NaNs produced in floating-point operations are always the default NaN, see NaN handling and the
Default NaN on page A2-41.

. Infinities.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-33

Application Level Programmers’ Model

A2.7.2

Advanced SIMD and VFP single-precision format

The single-precision floating-point format used by the Advanced SIMD and VVFP extensions is as defined
by the |EEE 754 standard.

This description includes ARM-specific details that are left open by the standard. It is only intended as an
introduction to the formats and to the values they can contain. For full details, especially of the handling of
infinities, NaNs and signed zeros, see the IEEE 754 standard.

A single-precision valueis a 32-hit word, and must be word-aligned when held in memory. It hasthe format:
31 30 23 22 0

S exponent fraction

The interpretation of the format depends on the value of the exponent field, bits [30:23]:

0 < exponent < OxFF
The value isanormalized number and is equal to:
—1S x 2(exponent —127) x (1 fraction)
The minimum positive normalized number is 2-126, or approximately 1.175 x10-38,

The maximum positive normalized number is (2 — 2-23) x 2127, or approximately
3.403 x1038,

exponent ==
The value is either a zero or a denormalized number, depending on the fraction bits:

fraction ==
Thevalueisazero. There are two distinct zeros:
+0 when S==0
-0 when S==1.

These usually behave identically. In particular, theresult is equal if +0 and -0
are compared asfloating-point numbers. However, they yield different resultsin
some circumstances. For example, the sign of the infinity produced asthe result
of dividing by zero depends on the sign of the zero. The two zeros can be
distinguished from each other by performing an integer comparison of the two
words.

fraction !=0
The value is adenormalized number and is equal to:
—1S x 2-126 x (0.fraction)
The minimum positive denormalized number is 2-149, or approximately 1.401 x 1045,

Denormalized numbers are flushed to zero in the Advanced SIMD extension. They are
optionally flushed to zero in the VFP extension. For details see Flush-to-zero on
page A2-39.

A2-34

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Programmers’ Model

exponent == OxFF

The value is either an infinity or a Not a Number (NaN), depending on the fraction bits:

fraction ==

Thevalueis aninfinity. There are two distinct infinities:

+0 When S==0. Thisrepresentsall positive numbersthat aretoo big to
be represented accurately as a normalized number.

-00 When S==1. Thisrepresents all negative numbers with an absolute
value that istoo big to be represented accurately as anormalized
number.

fraction!=0

ThevalueisaNaN, and is either aquiet NaN or asignaling NaN.
In the VFP architecture, the two types of NaN are distinguished on the basis of
their most significant fraction bit, bit [22]:
bit [22] ==
The NaN isasignaling NaN. The sign bit can take any value, and
the remaining fraction bits can take any value except all zeros.
bit [22] ==
The NaN isaquiet NaN. The sign bit and remaining fraction bits
can take any value.

For details of the default NaN see NaN handling and the Default NaN on page A2-41.

Note

NaNswith different sign or fraction bitsare distinct NaNs, but this does not mean you can use floating-point
comparison instructions to distinguish them. Thisis because the IEEE 754 standard specifies that a NaN
compares as unordered with everything, including itself. However, you can use integer comparisons to
distinguish different NaNs.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-35

Application Level Programmers’ Model

A2.7.3 VFP double-precision format
The double-precision floating-point format used by the VFP extension is as defined by the |EEE 754
standard.
This description includes V FP-specific detail s that are left open by the standard. It is only intended as an
introduction to the formats and to the values they can contain. For full details, especially of the handling of
infinities, NaNs and signed zeros, see the IEEE 754 standard.
A double-precision value consists of two 32-bit words, with the formats:
Most significant word:
31 30 20 19 0
S exponent fraction[51:32]
Least significant word:
31 0
fraction[31:0]
When held in memory, the two words must appear consecutively and must both be word-aligned. The order
of the two words depends on the endianness of the memory system:
. Inalittle-endian memory system, theleast significant word appears at the lower memory addressand
the most significant word at the higher memory address.
. In abig-endian memory system, the most significant word appears at the lower memory address and
the least significant word at the higher memory address.
Double-precision values represent numbers, infinities and NaNsin asimilar way to single-precision values,
with the interpretation of the format depending on the value of the exponent:
0 < exponent < Ox7FF
The value isanormalized number and is equal to:
—1S x 2exponent-1023 x (1 fraction)
The minimum positive normalized number is 2-1022 or gpproximately 2.225 x 10-308,
The maximum positive normalized number is (2 — 2-52) x 21023 or approximately
1.798 x 10308,
exponent ==
The value is either a zero or adenormalized number, depending on the fraction bits:
fraction ==0
Thevalue is azero. There are two distinct zeros that behave analogously to the
two single-precision zeros:
+0 when S==0
-0 when S==1.
A2-36 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Programmers’ Model

fraction =0
The valueis adenormalized number and is equal to:
3=S.x 2-1022 x (Q.fraction)
The minimum positive denormalized number is 2-1074, or approximately 4.941 x 10-324,
Optionally, denormalized numbers are flushed to zero in the VFP extension. For details see
Flush-to-zero on page A2-39.
exponent == Ox7FF
The value is either an infinity or a NaN, depending on the fraction bits:

fraction ==
the value is an infinity. Asfor single-precision, there are two infinities:
+00 Plusinfinity, when S==0
-0 Minus infinity, when S==1.

fraction =0

ThevaueisaNaN, and is either aquiet NaN or asignaling NaN.
In the VFP architecture, the two types of NaN are distinguished on the basis of
their most significant fraction bit, bit [19] of the most significant word:
bit [19] ==
The NaN isasignaling NaN. The sign bit can take any value, and
the remaining fraction bits can take any value except al zeros.
bit [19] ==
TheNaN isaquiet NaN. Thesign bit and the remaining fraction bits
can take any value.

For details of the default NaN see NaN handling and the Default NaN on page A2-41.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-37

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Inserted Text
(-1)^S

ARM_2011_Q2
Sticky Note
The first term should be -1 to the power of S, which evaluates to:
 • 1 when S==0
 • -1 when S==1.

Application Level Programmers’ Model

A2.7.4 Advanced SIMD and VFP half-precision formats
Two half-precision floating-point formats are used by the half-precision extensionsto Advanced SIMD and
VFP:
. |EEE half-precision, as described in the revised IEEE 754 standard
. Alternative half-precision.
The description of |EEE half-precision includes ARM-specific detail sthat are | eft open by the standard, and
isonly an introduction to the formats and to the values they can contain. For more information, especially
on the handling of infinities, NaNs and signed zeros, see the |EEE 754 standard.
For both half-precision floating-point formats, the layout of the 16-bit number isthe same. The format is:
1514 10 9 0
S| Exponent Fraction
The interpretation of the format depends on the value of the exponent field, bitg14:10] and on which
half-precision format is being used.
0 < exponent < 0x1F
The value is anormalized number and is equal to:
—1S x 2((exponent-15) x (1 fraction)
The minimum positive normalized number is 2-14, or approximately 6.104 x10-5.
The maximum positive normalized number is (2 — 2-10) x 215, or 65504.
Larger normalized numbers can be expressed using the alternative format when the
exponent == Ox1F.
exponent ==
The value is either a zero or a denormalized number, depending on the fraction bits:
fraction ==
The valueisazero. There are two distinct zeros:
+0 when S==0
-0 when S==1.
fraction !=0
The value is a denormalized number and is equal to:
—1S x 2-14 x (O.fraction)
The minimum positive denormalized number is 225, or approximately 298¢ x 10-8,
A2-38 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
24

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
5.960

Application Level Programmers’ Model

exponent == Ox1F
The value depends on which half-precision format is being used:

|EEE Half-precision

The valueis either an infinity or a Not a Number (NaN), depending on the
fraction bits:

fraction ==
Thevaueisaninfinity. There are two distinct infinities:

+0 When S==0. Thisrepresents all positive
numbers that are too big to be represented
accurately as a normalized number.

-00 When S==1. This represents all negative
numbers with an absolute value that is too
big to be represented accurately asa
normalized number.

fraction =0
ThevalueisaNaN, and is either aquiet NaN or asignaling NaN.
The two types of NaN are distinguished by their most significant
fraction bit, bit [9]:
bit [9] == The NaN isasignaling NaN. The sign hit
can take any value, and the remaining

fraction bits can take any value except al
Zeros.

bit [9] == The NaN isaquiet NaN. The sign bit and
remaining fraction bits can take any value.
Alternative Half-precision
The valueis anormalized number and is equal to:
-1S x 216 x (1.fraction)
The maximum positive normalized number is (2-2-10) x 216 or 131008.

A2.7.5 Flush-to-zero

The performance of floating-point implementations can be significantly reduced when performing
calculations involving denormalized numbers and Underflow exceptions. In particular this occurs for
implementations that only handle normalized numbers and zeros in hardware, and invoke support code to
handle any other types of value. For an algorithm where a significant number of the operands and
intermediate results are denormalized numbers, this can result in a considerable loss of performance.

In many of these algorithms, this performance can be recovered, without significantly affecting the accuracy
of the fina result, by replacing the denormalized operands and intermediate results with zeros. To permit
this optimization, VFP implementati ons have a special processing mode called Flush-to-zero mode.
Advanced SIMD implementations always use Flush-to-zero mode.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-39

Application Level Programmers’ Model

Behavior in Flush-to-zero mode differs from normal IEEE 754 arithmetic in the following ways:

All inputs to floating-point operations that are double-precision de-normalized numbers or
single-precision de-normalized numbers are treated as though they were zero. This causes an Input
Denormal exception, but does not cause an | nexact exception. The Input Denormal exception occurs
only in Flush-to-zero mode.

The FPSCR contains a cumul ative exception bit FPSCR.IDC and trap enable bit FPSCR.IDE
corresponding to the Input Denormal exception. For details of how these are used when processing
the exception see Advanced SMD and VFP system registers on page A2-28.

The occurrence of all exceptions except Input Denormal is determined using the input values after
flush-to-zero processing has occurred.

Theresult of afloating-point operation isflushed to zeroif theresult of the operation before rounding
satisfies the condition:

0 < Abs(result) < MinNorm, where:

— MinNorm == 2-126 for single-precision

— MinNorm == 2-1022 for double-precision.

This causes the FPSCR.UFC bit to be set to 1, and prevents any Inexact exception from occurring for
the operation.

Underflow exceptions occur only when aresult is flushed to zero.
InaVFPv2 or VFPv3U implementation Underflow exceptions that occur in Flush-to-zero mode are
aways treated as untrapped, even when the Underflow trap enable bit, FPSCR.UFE, is set to 1.

An Inexact exception does not occur if the result is flushed to zero, even though the final result of
zero is not equivalent to the value that would be produced if the operation were performed with
unbounded precision and exponent range.

For information on the FPSCR bits see Floating-point Satus and Control Register (FPSCR) on page A2-28.

When an input or aresult is flushed to zero the value of the sign bit of the zero is determined as follows:

InVFPv3 or VFPv3U, itispreserved. That is, the sign bit of the zero matchesthe sign bit of the input
or result that is being flushed to zero.

In VFPVv2, it isIMPLEMENTATION DEFINED Whether it is preserved or always positive. The same
choice must be made for all cases of flushing an input or result to zero.

Flush-to-zero mode has no effect on half-precision numbers that are inputs to floating-point operations, or
results from floating-point operations.

A2-40

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

A2.7.6

Application Level Programmers’ Model

Note

Flush-to-zero mode is incompatible with the IEEE 754 standard, and must not be used when |EEE 754
compatibility isarequirement. Flush-to-zero mode must be treated with care. Althoughit can lead to amajor
performance increase on many agorithms, there are significant limitations on its use. These are application
dependent:

. On many algorithms, it has no noticeable effect, because the algorithm does not normally use
denormalized numbers.

. On other agorithms, it can cause exceptions to occur or seriously reduce the accuracy of the results
of the algorithm.

NaN handling and the Default NaN
The |EEE 754 standard specifies that:

. an operation that produces an Invalid Operation floating-point exception generatesaquiet NaN asits
result if that exception is untrapped

. an operation involving aquiet NaN operand, but not asignaling NaN operand, returns an input NaN
asitsresult.

The VFP behavior when Default NaN mode is disabled adheres to this with the following extra details,
where the first operand means the first argument to the pseudocode function call that describes the
operation:

. If an untrapped Invalid Operation floating-point exception is produced because one of the operands
isasignaling NaN, the quiet NaN result is equal to the signaling NaN with its most significant
fraction bit changed to 1. If both operands are signaling NaNs, theresult is produced in thisway from
the first operand.

. If an untrapped Invalid Operation floating-point exception is produced for other reasons, the quiet
NaN result is the Default NaN.

. If both operands are quiet NaNs, the result is the first operand.

The VFP behavior when Default NaN mode is enabled, and the Advanced SIMD behavior in all
circumstances, is that the Default NaN is the result of all floating-point operations that:

. generate untrapped I nvalid Operation floating-point exceptions
. have one or more quiet NaN inputs.

Table A2-6 on page A2-42 shows the format of the default NaN for ARM floating-point processors.

Default NaN mode is selected for VFP by setting the FPSCR.DN bit to 1, see Floating-point Satus and
Control Register (FPSCR) on page A2-28.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-41

Application Level Programmers’ Model

Other aspects of the functionality of the Invalid Operation exception are not affected by Default NaN mode.

These are that:

If untrapped, it causes the FPSCR.IOC bit be set to 1.
If trapped, it causes a user trap handler to be invoked. Thisis only possiblein VFPv2 and VFPv3U.

Table A2-6 Default NaN encoding

Half-precision, IEEE Format Single-precision Double-precision
Sign bit 0 0a 0a
Exponent ox1F OxFF Ox7FF
Fraction Bit[9] == 1, bitg[8:0] == bit [22] == 1, bits[21:0] ==0 bit [51] == 1, bits[50:0] ==

a InVFPv2, the sign bit of the Default NaN iS UNKNOWN.

A2.7.7 Floating-point exceptions

The Advanced SIMD and V FP extensions record the following floating-point exceptions in the FPSCR
cumulative flags, see Floating-point Status and Control Register (FPSCR) on page A2-28:

10C

DzC

OFC

UFC

Invalid Operation. Theflagisset to 1 if the result of an operation has no mathematical value
or cannot be represented. Cases includeinfinity * O, +infinity + (—infinity), for example.
These tests are made after flush-to-zero processing. For example, if flush-to-zero modeis
selected, multiplying a denormalized number and an infinity istreated as 0 * infinity and
causes an Invalid Operation floating-point exception.

10C is aso set on any floating-point operation with one or more signaling NaNs as
operands, except for negation and absolute value, as described in Negation and absolute
value on page A2-47.

Division by Zero. Theflagisset to 1 if adivide operation has a zero divisor and a dividend
that isnot zero, an infinity or aNaN. These tests are made after flush-to-zero processing, so
if flush-to-zero processing is selected, a denormalized dividend is treated as zero and
prevents Division by Zero from occurring, and adenormalized divisor istreated as zero and
causes Division by Zero to occur if the dividend is a normalized number.

For the reciprocal and reciprocal square root estimate functions the dividend is assumed to
be +1.0. This means that a zero or denormalized operand to these functions setsthe DZC

flag.

Overflow. Theflag is set to 1 if the absolute value of the result of an operation, produced
after rounding, is greater than the maximum positive normalized number for the destination
precision.

Underflow. Theflag isset to 1 if the absolute value of the result of an operation, produced
before rounding, is less than the minimum positive normalized number for the destination
precision, and the rounded result is inexact.

A2-42

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Programmers’ Model

The criteriafor the Underflow exception to occur are different in Flush-to-zero mode. For
details, see Flush-to-zero on page A2-39.

IXC Inexact. Theflag isset to 1 if the result of an operation is not equivalent to the value that
would be produced if the operation were performed with unbounded precision and exponent

range.

The criteriafor the Inexact exception to occur are different in Flush-to-zero mode. For
details, see Flush-to-zero on page A2-39.

IDC Input Denormal. The flag is set to 1 if adenormalized input operand is replaced in the
computation by a zero, as described in Flush-to-zero on page A2-39.

With the Advanced SIMD extension and the VVFPv3 extension these are non-trapping exceptions and the
data-processing instructions do not generate any trapped exceptions.

With the VFPv2 and VFPv3U extensions:

. These exceptions can be trapped, by setting trap enable flagsin the FPSCR, see VFPv3U on

page A2-31. Trapped floating-point exceptions are delivered to user code in an IMPLEMENTATION

DEFINED fashion.

. The definitions of the floating-point exceptions change as follows:

— if the Underflow exception is trapped, it occursif the absolute value of the result of an

operation, produced before rounding, is less than the minimum positive normalized number
for the destination precision, regardless of whether the rounded result is inexact

— higher priority trapped exceptions can prevent lower priority exceptions from occurring, as
described in Combinations of exceptions on page A2-44.

Table A2-7 shows the default results of the floating-point exceptions:

Table A2-7 Floating-point exception default results

Exception type

Default result for positive sign

Default result for negative sign

10C, Invalid Operation

Quiet NaN

Quiet NaN

DZC, Division by Zero

+o (plusinfinity)

-0 (minusinfinity)

OFC, Overflow RN, RP: +o (plusinfinity) RN, RM: -0 (Minus infinity)
RM, RZ: +MaxNorm RP, RZ: —MaxNorm

UFC, Underflow Normal rounded result Normal rounded result

IXC, Inexact Normal rounded result Normal rounded result

IDC, Input Denormal

Normal rounded result

Normal rounded result

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

A2-43

Application Level Programmers’ Model

In Table A2-7 on page A2-43:
MaxNorm The maximum normalized number of the destination precision

RM Round towards Minus Infinity mode, as defined in the |[EEE 754 standard
RN Round to Nearest mode, as defined in the |EEE 754 standard

RP Round towards Plus Infinity mode, as defined in the IEEE 754 standard
Rz Round towards Zero mode, as defined in the |EEE 754 standard

. For Invalid Operation exceptions, for details of which quiet NaN is produced as the default result see
NaN handling and the Default NaN on page A2-41.

. For Division by Zero exceptions, the sign bit of the default result is determined normally for a
division. This meansit is the exclusive OR of the sign bits of the two operands.

. For Overflow exceptions, the sign bit of the default result is determined normally for the overflowing
operation.

Combinations of exceptions
The following pseudocode functions perform floating-point operations:

FixedToFP()
FPAbs()

FPAdd()
FPCompare()
FPCompareGE()
FPCompareGT()
FPDiv()
FPDoubleToSingle()
FPMax ()

FPMin()

FPMuT()

FPNeg()
FPRecipEstimate()
FPRecipStep()
FPRSqrtEstimate()
FPRSqrtStep()
FPSingleToDouble()
FPSqrt()

FPSub()
FPToFixed()

All of these operations except FPAbs() and FPNeg() can generate floating-point exceptions.

More than one exception can occur on the same operation. The only combinations of exceptions that can

occur are:
. Overflow with Inexact

. Underflow with Inexact

. Input Denormal with other exceptions.

A2-44 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Programmers’ Model

When none of the exceptions caused by an operation are trapped, any exception that occurs causes the
associated cumulative flag in the FPSCR to be set.

When one or more exceptions caused by an operation are trapped, the behavior of the instruction depends
on the priority of the exceptions. The Inexact exception istreated as lowest priority, and Input Denormal as
highest priority:

. If the higher priority exception istrapped, itstrap handler is called. It isIMPLEMENTATION DEFINED
whether the parameters to the trap handler include information about the lower priority exception.
Apart from this, the lower priority exception isignored in this case.

. If the higher priority exception is untrapped, its cumulative bit is set to 1 and its default result is
evaluated. Then the lower priority exception is handled normally, using this default result.

Some floating-point instructions specify more than one floating-point operation, as indicated by the
pseudocode descriptions of the instruction. In such cases, an exception on one operation istreated as higher
priority than an exception on another operation if the occurrence of the second exception depends on the
result of the first operation. Otherwise, it iS UNPREDICTABLE which exception istreated as higher priority.

For example, aVMLA. F32 instruction specifies a floating-point multiplication followed by afloating-point
addition. The addition can generate Overflow, Underflow and Inexact exceptions, all of which depend on
both operands to the addition and so are treated as lower priority than any exception on the multiplication.
The same appliesto Invalid Operation exceptions on the addition caused by adding opposite-signed
infinities.

The addition can also generate an Input Denormal exception, caused by the addend being a denormalized
number while in Flush-to-zero mode. It is UNPREDICTABLE which of an Input Denormal exception on the
addition and an exception on the multiplication is treated as higher priority, because the occurrence of the
Input Denormal exception does not depend on the result of the multiplication. The sameappliesto anInvalid
Operation exception on the addition caused by the addend being asignaling NaN.

Note

Like other details of VFP instruction execution, these rules about exception handling apply to the overall
results produced by an instruction when the system uses a combination of hardware and support code to
implement it. See VFP support code on page B1-70 for more information.

These principles aso apply to the multiple floating-point operations generated by VFP instructions in the
deprecated V FP vector mode of operation. For details of thismode of operation see Appendix F VFP \ector
Operation Support.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-45

Application Level Programmers’ Model

A2.7.8 Pseudocode details of floating-point operations

This section contains pseudocode definitions of the floating-point operations used by the architecture.

Generation of specific floating-point values

The following pseudocode functions generate specific floating-point values. The sign argument of
FPInfinity(), FPMaxNormal(), and FPZero() is '@ for the positive version and '1' for the negative version.

// FPZero()
/] ——

bits(N) FPZero(bit sign, integer N)
assert N ==16 || N == 32 || N == 64;
if N == 16 then
return sign : ‘00000 0000000000’ ;
elsif N == 32 then
return sign : ° 7
else

return sign : ‘00000000000 000000000000000 0000 0 0';

// FPTwo()
J/——

bits(N) FPTwo(integer N)
assert N == 32 || N == 64;

if N == 32 then
return ‘0 10000000 00 00000’ ;
else
return ‘0 10000000000 0000 0000 '3

// FPThree()
1/ =mmmme

bits(N) FPThree(integer N)
assert N == 32 || N == 64;

if N == 32 then
return ‘0 10000000 10000000000000000000000° ;
else
return ‘0 1 1 00 Ty

// FPMaxNormal()
/] ===m===m=====

bits(N) FPMaxNormal(bit sign, integer N)
assert N ==16 || N == 32 || N == 64;
if N == 16 then
return sign : ‘11110 1111111111°;
elsif N == 32 then
return sign : ‘11111110 111111111111111111111117;
else
return sign : ‘11111111110 112111111212112°;4

A2-46 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Programmers’ Model

// FPInfinity()
/A

bits(N) FPInfinity(bit sign, integer N)
assert N == 16 || N == 32 || N == 64;
if N == 16 then
return sign : ‘11111 0000000000’ ;
elsif N == 32 then
return sign : ‘11111111 00000000000000000000000" ;
else
return sign : ‘11111111111 00 00 Ty

// FPDefaultNaN()
/] =====mmm===e—s

bits(N) FPDefaultNaN(integer N)
assert N == 16 || N == 32 || N == 64;
if N == 16 then
return ‘0 11111 1000000000’ ;
elsif N == 32 then
return ‘0 11111111 1 !
else
return ‘0 11111111111 100000000 0000 00000’ ;

Note

This definition of FPDefaultNaN() appliesto VFPv3 and VFPv3U. For VFPv2, the sign bit of theresultisa
single-bit UNKNOWN value, instead of 0.

Negation and absolute value

The floating-point negation and absolute value operations only affect the sign bit. They do not treat NaN
operands specially, nor denormalized number operands when flush-to-zero is selected.

// FPNeg()
/] =======

bits(N) FPNeg(bits(N) operand)
assert N == 32 || N == 64;
return NOT(operand<N-1>) : operand<N-2:0>;

// FPAbs()
/] =======

bits(N) FPAbs(bits(N) operand)
assert N == 32 || N == 64;
return ‘0’ : operand<N-2:0>;

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-47

Application Level Programmers’ Model

Floating-point value unpacking

The FPUnpack() function determines the type and numerical value of afloating-point number. It also does

flush-to-zero processing on input operands.

enumeration FPType {FPType_Nonzero, FPType_Zero, FPType_Infinity, FPType_QNaN, FPType_SNaN};

// FPUnpack()

/] ==========

/!

// Unpack a floating-point number into its type, sign bit and the real number
// that it represents. The real number result has the correct sign for numbers
// and infinities, is very large in magnitude for infinities, and is 0.0 for
// NaNs. (These values are chosen to simplify the description of comparisons
// and conversions.)

/!

// The ‘fpscr_val’ argument supplies FPSCR control bits. Status information is
// updated directly in the FPSCR where appropriate.

(FPType, bit, real) FPUnpack(bits(N) fpval, bits(32) fpscr_val)
assert N == 16 || N == 32 || N == 64;

if N == 16 then
sign = fpval<15>;
exp = fpval<14:10>;
frac = fpval<9:0>;
if IsZero(exp) then
// Produce zero if value is zero
if IsZero(frac) then
type = FPType_Zero; value = 0.0;
else
type = FPType_Nonzero; value = 2A-14 « (UInt(frac) = 2A-10);

elsif IsOnes(exp) && fpscr_val<26> == ‘@’ then // Infinity or NaN in IEEE format

if IsZero(frac) then
type = FPType_Infinity; value = 2A1000000;
else
type = if
value = 0

frac<9> == ‘1’ then FPType_QNaN else FPType_SNaN;
.0;
else

type = FPType_Nonzero; value = 2A(UInt(exp)-15) = (1.0 + UInt(frac) = 2A-10));

elsif N == 32 then

sign = fpval<3l>;
exp fpval<30:23>;
frac = fpval<22:0>;
if IsZero(exp) then
// Produce zero if value is zero or flush-to-zero is selected.
if IsZero(frac) || fpscr_val<24> == ‘1’ then
type = FPType_Zero; value = 0.0;
if !IsZero(frac) then // Denormalized input flushed to zero
FPProcessException(FPExc_InputDenorm, fpscr_val);

else
type = FPType_Nonzero; value = 2A-126 = (UInt(frac) = 2A-23);

A2-48 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

ARM DDI 0406B

Application Level Programmers’ Model

elsif IsOnes(exp) then
if IsZero(frac) then
type = FPType_Infinity; value = 2A1000000;
else
type = if
value = @

frac<22> == ‘1’ then FPType_QNaN else FPType_SNaN;
.0;
else
type = FPType_Nonzero; value = 2A(UInt(exp)-127) = (1.0 + UInt(frac) = 2A-23));

else // N == 64

sign = fpval<63>;
exp fpval<62:52>;
frac = fpval<51:0>;
if IsZero(exp) then
// Produce zero if value is zero or flush-to-zero is selected.
if IsZero(frac) || fpscr_val<24> == ‘1’ then
type = FPType_Zero; value = 0.0;
if !IsZero(frac) then // Denormalized input flushed to zero
FPProcessException(FPExc_InputDenorm, fpscr_val);

else

type = FPType_Nonzero; value = 2A-1022 « (UInt(frac) = 2A-52);
elsif IsOnes(exp) then

if IsZero(frac) then
type = FPType_Infinity; value = 2A1000000;

else
type = if
value = @

frac<51> == ‘1’ then FPType_QNaN else FPType_SNaN;
.0;
else
type = FPType_Nonzero; value = 2A(UInt(exp)-1023) = (1.0 + UInt(frac) = 2A-52));

if sign == ‘1’ then value = -value;
return (type, sign, value);

Floating-point exception and NaN handling

The FPProcessException() procedure checks whether a floating-point exception is trapped, and handlesit
accordingly:

enumeration FPExc (FPExc_InvalidOp, FPExc_DivideByZero, FPExc_Overflow,
FPExc_Underflow, FPExc_Inexact, FPExc_InputDenorm};

// FPProcessException()
//
//

// The ‘fpscr_val’ argument supplies FPSCR control bits. Status information is
// updated directly in the FPSCR where appropriate.

FPProcessException(FPExc exception, bits(32) fpscr_val)
// Get appropriate FPSCR bit numbers
case exception of
when FPExc_InvalidOp enable = 8; cumul
when FPExc_DivideByZero enable =9; cumul =

1}
S

|
=

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-49

Application Level Programmers’ Model

when FPExc_Overflow enable = 10; cumul = 2;
when FPExc_Underflow enable = 11; cumul = 3;
when FPExc_Inexact enable = 12; cumul = 4;
when FPExc_InputDenorm enable = 15; cumul = 7;

if fpscr_val<enable> then

IMPLEMENTATION_DEFINED floating-point trap handling;
else

FPSCR<cumul> = ‘1’;
return;

TheFPProcessNaN() function processesaNaN operand, producing the correct result value and generating an
Invalid Operation exception if necessary:

// FPProcessNaN()

/!

// The ‘fpscr_val’ argument supplies FPSCR control bits. Status information is
// updated directly in the FPSCR where appropriate.

bits(N) FPProcessNaN(FPType type, bits(N) operand, bits(32) fpscr_val)
assert N == 32 || N == 64;
topfrac = if N == 32 then 22 else 51;
result = operand;
if type £ FPType_SNaN then
result<topfrac> = ‘1’;
FPProcessException(FPExc_InvalidOp, fpscr_val);
if fpscr_val<25> == ‘1’ then // DefaultNaN requested
result = FPDefaultNaN(N);
return result;

The FPProcessNaNs () function performs the standard NaN processing for a two-operand operation:

// FPProcessNaNs()

/] ===============

//

// The boolean part of the return value says whether a NaN has been found and
// processed. The bits(N) part is only relevant if it has and supplies the

// result of the operation.

//

// The ‘fpscr_val’ argument supplies FPSCR control bits. Status information is
// updated directly in the FPSCR where appropriate.

(boolean, bits(N)) FPProcessNaNs(FPType typel, FPType type2,
bits(N) opl, bits(N) op2,
bits(32) fpscr_val)
assert N == 32 || N == 64;
if typel == FPType_SNaN then
done = TRUE; result = FPProcessNaN(typel, opl, fpscr_val);
elsif type2 == FPType_SNaN then
done = TRUE; result = FPProcessNaN(type2, op2, fpscr_val);
elsif typel == FPType_QNaN then
done = TRUE; result = FPProcessNaN(typel, opl, fpscr_val);
elsif type2 == FPType_QNaN then
done = TRUE; result = FPProcessNaN(type2, op2, fpscr_val);

A2-50 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2011_Q2
Inserted Text
=

Application Level Programmers’ Model

else
done = FALSE; result = Zeros(N); // ‘Don’t care’ result
return (done, result);

Floating-point rounding

The FPRound () function rounds and encodes a floating-point result value to a specified destination format.
Thisincludes processing Overflow, Underflow and Inexact floating-point exceptions and performing
flush-to-zero processing on result values.

// FPRound()

//

// The ‘fpscr_val’ argument supplies FPSCR control bits. Status information is
// updated directly in the FPSCR where appropriate.

bits(N) FPRound(real result, integer N, bits(32) fpscr_val)
assert N ==16 || N == 32 || N == 64;
assert result != 0.0;

// Obtain format parameters - minimum exponent, numbers of exponent and fraction bits.
if N == 16 then
minimum_exp = -14; E =5; F = 10;
elsif N == 32 then
minimum_exp = -126; E = 8; F = 23;
else // N == 64
minimum_exp = -1022; E = 11; F = 52;

// Split value into sign, unrounded mantissa and exponent.
if result < 0.0 then

sign = ‘1’; mantissa = -result;
else

sign = ‘Q’; mantissa = result;
exponent = 0;
while mantissa < 1.0 do

mantissa = mantissa % 2.0; exponent = exponent - 1;
while mantissa >= 2.0 do

mantissa = mantissa / 2.0; exponent = exponent + 1;

// Deal with flush-to-zero.
if fpscr_val<24> == ‘1’ & N != 16 && exponent < minimum_exp then

result = FPZero(sign, N);

FPSCR.UFC = ‘1"; // Flush-to-zero never generates a trapped exception
else

// Start creating the exponent value for the result. Start by biasing the actual exponent
// so that the minimum exponent becomes 1, Tower values @ (indicating possible underflow).
biased_exp = Max(exponent - minimum_exp + 1, 0);

if biased_exp == @ then mantissa = mantissa / 2A(minimum_exp - exponent);

// Get the unrounded mantissa as an integer, and the “units in Tast place” rounding error.
int_mant = RoundDown(mantissa # 2AF); // < 2AF if biased_exp == 0, >= 2AF if not
error = mantissa * 2AF - int_mant;

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-51

Application Level Programmers’ Model

// Underflow occurs if exponent is too small before rounding, and result is inexact or

// the Underflow exception is trapped.

if biased_exp == 0 && (error != 0.0 || fpscr_val<ll> == ‘1’) then
FPProcessException(FPExc_Underflow, fpscr_val);

// Round result according to rounding mode.
case fpscr_val<23:22> of
when ‘00’ // Round to Nearest (rounding to even if exactly halfway)
round_up = (error > 0.5 || (error == 0.5 && int_mant<0> == ‘1’));
overflow_to_inf = TRUE;
when ‘01’ // Round towards Plus Infinity
round_up = (error != 0.0 & sign == ‘0’);
overflow_to_inf = (sign == ‘0’);
when ‘10’ // Round towards Minus Infinity
round_up = (error != 0.0 & sign == ‘1’);
overflow_to_inf = (sign == ‘1’);
when ‘11’ // Round towards Zero
round_up = FALSE;
overflow_to_inf = FALSE;
if round_up then
int_mant = int_mant + 1;
if int_mant == 2AF then // Rounded up from denormalized to normalized
biased_exp = 1;
if int_mant == 2A(F+1) then // Rounded up to next exponent
biased_exp = biased_exp + 1; dint_mant = int_mant DIV 2;

// Deal with overflow and generate result.
if N 1= 16 || fpscr_val<26> == ‘@’ then // Single, double or IEEE half precision
if biased_exp >= 2AE - 1 then
result = if overflow_to_inf then FPInfinity(sign, N) else FPMaxNormal(sign, N);
FPProcessException(FPExc_Overflow, fpscr_val);
else
result = sign : biased_exp<E-1:0> : int_mant<F-1:0>;
else // Alternative half precision
if biased_exp >= 2AE then
result = sign : Ones(15);
FPProcessException(FPExc_InvalidOp, fpscr_val);
error = 0.0; // avoid an Inexact exception
else
result = sign : biased_exp<E-1:0> : int_mant<F-1:0>;

// Deal with Inexact exception.
if error != 0 then
FPProcessException(FPExc_Inexact, fpscr_val);

return result;

Selection of ARM standard floating-point arithmetic

StandardFPSCRValue is an FPSCR value that selects ARM standard floating-point arithmetic. Most of the
arithmetic functions have a boolean fpscr_controlled argument that is TRUE for V FP operations and FALSE
for Advanced SIMD operations, and that selects between using the real FPSCR value and this value.

A2-52 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2008_Q4
Inserted Text
 error = 1.0; // Ensure that an Inexact exception does occur

Application Level Programmers’ Model

// StandardFPSCRValue()
//

bits(32) StandardFPSCRValue()
return ‘00000’ : FPSCR<26> : ‘11000 0000’ ;

Comparisons

The FPCompare () function compares two floating-point numbers, producing an (N,Z,C,V) flags result as
shown in Table A2-8:

Table A2-8 VFP comparison flag values

Comparisonresult N Z C V
Equal 0 1 1 0
Lessthan 1 0 0 oO
Greater than O o0 1 o0
Unordered 0 0o 1 1

Thisresult is used to define the VCMP instruction in the V FP extension. The VCMP instruction writes these flag
valuesinthe FPSCR. After using aVvMRS instruction to transfer them to the APSR, they can be used to control
conditional execution as shown in Table A8-1 on page A8-8.

// FPCompare()
/] mmmmmmm====

(bit, bit, bit, bit) FPCompare(bits(N) opl, bits(N) op2, boolean quiet_nan_exc,
boolean fpscr_controlled)
assert N == 32 || N == 64;
fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
(typel,signl,valuel) = FPUnpack(opl, fpscr_val);
(type2,sign2,value2) = FPUnpack(op2, fpscr_val);
if typel==FPType_SNaN || typel==FPType_QNaN || type2==FPType_SNaN || type2==FPType_QNaN then
result = (‘0’,’0’,’1",’1");
if typel==FPType_SNaN || type2==FPType_SNaN || quiet_nan_exc then
FPProcessException(FPExc_InvalidOp, fpscr_val);
else
// ATT1 non-NaN cases can be evaluated on the values produced by FPUnpack()
if valuel == value2 then
result = (‘0’,’1’,’1’,’0’);
elsif valuel < value2 then
result = (‘1’,70’,’0’,70");
else // valuel > value2
result = (‘0’,’0’,’1’,70’);
return result;

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-53

Application Level Programmers’ Model

The FPCompareEQ(), FPCompareGE() and FPCompareGT() functions are used to describe Advanced SIMD
instructions that perform floating-point comparisons.

// FPCompareEQ()
/] =====m=======

boolean FPCompareEQ(bits(32) opl, bits(32) op2, boolean fpscr_controlled)

fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();

(typel,signl,valuel) = FPUnpack(opl, fpscr_val);

(type2,sign2,value2) = FPUnpack(op2, fpscr_val);

if typel==FPType_SNaN || typel==FPType_QNaN || type2==FPType_SNaN || type2==FPType_QNaN then
result = FALSE;
if typel==FPType_SNaN || type2==FPType_SNaN then

FPProcessException(FPExc_InvalidOp, fpscr_val);

else
// ATT1 non-NaN cases can be evaluated on the values produced by FPUnpack()
result = (valuel == value2);

return result;

// FPCompareGE()
/] ==m=m==mmmees

boolean FPCompareGE(bits(32) opl, bits(32) op2, boolean fpscr_controlled)

fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();

(typel,signl,valuel) = FPUnpack(opl, fpscr_val);

(type2,sign2,value2) = FPUnpack(op2, fpscr_val);

if typel==FPType_SNaN || typel==FPType_QNaN || type2==FPType_SNaN || type2==FPType_QNaN then
result = FALSE;
FPProcessException(FPExc_InvalidOp, fpscr_val);

else
// A1T1 non-NaN cases can be evaluated on the values produced by FPUnpack()
result = (valuel >= value2);

return result;

// FPCompareGT()
/] ===m=m=m=====

boolean FPCompareGT(bits(32) opl, bits(32) op2, boolean fpscr_controlled)

fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();

(typel,signl,valuel) = FPUnpack(opl, fpscr_val);

(type2,sign2,value2) = FPUnpack(op2, fpscr_val);

if typel==FPType_SNaN || typel==FPType_QNaN || type2==FPType_SNaN || type2==FPType_QNaN then
result = FALSE;
FPProcessException(FPExc_InvalidOp, fpscr_val);

else
// A11 non-NaN cases can be evaluated on the values produced by FPUnpack()
result = (valuel > value2)

return result;

A2-54 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Programmers’ Model

Maximum and minimum

// FPMax()
J/—

bits(N) FPMax(bits(N) opl, bits(N) op2, boolean fpscr_controlled)
assert N == 32 || N == 64;
fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
(typel,signl,valuel) = FPUnpack(opl, fpscr_val);
(type2,sign2,value2) = FPUnpack(op2, fpscr_val);
(done, result) = FPProcessNaNs(typel, type2, opl, op2, fpscr_val);
if !done then

return result; ;

// FPMin()
/] =======

bits(N) FPMin(bits(N) opl, bits(N) op2, boolean fpscr_controlled)
assert N == 32 || N == 64;
fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
(typel,signl,valuel) = FPUnpack(opl, fpscr_val);
(type2,sign2,value2) = FPUnpack(op2, fpscr_val);
(done,result) = FPProcessNaNs(typel, type2, opl, op2, fpscr_val);
if !done then

return result; @

Addition and subtraction

// FPAdd()
Jy—

bits(N) FPAdd(bits(N) opl, bits(N) op2, boolean fpscr_controlled)

assert N == 32 || N == 64;

fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();

(typel,signl,valuel) = FPUnpack(opl, fpscr_val);

(type2,sign2,value2) = FPUnpack(op2, fpscr_val);

(done, result) = FPProcessNaNs(typel, type2, opl, op2, fpscr_val);

if !done then
infl = (typel == FPType_Infinity); 1inf2 = (type2 == FPType_Infinity);
zerol = (typel == FPType_Zero); zero2 = (type2 == FPType_Zero);
if infl && inf2 && signl == NOT(sign2) then

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-55

ARM_2011_Q2
Sticky Note
The inserted change corrects an error in the handling of flushed zeros.

ARM_2011_Q2
Sticky Note
The inserted change corrects an error in the handling of flushed zeros.

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Replacement Text
 if value1 > value2 then
 (type,sign,value) = (type1,sign1,value1);
 else
 (type,sign,value) = (type2,sign2,value2);
 if type == FPType_Infinity then
 result = FPInfinity(sign, N);
 elsif type == FPType_Zero then
 sign = sign1 AND sign2; // Use most positive sign
 result = FPZero(sign, N);
 else
 result = FPRound(value, N, fpscr_val);

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Replacement Text
 if value1 < value2 then
 (type,sign,value) = (type1,sign1,value1);
 else
 (type,sign,value) = (type2,sign2,value2);
 if type == FPType_Infinity then
 result = FPInfinity(sign, N);
 elsif type == FPType_Zero then
 sign = sign1 OR sign2; // Use most negative sign
 result = FPZero(sign, N);
 else
 result = FPRound(value, N, fpscr_val);

Application Level Programmers’ Model

result = FPDefaultNaN(N);
FPProcessException(FPExc_InvalidOp, fpscr_val);
elsif (infl && signl == ‘Q’) || (inf2 && sign2 == ‘0’) then
result = FPInfinity(‘Q’, N);
elsif (infl && signl == ‘1’) || (inf2 && sign2 == ‘1’) then
result = FPInfinity(‘1’, N);
elsif zerol && zero2 && signl == sign2 then
result = FPZero(signl, N);
else
result_value = valuel + value2;
if result_value == 0.0 then // Sign of exact zero result depends on rounding mode
result_sign = if fpscr_val<23:22> == ‘10’ then ‘1’ else ‘0’;
result = FPZero(result_sign, N);
else
result = FPRound(result_value, N, fpscr_val);
return result;

// FPSub()

bits(N) FPSub(bits(N) opl, bits(N) op2, boolean fpscr_controlled)
assert N == 32 || N == 64;
fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
(typel,signl,valuel) = FPUnpack(opl, fpscr_val);
(type2,sign2,value2) = FPUnpack(op2, fpscr_val);
(done, result) = FPProcessNaNs(typel, type2, opl, op2, fpscr_val);
if !done then
infl = (typel == FPType_Infinity); 1inf2 = (type2 == FPType_Infinity);
zerol = (typel == FPType_Zero); zero2 = (type2 == FPType_Zero);
if infl && inf2 && signl == sign2 then
result = FPDefaultNaN(N);
FPProcessException(FPExc_InvalidOp, fpscr_val);
elsif (infl && signl == ‘0’) || (inf2 && sign2 == ‘1’) then
result = FPInfinity(‘0’, N);
elsif (infl && signl == ‘1’) || (inf2 && sign2 == ‘0’) then
result = FPInfinity(‘1l’, N);
elsif zerol &% zero2 &% signl == NOT(sign2) then
result = FPZero(signl, N);
else
result_value = valuel - value2;
if result_value == 0.0 then // Sign of exact zero result depends on rounding mode
result_sign = if fpscr_val<23:22> == ‘10’ then ‘1’ else ‘0’;
result = FPZero(result_sign, N);
else

result = FPRound(result_value, N, fpscr_val);
return result;

A2-56 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Programmers’ Model

Multiplication and division

// FPMuT()
J/—

bits(N) FPMul(bits(N) opl, bits(N) op2, boolean fpscr_controlled)
assert N == 32 || N == 64;
fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
(typel,signl,valuel) = FPUnpack(opl, fpscr_val);
(type2,sign2,value2) = FPUnpack(op2, fpscr_val);
(done, result) = FPProcessNaNs(typel, type2, opl, op2, fpscr_val);
if !done then
infl = (typel == FPType_Infinity); inf2 = (type2 == FPType_Infinity);
zerol = (typel == FPType_Zero); zero2 = (type2 == FPType_Zero);
if (infl && zero2) || (zerol && inf2) then
result = FPDefaultNaN(N);
FPProcessException(FPExc_InvalidOp, fpscr_val);
elsif infl || inf2 then
result_sign = if signl == sign2 then ‘@’ else ‘1’;
result = FPInfinity(result_sign, N);
elsif zerol || zero2 then
result_sign = if signl == sign2 then ‘0’ else ‘1’;
result = FPZero(result_sign, N);
else
result = FPRound(valuelxvalue2, N, fpscr_val);
return result;

// FPDiv()
J—

bits(N) FPDiv(bits(N) opl, bits(N) op2, boolean fpscr_controlled)
assert N == 32 || N == 64;
fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
(typel,signl,valuel) = FPUnpack(opl, fpscr_val);
(type2,sign2,value2) = FPUnpack(op2, fpscr_val);
(done, result) = FPProcessNaNs(typel, type2, opl, op2, fpscr_val);
if !done then
infl = (typel == FPType_Infinity); 1inf2 = (type2 == FPType_Infinity);
zerol = (typel == FPType_Zero); zero2 = (type2 == FPType_Zero);
if (infl && inf2) || (zerol && zero2) then
result = FPDefaultNaN(N);
FPProcessException(FPExc_InvalidOp, fpscr_val);
elsif infl || zero2 then
result_sign = if signl == sign2 then ‘0’ else ‘1’;
result = FPInfinity(result_sign, N);
if linfl then FPProcessException(FPExc_DivideByZero);
elsif zerol || inf2 then
result_sign = if signl == sign2 then ‘0’ else ‘1’;
result = FPZero(result_sign, N);
else
result = FPRound(valuel/value2, N, fpscr_val);
return result;

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-57

Application Level Programmers’ Model

Reciprocal estimate and step

The Advanced SIMD extension includes instructions that support Newton-Raphson calculation of the
reciprocal of anumber.

The VRECPE instruction produces the initial estimate of the reciprocal. It uses the following pseudocode
functions:

// FPRecipEstimate()
// ======s==========

bits(32) FPRecipEstimate(bits(32) operand)

(type,sign,value) = FPUnpack(operand, StandardFPSCRValue());
if type == FPType_SNaN || type == FPType_QNaN then
result = FPProcessNaN(type, operand, StandardFPSCRValue());
elsif type 5 FPType_Infinity then
result = FPZero(sign, 32);
elsif type s FPType_Zero then
result = FPInfinity(sign, 32);
FPProcessException(FPExc_DivideByZero, StandardFPSCRValue());
elsif Abs(value) >= 2A126 then // Result underflows to zero of correct sign
result = FPZero(sign, 32);
FPProcessException(FPExc_Underflow, StandardFPSCRValue());;
else
// Operand must be normalized, since denormalized numbers are flushed to zero. Scale to a
// double-precision value in the range 0.5 <= x < 1.0, and calculate result exponent.
// Scaled value has eepied, sign bit, exponent = 1022 = double-precision biased version of
// -1, fraction = original fraction extended with zeros.
scaled = eperand<3®> : ‘01111111110° : operand<22:0> : Zeros(29);
result_exp = 253 - UInt(operand<30:23>); // In range 253-252 = 1 to 253-1 = 252

// Call C function to get reciprocal estimate of scaled value.
estimate = recip_estimate(scaled);

// Result is double-precision and a multiple of 1/256 in the range 1 to 511/256. Convert
// to scaled single-precision result with copied sign bit and high-order fraction bits,
// and exponent calculated above.

result = estimate<3s : result_exp<7:0> : estimate<51:29>;

return result;

// UnsignedRecipEstimate()
/!

bits(32) UnsignedRecipEstimate(bits(32) operand)

if operand<31> == ‘@’ then // Operands <= Ox7FFFFFFF produce OxFFFFFFFF
result = Ones(32);

else
// Generate double-precision value = operand = 2A-32. This has zero sign bit,
// exponent = 1022 = double-precision biased version of -1, fraction taken from
// operand, excluding its most significant bit.
dp_operand = ‘@ 01111111110° : operand<30:0> : Zeros(21)

A2-58 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
==

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
==

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
positive

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
'0'

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
sign

ARM_2009_Q1
Sticky Note
These changes ensure that the result for a negative value of operand is always minus the result for the corresponding positive value of operand, as intended. The existing pseudocode fails to have this property because the recip_estimate() function does not have the corresponding property that recip_estimate(-a) is always equal to -recip_estimate(a).

Application Level Programmers’ Model

// Call C function to get reciprocal estimate of scaled value.

estimate = recip_estimate(dp_operand);

// Result is double-precision and a multiple of 1/256 in the range 1 to 511/256.
// Multiply by 2A31 and convert to an unsigned integer - this just involves

// concatenating the implicit units bit with the top 31 fraction bits.

result = ‘1’ : estimate<51:21>;

return result;

where recip_estimate() is defined by the following C function:

double recip_estimate(double a)
{

int q, s;

double r;

q = (int)(a = 512.0); /% a in units of 1/512 rounded down =/

r

3

return (double)s / 256.0;
}

1.0 / (((double)q + @.5) / 512.0); /« reciprocal r =/
(int)(256.0 = r + 0.5); /% r in units of 1/256 rounded to nearest x/

Table A2-9 shows the results where input values are out of range.

Table A2-9 VRECPE results for out-of-range inputs

Number type Input VmJi] Result vd[i]
Integer <= Ox7FFFFFFF OXFFFFFFFF
Floating-point NaN Default NaN
Floating-point +/— 0 or denormalized number +/— Infinity @
Floating-point +/—infinity +/-0
Floating-point Absolute value >= 2126 +/-0

a The Division by Zero exception bit in the FPSCR (FPSCR[1]) is set

The Newton-Raphson iteration:

Xns1 = Xn(2-dxn)

convergesto (1/d) if xp isthe result of VRECPE applied to d.

The VRECPS instruction performs a 2 - op1*op2 calculation and can be used with a multiplication to
perform astep of thisiteration. The functionality of thisinstruction is defined by the following pseudocode

function:

// FPRecipStep()

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

A2-59

Application Level Programmers’ Model

bits(32) FPRecipStep(bits(32) opl, bits(32) op2)
(typel,signl,valuel) = FPUnpack(opl, StandardFPSCRValue());
(type2,sign2,value2) = FPUnpack(op2, StandardFPSCRValue());

(done, result) = FPProcessNaNs(typel, type2, opl, op2, StandardFPSCRValue());

if !done then
infl = (typel == FPType_Infinity); 1inf2 = (type2 == FPType_Infinity);
zerol = (typel == FPType_Zero); zero2 = (type2 == FPType_Zero);
if (infl && zero2) || (zerol && inf2) then
product = FPZero(‘0Q’, 32);
else
product = FPMul(opl, op2, FALSE);
result = FPSub(FPTwo(32), product, FALSE)
return result;

Table A2-10 shows the results where input values are out of range.

Table A2-10 VRECPS results for out-of-range inputs

Input Vn[i] Input Vm[i] Result Vd[i]
Any NaN - Default NaN
- Any NaN Default NaN
+/— 0.0 or denormalized number +/—infinity 20
+/—infinity +/—0.0 or denormalized number 2.0

Square root

// FPSqrt()

bits(N) FPSqrt(bits(N) operand, boolean fpscr_controlled)
assert N == 32 || N == 64;
fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
(type,sign,value) = FPUnpack(operand, fpscr_val);
if type == FPType_SNaN || type == FPType_QNaN then
result = FPProcessNaN(type, operand, fpscr_val);
elsif type == FPType_Zero || (type = FPType_Infinity && sign == ‘@’) then
result = operand;
elsif sign == ‘1’ then
result = FPDefaultNaN(N);
FPProcessException(FPExc_InvalidOp, fpscr_val);
else
result = FPRound(Sqrt(value), N, fpscr_val);
return result;

A2-60

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

ARM DDI 0406B

Application Level Programmers’ Model

Reciprocal square root

The Advanced SIMD extension includes instructions that support Newton-Raphson calculation of the
reciprocal of the square root of a number.

TheVRSQRTE instruction producestheinitial estimate of thereciprocal of the squareroot. It usesthefollowing
pseudocode functions:

// FPRSqrtEstimate()
// =s=====s==========

bits(32) FPRSqrtEstimate(bits(32) operand)

(type,sign,value) = FPUnpack(operand, StandardFPSCRValue());
if type == FPType_SNaN || type == FPType_QNaN then
result = FPProcessNaN(type, operand, StandardFPSCRValue());
elsif type 5 FPType_Zero then
result = FPInfinity(sign, 32);
FPProcessException(FPExc_DivideByZero, StandardFPSCRValue());
elsif sign == ‘1’ then
result = FPDefauTtNaN(32);
FPProcessException(FPExc_InvalidOp, StandardFPSCRValue());
elsif type 5 FPType_Infinity then
result = FPZero(‘0’, 32);
else
// Operand must be normalized, since denormalized numbers are flushed to zero. Scale to a
// double-precision value in the range 0.25 <= x < 1.0, with the evenness or oddness of
// the exponent unchanged, and calculate result exponent. Scaled value has copied sign
// bit, exponent = 1022 or 1021 = double-precision biased version of -1 or -2, fraction
// = original fraction extended with zeros.
if operand<23> == ‘0’ then
scaled = operand<31> : ‘01111111110 : operand<22:0> : Zeros(29)
else
scaled = operand<31> : ‘01111111101’ : operand<22:0> : Zeros(29)
result_exp = (380 - UInt(operand<30:23>)) DIV 2;

// Call C function to get reciprocal estimate of scaled value.
estimate = recip_sqrt_estimate(scaled);

// Result is double-precision and a multiple of 1/256 in the range 1 to 511/256. Convert
// to scaled single-precision result with copied sign bit and high-order fraction bits,
// and exponent calculated above.

result = estimate<63> : result_exp<7:0> : estimate<51:29>;

return result;

// UnsignedRSqrtEstimate()
//

bits(32) UnsignedRSqrtEstimate(bits(32) operand)

if operand<31:30> == ‘00’ then // Operands <= Ox3FFFFFFF produce OxFFFFFFFF
result = Ones(32);
else

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-61

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
==

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
==

Application Level Programmers’ Model

// Generate double-precision value = operand x 2A-32. This has zero sign bit,
// exponent = 1022 or 1021 = double-precision biased version of -1 or -2,
// fraction taken from operand, excluding its most significant one or two bits.
if operand<31> == ‘1’ then

dp_operand = ‘0 01111111110 : operand<30:0> : Zeros(21);
else // operand<31:30> == ‘01’

dp_operand = ‘@ 01111111101’ : operand<29:0> : Zeros(22);

// Call C function to get reciprocal estimate of scaled value.
estimate = recip_sqrt_estimate(dp_operand);

// Result is double-precision and a multiple of 1/256 in the range 1 to 511/256.
// Multiply by 2A31 and convert to an unsigned integer - this just involves

// concatenating the implicit units bit with the top 31 fraction bits.

result = ‘1’ : estimate<51:21>;

return result;

where recip_sqrt_estimate() is defined by the following C function:

double recip_sqrt_estimate(double a)

{

}

int g0, ql, s;
double r;
if (a < 0.5) /+ range 0.25 <= a < 0.5 %/
{
g0 = (int)(a = 512.0); /% a in units of 1/512 rounded down =/
r=1.0 / sqrt(((double)qd + 0.5) / 512.0); /+ reciprocal root r x/
}
else /% range 0.5 <=a < 1.0 «/
{
gl = (int)(a = 256.0); /% a in units of 1/256 rounded down =/
r=1.0 / sqrt(((double)ql + 0.5) / 256.0); /+ reciprocal root r x/
}

s = (int)(256.0 = r + 0.5); /+ r in units of 1/256 rounded to nearest x/
return (double)s / 256.0;

Table A2-11 shows the results where input values are out of range.

Table A2-11 VRSQRTE results for out-of-range inputs

Number type Input Vm[i] Result Vd[i]

Integer <= Ox3FFFFFFF OXFFFFFFFF

Floating-point NaN, —normalized number, —infinity ~ Default NaN

Floating-point — 0 or —denormalized number —infinity @
Floating-point + 0 or + denormalized number + infinity @
Floating-point + infinity +0

A2-62

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Programmers’ Model

a TheDivision by Zero exception bit in the FPSCR (FPSCR[1]) is set.

The Newton-Raphson iteration:
Xni1 = Xn(3-dXn2)/2
converges to (1/Vd) if xg is the result of VRSQRTE applied to d.

TheVRSQRTS instruction performs a (3 — op1* op2)/2 cal culation and can be used with two multiplications to
perform astep of thisiteration. The functionality of thisinstruction is defined by the following pseudocode
function:

// FPRSqrtStep()

bits(32) FPRSqrtStep(bits(32) opl, bits(32) op2)
(typel,signl,valuel) = FPUnpack(opl, StandardFPSCRValue());
(type2,sign2,value2) = FPUnpack(op2, StandardFPSCRValue());
(done,result) = FPProcessNaNs(typel, type2, opl, op2, StandardFPSCRValue());
if !done then
infl = (typel == FPType_Infinity); 1inf2 = (type2 == FPType_Infinity);
zerol = (typel == FPType_Zero); zero2 = (type2 == FPType_Zero);
if (infl && zero2) || (zerol && inf2) then
product = FPZero(‘0Q’, 32);
else
product = FPMul(opl, op2, FALSE);
result = FPDiv(FPSub(FPThree(32), product, FALSE), FPTwo(32), FALSE);
return result;

Table A2-12 shows the results where input values are out of range.

Table A2-12 VRSQRTS results for out-of-range inputs

Input Vn[i] Input Vm[i] Result Vd[i]
Any NaN - Default NaN
- Any NaN Default NaN
+/— 0.0 or denormalized number +/—infinity 15
+/—infinity +/-0.0 or denormalized number 1.5

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-63

Application Level Programmers’ Model

Conversions

The following functions perform conversions between half-precision and single-precision floating-point

numbers.

// FPHalfToSingle()
A ——

bits(32) FPHalfToSingle(bits(16) operand, boolean fpscr_controlled)
fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
(type,sign,value) = FPUnpack(operand, fpscr_val);
if type == FPType_SNaN || type == FPType_QNaN then
if fpscr_val<25> == ‘1’ then // DN bit set
result = FPDefaultNaN(32);
else
result = sign : ‘11111111 1’ : operand<8:0> : Zeros(13);
if type == FPType_SNaN then
FPProcessException(FPExc_InvalidOp, fpscr_val);
elsif type 5 FPType_Infinity then
result = FPInfinity(sign, 32);
elsif type 5 FPType_Zero then
result = FPZero(sign, 32);
else
result = FPRound(value, 32, fpscr_val); // Rounding will be exact
return result;

// FPSingleToHalf()
e

bits(16) FPSingleToHalf(bits(32) operand, boolean fpscr_controlled)
fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
(type,sign,value) = FPUnpack(operand, fpscr_val);
if type == FPType_SNaN || type == FPType_QNaN then
if fpscr_val<26> == ‘1’ then // AH bit set
result = FPZero(sign, 16);
elsif fpscr_val<25> == ‘1’ then // DN bit set
result = FPDefaultNaN(16);
else
result = sign : ‘11111 1’ : operand<21:13>;
if type == FPType_SNaN || fpscr_val<26> == ‘1’ then
FPProcessException(FPExc_InvalidOp, fpscr_val);
elsif type ;= FPType_Infinity then
if fpscr_val<26> == ‘1’ then // AH bit set
result = sign : Ones(15);
FPProcessException(FPExc_InvalidOp, fpscr_val);
else
result = FPInfinity(sign, 16);
elsif type 5 FPType_Zero then
result = FPZero(sign, 16);
else
result = FPRound(value, 16, fpscr_val);
return result;

A2-64 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

ARM DDI 0406B

ARM_2011_Q2
Inserted Text
=

ARM_2011_Q2
Inserted Text
=

ARM_2011_Q2
Inserted Text
=

ARM_2011_Q2
Inserted Text
=

Application Level Programmers’ Model

The following functions perform conversions between single-precision and double-precision floating-point
numbers.

// FPSingleToDouble()
/] =======smmssm==ame

bits(64) FPSingleToDouble(bits(32) operand, boolean fpscr_controlled)
fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
(type,sign,value) = FPUnpack(operand, fpscr_val);
if type == FPType_SNaN || type == FPType_QNaN then
if fpscr_val<25> == ‘1’ then // DN bit set
result = FPDefaultNaN(64);
else
result = sign : ‘11111111111 1’ : operand<21:0> : Zeros(29);
if type == FPType_SNaN then
FPProcessException(FPExc_InvalidOp, fpscr_val);
elsif type 5 FPType_Infinity then
result = FPInfinity(sign, 64);
elsif type 5 FPType_Zero then
result = FPZero(sign, 64);
else
result = FPRound(value, 64, fpscr_val); // Rounding will be exact
return result;

// FPDoubleToSingle()
/AR

bits(32) FPDoubleToSingle(bits(64) operand, boolean fpscr_controlled)
fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
(type,sign,value) = FPUnpack(operand, fpscr_val);
if type == FPType_SNaN || type == FPType_QNaN then
if fpscr_val<25> == ‘1’ then // DN bit set
result = FPDefaultNaN(32);
else
result = sign : ‘11111111 1’ : operand<50:29>;
if type == FPType_SNaN then
FPProcessException(FPExc_InvalidOp, fpscr_val);
elsif type 5 FPType_Infinity then
result = FPInfinity(sign, 32);
elsif type 5 FPType_Zero then
result = FPZero(sign, 32);
else
result = FPRound(value, 32, fpscr_val);
return result;

The following functions perform conversions between floating-point numbers and integers or fixed-point
numbers:

// FPToFixed()

/] ===========

bits(M) FPToFixed(bits(N) operand, integer M, integer fraction_bits, boolean unsigned,
boolean round_towards_zero, boolean fpscr_controlled)
assert N == 32 || N == 64;
fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-65

ARM_2011_Q2
Inserted Text
=

ARM_2011_Q2
Inserted Text
=

ARM_2011_Q2
Inserted Text
=

ARM_2011_Q2
Inserted Text
=

Application Level Programmers’ Model

if round_towards_zero then fpscr_val<23:22> = ‘11’;
(type,sign,value) = FPUnpack(operand, fpscr_val);

// For NaNs and infinities, FPUnpack() has produced a value that will round to the
// required result of the conversion. Also, the value produced for infinities will
// cause the conversion to overflow and signal an Invalid Operation floating-point
// exception as required. NaNs must also generate such a floating-point exception.
if type == FPType_SNaN || type == FPType_QNaN then
FPProcessException(FPExc_InvalidOp, fpscr_val);

// Scale value by specified number of fraction bits, then start rounding to an integer
// and determine the rounding error.

value = value * 2Afraction_bits;

int_result = RoundDown(value);

error = value - int_result;

// Apply the specified rounding mode.
case fpscr_val<23:22> of
when ‘00’ // Round to Nearest (rounding to even if exactly halfway)
round_up = (error > 0.5 || (error == 0.5 && int_result<0> == ‘1’));
when ‘01’ // Round towards Plus Infinity
round_up = (error != 0.0);
when ‘10’ // Round towards Minus Infinity
round_up = FALSE;
when ‘11" // Round towards Zero
round_up = (error != 0.0 & int_result < 0);
if round_up then int_result = int_result + 1;

// Bitstring result is the integer result saturated to the destination size, with
// saturation indicating overflow of the conversion (signaled as an Invalid
// Operation floating-point exception)
(result, overflow) = SatQ(int_result, M, unsigned);
if overflow then
FPProcessException(FPExc_InvalidOp, fpscr_val);
elsif error != 0 then
FPProcessException(FPExc_Inexact, fpscr_val);

return result;

// FixedToFP()

bits(N) FixedToFP(bits(M) operand, integer N, integer fraction_bits, boolean unsigned,
boolean round_to_nearest, boolean fpscr_controlled)
assert N == 32 || N == 64;
fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
if round_to_nearest then fpscr_val<23:22> = ‘00’;
int_operand = if unsigned then UInt(operand) else SInt(operand);
real_operand = int_operand / 2Afraction_bits;
if real_operand == 0.0 then
result = FPZero(‘0’, N);
else
result = FPRound(real_operand, N, fpscr_val);
return result;

A2-66 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Programmers’ Model

A2.8 Polynomial arithmetic over {0,1}

The polynomial data type represents a polynomial in x of the form by_jx1 + ... + bix + bp where by is
bit [k] of the value.

The coefficients 0 and 1 are manipulated using the rules of Boolean arithmetic:
. 0+0=1+1=0

. 0+1=1+0=1

. 0*0=0*1=1*0=0

. 1*1=1.
That is:
. adding two polynomials over {0,1} isthe same as a bitwise exclusive OR

. multiplying two polynomials over {0,1} is the same as integer multiplication except that partial
products are exclusive-ORed instead of being added.

A2.8.1 Pseudocode details of polynomial multiplication
In pseudocode, polynomial addition is described by the EOR operation on bitstrings.
Polynomial multiplication is described by the PolynomialMult() function:

// PolynomialMult()
[/ ——

bits(M+N) PolynomialMult(bits(M) opl, bits(N) op2)
result = Zeros(M+N);
extended_op2 = Zeros(M) : op2;
for i=0 to M-1
if opl<i> == ‘1’ then
result = result EOR LSL(extended_op2, i);
return result;

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-67

Application Level Programmers’ Model

A2.9 COpI’OCE‘SSOf support

Coprocessor spaceis used to extend the functionality of an ARM processor. There are sixteen coprocessors

defined in the coprocessor instruction space. These are commonly known as CPO to CP15. The following

coprocessors are reserved by ARM for specific purposes:

. Coprocessor 15 (CP15) provides system control functionality. Thisincludes architecture and feature
identification, as well as control, status information and configuration support. The following
sections describe CP15:

— CPi15registersfor a VMSA implementation on page B3-64
— CP15registers for a PMSA implementation on page B4-22.
CP15 a so provides performance monitor registers, see Chapter C9 Performance Monitors.
. Coprocessor 14 (CP14) supports:
— debug, see Chapter C6 Debug Register Interfaces
— theexecution environment features defined by the architecture, see Execution environment
support on page A2-69.

. Coprocessor 11 (CP11) supports double-precision floating-point operations.

. Coprocessor 10 (CP10) supports single-precision floating-point operations and the control and
configuration of both the VFP and the Advanced SIMD architecture extensions.

. Coprocessors 8, 9, 12, and 13 are reserved for future use by ARM.

Note

Any implementation that includes either or both of the Advanced SIMD extension and the VFP extension

must enable access to both CP10 and CP11, see Enabling Advanced SMD and floating-point support on

page B1-64.

In general, privileged accessis required for:

. system control through CP15

. debug control and configuration

. access to the identification registers

. access to any register bits that enable or disable coprocessor features.

For detail s of the exact split between the privileged and unprivileged coprocessor operations see the relevant

sections of this manual.

All load, store, branch and data operation instructions associated with floating-point, Advanced SIMD and

execution environment support can execute unprivileged.

Coprocessors 0 to 7 can be used to provide vendor specific features.

A2-68 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

A2.10

A2.10.1

Application Level Programmers’ Model

Execution environment support

The Jazelle and ThumbEE states, introduced in ISETSTATE on page A2-15, support execution
environments:

. The ThumbEE stateis more generic, supporting avariant of the Thumb instruction set that minimizes
the code size overhead generated by aJust-In-Time (JIT) or Ahead-Of-Time (AOT) compiler. J T and
AQOT compilers convert execution environment source code to a native executable. For more
information, see Thumb Execution Environment.

. The Jazelle state is specific to hardware accel eration of Java bytecodes. For more information, see
Jazelle direct bytecode execution support on page A2-73.

Thumb Execution Environment

Thumb Execution Environment (ThumbEE) isavariant of the Thumb instruction set designed as atarget for
dynamically generated code. Thisis code that is compiled on the device, from a portable bytecode or other
intermediate or native representation, either shortly before or during execution. ThumbEE provides support
for Just-In-Time (JIT), Dynamic Adaptive Compilation (DAC) and Ahead-Of-Time (AOT) compilers, but
cannot interwork freely with the ARM and Thumb instruction setsy

ThumbEE is particularly suited to languages that feature managed pointers and array types.

ThumbEE executes instructionsin the ThumbEE instruction set state. For information about instruction set
states see |ISETSTATE on page A2-15.

See Thumb Execution Environment on page B1-73 for system level information about ThumbEE.

ThumbEE instructions

In ThumbEE state, the processor executes almost the sameinstruction set asin Thumb state. However some
instructions behave differently, some are removed, and some ThumbEE instructions are added.

The key differences are:
. additional instructions to change instruction set in both Thumb state and ThumbEE state

. new ThumbEE instructions to branch to handlers

. null pointer checking on load/store instructions executed in ThumbEE state
. an additional instruction in ThumbEE state to check array bounds

. some other modifications to load, store, and control flow instructions.

For more information about the ThumbEE instructions see Chapter A9 ThumbEE.

ThumbEE configuration
ThumbEE introduces two new registers:

. ThumbEE Configuration Register, TEECR. This contains a single bit, the ThumbEE configuration
control bit, XED.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-69

ARM_2011_Q2
Inserted Text

From the publication of the ARM_2011_Q2 release of this errata PDF, ARM deprecates any use of the ThumbEE instruction set.

ARM_2011_Q2
Sticky Note
The insertion after this paragraph deprecates use of the ThumbEE instruction set.

Application Level Programmers’ Model

. ThumbEE Handler Base Register. This contains the base address for ThumbEE handlers.

A handler is a short, commonly executed, sequence of instructions. It istypically, but not always,
associated directly with one or more bytecodes or other intermediate language elements.

Changes to these CP14 registers have the same synchronization requirements as changes to the CP15
registers. These are described in:

. Changesto CP15 registers and the memory order model on page B3-77 for aVMSA implementation
. Changesto CP15 registers and the memory order model on page B4-28 for aPM SA implementation.

ThumbEE isan unprivileged, user-level facility, and there are no specia provisionsfor using it securely. For
more information, see ThumbEE and the Security Extensions on page B1-73.

ThumbEE Configuration Register (TEECR)

The ThumbEE Configuration Register (TEECR) controls unprivileged access to the ThumbEE Handler
Base Register.

The TEECRIis:
. aCP14 register
. a 32-hit register, with access rights that depend on the current privilege:
— theresult of an unprivileged write to the register is UNDEFINED
— unprivileged reads, and privileged reads and writes, are permitted.
. when the Security Extensions are implemented, a Common register.

The format of the TEECR is:
31 1 0

UNK/SBZP XED

Bits[3L:1] UNK/SBZP

XED, bit [0] Execution Environment Disable bit. Controls unprivileged access to the ThumbEE Handler

Base Register:
0 Unprivileged access permitted.
1 Unprivileged access disabled.

The reset value of thishit isO.

The effects of awrite to thisregister on ThumbEE configuration are only guaranteed to be visible to
subsequent instructions after the execution of an ISB instruction, an exception entry or an exception return.
However, aread of this register always returns the value most recently written to the register.

To access the TEECR, read or write the CP14 registers with an MRC or MCR instruction with <opc1> set to 6,
<CRn> set to ¢0, <CRm> set to 0, and <opc2> set to 0. For example:

MRC pl4, 6, <Rt>, c@, c@, @ ; Read ThumbEE Configuration Register
MCR pl4, 6, <Rt>, c@, c@, @ ; Write ThumbEE Configuration Register

A2-70

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Programmers’ Model

ThumbEE Handler Base Register (TEEHBR)

The ThumbEE Handler Base Register (TEEHBR) holds the base address for ThumbEE handlers.
The TEEHBRIs:

. aCP14 register

. a 32-hit read/write register, with access rights that depend on the current privilege and the value of
the TEECR.XED hit:
— privileged accesses are always permitted
— when TEECR.XED == 0, unprivileged accesses are permitted
— when TEECR.XED == 1, the result of an unprivileged access iS UNDEFINED.

. when the Security Extensions are implemented, a Common register.

Theformat of the TEEHBRis:
31 2 10
HandlerBase SBZ |

Handler Base, bits[31:2]

The address of the ThumbEE Handler_00 implementation. Thisisthe address of thefirst of
the ThumbEE handlers.

Thereset value of thisfield is UNKNOWN.
bits[1:0] Reserved, SBZ,

The effects of awrite to this register on ThumbEE handler entry are only guaranteed to be visible to
subsequent instructions after the execution of an ISB instruction, an exception entry or an exception return.
However, aread of this register always returns the value most recently written to the register.

To accessthe TEEHBR, read or write the CP14 registers with an MRC or MCR instruction with <opcl> set to 6,
<CRn> set to c1, <CRm> set to 0, and <opc2> set to 0. For example:

MRC pl4, 6, <Rt>, cl, c@, @ ; Read ThumbEE Handler Base Register
MCR pl4, 6, <Rt>, cl, c@, @ ; Write ThumbEE Handler Base Register

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-71

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
UNK/SBZP

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
UNK/SBZP

Application Level Programmers’ Model

Use of HandlerBase

ThumbEE handlers are entered by reference to a HandlerBase address, defined by the TEEHBR. See
ThumbEE Handler Base Register (TEEHBR) on page A2-71. Table A2-13 shows how the handlers are

arranged in relation to the value of HandlerBase:

Table A2-13 Access to ThumbEE handlers

Offset from HandlerBase Name

Value stored

-0x0008 IndexCheck Branch to IndexCheck handler
-0x0004 NullCheck Branch to NullCheck handler
+0x0000 Handler_00 Implementation of Handler_00
+0x0020 Handler_01 Implementation of Handler_01
+(0x0000 + 32n) Handler_<n> Implementation of Handler_<n>

Implementation of additional handlers

The IndexCheck occurs when a CHKA instruction detects an index out of range. For more information, see

CHKA on page A9-15.

The NullCheck occurswhen any memory accessinstruction isexecuted with avalue of 0inthe baseregister.

For more information, see Null checking on page A9-3.

Note

Checks are similar to conditional branches, with the added property that they clear the IT bits when taken.

Other handlers are called using explicit handler call instructions. For details see the following sections:

. HB, HBL on page A9-16
. HBLP on page A9-17
. HBP on page A9-18.

A2-72 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Programmers’ Model

A2.10.2 Jazelle direct bytecode execution support

From ARMV5TEJ, the architecture requires every system to include an implementation of the Jazelle
extension. The Jazelle extension provides architectural support for hardware acceleration of bytecode
execution by a Java Virtual Machine (JVM).

In the simplest implementations of the Jazelle extension, the processor does not accel erate the execution of
any bytecodes, and the VM uses software routines to execute all bytecodes. Such an implementation is
called atrivial implementation of the Jazelle extension, and has minimal additional cost compared with not
implementing the Jazelle extension at all. An implementation that provides hardware acceleration of
bytecode execution is a non-trivial Jazelle implementation.

These requirements for the Jazelle extension mean a JVM can be written to both:
. function correctly on all processors that include a Jazelle extension implementation

. automatically take advantage of the accel erated bytecode execution provided by a processor that
includes a non-trivial implementation.

Typically, anon-trivial implementation of the Jazelle extension implements a subset of the bytecodesin
hardware, choosing bytecodes that:

. can have simple hardware implementations
. account for alarge percentage of bytecode execution time.

The required features of anon-trivial implementation are:

. provision of the Jazelle state

. anew instruction, BXJ, to enter Jazelle state

. system support that enables an operating system to regul ate the use of the Jazelle extension hardware
. system support that enables a JVM to configure the Jazelle extension hardware to its specific needs.

The required features of atrivial implementation are:

. Normally, the Jazelle instruction set state is never entered. If an incorrect exception return causes
entry to the Jazelle instruction set state, the next instruction executed is treated as UNDEFINED.

. The BX]J instruction behaves as a BX instruction.
. Configuration support that maintains the interface to the Jazelle extension is permanently disabled.

For more information about trivial implementations see Trivial implementation of the Jazelle extension on
page B1-81.

A JVM that has been written to take advantage automatically of hardware-accelerated bytecode execution
isknown as an Enabled JVM (EJVM).

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-73

Application Level Programmers’ Model

Subarchitectures

A processor implementation that includes the Jazelle extension expects the general-purpose register values
and other resources of the ARM processor to conform to an interface standard defined by the Jazelle
implementation when Jazelle state is entered and exited. For example, a specific general-purpose register
might be reserved for use as the pointer to the current bytecode.

In order for an EJVM and associated debug support to function correctly, it must be written to comply with
the interface standard defined by the acceleration hardware at Jazelle state execution entry and exit points.

An implementation of the Jazelle extension might define other configuration registersin addition to the
architecturally defined ones.

The interface standard and any additional configuration registers used to communicate with the Jazelle
extension are known collectively as the subarchitecture of the implementation. They are not described in
thismanual. Only EJVM implementations and debug or similar software can depend on the subarchitecture.
All other softwaremust rely only on the architectural definition of the Jazelle extension givenin thismanual.
A particular subarchitecture isidentified by reading the JIDR described in Jazelle ID Register (JIDR) on
page A2-76.

Jazelle state

While the processor isin Jazelle state, it executes bytecode programs. A bytecode program is defined as an
executable object that comprises one or more class files, or is derived from and functionally equivalent to
one or more class files. See Lindholm and Yellin, The Java Virtual Machine Specification 2nd Edition for
the definition of class files.

While the processor isin Jazelle state, the PC identifies the next VM bytecode to be executed. A VM
bytecode is a bytecode defined in Lindholm and Yellin, or afunctionally equivalent transformed version of
abytecode defined in Lindholm and Yellin.

For the Jazelle extension, the functionality of Native methods, as described in Lindholm and Yellin, must be
specified using only instructions from the ARM, Thumb, and ThumbEE instruction sets.

An implementation of the Jazelle extension must not be documented or promoted as performing any task
whileit isin Jazelle state other than the acceleration of bytecode programsin accordance with this section
and The Java Virtual Machine Specification.

Jazelle state entry instruction, BXJ

ARMvV7 includes an ARM instruction similar to BX. The BXJ instruction has a single register operand that
specifies atarget instruction set state, ARM state or Thumb state, and branch target address for use if entry
to Jazelle state is not available. For more information, see BXJ on page A8-64.

Correct entry into Jazelle state involves the EJVM executing the BXJ instruction at a time when both:

. the Jazelle extension Control and Configuration registers are initialized correctly, see Application
level configuration and control of the Jazelle extension on page A2-75

A2-74

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Programmers’ Model

. application level registers and any additional configuration registersareinitialized asrequired by the
subarchitecture of the implementation.

Executing BXJ with Jazelle extension enabled

Executing aBXJ instruction when the IMCR.JE bit is 1, see Jazelle Main Configuration Register (JMCR) on
page A2-77, causes the Jazelle hardware to do one of the following:

. enter Jazelle state and start executing bytecodes directly from a SUBARCHITECTURE DEFINED address
. branch to a SUBARCHITECTURE DEFINED handler.

Which of these occurs is SUBARCHITECTURE DEFINED.

The Jazelle subarchitecture can use Application Level registers (but not System Level registers) to transfer
information between the Jazelle extension and the EJVM. There are SUBARCHITECTURE DEFINED
restrictions on what Application Level registers must contain when a BXJinstruction is executed, and
Application Level registers have SUBARCHITECTURE DEFINED values when Jazell e state execution ends and
ARM or Thumb state execution resumes.

Jazelle subarchitectures and implementations must not use any unallocated bitsin Application Level
registers such as the CPSR or FPSCR. All such bits are reserved for future expansion of the ARM
architecture.

Executing BXJ with Jazelle extension disabled

If aBXJ instruction is executed when the IMCR.JE hit is O, it is executed identically to aBX instruction with
the same register operand.

Thismeansthat BXJ instructions can be executed freely when the IMCR.JE bit isO. In particular, if an EIVM
determines that it is executing on a processor whose Jazelle extension implementation is trivial or uses an
incompatible subarchitecture, it can set JE == 0 and execute correctly. In this case it executes without the
benefit of any Jazelle hardware accel eration that might be present.

Application level configuration and control of the Jazelle extension

All registers associated with the Jazelle extension are implemented in coprocessor space as part of
coprocessor 14 (CP14). The registers are accessed using the instructions:

. MCR, see MCR, MCR2 on page A8-186
. MRC, see MRC, MRC2 on page A8-202.

In anon-trivial implementation at least three registers are required. These are described in:
. Jazelle ID Register (JIDR) on page A2-76

. Jazelle Main Configuration Register (JMCR) on page A2-77

. Jazelle OS Control Register (JOSCR) on page B1-77.

Additional configuration registers might be provided and are SUBARCHITECTURE DEFINED.
The following rules apply to all Jazelle extension control and configuration registers:

. All configuration registers are accessed by CP14 MRC and MCR instructions with <opcl> set to 7.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-75

Application Level Programmers’ Model

. The values contained in configuration registers are changed only by the execution of MCR instructions.
In particular, they are never changed by Jazelle state execution of bytecodes.

. The access policy for the required registersis fully defined in their descriptions. With unprivileged
operation:
— al MCR accesses to the JIDR are UNDEFINED
— MRC and MCR accesses that are restricted to privileged modes are UNDEFINED.

The access policy of other configuration registers is SUBARCHITECTURE DEFINED.

. When the Security Extensions are implemented, the registers are common to the Secure and
Non-secure security states. For more information, see Effect of the Security Extensions on the CP15
registerson page B3-71. This section appliesto some CP14 registers aswell asto the CP15 registers.

. When a configuration register is readable, reading the register returns the last value written to it.
Reading areadable configuration register has no side effects.

When a configuration register is not readable, attempting to read it returns an UNKNOWN value.

. When a configuration register can be written, the effect of writing to it must be idempotent. That is,
the overall effect of writing the same value more than once must not differ from the effect of writing
it once.

Changes to these CP14 registers have the same synchronization reguirements as changes to the CP15
registers. These are described in:

. Changesto CP15 registers and the memory order model on page B3-77 for aVM SA implementation
. Changesto CP15 registers and the memory order model on page B4-28 for aPM SA implementation.

For more information, see Jazelle state configuration and control on page B1-77.

Jazelle ID Register (JIDR)

The Jazelle ID Register (JIDR) enables an EJVM to determine the architecture and subarchitecture under
which it isrunning.

The JDRis:
. aCP14 register

. a 32-bit read-only register

. accessible during privileged and unprivileged execution
. when the Security Extensions are implemented, a Common register, see Common CP15 registerson
page B3-74.

A2-76 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Programmers’ Model

The format of the JIDR is:
31 28 27 20 19 12 11 0
Architecture Implementer Subarchitecture SUBARCHITECTURE DEFINED

Architecture, bits[31:28]
Architecture code. Thisusesthe same Architecture codethat appearsinthe Main ID register
in coprocessor 15, see cO, Main ID Register (MIDR) on page B3-81 (VMSA
implementation) or cO, Main ID Register (MIDR) on page B4-32 (PM SA implementation).
Implementer, bits[27:20]

Implementer code of the designer of the subarchitecture. This uses the same Implementer
code that appearsin the Main ID register in coprocessor 15, see c0, Main |ID Register
(MIDR) on page B3-81 (VM SA implementation) or c0, Main ID Register (MIDR) on
page B4-32 (PM SA implementation).

If the trivial implementation of the Jazelle extension is used, the Implementer code is 0x00.

Subar chitecture, bits[19:12]
Contain the subarchitecture code. The following subarchitecture code is defined:

0x00 Jazelle v1 subarchitecture, or trivial implementation of Jazelle extension if
Implementer code is 0x00.

bits[11:0] Contain additional SUBARCHITECTURE DEFINED information.

To accessthe JIDR, read the CP14 registerswith an MRC instruction with <opc1> set to 7, <CRn> set to 0, <CRm>
set to 0, and <opc2> set to 0. For example:

MRC pl4, 7, <Rt>, c0, c0, 0 ; Read Jazelle ID register

Jazelle Main Configuration Register (JMCR)

The Jazelle Main Configuration Register (JIMCR) controls the Jazelle extension.
TheMCRIs:

. aCP14 register

. a 32-hit register, with access rights that depend on the current privilege:
— for privileged operations the register is read/write
— for unprivileged operations, the register is normally write-only

. when the Security Extensions are implemented, a Common register, see Common CP15 registerson
page B3-74.

For more information about unprivileged access restrictions see Access to Jazelle registers on page A2-78.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-77

Application Level Programmers’ Model

The format of the IMCRis:
31 10
SUBARCHITECTURE DEFINED JE

bit [31:1] SUBARCHITECTURE DEFINED information.

JE, bit [0] Jazelle Enable bit:

0 Jazelle extension disabled. The BX] instruction does not cause Jazelle state
execution. BXJ behaves exactly as aBX instruction, see Jazelle state entry
instruction, BXJ on page A2-74.

1 Jazelle extension enabled.
The reset value of thishit isO.

To access the IMCR, read or write the CP14 registers with an MRC or MCR instruction with <opcl> set to 7,
<CRn> set to c2, <CRm> set to 0, and <opc2> set to 0. For example:

MRC pl4, 7, <Rt>, c2, c@, @ ; Read Jazelle Main Configuration register
MCR pl4, 7, <Rt>, c2, c@, @ ; Write Jazelle Main Configuration register

Access to Jazelle registers

Table A2-14 shows the access permissions for the Jazelle registers, and how unprivileged access to the
registers depends on the value of the JOSCR.

Table A2-14 Access to Jazelle registers

Unprivileged access
Jazelle register Privileged access
JOSCR.CD ==02 JOSCR.CD == 12

Read access permitted Read access permitted

Read and write access
UNDEFINED

JDR

Write access ignored Write access ignored

Read access UNDEFINED ;
JMCR Read and write access Read and write access permitted

Write access permitted ~ UNDEFINED
SUBARCHITECTURE Read access UNDEFINED Read and wiite socess Read access SUBARCHITECTURE
DEFINED configuration DEFINED
registers UNDEFINED
& Write access permitted Write access permitted

a. SeeJazelle OS Control Register (JOSCR) on page B1-77.

A2-78 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Programmers’ Model

EJVM operation

The following subsections summarize how an EJVM must operate, to meet the requirements of the

architecture:

. Initialization

. Bytecode execution

. Jazelle exception conditions

. Other considerations on page A2-80.

Initialization

During initialization, the EIVM must first check which subarchitecture is present, by checking the
Implementer and Subarchitecture codes in the value read from the JIDR.

If the EJVM isincompatible with the subarchitecture, it must do one of the following:
. write avalue with JE == 0 to the IMCR
. if unaccelerated bytecode execution is unacceptable, generate an error.

If the EIVM is compatible with the subarchitecture, it must write its required configuration to the IMCR
and any SUBARCHITECTURE DEFINED configuration registers.

Bytecode execution
The EJVM must contain a handler for each bytecode.
The EJVM initiates bytecode execution by executing a BX] instruction with:

. the register operand specifying the target address of the bytecode handler for the first bytecode of the
program

. the Application Level registers set up in accordance with the SUBARCHITECTURE DEFINED interface
standard.

The bytecode handler:

. performs the data-processing operations required by the bytecode indicated
. determines the address of the next bytecode to be executed

. determines the address of the handler for that bytecode

. performs aBXJ to that handler address with the registers again set up to the SUBARCHITECTURE
DEFINED interface standard.

Jazelle exception conditions

During bytecode execution, the EJVM might encounter SUBARCHITECTURE DEFINED Jazelle exception
conditions that must be resolved by a software handler. For example, in the case of a configuration invalid
handler, the handler rewrites the desired configuration to the JIM CR and to any SUBARCHITECTURE DEFINED
configuration registers.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-79

Application Level Programmers’ Model

On entry to a Jazelle exception condition handler the contents of the Application Level registers are
SUBARCHITECTURE DEFINED. Thisinterface to the Jazelle exception condition handler might differ from the
interface standard for the bytecode handler, in order to supply information about the Jazelle exception
condition.

The Jazelle exception condition handler:

. resolves the Jazelle exception condition

. determines the address of the next bytecode to be executed
. determines the address of the handler for that bytecode

. performs aBXJ to that handler address with the registers again set up to the SUBARCHITECTURE
DEFINED interface standard.

Other considerations

To ensure application execution and correct interaction with an operating system, an EIVM must only
perform operationsthat are permitted in unprivileged operation. In particular, for register accessesthey must
only:

. read the JIDR,

. write to the IMCR, and other configuration registers.

An EJVM must not attempt to access the JOSCR.

A2-80

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Programmers’ Model

A2.11 Exceptions, debug events and checks
ARMV7 uses the following terms to describe various types of exceptional condition:

Exceptions Inthe ARM architecture, exceptions cause entry into a privileged mode and execution of a
software handler for the exception.
—— Note

The terms fl oating-point exception and Jazelle exception condition do not use this meaning
of exception. These terms are described later in thislist.

Exceptions include:

. reset

. interrupts

. memory system aborts
. undefined instructions

. supervisor cals (SVCs).

Most details of exception handling are not visible to application-level code, and are
described in Exceptions on page B1-30. Aspects that are visible to application-level code

are:

. The SVC instruction causes an SV C exception. This provides a mechanism for
unprivileged code to make a call to the operating system (or other privileged
component of the software system).

. If the Security Extensions are implemented, the SMC instruction causes an SMC

exception, but only if it isexecuted in aprivileged mode. Unprivileged code can only
cause SM C exceptionsto occur by methods defined by the operating system (or other
privileged component of the software system).

. TheWFI instruction provides a hint that nothing needs to be done until an interrupt or
similar exception istaken, see Wait For Interrupt on page B1-47. This permitsthe
processor to enter alow-power state until that happens.

. TheWFE instruction provides a hint that nothing needs to be done until either an event
is generated by an SEV instruction or an interrupt or similar exception istaken, see
Wait For Event and Send Event on page B1-44. This permits the processor to enter a
low-power state until one of these happens.

. The YIELD instruction provides a hint that the current execution thread is of low
importance, see The Yield instruction on page A2-82.

Floating-point exceptions
Theserelate to exceptional conditions encountered during floating-point arithmetic, such as
division by zero or overflow. For more information see:
. Floating-point exceptions on page A2-42
. Floating-point Satus and Control Register (FPSCR) on page A2-28
. ANSI/IEEE Std. 754-1985, |EEE Standard for Binary Floating-Point Arithmetic.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-81

Application Level Programmers’ Model

A2.11.1

Jazelle exception conditions

Debug events

Checks

These are conditionsthat cause Jazelle hardware accel eration to exit into asoftware handler,
as described in Jazelle exception conditions on page A2-79.

These are conditionsthat cause a debug system to take action. Most aspects of debug events
are not visible to application-level code, and are described in Chapter C3 Debug Events.
Aspects that are visible to application-level code include:

. The BKPT instruction causes a BKPT Instruction debug event to occur, see BKPT
Instruction debug events on page C3-20.

. The DBG instruction provides a hint to the debug system.
These are provided in the ThumbEE extension. A check causes an unconditional branch to

a specific handler entry point. The base address of the ThumbEE check handlersisheld in
the TEEHBR, see ThumbEE Handler Base Register (TEEHBR) on page A2-71.

The Yield instruction

In a Symmetric Multi-Threading (SMT) design, athread can use a Yield instruction to give a hint to the
processor that it is running on. The Yield hint indicates that whatever the thread is currently doing is of low
importance, and so could yield. For example, the thread might be sitting in a spin-lock. Similar behavior
might be used to modify the arbitration priority of the snoop busin amultiprocessor (MP) system. Defining
such an instruction permits binary compatibility between SMT and SMP systems.

ARMV7 defines aYIELD instruction as a specific NOP-hint instruction, see YIELD on page A8-812.

The YIELD instruction has no effect in a single-threaded system, but developers of such systems can use the
instruction to flag itsintended use on migration to a multiprocessor or multithreading system. Operating
systems can use YIELD in placeswhere ayield hint iswanted, knowing that it will be treated as aNoP if there
is no implementation benefit.

A2-82

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Chapter A3
Application Level Memory Model

This chapter gives an application level view of the memory model. It contains the following sections:

. Address space on page A3-2

. Alignment support on page A3-4

. Endian support on page A3-7

. Synchronization and semaphores on page A3-12

. Memory types and attributes and the memory order model on page A3-24
. Access rights on page A3-38

. Virtual and physical addressing on page A3-40

. Memory access order on page A3-41

. Caches and memory hierarchy on page A3-51.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

A3-1

Application Level Memory Model

A3.1 Address space
The ARM architecture uses asingle, flat address space of 232 8-hit bytes. Byte addresses are treated as
unsigned numbers, running from 0to 232 - 1. The address space is also regarded as:
. 230 32-bit words:
— theaddress of each word isword-aligned, meaning that the addressis divisible by 4 and the
last two bits of the address are 0b00
— theword at word-aligned address A consists of thefour byteswith addresses A, A+1, A+2 and
A+3.
. 231 16-bit halfwords:
— theaddress of each halfword is halfword-aligned, meaning that the address is divisible by 2
and the last bit of the addressis 0
— thehalfword at halfword-aligned address A consists of the two bytes with addresses A and
A+1.
In some situations the ARM architecture supports accesses to halfwords and words that are not aligned to
the appropriate access size, see Alignment support on page A3-4.
Normally, address cal culations are performed using ordinary integer instructions. This means that the
address wraps around if the calculation overflows or underflows the address space. Another way of
describing thisisthat any address calculation is reduced modulo 232,
A3.1.1 Address incrementing and address space overflow
When a processor performs normal sequential execution of instructions, it effectively calculates:
(address_of_current_instruction) + (size_of_executed_instruction)
after each instruction to determine which instruction to execute next.
Note
The size of the executed instruction depends on the current instruction set, and might depend on the
instruction executed.
If this address calculation overflows the top of the address space, the result is UNPREDICTABLE. In other
words, a program must not rely on sequential execution of the instruction at address 0x00000000 after the
instruction at address:
. OxFFFFFFFC, when a 4-byte instruction is executed
. OxFFFFFFFE, when a 2-byte instruction is executed
. OxFFFFFFFF, when a single byte instruction is executed.
A3-2 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Memory Model

This UNPREDICTABLE behavior only appliesto instructions that are executed, including those that fail their
condition code check. Most ARM implementations prefetch instructions ahead of the currently-executing
instruction. If this prefetching overflows the top of the address space, it does not cause UNPREDICTABLE
behavior unless a prefetched instruction with an overflowed address is actually executed.

LDC, LDM, LDRD, POP, PUSH, STC, STRD, and STM instructions access a sequence of words at increasing memory
addresses, effectively incrementing the memory address by 4 for each load or store. If this calculation
overflowsthetop of the address space, the result is UNPREDICTABLE. In other words, programs must not use
theseinstructionsin such away that they attempt to accessthe word at address 0x00000000 sequentially after
the word at address 0xFFFFFFFC.

Note

In some casesinstructionsthat operate on multiple words can decrement the memory addressby 4 after each
word access. If this calculation underflows the address space, by decrementing the address 0x00000000, the
result iS UNPREDICTABLE.

The behavior of any unaligned load or store with a cal culated address that would access the byte at
OXFFFFFFFF and the byte at address 0x00000000 as part of the instruction is UNPREDICTABLE.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A3-3

Application Level Memory Model

A3.2 Alignment support

Instructionsin the ARM architecture are aligned as follows:

. ARM instructions are word-aligned

. Thumb and ThumbEE instructions are halfword-aligned
. Java bytecodes are byte-aligned.

The dataalignment behavior supported by the ARM architecture has changed significantly between ARMv4
and ARMvV7. This behavior isindicated by the SCTLR.U bit, see:

. c1, System Control Register (SCTLR) on page B3-96 for a VM SAv7 implementation
. c1, System Control Register (SCTLR) on page B4-45 for a PM SAv7 implementation
. cl, System Control Register (SCTLR) on page AppxG-34 for architecture versions before ARMV7.

This bit defines the alignment behavior of the memory system for data accesses. Table A3-1 shows the
values of SCTLR.U for the different architecture versions.

Table A3-1 SCTLR.U bit values for different architecture versions

Architecture version SCTLR.U value

Before ARMV6 0
ARMV6 Oorl
ARMv7 1

On an ARMV6 processor, the SCTLR.U bit indicates which of two possible alignment modelsis selected:

U== The processor implements the legacy alignment model. This is described in Alignment on
page AppxG-6.

Note
The use of U == 0 isdeprecated in ARMV6T2, and is obsolete from ARMv?7.

U== The processor implements the alignment model described in this section. This model
supports unaligned data accesses.

ARMV7 requires the processor to implement the alignment model described in this section.

A3-4 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Memory Model

A3.2.1 Unaligned data access

An ARMvV7 implementation must support unaligned data accesses. The SCTLR.U bit is RAO to indicate
this support. The SCTLR.A bit, the strict alignment bit, controls whether strict alignment isrequired. The
checking of load and store alignment depends on the value of this bit. For more information, see c1, System
Control Register (SCTLR) on page B3-96 for a VM SA implementation, or c1, System Control Register
(SCTLR) on page B4-45 for a PM SA implementation.

Table A3-2 shows how the checking of load and store alignment depends on the instruction type and the
value of SCTLR.A.

Table A3-2 Alignment requirements of load/store instructions

Result if check fails when:

. Alignment

Instructions check
SCTLR.A == SCTLR.A ==

LDRB, LDREXB, LDRBT, LDRSB, LDRSBT, STRB, STREXB, STRBT, None - -
SWPB, TBB
LDRH, LDRHT, LDRSH, LDRSHT, STRH, STRHT, TBH Halfword Unaligned access ~ Alignment fault
LDREXH, STREXH Halfword Alignment fault Alignment fault
LDR, LDRT, STR, STRT, Word Unaligned access Alignment fault
LDREX, STREX Word Alignment fault Alignment fault
LDREXD, STREXD Doubleword Alignment fault Alignment fault
All forms of LDM, LDRD, PUSH, POR, RFE, SRS, al formsof ~ Word Alignment fault Alignment fault
STM, STRD, SWP
LDC, LDC2, STC, STC2 Word Alignment fault Alignment fault
VLDM, VLDR, /'STM, VSTR Word Alignment fault Alignment fault
VLD1, VLD2, VLD3, VLD4, VST1, VST2, VST3, VST4, all with Element size Unaligned access ~ Alignment fault

standard alignment@

VLD1, VLD2, VLD3, VLD4, VST1, VST2, VST3, VST4, al with
@<align> specifieda

Asspecifiedby Alignment fault

@<align>

Alignment fault

a. These element and structure loadktore instructions are only in the Advanced SIMD extension to the ARMv7 ARM and
Thumb instruction sets. ARMv7 does not support the pre-ARMV6 alignment model, so you cannot use that model with

these instructions.

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

A3-5

ARM_2009_Q3
Inserted Text
, VPOP, VPUSH

ARM_2010_Q2
Cross-Out

ARM_2010_Q2
Replacement Text
PUSH, except for encodings T3 and A2,

ARM_2010_Q2
Cross-Out

ARM_2010_Q2
Replacement Text
POP, except for encodings T3 and A2,

ARM_2010_Q2
Inserted Text
, PUSH encodings T3 and A2, POP encodings T3 and A2.

Application Level Memory Model

A3.2.2 Cases where unaligned accesses are UNPREDICTABLE

The following cases cause the resulting unaligned accesses to be UNPREDICTABLE, and overrule any

successful load or store behavior described in Unaligned data access on page A3-5:

. Any load instruction that is not faulted by the alignment restrictions and that |oads the PC has
UNPREDICTABLE behavior if-t the address it |oads from is not word-aligned.

. Any unaligned access that is not faulted by the alignment restrictions and that accesses memory with
the Strongly-ordered or Device attribute has UNPREDICTABLE behavior.

Note
These memory attributes are described in Memory types and attributes and the memory order model
on page A3-24.
A3.2.3 Unaligned data access restrictions in ARMv7 and ARMv6

ARMv7 and ARMV6 have the following restrictions on unaligned data accesses:

. Accesses are not guaranteed to be single-copy atomic, see Atomicity in the ARM architecture on
page A3-26. An access can be synthesized out of a series of aligned operations in a shared memory
system without guaranteeing locked transaction cycles.

. Unaligned accesses typically take anumber of additional cyclesto complete compared to anaturally
aigned transfer. The real-timeimplications must be analyzed carefully and key data structures might
need to have their alignment adjusted for optimum performance.

. If an unaligned access occurs across a page boundary, the operation can abort on either or both halves
of the access.

Shared memory schemes must not rely on seeing monotonic updates of non-aligned data of 1oads and stores

for dataitems larger than byte wide. For more information, see Atomicity in the ARM architecture on

page A3-26.

Unaligned access operations must not be used for accessing Device memory-mapped registers. They must

only be used with care in shared memory structures that are protected by aligned semaphores or

synchronization variables.
A3-6 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2008_Q4
Cross-Out

A3.3

Application Level Memory Model

Endian support

The rulesin Address space on page A3-2 require that for aword-aligned address A:

. theword at address A consists of the bytes at addresses A, A+1, A+2 and A+3

. the halfword at address A consists of the bytes at addresses A and A+1

. the halfword at address A+2 consists of the bytes at addresses A+2 and A+3.

. the word at address A therefore consists of the halfwords at addresses A and A+2.

However, this does not specify completely the mappings between words, halfwords, and bytes.

A memory system uses one of the two following mapping schemes. This choiceis known as the endianness
of the memory system.

In alittle-endian memory system:

. the byte or halfword at aword-aligned address isthe least significant byte or halfword in the word at
that address

. the byte at a halfword-aligned address is the least significant byte in the halfword at that address.
In abig-endian memory system:

. the byte or halfword at aword-aligned addressisthe most significant byte or halfword in the word at
that address

. the byte at a halfword-aligned address is the most significant byte in the halfword at that address.

For aword-aligned address A, Table A3-3 and Table A3-4 on page A3-8 show the relationship between:
. the word at address A

. the halfwords at addresses A and A+2

. the bytes at addresses A, A+1, A+2 and A+3.

Table A3-3 shows this relationship for a big-endian memory system, and Table A3-4 on page A3-8 shows
the relationship for alittle-endian memory system.

Table A3-3 Big-endian memory system

MSByte MSByte - 1 LSByte + 1 LSByte
Word at Address A
Halfword at Address A Halfword at Address A+2
Byte at Address A Byte at Address A+1 Byte at Address A+2 Byte at Address A+3

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A3-7

Application Level Memory Model

A3.3.1

A3.3.2

Table A3-4 Little-endian memory system

MSByte MSByte - 1 LSByte + 1 LSByte
Word at Address A
Halfword at Address A+2 Halfword at Address A
Byte at Address A+3 Byte at Address A+2 Byte at AddressA+1 Byte at Address A

The big-endian and little-endian mapping schemes determine the order in which the bytes of aword or
halfword are interpreted. For example, aload of aword (4 bytes) from address 0x1000 always resultsin an
access of thebytes at memory |ocations 0x1000, 0x1001, 0x1002, and 0x1003. The endianness mapping scheme
determines the significance of these four bytes.

Control of the endianness mapping scheme in ARMv7

In ARMV7-A, the mapping of instruction memory is always little-endian. In ARMV7-R, instruction
endianness can be controlled at the system level, see Instruction endianness.

For information about data memory endianness control, see ENDIANSTATE on page A2-19.

Note

Versions of the ARM architecture before ARMV7 had a different mechanism to control the endianness, see
Endian configuration and control on page AppxG-20.

Instruction endianness

Before ARMV7, the ARM architectureincluded | egacy support for an alternative big-endian memory model,
described as BE-32 and controlled by the B bit, bit [7], of the SCTLR, see c1, System Control Register
(SCTLR) on page AppxG-34. ARMV7 does not support BE-32 operation, and bit [7] of the SCTLRiSRAZ.

Where legacy object code for ARM processors contains instructions with a big-endian byte order, the
removal of support for BE-32 operation requires the instructions in the object files to have their bytes
reversed for the code to be executed on an ARMV7 processor. This means that:

. each Thumb instruction, whether a 32-bit Thumb instruction or a 16-bit Thumb instruction, must
have the byte order of each halfword of instruction reversed

. each ARM instruction must have the byte order of each word of instruction reversed.

For most situations, this can be handled in the link stage of atool-flow, provided the object filesinclude
sufficient information to permit this to happen. In practice, thisisthe situation for all applications with the
ARMV7-A profile.

A3-8

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Memory Model

For applications of the ARMV7-R profile, there are some legacy code situations where the arrangement of
the bytesin the object files cannot be adjusted by the linker. For these object filesto be used by an ARMvV7-R
processor the byte order of the instructions must be reversed by the processor at runtime. Therefore, the
ARMV7-R profile permits configuration of the instruction endianness.

Instruction endianness static configuration, ARMv7-R only

To provide support for legacy big-endian object code, the ARMV7-R profile supports optional byte order
reversal hardware as a static option from reset. The ARMv7-R profile includes aread-only bit in the CP15
Control Register, SCTLRU.IE, bit [31]. For more information, see c1, System Control Register (SCTLR) on
page B4-45.

A3.3.3 Element size and endianness
The effect of the endianness mapping on data transfers depends on the size of the data element or elements
transferred by theload/store instructions. Table A3-5 liststhe element sizes of all theload/storeinstructions,
for al instruction sets.
Table A3-5 Element size of load/store instructions
Instructions Element size

LDRB, LDREXB, LDRBT, LDRSB, LDRSBT, STRB, STREXB, STRBT, SWPB, TBB Byte

LDRH, LDREXH, LDRHT, LDRSH, LDRSHT, STRH, STREXH, STRHT, TBH Halfword

LDR, LDRT, LDREX, STR, STRT, STREX Word

LDRD, LDREXD, STRD, STREXD Word

All forms of LDM, PUSH, POP, RFE, SRS, al forms of ST™, SwP Word

VLD1, VLD2, VLD3, VLD4, VST1, VST2, VST3, VST4 Element size of the Advanced SIMD access
A3.3.4 Instructions to reverse bytes in a general-purpose register

An application or device driver might have to interface to memory-mapped peripheral registers or shared
memory structures that are not the same endianness asthe internal data structures. Similarly, the endianness
of the operating system might not match that of the peripheral registers or shared memory. In these cases,
the processor requires an efficient method to transform explicitly the endianness of the data.

In ARMV7, the ARM and Thumb instruction sets provide this functionality. There are instructions to:

. Reverse word (four bytes) register, for transforming big and little-endian 32-bit representations. See
REV on page A8-272.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A3-9

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
Replace this line of the table with the following three lines:
 Instructions Element size
 ======= ========
 LDC, LDC2, STC, STC2 Word
 Forms of VLDM, VLDR, VPOP, VPUSH, VSTM, VSTR that transfer 32-bit Si registers Word
 Forms of VLDM, VLDR, VPOP, VPUSH, VSTM, VSTR that transfer 64-bit Di registers Doubleword

Application Level Memory Model

A3.3.5

o gk~ W N -~ O

7

. Reverse halfword and sign-extend, for transforming signed 16-bit representations. See REVSH on
page A8-276.

. Reverse packed halfwordsin aregister for transforming big- and little-endian 16-bit representations.
See REV16 on page A8-274.

Endianness in Advanced SIMD

Advanced SIMD element load/store instructions transfer vectors of elements between memory and the
Advanced SIMD register bank. An instruction specifies both the length of the transfer and the size of the
data elements being transferred. Thisinformation is used by the processor to load and store data correctly
in both big-endian and little-endian systems.

Consider. for example, the instruction:
VLD1.16 {D@}, [R1]

Thisloads a 64-bit register with four 16-bit values. The four elements appear in the register in array order,
with thelowest indexed element fetched from thelowest address. The order of bytesin the elements depends
on the endianness configuration, as shown in Figure A3-1. Therefore, the order of the elementsin the
registers is the same regardless of the endianness configuration. This means that Advanced SIMD code is
usually independent of endianness.

64-bit register containing four 16-bit elements
| D[15:8] | DI7:0] | c[15:8] | C[7:0] | B[15:8] | B[7:0] | Al15:8] | A[7:0] |

A[7:0]
Al15:8]
B[7:0]
B[15:8]
C[7:0] VLD1.16 {D0}, [R1] VLD1.16 {DO}, [R1]
C[15:8] C[7:0]
D[7:0] D[15:8]
D[15:8] 7| D[7:0]

Al15:8]
A[7:0]
B[15:8]
B[7:0]
C[15:8]

o a b~ WN -~ O

Memory system with Memory system with
Little endian addressing (LE) Big endian addressing (BE)

Figure A3-1 Advanced SIMD byte order example
The Advanced SIMD extension supports Little-Endian (LE) and Big-Endian (BE) models.

For information about the alignment of Advanced SIMD instructions see Unaligned data access on
page A3-5.

A3-10

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Memory Model

Note

Advanced SIMD isan extension tothe ARMv7 ARM and Thumb instruction sets. InARMv7,the SCTLR.B
bit alwayshasthe value 0, indicating that ARMv7 does not support the legacy BE-32 endianness model, and
you cannot use this model with Advanced SIMD element and structure |oad/store instructions.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A3-11

Application Level Memory Model

A3.4 Synchronization and semaphores
In architecture versions before ARMV6, support for the synchronization of shared memory depends on the
SwP and SWPB instructions. These are read-locked-write operations that swap register contents with memory;,
and are described in SWP, SWVPB on page A8-432. These instructions support basic busy/free semaphore
mechanisms, but do not support mechanisms that require calculation to be performed on the semaphore
between the read and write phases.
ARMV6 introduced a new mechanism to support more comprehensive non-blocking synchronization of
shared memory, using synchronization primitives that scale for multiprocessor system designs. ARMv6
provided apajr of synchronlzatlon prlmltlva LDREX and STREX. ARM—V—?—%eHds-the-naN—medel-by—
Note

From ARMV6, use of the SWP and SwWPB instructions is deprecated. ARM strongly recommends that all
software migrates to using the new synchronization primitives described in this section.
In ARMvV7, the synchronization primitives provided in the ARM and Thumb instruction sets are:
. Load-Exclusives:

— LDREX, see LDREX on page A8-142

— LDREXB, see LDREXB on page A8-144

— LDREXD, see LDREXD on page A8-146

— LDREXH, see LDREXH on page A8-148
. Store-Exclusives:

— STREX, see STREX on page A8-400

— STREXB, see STREXB on page A8-402

— STREXD, see STREXD on page A8-404

— STREXH, see STREXH on page A8-406
. Clear-Exclusive, CLREX, see CLREX on page A8-70.

Note
This section describesthe operation of aL oad-Exclusive/Store-Exclusive pair of synchronization primitives
using, as examples, the LDREX and STREX instructions. The same description applies to any other pair of
synchronization primitives:
. LDREXB used with STREXB
. LDREXD used with STREXD
o LDREXH used with STREXH.
Each Load-Exclusive instruction must be used only with the corresponding Store-Exclusive instruction.
A3-12 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text

ARMv6T2 adds LDREX and STREX to the Thumb instruction set.

ARMv6K has LDREX and STREX in the ARM instruction set only, and adds the following synchronization primitives to the ARM instruction set:
 • byte, halfword and doubleword versions of the Load-Exclusive and Store-Exclusive instructions
 • a Clear-Exclusive instruction, CLREX.

ARMv7 has all of the ARMv6K synchronization primitives in both the ARM and Thumb instruction sets.

ARM_2009_Q1
Sticky Note
The replacement here only clarifies the wording of the changes in the previous issue of this errata document.

A3.4.1

Application Level Memory Model

The model for the use of a L oad-Exclusive/Store-Exclusive instruction pair, accessing a non-aborting
memory addressx is:

. The Load-Exclusive instruction reads a value from memory address x.

. The corresponding Store-Exclusive instruction succeedsin writing back to memory addressx only if
no other observer, process, or thread has performed a more recent store of address x. The
Store-Exclusive operation returns a status bit that indicates whether the memory write succeeded.

A Load-Exclusive instruction tags a small block of memory for exclusive access. The size of the tagged
block is IMPLEMENTATION DEFINED, see Tagging and the size of the tagged memory block on page A3-20.
A Store-Exclusive instruction to the same address clears the tag.

Note

In this section, the term processor includes any observer that can generate a Load-Exclusive or a
Store-Exclusive.

Exclusive access instructions and Non-shareable memory regions

For memory regionsthat do not have the Shareabl e attribute, the exclusive accessinstructionsrely on alocal
monitor that tags any address from which the processor executes a L oad-Exclusive. Any non-aborted
attempt by the same processor to use a Store-Exclusive to modify any addressis guaranteed to clear the tag.

A Load-Exclusive performs aload from memory, and:

. the executing processor tags the physical memory address for exclusive access
. the local monitor of the executing processor transitions to its Exclusive Access state.

A Store-Exclusive performs a conditional store to memory, that depends on the state of the local monitor:

If thelocal monitor isin its Exclusive Access state

. If the address of the Store-Exclusive is the same as the address that has been tagged
in the monitor by an earlier Load-Exclusive, then the store takes place, otherwise it
iSIMPLEMENTATION DEFINED whether the store takes place.

. A status value is returned to aregister:
— if the store took place the status valueis 0
— otherwise, the status valueis 1.

. The local monitor of the executing processor transitions to its Open Access state.

If thelocal monitor isin its Open Access state

. no store takes place
. astatus value of 1 isreturned to aregister.
. the local monitor remainsin its Open Access state.

The Store-Exclusive instruction defines the register to which the status value is returned.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A3-13

Application Level Memory Model

When a processor writes using any instruction other than a Store-Exclusive:

. if the writeisto a physical addressthat is not covered by itslocal monitor the write does not affect
the state of the local monitor

. if thewriteisto aphysical addressthat iscovered by itslocal monitor itisIMPLEMENTATION DEFINED
whether the write affects the state of the local monitor.

If the local monitor isin its Exclusive Access state and the processor performs a Store-Exclusive to any
address other than the last one from which it performed a Load-Exclusive, it iSIMPLEMENTATION DEFINED
whether the store updates memory, but in all cases the local monitor isreset to its Open Access state. This
mechanism:

. is used on a context switch, see Context switch support on page A3-21
. must be treated as a software programming error in all other cases.
Note

It is UNPREDICTABLE whether a store to atagged physical address causes atag in the local monitor to be
cleared if that store is by an observer other than the one that caused the physical address to be tagged.

Figure A3-2 shows the state machine for the local monitor. Table A3-6 on page A3-15 shows the effect of
each of the operations shown in the figure.

LoadExcl1(X) LoadExc1(X)
Open Exclusive <
D Access Access —
CLREX CLREX Store(!Tagged_address)
StoreExcl(x) Store(Tagged_address) * Store(Tagged_address) *

Store(x) StoreExcl(Tagged_address)
StoreExcl(!Tagged_address)
Operations marked * are possible alternative IMPLEMENTATION DEFINED options.

In the diagram: LoadExc1 represents any Load-Exclusive instruction
StoreExcl represents any Store-Exclusive instruction
Store represents any other store instruction.

Any LoadExc] operation updates the tagged address to the most significant bits of the address x used
for the operation. For more information see the section Size of the tagged memory block.

Figure A3-2 Local monitor state machine diagram

A3-14

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Note

Application Level Memory Model

For the local monitor state machine, as shown in Figure A3-2 on page A3-14:

. The IMPLEMENTATION DEFINED options for the local monitor are consistent with the local monitor
being constructed so that it does not hold any physical address, but instead treats any access as
matching the address of the previous LoadExc].

. A local monitor implementation can be unaware of Load-Exclusive and Store-Exclusive operations
from other processors.

. 1t iSUNPREDICTABLE whether thetransition from Exclusive A ccess to Open Access state occurs when
the Store or StoreExc1 isfrom another observer.

Table A3-6 shows the effect of the operations shown in Figure A3-2 on page A3-14.

Table A3-6 Effect of Exclusive instructions and write operations on local monitor

Initial state Operationa Effect Final state
Open Access CLREX No effect Open Access
Open Access StoreExc1(x) Does not update memory, returns status 1 Open Access
Open Access LoadExc1(x) L oads value from memory, tags address x Exclusive Access
Open Access Store(x) Updates memory, no effect on monitor Open Access
Exclusive Access CLREX Clearstagged address Open Access
Exclusive Access StoreExcl(t) Updates memory, returns status O Open Access
Updates memory, returns status 0P
Exclusive Access StoreExcl(!t) Open Access

Does not update memory, returns status 1°

Exclusive Access LoadExc1(x) L oads value from memory, changestag to addresstox Exclusive Access
Exclusive Access Store(!t) Updates memory, no effect on monitor Exclusive Access

Exclusive AccessP
Exclusive Access Store(t) Updates memory

Open AccessP

a Inthetable:

LoadExc1 represents any L oad-Exclusive instruction
StoreExc] represents any Store-Exclusive instruction
Store represents any store operation other than a Store-Exclusive operation.
t isthe tagged address, bits [31:a] of the address of the last Load-Exclusive instruction. For more information, see
Tagging and the size of the tagged memory block on page A3-20.
b. IMPLEMENTATION DEFINED alternative actionsy_

S

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

A3-15

ARM_2009_Q2
Inserted Text
[This is a new subsection at the end of section A3.4.1.]

Changes to the local monitor state resulting from speculative execution

The architecture permits a local monitor to transition to the Open Access state as a result of speculation, or from some other cause. This is in addition to the transitions to Open Access state caused by the architectural execution of an operation shown in Table A3-6.

An implementation must ensure that:

 • The local monitor cannot be seen to transition to the Exclusive Access state except as a result of the architectural execution of one of the operations shown in Table A3-6

 • Any transition of the local monitor to the Open Access state not caused by the architectural execution of an operation shown in Table A3-6 must not indefinitely delay forward progress of execution.

ARM_2010_Q2
Sticky Note
The following Note should be inserted between the table footnotes and the new subsection added by the ARM_2009_Q2 erratum update shown here:

----- Note -----
Normal memory that is Inner Non-cacheable, Outer Non-cacheable is inherently coherent between different processors, and it is IMPLEMENTATION DEFINED whether such memory, if it does not have the Shareable attribute, is treated as Non-shareable or as Shareable.

Application Level Memory Model

A3.4.2

Exclusive access instructions and Shareable memory regions

For memory regions that have the Shareabl e attribute, exclusive access instructions rely on:

A local monitor for each processor in the system, that tags any address from which the processor
executes a L oad-Exclusive. Thelocal monitor operates as described in Exclusive accessinstructions
and Non-shareable memory regions on page A3-13, except that for Shareable memory any
Store-Exclusive is then subject to checking by the global monitor if it is described in that section as
doing at least one of:

— updating memory
— returning a status value of 0.
The local monitor can ignore exclusive accesses from other processorsin the system.

A global monitor that tags aphysical address as exclusive access for a particular processor. Thistag
is used later to determine whether a Store-Exclusive to that address that has not been failed by the
local monitor can occur. Any successful write to the tagged address by any other observer in the
shareability domain of the memory location is guaranteed to clear the tag. For each processor in the
system, the global monitor:

— holdsasingle tagged address
— maintains a state machine.

The global monitor can either reside in a processor block or exist as a secondary monitor at the memory
interfacesy

Note

An implementation can combine the functionality of the global and local monitorsinto a single unit.

Operation of the global monitor

Load-Exclusive from Shareable memory performs aload from memory, and causes the physical address of
the accessto betagged asexclusive accessfor the requesting processor. Thisaccess also causestheexclusive
access tag to be removed from any other physical address that has been tagged by the requesting processor.
The global monitor only supports a single outstanding exclusive access to Shareable memory per processor.

Store-Exclusive performs a conditional store to memory:

The storeis guaranteed to succeed only if the physical address accessed istagged as exclusive access
for the requesting processor and both the local monitor and the global monitor state machinesfor the
requesting processor are in the Exclusive Access state. In this case:

— astatusvalue of Oisreturned to aregister to acknowledge the successful store

— thefinal state of the global monitor state machine for the requesting processor is
IMPLEMENTATION DEFINED

— if the address accessed is tagged for exclusive accessin the global monitor state machine for
any other processor then that state machine transitions to Open Access state.

A3-16

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2008_Q4
Inserted Text

For Shareable regions of memory, in some implementations and for some memory types, the properties of the global monitor can be met only by functionality outside the processor. Some system implementations might not implement this functionality for all regions of memory. In particular, this can apply to:
• any type of memory in the system implementation that does not support hardware cache coherency
• Non-cacheable memory, or memory treated as non-cacheable, in an implementation that does support hardware cache coherency.

In such systems, it is defined by the system:
• whether the global monitor is implemented
• if the global monitor is implemented, which address ranges or memory types it monitors.

The behavior of Load Exclusive and Store Exclusive instructions when accessing an address not monitored by the global monitor is UNPREDICTABLE.

Application Level Memory Model

. If no addressis tagged as exclusive access for the requesting processor, the store does not succeed:
— astatusvalue of 1isreturned to aregister to indicate that the store failed
— theglobal monitor is not affected and remains in Open Access state for the requesting
processor.
. If adifferent physical addressistagged as exclusive access for the requesting processor, it is
IMPLEMENTATION DEFINED Whether the store succeeds or not:

— if the store succeeds a status value of O is returned to aregister, otherwise avalue of 1is
returned

— if theglobal monitor state machine for the processor was in the Exclusive Access state before
the Store-Exclusive it is IMPLEMENTATION DEFINED Whether that state machine transitions to
the Open Access state.

The Store-Exclusive instruction defines the register to which the status value is returned.

In a shared memory system, the global monitor implements a separate state machine for each processor in
the system. The state machine for accesses to Shareable memory by processor (n) can respond to all the
Shareable memory accesses visible to it. This means it responds to:

. accesses generated by the associated processor (n)
. accesses generated by the other observersin the shareability domain of the memory location (!n).

In ashared memory system, the global monitor implements a separate state machine for each observer that
can generate a L oad-Exclusive or a Store-Exclusive in the system.

Figure A3-3 on page A3-18 shows the state machine for processor(n) in aglobal monitor. Table A3-7 on
page A3-19 shows the effect of each of the operations shown in the figure.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A3-17

Application Level Memory Model

LoadExc1(x,n)

Open

CLREX(n), CLREX(!n),
LoadExcl1(x,!n),
StoreExcl(x,n),
StoreExcl(x,!n),

Store(x,n), Store(x,!n)

Access
I

-

LoadExcl1(x,n)

Exclusive
Access

ITT

StoreExcl(Tagged_address,!n)t
Store(Tagged_address,!n)
StoreExcl(Tagged_address,n) *
StoreExc1(!Tagged_address,n) *
Store(Tagged_address,n) *
CLREX(n) *

-

StoreExcl(Tagged_address,!n)t
Store(!Tagged_address,n)
StoreExcl(Tagged_address,n) *
StoreExcl(!Tagged_address,n) *
Store(Tagged_address,n) *
CLREX(n) *
StoreExcl(!Tagged_address,!n)
Store(!/Tagged_address,!n)
CLREX(!n)

I storeExcl(Tagged_Address,!n) clears the monitor only if the StoreExc1 updates memory
Operations marked * are possible alternative IMPLEMENTATION DEFINED options.

In the diagram: LoadExc1 represents any Load-Exclusive instruction
StoreExc]l represents any Store-Exclusive instruction
Store represents any other store instruction.

Any LoadExc1 operation updates the tagged address to the most significant bits of the address x
used for the operation. For more information see the section Size of the tagged memory block.

Figure A3-3 Global monitor state machine diagram for processor(n) in a multiprocessor system

Note

For the global monitor state machine, as shown in Figure A3-3:

Whether a Store-Exclusive successfully updates memory or not depends on whether the address
accessed matchesthe tagged Shareable memory addressfor the processor issuing the Store-Exclusive
instruction. For this reason, Figure A3-3 and Table A3-7 on page A3-19 only show how the (!n)
entries cause state transitions of the state machine for processor(n).

An Load-Exclusive can only update the tagged Shareable memory address for the processor issuing
the Load-Exclusive instruction.

The effect of the CLREX instruction on the global monitor iS IMPLEMENTATION DEFINED.

It iSIMPLEMENTATION DEFINED:

— whether amodification to a non-shareable memory location can cause a global monitor to
transition from Exclusive Access to Open Access state

— whether a L oad-Exclusive to a non-shareable memory location can cause a global monitor to
transition from Open Access to Exclusive Access state.

A3-18

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Memory Model

Table A3-7 shows the effect of the operations shown in Figure A3-3 on page A3-18.

Table A3-7 Effect of load/store operations on global monitor for processor(n)

Initial Final
ionb
statea Operation Effect statea
Open CLREX(n), None Open
CLREX(!n)
StoreExcl(x,n) Does not update memory, returns status 1 Open
LoadExc1(x, In) L oads value from memory, no effect on tag addressfor processor(n) Open
StoreExc1(x, !n) Depends on state machine and tag address for processor issuing Open
STREXC
Store(x,n), Updates memory, no effect on monitor Open
Store(x,!n)
LoadExc1(x,n) Loads value from memory, tags address x Exclusive
Exclusive LoadExc1(x,n) L oads value from memory, tags address x Exclusive
Exclusivee
CLREX(n) None. Effect on the final state is IMPLEMENTATION DEFINED.
Opene
CLREX(!n) None Exclusive
Updates memory, returns status 0¢ Open
StoreExc1(t,!n)
Does not update memory, returns status 1¢ Exclusive
Open
StoreExcl(t,n) Updates memory, returns status 0d
Exclusive
Open
Updates memory, returns status 0&
Exclusive
StoreExc1(!t,n)
Open
Does not update memory, returns status 1€
Exclusive
StoreExcl(!t,!n) Depends on state machine and tag address for processor issuing Exclusive
STREX
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A3-19

Application Level Memory Model

Table A3-7 Effect of load/store operations on global monitor for processor(n) (continued)

Initial Final
ionb
statea Operation Effect statea
Exclusive Exclusive®
Store(t,n) Updates memory
Opene
Store(t,!n) Updates memory Open
Store(!t,n), Updates memory, no effect on monitor Exclusive
Store(!t,!n)

a Open = Open Access state, Exclusive = Exclusive Access state.
b. Inthetable:

LoadExc1 represents any Load-Exclusive instruction
StoreExc] represents any Store-Exclusive instruction
Store represents any store operation other than a Store-Exclusive operation.

t isthe tagged address for processor(n), bits [31:a] of the address of the last Load-Exclusive instruction issued by
processor(n), see Tagging and the size of the tagged memory block.

c. Theresultof aSTREX(x, !n) or aSTREX(t, !n) operation depends on the state machine and tagged addressfor the processor
issuing the STREX instruction. This table shows how each possible outcome affects the state machine for processor(n).

d. After asuccessful STREX to the tagged address, the state of the state machine is IMPLEMENTATION DEFINED. However,
this state has no effect on the subsequent operation of the global monitor.

e. EffectisIMPLEMENTATION DEFINED. The table shows all permitted implementations.

A3.4.3

Tagging and the size of the tagged memory block

As stated in the footnotes to Table A3-6 on page A3-15 and Table A3-7 on page A3-19, when a
Load-Exclusive instruction is executed, the resulting tag address ignores the least significant bits of the
memory address.

Tagged_address = Memory_address[31:a]

The value of a in this assignment iS IMPLEMENTATION DEFINED, between a minimum value of 3 and a
maximum value of 11. For example, in an implementation where a == 4, a successful LDREX of address
0x000341B4 gives atag value of bits[31:4] of the address, giving 0x000341B. This means that the four words
of memory from 0x0003 41B0 to 0x000341BF are tagged for exclusive access.

The size of the tagged memory block called the Exclusives Reservation Granule. The Exclusives
Reservation Granule iSIMPLEMENTATION DEFINED between:

. two words, in an implementation with a==
. 512 words, in an implementation with a==11.

In some implementations the CTR identifies the Exclusives Reservation Granule, see:
. ¢0, Cache Type Register (CTR) on page B3-83 for aVMSA implementation
. c0, Cache Type Register (CTR) on page B4-34 for a PMSA implementation.

A3-20

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2008_Q4
Inserted Text
is

A3.4.4

A3.4.5

Application Level Memory Model

Context switch support

After acontext switch, software must ensure that thelocal monitor isin the Open Accessstate. Thisrequires
it to either:

. execute a CLREX instruction
. execute adummy STREX to a memory address allocated for this purpose.
Note

. Using adummy STREX for this purpose is backwards-compatible with the ARMv6 implementation of
the exclusive operations. The CLREX instruction is introduced in ARMV6K.

. Context switching isnot an application level operation. However, thisinformation isincluded hereto
compl ete the description of the exclusive operations.

The STREX or CLREX instruction following a context switch might cause a subsequent Store-Exclusiveto fail,
reguiring aload ... store sequence to be replayed. To minimize the possibility of this happening, ARM
recommends that the Store-Exclusive instruction is kept as close as possible to the associated
Load-Exclusive instruction, see Load-Exclusive and Store-Exclusive usage restrictions.

Load-Exclusive and Store-Exclusive usage restrictions

The Load-Exclusive and Store-Exclusive instructions are intended to work together, as a pair, for example
aLDREX/STREX pair or a LDREXB/STREXB pair. As mentioned in Context switch support, ARM recommends that
the Store-Exclusive instruction always follows within afew instructions of its associated L oad-Exclusive
instructions. To support different implementations of these functions, software must follow the notes and
restrictions given here.

These notes describe use of an LDREX/STREX pair, but apply equally to any other
Load-Exclusive/Store-Exclusive pair:

. The exclusives support a single outstanding exclusive access for each processor thread that is
executed. The architecture makes use of this by not requiring an address or size check as part of the
IsExclusivelocal() function. If thetarget address of an STREX is different from the preceding LDREX in
the same execution thread, behavior can be UNPREDICTABLE. Asaresult, an LDREX/STREX pair can only
be relied upon to eventually succeed if they are executed with the same address. Where a context
switch or exception might result in a change of execution thread, a CLREX instruction or a dummy
STREX instruction must be executed to avoid unwanted effects, as described in Context switch support
Using an STREX in thisway isthe only occasion where software can program an STREX with adifferent
address from the previously executed LDREX.

. An explicit store to memory can cause the clearing of exclusive monitors associated with other
processors, therefore, performing a store between the LDREX and the STREX can result in alivelock
situation. As aresult, code must avoid placing an explicit store between an LDREX and an STREX in a
single code sequence.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A3-21

Application Level Memory Model

If two STREX instructions are executed without an intervening LDREX the second STREX returns a status
value of 1. This means that:

— every STREX must have a preceding LDREX associated with it in a given thread of execution
— itisnot necessary for every LDREX to have a subsequent STREX.

An implementation of the Load-Exclusive and Store-Exclusive instructions can require that, in any
thread of execution, the transaction size of a Store-Exclusive isthe same as the transaction size of the
preceding Load-Exclusive that was executed in that thread. If the transaction size of a
Store-Exclusive is different from the preceding L oad-Exclusive in the same execution thread,
behavior can be UNPREDICTABLE. Asaresult, an LDREX/STREX pair can only be relied upon to
eventually succeed only if they have the same size. Where a context switch or exception might result
in achange of execution thread, the software must execute a CLREX instruction or adummy STREX
instruction to avoid unwanted effects, as described in Context switch support on page A3-21. Using
an STREX in thisway is the only occasion where software can use a Store-Exclusive instruction with
adifferent transaction size from the previously executed L oad-Exclusive instruction.

An implementation might clear an exclusive monitor between the LDREX and the STREX, without any
application-related cause. For example, this might happen because of cache evictions. Code written
for such an implementation must avoid having any explicit memory accesses or cache maintenance
operations between the LDREX and STREX instructionsy

Implementations can benefit from keeping the LDREX and STREX operations close together in asingle
code sequence. This minimizes the likelihood of the exclusive monitor state being cleared between
the LDREX instruction and the STREX instruction. Therefore, ARM strongly recommends alimit of 128
bytes between LDREX and STREX instructions in a single code sequence, for best performance.

Implementations that implement coherent protocols, or have only asingle master, might combinethe
local and global monitorsfor agiven processor. The IMPLEMENTATION DEFINED and UNPREDICTABLE
parts of the definitions in Exclusive monitors operations on page B2-35 are provided to cover this
behavior.

The architecture sets an upper limit of 2048 bytes on the size of aregion that can be marked as
exclusive. Therefore, for performance reasons, ARM recommends that software separates objects
that will be accessed by exclusive accesses by at least 2048 bytes. Thisis a performance guideline
rather than a functional requirement.

that abort handling code performs a CLREX instruction or adummy STREX instruction to clear the
monitor state.

If the memory attributes for the memory being accessed by an LDREX/STREX pair are changed between
the LDREX and the STREX, behavior is UNPREDICTABLE

A3-22

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

1)

ARM_2008_Q4
Inserted Text

• The effect of a data or unified cache invalidate instruction on a local or global exclusive monitor that is in the Exclusive Access state is UNPREDICTABLE. The operation might clear the monitor, or it might leave it in the Exclusive Access state. For address-based invalidation this also applies to the monitors of other processors in the same shareability domain as the processor executing the cache invalidation instruction, as determined by the shareability domain of the address being invalidated.

----- NOTE -----
ARM strongly recommends that implementations ensure that the use of such maintenance instructions by a processor in the Non-secure state cannot cause a denial of service on a processor in the Secure state.

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
After taking a Data Abort exception, the state of the exclusive monitors is UNKNOWN. Therefore,

ARM_2009_Q2
Sticky Note
This change is a clarification of the intended meaning, not a change to the architecture.

ARM_2009_Q4
Inserted Text

• In some implementations, a load to Strongly-ordered or Device memory might clear the exclusive monitor. Therefore, software must not place a load to Strongly-ordered or Device memory between a LDREX and an STREX in a single code sequence.

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Replacement Text
Whether an ARMv7 implementation permits LDREX and STREX operations to a memory region with the Device or Strongly-ordered attribute is IMPLEMENTATION DEFINED. Unless the processor documentation explicitly states that the implementation permits these operations, the effect of an LDREX or STREX operation to a memory region with the Device or Strongly-ordered attribute is UNPREDICTABLE.

ARM_2011_Q2
Sticky Note
This is a change to the architecture. No ARMv7 processors released before January 2011 permit LDREX and STREX operations to memory regions with the Device or Strongly-ordered attribute.

A3.4.6

A3.4.7

A3.4.8

Application Level Memory Model

Semaphores

The Swap (SWP) and Swap Byte (SWPB) instructions must be used with care to ensure that expected behavior
is observed. Two examples are as follows:

1 A system with multiple bus mastersthat uses Swap instructionsto implement semaphoresthat control
interactions between different bus masters.

In this case, the semaphores must be placed in an uncached region of memory, where any buffering
of writes occurs at a point common to all bus masters using the mechanism. The Swap instruction
then causes a locked read-write bus transaction.

2. A systems with multiple threads running on a uniprocessor that uses the Swap instructions to
implement semaphores that control interaction of the threads.

In this case, the semaphores can be placed in a cached region of memory, and alocked read-write bus
transaction might or might not occur. The Swap and Swap Byte instructions are likely to have better
performance on such a system than they do on a system with multiple bus masters such as that
described in example 1.

Note

From ARMV6, use of the Swap and Swap Byte instructionsis deprecated. All new software should use the
Load-Exclusive and Store-Exclusive synchronization primitives described in Synchronization and
semaphores on page A3-12, for example LDREX and STREX.

Synchronization primitives and the memory order model

The synchronization primitives follow the memory order model of the memory type accessed by the
instructions. For this reason:

. Portable code for claiming a spin-lock must include a Data Memory Barrier (DMB) operation,
performed by aDMB instruction, between claiming the spin-lock and making any access that makes
use of the spin-lock.

. Portable code for releasing a spin-lock must include abMB instruction before writing to clear the
spin-lock.

This requirement applies to code using:

. the Load-Exclusive/Store-Exclusive instruction pairs, for example LDREX/STREX
. the deprecated synchronization primitives, SWP/SWPB.

Use of WFE and SEV instructions by spin-locks

ARMvV7 and ARMV6K provide Wait For Event and Send Event instructions, WFE and SEV, that can assist with
reducing power consumption and bus contention caused by processors repeatedly attempting to obtain a
spin-lock. Theseinstructions can be used at application level, but acomplete understanding of what they do
depends on system-level understanding of exceptions. They are described in Wait For Event and Send Event
on page B1-44.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A3-23

Application Level Memory Model

A3.5 Memory types and attributes and the memory order model
ARMV6 defined a set of memory attributes with the characteristics required to support the memory and
devicesin the system memory map. In ARMV7 this set of attributesis extended by the addition of the Outer
Shareable attribute for Normal memory.
Note
Whether an ARMv7 implementation supperts-the-Outer-Shareable-memery-attribute iS IMPLEMENTATION
DEFINED.
The ordering of accesses for regions of memory, referred to as the memory order model, is defined by the
memory attributes. This model is described in the following sections:
. Memory types
. Summary of ARMv7 memory attributes on page A3-25
. Atomicity in the ARM architecture on page A3-26
. Normal memory on page A3-28
. Device memory on page A3-33
. Srongly-ordered memory on page A3-34
. Memory access restrictions on page A3-35
. Backwards compatibility on page A3-37
. The effect of the Security Extensions on page A3-37.
A3.5.1 Memory types
For each memory region, the most significant memory attribute specifies the memory type. There are three
mutually exclusive memory types:
. Normal
. Device
. Strongly-ordered.
Normal and Device memory regions have additional attributes.
Usually, memory used for program code and for data storage is Norma memory. Examples of Normal
memory technologies are:
. programmed Flash ROM
Note
During programming, Flash memory can be ordered more strictly than Normal memory.
. ROM
. SRAM
. DRAM and DDR memory.
A3-24 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q2
Sticky Note
This change is a clarification of the intended meaning, not a change to the architecture.

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
distinguishes between Inner Shareable and Outer Shareable memory

Application Level Memory Model

System peripherals (1/0) generally conform to different access rulesto Normal memory. Examples of 1/0
accesses are:

FIFOs where consecutive accesses
— add queued values on write accesses
— remove queued values on read accesses.

interrupt controller registers where an access can be used as an interrupt acknowledge, changing the
state of the controller itself

memory controller configuration registers that are used to set up the timing and correctness of areas
of Norma memory

memory-mapped peripherals, where accessing a memory location can cause side effectsin the
system.

In ARMV7, regions of the memory map for these accesses are defined as Device or Strongly-ordered
memory. To ensure system correctness, access rules for Device and Strongly-ordered memory are more
restrictive than those for Normal memory:

both read and write accesses can have side effects
accesses must not be repeated, for example, on return from an exception
the number, order and sizes of the accesses must be maintained.

In addition, for Strongly-ordered memory, all ymemory accesses are strictly ordered to correspond to the
program order of the memory access instructions.

A3.5.2 Summary of ARMv7 memory attributes

Table A3-8 summarizes the memory attributes. For more information about theses attributes see:

Normal memory on page A3-28 and Shareable attribute for Device memory regions on page A3-34,
for the shareability attribute

Write-Through Cacheable, Write-Back Cacheable and Non-cacheable Normal memory on
page A3-32, for the cacheability attribute.

Table A3-8 Memory attribute summary

Memory type Shareability Other attributes Description

attribute

Strongly- - - Allmemory accesses to
ordered Strongly-ordered memory

occur in program order. All
Strongly-ordered regions are
assumed to be Shareable.

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A3-25

ARM_2008_Q4
Inserted Text
explicit

ARM_2008_Q4
Inserted Text
explicit

Application Level Memory Model

Table A3-8 Memory attribute summary (continued)

Memory type Shareability Other attributes Description
attribute
Device Shareable - Intended to handle memory-
mapped peripheralsthat are
shared by several processors.
Non- - Intended to handle memory-
shareable mapped peripheralsthat are
used only by asingleprocessor.
Normal Outer Cachesbility, one of: 2 The Outer Shareable attribute
Shareable qualifiesthe Shareableattribute
Non-cacheable for Normal memory regions
Write-Through Cacheable and enables two levels of

Write-Back Write-Allocate Cacheable Normal memory sharing.b
Write-Back no Write-Allocate Cacheable

Inner Cacheability, one of: 2 Intended to handle Normal

Shareable memory that is shared between
Non-cacheable several processors.
Write-Through Cacheable

Write-Back Write-Allocate Cacheable
Write-Back no Write-Allocate Cacheable

Non- Cachesability, one of: 2 Intended to handle Normal

shareable memory that is used by only a
Non-cacheable single processor.
Write-Through Cacheable

Write-Back Write-Allocate Cacheable
Write-Back no Write-Allocate Cacheable

a The cacheability attribute is defined independently for inner and outer cache regions.
b. Fhesgniticance-of-the-Outer-Shareable-attributg iS IMPLEMENTATION DEFINED.

A3.5.3 Atomicity in the ARM architecture

Atomicity isafeature of memory accesses, described as atomic accesses. The ARM architecture description
refers to two types of atomicity, defined in:

. Sngle-copy atomicity on page A3-27
. Multi-copy atomicity on page A3-28.

A3-26 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q2
Sticky Note
This change is a clarification of the intended meaning, not a change to the architecture.

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
Whether an ARMv7 implementation distinguishes between Inner Shareable and Outer Shareable

ARM_2010_Q3
Highlight
See sticky note

ARM_2010_Q3
Sticky Note
Device memory that has the Shareable attribute can also have the Outer Shareable attribute. This means the shareability attribute for a Device memory region is one of:
 • Outer Shareable
 • Inner Shareable
 • Non-shareable.
For more information, see the description of the NOSn fields in section c10, Primary Region Remap Register (PRRR) on page B3-143 [PDF page 1417].

Application Level Memory Model

Single-copy atomicity
A read or write operation is single-copy atomic if the following conditions are both true:

. After any number of write operationsto an operand, the value of the operand is the value written by
one of the write operations. It isimpossible for part of the value of the operand to come from one
write operation and another part of the value to come from a different write operation.

. When aread operation and awrite operation are made to the same operand, the value obtained by the
read operation is one of:

— thevalue of the operand before the write operation

— thevalue of the operand after the write operation.

It is never the case that the value of the read operation is partly the value of the operand before the
write operation and partly the value of the operand after the write operation.

In ARMvV7, the single-copy atomic processor accesses are:

. all byte accesses

. all halfword accesses to halfword-aligned locations

. all word accesses to word-aligned locations

. memory accesses caused by LDREXD and STREXD instructions to doubleword-aligned locations.

LDM, LDC, LDC2, LDRD, STM, STC, STC2, STRD, PUSH, POP, RFE, SRS, VLDM, VLDR, VSTM, and VSTR instructions are
executed as a sequence of word-aligned word accesses. Each 32-bit word access is guaranteed to be
single-copy atomic. A subsequence of two or more word accesses from the sequence might not exhibit
single-copy atomicity.

Advanced SIMD element and structure loads and stores are executed as a sequence of accesses of the
element or structure size. The element accesses are single-copy atomic if and only if both:

. the element size is 32 bits, or smaller
. the elements are naturally aligned.

Accessesto 64-bit elements or structuresthat are at least word-aligned are executed as a sequence of 32-bit
accesses, each of which is single-copy atomic. Subsequences of two or more 32-bit accesses from the
sequence might not be single-copy atomic.

When an access is not single-copy atomic, it is executed as a sequence of smaller accesses, each of which
is single-copy atomic, at least at the byte level.

If aninstruction isexecuted as a sequence of accesses according to these rules, some exceptions can betaken
in the sequence and cause execution of the instruction to be abandoned. These exceptions are:

. synchronous Data Abort exceptions
. if low interrupt latency configuration is selected and the accesses are to Normal memory, see Low
interrupt latency configuration on page B1-43:
— IRQinterrupts
— FIQinterrupts
— asynchronous aborts.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A3-27

Application Level Memory Model

If any of these exceptions are returned from using their preferred exception return, the instruction that
generated the sequence of accesses is re-executed and so any accesses that had already been performed
before the exception was taken are repeated.

Note

The exception behavior for these multiple access instructions means they are not suitable for use for writes
to memory for the purpose of software synchronization.

For implicit accesses:

. Cache lin€fills and evictions have no effect on the single-copy atomicity of explicit transactions or
instruction fetches.
. Instruction fetches are single-copy atomic for each instruction fetched. E}
Note

32-bit Thumb instructions are fetched as two 16-bit items.

. Trandation table walks are performed as 32-bit accesses aligned to 32 bits, each of which is
single-copy atomic.
Multi-copy atomicity

In amultiprocessing system, writesto a memory location are multi-copy atomic if the following conditions
are both true:

. All writesto the same location are serialized, meaning they are observed in the same order by all
observers, although some observers might not observe al of the writes.

. A read of alocation does not return the value of awrite until all observers observe that write.
Writes to Normal memory are not multi-copy atomic.
All writesto Device and Strongly-ordered memory that are single-copy atomic are also multi-copy atomic.

All write accesses to the samelocation are serialized. Write accessesto Normal memory can be repeated up
to the point that another write to the same address is observed.

For Normal memory, serialization of writes does not prohibit the merging of writes; @

A3.5.4 Normal memory
Normal memory isidempotent, meaning that it exhibits the following properties:
. read accesses can be repeated with no side effects
. repeated read accesses return the last val ue written to the resource being read

. read accesses can prefetch additional memory locations with no side effects

A3-28 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2011_Q2
Inserted Text
A3.5.4 Concurrent modification and execution of instructions

The ARMv7 architecture limits the set of instructions that can be executed by one thread of execution as they are being modified by another thread of execution without requiring explicit synchronization.
Except for the instructions identified in this section, the effect of the concurrent modification and execution of an instruction is UNPREDICTABLE.

For the following instructions only, the architecture guarantees that, after modification of the instruction, behavior is consistent with execution of either:
 • The instruction originally fetched.
 • A fetch of the new instruction. That is, a fetch of the instruction that results from the modification.

The instructions to which this guarantee applies are:
In the Thumb instruction set:
 The 16-bit encodings of the B, NOP, BKPT, and SVC instructions.
 In addition:
 • The most-significant halfword of a BL instruction can be concurrently modified to the most significant halfword of another BL instruction. This means that the most significant bits of the immediate value can be modified.
 • The most-significant halfword of a BL instruction can be concurrently modified to a 16-bit B, BKPT, or SVC instruction.
 • A 16-bit B, BKPT, or SVC instruction can be concurrently modified to the most-significant halfword of a BL instruction.
 -------- Note --------
 In the Thumb instruction set:
 • the only encodings of BKPT and SVC are 16-bit
 • the only encoding of BL is 32-bit.

In the ARM instruction set:
 The B, BL, NOP, BKPT, SVC, HVC, and SMC instructions.

For all other instructions, to avoid unpredictable behavior, instruction modifications must be explicitly synchronized before they are executed. The required synchronization is as follows:
 1. To ensure that the modified instructions are observable, the thread of execution that is modifying the instructions must issue the following sequence of instructions and operations:
 DCCMVAU [instruction location] ; Clean data cache by MVA to point of unification
 DSB ; Ensure visibility of the data cleaned from the cache
 2. Once the modified instructions are observable, the thread of execution that is executing the modified instructions must issue the following sequence of instructions and operations to ensure execution of the modified instructions:
 ICIMVAU [instruction location] ; Invalidate instruction cache by MVA to PoU
 BPIMVAU [instruction location] ; Invalidate branch predictor by MVA to PoU
 DSB ; Ensure completion of the invalidations
 ISB ; Synchronize fetched instruction stream

ARM_2011_Q2
Sticky Note
An important new section, A3.5.4 Concurrent modification and execution of instructions, is added at the end of this line of text.

Although this is the first time this architecture reference manual has described this behavior, the description applies to all ARMv7 implementation.

ARM_2011_Q2
Sticky Note
The new section inserted on this page, immediately before section A3.5.4, describes additional constraints on instruction fetches during concurrent modification and execution of instructions.

Application Level Memory Model

. write accesses can be repeated with no side effect:
. unaligned accesses can be supported
. accesses can be merged before accessing the target memory system.

Normal memory can be read/write or read-only, and a Norma memory region is defined as being either
Shareable or Non-sharesble. In aVMSA implementation, Shareable Normal memory ear-be-eithey Inner
Shareable e Outer Shareable. In aPM SA implementation, no distinction is made between Inner Shareable
and Outer Shareable regions.

The Norma memory type attribute applies to most memory used in a system.

Accesses to Norma Memory have aweakly consistent model of memory ordering. See a standard text
describing memory ordering issues for a description of weakly consistent memory models, for example
chapter 2 of Memory Consistency Models for Shared Memory-Multiprocessors, Kourosh Gharachorl oo,
Stanford University Technical Report CSL-TR-95-685. In general, for Normal memory, barrier operations
are required where the order of memory accesses observed by other observers must be controlled. This
reguirement appliesregardless of the cacheablility and shareability attributes of the Normal memory region.

The ordering requirements of accesses described in Ordering requirements for memory accesses on
page A3-45 apply to al explicit accesses.

An instruction that generates a sequence of accesses as described in Atomicity in the ARM architecture on
page A3-26 might be abandoned as aresult of an exception being taken during the sequence of accesses. On
return from the exception the instruction is restarted, and therefore one or more of the memory locations
might be accessed multiple times. This can result in repeated write accesses to alocation that has been
changed between the write accesses.

The architecture permits specul ative accesses to memory locations marked as Normal if the access
permissions and domain permit an access to the locations.

A Normal memory region has shareability attributes that define the data coherency properties of the region.
These attributes do not affect the coherency requirements of:

. instruction fetches, see Instruction coherency issues on page A3-53

. trandation table walks, if supported, in the base ARMV7 architecture and in versions of the
architecture before ARMV7, see TLB maintenance operations and the memory order model on
page B3-59.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A3-29

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
in the following cases:
 - if the contents of the accessed location are unchanged between the repeated writes
 - as a result of an exception, as described in this section

ARM_2009_Q1
Sticky Note
This change clarifies the description of the behavior of Normal memory, by indicating another case when a write access can be repeated with no side effects. It does not modify the case originally described.

ARM_2009_Q2
Inserted Text
for

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
it is IMPLEMENTATION DEFINED whether there is a distinction between

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
and

ARM_2009_Q2
Sticky Note
This change is a clarification of the intended meaning, not a change to the architecture.

Application Level Memory Model

Non-shareable Normal memory

For aNormal memory region, the Non-shareable attribute identifies Norma memory that is likely to be
accessed only by asingle processor.

A region of Normal memory with the Non-shareabl e attribute does not have any requirement to make data
accesses by different observers coherent, unless the memory is non-cacheable. If other observers share the
memory system, software must use cache maintenance operationsif the presence of caches might lead to
coherency issues when communicating between the observers. This cache maintenance requirement isin
addition to the barrier operations that are required to ensure memory ordering.

For Non-shareable Normal memory, the L oad-Exclusive and Store-Exclusive synchronization primitivesde
net take account of the possibility of accesses by more than one observer.

Shareable, Inner Shareable, and Outer Shareable Normal memory

For Normal memory, the Shareable and Outer Shareable memory attributes describe Normal memory that
is expected to be accessed by multiple processors or other system masters:

. InaVMSA implementation, Normal memory that has the Shareable attribute but not the Outer
Shareable attribute assigned is described as having the Inner Shareable attribute.

. In a PMSA implementation, no distinction is made between Inner Shareable and Outer Shareable
Normal memory, and you cannot assign the Outer Shareable attribute to Normal memory regions.

A region of Norma memory with the Shareable attribute is one for which data accesses to memory by
different observers within the same shareability domain are coherent.

The Outer Shareable attributeisintroduced in ARMv7, and can be applied only to aNormal memory region
inaVMSA implementation that has the Shareable attribute assigned. It creates three levels of shareability
for aNormal memory region:
Non-shareable

A Normal memory region that does not have the Shareable attribute assigned.

Inner Shareable

A Normal memory region that has the Shareable attribute assigned, but not the Outer
Shareable attribute.

Outer Shareable

A Normal memory region that has both the Shareable and the Outer Shareable attributes
assigned.

These attributes can be used to define sets of observers for which the shareability attributes make the data
or unified caches transparent for data accesses. The sets of observers that are affected by the shareability
attributes are described as shareability domains. The details of the use of these attributes are
system-specific. Example A3-1 on page A3-31 shows how they might be used:

A3-30

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2010_Q2
Inserted Text
it is IMPLEMENTATION DEFINED whether

ARM_2010_Q2
Cross-Out

Application Level Memory Model

Example A3-1 Use of shareability attributes

InaVMSA implementation, a particular sub-system with two clusters of processors has the requirement

that:

. in each cluster, the data or unified caches of the processors in the cluster are transparent for all data
accesses with the Inner Shareable attribute

. however, between the two clusters, the caches:

— arenot transparent for data accesses that have only the Inner Shareable attribute
— aretransparent for data accesses that have the Outer Shareabl e attribute.

In this system, each cluster isin adifferent shareability domain for the Inner Shareable attribute, but all
components of the sub-system are in the same shareability domain for the Outer Shareable attribute.

A system might implement two such sub-systems. If the data or unified caches of one subsystem are not
transparent to the accesses from the other subsystem, this system has two Outer Shareable sharesbility
domains.

Having two levels of shareability attribute means you can reduce the performance and power overhead for
shared memory regions that do not need to be part of the Outer Shareable shareability domain.

For Shareable Normal memory, the L oad-Exclusive and Store-Exclusive synchronization primitives take
account of the possibility of accesses by more than one observer in the same Shareability domain.

Note

The Shareable concept enables system designersto specify the locationsin Normal memory that must have
coherency requirements. However, to facilitate porting of software, software devel opers must not assume
that specifying a memory region as Non-shareable permits software to make assumptions about the
incoherency of memory locations between different processors in a shared memory system. Such
assumptions are not portable between different multiprocessing implementations that make use of the
Shareable concept. Any multiprocessing implementation might implement caches that, inherently, are
shared between different processing elements.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A3-31

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
In a VMSA implementation, for Shareable Normal memory, whether there is a distinction between Inner Shareable and Outer Shareable is IMPLEMENTATION DEFINED

ARM_2009_Q2
Sticky Note
This change is a clarification of the intended meaning, not a change to the architecture.

Application Level Memory Model

Write-Through Cacheable, Write-Back Cacheable and Non-cacheable Normal
memory

In addition to being Outer Shareable, Inner Shareable or Non-shareable, each region of Normal memory can
be marked as being one of:

. Write-Through Cacheable

. Write-Back Cacheable, with an additional qualifier that marks it as one of:
— Write-Back, Write-Allocate
— Write-Back, no Write-Allocate

. Non-cacheable.

If the same memory |ocations are marked as having different cacheability attributeg, for example by the use
of aliasesin avirtual to physical address mapping, behavior is UNPREDICTABLE.

The cacheability attributes provide a mechanism of coherency control with observers that lie outside the
shareability domain of aregion of memory. In some cases, the use of Write-Through Cacheable or
Non-cacheabl e regions of memory might provide a better mechanism for controlling coherency than the use
of hardware coherency mechanisms or the use of cache maintenance routines. To this end, the architecture
reguires the following properties for Non-cacheable or Write-Through Cacheable memory:

. acompleted write to amemory location that is Non-cacheable or Write-Through Cacheable for a
level of cache made by an observer accessing the memory system inside the level of cacheisvisible
to all observers accessing the memory system outside the level of cache without the need of explicit
cache maintenance

. acompleted write to amemory location that is Non-cacheable for alevel of cache made by an
observer accessing the memory system outside thelevel of cacheisvisibleto all observers accessing
the memory system inside the level of cache without the need of explicit cache maintenance.

Note

Implementations can also use the cacheability attributes to provide a performance hint regarding the
performance benefit of caching. For example, it might be known to a programmer that a piece of memory
is not going to be accessed again and would be better treated as Non-cacheable. The distinction between
Write-Back Write-Allocate and Write-Back no Write-Allocate memory exists only as a hint for
performance.

The ARM architecture providesindependent cacheability attributes for Normal memory for two conceptual
levelsof cache, theinner and the outer cache. The relationship between these conceptual levels of cache and
the implemented physical levels of cacheisIMPLEMENTATION DEFINED, and can differ from the boundaries
between the Inner and Outer Shareability domains. However:

. inner refers to the innermost caches, and always includes the lowest level of cache

. no cache controlled by the Inner cacheability attributes can lie outside acache controlled by the Outer
cacheability attributes

. an implementation might not have any outer cache.

A3-32

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q4
Inserted Text
, except for marking with allocations hints

A3.5.5

Application Level Memory Model

|Example A3-2 to Example A3-4 describe the three possible ways of implementing a system with three
levels of cache, L1to L3. L1 isthelevel closest to the processor, see Memory hierarchy on page A3-52.

Example A3-2 Implementation with two inner and one outer cache levels

Implement the three levels of cachein the system, L1 to L3, with:
. the Inner cacheability attribute applied to L1 and L2 cache
. the Outer cacheability attribute applied to L3 cache.

Example A3-3 Implementation with three inner and no outer cache levels

Implement the three levels of cachein the system, L1 to L3, with the Inner cacheability attribute applied to
L1, L2, and L3 cache. Do not use the Outer cacheability attribute.

Example A3-4 Implementation with one inner and two outer cache levels

Implement the three levels of cachein the system, L1 to L3, with:
. the Inner cacheability attribute applied to L1 cache
. the Outer cacheability attribute applied to L2 and L3 cache.

Device memory

The Device memory type attribute defines memory locations where an access to the location can cause side
effects, or where the value returned for aload can vary depending on the number of loads performed.
Memory-mapped peripherals and 1/0 locations are examples of memory regions normally marked as being
Device memory.

For explicit accesses from the processor to memory marked as Device:
. all accesses occur at their program size
. the number of accessesis the number specified by the program.

The architecture does not permit specul ative gccesses to memory marked as Devicey

The architecture permitsan Advanced SIMD element or structure load instruction to access bytesin Device
memory that are not explicitly accessed by theinstruction, provided the bytes accessed are within a 16-byte
window, aligned to 16-bytes, that contains at least one byte that is explicitly accessed by the instruction.

Address locations marked as Device are never held in acache.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A3-33

ARM_2008_Q4
Inserted Text
----- Note -----
When managing coherency, system designs must consider both the inner and outer cacheability attributes, as well as the shareability attributes. This is because hardware might have to manage the coherency of caches at one conceptual level, even when another conceptual level has the Non-cacheable attribute.

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
perform more accesses to a Device memory location than are specified by a simple sequential execution of the program, except as a result of an exception. This section describes this permitted effect of an exception.

ARM_2009_Q1
Sticky Note
This is a clarification of the intended meaning of this paragraph, not a change to the architectural specification.

ARM_2009_Q3
Inserted Text
data

ARM_2009_Q3
Inserted Text

----- Note -----
For information about restrictions on speculative instruction prefetching see:
• The Execute Never (XN) attribute and instruction prefetching on page B3-30 [PDF page 1304] for a VMSA implementation
• The Execute Never (XN) attribute and instruction prefetching on page B4-10 [PDF page 1446] for a PMSA implementation.

Application Level Memory Model

A3.5.6

All explicit accesses to Device memory must comply with the ordering requirements of accesses described
in Ordering requirements for memory accesses on page A3-45.

An instruction that generates a sequence of accesses as described in Atomicity in the ARM architecture on
page A 3-26 might be abandoned as aresult of an exception being taken during the sequence of accesses. On
return from the exception the instruction is restarted, and therefore one or more of the memory locations
might be accessed multiple times. This can result in repeated write accesses to alocation that has been
changed between the write accesses.

Note

Do not use an instruction that generates a sequence of accesses to access Device memory if the instruction
might generate gr-abert on any access other than the first one. @

Any unaligned access that is not faulted by the alignment restrictions and accesses Device memory has
UNPREDICTABLE behavior.

Shareable attribute for Device memory regions

Device memory regions can be given the Shareabl e attribute. This means that a region of Device memory
can be described as either:

- Shareable-Devicememery

N y] /-OCCES /0 esser-An example of asystem
supporting Shareable and Non-shareable Device memory is an implementation that supports both:

. alocal busfor its private peripherals
. system peripherals implemented on the main shared system bus.

N

Such a system might have more predictable access times for local peripherals such as watchdog timers or
interrupt controllers. In particular, a specific address in a Non-shareable Device memory region might
access a different physical peripheral for each processory

Strongly-ordered memory

The Strongly-ordered memory type attribute defines memory locations where an access to the location can
cause side effects, or where the value returned for aload can vary depending on the number of loads
performed. Examples of memory regions normally marked as being Strongly-ordered are memory-mapped
peripherals and 1/O locations.

For explicit accesses from the processor to memory marked as Strongly-ordered:
. all accesses occur at their program size
. the number of accessesis the number specified by the program.

A3-34

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
perform more accesses to a Strongly-ordered memory location than are specified by a simple sequential execution of the program, except as a result of an exception. This section describes this permitted effect of an exception.

ARM_2009_Q1
Sticky Note
This is a clarification of the intended meaning of this paragraph, not a change to the architectural specification.

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
 synchronous Data Abort exception

ARM_2009_Q1
Sticky Note
This is a clarification of the meaning of this Note. A synchronous Data Abort exception is the only abort that might occur on such an access.

ARM_2009_Q3
Cross-Out

ARM_2009_Q3
Replacement Text
For Device memory regions, the significance of the Shareability attributes is IMPLEMENTATION DEFINED. However, an

ARM_2010_Q2
Inserted Text

ARM deprecates the marking of Device memory with a Shareability attribute other than Outer Shareable or Shareable.

ARM_2010_Q2
Cross-Out

ARM_2010_Q2
Replacement Text
one of:
 • Outer Shareable Device memory
 • Inner Shareable Device memory
 • Non-shareable Device memory.

Some implementations make no distinction between Outer Shareable Device memory and Inner Shareable Device memory, and refer to both memory types as Shareable Device memory.

Application Level Memory Model

The architecture does not permit specul ative gccesses to memory marked as Strongly-ordered,

The architecture permits an Advanced SIMD element or structure load instruction to access bytesin
Strongly-ordered memory that are not explicitly accessed by theinstruction, provided the bytes accessed are
within a 16-byte window, aligned to 16-bytes, that contains at least one byte that is explicitly accessed by
the instruction.

Addresslocationsin Strongly-ordered memory are not held in acache, and are always treated as Shareable
memory locations.

All explicit accessesto Strongly-ordered memory must correspond to the ordering requirements of accesses
described in Ordering requirements for memory accesses on page A3-45.

An instruction that generates a sequence of accesses as described in Atomicity in the ARM architecture on
page A 3-26 might be abandoned as aresult of an exception being taken during the sequence of accesses. On
return from the exception the instruction is restarted, and therefore one or more of the memory locations
might be accessed multiple times. This can result in repeated write accesses to alocation that has been
changed between the write accesses.

Note

Do not use an instruction that generates a sequence of accesses to access Strongly-ordered memory if the
instruction might generate gp-abert on any access other than the first one. Ej

Any unaligned access that is not faulted by the alignment restrictions and accesses Strongly-ordered
memory has UNPREDICTABLE behavior.

Note

See Ordering of instructions that change the CPSR interrupt masks on page AppxG-8 for additional
reguirements that apply to accesses to Strongly-ordered memory in ARMV6.

A3.5.7 Memory access restrictions

The following restrictions apply to memory accesses:

. Aninstruction that generates an unaligned memory accessto Device or Strongly-ordered memory is
UNPREDICTABLE.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A3-35

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
a synchronous Data Abort exception

ARM_2009_Q1
Sticky Note
This is a clarification of the meaning of this Note. A synchronous Data Abort exception is the only abort that might occur on such an access.

ARM_2009_Q3
Inserted Text
----- Note -----
For information about restrictions on speculative instruction prefetching see:
· The Execute Never (XN) attribute and instruction prefetching on page B3-30 [PDF page 1304] for a VMSA implementation
· The Execute Never (XN) attribute and instruction prefetching on page B4-10 [PDF page 1446] for a PMSA implementation.

ARM_2009_Q3
Inserted Text
data

ARM_2009_Q3 and ARM_2011_Q2
Cross-Out

ARM_2009_Q3 and ARM_2011_Q2
Replacement Text
 • For accesses to any two bytes, p and q, that are generated by the same instruction:
 — The bytes p and q must have the same memory type and shareability attributes, otherwise the results are UNPREDICTABLE. For example, an LDC, LDM, LDRD, STC, STM, STRD , or unaligned load or store that spans a boundary between Normal and Device memory is UNPREDICTABLE.
 — Except for possible differences in the cache allocation hints, ARM deprecates having different cacheability attributes for the bytes p and q.

ARM_2011_Q2
Sticky Note
The new text inserted by the 2011_Q2 change combines the two bullets into a single simplified bullet, and clarifies that:
 • the memory type attribute in the original text includes the shareability attribute.
 • the deprecation of having different cacheability attributes, added in the ARM_2009_Q3 errata release, applies to all accesses covered by the two original bullets, but excludes any differences in the cache allocation hints.

Application Level Memory Model

To ensure access rules are maintained, an instruction that causes multiple accesses to Device or
Strongly-ordered memory must not cross a 4KB address boundary, otherwise the effect is
UNPREDICTABLE. For thisreason, it isimportant that an access to a volatile memory deviceis not
made using a single instruction that crosses a4KB address boundary.

ARM expects this restriction to impose constraints on the placing of volatile memory devicesin the
memory map of a system, rather than expecting a compiler to be aware of the alignment of memory
accesses.

For instructionsthat generate accessesto Device or Strongly-ordered memory, implementations must
not change the sequence of accesses specified by the pseudocode of the instruction. Thisincludes not
changing:

— how many accesses there are

— thetime order of the accesseg

— thedatasizes and other properties of each access.

In addition, processor implementations expect any attached memory system to be able to identify the
memory type of an accesses, and to obey similar restrictions with regard to the number, time orde,
data sizes and other properties of the accesses.

Exceptionsto thisrule are:

— Animplementation of aprocessor can break thisrule, provided that the information it supplies

to the memory system enabl esthe original number, time order, and other details of the accesses
to be reconstructed. In addition, the implementation must place a requirement on attached
memory systemsto do thisreconstruction when the accesses are to Device or Strongly-ordered
memory.
For example, an implementation with a 64-bit bus might pair the word loads generated by an
LDM into 64-bit accesses. Thisis because the instruction semantics ensure that the 64-bit access
isalwaysaword load from thelower addressfollowed by aword |oad from the higher address.
However the implementation must permit the memory systems to unpack the two word loads
when the accessis to Device or Strongly-ordered memory.

— Any implementation technique that produces results that cannot be observed to be different
from those described above is |legitimate.

— AnAdvanced SIMD element or structure load instruction can access bytesin Device or
Strongly-ordered memory that are not explicitly accessed by the instruction, provided the
bytes accessed are within a 16-byte window, aligned to 16-bytes, that contains at least one byte
that is explicitly accessed by the instructiony

Any multi-access instruction that |oads or stores the PC must access only Normal memory. If the
instruction accesses Device or Strongly-ordered memory the result is UNPREDICTABLE. Thereisone
exception to thisrestriction. In the VM SA architecture, when the MMU is disabled any multi-access
instruction that loads or stores the PC functions correctly, see Enabling and disabling the MMU on
page B3-5.

Any instruction fetch must access only Normal memory. If it accesses Device or Strongly-ordered
memory, the result is UNPREDICTABLE. For example, instruction fetches must not be performed to an
area of memory that contains read-sensitive devices, because there is no ordering requirement
between instruction fetches and explicit accesses.

A3-36

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q2
Inserted Text
 at any particular memory-mapped peripheral

ARM_2009_Q2
Sticky Note
This change is a clarification of the intended meaning, not a change to the architecture.

ARM_2009_Q3
Inserted Text

 — There is no requirement for the memory system to be able to identify the size of the elements accessed by an Advanced SIMD element or structure load/store instruction.

A3.5.8

A3.5.9

Application Level Memory Model

. Behavior is UNPREDICTABLE if the same memory location:
— ismarked as Shareable Normal and Non-shareable Normal
— ismarked as having different memory types (Normal, Device, or Strongly-ordered)
— ismarked as having different cacheability attributeg
— ismarked as being Shareable Device and Non-shareable Device memory.

Such memory marking contradictions can occur, for example, by the use of aliasesin avirtua to
physical address mapping.

Backwards compatibility

From ARMV®6, the memory attributes are significantly different from those in previous versions of the
architecture. Table A3-9 shows the interpretation of the earlier memory typesin the light of this definition.

Table A3-9 Backwards compatibility

Previous architectures ARMv6 and ARMv?7 attribute

NCNB (Non-cacheable, Non-bufferable) Strongly-ordered
NCB (Non-cacheable, Bufferable) Shareable Device

Write-Through Cacheable, Bufferable Non-shareable Normal, Write-Through Cachesble

Write-Back Cacheable, Bufferable Non-shareable Normal, Write-Back Cacheable

The effect of the Security Extensions

The Security Extensions can be included as part of an ARMv7-A implementation, with a VMSA. They
provide two distinct 4GByte virtual memory spaces:

. a Secure virtual memory space
. aNon-secure virtual memory space.

The Secure virtual memory space is accessed by memory accesses in the Secure state, and the Non-secure
virtual memory space is accessed by memory accesses in the Non-secure state.

By providing different virtual memory spaces, the Security Extensions permit memory accesses made from
the Non-secure state to be distinguished from those made from the Secure state.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A3-37

ARM_2009_Q1
Inserted Text
, except for marking with allocation hints

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Sticky Note
The first two sentences are accurate but not required in this section.

Application Level Memory Model

A3.6 Access rights
ARMV7 includes additional attributes for memory regions, that enable:
. Dataaccessesto berestricted, based on the privilege of the access. See Privilege level accesscontrols
for data accesses.
. Instruction fetches to be restricted, based on the privilege of the process or thread making the fetch.
See Privilege level access controls for instruction accesses.
. On a system that implements the Security Extensions, accesses to be restricted to memory accesses
with the Secure memory attribute. See Memory region security status on page A3-39.
A3.6.1 Privilege level access controls for data accesses
The memory attributes can define that amemory regioniis:
. not accessible to any accesses
. accessible only to Privileged accesses
. accessible to Privileged and Unprivileged accesses.
The access privilege level is defined separately for explicit read and explicit write accesses. However, a
system that defines the memory attributesis not required to support all combinations of memory attributes
for read and write accesses.
A Privileged access is an access made during privileged execution, as aresult of aload or store operation
other than LDRT, STRT, LDRBT, STRBT, LDRHT, STRHT, LDRSHT, Or LDRSBT.
An Unprivileged accessis an access made as aresult of load or store operation performed in one of these
Cases:
. when the processor isin an unprivileged mode
. when the processor isin any mode and the access is made as aresult of aLDRT, STRT, LDRBT, STRBT,
LDRHT, STRHT, LDRSHT, or LDRSBT instruction.
A Data Abort exception is generated if the processor attempts a data access that the access rights do not
permit. For example, a Data Abort exception is generated if the processor isin unprivileged mode and
attempts to access amemory region that is marked as only accessible to Privileged accesses.
A3.6.2 Privilege level access controls for instruction accesses
Memory attributes can define that a memory regionis:
. Not accessible for execution
. Accessible for execution by Privileged processes only
. Accessible for execution by Privileged and Unprivileged processes.
To define the instruction access rights to a memory region, the memory attributes describe, separately, for
the region:
. its read access rights, see Privilege level access controls for data accesses
A3-38 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

A3.6.3

Application Level Memory Model

. whether it is suitable for execution.

For example, aregion that is accessible for execution by Privileged processes only has the memory
attributes:

. accessible only to Privileged read accesses
. suitable for execution.

This means there is some linkage between the memory attributes that define the accessibility of aregion to
explicit memory accesses, and those that define that a region can be executed.

A memory fault occurs if aprocessor attempts to execute code from a memory location with attributes that
do not permit code execution.

Memory region security status

An additional memory attribute determines whether the memory region is Secure or Non-securein an
ARMV7-A system that implements the Security Extensions. When the Security Extensions are
implemented, this attribute is checked by the system hardware to ensure that aregion of memory that is
designated as Secure by the system hardware is not accessed by memory accesses with the Non-secure
memory attribute. For more information, see Memory region attributes on page B3-32.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A3-39

Application Level Memory Model

A3.7 Virtual and physical addressing

ARMV7 providesthreeaternative architectural profiles, ARMv7-A, ARMVv7-R and ARMv7-M. Each of the

profiles specifies a different memory system. This manual describes two of these profiles:

ARMV7-A profile
The ARMV7-A memory system incorporates a Memory Management Unit (MMU),
controlled by CP15 registers. The memory system supports virtual addressing, with the
MMU performing virtual to physical address trandlation, in hardware, as part of program
execution.

ARMV7-R profile
The ARMV7-R memory system incorporates aMemory Protection Unit (MPU), controlled
by CP15 registers. The MPU does not support virtual addressing.

At the application level, the difference between the ARMv7-A and ARMV7-R memory systemsis

transparent. Regardless of which profileisimplemented, an application accesses the memory map described

in Address space on page A3-2, and the implemented memory system makes the features described in this

chapter available to the application.

For asystem-level description of the ARMV7-A and ARMv7-R memory models see:

. Chapter B2 Common Memory System Architecture Features

. Chapter B3 Virtual Memory System Architecture (VMSA)

. Chapter B4 Protected Memory System Architecture (PMSA).

Note
This manual does not describe the ARMv7-M profile. For details of this profile see:
. _JARMV7-M Architecture Reference Manual; Hption:
A3-40 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q3
Cross-Out

ARM_2009_Q3
Replacement Text
the

ARM_2009_Q3
Cross-Out

ARM_2009_Q3
Sticky Note
ARM has removed distribution restrictions on the ARMv7-M Architecture Reference Manual, and therefore is making the application-level version of the manual obsolete.

A3.8

Application Level Memory Model

Memory access order

ARMV7 provides a set of three memory types, Normal, Device, and Strongly-ordered, with well-defined
memory access properties.

The ARMV7 application-level view of the memory attributesis described in:
. Memory types and attributes and the memory order model on page A3-24
. Access rights on page A3-38.

When considering memory access ordering, an important feature of the ARMv6 memory model isthe
Shareable memory attribute, that indicates whether aregion of memory can be shared between multiple
processors, and therefore requires an appearance of cache transparency in the ordering model.

The key issues with the memory order model depend on the target audience:

. For software programmers, considering the model at the application level, the key factor isthat for
accesses to Normal memory barriers are required in some situations where the order of accesses
observed by other observers must be controlled.

. For siliconimplementers, considering themodel at the system level, the Strongly-ordered and Device
memory attributes place certain restrictions on the system designer in terms of what can be built and
when to indicate completion of an access.

Note

Implementations remain free to choose the mechanisms required to implement the functionality of
the memory model.

More information about the memory order model is given in the following subsections:
. Reads and writes on page A3-42

. Ordering requirements for memory accesses on page A3-45

. Memory barriers on page A3-47.

Additional attributes and behaviors relate to the memory system architecture. These features are defined in
the system level section of this manual:

. Virtual memory systems based on an MMU, described in Chapter B3 Virtual Memory System
Architecture (VMSA).

. Protected memory systems based on an MPU, described in Chapter B4 Protected Memory System
Architecture (PMSA).

. Caches, described in Caches on page B2-3.

Note

In these system level descriptions, some attributes are described in relation to an MMU. In generdl, these
descriptions can a so be applied to an MPU based system.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A3-41

Application Level Memory Model

A3.8.1 Reads and writes

Each memory accessiseither aread or awrite. Explicit memory accesses are the memory accesses required
by the function of an instruction. The following can cause memory accesses that are not explicit:

. instruction fetches
. cache loads and writebacks
. translation table walks.

Except where otherwise stated, the memory ordering requirements only apply to explicit memory accesses.

Reads
Reads are defined as memory operations that have the semantics of aload.

The memory accesses of the following instructions are reads:

. LDR, LDRB, LDRH, LDRSB, and LDRSH

. LDRT, LDRBT, LDRHT, LDRSBT, and LDRSHT

. LDREX, LDREXB, LDREXD, and LDREXH

. LDM, LDRD, POP, and RFE

. LDC, LDC2, VLDM, VLDR, VLD1, VLD2, VLD3, and VLD4_

. the return of status values by STREX, STREXB, STREXD, and STREXH
. in the ARM instruction set only, SwP and SwPB

. in the Thumb instruction set only, TBB and TBH.

Hardware-accel erated opcode execution by the Jazelle extension can cause a number of reads to occur,
according to the state of the operand stack and the implementation of the Jazelle hardware accel eration.

Writes
Writes are defined as memory operations that have the semantics of a store.

The memory accesses of the following instructions are Writes:
o STR, STRB, and STRH

o STRT, STRBT, and STRHT

o STREX, STREXB, STREXD, and STREXH

. STM, STRD, PUSH, and SRS

o STC, STC2,VSTM, VSTR, VST1, VST2, VST3, and VST4

. in the ARM instruction set only, SWP and SwPB.

Hardware-accel erated opcode execution by the Jazelle extension can cause a number of writesto occur,
according to the state of the operand stack and the implementation of the Jazelle hardware accel eration.

A3-42 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q3
Inserted Text
, and VPOP

ARM_2009_Q3
Cross-Out

ARM_2009_Q3
Inserted Text
VPUSH,

Application Level Memory Model

Synchronization primitives

Synchronization primitives must ensure correct operation of system semaphores in the memory order
model. The synchronization primitive instructions are defined as those instructions that are used to ensure
memory synchronization:

. LDREX, STREX, LDREXB, STREXB, LDREXD, STREXD, LDREXH, STREXH.
o SWP, SWPB. Use of these instructions is deprecated from ARMV6.

Before ARMV6, support consisted of the SWP and SWPB instructions. ARMV6 introduced new L oad-Exclusive
and Store-Exclusive instructions LDREX and STREX, and deprecated using the SWP and SWPB instructions.
ARMV7 introduces:

. additional Load-Exclusive and Store-Exclusive instructions, LDREXB, LDREXD, LDREXH, STREXB, STREXD,
and STREXH

. the Clear-Exclusive instruction CLREX
. the Load-Exclusive, Store-Exclusive and Clear-Exclusive instructions in the Thumb instruction set.

For details of the Load-Exclusive, Store-Exclusive and Clear-Exclusive instructions see Synchronization
and semaphores on page A3-12.

The Load-Exclusive and Store-Exclusive instructions are supported to Shareable and Non-shareable
memory. Non-shareable memory can be used to synchronize processes that are running on the same
processor. Shareable memory must be used to synchronize processes that might be running on different
processors.

Observability and completion

An observer isan agent in the system that can access memory. For a processor, the following mechanisms
must be treated as independent observers:

. the mechanism that performs reads or writes to memory

. amechanism that causes an instruction cache to be filled from memory or that fetches instructionsto
be executed directly from memory

. amechanism that performs trandlation table walks.
The set of observers that can observe amemory accessis defined by the system.

For all memory:

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A3-43

ARM_2009_Q2 and ARM_2011_Q2
Cross-Out

ARM_2009_Q2 and ARM_2011_Q2
Replacement Text
 • a write to a location in memory is said to be observed by an observer when:
 - a subsequent read of the location by the same observer will return the value written by the observed write, or by a subsequent write to that location
 - a subsequent write of the location by the same observer will be ordered after the observed write

• a write to a location in memory is said to be globally observed for a shareability domain when:
 - a subsequent read of the location by any observer in that shareability domain will return the value written by the globally-observed write, or by a subsequent write that has been observed by that observer
 - a subsequent write of the location by any observer in that shareability domain will be ordered after the globally-observed write

ARM_2009_Q2 and ARM_2011_Q2
Sticky Note
This change clarifies and extends the change made in the 2008_Q4 errata document.
The additional change made in the ARM_2010_Q1 changes add a clarification to the first sub-bullet of the first bullet, to align it with the equivalent text in the second bullet.

Application Level Memory Model

aread of alocationin memory is said to be observed by an observer when a subsequent write to the
location by the same observer will have no effect on the value returned by the read

aread of alocation in memory is said to be globally observed for a shareability domain when a
subsequent write to the location by any observer in that shareability domain will have no effect on
the value returned by the read.

Additionally, for Strongly-ordered memory:

A read or write of amemory-mapped location in a peripheral that exhibits side-effectsis said to be
observed, and globally observed, only when the read or write:

— meetsthe general conditions listed
— can begin to affect the state of the memory-mapped peripheral

— cantrigger al associated side effects, whether they affect other peripheral devices, processors
or memory.

For al memory, the completion rules are defined as:

A read or writeis complete for a shareability domain when al of the following are true:
— theread or writeis globally observed for that shareability domain

— any tranglation table walks associated with the read or write are complete for that shareability
domain.

A trandation tablewalk is complete for a shareability domain when the memory accesses associated
with the trandlation table walk are globally observed for that shareability domain, and the TLB is
updated.

A cache, branch predictor or TLB maintenance operation is complete for a shareability domain when
the effects of operation are globally observed for that shareability domain and any translation table
walks that arise from the operation are complete for that shareability domain.

The completion of any cache, branch predictor and TLB maintenance operation includesiits
completion on all processors that are affected by both the operation and the DSB.

Side effect completion in Strongly-ordered and Device memory

The completion of amemory accessin Strongly-ordered or Device memory is not guaranteed to be
sufficient to determinethat the side effects of the memory accessarevisibleto all observers. The mechanism
that ensures the visibility of side-effects of a memory accesses iSIMPLEMENTATION DEFINED.

A3-44

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q1
Cross-Out

Application Level Memory Model

A3.8.2 Ordering requirements for memory accesses

ARMV7 and ARMV6 define access restrictions in the permitted ordering of memory accesses. These
restrictions depend on the memory attributes of the accesses involved.

Two terms used in describing the memory access ordering requirements are:

Address dependency

An address dependency exists when the value returned by aread accessis used to compute
thevirtual address of a subsequent read or write access. An address dependency exists even
if the value read by the first read access does not change the virtual address of the second
read or write access. This might be the caseif the value returned is masked off beforeit is
used, or if it has no effect on the predicted address value for the second access.

Control dependency

A control dependency exists when the data value returned by aread accessis used to
determine the condition code flags, and the values of the flags are used for condition code
checking to determine the address of a subsequent read access. This address determination
might be through conditional execution, or through the evaluation of a branch.

Figure A3-4 on page A3-46 shows the memory ordering between two explicit accesses Al and A2, where
A1 occurs before A2 in program order. The symbols used in the figure are as follows:

_Thefollowing additional restrictionsapply to the ordering ofymemory accessesthathavethis
symbelk:

. If there is an address dependency then the two memory accesses are observed in
program order by any observer in the common shareability domain of the two
accesses.

Thisordering restriction does not apply if thereisonly acontrol dependency between
the two read accesses.

If there is both an address dependency and a control dependency between two read
accesses the ordering requirements of the address dependency apply.

. If the value returned by aread access is used as data written by a subsequent write
access, then the two memory accesses are observed in program ordey,

. It isimpossible for an observer in the shareability domain of amemory location to
observe awrite access to that memory location if that location would not be written
to in a sequential execution of a program.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A3-45

ARM_2008_Q4
Inserted Text
 by any observer in the common shareability domain of the two accesses.

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Inserted Text
all

ARM_2008_Q4
Sticky Note
The text from "The following additional restrictions..." to the table on the next page should not be indented.

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
arrive at any particular memory-mapped peripheral or block of memory in program order, that is, A1 must arrive before A2. There are no ordering restrictions about when accesses arrive at different peripherals or blocks of memory, provided that the accesses follow the general ordering rules given in this section.

ARM_2008_Q4
Inserted Text
<new bullet>
• For all accesses from a single observer, the requirements of uniprocessor semantics must be maintained, for example:
 - respecting dependencies between instructions in a single processor
 - coherency.

ARM_2008_Q4
Inserted Text
The size of a memory mapped peripheral, or a block of memory, is IMPLEMENTATION DEFINED, but is not smaller than 1KByte.
<new paragraph>

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
arrive at any memory-mapped peripheral or block of memory in any order, provided that the accesses follow the general ordering rules given in this section

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Sticky Note
This bullet duplicates the previous bullet. Therefore, this deletion is not a change to the architecture.

ARM_2011_Q2
Sticky Note
This note clarifies the rationale of the ARM_2008_Q4 changes to these two paragraphs.

The description of the < symbol, and the first paragraph of the - symbol, describe requirements for the arrival of accesses at a slave device.

In this manual, "observed" is defined precisely, and relates to visibility by masters. This is not the meaning intended in these paragraphs, and therefore these paragraphs have been reworded.

Application Level Memory Model

. It isimpossible for an observer in the shareability domain of a memory location to
observe two reads to the same memory |ocation performed by the same observer in
an order that would not occur in a sequential execution of a programy_

In Figure A3-4, an access refersto aread or awrite access to the specified memory type.
For example, Device access, Non-shareablerefersto aread or write accessto Non-shareable
Device memory.

Devi -

A2 Normal evice access Strongly:

access ordered

A1 Non-shareable | Shareable access
Normal access - - - -
Device access, Non-shareable - < - <
Device access, Shareable - - < <
Strongly-ordered access - < < <

Figure A3-4 Memory ordering restrictions

There are no ordering requirements for implicit accesses to any type of memory.

Program order for instruction execution
The program order of instruction execution is the order of the instructions in the control flow trace.

Explicit memory accesses in an execution can be either:

Strictly Ordered
Denoted by <. Must occur strictly in order.
Ordered Denoted by <=. Can occur either in order or simultaneoudly.

L oad/store multiple instructions, such as LDM, LDRD, STM, and STRD, generate multiple word accesses, each of
which is a separate access for the purpose of determining ordering.

The rules for determining program order for two accesses Al and A2 are:
If Al and A2 are generated by two different instructions:

. A1l < A2if theinstruction that generates A1 occurs before the instruction that generates A2 in
program order

. A2 < Alif theinstruction that generates A2 occurs before the instruction that generates Alin
program order.

If Al and A2 are generated by the same instruction:

. If Al and A2 are the load and store generated by a SWP or SWPB instruction:
— Al<A2if Alistheload and A2 isthe store
— A2<Alif A2istheload and Al isthe store.

A3-46

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q2 and ARM_2010_Q2
Inserted Text

• For an implementation that does not include the Multiprocessing Extensions, it is IMPLEMENTATION DEFINED whether all writes complete in a finite period of time, or whether software must execute a DSB to ensure the completion of some writes.

• For an implementation that includes the Multiprocessing Extensions, all writes complete in a finite period of time.

ARM_2010_Q2
Sticky Note
The original additions to this list have been simplified, to clarify their meaning.

A3.8.3

Application Level Memory Model

. In these descriptions:
— anLDM-classinstruction is any form of LDM, LDMDA, LDMDB, LDMIB, or POP instruction
— anLDC-classinstruction is an LDC, VLDM, or VLDR instruction
— an STM-classinstruction is any form of STM, STMDA, STMDB, STMIB, or PUSH instruction
— an STC-classinstruction isan STC, VSTM, or VSTR instruction.
If Al and A2 are two word |oads generated by an LDC-class or LDM-classinstruction, or two word

stores generated by an STC-class or STM-class instruction, excluding LDM-class and STM-class
instructions with aregister list that includes the PC:

— Al<=A2if theaddress of Alislessthanthe address of A2
— A2<=Alif theaddress of A2islessthan the address of A1l.

If Al and A2 are two word |loads generated by an LDM-class instruction with aregister list that
includes the PC or two word stores generated by an STM-class instruction with aregister list that
includes the PC, the program order of the memory accesses is not defined.

. If Al and A2 are two word loads generated by an LDRD instruction or two word stores generated by
an STRD instruction, the program order of the memory accesses is not defined.

. If Aland A2 areload or store accesses generated by Advanced SIMD element or structure load/store
instructions, the program order of the memory accesses is not defined.

. For any instruction or operation not explicitly mentioned in this section, if the single-copy atomicity
rules described in Single-copy atomicity on page A3-27 mean the operation becomes a sequence of
accesses, then the time-ordering of those accessesis not defined.

Memory barriers

Memory barrier isthe general term applied to an instruction, or sequence of instructions, used to force
synchronization events by aprocessor with respect to retiring load/storeinstructions. The ARM architecture
defines a number of memory barriers that provide a range of functionality, including:

. ordering of issued load/store instructionste-the-programmers—medel

. completion of preceding |oad/store instructions-te-the-programmers—model

. flushing of any instructions prefetched before the memory barrier operation.

ARMV7 and ARMV6 require three explicit memory barriersto support the memory order model described
in this chapter. In ARMv7 the memory barriers are provided as instructions that are available in the ARM
and Thumb instruction sets, and in ARMv6 the memory barriers are performed by CP15 register writes. The
three memory barriers are:

. Data Memory Barrier, see Data Memory Barrier (DMB) on page A3-48

. Data Synchronization Barrier, see Data Synchronization Barrier (DSB) on page A3-49

. Instruction Synchronization Barrier, see I nstruction Synchronization Barrier (1SB) on page A3-49.
Depending on the synchronization needed, a program might use memory barriers on their own, or it might

use them in conjunction with cache and memory management maintenance operations that are only
available in privileged modes.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A3-47

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Sticky Note
These edits are a simplification, to remove possible confusion. They do not indicate a change to the architecture.

Application Level Memory Model

The DMB and DSB memory barriers affect reads and writes to the memory system generated by |oad/store
instructions and data or unified cache maintenance operations being executed by the processor. Instruction
fetches or accesses caused by a hardware translation table access are not explicit accesses.

Data Memory Barrier (DMB)

The DMB instruction is a data memory barrier. The processor that executes the DMB instruction is referred to
as the executing processor, Pe. The DMB instruction takes the required shareability domain and required
access types as arguments. If the required shareahility is Full system then the operation appliesto all
observers within the system.

A DMB creates two groups of memory accesses, Group A and Group B:

Group A Contains:

. All explicit memory accesses of the required accesstypesfrom observersin the same
required shareability domain as Pethat are observed by Pe before theDMB instruction.
These accesses include any accesses of the required access types and-required

shareabitity-demain performed by Pe.

. All loads of required access types from ebserverg in the same required shareability
domain as Pethat have been observed by any givenpbserver, Py, inthe samerequired
shareability domain as Pe before Py has performed amemory accessthat isamember

of Group A.
Group B Contains:
. All explicit memory accesses of the required accesstypes by Pethat occur in program

order after the DMB instruction.

. All explicit memory accesses of the required access types by any given observer Px
in the same required shareability domain as Pe that can only occur after Px has
observed a store that is a member of Group B.

Any observer with the same required shareability domain as Pe observes all members of Group A beforeit
observes any member of Group B to the extent that those group members are required to be observed, as
determined by the shareablllty and cacheablllty of the memory locations acc&ssed by the group members.

Note

L A memory access might be in neither Group A nor Group B. The DMB does not affect the order of

observation of such amemory access.

. The second part of the definition of Group A isrecursive. Ultimately, membership of Group A derives
from the observation by Py of aload before Py performs an access that isamember of Group A asa
result of thefirst part of the definition of Group A.

A3-48

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
an observer Px

ARM_2009_Q2
Inserted Text
different

ARM_2011_Q2
Cross-Out

ARM_2009_Q4 and ARM_2011_Q2
Cross-Out

ARM_2009_Q4 and ARM_2011_Q2
Replacement Text
Where members of Group A and members of Group B access the same memory-mapped peripheral, of arbitrary system-defined size, then members of Group A that are using Strongly-ordered or Device memory type arrive at that peripheral before members of Group B that are using Strongly-ordered or Device memory type.

ARM_2011_Q2
Sticky Note
The original statement was deleted in the ARM_2009_Q4 issue of this errata document. A replacement statement is added in the ARM_2011_Q2 issue.

The ARM_2011_Q2 issue also adds an additional bullet point at the start of the Note that follows this paragraph.

ARM_2011_Q2
Inserted Text
 • Where the members of Group A and Group B that must be ordered are from the same processor, a DMB NSH is sufficient for this guarantee.

Application Level Memory Model

. The second part of the definition of Group B isrecursive. Ultimately, membership of Group B derives
from the observation by any observer of an access by Pe that is a member of Group B as aresult of
thefirst part of the definition of Group B.

DMB only affects memory accesses. It has no effect on the ordering of any other instructions executing on the
processor.

For details of the DMB instruction in the Thumb and ARM instruction sets see DMB on page A8-90.

Data Synchronization Barrier (DSB)

TheDSB instruction is a special memory barrier, that synchronizes the execution stream with memory
accesses. TheDSB instruction takesthe required shareability domain and required access types as arguments.
If the required shareability is Full system then the operation applies to al observers within the system.

A DSB behaves as a DMB with the same arguments, and also has the additional properties defined here.
A DSB completes when beth:

. all explicit memory accesses that are observed by Pe before the DSB is executed, are of the required
accesstypes, and arefrom observersin the same required shareability domain as Pe, are completefor
the set of observersin the required shareability domain

. all cachegbranch predi ctor;-andFLB maintenance operationsissued by Pe beforetheDSB are complete
for the required shareability domainy_

In addition, no instruction that appears in program order after the DSB instruction can execute until the DSB
completes.

For details of the DSB instruction in the Thumb and ARM instruction sets see DSB on page A8-92.

Note

Historically, this operation was referred to as Drain Write Buffer or Data Write Barrier (DWB). From
ARMV6, these names and the use of DWB were deprecated in favor of the new Data Synchronization Barrier
name and DSB abbreviation. DSB better reflects the functionality provided from ARMV6, because DSB is
architecturally defined to include al cache, TLB and branch prediction maintenance operations as well as
explicit memory operations.

Instruction Synchronization Barrier (ISB)

An ISB instruction flushes the pipeline in the processor, so that all instructions that come after the ISB
instruction in program order are fetched from cache or memory only after the ISB instruction has completed.
Using an ISB ensures that the effects of context atering operations executed before the ISB arevisibleto the
instructions fetched after the ISB instruction. Examples of context atering operations that require the
insertion of an ISB instruction to ensure the pperations are eempletg are:

. _cache, TLB, and branch predictor maintenance operations

. changes to the CP14 and CP15 registers.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A3-49

ARM_2009_Q2
Inserted Text
effects of the

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Inserted Text
visible to instructions fetched after the ISB instruction

ARM_2009_Q2
Inserted Text
completed

ARM_2009_Q2
Sticky Note
This is not an architectural change. The current text wrongly described the required behavior and is contradicted elsewhere in this manual.

ARM_2011_Q2
Inserted Text
 and data and unified cache maintenance operations

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Replacement Text
 and

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Replacement Text

• if the required access types of the DSB is both reads and writes, all TLB maintenance operations issued by Pe before the DSB are complete for the required shareability domain.

ARM_2011_Q2
Sticky Note
The changes in this list clarify the intended meaning of the original statement. The requirements for TLB maintenance operation completion apply only when the required access type of the DSB is both reads and writes, as indicated in the inserted third bullet.

ARM_2011_Q2
Cross-Out

Application Level Memory Model

Any context altering operations appearing in program order after the ISB instruction only take effect after
the ISB has been executed.

For details of the ISB instruction in the Thumb and ARM instruction sets see |SB on page A8-102.

Pseudocode details of memory barriers

The following types define the required shareability domains and required access types used as arguments
for DMB and DSB instructions:

enumeration MBRegDomain {MBRegDomain_FullSystem,
MBRegDomain_OuterShareable,
MBRegDomain_InnerShareable,
MBRegDomain_Nonshareable};

enumeration MBReqTypes {MBReqTypes_A11, MBReqTypes_Writes};
The following procedures perform the memory barriers:
DataMemoryBarrier(MBRegDomain domain, MBReqTypes types)

DataSynchronizationBarrier(MBRegDomain domain, MBReqTypes types)
InstructionSynchronizationBarrier()

A3-50

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2010_Q3
Sticky Note
The deleted explanation is not necessary, and has been interpreted wrongly.

ARM_2010_Q3
Cross-Out

A3.9

A3.9.1

Application Level Memory Model

Caches and memory hierarchy

Theimplementation of amemory system depends heavily on the microarchitecture and therefore the detail s
of the system are IMPLEMENTATION DEFINED. ARMV7 definesthe application level interface to the memory
system, and supports a hierarchical memory system with multiple levels of cache. This section provides an
application level view of this system. It contains the subsections:

. Introduction to caches
. Memory hierarchy on page A3-52
. Implication of caches for the application programmer on page A3-52

. Preloading caches on page A3-54.

Introduction to caches

A cacheisablock of high-speed memory that contains a number of entries, each consisting of:
. main memory address information, commonly known as atag
. the associated data.

Caches are used to increase the average speed of amemory access. Cache operation takes account of two
principles of locality:
Spatial locality

An access to one location is likely to be followed by accesses to adjacent locations.
Examples of this principle are:

. sequential instruction execution
. accessing adata structure.

Temporal locality

An access to an area of memory islikely to be repeated in a short time period. An example
of this principle is the execution of a code loop

To minimizethe quantity of control information stored, the spatial locality property is used to group several
locations together under the sametag. Thislogical block is commonly known as acache line. When datais
loaded into a cache, access times for subsequent loads and stores are reduced, resulting in overall
performance benefits. An access to information already in a cache is known as a cache hit, and other
accesses are called cache misses.

Normally, caches are self-managing, with the updates occurring automatically. Whenever the processor
wants to access a cacheabl e location, the cache is checked. If the access is a cache hit, the access occursin
the cache, otherwise alocation is allocated and the cache line loaded from memory. Different cache
topologies and access policies are possible, however, they must comply with the memory coherency model
of the underlying architecture.

Caches introduce a number of potential problems, mainly because of:
. Memory accesses occurring at times other than when the programmer would normally expect them
. There being multiple physical locations where a data item can be held

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A3-51

Application Level Memory Model

A3.9.2

Memory hierarchy

Memory closeto aprocessor hasvery low latency, but islimited in size and expensive to implement. Further
from the processor it is easier to implement larger blocks of memory but these have increased latency. To
optimize overall performance, an ARMv7 memory system can include multiple levels of cacheina
hierarchical memory system. Figure A3-5 shows such a system, in an ARMv7-A implementation of a
VMSA, supporting virtual addressing.

Virtual
address Address Physical address
"| Translation

5
CP15 configuration
and control ! ! |

Processor l »| Level1l Level 2 Level 3

Cache Cache

R15 __Instruction _ B DRAM

SRAM
Prefetch Flash

Load ROM Level 4

L le b < > |e > -« for example,

RO “
Store CF card, disk

A3.9.3

Figure A3-5 Multiple levels of cache in a memory hierarchy

Note
Inthismanual, in ahierarchical memory system, Level 1 referstothelevel closest to the processor, asshown
in Figure A3-5.

Implication of caches for the application programmer

In normal operation, the caches are largely invisible to the application programmer. However they can
become visible when there is a breakdown in the coherency of the caches. Such a breakdown can occur:

. when memory locations are updated by other agentsin the system

. when memory updates made from the application code must be made visible to other agents in the
system.

For example:

. In a system with aDMA controller that reads memory locations that are held in the data cache of a
processor, a breakdown of coherency occurs when the processor has written new datain the data
cache, but the DMA controller reads the old data held in memory.

. In aHarvard architecture of caches, where there are separate instruction and data caches, a
breakdown of coherency occurs when new instruction data has been written into the data cache, but
the instruction cache still contains the old instruction data.

A3-52

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Memory Model

Data coherency issues
You can ensure the data coherency of cachesin the following ways:

. By not using the caches in situations where coherency issues can arise. You can achieve this by:
— using Non-cacheable or, in some cases, Write-Through Cacheable memory-fer-the-caches
— not enabling cachesin the system.

. By using cache maintenance operations to manage the coherency issues in software, see Cache
maintenance functionality on page B2-9. Many of these operations are only available to system
software.

. By using hardware coherency mechanisms to ensure the coherency of data accesses to memory for

cacheable locations by observers within the different shareability domains, see Non-shareable
Normal memory on page A3-30 and Shareable, Inner Shareable, and Outer Shareable Normal
memory on page A3-30.

The performance of these hardware coherency mechanismsis highly implementation specific. In
some implementati ons the mechanism suppresses the ability to cache shareable locations. In other
implementations, cache coherency hardware can hold data in caches while managing coherency
between observers within the shareability domains.

Instruction coherency issues

How far ahead of the current point of execution instructions are prefetched from isIMPLEMENTATION
DEFINED. Such prefetching can be either afixed or adynamically varying number of instructions, and can
follow any or al possible future execution paths. For all types of memory:

. the processor might have fetched the instructions from memory at any time since the last I SB,
exception entry or exception return executed by that processor

. any instructions fetched in this way might be executed multiple times, if thisis required by the
execution of the program, without being refetched from memory

In addition, the ARM architecture does not require the hardware to ensure coherency between instruction
caches and memory, even for regions of memory with Shareable attributes. This means that for cacheable
regions of memory, an instruction cache can hold instructions that were fetched from memory before the

last I1SB, exception entry or exception return.

If software requires coherency between instruction execution and memory, it must manage this coherency
using the ISB and DSB memory barriers and cache maintenance operations, see Ordering of cache and
branch predictor maintenance operations on page B2-21. Many of these operations are only available to
system software.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A3-53

ARM_2011_Q2
Cross-Out

Application Level Memory Model

A3.9.4

Preloading caches

The ARM architecture provides memory system hints PLD (Preload Data) and PLI (Preload Instruction) to
permit software to communi cate the expected use of memory locationsto the hardware. The memory system
can respond by taking actionsthat are expected to speed up the memory accessesif and when they do occur.
The effect of these memory system hintsisIMPLEMENTATION DEFINED. Typically, implementationswill use
this information to bring the data or instruction locations into caches that have faster access times than
normal memory.

The Preload instructions are hints, and so implementations can treat them as NOPs without affecting the
functional behavior of the device. Theinstructions do not generate synchronous Data Abort exceptions, but
the memory system operations might, under exceptional circumstances, generate asynchronous aborts. For
more information, see Data Abort exception on page B1-55.

Hardware implementations can provide other implementation-specific mechanismsto prefetch memory
locationsin the cache. These must comply with the general cache behavior described in Cache behavior on
page B2-5.

A3-54

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Chapter A4
The Instruction Sets

This chapter describes the ARM and Thumb instruction sets. It contains the following sections:

.

.

About the instruction sets on page A4-2

Unified Assembler Language on page A4-4

Branch instructions on page A4-7

Data-processing instructions on page A4-8

Satus register access instructions on page A4-18

Load/store instructions on page A4-19

Load/store multiple instructions on page A4-22

Miscellaneous instructions on page A4-23

Exception-generating and exception-handling instructions on page A4-24
Coprocessor instructions on page A4-25

Advanced SMD and VFP load/store instructions on page A4-26
Advanced SMD and VFP register transfer instructions on page A4-29
Advanced SMD data-processing operations on page A4-30

VFP data-processing instructions on page A4-38.

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

A4-1

The Instruction Sets

A4.1

A41.1

About the instruction sets

ARMV7 containstwo main instruction sets, the ARM and Thumb instruction sets. Much of thefunctionality
availableisidentical in the two instruction sets. This chapter describes the functionality available in the
instruction sets, and the Unified Assembler Language (UAL) that can be assembled to either instruction set.

The two instruction sets differ in how instructions are encoded:

. Thumb instructions are either 16-bit or 32-bit, and are aligned on a two-byte boundary. 16-bit and
32-bit instructions can be intermixed freely. Many common operations are most efficiently executed
using 16-bit instructions. However:

— Most 16-hit instructions can only access eight of the general-purpose registers, RO-R7. These
are known asthe low registers. A small number of 16-bit instructions can access the high
registers, R8-R15.

— Many operations that would require two or more 16-bit instructions can be more efficiently
executed with a single 32-bit instruction.

. ARM instructions are always 32-hit, and are aligned on a four-byte boundary.

The ARM and Thumb instruction sets can interwork freely, that is, different procedures can be compiled or
assembled to different instruction sets, and till be able to call each other efficiently.

ThumbEE is avariant of the Thumb instruction set that is designed as a target for dynamically generated
code. However, it cannot interwork freely with the ARM and Thumb instruction sets.

. Chapter A5 ARM Instruction Set Encoding for encoding details of the ARM instruction set

. Chapter A6 Thumb Instruction Set Encoding for encoding details of the Thumb instruction set
. Chapter A8 Instruction Details for detailed descriptions of the instructions

. Chapter A9 ThumbEE for encoding details of the ThumbEE instruction set.

Changing between Thumb state and ARM state

A processor in Thumb state (that is, executing Thumb instructions) can enter ARM state (and change to
executing ARM instructions) by executing any of the following instructions: BX, BLX, or an LDR or LDM that
loads the PC.

A processor in ARM state (that is, executing ARM instructions) can enter Thumb state (and change to
executing Thumb instructions) by executing any of the same instructions.

In ARMV7, aprocessor in ARM state can also enter Thumb state (and change to executing Thumb
instructions) by executing an ADC, ADD, AND, ASR, BIC, EOR, LSL, LSR, MOV, MVN, ORR, ROR, RRX, RSB, RSC, SBC, or SUB
instruction that has the PC as destination register and does not set the condition flags.

A4-2

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The Instruction Sets

Note

This permits calls and returns between ARM code written for ARMv4 processors and Thumb code running
on ARMV7 processors to function correctly. In new code, ARM recommends that you use BX or BLX
instructionsinstead. In particular, use BX LR to return from a procedure, not MOV PC,LR.

The target instruction set is either encoded directly in the instruction (for the immediate offset version of
BLX), or is held asbit [0] of an interworking address. For details, see the description of the BXwritePC()
function in Pseudocode details of operations on ARM core registers on page A2-12.

Exception entries and returns can also change between ARM and Thumb states. For details see Exceptions
on page B1-30.

A4.1.2 Conditional execution

Most ARM instructions can be conditionally executed. This means that they only have their normal effect
on the programmers' model operation, memory and coprocessorsif the N, Z, C and V flagsin the APSR
satisfy a condition specified in the instruction. If the flags do not satisfy this condition, the instruction acts
as aNORP, that is, execution advances to the next instruction as normal, including any relevant checks for
exceptions being taken, but has no other effect.

Most Thumb instructions are unconditional. Conditional execution in Thumb code can be achieved using
any of the following instructions:

. A 16-bit conditional branch instruction, with abranch range of —256 to +254 bytes. For details see B
on page A8-44. Before ARMV6T 2, thiswas the only mechanism for conditional executionin Thumb
code.

. A 32-bit conditional branch instruction, with abranch range of approximately + 1IMB. For details see
B on page A8-44.

. 16-bit Compare and Branch on Zero and Compare and Branch on Nonzero instructions, with abranch
range of +4 to +130 bytes. For details see CBNZ, CBZ on page A8-66.

. A 16-bit If-Then instruction that makes up to four following instructions conditional. For details see
IT on page A8-104. The instructions that are made conditional by an IT instruction are called its 1T
block. Instructionsin an IT block must either all have the same condition, or some can have one
condition, and others can have the inverse condition.

For more information about conditional execution see Conditional execution on page A8-8.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A4-3

The Instruction Sets

A4.2

A4.2.1

Unified Assembler Language

This document uses the ARM Unified Assembler Language (UAL). This assembly language syntax
provides a canonica form for all ARM and Thumb instructions.

UAL describes the syntax for the mnemonic and the operands of each instruction. In addition, it assumes
that instructions and dataitems can be given labels. It does not specify the syntax to be used for labels, nor
what assembler directives and options are available. See your assembler documentation for these details.

Most earlier ARM assembly language mnemonics are still supported as synonyms, as described in the
instruction details.

Note

Most earlier Thumb assembly language mnemonics are not supported. For details see Appendix C Legacy
Instruction Mnemonics.

UAL includesinstruction sel ection rulesthat specify which instruction encoding is selected when morethan
one can provide the required functionality. For example, both 16-bit and 32-bit encodings exist for an

ADD R@,R1,R2 instruction. The most common instruction selection rule is that when both a 16-bit encoding
and a 32-bit encoding are available, the 16-bit encoding is selected, to optimize code density.

Syntax options exist to override the normal instruction selection rules and ensure that a particular encoding
is selected. These are useful when disassembling code, to ensure that subsequent assembly produces the
original code, and in some other situations.

Conditional instructions

For maximum portability of UAL assembly language between the ARM and Thumb instruction sets, ARM
recommends that:

. IT instructions are written before conditional instructions in the correct way for the Thumb
instruction set.

. When assembling to the ARM instruction set, assemblers check that any IT instructions are correct,
but do not generate any code for them.

Although other Thumb instructions are unconditional, al instructions that are made conditional by an IT
instruction must be written with a condition. These conditions must match the conditionsimposed by the IT
instruction. For example, an ITTEE EQ instruction imposes the EQ condition on the first two following
instructions, and the NE condition on the next two. Those four instructions must be written with EQ, EQ, NE
and NE conditions respectively.

Some instructions cannot be made conditional by an IT instruction. Someinstructions can be conditional if
they arethelast instruction in the IT block, but not otherwise.

The branch instruction encodings that include a condition field cannot be made conditional by an IT
instruction. If the assembler syntax indicates a conditional branch that correctly matches a preceding IT
instruction, it is assembled using a branch instruction encoding that does not include a condition field.

Ad-4

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The Instruction Sets

A4.2.2 Use of labels in UAL instruction syntax

The UAL syntax for some instructions includes the label of an instruction or aliteral dataitemthatisat a
fixed offset from the instruction being specified. The assembler must:

1

Calculate the PC or Align(PC,4) value of the instruction. The PC value of an instruction isits address
plus 4 for a Thumb instruction, or plus 8 for an ARM instruction. The Align(PC,4) value of an
instruction isits PC value ANDed with exFFFFFFFC to force it to be word-aligned. Thereis no
difference between the PC and ATign(PC,4) values for an ARM instruction, but there can be for a
Thumb instruction.

Calculate the offset from the PC or ATign(PC,4) value of the instruction to the address of the labelled
instruction or litera dataitem.

Assemble a PC-relative encoding of theinstruction, that is, one that readsits PC or A1ign(PC,4) value
and adds the calculated offset to form the required address.

Note

For instructions that can encode a subtraction operation, if the instruction cannot encode the
calculated offset but can encode minus the calculated offset, the instruction encoding specifies a
subtraction of minus the calculated offset.

The syntax of the following instructions includes alabel:

B, BL, and BLX (immediate). The assembler syntax for these instructions always specifies the label of
the instruction that they branch to. Their encodings specify a sign-extended immediate offset that is
added to the PC value of the instruction to form the target address of the branch.

(BNZ and CBZ. The assembler syntax for these instructions always specifiesthe label of theinstruction
that they branch to. Their encodings specify a zero-extended immediate offset that is added to the PC
value of the instruction to form the target address of the branch. They do not support backward
branches.

LDC, LDC2, LDR, LDRB, LDRD, LDRH, LDRSB, LDRSH, PLD, PLDW, PLI, and VLDR. The normal assembler syntax of
these load instructions can specify the label of aliteral dataitem that isto be loaded. The encodings
of these instructions specify a zero-extended immediate offset that is either added to or subtracted
from the Align(PC,4) value of the instruction to form the address of the dataitem. A few such
encodings perform afixed addition or afixed subtraction and must only be used when that operation
isrequired, but most contain abit that specifies whether the offset is to be added or subtracted.

When the assembl er calculates an offset of O for the normal syntax of these instructions, it must
assemble an encoding that adds O to the Align(PC, 4) value of the instruction. Encodings that subtract
0 from the Align(PC,4) value cannot be specified by the normal syntax.

Thereis an alternative syntax for these instructions that specifies the addition or subtraction and the
immediate offset explicitly. In this syntax, the label isreplaced by [PC, #+/-<imm>], where:

+/- Is+ or omitted to specify that theimmediate offset isto be added to the Align(PC, 4) value,
or - if it isto be subtracted.
<imm> Is the immediate offset.

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A4-5

The Instruction Sets

This alternative syntax makes it possible to assemble the encodings that subtract O from the
Align(PC,4) value, and to disassemble them to a syntax that can be re-assembled correctly.

ADR. The normal assembler syntax for thisinstruction can specify the label of an instruction or literal
dataitem whose address is to be cal culated. 1ts encoding specifies a zero-extended immediate offset
that is either added to or subtracted from the A1ign(PC,4) value of the instruction to form the address
of the dataitem, and some opcode bits that determine whether it is an addition or subtraction.

When the assembler calculates an offset of O for the normal syntax of thisinstruction, it must
assemble the encoding that adds O to the Align(PC,4) value of the instruction. The encoding that
subtracts 0 from the A1ign(PC,4) value cannot be specified by the normal syntax.

There is an aternative syntax for thisinstruction that specifies the addition or subtraction and the
immediate value explicitly, by writing them as additions ADD <Rd>, PC, #<imm> or subtractions

SUB <Rd>,PC, #<imm>. Thisalternative syntax makesit possible to assembl e the encoding that subtracts
0 from the Align(PC,4) value, and to disassemble it to a syntax that can be re-assembled correctly.

Note

ARM recommends that where possible, you avoid using:

the alternative syntax for the ADR, LDC, LDC2, LDR, LDRB, LDRD, LDRH, LDRSB, LDRSH, PLD, PLI, PLDW, and VLDR
instructions

the encodings of these instructions that subtract O from the ATign(PC,4) value.

A4-6

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

A4.3 Branch instructions

The Instruction Sets

Table A4-1 summarizes the branch instructions in the ARM and Thumb instruction sets. In addition to
providing for changes in the flow of execution, some branch instructions can change instruction set.

Table A4-1 Branch instructions

. Range Range
Instruction See (Thumb) (ARM)
Branch to target address B on page A8-44 +/-16MB +/-32MB
Compare and Branch on Nonzero, Compare CBNZ, CBZ on page A8-66 0-126B a
and Branch on Zero
Call asubroutine BL, BLX (immediate) on page A8-58 +/-16MB +/-32MB
Call asubroutine, change instruction setb +/-16MB +/-32MB
Call asubroutine, optionally changeinstruction ~ BLX (register) on page A8-60 Any Any
set
Branch to target address, changeinstructionset BX on page A8-62 Any Any
Change to Jazelle state BXJ on page A8-64 - -

Table Branch (byte offsets) TBB, TBH on page A8-446 0-510B a
Table Branch (halfword offsets) 0-131070B

a. Theseinstructions do not exist in the ARM instruction set.

b. Therangeisdetermined by the instruction set of the BLX instruction, not of the instruction it branches to.

Branchesto loaded and cal cul ated addresses can be performed by LDR, LDM and data-processing instructions.
For details see Load/store instructions on page A4-19, Load/store multiple instructions on page A4-22,
Sandard data-processing instructions on page A4-8, and Shift instructions on page A4-10.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

A4-7

The Instruction Sets

A4.4 Data-processing instructions

Core data-processing instructions belong to one of the following groups:

. Sandard data-processing instructions. Theseinstructions perform basic data-processing operations,
and share a common format with some variations.

. Shift instructions on page A4-10.

. Saturating instructions on page A4-13.

. Packing and unpacking instructions on page A4-14.

. Miscellaneous data-processing instructions on page A4-15.

. Parallel addition and subtraction instructions on page A4-16.

. Divideinstructions on page A4-17.

For extension data-processing instructions, see Advanced SSMD data-processing operations on page A4-30

and VFP data-processing instructions on page A4-38.

A4.4.1 Standard data-processing instructions

These instructions generally have a destination register Rd, afirst operand register Rn, and a second

operand. The second operand can be another register Rm, or an immediate constant.

If the second operand is an immediate constant, it can be:

. Encoded directly in the instruction.

. A modified immediate constant that uses 12 bits of the instruction to encode a range of constants.
Thumb and ARM instructions have slightly different ranges of modified immediate constants. For
details see Modified immediate constants in Thumb instructions on page A6-17 and Modified
immediate constantsin ARM instructions on page A5-9.

If the second operand is another register, it can optionally be shifted in any of the following ways:

LSL Logical Shift Left by 1-31 hits.

LSR Logical Shift Right by 1-32 bits.

ASR Arithmetic Shift Right by 1-32 bits.

ROR Rotate Right by 1-31 bits.

RRX Rotate Right with Extend. For details see Shift and rotate operations on page A2-5.

In Thumb code, the amount to shift by is always a constant encoded in the instruction. In ARM code, the

amount to shift by is either a constant encoded in the instruction, or the value of aregister Rs.

For instructions other than CMN, CMP, TEQ, and TST, the result of the data-processing operation is placed in the

destination register. Inthe ARM instruction set, the destination register can be the PC, causing the result to

be treated as an address to branch to. In the Thumb instruction set, thisis only permitted for some 16-bit
forms of the ADD and MOV instructions.
A4-8 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The Instruction Sets

These instructions can optionally set the condition code flags, according to the result of the operation. If
they do not set the flags, existing flag settings from a previous instruction are preserved.

Table A4-2 summarizes the main data-processing instructions in the Thumb and ARM instruction sets.
Generally, each of these instructionsis described in three sections in Chapter A8 Instruction Details, one
section for each of the following:

. INSTRUCTION (immediate) where the second operand is a modified immediate constant.

. INSTRUCTION (register) where the second operand is aregister, or aregister shifted by a constant.

. INSTRUCTION (register-shifted register) where the second operand is a register shifted by avalue
obtained from another register. These are only available in the ARM instruction set.

Table A4-2 Standard data-processing instructions

Instruction Mnemonic Notes

Add with Carry ADC -

Add ADD Thumb instruction set permits use of a modified immediate
constant or a zero-extended 12-bit immediate constant.

Form PC-relative Address ADR First operand isthe PC. Second operand is an immediate constant.
Thumb instruction set uses a zero-extended 12-bit immediate
constant. Operation is an addition or a subtraction.

Bitwise AND AND -

Bitwise Bit Clear BIC -

Compare Negative CMN Setsflags. Like ADD but with no destination register.

Compare CMP Sets flags. Like SUB but with no destination register.

Bitwise Exclusive OR EOR -

Copy operand to destination MOV Has only one operand, with the same options as the second
operand in most of these instructions. If the operand is a shifted
register, the instruction isan LSL, LSR, ASR, or ROR instruction
instead. For details see Shift instructions on page A4-10.

The ARM and Thumb instruction sets permit use of amodified
immediate constant or a zero-extended 16-bit immediate constant.

Bitwise NOT MVN Has only one operand, with the same options as the second
operand in most of these instructions.

Bitwise OR NOT ORN Not available in the ARM instruction set.

Bitwise OR ORR -

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

A4-9

The Instruction Sets

Table A4-2 Standard data-processing instructions (continued)

Instruction Mnemonic Notes

Reverse Subtract RSB Subtracts first operand from second operand. This permits
subtraction from constants and shifted registers.

Reverse Subtract with Carry RSC Not available in the Thumb instruction set.

Subtract with Carry SBC -

Subtract SUB Thumb instruction set permits use of amodified immediate
constant or a zero-extended 12-bit immediate constant.

Test Equivalence TEQ Setsflags. Like EOR but with no destination register.

Test TST Setsflags. Like AND but with no destination register.

A4.4.2 Shiftinstructions
Table A4-3 lists the shift instructions in the ARM and Thumb instruction sets.

Table A4-3 Shift instructions

Instruction See

Arithmetic Shift Right ASR (immediate) on page A8-40

Arithmetic Shift Right ASR (register) on page A8-42

Logical Shift Left LS (immediate) on page A8-178
Logical Shift Left LSL (register) on page A8-180
Logical Shift Right LSR (immediate) on page A8-182
Logical Shift Right LSR (register) on page A8-184
Rotate Right ROR (immediate) on page A8-278
Rotate Right ROR (register) on page A8-280

Rotate Right with Extend RRX on page A8-282

Inthe ARM instruction set only, the destination register of these instructions can be the PC, causing the
result to be treated as an address to branch to.

A4-10 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

A4.4.3 Multiply instructions

The Instruction Sets

These instructions can operate on signed or unsigned quantities. In some types of operation, the results are
same whether the operands are signed or unsigned.

. Table A4-4 summarizes the multiply instructions where there is no distinction between signed and

unsigned quantities.

The least significant 32 bits of the result are used. More significant bits are discarded.

. Table A4-5 summarizes the signed multiply instructions.

. Table A4-6 on page A4-12 summarizes the unsigned multiply instructions.

Table A4-4 General multiply instructions

Instruction

See Operation (number of bits)

Multiply Accumulate MLA onpage A8-190 32=32+32x 32

Multiply and Subtract MLSon page A8-192 32=32-32x 32

Multiply

MUL on page A8-212 32=32x 32

Table A4-5 Signed multiply instructions

Instruction See Operation (number of bits)
Signed Multiply Accumulate (halfwords) SVILABB, SMLABT, 32=32+16x16

SMLATB, SMLATT on

page A8-330
Signed Multiply Accumulate Dual SMLAD on page A8-332 32=32+16x16+ 16 x 16
Signed Multiply Accumulate Long SMLAL on page A8-334 64=64+32x32
Signed Multiply Accumulate Long (halfwords) SMLALBB, SMLALBT, 64=64+16x 16

SMLALTB, SMLALTT on

page A8-336

Signed Multiply Accumulate Long Dua

SMLALD on page A8-338 64=64+16x 16+ 16x 16

Signed Multiply Accumulate (word by SVMILAWB, SMLAWT on 32=32+32x162
halfword) page A8-340

Signed Multiply Subtract Dual SMILSD on page A8-342 32=32+16x16-16x 16
Signed Multiply Subtract Long Dual SMLSLD on page A8-344 64=64+16x 16 —16 x 16
Signed Most Significant Word Multiply SMIMLA on page A8-346 32=32+32x32b

Accumulate

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A4-11

The Instruction Sets

Table A4-5 Signed multiply instructions (continued)

Instruction

See

Operation (number of bits)

Signed Most Significant Word Multiply
Subtract

SMMLS on page A8-348

32=32-32x32b

Signed Most Significant Word Multiply

SMMUL on page A8-350

32=32x32b

Signed Dual Multiply Add

SMUAD on page A8-352

32=16x16+16x 16

Signed Multiply (halfwords) SMIULBB, SMULBT, 32=16x16
SMULTB, SMULTT on
page A8-354
Signed Multiply Long SMULL on page A8-356 64=32x 32
Signed Multiply (word by halfword) SMULWB, SMULWT on 32=32x162

page A8-358

Signed Dual Multiply Subtract

SMUSD on page A8-360

32=16x16-16x 16

a The most significant 32 bits of the 48-bit product are used. Less significant bits are discarded.
b. The most significant 32 bits of the 64-bit product are used. Less significant bits are discarded.

Table A4-6 Unsigned multiply instructions

Instruction See Operation (number of bits)
Unsigned Multiply Accumulate AccumulateLong UMAAL on page A8-482 64=32+32+32x 32
Unsigned Multiply Accumulate Long UMLAL onpage A8-484 64=64+32x 32

Unsigned Multiply Long UMULL on page A8-486 64=32x32

A4-12 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

A4.4.4 Saturating instructions

The Instruction Sets

Table A4-7 lists the saturating instructions in the ARM and Thumb instruction sets. For more information,
see Pseudocode details of saturation on page A2-9.

Table A4-7 Saturating instructions

Instruction See Operation

Signed Saturate SSAT on page A8-362 Saturates optionally shifted 32-hit value to selected range
Signed Saturate 16 SSAT16 on page A8-364 Saturates two 16-bit values to selected range

Unsigned Saturate USAT on page A8-504 Saturates optionally shifted 32-bit value to selected range
Unsigned Saturate 16 USAT16 on page A8-506 Saturates two 16-bit values to selected range

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A4-13

The Instruction Sets

A4.45 Packing and unpacking instructions
Table A4-8 liststhe packing and unpacking instructionsin the ARM and Thumb instruction sets. These are
al available from ARMV6T2 in the Thumb instruction set, and from ARMvV6 onwards in the ARM
instruction set.
Table A4-8 Packing and unpacking instructions
Instruction See Operation
Pack Halfword PKH on page A8-234 Combine halfwords
Signed Extend and Add Byte SXTAB on page A8-434 Extend 8 bits to 32 and add
Signed Extend and Add Byte 16 SXTAB16 on page A8-436 Dual extend 8 bitsto 16 and add
Signed Extend and Add Halfword SXTAH on page A8-438 Extend 16 bitsto 32 and add
Signed Extend Byte SXTB on page A8-440 Extend 8 bitsto 32
Signed Extend Byte 16 SXTB16 on page A8-442 Dual extend 8 bitsto 16
Signed Extend Halfword SXTH on page A8-444 Extend 16 hitsto 32
Unsigned Extend and Add Byte UXTAB on page A8-514 Extend 8 bits to 32 and add
Unsigned Extend and Add Byte 16 UXTAB16 on page A8-516 Dual extend 8 bitsto 16 and add
Unsigned Extend and Add Halfword ~ UXTAH on page A8-518 Extend 16 bitsto 32 and add
Unsigned Extend Byte UXTB on page A8-520 Extend 8 bitsto 32
Unsigned Extend Byte 16 UXTB16 on page A8-522 Dual extend 8 bitsto 16
Unsigned Extend Halfword UXTH on page A8-524 Extend 16 hitsto 32
A4-14 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

A4.4.6 Miscellaneous data-processing instructions

The Instruction Sets

Table A4-9 lists the miscellaneous data-processing instructions in the ARM and Thumb instruction sets.
Immediate values in these instructions are simple binary numbers.

Table A4-9 Miscellaneous data-processing instructions

Instruction See Notes
Bit Field Clear BFC on page A8-46 -
Bit Field Insert BFI on page A8-48 -

Count Leading Zeros

CLZ on page A8-72

Move Top MOVT on page A8-200 Moves 16-bit immediate value to top
halfword. Bottom halfword unchanged.
Reverse Bits RBIT on page A8-270 -
Byte-Reverse Word REV on page A8-272 -
Byte-Reverse Packed Halfword REV16 on page A8-274 -
Byte-Reverse Signed Halfword REVSH on page A8-276 -
Signed Bit Field Extract SBFX on page A8-308 -
Select Bytes using GE flags SEL on page A8-312 -
Unsigned Bit Field Extract UBFX on page A8-466 -
Unsigned Sum of Absolute Differences USADS8 on page A8-500 -
Unsigned Sum of Absolute Differences USADAS8 on page A8-502 -

and Accumulate

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A4-15

The Instruction Sets

A4.4.7 Parallel addition and subtraction instructions

These instructions perform additions and subtractions on the values of two registers and write the result to
adestination register, treating the register values as sets of two halfwords or four bytes. They are available

in ARMv6 and above.

Theseinstructions consist of a prefix followed by amain instruction mnemonic. The prefixes are asfollows:
S Signed arithmetic modulo 28 or 216,

Q Signed saturating arithmetic.

SH Signed arithmetic, halving the results.

u Unsigned arithmetic modulo 28 or 216,

uQ Unsigned saturating arithmetic.

UH Unsigned arithmetic, halving the results.

The main instruction mnemonics are as follows:

ADD16 Adds the top halfwords of two operands to form the top halfword of the result, and the
bottom halfwords of the same two operands to form the bottom halfword of the result.

ASX Exchanges halfwords of the second operand, and then adds top halfwords and subtracts
bottom halfwords.

SAX Exchanges halfwords of the second operand, and then subtracts top halfwords and adds
bottom halfwords.

SUB16 Subtracts each halfword of the second operand from the corresponding halfword of thefirst
operand to form the corresponding halfword of the result.

ADD8 Adds each byte of the second operand to the corresponding byte of thefirst operand to form
the corresponding byte of the result.

SUB8 Subtracts each byte of the second operand from the corresponding byte of the first operand
to form the corresponding byte of the result.

The instruction set permits all 36 combinations of prefix and main instruction operand.

See also Advanced SMD parallel addition and subtraction on page A4-31.

A4-16 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

A4.4.8

The Instruction Sets

Divide instructions

Inthe ARMV7-R profile, the Thumb instruction set includes signed and unsigned integer divide instructions
that are implemented in hardware. For details of the instructions see:

. DIV on page A8-310
. UDIV on page A8-468.

Note
. SDIV and UDIV are UNDEFINED in the ARMV7-A profile.
. The ARMv7-M profile aso includes the SDIV and UDIV instructions.

Inthe ARMV7-R profile, the SCTLR.DZ bit enables divide by zero fault detection, see c1, System Control
Register (SCTLR) on page B4-45:

DZ == Divide-by-zero returns a zero result.
DZ == SDIV and UDIV generate an Undefined Instruction exception on a divide-by-zero.

The SCTLR.DZ bit is cleared to zero on reset.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A4-17

The Instruction Sets

A4.5 Status register access instructions

The MRS and MSR instructions move the contents of the Application Program Status Register (APSR) to or
from a general-purpose register.

The APSR is described in The Application Program Status Register (APSR) on page A2-14.

The condition flags in the APSR are normally set by executing data-processing instructions, and are
normally used to control the execution of conditional instructions. However, you can set the flags explicitly
using the MSR instruction, and you can read the current state of the flags explicitly using the MRS instruction.

For details of the system level use of status register access instructions CPS, MRS, and MSR, see Chapter B6
System Instructions.

A4-18 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The Instruction Sets

A4.6 Load/store instructions
Table A4-10 summarizes the general -purpose register load/store instructions in the ARM and Thumb
instruction sets. See also:
. Load/store multiple instructions on page A4-22
. Advanced SMD and VFP load/store instructions on page A4-26.
Load/store instructions have severa options for addressing memory. For more information, see Addressing
modes on page A4-20.
Table A4-10 Load/store instructions
Load Store Load- Store-
Data type Load Store unprivileged unprivileged Exclusive Exclusive
32-bit word LDR STR LDRT STRT LDREX STREX
16-bit halfword - STRH - STRHT - STREXH
16-bit unsigned halfword ~ LDRH - LDRHT - LDREXH -
16-bit signed halfword LDRSH - LDRSHT - - -
8-bit byte - STRB - STRBT - STREXB
8-bit unsigned byte LDRB - LDRBT - LDREXB -
8-bit signed byte LDRSB - LDRSBT - - -
Two 32-bit words LDRD STRD - - - -
64-bit doubleword - - - - LDREXD STREXD
A4.6.1 LoadstothePC
The LDR instruction can be used to load avalue into the PC. The value loaded is treated as an interworking
address, as described by the LoadwritePC() pseudocode function in Pseudocode details of operations on
ARM core registers on page A2-12.
A4.6.2 Halfword and byte loads and stores

Halfword and byte stores store the least significant halfword or byte from the register, to 16 or 8 bits of
memory respectively. There is no distinction between signed and unsigned stores.

Halfword and byte loads load 16 or 8 bits from memory into the least significant halfword or byte of a
register. Unsigned |oads zero-extend the loaded value to 32 bits, and signed loads sign-extend the value to
32 hits.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A4-19

The Instruction Sets

A4.6.3 Unprivileged loads and stores

In an unprivileged mode, unprivileged |oads and stores operatein exactly the sameway asthe corresponding

ordinary operations. In a privileged mode, unprivileged loads and stores are treated as though they were

executed in an unprivileged mode. For more information, see Privilege level access controls for data
accesses on page A3-38.

A4.6.4 Exclusive loads and stores
Exclusive loads and stores provide for shared memory synchronization. For more information, see
Synchronization and semaphores on page A3-12.

A4.6.5 Addressing modes

The address for aload or store isformed from two parts: a value from a base register, and an offset.

The base register can be any one of the general-purpose registers.

For loads, the base register can be the PC. This permits PC-relative addressing for position-independent

code. Instructions marked (literal) in their titlein Chapter A8 Instruction Details are PC-relative |oads.

The offset takes one of three formats:

Immediate The offset is an unsigned number that can be added to or subtracted from the base
register value. Immediate offset addressing isuseful for accessing dataelementsthat
are afixed distance from the start of the data object, such as structure fields, stack
offsets and input/output registers.

Register The offset isavalue from ageneral -purpose register. Thisregister cannot be the PC.
The value can be added to, or subtracted from, the base register value. Register
offsets are useful for accessing arrays or blocks of data.

Scaled register The offset is a general-purpose register, other than the PC, shifted by an immediate
value, then added to or subtracted from the base register. This means an array index
can be scaled by the size of each array element.

The offset and base register can be used in three different waysto form the memory address. The addressing

modes are described as follows:

Offset The offset is added to or subtracted from the base register to form the memory
address.

Pre-indexed The offset is added to or subtracted from the base register to form the memory
address. The baseregister isthen updated with thisnew address, to permit automatic
indexing through an array or memory block.

Post-indexed Thevalue of the baseregister aloneisused asthe memory address. The offset isthen
added to or subtracted from the base register. The result is stored back in the base
register, to permit automatic indexing through an array or memory block.

A4-20 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The Instruction Sets

Note

Not every variant is available for every instruction, and the range of permitted immediate values and the
optionsfor scaled registers vary from instruction to instruction. See Chapter A8 Instruction Details for full
details for each instruction.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A4-21

The Instruction Sets

A4.7 Load/store multiple instructions
Load Multiple instructions load a subset, or possibly al, of the general-purpose registers from memory.
Store Multiple instructions store a subset, or possibly all, of the general-purpose registers to memory.
The memory locations are consecutive word-aligned words. The addresses used are obtained from a base
register, and can be either above or below the value in the base register. The base register can optionally be
updated by the total size of the data transferred.
Table A4-11 summarizes the load/store multiple instructionsin the ARM and Thumb instruction sets.
Table A4-11 Load/store multiple instructions
Instruction See
Load Multiple, Increment After or Full Descending LDM /LDMIA/LDMFD on page A8-110
Load Multiple, Decrement After or Full Ascending 2 LDMDA / LDMFA on page A8-112
Load Multiple, Decrement Before or Empty Ascending LDMDB / LDMEA on page A8-114
Load Multiple, Increment Before or Empty Descending2 LDMIB/ LDMED on page A8-116
Pop multiple registers off the stack P POP on page A8-246
Push multiple registers onto the stack © PUSH on page A8-248
Store Multiple, Increment After or Empty Ascending STM / STMIA/ STMEA on page A8-374
Store Multiple, Decrement After or Empty Descending@ ~ STMDA/ STMED on page A8-376
Store Multiple, Decrement Before or Full Descending STMDB / STMFD on page A8-378
Store Multiple, Increment Before or Full Ascending @ STMIB / STMFA on page A8-380
a. Not available in the Thumb instruction set.
b. Thisinstruction isequivalent to an LDM instruction with the SP as base register, and base register updating.
¢. Thisinstruction is equivalent to an STMDB instruction with the SP as base register, and base register
updating.
System level variants of the LDM and STM instructions load and store User mode registers from a privileged
mode. Another system level variant of the LDM instruction performs an exception return. For details, see
Chapter B6 System Instructions.
A4.7.1 Loads tothe PC
The LDM, LDMDA, LDMDB, LDMIB, and POP instructions can be used to load a value into the PC. The value loaded
istreated as an interworking address, as described by the LoadwritePC() pseudocode function in Pseudocode
details of operations on ARM core registers on page A2-12.
A4-22 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The Instruction Sets

A4.8 Miscellaneous instructions

Table A4-12 summarizes the miscellaneous instructions in the ARM and Thumb instruction sets.

Table A4-12 Miscellaneous instructions

Instruction

See

Clear-Exclusive

CLREX on page A8-70

Debug hint

DBG on page A8-88

Data Memory Barrier

DMB on page A8-90

Data Synchronization Barrier

DSB on page A8-92

Instruction Synchronization Barrier

If Then (makes following instructions conditional)

ISB on page A8-102
IT on page A8-104

No Operation

NOP on page A8-222

Preload Data

PLD, PLDW (immediate) on page A8-236
PLD (literal) on page A8-238
PLD, PLDW (register) on page A8-240

Preload Instruction

PLI (immediate, literal) on page A8-242
PLI (register) on page A8-244

Set Endianness

SETEND on page A8-314

Send Event

SEV on page A8-316

Supervisor Call

SVC (previously SWMI) on page A8-430

Swap, Swap Byte. Use deprecated. 2

Wait For Event

SWP, SWPB on page A8-432

WFE on page A8-808

Wait For Interrupt

WFI on page A8-810

Yield

YIELD on page A8-812

a. Use LoadBStore-Exclusive instructions instead, see Load/store instructions on page A4-19.

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

A4-23

The Instruction Sets

A49 Exception-generating and exception-handling instructions
The following instructions are intended specifically to cause a processor exception to occur:

. The Supervisor Call (SVC, previously SWI) instructionisused to cause an SV C exception to occur. This
is the main mechanism for User mode code to make calls to privileged operating system code. For
more information, see Supervisor Call (SVC) exception on page B1-52.

. The Breakpoint instruction BKPT provides for software breakpoints. For more information, see About
debug events on page C3-2.

. In privileged system level code, the Secure Monitor Call (SMC, previously SMI) instruction. For more
information, see Secure Monitor Call (SVIC) exception on page B1-53.

System level variants of the SUBS and LDM instructions can be used to return from exceptions. From ARMV6,
the SRS instruction can be used near the start of an exception handler to store return information, and the RFE
instruction can be used to return from an exception using the stored return information. For details of these
instructions, see Chapter B6 System Instructions.

A4-24 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The Instruction Sets

A4.10 Coprocessor instructions

There are three types of instruction for communicating with coprocessors. These permit the processor to:

. Initiate a coprocessor data-processing operation. For details see CDP, CDP2 on page A8-68.
. Transfer general-purpose registers to and from coprocessor registers. For details, see:

— MCR, MCR2 on page A8-186
— MCRR, MCRR2 on page A8-188
— MRC, MRC2 on page A8-202
— MRRC, MRRC2 on page A8-204.

. Load or store the values of coprocessor registers. For details, see:
— LDC, LDC2 (immediate) on page A8-106
— LDC, LDC2 (literal) on page A8-108
— SIC, STC2 on page A8-372.

The instruction set distinguishes up to 16 coprocessors with a4-bit field in each coprocessor instruction, so
each coprocessor is assigned a particular number.

Note
One coprocessor can use more than one of the 16 numbersif alarge coprocessor instruction set isrequired.

Coprocessors 10 and 11 are used, together, for VFP and some Advanced SIMD functionality. There are
different instructions for accessing these coprocessors, of similar types to the instructions for the other
coprocessors, that is, to:

. Initiate acoprocessor data-processing operation. For details see VFP data-processing instructionson
page A4-38.
. Transfer general-purpose registersto and from coprocessor registers. For details, see Advanced SMD

and VFP register transfer instructions on page A4-29.

. Load or storethe values of coprocessor registers. For details, see Advanced SMD and VFP |oad/store
instructions on page A4-26.

Coprocessors execute the same instruction stream as the processor, ignoring non-coprocessor instructions
and coprocessor instructions for other coprocessors. Coprocessor instructions that cannot be executed by
any coprocessor hardware cause an Undefined I nstruction exception.

For more information about specific coprocessors see Coprocessor support on page A2-68.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A4-25

The Instruction Sets

A4.11 Advanced SIMD and VFP load/store instructions

Table A4-13 summarizes the extension register load/store instructionsin the Advanced SIMD and VFP

instruction sets.

Advanced SIMD also provides instructions for loading and storing multiple elements, or structures of
elements, see Element and structure load/store instructions on page A4-27.

Table A4-13 Extension register load/store instructions

Instruction

See

Operation

Vector Load Multiple

VLDM on page A8-626

Load 1-16 consecutive 64-bit registers (Adv. SIMD and VFP)
Load 1-16 consecutive 32-bit registers (VFP only)

Vector Load Register

VLDR on page A8-628

Load one 64-hit register (Adv. SIMD and VFP)
Load one 32-hit register (VFP only)

Vector Store Multiple

VSTM on page A8-784

Store 1-16 consecutive 64-hit registers (Adv. SIMD and VFP)
Store 1-16 consecutive 32-bit registers (VFP only)

Vector Store Register

VSTR on page A8-786

Store one 64-hit register (Adv. SIMD and VFP)
Store one 32-hit register (VFP only)

A4-26 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The Instruction Sets

A4.11.1 Element and structure load/store instructions

Table A4-14 shows the element and structure load/store instructions available in the Advanced SIMD
instruction set. Loading and storing structures of more than one element automatically de-interleaves or
interleaves the elements, see Figure A4-1 on page A4-28 for an example of de-interleaving. Interleaving is
the inverse process.

Table A4-14 Element and structure load/store instructions

Instruction See

Load single element

Multipleelements VLD1 (multiple single elements) on page A8-602

To one lane VLD (single element to one lane) on page A8-604

To dl lanes VLD (single element to all lanes) on page A8-606
Load 2-element structure

Multiple structures VLD2 (multiple 2-element structures) on page A8-608

To onelane VLD2 (single 2-element structure to one lane) on page A8-610

To dl lanes VLD2 (single 2-element structure to all lanes) on page A8-612

Load 3-element structure
Multiple structures VLD3 (multiple 3-element structures) on page A8-614

To onelane VLD3 (single 3-element structure to one lane) on page A8-616

To al lanes VLD3 (single 3-element structure to all lanes) on page A8-618

L oad 4-element structure

Multiple structures VLD4 (multiple 4-element structures) on page A8-620

To onelane VLD4 (single 4-element structure to one lane) on page A8-622

To al lanes VLD4 (single 4-element structure to all lanes) on page A8-624
Store single element

Multipleelements VST1 (multiple single elements) on page A8-768

From one lane VST1 (single element from one lane) on page A8-770

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A4-27

The Instruction Sets

Table A4-14 Element and structure load/store instructions (continued)

Instruction See

Store 2-element structure

Multiple structures VST2 (multiple 2-element structures) on page A8-772

From one lane VST2 (single 2-element structure from one lane) on page A8-774

Store 3-element structure
Multiple structures VST3 (multiple 3-element structures) on page A8-776

From one lane VST3 (single 3-element structure from one lane) on page A8-778

Store 4-element structure

Multiple structures VST4 (multiple 4-element structures) on page A8-780

From one lane VST4 (single 4-element structure from one lane) on page A8-782

A[0].x
Al0].y
Al0].z \
A[1].x _\\
" Al1l.y
emory All].z \ \
A[2].x _\\ v
Al2]y
-

Al3].x

ABLy
A2 \\\ x3 x xa] D0
Y3 Y2 Y0 D1

23 22 Zo D2 Registers

Figure A4-1 De-interleaving an array of 3-element structures

A4-28 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The Instruction Sets

A4.12 Advanced SIMD and VFP register transfer instructions

Table A4-15 summarizes the extension register transfer instructionsin the Advanced SIMD and VFP
instruction sets. These instructions transfer data from ARM core registers to extension registers, or from

extension registersto ARM core registers.

Advanced SIMD vectors, and single-precision and double-precision VFPregisters, areall views of the same
extension register set. For details see Advanced SMD and VFP extension registers on page A2-21.

Table A4-15 Extension register transfer instructions

Instruction

See

Copy element from ARM core register to every element of
Advanced SIMD vector

VDUP (ARM core register) on page A8-594

Copy byte, halfword, or word from ARM core register to
extension register

VMOV (ARM core register to scalar) on
page A8-644

Copy byte, halfword, or word from extension register to ARM
core register

VMOV (scalar to ARM core register) on
page A8-646

Copy from single-precision VFP register to ARM core register,
or from ARM core register to single-precision VFP register

VMOV (between ARM core register and
single-precision register) on page A8-648

Copy two words from ARM core registers to consecutive
single-precision VFP registers, or from consecutive
single-precision VFP registers to ARM core registers

VMOV (between two ARM core registers and
two single-precision registers) on page A8-650

Copy two words from ARM core registers to doubleword
extension register, or from doubleword extension register to
ARM coreregisters

VMOV (between two ARM core registersand a
doubleword extension register) on page A8-652

Copy from Advanced SIMD and V FP extension System Register
to ARM core register

VMRS on page A8-658
VMRS on page B6-27 (system level view)

Copy from ARM core register to Advanced SIMD and VFP
extension System Register

VMSR on page A8-660
VMSR on page B6-29 (system level view)

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

A4-29

The Instruction Sets

A4.13 Advanced SIMD data-processing operations

Advanced SIMD data-processing operations process registers containing vectors of e ements of the same
type packed together, enabling the same operation to be performed on multipleitemsin parallel.

Instructions operate on vectors held in 64-bit or 128-bit registers. Figure A4-2 shows an operation on two
64-bit operand vectors, generating a 64-bit vector result.

Note

Figure A4-2 and other similar figures show 64-bit vectors that consist of four 16-bit elements, and 128-bit
vectors that consist of four 32-bit elements. Other element sizes produce similar figures, but with one, two,
eight, or sixteen operations performed in parallel instead of four.

[1 [Jon

0 Jom

JUUY
PHHY
L [[[Joo

Figure A4-2 Advanced SIMD instruction operating on 64-bit registers

Many Advanced SIMD instructions have variants that produce vectors of elements double the size of the
inputs. In this case, the number of elementsin the result vector is the same as the number of elementsin the
operand vectors, but each element, and the whole vector, is double the size.

Figure A4-3 shows an example of an Advanced SIMD instruction operating on 64-hit registers, and
generating a 128-bit result.

R T L

I I Jom

VIV
| |

Figure A4-3 Advanced SIMD instruction producing wider result

Thereare aso Advanced SIMD instructionsthat have variantsthat produce vectors containing elements half
the size of the inputs. Figure A4-4 on page A4-31 shows an example of an Advanced SIMD instruction
operating on one 128-hit register, and generating a 64-bit result.

A4-30 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The Instruction Sets

| | | | Jor

5 7
Dd

Figure A4-4 Advanced SIMD instruction producing narrower result

Some Advanced SIMD instructions do not conform to these standard patterns. Their operation patterns are
described in the individual instruction descriptions.

Advanced SIMD instructions that perform floating-point arithmetic use the ARM standard floating-point
arithmetic defined in Floating-point data types and arithmetic on page A2-32.

A4.13.1 Advanced SIMD parallel addition and subtraction
Table A4-16 shows the Advanced SIMD parallel add and subtract instructions.

Table A4-16 Advanced SIMD parallel add and subtract instructions

Instruction See

Vector Add VADD (integer) on page A8-536
VADD (floating-point) on page A8-538

Vector Add and Narrow, returning High Half VADDHN on page A8-540

Vector Add Long, Vector Add Wide VADDL, VADDW on page A8-542

Vector Halving Add, Vector Halving Subtract VHADD, VHSUB on page A8-600

Vector Pairwise Add and Accumulate Long VPADAL on page A8-682

Vector Pairwise Add VPADD (integer) on page A8-684
VPADD (floating-point) on page A8-686

Vector Pairwise Add Long VPADDL on page A8-688

Vector Rounding Add and Narrow, returning High Half VRADDHN on page A8-726

Vector Rounding Halving Add VRHADD on page A8-734

Vector Rounding Subtract and Narrow, returning High Half ~ VRSUBHN on page A8-748
Vector Saturating Add VQADD on page A8-700

Vector Saturating Subtract VQSUB on page A8-724

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A4-31

The Instruction Sets

Table A4-16 Advanced SIMD parallel add and subtract instructions (continued)

Instruction See
Vector Subtract VSUB (integer) on page A8-788
VSUB (floating-point) on page A8-790
Vector Subtract and Narrow, returning High Half VSUBHN on page A8-792
Vector Subtract Long, Vector Subtract Wide VSUBL, VSUBW on page A8-794

A4.13.2 Bitwise Advanced SIMD data-processing instructions

Table A4-17 shows bitwise Advanced SIMD data-processing instructions. These operate on the doubleword
(64-bit) or quadword (128-bit) extension registers, and there is no division into vector elements.

Table A4-17 Bitwise Advanced SIMD data-processing instructions

Instruction See

Vector Bitwise AND VAND (register) on page A8-544

Vector Bitwise Bit Clear (AND complement) VBIC (immediate) on page A8-546
VBIC (register) on page A8-548

Vector Bitwise Exclusive OR VEOR on page A8-596

Vector Bitwise Insert if False
VBIF, VBIT, VBSL on page A8-550
Vector Bitwise Insert if True

Vector Bitwise Move VMOV (immediate) on page A8-640
VMOV (register) on page A8-642
Vector Bitwise NOT VMVN (immediate) on page A8-668
VMVN (register) on page A8-670
Vector Bitwise OR VORR (immediate) on page A8-678
VORR (register) on page A8-680
Vector Bitwise OR NOT VORN (register) on page A8-676
Vector Bitwise Select VBIF, VBIT, VBSL on page A8-550

A4-32 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The Instruction Sets

A4.13.3 Advanced SIMD comparison instructions

Table A4-18 shows Advanced SIMD comparison instructions.

Table A4-18 Advanced SIMD comparison instructions

Instruction See

Vector Absolute Compare VACGE, VACGT, VACLE,VACLT on page A8-534
Vector Compare Equal VCEQ (register) on page A8-552

Vector Compare Equd to Zero VCEQ (immediate #0) on page A8-554

Vector Compare Greater Than or Equal VCGE (register) on page A8-556

Vector Compare Greater Than or Equal to Zero VCGE (immediate #0) on page A8-558

Vector Compare Greater Than VCGT (register) on page A8-560

Vector Compare Greater Than Zero VCGT (immediate #0) on page A8-562

Vector Compare Less Than or Equal to Zero VCLE (immediate #0) on page A8-564

Vector Compare Less Than Zero VCLT (immediate #0) on page A8-568

Vector Test Bits VTST on page A8-802

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A4-33

The Instruction Sets

A4.13.4 Advanced SIMD shift instructions

Table A4-19 lists the shift instructionsin the Advanced SIMD instruction set.

Table A4-19 Advanced SIMD shift instructions

Instruction See

Vector Saturating Rounding Shift Left VQRSHL on page A8-714

Vector Saturating Rounding Shift Right and Narrow VQRSHRN, VQRSHRUN on page A8-716

Vector Saturating Shift Left VQSHL (register) on page A8-718
VQSHL, VQSHLU (immediate) on page A8-720

Vector Saturating Shift Right and Narrow VQSHRN, VQSHRUN on page A8-722

Vector Rounding Shift Left VRSHL on page A8-736

Vector Rounding Shift Right VRSHR on page A8-738

Vector Rounding Shift Right and Accumulate VRSRA on page A8-746

Vector Rounding Shift Right and Narrow VRSHRN on page A8-740

Vector Shift Left VSHL (immediate) on page A8-750
VSHL (register) on page A8-752

Vector Shift Left Long VSHLL on page A8-754

Vector Shift Right VSHR on page A8-756

Vector Shift Right and Narrow VSHRN on page A8-758

Vector Shift Left and Insert V4Ll on page A8-760

Vector Shift Right and Accumulate VSRA on page A8-764

Vector Shift Right and Insert VSRI on page A8-766

A4-34 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The Instruction Sets

A4.13.5 Advanced SIMD multiply instructions

Table A4-20 summarizes the Advanced SIMD multiply instructions.

Table A4-20 Advanced SIMD multiply instructions

Instruction

See

Vector Multiply Accumulate

Vector Multiply Accumulate Long

VMLA, VMLAL, VMLS, VMLSL (integer) on
page A8-634

Vector Multiply Subtract

VMLA, VMLS (floating-point) on page A8-636
VMLA, VMLAL, VMLS, VMLSL (by scalar) on

Vector Multiply Subtract Long

page A8-638

Vector Multiply

VMUL, VMULL (integer and polynomial) on

Vector Multiply Long

page A8-662
VMUL (floating-point) on page A8-664
VMUL, VMULL (by scalar) on page A8-666

Vector Saturating Doubling Multiply Accumulate Long

Vector Saturating Doubling Multiply Subtract Long

VQDMLAL, VQDMLSL on page A8-702

Vector Saturating Doubling Multiply Returning High Half

VQDMULH on page A8-704

Vector Saturating Rounding Doubling Multiply Returning
High Half

VQRDMULH on page A8-712

Vector Saturating Doubling Multiply Long

VQDMULL on page A8-706

Advanced SIMD mulltiply instructions can operate on vectors of:

8-bit, 16-hit, or 32-bit unsigned integers
. 8-bit, 16-hit, or 32-bit signed integers

They can also act on one vector and one scalar.

8-bit er-16-bit polynomials over { 0,1} (VMUL and VMULL only)
single-precision (32-bit) floating-point numbers.

=

Long instructions have doubleword (64-bit) operands, and produce quadword (128-hit) results. Other

Advanced SIMD multiply instructions can have
results of the same size.

VFP multiply instructions can operate on:

either doubleword or quadword operands, and produce

single-precision (32-bit) floating-point numbers
double-precision (64-hit) floating-point numbers.

Some V FP implementations do not support double-precision numbers.

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

A4-35

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Inserted Text
, VMULL produces a 16-bit polynomial over {0,1}

ARM_2011_Q2
Sticky Note
As indicated by the insertion at the end of this line, VMULL produces a 16-bit polynomial over {0.1} as its result.

The Instruction Sets

A4.13.6 Miscellaneous Advanced SIMD data-processing instructions

Table A4-21 shows miscellaneous Advanced SIMD data-processing instructions.

Table A4-21 Miscellaneous Advanced SIMD data-processing instructions

Instruction

See

Vector Absolute Difference and Accumulate

Vector Absolute Difference

VABA, VABAL on page A8-526

VABD, VABDL (integer) on page A8-528
VABD (floating-point) on page A8-530

Vector Absolute

VABS on page A8-532

Vector Convert between floating-point and
fixed point

VCVT (between floating-point and fixed-point, Advanced SSMD) on
page A8-580

Vector Convert between floating-point and
integer

VCVT (between floating-point and integer, Advanced SMD) on
page A8-576

Vector Convert between half-precision and
single-precision

VCVT (between half-precision and single-precision, Advanced
SMD) on page A8-586

Vector Count Leading Sign Bits

VCLS on page A8-566

Vector Count Leading Zeros

VCLZ on page A8-570

Vector Count Set Bits

Vector Duplicate scalar

VCNT on page A8-574
VDUP (scalar) on page A8-592

Vector Extract

VEXT on page A8-598

Vector Move and Narrow

VMOVN on page A8-656

Vector Move Long

VMOVL on page A8-654

Vector Maximum, Minimum

Vector Negate

VMAX, VMIN (integer) on page A8-630
VMAX, VMIN (floating-point) on page A8-632

VNEG on page A8-672

Vector Pairwise Maximum, Minimum

VPMAX;, VPMIN (integer) on page A8-690
VPMAX;, VPMIN (floating-point) on page A8-692

Vector Reciprocal Estimate

VRECPE on page A8-728

Vector Reciprocal Step

Vector Reciprocal Square Root Estimate

VRECPS on page A8-730
VRSQRTE on page A8-742

A4-36

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

ARM DDI 0406B

The Instruction Sets

Table A4-21 Miscellaneous Advanced SIMD data-processing instructions (continued)

Instruction

See

Vector Reciprocal Square Root Step

VRSQRTSon page A8-744

Vector Reverse

VREV16, VREV32, VREV64 on page A8-732

Vector Saturating Absolute

VQABS on page A8-698

Vector Saturating Move and Narrow

VQMOVN, VQMOVUN on page A8-708

Vector Saturating Negate

VQNEG on page A8-710

Vector Swap VSWP on page A8-796
Vector Table Lookup VTBL, VTBX on page A8-798
Vector Transpose VTRN on page A8-800
Vector Unzip VUZP on page A8-804
Vector Zip VZIP on page A8-806

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A4-37

The Instruction Sets

A4.14 VFP data-processing instructions

Table A4-22 summarizes the data-processing instructions in the VFP instruction set.

For details of the floating-point arithmetic used by VFP instructions, see Floating-point data types and

arithmetic on page A2-32.

Table A4-22 VFP data-processing instructions

Instruction See
Absolute value VABS on page A8-532
Add VADD (floating-point) on page A8-538

Compare (optionally with exceptions enabled)

VCMP, VCMPE on page A8-572

Convert between floating-point and integer

VCVT, VCVTR (between floating-point and integer, VFP) on
page A8-578

Convert between floating-point and fixed-point

VCVT (between floating-point and fixed-point, VFP) on
page A8-582

Convert between double-precision and
single-precision

VCVT (between double-precision and single-precision) on
page A8-584

Convert between half-precision and single-precision

VCVTB, VCVTT (between half-precision and
single-precision, VFP) on page A8-588

Divide

VDIV on page A8-590

Multiply Accumulate, Multiply Subtract

VMLA, VMLS (floating-point) on page A8-636

Move immediate value to extension register

Copy from one extension register to another

VMOV (immediate) on page A8-640
VMOV (register) on page A8-642

Multiply

VMUL (floating-point) on page A8-664

Negate (invert the sign bit)

VNEG on page A8-672

Multiply Accumulate and Negate, Multiply Subtract
and Negate, Multiply and Negate

VNMLA, VNMLS, VNMUL on page A8-674

Square Root VSQRT on page A8-762
Subtract VSUB (floating-point) on page A8-790
A4-38 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Chapter A5
ARM Instruction Set Encoding

This chapter describes the encoding of the ARM instruction set. It contains the following sections:

.

.

ARM instruction set encoding on page A5-2

Data-processing and miscellaneous instructions on page A5-4
Load/store word and unsigned byte on page A5-19

Media instructions on page A5-21

Branch, branch with link, and block data transfer on page A5-27
Supervisor Call, and coprocessor instructions on page A5-28
Unconditional instructions on page A5-30.

Note

Architecture variant information in this chapter describes the architecture variant or extension in
which the instruction encoding was introduced into the ARM instruction set. All means that the
instruction encoding was introduced in ARMv4 or earlier, and soisin al variants of the ARM
instruction set covered by this manual.

In the decode tables in this chapter, an entry of - for afield value means the value of the field does
not affect the decoding.

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A5-1

ARM Instruction Set Encoding

A5.1 ARM instruction set encoding
31302928272625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 0
cond opl op
The ARM instruction stream is a sequence of word-aligned words. Each ARM instruction is asingle 32-bit
word in that stream.
Table A5-1 shows the major subdivisions of the ARM instruction set, determined by bits [31:25,4].
Most ARM instructions can be conditional, with a condition determined by bits [31:28] of the instruction,
the cond field. For details see The condition field. This appliesto al instructions except those with the cond
field equal to Ob1111.
Table A5-1 ARM instruction encoding
cond opl op Instruction classes
not 1111 00x - Data-processing and miscellaneous instructions on page A5-4.
010 - Load/store word and unsigned byte on page A5-19.
011 o0 Load/store word and unsigned byte on page A5-19.
1 Media instructions on page A5-21.
10x - Branch, branch with link, and block data transfer on page A5-27.
11x - Supervisor Call, and coprocessor instructions on page A5-28.
Includes VFP instructions and Advanced SIMD datatransfers, see Chapter A7 Advanced
SMD and VFP Instruction Encoding.
1111 - - If the cond field is Ob1111, the instruction can only be executed unconditionally, see
Unconditional instructions on page A5-30.
Includes Advanced SIMD instructions, see Chapter A7 Advanced SMD and VFP
Instruction Encoding.
A5.1.1 The condition field
Every conditional instruction contains a 4-bit condition code field in bits 31 to 28:
31302928272625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 0
cond
Thisfield contains one of the values 0b0000-0b1110 described in Table A8-1 on page A8-8. Most
instruction mnemonics can be extended with the letters defined in the mnemonic extension field.
If thealways (AL) condition is specified, the instruction is executed irrespective of the value of the condition
code flags. The absence of a condition code on an instruction mnemonic implies the AL condition code.
A5-2 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM Instruction Set Encoding

A5.1.2 UNDEFINED and UNPREDICTABLE instruction set space
An attempt to execute an unallocated instruction resultsin either:
. Unpredictable behavior. Theinstruction is described as UNPREDICTABLE.
. An Undefined Instruction exception. The instruction is described as UNDEFINED.
Aninstruction is UNDEFINED if it is declared as UNDEFINED in an instruction description, or in this chapter.
An instruction iS UNPREDICTABLE if:
. it is declared as UNPREDICTABLE in an instruction description or in this chapter

. the pseudocode for that encoding does not indicate that a different special case applies, and a bit
marked (0) or (1) in the encoding diagram of an instruction isnot O or 1 respectively.

Unless otherwise specified:
. ARM instructionsintroduced in an architecture variant are UNDEFINED in earlier architecture variants.

. ARM instructions introduced in one or more architecture extensions are UNDEFINED if none of those
extensions are implemented.

A5.1.3 The PC and the use of Ob1111 as a register specifier

In ARM instructions, the use of 0b1111 as aregister specifier specifies the PC.

Many instructions are UNPREDICTABLE if they use 0b1111 as aregister specifier. Thisis specified by
pseudocode in the instruction description.

Note
Use of the PC as the base register in any store instruction is deprecated in ARMV?7.

A5.1.4 The SP and the use of 0b1101 as a register specifier
In ARM ingtructions, the use of 0b1101 as a register specifier specifies the SP.
ARM deprecates:

. using SP for any purpose other than as a stack pointerj

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A5-3

ARM_2011_Q2
Inserted Text
.

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Sticky Note
These uses are no longer deprecated. See appendix section D.5 Use of the SP as a general-purpose register on page AppxD-8 [PDF page 1942].

ARM Instruction Set Encoding

A5.2 Data-processing and miscellaneous instructions
313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
cond 0 O|op opl op2
Table A5-2 shows the allocation of encodings in this space.

Table A5-2 Data-processing and miscellaneous instructions
op opl op2 Instruction or instruction class Variant
0 not 10xx0 xxx0 Data-processing (register) on page A5-5 -

Oxx1 Data-processing (register-shifted register) on page A5-7 -
10xx0 Oxxx Miscellaneous instructions on page A5-18 -
Ixx0 Halfword multiply and multiply-accumulate on page A5-13 -
OXXXX 1001 Multiply and multiply-accumulate on page A5-12 -
IXXxX 1001 Synchronization primitives on page A5-16 -
not Oxx1x 1011 Extraload/storeinstructions on page A5-14 -
11x1 Extraload/storeinstructions on page A5-14 -
Oxx1x 1011 Extraload/store instructions (unprivileged) on page A5-15 -
11x1 Extraload/storeinstructions (unprivileged) on page A5-15 -

1 not 10xx0 - Data-processing (immediate) on page A5-8 -
10000 - 16-bit immediate load (MOV (immediate) on page A8-194) v6T2
10100 - High halfword 16-bit immediate load (MOVT on page A8-200) v6T2
10x10 - MSR (immediate), and hints on page A5-17 -

A5-4 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

A5.2.1 Data-processing (register)
3130292827 26252423222120191817 16151413121110 9 8 7 6 5 4 3 2 1 0

ARM Instruction Set Encoding

cond

000

opl

op2 op3 |0

If opl == 0b10xx0, see Data-processing and miscellaneous instructions on page A5-4.

Table A5-3 shows the all ocation of encodingsin this space. These encodings arein al architecture variants.

Table A5-3 Data-processing (register) instructions

opl op2 op3 Instruction See
0000x - - Bitwise AND AND (register) on page A8-36
0001x - - Bitwise Exclusive OR EOR (register) on page A8-96
0010x - - Subtract SUB (register) on page A8-422
0011x - - Reverse Subtract RSB (register) on page A8-286
0100x - - Add ADD (register) on page A8-24
0101x - - Add with Carry ADC (register) on page A8-16
0110x - - Subtract with Carry BC (register) on page A8-304
0111x - - Reverse Subtract with Carry RSC (register) on page A8-292
10001 - - Test TST (register) on page A8-456
10011 - - Test Equivalence TEQ (register) on page A8-450
10101 - - Compare CMP (register) on page A8-82
10111 - - Compare Negative CMN (register) on page A8-76
1100x - - Bitwise OR ORR (register) on page A8-230
1101x 00000 00 Move MOV (register) on page A8-196
not 00000 00 Logical Shift Left LS. (immediate) on page A8-178
- 01 Logical Shift Right LSR (immediate) on page A8-182
- 10 Arithmetic Shift Right ASR (immediate) on page A8-40
00000 11 Rotate Right with Extend RRX on page A8-282
not 00000 11 Rotate Right ROR (immediate) on page A8-278

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A5-5

ARM Instruction Set Encoding

Table A5-3 Data-processing (register) instructions (continued)

opl op2 op3 Instruction See
1110x - - Bitwise Bit Clear BIC (register) on page A8-52
1111x - - Bitwise NOT MVWN (register) on page A8-216

A5-6 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

A5.2.2

Data-processing (register-shifted register)

ARM Instruction Set Encoding

31 30 29 28 27 26 2524 232221 20191817 16151413121110 9 8 7 6 5 4 3 2 1 O

cond

000

opl

0| op2|1

If opl == 0b10xx0, see Data-processing and miscellaneous instructions on page A5-4.

Table A5-4 shows the all ocation of encodingsin this space. These encodings arein al architecture variants.

Table A5-4 Data-processing (register-shifted register) instructions

opl op2 Instruction See
0000x - Bitwise AND AND (register-shifted register) on page A8-38
0001x - Bitwise Exclusive OR EOR (register-shifted register) on page A8-98
0010x - Subtract SUB (register-shifted register) on page A8-424
0011x - Reverse Subtract RSB (register-shifted register) on page A8-288
0100x - Add ADD (register-shifted register) on page A8-26
0101x - Add with Carry ADC (register-shifted register) on page A8-18
0110x - Subtract with Carry BC (register-shifted register) on page A8-306
0111x - Reverse Subtract with Carry RSC (register-shifted register) on page A8-294
10001 - Test TST (register-shifted register) on page A8-458
10011 - Test Equivalence TEQ (register-shifted register) on page A8-452
10101 - Compare CMP (register-shifted register) on page A8-84
10111 - Compare Negative CMN (register-shifted register) on page A8-78
1100x - Bitwise OR ORR (register-shifted register) on page A8-232
1101x 00 Logical Shift Left LSL (register) on page A8-180

01 Logical Shift Right LSR (register) on page A8-184

10 Arithmetic Shift Right ASR (register) on page A8-42

11 Rotate Right ROR (register) on page A8-280
1110x - Bitwise Bit Clear BIC (register-shifted register) on page A8-54
1111x - Bitwise NOT MVN (register-shifted register) on page A8-218

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

A5-7

ARM Instruction Set Encoding

A5.2.3 Data-processing (immediate)
313029 28 27 26 2524 232221 2019 18 17 16 151413121110 9 8 7 6 5 4 3 2 1 0
cond 001 op Rn

If op == 0b10xx0, see Data-processing and miscellaneous instructions on page A5-4.

Table A5-5 shows the allocation of encodingsin this space. These encodings arein all architecture variants.

Table A5-5 Data-processing (immediate) instructions

op Rn Instruction See
0000x - Bitwise AND AND (immediate) on page A8-34
0001x - Bitwise Exclusive OR EOR (immediate) on page A8-94
0010x not 1111 Subtract SUB (immediate, ARM) on page A8-420
1111 Form PC-relative address ADR on page A8-32
0011x - Reverse Subtract RSB (immediate) on page A8-284
0100x not1111 Add ADD (immediate, ARM) on page A8-22
1111 Form PC-relative address ADR on page A8-32
0101x - Add with Carry ADC (immediate) on page A8-14
0110x - Subtract with Carry SBC (immediate) on page A8-302
0111x - Reverse Subtract with Carry RSC (immediate) on page A8-290
10001 - Test TST (immediate) on page A8-454
10011 - Test Equivalence TEQ (immediate) on page A8-448
10101 - Compare CMP (immediate) on page A8-80
10111 - Compare Negative CMN (immediate) on page A8-74
1100x - Bitwise OR ORR (immediate) on page A8-228
1101x - Move MOV (immediate) on page A8-194
1110x - Bitwise Bit Clear BIC (immediate) on page A8-50
1111x - Bitwise NOT MVN (immediate) on page A8-214

These instructions all have modified immediate constants, rather than a simple 12-bit binary number. This
provides a more useful range of values. For details see Modified immediate constants in ARM instructions
on page A5-9.

A5-8 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM Instruction Set Encoding

A5.2.4 Modified immediate constants in ARM instructions
1514131211109 8 7 6 5 4 3 2 4 151413121110 9 8 7 6 5 4 3 2 1 0
rotation [a b ¢c d e f g h

Table A5-6 shows the range of modified immediate constants available in ARM data-processing
instructions, and how they are encoded inthe g, b, c, d, e, f, g, h, and rotation fields in the instruction.

Table A5-6 Encoding of modified immediates in ARM processing instructions

rotation <const>a

0000 00000000 00000000 00000000 abcdefgh
0001 gh 0 00abcdef
0010 efgh000o 0000abcd
0011 cdefgh00 00000000 00000000 000000ab
0100 abcdefgh 00000000 00000000 00000000

8-hit values shifted to other even-numbered positions

1001 00000000 00abcdef gh000000 00000000

8-bit values shifted to other even-numbered positions

1110 00000000 00000000 0000abcd efgh0000

1111 00 0 ab cdefgh0o

a. Inthistable, theimmediate constant valueisshowninbinary form, torelate
abcdefgh to the encoding diagram. In assembly syntax, theimmediate value
is specified in the usual way (adecima number by default).

Note

The range of values availablein ARM maodified immediate constants is slightly different from the range of
values available in 32-bit Thumb instructions. See Modified immediate constants in Thumb instructions on
page A6-17.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A5-9

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

ARM Instruction Set Encoding

Carry out

A logical instruction with rotation == 0b0000 does not affect APSR.C. Otherwise, alogical instruction that
sets the flags sets APSR.C to the value of bit [31] of the modified immediate constant.

Constants with multiple encodings

Some constant values have multiple possible encodings. In this case, a UAL assembler must select the
encoding with the lowest unsigned value of the rotation field. Thisis the encoding that appearsfirst in
Table A5-6 on page A5-9. For example, the constant #3 must be encoded with (rotation, abcdefgh) ==
(obo000, 0b00000011), NOt (0b0001, 0b00001100), (0b0010, Pb00110000), Or (0b0011, 0h11000000).

In particular, this means that all constants in the range 0-255 are encoded with rotation == 0b0000, and
permitted constants outside that range are encoded with rotation ! = 0b000e. A flag-setting logical instruction
with amodified immediate constant thereforeleaves APSR.C unchanged if the constant isin the range 0-255
and sets it to the most significant bit of the constant otherwise. This matches the behavior of Thumb
modified immediate constants for all constants that are permitted in both the ARM and Thumb instruction
sets.

An alternative syntax is available for amodified immediate constant that permits the programmer to specify
the encoding directly. In this syntax, #<const> isinstead written as #<byte>,#<rot>, where:

<byte> isthe numeric value of abcdefgh, in the range 0-255
<rot> is twice the numeric value of rotation, an even number in the range 0-30.

This syntax permits all ARM data-processing instructions with modified immediate constants to be
disassembled to assembler syntax that will assemble to the original instruction.

This syntax also makes it possible to write variants of some flag-setting logical instructions that have
different effects on APSR.C to those obtained with the normal #<const> syntax. For example,

ANDS R1,R2,#12,#2 hasthe same behavior asANDS R1,R2,#3 except that it sets APSR.C to O instead of leaving
it unchanged. Such variants of flag-setting logical instructions do not have equivalentsin the Thumb
instruction set, and their use is deprecated.

Operation

// ARMExpandImm()
/] ==m=m==m======

bits(32) ARMExpandImm(bits(12) imm12)

// APSR.C argument to following function call does not affect the imm32 result.
(imm32, -) = ARMExpandImm_C(imm12, APSR.C);

return imm32;

// ARMExpandImm_C()
/] =====mmm=mmm=—==

(bits(32), bit) ARMExpandImm_C(bits(12) imml2, bit carry_in)

A5-10

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM Instruction Set Encoding

unrotated_value = ZeroExtend(imm12<7:0>, 32);
(imm32, carry_out) = Shift_C(unrotated_value, SRType_ROR, 2xUInt(imml2<11:8>), carry_in);

return (imm32, carry_out);

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A5-11

ARM Instruction Set Encoding

A5.2.5 Multiply and multiply-accumulate
3130292827 2625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 0

cond

00O0O op 1001

Table A5-7 shows the allocation of encodingsin this space.

Table A5-7 Multiply and multiply-accumulate instructions

op Instruction See Variant
000x Multiply MUL on page A8-212 All
001x Multiply Accumulate MLA on page A8-190 All
0100 Unsigned Multiply Accumulate AccumulateLong UMAAL on page A8-482 v6
0101 UNDEFINED - -
0110 Multiply and Subtract MLSon page A8-192 v6T2
0111 UNDEFINED - -
100x Unsigned Multiply Long UMULL on page A8-486 All
101x Unsigned Multiply Accumulate Long UMLAL on page A8-484 All
110x Signed Multiply Long SMULL on page A8-356 All
111x Signed Multiply Accumulate Long SMLAL onpage A8-334 All

A5-12

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

ARM DDI 0406B

ARM Instruction Set Encoding

A5.2.6 Saturating addition and subtraction
3130292827 26252423222120191817 16151413121110 9 8 7 6 5 4 3 2 1 0

A5.2.7

cond

000 1|0/ op|O

0101

Table A5-8 showsthe allocation of encodingsin this space. These encodingsare al availablein ARMV5TE
and above, and are UNDEFINED in earlier variants of the architecture.

Table A5-8 Saturating addition and subtraction instructions

op

Instruction See

00

Saturating Add QADD on page A8-250

01

Saturating Subtract QSUB on page A8-264

10

Saturating Double and Add QDADD on page A8-258

11

Saturating Double and Subtract QDSUB on page A8-260

Halfword multiply and multiply-accumulate
3130292827 2625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 0

cond

0 0O 1|0|op1|0

1 op| 0

Table A5-9 shows the alocation of encodingsin this space.

These encodings are signed multiply (SMUL) and signed multiply-accumulate (SMLA) instructions, operating
on 16-bit values, or mixed 16-bit and 32-bit values. The results and accumulators are 32-bit or 64-bit.

These encodings are al availablein ARMV5TE and above, and are UNDEFINED in earlier variants of the
architecture.

Table A5-9 Halfword multiply and multiply-accumulate instructions

opl

op Instruction

See

01

- Signed 16-bit multiply, 32-bit accumulate SMLABB, SMILABT, SMLATB, SMILATT on

page A8-330

0 Signed 16-bit x 32-bit multiply, 32-bit accumulate ~ SMLAWB, SMLAWT on page A8-340

01

1 Signed 16-hit x 32-bit multiply, 32-bit result SMULWB, SMULWT on page A8-358

10

- Signed 16-bit multiply, 64-bit accumulate SMLALBB, SMLALBT, SMLALTB, SMLALTT

on page A8-336

11

- Signed 16-bit multiply, 32-bit result

SMIULBB, SMULBT, SMULTB, SMULTT on
page A8-354

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A5-13

ARM Instruction Set Encoding

A5.2.8 Extraload/store instructions
31 3029 28 27 26 25 24 232221 2019 18 17 16 151413121110 9 8 7 6 5 4 3 2 1 O
cond 00O opl Rn 1|o0p2|1
If opl == 0bOxx1x or op2 == 0b00, see Data-processing and miscellaneous instructions on page A5-4.
Table A5-10 shows the allocation of encodings in this space.

Table A5-10 Extra load/store instructions
op2 opl Rn Instruction See Variant
01 XX0x0 - Store Halfword STRH (register) on page A8-412 All

xx0x1 - Load Halfword LDRH (register) on page A8-156 All
xx1x0 - Store Halfword STRH (immediate, ARM) on page A8-410 All
xx1x1 not1111 Load Halfword LDRH (immediate, ARM) on page A8-152 All
1111 Load Halfword LDRH (literal) on page A8-154 All

10 xxX0x0 - Load Dual LDRD (register) on page A8-140 Vv5TE
xx0x1 - Load Signed Byte LDRSB (register) on page A8-164 All

xx1x0 not1111 Load Dud LDRD (immediate) on page A8-136 V5TE

1111 Load Dua LDRD (literal) on page A8-138 Vv5TE
xx1x1 not1111 Load Signed Byte LDRSB (immediate) on page A8-160 All
1111 Load Signed Byte LDRSB (literal) on page A8-162 All
11 xx0x0 - Store Dua STRD (register) on page A8-398 All
xx0x1 - Load Signed Halfword ~ LDRSH (register) on page A8-172 All
xxIx0 - Store Dual STRD (immediate) on page A8-396 All
xx1x1 not1111 Load Signed Hafword LDRSH (immediate) on page A8-168 All
1111 Load Signed Halfword LDRSH (literal) on page A8-170 All

A5-14 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM Instruction Set Encoding

A5.2.9 Extraload/store instructions (unprivileged)
313029 28 27 262524232221 20191817 161514 13121110 9 8 7 6 5 4 3 2 1 0
cond 00O00O 1|op Rt 1| op2 |1

If op2 == 0b00, see Data-processing and miscellaneous instructions on page A5-4.

Table A5-11 shows the allocation of encodingsin this space. The instruction encodings are all availablein
ARMV6T?2 and above, and are UNDEFINED in earlier variants of the architecture.

Table A5-11 Extra load/store instructions (unprivileged)

op2 op Rt Instruction See
01 0 - Store Halfword Unprivileged STRHT on page A8-414
1 - Load Halfword Unprivileged LDRHT on page A8-158

1x 0 XXX0 UNPREDICTABLE -

XXX1 UNDEFINED -

10 1 - Load Signed Byte Unprivileged LDRSBT on page A8-166
11 1 - Load Signed Halfword Unprivileged LDRSHT on page A8-174

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A5-15

ARM Instruction Set Encoding

A5.2.10 Synchronization primitives
313029 28 27 26 2524 232221 2019 18 17 16 151413121110 9 8 7 6 5 4 3 2 1 0
cond 0001 op 1001

Table A5-12 shows the allocation of encodings in this space.

Other encodings in this space are UNDEFINED.

Table A5-12 Synchronization primitives

op Instruction See Variant
0x00 Swap Word, Swap Byte SWP, SWPB on page A8-4322 All
1000 Store Register Exclusive STREX on page A8-400 v6

1001 Load Register Exclusive LDREX on page A8-142 v6
1010 Store Register Exclusive Doubleword ~ STREXD on page A8-404 V6K
1011 Load Register Exclusive Doubleword LDREXD on page A8-146 V6K
1100 Store Register Exclusive Byte STREXB on page A8-402 veK
1101 Load Register Exclusive Byte LDREXB on page A8-144 V6K
1110 Store Register Exclusive Halfword STREXH on page A8-406 veK
1111 Load Register Exclusive Halfword LDREXH on page A8-148 veK

a Useof theseinstructions is deprecated.

A5-16 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

A5.2.11 MSR (immediate), and hints
3130292827 26252423222120191817 16151413121110 9 8 7 6 5 4 3 2 1 0

ARM Instruction Set Encoding

cond

00110

op|l1 O opl

op2

Table A5-13 shows the allocation of encodingsin this space.

Other encodingsin this space are unallocated hints. They execute as NOPs, but software must not use them.

Table A5-13 MSR (immediate), and hints

op opl op2 Instruction See Variant
0 0000 00000000 No Operation hint NOP on page A8-222 V6K, v6T2
00000001 Yield hint YIELD on page A8-812 V6K
00000010 Wait For Event hint WFE on page A8-808 veK
00000011 Wait For Interrupt hint WFI on page A8-810 veK
00000100 Send Event hint SEV on page A8-316 v6K
1111xxxx Debug hint DBG on page A8-88 v7
0100 - Moveto Special Register, MSR (immediate) on page A8-208 Al
application level
1x00 -
xx01 - Moveto Special Register, system MSR (immediate) on page B6-12 All
level
XXIX -
1 - - Move to Special Register, system MSR (immediate) on page B6-12 All
level
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A5-17

ARM Instruction Set Encoding

A5.2.12 Miscellaneous instructions

31 3029 28 27 26 2524 2322212019 1817161514 13121110 9 8 7 6 5 4 3 2 1 0

cond

0 O0O0|10f|op|O opl

0| op2

Table A5-14 shows the allocation of encodings in this space.

Other encodings in this space are UNDEFINED.

Table A5-14 Miscellaneous instructions

op2 op opl Instruction orinstruction class See Variant
000 x0 xxxx Move Specia Register to Register MRS on page A8-206 All
MRS on page B6-10
01 xx00 Moveto Specia Register, applicationlevel MSR (register) on page A8-210 Al
xx01 Moveto Special Register, system level MSR (register) on page B6-14 All
XXIx
1 - Move to Special Register, system level MSR (register) on page B6-14 All
oor 01 - Branch and Exchange BX on page A8-62 vAT
1 - Count Leading Zeros CLZ on page A8-72 v
010 01 - Branch and Exchange Jazelle BXJ on page A8-64 V5TEJ]
011 01 - Branch with Link and Exchange BLX (register) on page A8-60 v5T
101 - - Saturating addition and subtraction Saturating addition and -
subtraction on page A5-13
1117 01 - Breakpoint BKPT on page A8-56 v5T
1 - Secure Monitor Call SMC (previously SMI) on Security
page B6-18 Extensions
A5-18 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
v5T

A5.3

Load/store word and unsigned byte

ARM Instruction Set Encoding

31 3029 28 27 26 2524 23 2221 201918 1716 151413121110 9 8 7 6 5 4 3 2 1 O

cond

01

A

Rn

opl

B

These instructions have either A == 0 or B == 0. For instructionswith A == 1 and B == 1, see Media
instructions on page A5-21.

Table A5-15 shows the allocation of encodings in this space. These encodings are in al architecture

variants.
Table A5-15 Single data transfer instructions

opl B Rn Instruction See

xx0x0 not 0x010 - - Store Register STR (immediate, ARM) on
page A8-384

xx0xO0notOx010 0 - Store Register STR (register) on page A8-386

0x010 - - Store Register Unprivileged STRT on page A8-416

0x010 0o -

xx0x1 not 0x011 - not 1111 Load Register (immediate) LDR (immediate, ARM) on
page A8-120

xX0x1 not 0x011 - 1111 Load Register (literal) LDR (literal) on page A8-122

xx0x1notOx011 0O - Load Register LDR (register) on page A8-124

0x011 - - Load Register Unprivileged LDRT on page A8-176

0x011 o -

xx1x0not 0x110 - - Store Register Byte (immediate) STRB (immediate, ARM) on
page A8-390

xx1xOnotOx110 0 - Store Register Byte (register) STRB (register) on page A8-392

0x110 - - Store Register Byte Unprivileged ~ STRBT on page A8-394

0x110 0o -

xx1x1 not Ox111 - not 1111 Load Register Byte (immediate) LDRB (immediate, ARM) on
page A8-128

xx1x1 not Ox111 - 1111 Load Register Byte (literal) LDRB (literal) on page A8-130

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

A5-19

ARM Instruction Set Encoding

Table A5-15 Single data transfer instructions (continued)

A opl B Rn Instruction See

1 xxIx1notOx111 O - Load Register Byte (register) LDRB (register) on page A8-132
0 Ox111 - - Load Register Byte Unprivileged LDRBT on page A8-134

1 0x111 o -

A5-20 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM Instruction Set Encoding

A5.4 Mediainstructions
3130292827 26252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
cond 011 opl Rd op2 |1 Rn
Table A5-16 shows the allocation of encodings in this space.
Other encodings in this space are UNDEFINED.

Table A5-16 Media instructions
opl op2 Rd Rn Instructions See Variant
000xx - - - - Parallel addition and -

subtraction, signed on
page A5-22
001xx - - - - Parallel addition and -
subtraction, unsigned on
page A5-23
01xxx - - - - Packing, unpacking, -
saturation, and reversal on
page A5-24
10xxx - - - - Sgned multiplies on -
page A5-26
11000 000 1111 - Unsigned Sum of Absolute USADS on page A8-500 v6
Differences
000 not1l111 - Unsigned Sum of Absolute USADAS on page A8-502 v6
Differences and Accumulate
1101x x10 - - Signed Bit Field Extract SBFX on page A8-308 v6T2
1110x x00 - 1111 Bit Field Clear BFC on page A8-46 v6T2
- not 1111 Bit Field Insert BFI on page A8-48 v6T2
1111x x10 - - Unsigned Bit Field Extract UBFX on page A8-466 v6T2
11111 111 - - Permanently UNDEFINED. This space will not be alocated in future.

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

A5-21

ARM Instruction Set Encoding

A5.4.1 Parallel addition and subtraction, signed
31 3029 28 27 26 25 24 232221 2019 18 17 16 151413121110 9 8 7 6 5 4 3 2 1 O
cond 01100 0]|op1 op2 |1
Table A5-17 shows the allocation of encodingsin this space. These encodings are all available in ARMv6
and above, and are UNDEFINED in earlier variants of the architecture.
Other encodings in this space are UNDEFINED.
Table A5-17 Signed parallel addition and subtraction instructions
opl op2 Instruction See
01 000 Add 16-bit SADD16 on page A8-296
01 001 Add and Subtract with Exchange SASX on page A8-300
01 010 Subtract and Add with Exchange SSAX on page A8-366
01 011 Subtract 16-bit SSUB16 on page A8-368
01 100 Add 8-hit SADDS on page A8-298
01 111 Subtract 8-bit SSUB8 on page A8-370
Saturating instructions
10 000 Saturating Add 16-bit QADD16 on page A8-252
10 001 Saturating Add and Subtract with Exchange QASX on page A8-256
10 010 Saturating Subtract and Add with Exchange = QSAX on page A8-262
10 011 Saturating Subtract 16-bit QSUB16 on page A8-266
10 100 Saturating Add 8-bit QADDS8 on page A8-254
10 111 Saturating Subtract 8-bit QSUBS on page A8-268
Halving instructions
11 000 Halving Add 16-hit SHADD16 on page A8-318
11 001 Halving Add and Subtract with Exchange SHASX on page A8-322
11 010 Halving Subtract and Add with Exchange SHSAX on page A8-324
11 011 Halving Subtract 16-bit SHSUB16 on page A8-326
1 100 Halving Add 8-hit SHADDS on page A8-320
11 111 Halving Subtract 8-bit SHSUBS on page A8-328
A5-22 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

A5.4.2 Parallel addition and subtraction, unsigned
3130292827 26252423222120191817 16151413121110 9 8 7 6 5 4 3 2 1 0

ARM Instruction Set Encoding

cond

01100 1|op1

op2 |1

Table A5-18 shows the allocation of encodings in this space. These encodings are all availablein ARMv6
and above, and are UNDEFINED in earlier variants of the architecture.

Other encodings in this space are UNDEFINED.

Table A5-18 Unsigned parallel addition and subtractions instructions

opl op2 Instruction See

01 000 Add 16-bit UADD16 on page A8-460
01 001 Add and Subtract with Exchange UASX on page A8-464

01 010 Subtract and Add with Exchange USAX on page A8-508

01 011 Subtract 16-bit USUB16 on page A8-510
01 100 Add 8-hit UADDS8 on page A8-462
01 111 Subtract 8-bit USUBS8 on page A8-512
Saturating instructions

10 000 Saturating Add 16-bit UQADD16 on page A8-488
10 001 Saturating Add and Subtract with Exchange UQASX on page A8-492
10 010 Saturating Subtract and Add with Exchange UQSAX on page A8-494
10 011 Saturating Subtract 16-bit UQSUB16 on page A8-496
10 100 Saturating Add 8-bit UQADDS on page A8-490
10 111 Saturating Subtract 8-bit UQSUB8 on page A8-498
Halving instructions

11 000 Halving Add 16-hit UHADD16 on page A8-470
11 001 Halving Add and Subtract with Exchange UHASX on page A8-474
11 010 Halving Subtract and Add with Exchange UHSAX on page A8-476
11 011 Halving Subtract 16-bit UHSUB16 on page A8-478
11 100 Halving Add 8-bit UHADDS on page A8-472
11 111 Halving Subtract 8-hit UHSUBS on page A8-480

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A5-23

ARM Instruction Set Encoding

A5.4.3 Packing, unpacking, saturation, and reversal
31 3029 28 27 26 25 24 232221 2019 18 17 16 151413121110 9 8 7 6 5 4 3 2 1 O
cond 01101 opl A op2 |1
Table A5-19 shows the allocation of encodings in this space.
Other encodings in this space are UNDEFINED.

Table A5-19 Packing, unpacking, saturation, and reversal instructions
opl op2 A Instructions See Variant
000 xx0 - Pack Halfword PKH on page A8-234 v6
0lx xx0 - Signed Saturate SSAT on page A8-362 v6
11x xx0 - Unsigned Saturate USAT on page A8-504 v6
000 011 not1111 Signed Extend and Add Byte 16 SXTAB16 on page A8-436 v6

1111 Signed Extend Byte 16 SXTB16 on page A8-442 v6

101 - Select Bytes SEL on page A8-312 v6

010 001 - Signed Saturate 16 SSAT16 on page A8-364 v6
011 not1111 Signed Extend and Add Byte SXTAB on page A8-434 v6

1111 Signed Extend Byte SXTB on page A8-440 v6

011 001 - Byte-Reverse Word REV on page A8-272 v6
011 not1111 Signed Extend and Add Halfword SXTAH on page A8-438 v6

1111 Signed Extend Halfword SXTH on page A8-444 v6

011 101 - Byte-Reverse Packed Halfword REV16 on page A8-274 v6
100 011 not1111 Unsigned Extend and Add Byte 16 UXTABL16 on page A8-516 v6
1111 Unsigned Extend Byte 16 UXTB16 on page A8-522 v6

110 o001 - Unsigned Saturate 16 USAT16 on page A8-506 v6
011 not1111 Unsigned Extend and Add Byte UXTAB on page A8-514 v6

1111 Unsigned Extend Byte UXTB on page A8-520)

A5-24 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM Instruction Set Encoding

Table A5-19 Packing, unpacking, saturation, and reversal instructions (continued)

opl op2 A Instructions See Variant
112 001 - Reverse Bits RBIT on page A8-270 v6T2
011 not1111 Unsigned Extend and Add Halfword ~ UXTAH on page A8-518 v6
1111 Unsigned Extend Halfword UXTH on page A8-524 v6
101 - Byte-Reverse Signed Halfword REVSH on page A8-276 v6
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A5-25

ARM Instruction Set Encoding

A5.4.4 Signed multiplies
3130292827 2625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 0

cond

01110| opl A

op2 |1

Table A5-20 showstheallocation of encodingsin this space. Theseencodingsareall availablein ARMv6F2
and above, and are UNDEFINED in earlier variants of the architecture.

Other encodings in this space are UNDEFINED.

Table A5-20 Signed multiply instructions

opl op2 A Instruction See
000 00x not1111 Signed Multiply Accumulate Dual SMLAD on page A8-332
1111 Signed Dual Multiply Add SMUAD on page A8-352
01x not1111 Signed Multiply Subtract Dual SVILSD on page A8-342
1111 Signed Dual Multiply Subtract SMUSD on page A8-360
100 00x - Signed Multiply Accumulate Long Dual SMLALD on page A8-338
0lx - Signed Multiply Subtract Long Dual SMLSLD on page A8-344
101 00x not1111 Signed Most Significant Word Multiply Accumulate SMMLA on page A8-346
1111 Signed Most Significant Word Multiply SVIMUL on page A8-350
11x - Signed Most Significant Word Multiply Subtract SVIMLS on page A8-348
A5-26 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q2
Cross-Out

A5.5

Branch, branch with link, and
31 30 29 28 27 26 25 24 23 22 21 20 19 18

Rn]

ARM Instruction Set Encoding

block data transfer
1716 151413121110 9 8 7 6 5 4 3 2 1 O

cond 10 op v R
Table A5-21 shows the allocation of encodings in this space. These encodings are in al architecture
variants.
Table A5-21 Branch, branch with link, and block data transfer instructions
op R Instructions See
0000x0 - Store Multiple Decrement After STMDA / STMED on page A8-376
0000x1 - Load Multiple Decrement After LDMDA / LDMFA on page A8-112
0010x0 - Store Multiple (Increment After) STM/ STMIA/ STMEA on page A8-374
0010xt - LeoodMultiple(tnerementAfter) LDM/LDMIA/LDMFD-onpageAS-110
0100x0 - StereMultipleDecrementBefere SFMBB/-SHWFB-enpageA8-378
0100x1 - Load Multiple Decrement Before LDMDB / LDMEA on page A8-114
0110x0 - Store Multiple Increment Before ~ STMIB / STMFA on page A8-380
0110x1 - Load Multiple Increment Before ~ LDMIB/LDMED on page A8-116
Oxx1x0 - Store Multiple (user registers) STM (user registers) on page B6-22
Oxx1x1 O Load Multiple (user registers) LDM (user registers) on page B6-7
1 Load Multiple (exception return) LDM (exception return) on page B6-5

10XxXxx - Branch B on page A8-44
1Ixxxx - Branch with Link BL, BLX (immediate) on page A8-58

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

A5-27

ARM_2008_Q4
Callout
Rn

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text

op R Rn Instructions See

001001 - - Load Multiple (Increment After) LDM / LDMIA / LDMFD on page A8-110 [PDF page 422]

001011 - not 1101 Load Multiple (Increment After) LDM / LDMIA / LDMFD on page A8-110 [PDF page 422]

 1101 Pop multiple registers POP on page A8-246 [PDF page 558]
--
010000 - - Store Multiple Decrement Before STMDB / STMFD on page A8-378 [PDF page 690]
--
010010 - not 1101 Store Multiple Decrement Before STMDB / STMFD on page A8-378 [PDF page 690]
 --
 1101 Push multiple registers PUSH on page A8-248 [PDF page 560]
--

ARM Instruction Set Encoding

A5.6 Supervisor Call, and coprocessor instructions
31302928272625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 0
cond 11 opl Rn coproc op
Table A5-22 shows the allocation of encodings in this space.

Table A5-22 Supervisor Call, and coprocessor instructions
opl op coproc Rn Instructions See Variant
OXXXXX3 - 101x - Advanced SIMD, VFP Extension register load/store

instructions on page A7-26
Oxxxx0a - not 101x - Store Coprocessor STC, STC2 on page A8-372 All
Oxxxxla - not 101x not 1111 Load Coprocessor LDC, LDC2 (immediate) on All
page A8-106
1111 Load Coprocessor LDC, LDC2 (literal) on All
page A8-108
00000x - - - UNDEFINED - -
00010x - 101x - Advanced SIMD, VFP 64-bit transfers between ARM core and
extension registers on page A7-32
000100 - not 101x - Move to Coprocessor from MCRR, MCRR2 on V5TE
two ARM core registers page A8-188
000101 - not 101x - Moveto two ARM core MRRC, MRRC2 on V5TE
registers from Coprocessor page A8-204
10xxxx O 101x - - VFP data-processing instructions on
page A7-24
not 101x - Coprocessor data operations CDP, CDP2 on page A8-68 All
1 101x - Advanced SIMD, VFP 8, 16, and 32-hit transfer between ARM
core and extension registers on
page A7-31
10xxx0 1 not 101x - Move to Coprocessor from MCR, MCR2 on All
ARM coreregister page A8-186
A5-28 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM Instruction Set Encoding

Table A5-22 Supervisor Call, and coprocessor instructions (continued)

opl op coproc Rn Instructions See Variant
10xxx1 1 not 101x - Moveto ARM coreregister ~ MRC, MRC2 on All
from Coprocessor page A8-202
1IXxxx - - - Supervisor Call SVC (previously SWMI) on All
page A8-430

a. But not 000x0x

For more information about specific coprocessors see Coprocessor support on page A2-68.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A5-29

ARM Instruction Set Encoding

A5.7 Unconditional instructions
31302928 27 26 2524 232221201918 1716151413121110 9 8 7 6 5 4 3 2 1 O
1111 opl Rn op
Table A5-23 shows the allocation of encodings in this space.
Other encodings in this space are UNDEFINED in ARMV5 and above.
All encodingsin this space are UNPREDICTABLE in ARMv4 and ARMVAT.

Table A5-23 Unconditional instructions
opl op Rn Instruction See Variant
OXXXXXXX - - - Miscellaneous instructions, memory hints, and

Advanced SMD instructions on page A5-31
100xx1x0 - - Store Return State SRSon page B6-20 V6
100xx0x1 - - Return From Exception RFE on page B6-16 V6
10IXXXXX - - Branch with Link and Exchange BL, BLX (immediate) on v5

page A8-58
11000x11 - not 1111 Load Coprocessor (immediate) LDC, LDC2 (immediate) on v5
page A8-106
11001xx1 - 1111 Load Coprocessor (literal) LDC, LDC2 (literal) on v5
page A8-108
1101xxx1 - 1111
11000x10 - - Store Coprocessor STC, STC2 on page A8-372 v5
11001xx0
1101xxx0
11000100 - - Move to Coprocessor from two MCRR, MCRR2 on page A8-188 V6
ARM coreregisters
11000101 - - Movetotwo ARM coreregisters MRRC, MRRC2 on page A8-204 v6
from Coprocessor
1110xxxx 0O - Coprocessor data operations CDP, CDP2 on page A8-68 v5
1110xxx0 1 - Move to Coprocessor from MCR, MCR2 on page A8-186 v5
ARM core register
1110xxx1 1 - Moveto ARM coreregister from MRC, MRC2 on page A8-202 v5
Coprocessor
A5-30 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM Instruction Set Encoding

A5.7.1 Miscellaneous instructions, memory hints, and Advanced SIMD instructions
313029 28 27 26 25 24 23 2221 2019 18 17 16 151413121110 9 8 7 6 5 4 3 2 1 O
11110 opl Rn op2

Table A5-24 shows the allocation of encodingsin this space.
Other encodingsin this space are UNDEFINED in ARMV5 and above. All these encodings are
UNPREDICTABLE in ARMv4 and ARMVAT.

Table A5-24 Hints, and Advanced SIMD instructions
opl op2 Rn Instruction See Variant
0010000 xx0x xxx0 Change Processor State CPSon page B6-3 V6
0010000 0000 xxx1 Set Endianness SETEND on page A8-314 v6
OIXXXXX - - See Advanced SIMD data-processing instructions on page A7-10 v7
100xxx0 - - See Advanced SMD element or structureload/storeinstructionson v7

page A7-27
100x001 - - Unallocated memory hint (treat as NOP) MPpa
Extensions
100x101 - - Preload Instruction PLI (immediate, literal) on v7
page A8-242
101x001 - not 1111 Preload Data with intent to PLD, PLDW (immediate) on MPa
Write page A8-236 Extensions
1111 UNPREDICTABLE - -
101x101 - not 1111 Preload Data PLD, PLDW (immediate) on V5TE
page A8-236
1111 Preload Data PLD (literal) on page A8-238 Vv5TE
1010111 0001 - Clear-Exclusive CLREX on page A8-70 V6K
0100 - Data Synchronization Barrier DSB on page A8-92 v6T2
0101 - Data Memory Barrier DMB on page A8-90 v7
0110 - Instruction Synchronization 1B on page A8-102 Vv6T2
Barrier
10xxx11 - - UNPREDICTABLE except as shown above -
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A5-31

ARM Instruction Set Encoding

Table A5-24 Hints, and Advanced SIMD instructions (continued)

opl op2 Rn Instruction See Variant
110x001 xxx0 - Unallocated memory hint (treat as NOP) Mpa
Extensions

110x101 xxx0 - Preload Instruction PLI (register) on page A8-244 V7
111x001 xxx0 - Preload Data with intent to PLD, PLDW (register) on MPpPa

Write page A8-240 Extensions
111x101 xxx0 - Preload Data PLD, PLDW (register) on V5TE

page A8-240

11xxx11 xxx0 - UNPREDICTABLE - -

a. Multiprocessing Extensions.

A5-32

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

ARM DDI 0406B

Chapter A6
Thumb Instruction Set Encoding

This chapter introduces the Thumb instruction set and describes how it usesthe ARM programmers’ model.
It contains the following sections:

. Thumb instruction set encoding on page A6-2
. 16-bit Thumb instruction encoding on page A6-6
. 32-bit Thumb instruction encoding on page A6-14.

For details of the differences between the Thumb and ThumbEE instruction sets see Chapter A9 ThumbEE.

Note

. Architecture variant information in this chapter describes the architecture variant or extension in
which the instruction encoding was introduced into the Thumb instruction set.

. In the decode tablesin this chapter, an entry of - for afield value means the value of the field does
not affect the decoding.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A6-1

Thumb Instruction Set Encoding

A6.1

A6.1.1

Thumb instruction set encoding

The Thumb instruction stream is a sequence of halfword-aigned halfwords. Each Thumb instruction is
either asingle 16-bit halfword in that stream, or a32-bit instruction consisting of two consecutive halfwords
in that stream.

If bits[15:11] of the halfword being decoded take any of the following values, the halfword is the first
halfword of a 32-bit instruction:

. 0b11101
. 0b11110
. 0b11111.

Otherwise, the halfword is a 16-bit instruction.

For details of the encoding of 16-bit Thumb instructions see 16-bit Thumb instruction encoding on
page A6-6.

For details of the encoding of 32-bit Thumb instructions see 32-bit Thumb instruction encoding on
page A6-14.

UNDEFINED and UNPREDICTABLE instruction set space

An attempt to execute an unallocated instruction resultsin either:
. Unpredictable behavior. The instruction is described as UNPREDICTABLE.
. An Undefined Instruction exception. The instruction is described as UNDEFINED.

Aninstruction is UNDEFINED if it is declared as UNDEFINED in an instruction description, or in this chapter.

An instruction is UNPREDICTABLE if:

. abit marked (0) or (1) in the encoding diagram of an instruction is not O or 1 respectively, and the
pseudocode for that encoding does not indicate that a different special case applies

. it is declared as UNPREDICTABLE in an instruction description or in this chapter.
Unless otherwise specified:

. Thumb instructionsintroduced in an architecture variant are either UNPREDICTABLE Or UNDEFINED in
earlier architecture variants.

. A Thumb instruction that is provided by one or more of the architecture extensionsis either
UNPREDICTABLE Or UNDEFINED in an implementation that does not include any of those extensions.

In both cases, the instruction is UNPREDICTABLE if it isa32-bit instruction in an architecture variant before
ARMV6T2, and UNDEFINED otherwise.

A6-2

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Thumb Instruction Set Encoding

A6.1.2 Use of Ob1111 as aregister specifier

The use of Ob1111 as aregister specifier is not normally permitted in Thumb instructions. When a value of
Ob1111 is permitted, a variety of meaningsis possible. For register reads, these meanings are:

Read the PC value, that is, the address of the current instruction + 4. The base register of the table
branch instructions TBB and TBH can be the PC. This enables branch tables to be placed in memory
immediately after the instruction.

Note
Use of the PC as the base register in the STC instruction is deprecated in ARMV?7.

Read the word-aligned PC value, that is, the address of the current instruction + 4, with bits [1:0]
forced to zero. The base register of LDC, LDR, LDRB, LDRD (pre-indexed, no writeback), LDRH, LDRSB, and
LDRSH instructions can be the word-aligned PC. This enables PC-relative data addressing. In addition,
some encodings of theADD and SUB instructions permit their source registersto be Ob1111 for the same
purpose.

Read zero. Thisisdonein some cases when oneinstruction isaspecial case of another, more general
instruction, but with one operand zero. In these cases, the instructions are listed on separate pages,
with a special casein the pseudocode for the more general instruction cross-referencing the other

page.

For register writes, these meanings are:

The PC can be specified as the destination register of an LDR instruction. Thisis done by encoding Rt
as0b1111. The loaded value is treated as an address, and the effect of execution is a branch to that
address. bit [0] of the loaded value selects whether to execute ARM or Thumb instructions after the
branch.

Some other instructions write the PC in similar ways, either implicitly (for example branch
instructions) or by using aregister mask rather than aregister specifier (LDM). The address to branch
to can be:

— aloaded value, for example, RFE

— aregister value, for example, BX

— theresult of acalculation, for example, TBB or TBH.

The method of choosing the instruction set used after the branch can be:

— similar to the LDR case, for LDM or BX

— afixedinstruction set other than the one currently being used, for example, theimmediateform
of BLX

— unchanged, for example branch instructions

— setfromthe (J,T) bits of the SPSR, for RFE and SUBS PC,LR, #imm8.

Discard the result of acalculation. Thisis donein some cases when one instruction is a specia case
of another, more general instruction, but with the result discarded. In these cases, theinstructions are
listed on separate pages, with a special case in the pseudocode for the more general instruction
cross-referencing the other page.

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AB6-3

Thumb Instruction Set Encoding

. If the destination register specifier of an LDRB, LDRH, LDRSB, or LDRSH instruction is 0b1111, the
instruction isamemory hint instead of aload operation.

. If the destination register specifier of an MRC instruction is0b1111, bits [31:28] of the value
transferred from the coprocessor are writtentothe N, Z, C, and V flagsin the APSR, and bits [27:0]

are discarded.
A6.1.3 Use of Ob1101 as a register specifier

R13isdefined inthe Thumb instruction set so that itsuseis primarily asastack pointer, and R13isnormally

identified as SP in Thumb instructions. In 32-bit Thumb instructions, if you use R13 as a general -purpose

register beyond the architecturally defined constraints described in this section, the results are

UNPREDICTABLE.

The restrictions applicable to R13 are described in:

. R13[1:0] definition

. 32-bit Thumb instruction support for R13.

See al'so 16-bit Thumb instruction support for R13 on page A6-5.

R13[1:0] definition

Bits[1:0] of R13 are SBZP. Writing a nonzero value to bits [1:0] causes UNPREDICTABLE behavior.

32-bit Thumb instruction support for R13

R13 instruction support is restricted to the following:

. R13 asthe source or destination register of aMov instruction. Only register to register transferswithout
shifts are supported, with no flag setting:

MoV SP,<Rm>
MoV <Rn>,SP
. Using the following instructions to adjust R13 up or down by a multiple of 4:
ADD{W} SP,SP,#<imm>
SUB{W} SP,SP,#<imm>
ADD SP,SP, <Rm>
ADD SP,SP,<Rm>,LSL #<n> ; For <n> =1,2,3
SUB SP,SP, <Rm>
SUB SP,SP,<Rm>,LSL #<n> ; For <n> =1,2,3

. R13 as abase register <Rn> of any load/store instruction. This supports SP-based addressing for load,
store, or memory hint instructions, with positive or negative offsets, with and without writeback.

. R13 as thefirst operand <Rn> in any ADD{S}, CMN, CMP, or SUB{S} instruction. The add and subtract
instructions support SP-based address generation, with the address going into a general-purpose
register. CMN and CMP are useful for stack checking in some circumstances.

. R13 as the transferred register <Rt> in any LDR or STR instruction.

A6-4 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Thumb Instruction Set Encoding

16-bit Thumb instruction support for R13

For 16-bit data-processing instructionsthat affect high registers, R13 can only be used as described in 32-bit
Thumb instruction support for R13 on page A6-4. Any other useis deprecated. This affectsthe high register
forms of CMP and ADD, where the use of R13 as <Rm> is deprecated.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A6-5

Thumb Instruction Set Encoding

A6.2 16-bit Thumb instruction encoding

151413121110 9 8 7 6 5 4 3 2 1 O

Opcode

Table A6-1 shows the allocation of 16-bit instruction encodings.

Table A6-1 16-bit Thumb instruction encoding

Opcode Instruction or instruction class Variant
00xxXX Shift (immediate), add, subtract, move, and compare on page A6-7 -
010000 Data-processing on page A6-8 -
010001 Soecial data instructions and branch and exchange on page A6-9 -
01001x Load from Literal Pool, see LDR (literal) on page A8-122 vAT
0101xx Load/store single data item on page A6-10 -
011xxx

100xxx

10100x Generate PC-relative address, see ADR on page A8-32 vAT
10101x Generate SP-relative address, see ADD (SP plus immediate) on page A8-28 v4T
1011xx Miscellaneous 16-bit instructions on page A6-11 -
11000x Store multiple registers, see STM / STMIA / STMEA on page A8-374 2 V4T
11001x Load multiple registers, see LDM / LDMIA / LDMFD on page A8-110 2 VAT
1101xx Conditional branch, and Supervisor Call on page A6-13 -
11100x Unconditional Branch, see B on page A8-44 VAT

a InThumbEE, 16-bit loadktore multipleinstructions are not available. Thisencoding isused for special
ThumbEE instructions. For details see Chapter A9 ThumbEE.

A6-6 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

ARM DDI 0406B

A6.2.1

151413121110 9 8 7 6 5 4 3 2 1 0

00

Opcode

Table A6-2 shows the allocation of encodingsin this space.

Thumb Instruction Set Encoding

Shift (immediate), add, subtract, move, and compare

All these instructions are available since the Thumb instruction set was introduced in ARMVAT.

Table A6-2 16-bit Thumb shift (immediate), add, subtract, move, and compare instructions

Opcode Instruction See

000xx Logical Shift Left LSL (immediate) on page A8-178

001xx Logical Shift Right LSR (immediate) on page A8-182

010xx Arithmetic Shift Right ASR (immediate) on page A8-40

01100 Add register ADD (register) on page A8-24

01101 Subtract register SUB (register) on page A8-422

01110 Add 3-bit immediate ADD (immediate, Thumb) on page A8-20
01111 Subtract 3-bit immediate SUB (immediate, Thumb) on page A8-418
100xx Move MOV (immediate) on page A8-194

101xx Compare CMP (immediate) on page A8-80

110xx Add 8-hit immediate ADD (immediate, Thumb) on page A8-20
111xx Subtract 8-bit immediate SUB (immediate, Thumb) on page A8-418

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

AG6-7

Thumb Instruction Set Encoding

A6.2.2 Data-processing

151413121110 9 8 7 6 5 4 3 2 1 O

0100 0 0| Opcode

Table A6-3 shows the allocation of encodings in this space.

All these instructions are available since the Thumb instruction set was introduced in ARMVAT.

Table A6-3 16-bit Thumb data-processing instructions

Opcode Instruction See

0000 Bitwise AND AND (register) on page A8-36
0001 Bitwise Exclusive OR EOR (register) on page A8-96
0010 Logical Shift Left LS. (register) on page A8-180
0011 Logical Shift Right LSR (register) on page A8-184
0100 Arithmetic Shift Right ASR (register) on page A8-42
0101 Add with Carry ADC (register) on page A8-16
0110 Subtract with Carry SBC (register) on page A8-304
0111 Rotate Right ROR (register) on page A8-280
1000 Test TST (register) on page A8-456
1001 Reverse Subtract from0 RSB (immediate) on page A8-284
1010 Compare High Registers CMP (register) on page A8-82
1011 Compare Negative CMN (register) on page A8-76
1100 Bitwise OR ORR (register) on page A8-230
1101 Multiply Two Registers ~ MUL on page A8-212

1110 Bitwise Bit Clear BIC (register) on page A8-52
1111 Bitwise NOT MVWN (register) on page A8-216

A6-8 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Thumb Instruction Set Encoding

A6.2.3 Special data instructions and branch and exchange

151413121110 9 8 7 6 5 4 3 2 1 0

010001

Opcode

Table A6-4 shows the alocation of encodingsin this space.

Table A6-4 16-bit Thumb special data instructions and branch and exchange

Opcode Instruction See Variant
0000 Add Low Registers ADD (register) on page A8-24 v6T22a
0001 Add High Registers ADD (register) on page A8-24 vaAT
001x
0100 UNPREDICTABLE - -
0101 Compare High Registers CMP (register) on page A8-82 vAT
011x
1000 Move Low Registers MOV (register) on page A8-196 v62
1001 Move High Registers MOV (register) on page A8-196 v4T
101x
110x Branch and Exchange BX on page A8-62 VAT
111x Branch with Link and Exchange BLX (register) on page A8-60 v5T a
a UNPREDICTABLE in earlier variants.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A6-9

Thumb Instruction Set Encoding

A6.2.4 Load/store single data item

151413121110 9 8 7 6 5 4 3 2 1 O

OpA opB

These instructions have one of the following valuesin opA:

. 0b0101
. 0b011x
. 0b100x.

Table A6-5 shows the allocation of encodings in this space.

All these instructions are available since the Thumb instruction set was introduced in ARMVAT.

Table A6-5 16-bit Thumb Load/store instructions

opA opB Instruction See

0101 000 Store Register STR (register) on page A8-386
001 Store Register Halfword STRH (register) on page A8-412
010 Store Register Byte STRB (register) on page A8-392
011 Load Register Signed Byte LDRSB (register) on page A8-164
100 Load Register LDR (register) on page A8-124
101 Load Register Halfword LDRH (register) on page A8-156
110 Load Register Byte LDRB (register) on page A8-132

111 Load Register Signed Halfword LDRSH (register) on page A8-172

0110 Oxx Store Register STR (immediate, Thumb) on page A8-382
1Ixx Load Register LDR (immediate, Thumb) on page A8-118
0111 Oxx Store Register Byte STRB (immediate, Thumb) on page A8-388
Ixx Load Register Byte LDRB (immediate, Thumb) on page A8-126
1000 Oxx Store Register Halfword STRH (immediate, Thumb) on page A8-408
Ixx Load Register Halfword LDRH (immediate, Thumb) on page A8-150
1001 Oxx Store Register SP relative STR (immediate, Thumb) on page A8-382
Ixx Load Register SPrelative LDR (immediate, Thumb) on page A8-118

A6-10 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

A6.2.5 Miscellaneous 16-bit instructions

Thumb Instruction Set Encoding

151413121110 9 8 7 6 5 4 3 2 1 0

1011

Opcode

Table A6-6 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.

Table A6-6 Miscellaneous 16-bit instructions

Opcode Instruction See Variant
0110010 Set Endianness SETEND on page A8-314 v6
0110011 Change Processor State CPSon page B6-3 v6
00000xx Add Immediate to SP ADD (SP plusimmediate) on page A8-28 vaAT
00001xx Subtract Immediate from SP SUB (SP minusimmediate) on page A8-426 vAT
0001xxx Compare and Branch on Zero CBNZ, CBZ on page A8-66 v6T2
001000x Signed Extend Halfword SXTH on page A8-444 v6
001001x Signed Extend Byte SXTB on page A8-440 v6
001010x Unsigned Extend Halfword UXTH on page A8-524 v6
001011x Unsigned Extend Byte UXTB on page A8-520 v6
0011xxx Compare and Branch on Zero CBNZ, CBZ on page A8-66 v6T2
010xxxx Push Multiple Registers PUSH on page A8-248 VAT
1001xxx Compare and Branch on Nonzero CBNZ, CBZ on page A8-66 v6T2
101000x Byte-Reverse Word REV on page A8-272 v6
101001x Byte-Reverse Packed Halfword REV16 on page A8-274 v6
101011x Byte-Reverse Signed Halfword REVSH on page A8-276 v6
1011xxx Compare and Branch on Nonzero CBNZ, CBZ on page A8-66 v6T2
110xxxx Pop Multiple Registers POP on page A8-246 VAT
1110xxx Breakpoint BKPT on page A8-56 v5
1111xxx If-Then, and hints If-Then, and hints on page A6-12 -
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A6-11

Thumb Instruction Set Encoding

If-Then, and hints

151413121110 9 8 7 6 5 4 3 2 1 O

1011j1111

OpA

opB

Table A6-7 shows the allocation of encodings in this space.

Other encodingsin this space are unall ocated hints. They execute as NOPs, but software must not use them.

Table A6-7 Miscellaneous 16-bit instructions

opA opB Instruction See Variant
- not 0000 If-Then IT on page A8-104 v6T2
0000 0000 No Operation hint NOP on page A8-222 v6T2
0001 0000 Yield hint YIELD on page A8-812 v7
0010 0000 Wait For Event hint WFE on page A8-808 v7
0011 0000 Wait For Interrupt hint ~ WFI on page A8-810 v7
0100 0000 Send Event hint SEV on page A8-316 v7

A6-12

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Thumb Instruction Set Encoding

A6.2.6 Conditional branch, and Supervisor Call

151413121110 9 8 7 6 5 4 3 2 1 0
1 10 1| Opcode

Table A6-8 shows the alocation of encodingsin this space.

All these instructions are available since the Thumb instruction set was introduced in ARMVAT.

Table A6-8 Conditional branch and Supervisor Call instructions

Opcode Instruction See

not 111x Conditional branch B on page A8-44

1110 Permanently UNDEFINED. This space will not be allocated in future.

1111 Supervisor Call SVC (previously SM) on page A8-430

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A6-13

Thumb Instruction Set Encoding

A6.3 32-bit Thumb instruction encoding
1514131211109 8 7 6 5 4 3 2 1 0 15 14131211109 8 7 6 5 4 3 2 1 0

111 opl op2 op

If opl == 0b00, a 16-hit instruction is encoded, see 16-bit Thumb instruction encoding on page A6-6.
Table A6-9 shows the all ocation of encodings in this space.

Table A6-9 32-bit Thumb instruction encoding

opl op2 op Instruction class, see

01 00xx0xx - Load/store multiple on page A6-23
00xxIxx - Load/store dual, load/store exclusive, table branch on page A6-24
OIXXXXX - Data-processing (shifted register) on page A6-31
IXXXXXX - Coprocessor instructions on page A6-40

10 XOxxxxx 0 Data-processing (modified immediate) on page A6-15

xDxxxxx 0 Data-processing (plain binary immediate) on page A6-19

- 1 Branches and miscellaneous control on page A6-20

11 000xxx0 - Store single data item on page A6-30
001xxx0 - Advanced SSMD element or structure load/store instructions on page A7-27
00xx001 - Load byte, memory hints on page A6-28
00xx011 - Load halfword, memory hints on page A6-26
00xx101 - Load word on page A6-25
00xx111 - UNDEFINED
010xxxx - Data-processing (register) on page A6-33
0110xxx - Multiply, multiply accumulate, and absol ute difference on page A6-38
0111xxx - Long multiply, long multiply accumulate, and divide on page A6-39
IXXXXXX - Coprocessor instructions on page A6-40

A6-14 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

A6.3.1

Data-processing (modified immediate)

Thumb Instruction Set Encoding

151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 O

111

10 0

op

S Rn 0

Rd

Table A6-10 shows the allocation of encodingsin this space. Other encodingsin this space are UNDEFINED.

These encodings are al availablein ARMvV6T2 and above.

Table A6-10 32-bit modified immediate data-processing instructions

op Rn Rd S Instruction See
0000 - not 1111 x Bitwise AND AND (immediate) on page A8-34
- 1111 0 UNPREDICTABLE -
- 1111 1 Test TST (immediate) on page A8-454
0001 - - - BitwiseBit Clear BIC (immediate) on page A8-50
0010 not1111 - - BitwiseOR ORR (immediate) on page A8-228
1111 - - Move MOV (immediate) on page A8-194
0011 not1111 - - BitwiseORNOT ORN (immediate) on page A8-224
1111 - - Bitwise NOT MVN (immediate) on page A8-214
0100 - not 1111 x Bitwise Exclusve OR EOR (immediate) on page A8-94
1111 0 UNPREDICTABLE -
1 Test Equivalence TEQ (immediate) on page A8-448
1000 - not 1111 - Add ADD (immediate, Thumb) on page A8-20
1111 0 UNPREDICTABLE -
1 Compare Negative CMN (immediate) on page A8-74
1010 - - - Add with Carry ADC (immediate) on page A8-14
1011 - - - Subtract with Carry SBC (immediate) on page A8-302

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

A6-15

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Sticky Note
This sentence is incorrect, because the word "not" is missing. The intended meaning is covered by the Note on page A6-1 [PDF page 239].

Thumb Instruction Set Encoding

Table A6-10 32-bit modified immediate data-processing instructions (continued)

op Rn Rd S Instruction See
1100 - not 1111 - Subtract SUB (immediate, Thumb) on page A8-418
1111 0 UNPREDICTABLE -
1 Compare CMP (immediate) on page A8-80
1110 - - - Reverse Subtract RSB (immediate) on page A8-284

These instructions all have modified immediate constants, rather than a simple 12-bit binary number. This

provides amore useful range of values. For details see Modified immediate constants in Thumb instructions
on page A6-17.

A6-16 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Thumb Instruction Set Encoding

A6.3.2 Modified immediate constants in Thumb instructions
151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0
i imm3 abocdefgh

Table A6-11 shows the range of modified immediate constants available in Thumb data-processing
instructions, and how they are encoded inthe a, b, c, d, e, f, g, h, i, and imm3 fields in the instruction.

Table A6-11 Encoding of modified immediates in Thumb data-processing instructions

i:imm3:a <const>a

0000x 00000000 00000000 00000000 abcdefgh
0001x 00000000 abcdefgh 00000000 abcdefgh P
0010x abcdefgh 00000000 abcdefgh 00000000 b
0011x abcdefgh abcdefgh abcdefgh abcdefgh b
01000 1bcdefgh 00000000 00000000 00000000
01001 0lbcdefg h0000000 00000000 00000000 ©
01010 001bcdef gh000000 00000000 00000000
01011 0001bcde fgh00000 00000000 00000000 ©

8-hit values shifted to other positions

11101 00000000 00000000 000001bc defgh@0o ©
11110 00000000 00000000 0000001b cdefgh0o
11111 00000000 00000000 00000001 bcdefghd ©

a. Inthistable, theimmediate constant value is shown in binary form, to relate
abcdefgh to the encoding diagram. In assembly syntax, the immediate value is
specified in the usual way (a decima number by default).

b. Not availablein ARM instructions. UNPREDICTABLE if abcdefgh == 00000000.

c. Not availablein ARM instructionsif h == 1.

Note

The range of values available in Thumb modified immediate constants is dightly different from the range
of values availablein ARM instructions. See Modified immediate constantsin ARM instructions on
page A5-9 for the ARM values.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A6-17

Thumb Instruction Set Encoding

Carry out

A logical instruction with i:imm3:a=="00xxx" does not affect the carry flag. Otherwise, alogical
instruction that sets the flags sets the Carry flag to the value of bit [31] of the modified immediate constant.

Operation

// ThumbExpandImm()
[/ ——

bits(32) ThumbExpandImm(bits(12) imml2)

// APSR.C argument to following function call does not affect the imm32 result.

(imm32, -) = ThumbExpandImm_C(imm12, APSR.C);
return imm32;

// ThumbExpandImm_C()
A

(bits(32), bit) ThumbExpandImm_C(bits(12) imml2, bit carry_in)
if imml2<11:10> == ‘00’ then

case imm12<9:8> of
when ‘00’
imm32 = ZeroExtend(imm12<7:0>, 32);
when ‘01’
if imml2<7:0> == ‘00000000’ then UNPREDICTABLE;
imm32 = ‘00000000’ : imml2<7:0> : ‘00000000’ : imml2<7:0>;
when ‘10’
if imml2<7:0> == ‘00000000’ then UNPREDICTABLE;
imm32 = imm12<7:0> : ‘00000000’ : imml12<7:0> : ‘00000000’ ;
when ‘11’
if imml2<7:0> == ‘00000000’ then UNPREDICTABLE;
imm32 = imml2<7:0> : imm12<7:0> : imm12<7:0> : imm12<7:0>;
carry_out = carry_in;

else

unrotated_value = ZeroExtend(‘1’:imm12<6:0>, 32);
(imm32, carry_out) = ROR_C(unrotated_value, UInt(imml2<11:7>));

return (imm32, carry_out);

A6-18 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

ARM DDI 0406B

A6.3.3 Data-processing (plain binary immediate)
151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0

Thumb Instruction Set Encoding

1 11|10

1

op Rn 0

Table A6-12 shows the allocation of encodingsin this space. Other encodings in this space are UNDEFINED.

These encodings are al availablein ARMV6T2 and above.

Table A6-12 32-bit unmodified immediate data-processing instructions

op Rn Instruction See

00000 not 1111 Add Wide (12-hit) ADD (immediate, Thumb) on page A8-20
1111 Form PC-relative Address ADR on page A8-32

00100 - Move Wide (16-bit) MOV (immediate) on page A8-194

01010 not 1111 Subtract Wide (12-bit) SUB (immediate, Thumb) on page A8-418
1111 Form PC-relative Address ADR on page A8-32

01100 - Move Top (16-bit) MOVT on page A8-200

100x0s - Signed Saturate SSAT on page A8-362

100100 - Signed Saturate (two 16-bit) SSAT16 on page A8-364

10100 - Signed Bit Field Extract SBFX on page A8-308

10110 not 1111 Bit Field Insert BFI on page A8-48
1111 Bit Field Clear BFC on page A8-46

110x0a - Unsigned Saturate USAT on page A8-504

110100 - Unsigned Saturate 16 USAT16 on page A8-506

11100 - Unsigned Bit Field Extract UBFX on page A8-466

a Inthe second halfword of the instruction, bits[14:12.7:6] != 0b00000.
b. Inthe second halfword of the instruction, bits [14:12.7:6] == 0b0O00QO.

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

A6-19

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
10000

10010 a

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
11000

11010 a

Thumb Instruction Set Encoding

A6.3.4 Branches and miscellaneous control
1514131211109 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0O

111

10

op

1| opl op2

Table A6-13 shows the allocation of encodingsin this space. Other encodings in this space are UNDEFINED.

Table A6-13 Branches and miscellaneous control instructions

opl op op2 Instruction See Variant
0x0 not x111xxx - Conditional branch B on page A8-44 v6T2
0111000 xx00 Moveto Specia Register, MSR (register) on page A8-210 All
application level
xx01 Moveto Specia Register, MSR (register) on page B6-14 All
system level
XX1X
0111001 -
0111010 - - Change Processor Sate, and hints -
on page A6-21
0111011 - - Miscellaneous control instructions -
on page A6-21
0111100 - Branch and Exchange Jazelle BXJ on page A8-64 v6T2
0111101 - Exception Return SUBSPC, LR and related Vv6T2
instructions on page B6-25
[SLEo - Mevetrom-SpectalRegister MRSen-page-A8-206 w6
000 1111111 - Secure Monitor Call SMC (previously SMI) on Security
page B6-18 Extensions
010 1111111 - Permanently UNDEFINED. This space will not be allocated in future.
ox1 - - Branch B on page A8-44 v6T2
x0 - - Branch with Link and v5T a
Exchange BL, BLX (immediate) on
page A8-58
Ix1 - - Branch with Link VAT

a UNDEFINED in ARMVAT.

A6-20

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

ARM DDI 0406B

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
Replace this single entry with the following two entries:

 op1 op op2 Instruction See Variant

 0x0 0111110 - Move from Special Register, MRS on page A8-206 v6T2
 application level [PDF page 518]
 --
 0111111 - Move from Special Register, MRS on page B6-10 v6T2
 system level [PDF page 1568]

Thumb Instruction Set Encoding

Change Processor State, and hints
151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0

111100111010

10 0 opl op2

Table A6-14 shows the allocation of encodings in this space. Other encodingsin this space are unallocated
hints that execute as NOPs. These unallocated hint encodings are reserved and software must not use them.

Table A6-14 Change Processor State, and hint instructions

opl op2 Instruction See Variant

not 000 - Change Processor State CPSon page B6-3 Vv6T2

000 00000000 No Operation hint NOP on page A8-222 v6T2
00000001 Yield hint YIELD on page A8-812 v7
00000010 Wait For Event hint WFE on page A8-808 v7
00000011 Wait For Interrupt hint ~ WFI on page A8-810 v7
00000100 Send Event hint SEV on page A8-316 v7
1112xxxx Debug hint DBG on page A8-88 v7

Miscellaneous control instructions
151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0

1{1(1|1j0|0|1|1|1j{0|1|1

1|10 0 op

Table A6-15 shows the allocation of encodingsin this space. Other encodings in this space are UNDEFINED
in ARMv7. They are UNPREDICTABLE in ARMV§.

Table A6-15 Miscellaneous control instructions

op Instruction

See Variant

0000 Leave ThumbEE state @ ENTERX, LEAVEX on page A9-7 ThumbEE

0001 Enter ThumbEE state

0010 Clear-Exclusive

ENTERX, LEAVEX on page A9-7 ThumbEE
CLREX on page A8-70 v7

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A6-21

ARM_2009_Q3
Cross-Out

ARM_2009_Q3
Inserted Text
6T2

Thumb Instruction Set Encoding

Table A6-15 Miscellaneous control instructions (continued)

op Instruction See Variant
0100 Data Synchronization Barrier DSB on page A8-92 v7
0101 DataMemory Barrier DMB on page A8-90 v7
0110 Instruction Synchronization Barrier 1SB on page A8-102 v7

a. Thisinstruction isaNOP in Thumb state.

A6-22

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

ARM DDI 0406B

Thumb Instruction Set Encoding

A6.3.5 Load/store multiple
151413121110 9 8 7 6 53 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0
11101000p0\VL Rn
Table A6-16 shows the allocation of encodingsin this space.
These encodings are al availablein ARMv6T2 and above.
Table A6-16 Load/store multiple instructions
op JRn Instruction See
00 - Store Return State SRSon page B6-20
- Return From Exception RFE on page B6-16
01 - Store Multiple (Increment After, Empty Ascending) STM / STMIA/ STMEA on
page A8-374
not 303 Load Multiple (Increment After, Full Descending) LDM /LDMIA/LDMFD on
page A8-110
10y Pop Multiple Registers from the stack POP on page A8-246
10 not 3303 Store Multiple (Decrement Before, Full Descending) STMDB / STMFD on
page A8-378
103 Push Multiple Registers to the stack. PUSH on page A8-248
- Load Multiple (Decrement Before, Empty Ascending) LDMDB/LDMEA on
page A8-114
11 - Store Return State SRSon page B6-20

Return From Exception

RFE on page B6-16

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

A6-23

ARM_2008_Q4
Callout
W

ARM_2008_Q4
Inserted Text
W:

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
11101

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
11101

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
11101

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
11101

Thumb Instruction Set Encoding

A6.3.6 Load/store dual, load/store exclusive, table branch
151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0
111010 0|opl|1l|op2 Rn op3
Table A6-17 shows the allocation of encodingsin this space. Other encodings in this space are UNDEFINED.
Table A6-17 Load/store double or exclusive, table branch
opl op2 op3 Rn Instruction See Variant
00 00 - - Store Register Exclusive STREX on page A8-400 v6T2
01 - - Load Register Exclusive LDREX on page A8-142 v6T2
(0 10 - - Store Register Dual STRD (immediate) on v6T2
Ix x0 page A8-396
0x 11 - not 1111 Load Register Dual (immediate) LDRD (immediate) on v6T2
page A8-136
1x x1 - not 1111
(0% 11 - 1111 Load Register Dual (literal) LDRD (literal) on v6T2
page A8-138
Ix x1 - 1111
01 00 0100 - Store Register Exclusive Byte STREXB on page A8-402 v7
0101 - Store Register Exclusive Halfword ~ STREXH on page A8-406 v7
0111 - Store Register Exclusive STREXD on page A8-404 v7
Doubleword
01 0000 - Table Branch Byte TBB, TBH on page A8-446 v6T2
0001 - Table Branch Halfword TBB, TBH on page A8-446 v6T2
0100 - Load Register Exclusive Byte LDREXB on page A8-144 v7
0101 - Load Register Exclusive Halfword ~ LDREXH on page A8-148 v7
0111 - Load Register Exclusive LDREXD on page A8-146 v7
Doubleword
A6-24 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

A6.3.7 Load word

Thumb Instruction Set Encoding

151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 O

111{1100fop1

10|1 Rn

op2

Table A6-18 shows the allocation of encodingsin this space. Other encodingsin this space are UNDEFINED.

These encodings are al availablein ARMV6T2 and above.

Table A6-18 Load word

opl op2 Rn Instruction See
01 - not 1111 Load Register LDR (immediate, Thumb) on page A8-118
00 IxxIxx not 1111
1100xx not 1111
1110xx not 1111 Load Register Unprivileged LDRT on page A8-176
000000 not1111 Load Register LDR (register) on page A8-124
0x - 1111 Load Register LDR (literal) on page A8-122

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

A6-25

Thumb Instruction Set Encoding

A6.3.8 Load halfword, memory hints
151413121110 9 8 7 6 5 4 3 2 1 0 1514131211109 8 7 6 5 4 3 2 1 0
111|121 100|o0p1|0 112 Rn Rt op2

Table A6-19 shows the allocation of encodingsin this space. Other encodings in this space are UNDEFINED.

Except where otherwise noted, these encodings are available in ARMvV6T2 and above.

Table A6-19 Load halfword, preload

opl op2 Rn Rt Instruction See

(04 - 1111 not 1111 Load Register Halfword LDRH (literal) on page A8-154

01 - not 1111 not1111 Load Register Halfword LDRH (immediate, Thumb) on
page A8-150

00 IxxIxx not1111 not 1111

1100xx not 1111 not 1111

1110xx not1111 not1111 Load Register Halfword LDRHT on page A8-158
Unprivileged
000000 not1111 not1111 Load Register Halfword LDRH (register) on page A8-156
1x - 1111 not 1111 Load Register Signed LDRSH (literal) on page A8-170
Halfword
11 - not 1111 not 1111 Load Register Signed LDRSH (immediate) on page A8-168
Halfword

10 Ixx1xx not1111 not1111

1100xx not1111 not1111

1110xx not1111 not1111 Load Register Signed LDRSHT on page A8-174
Halfword Unprivileged
000000 not1111 notl111l Load Register Signed LDRSH (register) on page A8-172
Halfword
Ox - 1111 1111 UNPREDICTABLE -
01 - not 1111 1111 Preload Data with intent to PLD, PLDW (immediate) on
Write2 page A8-236
00 1100xx not1111 1111 Preload Data with intent to PLD, PLDW (immediate) on
Write2 page A8-236
000000 not1111 1111 Preload Data with intent to PLD, PLDW (register) on
Writea page A8-240

A6-26 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Thumb Instruction Set Encoding

Table A6-19 Load halfword, preload (continued)

opl op2 Rn Rt Instruction See

00 Ixx1xx not1111 1111 UNPREDICTABLE -
1110xx not1111 1111

1x - 1111 1111 Unallocated memory hint (treat as NOP)

10 1100xx not 1111 1111
000000 not1111 1111

10 IxxIxx not1111 1111 UNPREDICTABLE -
1110xx not1111 1111

11 - not 1111 1111 Unallocated memory hint (treat as NOP)

a Availablein ARMV7 with the Multiprocessing Extensions. Inthe ARMV7 base architectureand in ARMV6T2 these are
unallocated memory hints (treat as NOP).

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A6-27

Thumb Instruction Set Encoding

A6.3.9 Load byte, memory hints
151413121110 9 8 7 6 5 4 3 2 1 0 1514131211109 8 7 6 5 4 3 2 1 0
111|121 100|o0p1|0 0f12 Rn Rt op2

Table A6-20 shows the allocation of encodingsin this space. Other encodings in this space are UNDEFINED.

These encodings are all availablein ARMv6T2 and above.

Table A6-20 Load byte, preload

opl op2 Rn Rt Instruction See

(0)'¢ - 1111 not 1111 Load Register Byte LDRB (literal) on page A8-130

01 - not 1111 not 1111 Load Register Byte LDRB (immediate, Thumb) on
page A8-126

00 IxxIxx not1111 not 1111

1100xx not 1111 not 1111

1110xx not1111 not1111 Load Register Byte LDRBT on page A8-134
Unprivileged
000000 not1111 not1111 Load Register Byte LDRB (register) on page A8-132
1x - 1111 not 1111 Load Register Signed Byte LDRSB (literal) on page A8-162
11 - not 1111 not 1111 Load Register Signed Byte LDRSB (immediate) on page A8-160

10 IxxIxx not1111 not 1111

1100xx not 1111 not 1111

1110xx not 1111 not 1111 Load Register Signed Byte ~ LDRSBT on page A8-166
Unprivileged

000000 not1111 not1111 Load Register Signed Byte LDRSB (register) on page A8-164

(0)'¢ - 1111 1111 Preload Data PLD (literal) on page A8-238
01 - not 1111 1111 Preload Data PLD, PLDW (immediate) on
page A8-236
00 1100xx not1111 1111 Preload Data PLD, PLDW (immediate) on
page A8-236
000000 not1111 1111 Preload Data PLD, PLDW (register) on page A8-240
IxxIxx not1111 1111 UNPREDICTABLE -

1110xx not 1111 1111

A6-28 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Thumb Instruction Set Encoding

Table A6-20 Load byte, preload (continued)

opl op2 Rn Rt Instruction See
1x - 1111 1111 Preload Instruction PLI (immediate, literal) on page A8-242
11 - not 1111 1111
10 1100xx not 1111 1111
000000 not1111 1111 Preload Instruction PLI (register) on page A8-244
IxxIxx not1111 1111 UNPREDICTABLE -
1110xx not 1111 1111

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A6-29

Thumb Instruction Set Encoding

A6.3.10 Store single data item
151413121110 9 8 7 6 5 4 3 2 1 0 1514131211109 8 7 6 5 4 3 2 1 0

111

1100|0| op1 |O

op2

Table A6-21 show the allocation of encodingsin this space. Other encodings in this space are UNDEFINED.

These encodings are all available in ARMv6T2 and above.

Table A6-21 Store single data item

opl op2 Instruction See
100 - Store Register Byte STRB (immediate, Thumb) on page A8-388
000 Ixx1xx

1100xx

1110xx Store Register Byte Unprivileged STRBT on page A8-394

Oxxxxy Store Register Byte STRB (register) on page A8-392 @
101 - Store Register Halfword STRH (immediate, Thumb) on page A8-408
001 IxxIxx

1100xx

1110xx Store Register Halfword Unprivileged STRHT on page A8-414
001 Oweexx Store Register Halfword STRH (register) on page A8-412 E}
110 - Store Register (immediate) STR (immediate, Thumb) on page A8-382
010 IxxIxx

1100xx

1110xx Store Register Unprivileged STRT on page A8-416

Oo000q Store Register (register) STR (register) on page A8-386 @

A6-30

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

ARM DDI 0406B

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
000000

ARM_2009_Q1
Sticky Note
Other encodings with op2==0xxxxx are UNDEFINED.

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
000000

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
000000

ARM_2009_Q1
Sticky Note
Other encodings with op2==0xxxxx are UNDEFINED.

ARM_2009_Q1
Sticky Note
Other encodings with op2==0xxxxx are UNDEFINED.

Thumb Instruction Set Encoding

limm3| limm2 |

A6.3.11 Data-processing (shifted register) |type |
151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8\7 6 5 4/3 2 1 0
1110101 op S Rn Rd ~

Table A6-22 shows the allocation of encodingsin this space.
Other encodingsin this space are UNDEFINED.

These encodings are al availablein ARMv6T2 and above.

Table A6-22 Data-processing (shifted register)

op Rn Rd Instruction See
0000 - not 1111 Bitwise AND AND (register) on page A8-36
1111 UNPREDICTABLE -
Test TST (register) on page A8-456
0001 - - Bitwise Bit Clear BIC (register) on page A8-52
0010 not1111 - Bitwise OR ORR (register) on page A8-230
1111 - Move MOV (register) on page A8-196 @
0011 not1111 - Bitwise OR NOT ORN (register) on page A8-226
1111 - Bitwise NOT MVN (register) on page A8-216
0100 - not 1111 Bitwise Exclusve OR EOR (register) on page A8-96
1111 UNPREDICTABLE -
Test Equivalence TEQ (register) on page A8-450
0110 - - Pack Halfword PKH on page A8-234
1000 - not 1111 Add ADD (register) on page A8-24
1111 UNPREDICTABLE -
Compare Negative CMN (register) on page A8-76
1010 - - Add with Carry ADC (register) on page A8-16
1011 - - Subtract with Carry SBC (register) on page A8-304

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

A6-31

ARM_2008_Q4
Line

ARM_2008_Q4
Line

ARM_2008_Q4
Line

ARM_2008_Q4
Callout
imm3

ARM_2008_Q4
Callout
imm2

ARM_2008_Q4
Callout
type

ARM_2008_Q4
Highlight

ARM_2008_Q4
Sticky Note
This entry needs further decode based on the "type" field and the concatenation of the "imm3" and "imm2" fields marked in the encoding diagram, as follows:

type imm3:imm2 Instruction See

00 00000 Move MOV (register) on page A8-196 [PDF page 508]
 --
 not 00000 Logical Shift Left LSL (immediate) on page A8-178 [PDF page 490]

01 - Logical Shift Right LSR (immediate) on page A8-182 [PDF page 494]

10 - Arithmetic Shift Right ASR (immediate) on page A8-40 [PDF page 352]

11 00000 Rotate Right with Extend RRX on page A8-282 [PDF page 594]
 --
 not 00000 Rotate Right ROR (immediate) on page A8-278 [PDF page 590]

Thumb Instruction Set Encoding

Table A6-22 Data-processing (shifted register) (continued)

op Rn Rd S Instruction See
1101 - not 1111 - Subtract SUB (register) on page A8-422
1111 0 UNPREDICTABLE -
1 Compare CMP (register) on page A8-82
1110 - - - Reverse Subtract RSB (register) on page A8-286

A6-32 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

A6.3.12 Data-processing (register)
151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0

Thumb Instruction Set Encoding

111

1101|0 opl Rn

1111 op2

If, in the second halfword of the instruction, bits[15:12] = 0b1111, the instruction iS UNDEFINED.

Table A6-23 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.

These encodings are al availablein ARMV6T2 and above.

Table A6-23 Data-processing (register)

opl op2 Rn Instruction See
000x 0000 - Logical Shift Left LSL (register) on page A8-180
001x 0000 - Logical Shift Right LSR (register) on page A8-184
010x 0000 - Arithmetic Shift Right ASR (register) on page A8-42
011x 0000 - Rotate Right ROR (register) on page A8-280
0000 1xxx not1111 Signed Extend and Add Halfword SXTAH on page A8-438
1111 Signed Extend Halfword SXTH on page A8-444
0001 1Ixxx not1111 Unsigned Extend and Add Halfword ~ UXTAH on page A8-518
1111 Unsigned Extend Halfword UXTH on page A8-524
0010 1Ixxx not1111 Signed Extend and Add Byte 16 SXTAB16 on page A8-436
1111 Signed Extend Byte 16 SXTB16 on page A8-442
0011 1xxx not1111 Unsigned Extend and Add Byte 16 UXTAB16 on page A8-516
1111 Unsigned Extend Byte 16 UXTB16 on page A8-522
0100 1xxx not1111 Signed Extend and Add Byte SXTAB on page A8-434
1111 Signed Extend Byte SXTB on page A8-440
0101 1xxx not1111 Unsigned Extend and Add Byte UXTAB on page A8-514
1111 Unsigned Extend Byte UXTB on page A8-520

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

A6-33

Thumb Instruction Set Encoding

Table A6-23 Data-processing (register) (continued)

opl op2 Rn Instruction See
Ixxx 00xx - - Parallel addition and subtraction, signed on
page A6-35
0lxx - - Parallel addition and subtraction, unsigned on
page A6-36
10xx 10xx - - Miscellaneous operations on page A6-37

A6-34 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

A6.3.13 Parallel addition and subtraction, signed
151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0

Thumb Instruction Set Encoding

111{1101{0 1| opl

1111

0 O] op2

If, in the second halfword of the instruction, bits[15:12] = 0b1111, the instruction iS UNDEFINED.

Table A6-24 shows the allocation of encodingsin this space. Other encodingsin this space are UNDEFINED.
These encodings are all available in ARMv6T2 and above.

Table A6-24 Signed parallel addition and subtraction instructions

opl op2 Instruction See

001 00 Add 16-bit SADD16 on page A8-296
010 00 Add, Subtract SASX on page A8-300
110 00 Subtract, Add SSAX on page A8-366
101 00 Subtract 16-bit SSUB16 on page A8-368
000 00 Add 8-bit SADDS on page A8-298
100 00 Subtract 8-bit SSUBS8 on page A8-370

Saturating instructions

001 01 Saturating Add 16-bit QADD16 on page A8-252
010 01 Saturating Add, Subtract ~ QASX on page A8-256
110 o1 Saturating Subtract, Add QSAX on page A8-262
101 o1 Saturating Subtract 16-bit QSUB16 on page A8-266
000 01 Saturating Add 8-bit QADDS8 on page A8-254
100 o01 Saturating Subtract 8-bit QSUBS8 on page A8-268

Halving instructions

001 10 Halving Add 16-hit SHADD16 on page A8-318
010 10 Halving Add, Subtract SHASX on page A8-322
110 10 Halving Subtract, Add SHSAX on page A8-324
101 10 Halving Subtract 16-bit SHSUB16 on page A8-326
000 10 Halving Add 8-bit SHADDS on page A8-320
100 10 Halving Subtract 8-hit SHSUB8 on page A8-328

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

A6-35

Thumb Instruction Set Encoding

A6.3.14 Parallel addition and subtraction, unsigned
151413121110 9 8 7 6 5 4 3 2 1 0 1514131211109 8 7 6 5 4 3 2 1 0

111]1101(0 1| op1

1111

0 1| op2

If, in the second halfword of the instruction, bits[15:12] != 0b1111, the instruction iS UNDEFINED.

Table A6-25 shows the allocation of encodingsin this space. Other encodingsin this space are UNDEFINED.
These encodings are all available in ARMv6T2 and above.

Table A6-25 Unsigned parallel addition and subtraction instructions

opl op2 Instruction See

001 00 Add 16-bit UADD16 on page A8-460
010 00 Add, Subtract UASX on page A8-464
110 00 Subtract, Add USAX on page A8-508
101 00 Subtract 16-bit USUB16 on page A8-510
000 00 Add 8-bit UADDS on page A8-462
100 00 Subtract 8-bit USUBS on page A8-512

Saturating instructions

001 01 Saturating Add 16-bit UQADD16 on page A8-488
010 01 Saturating Add, Subtract ~ UQASX on page A8-492
110 01 Saturating Subtract, Add ~ UQSAX on page A8-494
101 01 Saturating Subtract 16-bit UQSUB16 on page A8-496
000 01 Saturating Add 8-bit UQADDS on page A8-490
100 01 Saturating Subtract 8-bit UQSUB8 on page A8-498
Halving instructions

001 10 Halving Add 16-bit UHADD16 on page A8-470
010 10 Halving Add, Subtract UHASX on page A8-474
110 10 Halving Subtract, Add UHSAX on page A8-476
1010 10 Halving Subtract 16-bit UHSUB16 on page A8-478
000 10 Halving Add 8-bit UHADDS on page A8-472
100 10 Halving Subtract 8-bit UHSUB8 on page A8-480

A6-36 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

A6.3.15 Miscellaneous operations

Thumb Instruction Set Encoding

151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 O

1111101010

opl

1111

1 0| op2

If, in the second halfword of the instruction, bits[15:12] = 0b1111, the instruction iS UNDEFINED.

Table A6-26 shows the allocation of encodingsin this space. Other encodingsin this space are UNDEFINED.
These encodings are all available in ARMv6T2 and above.

Table A6-26 Miscellaneous operations

opl op2 Instruction See

00 00 Saturating Add QADD on page A8-250
01 Saturating Double and Add QDADD on page A8-258
10 Saturating Subtract QSUB on page A8-264
11 Saturating Double and Subtract QDSUB on page A8-260

01 00 Byte-Reverse Word REV on page A8-272
01 Byte-Reverse Packed Halfword ~ REV16 on page A8-274
10 Reverse Bits RBIT on page A8-270
11 Byte-Reverse Signed Halfword ~ REVSH on page A8-276

10 00 Select Bytes SEL on page A8-312

11 00 Count Leading Zeros CLZ on page A8-72

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

A6-37

Thumb Instruction Set Encoding

A6.3.16 Multiply, multiply accumulate, and absolute difference
151413121110 9 8 7 6 5 4 3 2 1 0 1514131211109 8 7 6 5 4 3 2 1 0
111{12101]10 00

opl Ra op2

If, in the second halfword of the instruction, bits[7:6] != 0b00, the instruction is UNDEFINED.

Table A6-27 shows the allocation of encodingsin this space. Other encodingsin this space are UNDEFINED.
These encodings are all available in ARMv6T2 and above.

Table A6-27 Multiply, multiply accumulate, and absolute difference operations

opl op2 Ra Instruction See
000 00 not 1111 Multiply Accumulate MLA on page A8-190
1111 Multiply MUL on page A8-212
01 - Multiply and Subtract MLSon page A8-192
001 - not 1111 Signed Multiply Accumulate (Halfwords) SMLABB, SMLABT, SVILATB,
SMILATT on page A8-330
1111 Signed Multiply (Halfwords) SMULBB, SMULBT, SMULTB,
SMULTT on page A8-354
010 Ox not 1111 Signed Multiply Accumulate Dual SMLAD on page A8-332
1111 Signed Dua Multiply Add SMUAD on page A8-352
011 Ox not 1111 Signed Multiply Accumulate (Word by halfword) SMLAWB, SMLAWT on
page A8-340
1111 Signed Multiply (Word by halfword) SMULWB, SMULWT on
page A8-358
100 Ox not 1111 Signed Multiply Subtract Dual SMLSD on page A8-342
1111 Signed Dual Multiply Subtract SMUSD on page A8-360
101 Ox not 1111 Signed Most Significant Word Multiply Accumulate SMMLA on page A8-346
1111 Signed Most Significant Word Multiply SMMUL on page A8-350
110 Ox - Signed Most Significant Word Multiply Subtract SMMLS on page A8-348
1112 00 pet-1111 Unsigned Sum of Absolute Differences USADS on page A8-500
41111 Unsigned Sum of Absolute Differences, Accumulate USADAS8 on page A8-502
A6-38 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2010_Q3
Cross-Out

ARM_2010_Q3
Inserted Text
not

ARM_2010_Q3
Sticky Note
The two Ra field encodings were reversed in the table.

Thumb Instruction Set Encoding

A6.3.17 Long multiply, long multiply accumulate, and divide
151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0

111

1101{1 1| opl

op2

Table A6-28 shows the allocation of encodingsin this space. Other encodingsin this space are UNDEFINED.

Table A6-28 Multiply, multiply accumulate, and absolute difference operations

opl op2 Instruction See Variant
000 0000 Signed Multiply Long SMULL on page A8-356 v6T2
001 1111 Signed Divide DIV on page A8-310 v7-Ra
010 0000 Unsigned Multiply Long UMULL on page A8-486 v6T2
011 1111 Unsigned Divide UDIV on page A8-468 v7-Ra
100 0000 Signed Multiply Accumulate Long SMLAL on page A8-334 v6T2
10xx Signed Multiply Accumulate Long SVILALBB, SVILALBT, SMLALTB, v6T2
(Halfwords) SMLALTT on page A8-336
110x Signed Multiply Accumulate Long Dual SMILALD on page A8-338 v6T2
101 110x Signed Multiply Subtract Long Dual SMILSLD on page A8-344 v6T2
110 0000 Unsigned Multiply Accumulate Long UMLAL on page A8-484 Vv6T2
0110 Unsigned Multiply Accumulate Accumulate UMAAL on page A8-482 v6T2
Long
a UNDEFINED in ARMV7-A.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A6-39

Thumb Instruction Set Encoding

A6.3.18 Coprocessor instructions
151413121110 9 8 7 6 5 4 3 2 1 0 1514131211109 8 7 6 5 4 3 2 1 0

111 11

opl Rn

coproc op

Table A6-29 showstheallocation of encodingsin this space. Theseencodingsareall availablein ARMvV6T2

and above.
Table A6-29 Coprocessor instructions
opl op coproc Rn Instructions See
000x1x - 101x - Advanced SIMD, VFP Extension register load/store
001xXX instructions on page A7-26
O01xxxx
000x10 - not 101x - Store Coprocessor STC, STC2 on page A8-372
001xx0
01xxx0
000x11 - not 101x not1111 Load Coprocessor (immediate) LDC, LDC2 (immediate) on
001xx1 page A8-106
01xxx1
000x11 - not 101x 1111 Load Coprocessor (literal) LDC, LDC2 (literal) on page A8-108
001xx1
01xxx1
00000x - - - UNDEFINED -
00010x - 101x - Advanced SIMD, VFP 64-bit transfers between ARM core
and extension registers on page A7-32
000100 - not 101x - Moveto Coprocessor fromtwo ~ MCRR, MCRR2 on page A8-188
ARM coreregisters
000101 - not 101x - Moveto two ARM core MRRC, MRRC2 on page A8-204
registers from Coprocessor
10xxxx O 101x - VFP VFP data-processing instructions on
page A7-24
not 101x - Coprocessor data operations CDP, CDP2 on page A8-68
A6-40 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Thumb Instruction Set Encoding

Table A6-29 Coprocessor instructions (continued)

opl op coproc Rn Instructions See

10xxxx 1 101x - Advanced SIMD, VFP 8, 16, and 32-bit transfer between
ARM core and extension registers on
page A7-31

10xxx0 1 not 101x - Move to Coprocessor from MCR, MCR2 on page A8-186

ARM core register

10xxx1 1 not 101x - Moveto ARM core register MRC, MRC2 on page A8-202
from Coprocessor

1Ixxxx - - - Advanced SIMD Advanced SSMD data-processing
instructions on page A7-10

For more information about specific coprocessors see Coprocessor support on page A2-68.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A6-41

Thumb Instruction Set Encoding

A6-42 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Chapter A7
Advanced SIMD and VFP
Instruction Encoding

This chapter gives an overview of the Advanced SIMD and VFP instruction sets. It contains the following
sections:

.

.

Overview on page A7-2

Advanced SMD and VFP instruction syntax on page A7-3

Register encoding on page A7-8

Advanced SMD data-processing instructions on page A7-10

VFP data-processing instructions on page A7-24

Extension register load/store instructions on page A7-26

Advanced SMD element or structure load/store instructions on page A7-27

8, 16, and 32-hit transfer between ARM core and extension registers on page A7-31
64-bit transfers between ARM core and extension registers on page A7-32.

Note

The Advanced SIMD architecture extension, its associated implementations, and supporting
software, are commonly referred to as NEON™ technology.

In the decode tablesin this chapter, an entry of - for afield value means the value of the field does
not affect the decoding.

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A7-1

Advanced SIMD and VFP Instruction Encoding

A7.1

A7.1.1

A7.1.2

Overview

All Advanced SIMD and VFP instructions are available in both ARM state and Thumb state.

Advanced SIMD

The following sections describe the classes of instruction in the Advanced SIMD extension:

VFP

Advanced SMD data-processing instructions on page A7-10

Advanced SSMD element or structure load/store instructions on page A7-27
Extension register load/store instructions on page A7-26

8, 16, and 32-hit transfer between ARM core and extension registers on page A7-31
64-bit transfers between ARM core and extension registers on page A7-32.

The following sections describe the classes of instruction in the VFP extension:

Extension register |oad/store instructions on page A7-26

8, 16, and 32-hit transfer between ARM core and extension registers on page A7-31
64-bit transfers between ARM core and extension registers on page A7-32

VFP data-processing instructions on page A7-24.

AT7-2

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

A7.2

A7.2.1

Advanced SIMD and VFP Instruction Encoding

Advanced SIMD and VFP instruction syntax
Advanced SIMD and VFP instructions use the general conventions of the ARM instruction set.
Advanced SIMD and VFP data-processing instructions use the following general format:

V{<modifier>}<operation>{<shape>}<c><g>{.<dt>} {<dest>,} <srcl>, <src2>

All Advanced SIMD and VFP instructions begin with aVv. This distinguishes Advanced SIMD vector and
VFP instructions from ARM scalar instructions.

The main operation is specified in the <operation> field. It is usually athree letter mnemonic the same as or
similar to the corresponding scalar integer instruction.

The <c> and <g> fields are standard assembler syntax fields. For details see Sandard assembler syntax fields
on page A8-7.
Advanced SIMD Instruction modifiers

The <modifier> field provides additional variants of some instructions. Table A7-1 provides definitions of
the modifiers. Modifiers are not available for every instruction.

Table A7-1 Advanced SIMD instruction modifiers

<modifier> Meaning

Q The operation uses saturating arithmetic.

R The operation performs rounding.

D The operation doubles the result (before accumulation, if any).
H The operation halves the result.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A7-3

Advanced SIMD and VFP Instruction Encoding

A7.2.2 Advanced SIMD Operand shapes
The <shape> field provides additional variants of some instructions. Table A7-2 provides definitions of the
shapes. Operand shapes are not available for every instruction.

Table A7-2 Advanced SIMD operand shapes
<shape> Meaning Typical register shape
(none) The operands and result are all the same width. Dd, Dn, Dm Qd, Qn, Qm
L Long operation - result is twice the width of both operands Qd, Dn, Dm
N Narrow operation - result is half the width of both operands Dd, Qn, Qm
W Wide operation - result and first operand are twice the width of the Qd, Qn, Dm

second operand
A7.2.3 Datatype specifiers
The <dt> field normally contains one data type specifier. This indicates the data type contained in
. the second operand, if any
. the operand, if there is no second operand
. the result, if there are no operand registers.
The data types of the other operand and result are implied by the <dt> field combined with the instruction
shape. For information about data type formats see Data types supported by the Advanced SIMD extension
on page A2-25.
In the instruction syntax descriptions in Chapter A8 Instruction Details, the <dt> field is usually specified
asasinglefield. However, wheremore convenient, it is sometimes specified as aconcatenation of two fields,
<type><size>.
A7-4 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Advanced SIMD and VFP Instruction Encoding

Syntax flexibility

Thereis some flexibility in the data type specifier syntax:

You can specify three data types, specifying the result and both operand data types. For example:
VSUBW.I16.116.58 Q3,Q5,D0

instead of:
VSUBW. S8 Q3,Q5,D0

You can specify two data types, specifying the data types of the two operands. The data type of the
result isimplied by the instruction shape.

You can specify two data types, specifying the data types of the single operand and the resuilt.

Where an instruction requires aless specific data type, you can instead specify amore specific type,
asshownin Table A7-3.

Where an instruction does not require a data type, you can provide one.
The F32 data type can be abbreviated to F.

The F64 data type can be abbreviated to D.

In all cases, if you provide additional information, the additional information must match the instruction
shape. Disassembly does not regenerate this additional information.

Table A7-3 Data type specification flexibility

Specified datatype Permitted more specific data types

None Any

I<size> - .S<size> U<size> - -

.8 I8 .S8 .U8 .P8 -

.16 116 .516 .U16 .P16 .F16

.32 I32 .S32 .U32 - .F32 or .F

.64 .I64 .S64 .U64 - .F64 or .D
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A7-5

Advanced SIMD and VFP Instruction Encoding

A7.2.4 Register specifiers

The<dest>, <srcl>, and <src2> fields contain register specifiers, or in some cases scalar specifiersor register
lists. Table A7-4 shows the register and scalar specifier formats that appear in the instruction descriptions.

If <dest> is omitted, it isthe same as <srcl>.

Table A7-4 Advanced SIMD and VFP register specifier formats

<specifier> Usual meaning 2

<Qd> A quadword destination register for the result vector (Advanced SIMD only).

<Qn> A quadword source register for the first operand vector (Advanced SIMD only).

<Qm> A quadword source register for the second operand vector (Advanced SIMD only).
<Dd> A doubleword destination register for the result vector.

<Dn> A doubleword source register for the first operand vector.

<Drm> A doubleword source register for the second operand vector.

<Sd> A singleword destination register for the result vector (VFP only).

<Sn> A singleword source register for the first operand vector (VFP only).

<Sm> A singleword source register for the second operand vector (VFP only).

<Dd[x]> A destination scalar for the result. Element x of vector <Dd>. (Advanced SIMD only).
<Dn[x]> A source scalar for the first operand. Element x of vector <Dn>. (Advanced SIMD only).
<Dm[x]> A source scalar for the second operand. Element x of vector <Dm>. (Advanced SIMD only).
<Rép> An ARM core register. Can be source or destination.

<Rmp> An ARM core register. Can be source or destination,

a Insomeinstructions the roles of registers are different.

A7-6 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
t

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
t2

ARM_2009_Q4
Inserted Text

 <Rn> An ARM core register used as a load or store base address.

 <Rm> An ARM core register used as a post-indexed address source.

Advanced SIMD and VFP Instruction Encoding

A7.2.5 Register lists

A register listisalist of register specifiers separated by commas and enclosed in brackets{ and }. Thereare
restrictions on what registers can appear in aregister list. These restrictions are described in the individual
instruction descriptions. Table A7-5 shows some register list formats, with examples of actual register lists
corresponding to those formats.

Note
Register lists must not wrap around the end of the register bank.

Syntax flexibility
Thereis some flexibility in the register list syntax:

. Where aregister list contains consecutive registers, they can be specified asarange, instead of listing
every register, for example {D0-D3} instead of {D@,D1,D2,D3}.

. Where aregister list contains an even number of consecutive doubleword registers starting with an
even numbered register, it can be written asalist of quadword registersinstead, for example {Q1,Q2}
instead of {D2-D5}.

. Where aregister list contains only one register, the enclosing braces can be omitted, for example
VLD1.8 DO, [R@] instead of VLD1.8 {D@}, [RO].

Table A7-5 Example register lists

Format Example Alternative
{<Dd>} {D3} D3
{<Dd>,<Dd+1>,<Dd+2>} {D3,D4,D5} {D3-D5}

{<Dd[x]>,<Dd+2[x]} {D0[3]1,D2[3]}

{<Dd[1>} {0711} D7[]

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A7-7

Advanced SIMD and VFP Instruction Encoding

A7.3 Register encoding
Advanced SIMD registers are either quadword (128 bits wide) or doubleword (64 bits wide). Some
instructions have options for either doubleword or quadword registers. Thisis normally encoded in Q
(bit [6]) as Q = O for doubleword operations, Q = 1 for quadword operations.
VFP registers are either double-precision (64 bits wide) or single-precision (32 bitswide). Thisis encoded
inthe sz field (bit [8]) as sz = 1 for double-precision operations, or sz = 0 for single-precision operations.
Some instructions use only one or two registers, and use the unused register fields as additional opcode bits.
Table A7-6 shows the encodings for the registers.
Thumb encoding
151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0
D Vn vd sZ(N[Q|M Vm
ARM encoding
31 302928 27 26 2524 232221201918 1716151413121110 9 8 7 6 5 4 3 2 1 O
D Vn vd sZ(N[Q|M Vm
Table A7-6 Encoding of register numbers
Reglster_ Usual usage Register r_1umber Notes 2 Used in
mnemonic encoded in
<Qd> Destination (quadword) D, Vd (bits[22,15:13]) bit[12] == Adv. SIMD
<Qn> First operand (quadword) N, Vn (bits[7,19:17]) bit [16] == Adv. SSIMD
<Qm> Second operand (quadword) M, Vm (bits[5,3:1]) bit [0] == Adv. SIMD
<Dd> Destination (doubleword) D, Vd (bits[22,15:12]) - Both
<Dn> First operand (doubleword) N, Vn (bits[7,19:16]) - Both
<Dm> Second operand (doubleword) M, Vm (bits[5,3:0]) - Both
<Sd> Destination (single-precision) Vd, D (bits[15:12,22]) - VFP
<Sn> First operand (single-precision) Vn, N (bits[19:16,7]) - VFP
<Sm> Second operand (single-precision) Vm, M (bits[3:0,5]) - VFP
a If one of these bitsis 1, the instruction is UNDEFINED.
A7-8 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Advanced SIMD and VFP Instruction Encoding

A7.3.1 Advanced SIMD scalars

Advanced SIMD scalars can be 8-bit, 16-bit, 32-bit, or 64-bit. Instructions other than multiply instructions
can access any element in the register set. The instruction syntax refersto the scalars using an index into a
doubleword vector. The descriptions of the individual instructions contain details of the encodings.

Table A7-7 shows the form of encoding for scalars used in multiply instructions. These instructions cannot
access scalars in some registers. The descriptions of the individual instructions contain cross references to
this section where appropriate.

32-bit Advanced SIMD scalars, when used as single-precision floating-point numbers, are equivalent to
VFP single-precision registers. That is, Dm[x] in a32-bit context (0 <=m <= 15, 0 <= x <=1) isequivalent to
S[2m + x].

Table A7-7 Encoding of scalars in multiply instructions

Scalar Scalar Register Index Accessible
. Usual usage . o S ;
mnemonic size specifier specifier registers
<Dm[x]> Second operand 16-bit vm[2:0] M,Vm[3] DO0-D7
32-bit Vm[3:.0] M DO-D15

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A7-9

Advanced SIMD and VFP Instruction Encoding

A7.4 Advanced SIMD data-processing instructions

Thumb encoding
151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0
111|Uj1111 A B C

ARM encoding
31 3029 28 27 26 2524 232221 20191817 161514131211 10 9 8 7 6 5 4 3 2 1 0
111100 11U A B C

Table A7-8 shows the encoding for Advanced SIMD data-processing instructions. Other encodingsin this
space are UNDEFINED.

In theseinstructions, the U bit isin adifferent location in ARM and Thumb instructions. Thisis bit [12] of
the first halfword in the Thumb encoding, and bit [24] in the ARM encoding. Other variable bits are in
identical locations in the two encodings, after adjusting for the fact that the ARM encoding isheld in
memory as asingle word and the Thumb encoding is held as two consecutive halfwords.

The ARM instructions can only be executed unconditionally. The Thumb instructions can be executed
conditionally by using the IT instruction. For details see I T on page A8-104.

Table A7-8 Data-processing instructions

u A B C See

- Oxxxx - - Three registers of the same length on page A7-12
1x000 - Oxx1 Oneregister and a modified immediate value on page A7-21
1x001 - Oxx1 Two registers and a shift amount on page A7-17
Ix01x - Oxx1
IxIxx - Oxx1
IXxxx - Ixx1
IxOxx - X0x0 Threeregisters of different lengths on page A7-15
Ix10x - x0x0
IxOxx - x1x0 Two registers and a scalar on page A7-16
Ix10x - x1x0

A7-10 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Advanced SIMD and VFP Instruction Encoding

Table A7-8 Data-processing instructions (continued)

u A B C See

0 Ix1lx - xxx0 Vector Extract, VEXT on page A8-598

1 Ix1lx Oxxx xxx0 Two registers, miscellaneous on page A7-19

10xx xxx0 Vector Table Lookup, VTBL, VTBX on page A8-798

1100 Oxx0 Vector Duplicate, VDUP (scalar) on page A8-592

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A7-11

Advanced SIMD and VFP Instruction Encoding

A7.4.1 Three registers of the same length
Thumb encoding
1514131211109 8 7 6 5 4 3 2 1 01514131211109 8 7 6 5 4 3 2 1 0
111|Uj1111|0 C A B
ARM encoding
313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
1111|00 1|U|0 C A B
Table A7-9 shows the allocation of encodingsin this space. Other encodings in this space are UNDEFINED.
Table A7-9 Three registers of the same length
A U C Instruction See
0000 - - Vector Halving Add VHADD, VHSUB on page A8-600
- - Vector Saturating Add VQADD on page A8-700
0001 - - Vector Rounding Halving Add VRHADD on page A8-734
0 00 Vector Bitwise AND VAND (register) on page A8-544
01 Vector Bitwise Bit Clear (AND complement) VBIC (register) on page A8-548
10 Vector Bitwise OR (if sourceregistersdiffer) VORR (register) on page A8-680
Vector Move (if source registers identical) VMOV (register) on page A8-642
11 Vector Bitwise OR NOT VORN (register) on page A8-676
1 00 Vector Bitwise Exclusive OR VEOR on page A8-596
01 Vector Bitwise Select VBIF, VBIT, VB on page A8-550
10 Vector Bitwise Insert if True VBIF, VBIT, VB on page A8-550
11 Vector Bitwise Insert if False VBIF, VBIT, VBSL on page A8-550
0010 - - Vector Halving Subtract VHADD, VHSUB on page A8-600
- - Vector Saturating Subtract VQSUB on page A8-724
0011 - - Vector Compare Greater Than VCGT (register) on page A8-560
- - Vector Compare Greater Than or Equal VCGE (register) on page A8-556
A7-12 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Advanced SIMD and VFP Instruction Encoding

Table A7-9 Three registers of the same length (continued)

Instruction

See

0100

Vector Shift Left

VSHL (register) on page A8-752

Vector Saturating Shift Left

VQSHL (register) on page A8-718

0101

Vector Rounding Shift Left

VRSHL on page A8-736

Vector Saturating Rounding Shift Left

VQRSHL on page A8-714

0110

0111

Vector Maximum or Minimum

Vector Absolute Difference

VMAX, VMIN (integer) on page A8-630
VABD, VABDL (integer) on page A8-528

Vector Absolute Difference and Accumulate

VABA, VABAL on page A8-526

1000

1001

1010

1011

Vector Add

VADD (integer) on page A8-536

Vector Subtract

VSUB (integer) on page A8-788

Vector Test Bits

VTST on page A8-802

Vector Compare Equal

Vector Multiply Accumulate or Subtract

Vector Multiply

Vector Pairwise Maximum or Minimum

Vector Saturating Doubling Multiply
Returning High Half

Vector Saturating Rounding Doubling
Multiply Returning High Half

Vector Pairwise Add

VCEQ (register) on page A8-552

VMLA, VMLAL, VMLS, VMLSL (integer)
on page A8-634

VMUL, VMULL (integer and polynomial)
on page A8-662

VPMAX, VPMIN (integer) on
page A8-690
VQDMULH on page A8-704

VQRDMULH on page A8-712

VPADD (integer) on page A8-684

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A7-13

Advanced SIMD and VFP Instruction Encoding

Table A7-9 Three registers of the same length (continued)

A B U C Instruction See
1101 0 O Ox Vector Add VADD (floating-point) on page A8-538
1x Vector Subtract VSUB (floating-point) on page A8-790
1 Ox Vector Pairwise Add VPADD (floating-point) on page A8-686
Ix Vector Absolute Difference VABD (floating-point) on page A8-530
1 0 - Vector Multiply Accumulate or Subtract VMLA, VMLS (floating-point) on
page A8-636
1 Ox Vector Multiply VMUL (floating-point) on page A8-664

1170 0 O Ox

Vector Compare Equal

VCEQ (register) on page A8-552

1 Ox Vector Compare Greater Than or Equal VCGE (register) on page A8-556
1x Vector Compare Greater Than VCGT (register) on page A8-560
1 1 - Vector Absolute Compare Greater or Less VACGE, VACGT, VACLE,VACLT on
Than (or Equal) page A8-534
11127 0 O - Vector Maximum or Minimum VMAX, VMIN (floating-point) on
page A8-632
1 - Vector Pairwise Maximum or Minimum VPMAX, VPMIN (floating-point) on
page A8-692
1 0 Ox Vector Reciproca Step VRECPS on page A8-730
0 1x Vector Reciprocal Square Root Step VRSQRTS on page A8-744
A7-14 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Advanced SIMD and VFP Instruction Encoding

A7.4.2 Three registers of different lengths

Thumb encoding

151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 O

11111111 B

A 0 0

ARM encoding

313029 28 27 26 2524232221 2019181716151413 121110 9 8 7 6 5 4 3 2 1 O

111100 1|U|1 B

A 0 0

If B == 0b11, see Advanced SSMD data-processing instructions on page A7-10.

Table A7-10 shows the allocation of encodingsin this space. Other encodings in this space are UNDEFINED.

Table A7-10 Data-processing instructions with three registers of different lengths

A Instruction See
000x Vector Add Long or Wide VADDL, VADDW on page A8-542
001x Vector Subtract Long or Wide VSUBL, VSUBW on page A8-794
0100 Vector Add and Narrow, returning High Half VADDHN on page A8-540
Vector Rounding Add and Narrow, returning High Half VRADDHN on page A8-726
0101 Vector Absolute Difference and Accumulate VABA, VABAL on page A8-526
0110 Vector Subtract and Narrow, returning High Half VSUBHN on page A8-792
Vector Rounding Subtract and Narrow, returning High Half ~ VRSUBHN on page A8-748
0111 Vector Absolute Difference VABD, VABDL (integer) on
page A8-528
10x0 Vector Multiply Accumulate or Subtract VMLA, VMLAL, VMLS, VMLSL
(integer) on page A8-634
10x1 Vector Saturating Doubling Multiply Accumulate or VQDMLAL, VQDMLS. on
Subtract Long page A8-702
1100 Vector Multiply (integer) VMUL, VMULL (integer and
polynomial) on page A8-662
1101 Vector Saturating Doubling Multiply Long VQDMULL on page A8-706
1110 Vector Multiply (polynomial) VMUL, VMULL (integer and

polynomial) on page A8-662

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A7-15

Advanced SIMD and VFP Instruction Encoding

A7.4.3 Two registers and a scalar

Thumb encoding

151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0

11111111 B

A 1 0

ARM encoding

31 3029 28 27 26 2524232221 2019181716151413121110 9 8 7 6 5 4 3 2 1 O

111100 1|Uj1 B

A 1 0

If B == 0b11, see Advanced SMD data-processing instructions on page A7-10.

Table A7-11 shows the allocation of encodingsin this space. Other encodings in this space are UNDEFINED.

Table A7-11 Data-processing instructions with two registers and a scalar

A U Instruction See

OxOx - Vector Multiply Accumulate or Subtract VMLA, VMLAL, VMLS, VMLSL (by scalar) on
page A8-638

0x10 - Vector Multiply Accumulate or Subtract Long VMLA, VMLAL, VMLS VMLSL (by scalar) on

page A8-638

0x11 O Vector Saturating Doubling Multiply
Accumulate or Subtract Long

VQDMLAL, VODMLSL on page A8-702

100x - Vector Multiply

1010 - Vector Multiply Long

VMUL, VMULL (by scalar) on page A8-666
VMUL, VMULL (by scalar) on page A8-666

1011 0 Vector Saturating Doubling Multiply Long

VQDMULL on page A8-706

1100 - Vector Saturating Doubling Multiply returning VQDMULH on page A8-704
High Half
1101 - Vector Saturating Rounding Doubling VQRDMULH on page A8-712

Multiply returning High Half

A7-16 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

ARM DDI 0406B

A7.4.4 Two registers and a shift amount

151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8

Advanced SIMD and VFP Instruction Encoding

Thumb encoding
76 543210

111

u

11111 imm3

A LB 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8

ARM encoding
76 543210

1111

00 1|U|1 imm3

A LB 1

If [L, imm3] == 0b0000, see One register and a modified immediate value on page A7-21.

Table A7-12 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.

Table A7-12 Data-processing instructions with two registers and a shift amount

A U B L Instruction See
0000 - - - Vector Shift Right VSHR on page A8-756
0001 - - - Vector Shift Right and Accumulate VSRA on page A8-764
0010 - - - Vector Rounding Shift Right VRSHR on page A8-738
0011 - - - Vector Rounding Shift Right and Accumulate VRSRA on page A8-746
0100 1 - - Vector Shift Right and Insert VSRI on page A8-766
0101 0 - - Vector Shift Left VSHL (immediate) on page A8-750
0101 1 - - Vector Shift Left and Insert VLI on page A8-760
011x - - - Vector Saturating Shift Left VQSHL, VQSHLU (immediate) on
page A8-720
1000 0 O O Vector Shift Right Narrow VSHRN on page A8-758
1 4 Vector Rounding Shift Right Narrow VRSHRN on page A8-740
1 0 4 Vector Saturating Shift Right, Unsigned Narrow VQSHRN, VQSHRUN on page A8-722
1 4 Vector Saturating Shift Right, Rounded VQRSHRN, VQRSHRUN on
Unsigned Narrow page A8-716
1001 - 0 4 Vector Saturating Shift Right, Narrow VQSHRN, VQSHRUN on page A8-722
1 4 Vector Saturating Shift Right, Rounded Narrow VQRSHRN, VQRSHRUN on

page A8-716

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

A7-17

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
0

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
0

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
0

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
0

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
0

Advanced SIMD and VFP Instruction Encoding

Table A7-12 Data-processing instructions with two registers and a shift amount (continued)

A U B L Instruction See
1010 - 0 4 Vector Shift Left Long VSHLL on page A8-754
Vector Move Long VMOVL on page A8-654
111x - - 4 Vector Convert VCVT (between floating-point and
fixed-point, Advanced SSMD) on
page A8-580

A7-18 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
0

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
0

Advanced SIMD and VFP Instruction Encoding

A7.45 Two registers, miscellaneous
Thumb encoding
1514131211109 8 7 6 5 4 3 2 1 01514131211109 8 7 6 5 4 3 2 1 O
1111j1111|1 11 A 0 B 0
ARM encoding
313029 28 27 26 2524 232221 201918 1716 151413121110 9 8 7 6 5 4 3 2 1 O
1111|001 1|1 11 A 0 B 0
The allocation of encodings in this space is shown in Table A7-13. Other encodingsin this space are
UNDEFINED.
Table A7-13 Instructions with two registers, miscellaneous
A B Instruction See
00 0000x Vector Reversein doublewords VREV16, VREV32, VREV64 on page A8-732
0001x Vector Reversein words VREV16, VREV32, VREV64 on page A8-732
0010x Vector Reverse in halfwords VREV16, VREV32, VREV64 on page A8-732
010xx Vector Pairwise Add Long VPADDL on page A8-688
1000x Vector Count Leading Sign Bits VCLSon page A8-566
1001x Vector Count Leading Zeros VCLZ on page A8-570
1010x Vector Count VCNT on page A8-574
1011x Vector Bitwise NOT VMVWN (register) on page A8-670
110xx Vector Pairwise Add and Accumulate Long VPADAL on page A8-682
1110x Vector Saturating Absolute VQABS on page A8-698
1111x Vector Saturating Negate VQNEG on page A8-710

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

A7-19

Advanced SIMD and VFP Instruction Encoding

Table A7-13 Instructions with two registers, miscellaneous (continued)

A B Instruction See
01 x000x Vector Compare Greater Than Zero VCGT (immediate #0) on page A8-562
x001x Vector Compare Greater Than or Equal to Zero VCGE (immediate #0) on page A8-558
x010x Vector Compare Equal to zero VCEQ (immediate #0) on page A8-554
x011x Vector Compare Less Than or Equal to Zero VCLE (immediate #0) on page A8-564
x100x Vector Compare Less Than Zero VCLT (immediate #0) on page A8-568
x110x Vector Absolute VABS on page A8-532
x111x Vector Negate VNEG on page A8-672
10 0000x Vector Swap VSWP on page A8-796
0001x Vector Transpose VTRN on page A8-800
~ 0010x Vector Unzip VUZP on page A8-804
0011x Vector Zip VZIP on page A8-806
10 01000 Vector Move and Narrow VMOVN on page A8-656
01001 Vector Saturating Move and Unsigned Narrow VQMOVN, VQMOVUN on page A8-708
0101x Vector Saturating Move and Narrow VOMOVN, VQMOVUN on page A8-708
01100 Vector Shift Left Long (maximum shift) VSHLL on page A8-754
11x00 Vector Convert VCVT (between half-precision and
single-precision, Advanced SMD) on
page A8-586
11 10xOx Vector Reciprocal Estimate VRECPE on page A8-728
10x1x Vector Reciproca Square Root Estimate VRSQRTE on page A8-742
11xxx Vector Convert VCVT (between floating-point and integer,
Advanced SMD) on page A8-576
A7-20 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2008_Q4
Line

ARM_2008_Q4
Callout
10

Advanced SIMD and VFP Instruction Encoding

A7.4.6 Oneregister and a modified immediate value

Thumb encoding
6 543 2 10
cmode [0 |op|l

151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7
111jajl 1111 00Olbcd

e f gh

ARM encoding
6 543210
cmode [0 |op|l

31 30 29 28 27 26 2524 232221 201918 17 16 1514 13121110 9 8 7
111100 1|a|1l 0 0O(bcd

e f gh

Table A7-14 shows the allocation of encodingsin this space.

Table A7-15 on page A7-22 shows the modified immediate constants avail able with these instructions, and
how they are encoded.

Table A7-14 Data-processing instructions with one register and
a modified immediate value

op cmode Instruction See

0 0xx0 Vector Move VMOV (immediate) on page A8-640
Oxx1 Vector Bitwise OR VORR (immediate) on page A8-678
10x0 Vector Move VMOV (immediate) on page A8-640
10x1 Vector Bitwise OR VORR (immediate) on page A8-678
11xx Vector Move VMOV (immediate) on page A8-640

1 0xx0 Vector Bitwise NOT ~ VMVN (immediate) on page A8-668
Oxx1 Vector Bit Clear VBIC (immediate) on page A8-546
10x0 Vector Bitwise NOT ~ VMVN (immediate) on page A8-668
10x1 Vector Bit Clear VBIC (immediate) on page A8-546
110x Vector Bitwise NOT ~ VMVN (immediate) on page A8-668
1110 Vector Move VMOV (immediate) on page A8-640
1111 UNDEFINED -

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

A7-21

Advanced SIMD and VFP Instruction Encoding

Table A7-15 Modified immediate values for Advanced SIMD instructions

op cmode Constanta <dt>b Notes

- 000x 00000000 00000000 00000000 abcdefgh 000 00 abcdefgh 132 c
001x 00000000 00000000 abcdefgh abcdefgh 00000000 132 cd
010x 00000000 abcdefgh 00000000 00000000 00000000 abcdefgh 00000000 00000000 I32 cd
011x abcdefgh 00000000 00000000 00000000 abcdefgh 00 132 cd
100x 00000000 abcdefgh 00000000 abcdefgh 00000000 abcdefgh 00000000 abcdefgh 116 c
101x abcdefgh 00000000 abcdefgh 00000000 abcdefgh 00000000 abcdefgh 00000000 116 cd
1100 00000000 00000000 abcdefgh 11111111 00000000 00000000 abcdefgh 11111111 I32 de
1101 00000000 abcdefgh 11111111 11111111 000 abcdefgh 11111111 11111111 I32 de

0 1110 abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh 18 f

1 1110 aaaaaaaa bbbbbbbb ccccccce dddddddd eeeeeeee fFFfFfff gggggggg hhhhhhhh 164 f

0 1111 aBbbbbbc defgh000 00000000 00000000 aBbbbbbc defgh00o 00000000 00000000 F32 f.g

1 1111 UNDEFINED - -

a. Inthistable, theimmediate valueis shown in binary form, to relate abcdefgh to the encoding diagram. In assembler
syntax, the constant is specified by a data type and a value of that type. That valueis specified in the norma way (a
decimal number by default) and is replicated enough times to fill the 64-bit immediate. For example, adatatype of 132
and avalue of 10 specify the 64-bit constant 0x0000000A0000000A.

b. This specifies the data type used when the instruction is disassembled. On assembly, the data type must be matched in
thetableif possible. Other datatypes are permitted as pseudo-instructions when code is assembled, provided the 64-bit
constant specified by the datatype and valueis available for the instruction (if it is available in more than one way, the
first entry in this table that can produce it is used). For example, VMOV.164 D0,#0x8000000080000000 does not specify a
64-bit constant that is available from the 164 line of the table, but does specify one that is available from the fourth 132
line or the F32 line. It is assembled to the former, and therefore is disassembled as VMOV.132 D@, #0x80000000.

¢. Thisconstant is available for the VBIC, VMOV, VMVN, and VORR instructions.

d. UNPREDICTABLE if abcdefgh == 00000000.

e. Thisconstant is available for the vMOV and VMVN instructions only.

f. Thisconstant is available for the vMoV instruction only.

g. Inthisentry, B=NOT(b). The bit pattern represents the floating-point number (—1)S* 2&P * mantissa, where
S=UInt(a), exp = UInt(NOT(b):c:d)-3 and mantissa= (16+UInt(e:f:g:h))/16.

A7-22 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Advanced SIMD and VFP Instruction Encoding

Operation

// AdvSIMDExpandImm()

bits(64) AdvSIMDExpandImm(bit op, bits(4) cmode, bits(8) imm8)

case cmode<3:1> of

when ‘000’
testimm8 = FALSE; 1imm64 = Replicate(Zeros(24):imm8, 2);
when ‘001’
testimm8 = TRUE; imm64 = Replicate(Zeros(16):imm8:Zeros(8), 2);
when ‘010’
testimm8 = TRUE; imm64 = Replicate(Zeros(8):imm8:Zeros(16), 2);
when ‘011’
testimm8 = TRUE; imm64 = Replicate(imm8:Zeros(24), 2);
when ‘100’
testimm8 = FALSE; imm64 = Replicate(Zeros(8):imm8, 4);
when ‘101’
testimm8 = TRUE; imm64 = Replicate(imm8:Zeros(8), 4);
when ‘110’
testimm8 = TRUE;
if cmode<@> == ‘@’ then
imm64 = Replicate(Zeros(16):imm8:0nes(8), 2);
else
immé4 = Replicate(Zeros(8):imm8:0nes(16), 2);
when ‘111’

testimm8 = FALSE;

if cmode<0@> == ‘@’ & op == ‘@’ then
imm64 = Replicate(imm8, 8);

if cmode<@> == ‘0’ && op == ‘1’ then
imm8a = Replicate(imm8<7>, 8); imm8b = Replicate(imm8<6>, 8);
imm8c = Replicate(imm8<5>, 8); imm8d = Replicate(imm8<4>, 8);
imm8e = Replicate(imm8<3>, 8); imm8f = Replicate(imm8<2>, 8);
imm8g = Replicate(imm8<1>, 8); imm8h = Replicate(imm8<@>, 8);
imm64 = imm8a:imm8b:imm8c:imm8d:imm8e:imm8f:imm8g: imm8h;

if cmode<@> == ‘1’ && op == ‘@’ then
imm32 = imm8<7>:NOT(imm8<6>):Replicate(imm8<6>,5):imm8<5:0>:Zeros(19);
imm64 = Replicate(imm32, 2);

if cmode<@> == ‘1’ && op == ‘1’ then
UNDEFINED;

if testimm8 && imm8 == ‘00000000’ then
UNPREDICTABLE;

return imm64;

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A7-23

Advanced SIMD and VFP Instruction Encoding

A7.5 VFP data-processing instructions
Thumb encoding
151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0
111|T|11 110 opcl opc2 101 opc3 0 opc4
ARM encoding

3130292827 26 2524232221 2019181716151413121110 9 8 7 6 5 4 3 2 1 0

cond 1110 opcl opc2 101 opc3 0 opc4

If T==1inthe Thumb encoding or cond == 0b1111 in the ARM encoding, the instruction iS UNDEFINED.

Otherwise:

. Table A7-16 shows the encodings for three-register VFP data-processing instructions. Other
encodings in this space are UNDEFINED.

. Table A7-17 on page A7-25 appliesonly if Table A7-16 indicatesthat it does. It showsthe encodings
for VFP data-processing instructions with two registers or aregister and an immediate. Other
encodings in this space are UNDEFINED.

. Table A7-18 on page A7-25 shows the immediate constants available in the vMov (immediate)
instruction.

These instructions are CDP instructions for coprocessors 10 and 11.

Table A7-16 Three-register VFP data-processing instructions
opcl opc3 Instruction See
0x00 - Vector Multiply Accumulate or Subtract VMLA, VMLS (floating-point) on
page A8-636
ox01 - Vector Negate Multiply Accumulate or Subtract VNMLA, VNMLS, VNMUL on page A8-674
0x10 x1
x0 Vector Multiply VMUL (floating-point) on page A8-664
0x11 x0 Vector Add MABD-{integer)-onpageA8-536
x1 Vector Subtract _MSJIB-{integer)-on-page-A8-788
1x00 xO0 Vector Divide VDIV on page A8-590
Ix11 - Other VFP data-processing instructions Table A7-17 on page A7-25
A7-24 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
VADD (floating-point) on page A8-538 [PDF page 850]

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
VSUB (floating-point) on page A8-790 [PDF page 1102]

Advanced SIMD and VFP Instruction Encoding

Table A7-17 Other VFP data-processing instructions

opc2 opc3 Instruction See
- x0 Vector Move VMOV (immediate) on page A8-640
0000 01 Vector Move VMOV (register) on page A8-642

11 Vector Absolute VABS on page A8-532

0001 01 Vector Negate VNEG on page A8-672

11 Vector Square Root VSQRT on page A8-762
001x x1 Vector Convert VCVTB, VCVTT (between half-precision and single-precision, VFP) on

page A8-588

010x x1 Vector Compare VCMP, VCMPE on page A8-572
0111 11 Vector Convert VCVT (between double-precision and single-precision) on page A8-584
1000 x1 Vector Convert VCVT, VCVTR (between floating-point and integer, VFP) on page A8-578
101x x1 Vector Convert VCVT (between floating-point and fixed-point, VFP) on page A8-582
110x x1 Vector Convert VCVT, VCVTR (between floating-point and integer, VFP) on page A8-578
111x x1 Vector Convert VCVT (between floating-point and fixed-point, VFP) on page A8-582

Table A7-18 VFP modified immediate constants

Datatype opc2 opc4 Constant?2

F32 abcd efgh aBbbbbbc defgh000 00000000 00000000

Fo4 abcd efgh aBbbbbbb bbcdefgh 00000000 00000000 0 000

a Inthiscolumn, B = NOT(b). The bit pattern represents the floating-point number (—1)S* 2&P * mantissa, where
S=UInt(a), exp = UInt(NOT(b):c:d)-3 and mantissa= (16+UInt(e:f:g:h))/16.

A7.5.1 Operation

// VFPExpandImm()
/] =mm=mmmmmmns

bits(N) VFPExpandImm(bits(8) imm8, integer N)
assert N == 32 || N == 64;
if N == 32 then
return imm8<7>:NOT(imm8<6>) :Replicate(imm8<6>,5):imm8<5:0>:Zeros(19);
else
return imm8<7>:NOT(imm8<6>) :Replicate(imm8<6>,8):imm8<5:0>:Zeros(48);

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A7-25

Advanced SIMD and VFP Instruction Encoding

A7.6 Extension register load/store instructions
Thumb encoding
151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0
111|Tj210 Opcode Rn 101
ARM encoding
3130292827 26 2524232221 20191817161514131211109 8 7 6 5 4 3 2 1 0
cond 110 Opcode Rn 101
If T==1inthe Thumb encoding or cond == 0b1111 in the ARM encoding, the instruction iS UNDEFINED.
Otherwise, the allocation of encodingsin this spaceis shown in Table A7-19. Other encodingsin this space
are UNDEFINED.
These instructions are LDC and STC instructions for coprocessors 10 and 11.
Table A7-19 Extension register load/store instructions
Opcode Rn Instruction See
0010x - - 64-bit transfers between ARM
core and extension registers on
page A7-32
01x00 - Vector Store Multiple (Increment After, no writeback) VSTM on page A8-784
01x10 - Vector Store Multiple (Increment After, writeback) VSTM on page A8-784
1xx00 - Vector Store Register VSTR on page A8-786
10x10 not 1101 Vector Store Multiple (Decrement Before, writeback) ~ VSTM on page A8-784
1101 Vector Push Registers VPUSH on page A8-696
01x01 - Vector Load Multiple (Increment After, no writeback) VLDM on page A8-626
01x11 not 1101 Vector Load Multiple (Increment After, writeback) VLDM on page A8-626
1101 Vector Pop Registers VPOP on page A8-694
Ixx01 - Vector Load Register VLDR on page A8-628
10x11 - Vector Load Multiple (Decrement Before, writeback) VLDM on page A8-626
A7-26 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Advanced SIMD and VFP Instruction Encoding

A7.7 Advanced SIMD element or structure load/store instructions

Thumb encoding

151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 O

1111{1001A L

0

B

ARM encoding

31 30292827 2625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 O

1111010 0|A L

0

B

The alocation of encodingsin this space is shown in:
. Table A7-20if L == 0, store instructions
. Table A7-21 on page A7-28 if L == 1, load instructions.

Other encodings in this space are UNDEFINED.

The variable bits are in identical locations in the two encodings, after adjusting for the fact that the ARM
encoding is held in memory as asingle word and the Thumb encoding is held as two consecutive halfwords.

The ARM instructions can only gexecuted unconditionally. The Thumb instructions can be executed
conditionally by using the IT instruction. For details see I T on page A8-104.

Table A7-20 Element and structure store instructions (L == 0)

A B Instruction See

0 0010 Vector Store VST1 (multiple single elements) on page A8-768
011x
1010
0011 Vector Store VST2 (multiple 2-element structures) on page A8-772
100x
010x Vector Store VST3 (multiple 3-element structures) on page A8-776
000x Vector Store VST4 (multiple 4-element structures) on page A8-780

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A7-27

ARM_2009_Q1
Inserted Text
be

Advanced SIMD and VFP Instruction Encoding

Table A7-20 Element and structure store instructions (L == 0) (continued)

B Instruction See
0x00 Vector Store VST1 (single element from one lane) on page A8-770
1000
0xO1 Vector Store VST2 (single 2-element structure from one lane) on page A8-774
1001
0x10 Vector Store VST3 (single 3-element structure from one lane) on page A8-778
1010
0x11 Vector Store VST4 (single 4-element structure from one lane) on page A8-782
1011
Table A7-21 Element and structure load instructions (L == 1)
A B Instruction See
0 0010 \VectorLoad VLD1 (multiple single elements) on page A8-602
011x
1010
0011 Vector Load VLD2 (multiple 2-element structures) on page A8-608
100x
010x Vector Load VLD3 (multiple 3-element structures) on page A8-614
000x Vector Load VLD4 (multiple 4-element structures) on page A8-620

AT7-28

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Advanced SIMD and VFP Instruction Encoding

Table A7-21 Element and structure load instructions (L == 1) (continued)

A B Instruction See

1 Ox00 VectorLoad VLD (single element to onelane) on page A8-604
1000
1100 Vector Load VLD1 (single element to all lanes) on page A8-606
0x01 Vector Load VLD2 (single 2-element structure to one lane) on page A8-610
1001
1101 Vector Load VLD2 (single 2-element structure to all lanes) on page A8-612
0x10 Vector Load VLD3 (single 3-element structure to one lane) on page A8-616
1010
1110 Vector Load VLD3 (single 3-element structure to all lanes) on page A8-618
0x11 Vector Load VLDA4 (single 4-element structure to one lane) on page A8-622
1011
1111 Vector Load VLDA4 (single 4-element structure to all lanes) on page A8-624

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A7-29

Advanced SIMD and VFP Instruction Encoding

A7.7.1 Advanced SIMD addressing mode

All the element and structure load/store instructions use this addressing mode. Thereis a choice of three

formats:
[<Rn>{@<align>}] The address is contained in ARM core register Rn.

Rn is not updated by thisinstruction.

Encoded as Rm = 0b1111.

If Rnisencoded as 0b1111, the instruction iS UNPREDICTABLE.
[<Rn>{@<align>}]! The address is contained in ARM core register Rn.

Rn isupdated by thisinstruction: Rn = Rn + transfer_size
Encoded as Rm = 0b1101.

transfer_size isthe number of bytestransferred by theinstruction. Thismeansthat,
after the instruction is executed, Rn points to the address in memory immediately
following the last address loaded from or stored to.

If Rnisencoded as 0b1111, the instruction iS UNPREDICTABLE.
This addressing mode can a so be written as:
[<Rn>{@align}], #<transfer_size>

However, disassembly produces the [<Rn>{@align}]! form.

[<Rn>{@<align>}], <Rm>
The address is contained in ARM core register <Rn>.
Rnisupdated by thisinstruction: Rn = Rn + Rm

Encoded as Rm = Rm. Rm must not be encoded as 0b1111 or 0b1101 (the PC or
the SP).

If Rnis encoded as Ob1111, the instruction iS UNPREDICTABLE.

In all cases, <align> specifies an optional alignment. Details are given in the individual instruction
descriptions.

A7-30 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Advanced SIMD and VFP Instruction Encoding

A7.8 8, 16, and 32-bit transfer between ARM core and extension registers

Thumb encoding

151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 O

1117

1110 A L

101|C B |1

ARM encoding

31 30292827 2625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 O

cond

1110 A L

101|C B |1

If T==1inthe Thumb encoding or cond == 0b1111 in the ARM encoding, the instruction iS UNDEFINED.

Otherwise, the allocation of encodingsin this spaceisshown in Table A7-22. Other encodings in this space
are UNDEFINED.

These instructions are MRC and MCR instructions for coprocessors 10 and 11.

Table A7-22 8-bit, 16-bit and 32-bit data transfer instructions

L C A B Instruction See
0O 0 000 - Vector Move VMOV (between ARM core register and
single-precision register) on page A8-648
111 - Moveto VFP Special Register from VMSR on page A8-660
ARM core register VMSR on page B6-29 (System level view)
0 1 Oxx - Vector Move VMOV (ARM core register to scalar) on
page A8-644
Ixx Ox Vector Duplicate VDUP (ARM core register) on page A8-594
1 0 000 - Vector Move VMOV (between ARM core register and
single-precision register) on page A8-648
111 - Moveto ARM coreregister fromVFP VMRS on page A8-658
Special Register VMRS on page B6-27 (System level view)
1 xxx - Vector Move VMOV (scalar to ARM core register) on

page A8-646

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A7-31

Advanced SIMD and VFP Instruction Encoding

A7.9 64-bit transfers between ARM core and extension registers

Thumb encoding
151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0
111|T|1100(010 101C op

ARM encoding

31 3029 28 27 26 25 24 232221 20191817 161514131211 10 9 8 7 6 5 4 3 2 1 0
cond 1100/010 101|C op

If T==1inthe Thumb encoding or cond == 0b1111 in the ARM encoding, the instruction iS UNDEFINED.

Otherwise, the allocation of encodingsin this spaceis shown in Table A7-23. Other encodingsin this space
are UNDEFINED.

These instructions are MRRC and MCRR instructions for coprocessors 10 and 11.

Table A7-23 8-biti-16-bitand-324pit data transfer instructions

C op Instruction

0 00x1 VMOV (between two ARM core registers and two single-precision registers) on page A8-650

1 00x1 VMOV (betweentwo ARM core registers and a doubleword extension register) on page A8-652

AT7-32 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
64-

Chapter A8
Instruction Details

This chapter describes each instruction. It contains the following sections:

.

.

Format of instruction descriptions on page A8-2
Sandard assembler syntax fields on page A8-7
Conditional execution on page A8-8

Shifts applied to a register on page A8-10
Memory accesses on page A8-13

Alphabetical list of instructions on page A8-14.

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

A8-1

Instruction Details

A8.1

A8.1.1

A8.1.2

A8.1.3

Format of instruction descriptions

The instruction descriptions in Alphabetical list of instructions on page A8-14 normally use the following
format:

. instruction section title

. introduction to the instruction

. instruction encoding(s) with architecture information
. assembler syntax

. pseudocode describing how the instruction operates
. exception information

. notes (where applicable).

Each of theseitemsis described in more detail in the following subsections.

A few instruction descriptions describe alternative mnemonics for other instructions and use an abbreviated
and modified version of thisformat.

Instruction section title

Theinstruction section title gives the base mnemonic for theinstructions described in the section. When one
mnemonic has multiple forms described in separate instruction sections, this is followed by a short
description of the form in parentheses. The most common use of thisis to distinguish between forms of an
instruction in which one of the operands is an immediate value and formsin which it is aregister.

Parenthesi zed text isal so used to document the former mnemonic in some caseswhere amnemonic hasbeen
replaced entirely by another mnemonic in the new assembler syntax.

Introduction to the instruction

The instruction section title is followed by text that briefly describes the main features of the instruction.
This description is not necessarily complete and is not definitive. If thereis any conflict between it and the
more detailed information that follows, the latter takes priority.

Instruction encodings
Thisisalist of one or more instruction encodings. Each instruction encoding islabelled as:
. T1, T2, T3... for thefirst, second, third and any additional Thumb encodings

. A1, A2, A3 ... for thefirst, second, third and any additional ARM encodings

. E1, E2, ES3 ... for the first, second, third and any additional ThumbEE encodings that are not also
Thumb encodings.

Where Thumb and ARM encodings are very closely related, the two encodings are described together, for
exampleasencoding T1/ AL

A8-2

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Each instruction encoding description consists of:

Information about which architecture variantsinclude the particular encoding of theinstruction. This
is presented in one of two ways:

— Forinstruction encodings that are in the main instruction set architecture, as alist of the
architecture variants that include the encoding. See Architecture versions, profiles, and
variants on page A1-4 for asummary of these variants.

— For instruction encodings that are in the architecture extensions, as alist of the architecture
extensionsthat include the encoding. See Architecture extensions on page A1-6 for asummary
of the architecture extensions and the architecture variants that they can extend.

In architecture variant lists:

— ARMv7meansARMv7-A and ARMV7-R profiles. Thearchitecturevariant informationin this
manual does not cover the ARMv7-M profile.

— *isused asawildcard. For example, ARMV5T* means ARMV5T, ARMVSTE, and
ARMVS5TEJ.

An assembly syntax that ensures that the assembler selects the encoding in preference to any other
encoding. In some cases, multiple syntaxes are given. The correct one to use is sometimes indicated
by annotationsto the syntax, such asInside I T block and Outside I T block. In other cases, the correct
oneto use can be determined by looking at the assembl er syntax description and using it to determine
which syntax corresponds to the instruction being disassembled.

Thereis usually more than one syntax that ensures re-assembly to any particular encoding, and the
exact set of syntaxes that do so usually depends on the register numbers, immediate constants and
other operands to the instruction. For example, when assembling to the Thumb instruction set, the
Syntax AND R@,R0,R8 ensures selection of a32-bit encoding but AND R@,R0,R1 selectsa 16-bit encoding.

The assembly syntax documented for the encoding is chosen to be the simplest one that ensures
selection of that encoding for all operand combinations supported by that encoding. This often means
that it includes elements that are only necessary for a small subset of operand combinations. For
example, the assembler syntax documented for the 32-bit Thumb AND (register) encoding includes
the .w qualifier to ensure that the 32-bit encoding is selected even for the small proportion of operand
combinations for which the 16-bit encoding is also available.

The assembly syntax given for an encoding is therefore a suitable one for a disassembler to
disassemble that encoding to. However, disassemblers might wish to use simpler syntaxes when they
are suitable for the operand combination, in order to produce more readable disassembled code.

An encoding diagram, or a Thumb encoding diagram followed by an ARM encoding diagram when
they are being described together. Thisis half-width for 16-bit Thumb encodings and full-width for
32-hit Thumb and ARM encodings. The 32-bit Thumb encodings use a double vertical line between
the two halfwords of the instruction to distinguish them from ARM encodings and to act asa
reminder that 32-bit Thumb instructions consist of two consecutive halfwords rather than a word.

In particular, if instructions are stored using the standard little-endian instruction endianness, the
encoding diagram for an ARM instruction at address A shows the bytes at addressees A+3, A+2,
A+1, A fromleft to right, but the encoding diagram for a 32-bit Thumb instruction showstheminthe
order A+1, A for the first halfword, followed by A+3, A+2 for the second halfword.

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-3

ARM_2008_Q4
Cross-Out

Instruction Details

. Encoding-specific pseudocode. Thisis pseudocode that transl ates the encoding-specific instruction
fieldsinto inputsto the encoding-independent pseudocode in the later Operation subsection, and that
picksout any special casesin the encoding.For a detailed description of the pseudocode used and of
the rel ationship between the encoding diagram, the encoding-specific pseudocode and the
encoding-independent pseudocode, see Appendix | Pseudocode Definition.

A8.1.4 Assembler syntax
The Assembly syntax subsection describes the standard UAL syntax for the instruction.
Each syntax description consists of the following elements:

. One or more syntax prototype lines written in a typewriter font, using the conventions described in
Assembler syntax prototype line conventions on page A8-5. Each prototype line documents the
mnemonic and (where appropriate) operand partsof afull line of assembler code. Whenthereismore
than one such line, each prototype line is annotated to indicate required results of the
encoding-specific pseudocode. For each instruction encoding, this information can be used to
determine whether any instructions matching that encoding are available when assembling that
syntax, and if so, which ones.

. The line where: followed by descriptions of all of the variable or optional fields of the prototype
syntax line.

Some syntax fields are standardized across all or most instructions. Standard assembler syntax fields
on page A8-7 describes these fields.

By default, syntax fields that specify registers, such as <Rd>, <Rn>, or <Rt>, can be any of RO-R12 or
LR in Thumb instructions, and any of R0-R12, SPor LR in ARM instructions. These require that the
encoding-specific pseudocode set the corresponding integer variable (such as d, n, or t) to the
corresponding register number (0-12 for R0-R12, 13 for SP, 14 for LR). This can normally be done
by setting the corresponding bitfield in the instruction (hamed Rd, Rn, Rt...) to the binary encoding
of that number. In the case of 16-bit Thumb encodings, this bitfield isnormally of length 3 and so the
encoding isonly available when one of RO-R7 is specified in the assembler syntax. It isaso common
for such encodings to use a bitfield name such as Rdn. Thisindicates that the encoding is only
availableif <Rd> and <Rn> specify the same register, and that the register number of that register is
encoded in the hitfield if they do.

The description of a syntax field that specifies aregister sometimes extends or restricts the permitted
range of registers or documents other differences from the default rules for such fields. Typical
extensionsareto permit the use of the SPin Thumb instructions and to permit the use of the PC (using
register number 15).

. Where appropriate, text that briefly describes changes from the pre-UAL ARM assembler syntax.
Where present, thisusually consists of an aternative pre-UAL form of the assembler mnemonic. The
pre-UAL ARM assembler syntax does not conflict with UAL, and support for it is a recommended
optional extension to UAL, to enable the assembly of pre-UAL ARM assembler source files.

A8-4 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q4
Inserted Text
You must read this pseudocode sequentially, but in some cases reuse of common pseudocode segments means that the pseudocode re-tests for cases excluded by earlier statements in the pseudocode for the encoding.

A8.1.5

Instruction Details

Note

The pre-UAL Thumb assembler syntax isincompatible with UAL and is hot documented in theinstruction
sections. For details see Appendix C Legacy Instruction Mnemonics.

Assembler syntax prototype line conventions
The following conventions are used in assembler syntax prototype lines and their subfields:

<> Any item bracketed by < and > isashort description of atype of valueto be supplied by the
user in that position. A longer description of the item is normally supplied by subsequent
text. Such items often correspond to asimilarly named field in an encoding diagram for an
instruction. When the correspondence simply requires the binary encoding of an integer
value or register number to be substituted into the instruction encoding, it is not described
explicitly. For example, if the assembler syntax for an ARM instruction contains an item
<Rn> and the instruction encoding diagram contains a 4-bit field named Rn, the number of
the register specified in the assembler syntax is encoded in binary in the instruction field.

If the correspondence between the assembler syntax item and the instruction encoding is
more complex than simple binary encoding of an integer or register number, the item
description indicates how it is encoded. Thisis often done by specifying arequired output
from the encoding-specific pseudocode, such asadd = TRUE. The assembler must only use
encodings that produce that output.

{1 Any item bracketed by { and } isoptional. A description of theitem and of how its presence
or absence is encoded in theinstruction is normally supplied by subsequent text.

Many instructions have an optional destination register. Unless otherwise stated, if such a
destination register isomitted, it isthe same astheimmediately following sourceregister in
the instruction syntaxy

spaces Single spaces are used for clarity, to separate items. When a space is obligatory in the
assembler syntax, two or more consecutive spaces are used.

+/- Thisindicates an optional + or - sign. If neither is coded, + is assumed.

All other characters must be encoded precisely as they appear in the assembler syntax. Apart from { and },
the special characters described above do not appear in the basic forms of assembler instructions
documented in this manual. The { and } characters need to be encoded in afew places as part of avariable
item. When this happens, the long description of the variable item indicates how they must be used.

Pseudocode describing how the instruction operates

The Operation subsection contains encoding-independent pseudocode that describes the main operation of
the instruction. For adetailed description of the pseudocode used and of the relationship between the
encoding diagram, the encoding-specific pseudocode and the encoding-independent pseudocode, see
Appendix | Pseudocode Definition.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-5

ARM_2009_Q3
Inserted Text

In the assembler syntax, numeric constants are normally preceded
 by a #. Some UAL instruction syntax descriptions explicitly show the
 # as optional. Any UAL assembler:
 • must treat the # as optional where an instruction syntax description
 shows it as optional
 • can treat the # either as mandatory or as optional where an instruction
 syntax description does not show it as optional.

----- Note -----
ARM recommends that UAL assemblers treat all uses of # shown in this
manual as optional.

ARM_2009_Q3
Sticky Note
This addition is a correction to the addition made in the ARM_2009_Q1 errata document.

Instruction Details

A8.1.6 Exception information

The Exceptions subsection contains alist of the exceptional conditions that can be caused by execution of

the instruction.

Processor exceptions are listed as follows:

. Resets and interrupts (both IRQs and FIQs) are not listed. They can occur before or after the
execution of any instruction, and in some cases during the execution of an instruction, but they are
not in general caused by the instruction concerned.

. Prefetch Abort exceptions are normally caused by a memory abort when an instruction is fetched,
followed by an attempt to execute that instruction. This can happen for any instruction, but is caused
by the aborted attempt to fetch the instruction rather than by theinstruction itself, and so isnot listed.
A special case isthe BKPT instruction, that is defined as causing a Prefetch Abort exception in some
circumstances.

. Data Abort exceptions are listed for all instructions that perform data memory accesses.

. Undefined Instruction exceptions are listed when they are part of the effects of a defined instruction.
For example, al coprocessor instructions are defined to produce the Undefined Instruction exception
if not accepted by their coprocessor. Undefined Instruction exceptions caused by the execution of an
UNDEFINED instruction are not listed, even when the UNDEFINED instruction is a special case of one
or more of the encodings of the instruction. Such special cases are instead indicated in the
encoding-specific pseudocode for the encoding.

. Supervisor Call and Secure Monitor Call exceptions are listed for the SVC and SMC instructions
respectively. Supervisor Call exceptions and the SVC instruction were previously called Software
Interrupt exceptions and the SWI instruction. Secure Monitor Call exceptions and the SMC instruction
were previously called Secure Monitor interrupts and the SMI instruction.

Floating-point exceptions are listed for instructions that can produce them. Floating-point exceptions on

page A2-42 describes these exceptions. They do not normally result in processor exceptions.

A8.1.7 Notes
Where appropriate, other notes about the instruction appear under additional subheadings.
Note

Information that was documented in notesin previous versions of the ARM Architecture Reference Manual

and its supplements has often been moved elsewhere. For example, operand restrictions on the values of

bitfieldsin an instruction encoding are now normally documented in the encoding-specific pseudocode for
that encoding.
A8-6 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

A8.2 Standard assembler syntax fields

The following assembler syntax fields are standard across al or most instructions:

<c>

<>

Isan optional field. It specifies the condition under which the instruction is executed. See
Conditional execution on page A8-8 for the range of available conditions and their
encoding. If <c> isomitted, it defaults to always (AL).

Specifies optional assembler qualifiers on the instruction. The following qualifiers are
defined:

N Meaning narrow, specifies that the assembler must select a 16-bit encoding for
the instruction. If thisis not possible, an assembler error is produced.

W Meaning wide, specifiesthat the assembler must select a 32-bit encoding for the
instruction. If thisis not possible, an assembler error is produced.

If neither .w nor .N is specified, the assembler can select either 16-bit or 32-bit encodings.

If both areavailable, it must select a16-bit encoding. In afew cases, morethan oneencoding

of the same length can be available for an instruction. The rules for selecting between such

encodings are instruction-specific and are part of the instruction description.

Note

When assembling to the ARM instruction set, the .N qualifier produces an assembler error
and the .w qualifier has no effect.

Although theinstruction descriptions throughout this manual show the <c> and <g> fieldswithout { } around
them, these fields are optional as described in this section.

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-7

Instruction Details

A8.3 Conditional execution
Most ARM instructions, and most Thumb instructions from ARMv6T2 onwards, can be executed
conditionally, based on the values of the APSR condition flags. Before ARMV6T2, the only conditional
Thumb instruction was the 16-bit conditional branch instruction. Table A8-1 lists the available conditions.
In Thumb instructions, the condition (if it is not AL) is normally encoded in a preceding IT instruction. For
details see Conditional instructions on page A4-4 and IT on page A8-104. Some conditional branch
instructions do not require a preceding IT instruction, and include a condition code in their encoding.
In ARM instructions, bits [31:28] of the instruction contain the condition, or contain 1111 for some ARM
instructions that can only be executed unconditionally.
Table A8-1 Condition codes
Mnemonic
- a
cond extension Meaning (integer) Meaning (floating-point) Condition flags
0000 EQ Equal Equal Z==
0001 NE Not equal Not equal, or unordered Z==
0010 csb Carry set Greater than, equal, or unordered C ==
0011 ccec Carry clear Lessthan C==
0100 MI Minus, negative Lessthan N ==
0101 PL Plus, positive or zero Greater than, equal, or unordered N ==
0110 VS Overflow Unordered V==
0111 vC No overflow Not unordered V==
1000 HI Unsigned higher Greater than, or unordered C==1landZ==
1001 LS Unsigned lower or same Less than or equal C==0o0rzZ==
1010 CE Signed greater than or equal ~ Greater than or equal N ==
1011 LT Signed less than Less than, or unordered N!=V
1100 GT Signed greater than Greater than Z==0andN ==
1101 LE Signed less than or equal Less than, equal, or unordered Z==1lorN!=V
1110 None(AL)d Always (unconditional) Always (unconditional) Any
a Unordered means at |east one NaN operand.
b. HS (unsigned higher or same) is a synonym for CS.
C. LO (unsigned lower) isasynonym for CC.
d. AL isan optiona mnemonic extension for always, except in IT instructions. For details see I T on page A8-104.
A8-8 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

A8.3.1 Pseudocode details of conditional execution

The CurrentCond() pseudocode function has prototype:

bits(4) CurrentCond()

and returns a 4-bit condition specifier as follows:

For ARM instructions, it returns bitg31:28] of the instruction.

Instruction Details

For the T1 and T3 encodings of the Branch instruction (see B on page A8-44), it returns the 4-bit
‘cond’ field of the encoding.

For all other Thumb and ThumbEE instructions+
page A2-17.

- ITSTATE on

The ConditionPassed() function uses this condition specifier and the APSR condition flags to determine
whether the instruction must be executed:

// ConditionPassed()

booTlean ConditionPassed()
cond = CurrentCond();

// Evaluate base condition.
case cond<3:1> of

when
when
when
when
when
when
when
when

‘000’
‘001’
‘010’
‘011’
‘100’
‘101’
‘110’
‘111

result
result
result
result
result
result
result
result

(APSR.Z
(APSR.C
(APSR.N
(APSR.V
(APSR.C
(APSR.N
(APSR.N
TRUE;

‘);

‘);

‘U);

‘0);

‘1’) && (APSR.Z == ‘0’)
APSR.V);

APSR.V) & (APSR.Z == ‘0’);

// EQ
// CS
// ML
/1S
// HI
// GE
/] GT
// AL

or

NE
cC
PL
VC
LS
LT
LE

// Condition bits ‘111x’ indicate the instruction is always executed. Otherwise,

// invert condition if necessary.

if cond<0> == ‘1’ && cond != ‘1111’ then
result = !result;

return result;

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

A8-9

S

ARM_2011_Q2
Inserted Text

Section B1.6.11 Undefined Instruction exception on page B1-49 [PDF page 1199] describes the handling of conditional instructions that are UNDEFINED or UNPREDICTABLE. The pseudocode in the manual, as a sequential description of the instructions, has limitations in this respect. For more information, see Appendix I.2 Limitations of pseudocode on page AppxI-4 [PDF page 2080].

ARM_2011_Q2
Sticky Note
The inserted text after the pseudocode indicates limitations on this pseudocode.

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Replacement Text
:
 - if ITSTATE.IT<3:0> != '0000' it returns ITSTATE.IT<7:4>
 - if ITSTATE.IT<7:0> == '0000000' it returns '1110'
 - otherwise, execution of the instruction is UNPREDICTABLE.
For more information, see ITSTATE on page A2-17 [PDF page 49].

The existing link, immediately after the deleted text, is to the description of ITSTATE.

ARM_2011_Q2
Sticky Note
The edit in this line replaces the single return value with a list of three possible behaviors.

The ITSTATE reference is not deleted because it gives more information about two of the three list items.

Instruction Details

A8.4

A8.4.1

Shifts applied to aregister

ARM register offset |oad/store word and unsigned byte instructions can apply awide range of different
constant shiftsto the offset register. Both Thumb and ARM data-processing instructions can apply the same
range of different constant shifts to the second operand register. For details see Constant shifts.

ARM data-processing instructions can apply aregister-controlled shift to the second operand register.

Constant shifts

These are the same in Thumb and ARM instructions, except that the input bits come from different
positions.

<shift> is an optional shift to be applied to <Rm>. It can be any one of:
(omitted) No shift.

LSL #<n> Logical shift left <n> bits. 1 <= <n> <= 31.

LSR #<n> Logical shift right <n> bits. 1 <= <n> <= 32.

ASR #<n> Arithmetic shift right <n> bits. 1 <= <n> <= 32.

ROR #<n> Rotate right <n> bits. 1 <= <n> <= 31.

RRX Rotate right one bit, with extend. Bit [0] is written to shifter_carry_out, bits[31:1] are
shifted right one bit, and the Carry Flag is shifted into bit [31].

Note

Assemblers can permit the use of some or all of ASR #0, LSL #0, LSR #0, and ROR #0 to specify that no shiftis
to be performed. Thisis not standard UAL, and the encoding selected for Thumb instructions might vary
between UAL assemblersif it is used. To ensure disassembled code assembles to the original instructions,
disassemblers must omit the shift specifier when the instruction specifies no shift.

Similarly, assemblers can permit the use of #0 in the immediate forms of ASR, LSL, LSR, and ROR instructions
to specify that no shift isto be performed, that is, that aMov (register) instruction is wanted. Again, thisis
not standard UAL, and the encoding selected for Thumb instructions might vary between UAL assemblers
if itisused. To ensure disassembled code assemblesto the original instructions, disassemblers must use the
MOV (register) syntax when the instruction specifies no shift.

A8-10

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

A8.4.2

A8.4.3

Instruction Details

Encoding

The assembler encodes <shift> into two type bits and five immediate bits, as follows:
(omitted) type = 0b00, immediate = 0.

LSL #<n> type = 0b00, immediate = <n>.

LSR #<n> type = 0b01.
If <n> < 32, immediate = <n>.
If <n> == 32, immediate = 0.

ASR #<n> type = Ob10.
If <n> < 32, immediate = <n>.
If <n> == 32, immediate = 0.

ROR #<n> type = Ob11, immediate = <n>.

RRX type = Ob11, immediate = 0.

Register controlled shifts
These are only availablein ARM instructions.

<type> isthe type of shift to apply to the value read from <Rm>. It must be one of:

ASR Arithmetic shift right, encoded as type = 0b10
LSL Logical shift left, encoded as type = 0b00

LSR Logical shift right, encoded as type = 0b01
ROR Rotate right, encoded as type = Ob11.

The bottom byte of <Rs> contains the shift amount.

Pseudocode details of instruction-specified shifts and rotates
enumeration SRType (SRType_LSL, SRType_LSR, SRType_ASR, SRType_ROR, SRType_RRX);

// DecodeImmShift()
R ——

(SRType, integer) DecodeImmShift(bits(2) type, bits(5) imm5)

case type of
when ‘00’
shift_t = SRType_LSL; shift_n = UInt(imm5);
when ‘01’
shift_t = SRType_LSR; shift_n = if imm5 == ‘00000’ then 32 else UInt(imm5);
when ‘10’
shift_t = SRType_ASR; shift_n = if imm5 == ‘00000’ then 32 else UInt(imm5);
when ‘11’

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

A8-11

Instruction Details

if imm5 == ‘00000’ then

shift_t = SRType_RRX; shift_n
else

shift_t = SRType_ROR; shift_n = UInt(imm5);

1;

return (shift_t, shift_n);

// DecodeRegShift()
/] ====m=m=mm=m====

SRType DecodeRegShift(bits(2) type)
case type of

when ‘00’ shift_t = SRType_LSL;
when ‘01’ shift_t = SRType_LSR;
when ‘10’ shift_t = SRType_ASR;
when ‘11’ shift_t = SRType_ROR;

return shift_t;

// Shift()
/] =======

bits(N) Shift(bits(N) value, SRType type, integer amount, bit carry_in)
(result, -) = Shift_C(value, type, amount, carry_in);
return result;

// Shift_C()
/e

(bits(N), bit) Shift_C(bits(N) value, SRType type, integer amount, bit carry_in)
assert !(type == SRType_RRX && amount != 1);

if amount == @ then
(result, carry_out) = (value, carry_in);
else
case type of
when SRType_LSL
(result, carry_out) = LSL_C(value, amount);
when SRType_LSR
(result, carry_out)
when SRType_ASR
(result, carry_out) = ASR_C(value, amount);
when SRType_ROR
(result, carry_out) = ROR_C(value, amount);
when SRType_RRX
(result, carry_out) = RRX_C(value, carry_in);

LSR_C(value, amount);

return (result, carry_out);

A8-12 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

A8.5 Memory accesses
Commonly, the following addressing modes are permitted for memory access instructions:

Offset addressing

The offset value is applied to an address obtained from the base register. The result is used
as the address for the memory access. The value of the base register is unchanged.

The assembly language syntax for thismode is:
[<Rn>,<offset>]

Pre-indexed addressing

The offset value is applied to an address obtained from the base register. The result is used
as the address for the memory access, and written back into the base register.
The assembly language syntax for thismode is:

[<Rn>,<offset>]!

Post-indexed addressing

The address obtained from the base register is used, unchanged, as the address for the
memory access. The offset value is applied to the address, and written back into the base
register

The assembly language syntax for thismodeis:

[<Rn>],<offset>

In each case, <Rn> isthe base register. <offset> can be:

. an immediate constant, such as <imm8> or <imm12>

. an index register, <Rm>

. ashifted index register, such as <Rm>, LSL #<shift>.

For information about unaligned access, endianness, and exclusive access, see:
. Alignment support on page A3-4

. Endian support on page A3-7

. Synchronization and semaphores on page A3-12.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-13

Instruction Details

A8.6 Alphabetical list of instructions

Every instruction is listed in this section. For details of the format used see Format of instruction
descriptions on page A8-2.

A8.6.1 ADC (immediate)

Add with Carry (immediate) adds an immediate value and the carry flag value to aregister value, and writes
the result to the destination register. It can optionally update the condition flags based on the result.

Encoding T1 ARMvV6ET2, ARMV7

ADC{S}<c> <Rd>,<Rn>,#<const>

151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0
11110|il0l1010]|S Rn 0| imm3 Rd imm8

d = UInt(Rd); n = UInt(Rn); setflags = (S == ‘1’); imm32 = ThumbExpandImm(i:imm3:imm8);
if BadReg(d) || BadReg(n) then UNPREDICTABLE;

Encoding Al ARMv4*, ARMV5T*, ARMV6*, ARMV7
ADC{S}<c> <Rd>,<Rn>,#<const>

31302928 27 26 252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
cond 0 0({1/0 1 0 1S Rn Rd imm12

if Rd == ‘1111’ && S == ‘1’ then SEE SUBS PC, LR and related instructions;
d = UInt(Rd); n = UInt(Rn); setflags = (S == ‘1’); dimm32 = ARMExpandImm(imml12);

A8-14 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

ADC{S}<c><q> {<Rd>,} <Rn>, #<const>

where:

S If Sis present, the instruction updates the flags. Otherwise, the flags are not updated.
<C><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination registery

<Rn> Thefirst operand registery

<const> The immediate value to be added to the val ue obtained from <Rn>. See Modified immediate

constants in Thumb instructions on page A6-17 or Modified immediate constants in ARM
instructions on page A5-9 for the range of values.

The pre-UAL syntax ADC<c>S is equivalent to ADCS<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
(result, carry, overflow) = AddwWithCarry(R[n], imm32, APSR.C);
if d == 15 then // Can only occur for ARM encoding
ALUWritePC(result); // setflags is always FALSE here
else
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
APSR.V = overflow;

Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-15

ARM_2009_Q2
Inserted Text
 PC can be used in ARM instructions.

ARM_2009_Q2
Inserted Text
 If S is specified and <Rd> is the PC, see SUBS PC, LR and related instructions on page B6-25 [PDF page 1583]. In ARM instructions, if S is not specified and <Rd> is the PC, the instruction is a branch to the address calculated by the operation. This is a simple branch before ARMv7, and an interworking branch from ARMv7.

Instruction Details

A8.6.2 ADC (register)
Addwith Carry (register) adds aregister value, the carry flag value, and an optionally-shifted register value,
and writes the result to the destination register. It can optionally update the condition flags based on the
result.
Encoding T1 ARMVAT, ARMV5T*, ARMV6E*, ARMV7
ADCS <Rdn>,<Rm> Qutside I T block.
ADC<c> <Rdn>,<Rm> Inside I'T block.
1514131211109 8 7 6 5 4 3 2 1 0
01000001012 Rm Rdn
d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();
(shift_t, shift_n) = (SRType_LSL, 0);
Encoding T2 ARMvV6ET2, ARMV7
ADC{S}<c>.W <Rd>,<Rn>,<Rm>{,<shift>}
1514131211109 8 7 6 5 4 3 2 1 0 1514131211109 8 7 6 5 4 3 2 1 0
11101011 010|S Rn 0)| imm3 Rd immz2 | type Rm
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == ‘1’);
(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);
if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;
Encoding Al ARMv4* ARMV5T*, ARMvV6*, ARMV7
ADC{S}<c> <Rd>,<Rn>,<Rm>{,<shift>}
3130292827 26 252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

cond 0 0|00 1 0 1|S Rn Rd imm5 type | O Rm

if Rd == ‘1111’ && S == ‘1’ then SEE SUBS PC, LR and related instructions;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == ‘1");
(shift_t, shift_n) = DecodeImmShift(type, imm5);

A8-16 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

ADC{S}<c><q> {<Rd>,} <Rn>, <Rm> {,<shift>}

where:

S If Sis present, the instruction updates the flags. Otherwise, the flags are not updated.
<C><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination registery

<Rn> Thefirst operand registery

<Rm> The optionally shifted second operand registery

<shift> The shift to apply to the value read from <Rm>. If present, encoding T1 is not permitted. If

absent, no shift is applied and any encoding is permitted. Shifts applied to a register on
page A8-10 describes the shifts and how they are encoded.

In Thumb assembly:

. outsidean I T block, if ADCS <Rd>, <Rn>, <Rd> has <Rd> and <Rn> both in therange RO-R7, it isassembled
using encoding T1 as though ADCS <Rd>,<Rn> had been written.

. insidean IT block, if ADC<c> <Rd>, <Rn>,<Rd> has <Rd> and <Rn> both in therange RO-R7, it is
assembled using encoding T1 as though ADC<c> <Rd>, <Rn> had been written.

To prevent either of these happening, use the .W qudlifier.

The pre-UAL syntax ADC<c>S is equivalent to ADCS<c>.

Operation

if ConditionPassed() then

EncodingSpecificOperations();

shifted = Shift(R[m], shift_t, shift_n, APSR.C);

(result, carry, overflow) = AddWithCarry(R[n], shifted, APSR.C);

if d == 15 then // Can only occur for ARM encoding
ALUWritePC(result); // setflags is always FALSE here

else
R[d] = result;
if setflags then

APSR.N = result<31>;

APSR.Z = IsZeroBit(result);

APSR.C = carry;

APSR.V = overflow;
Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-17

ARM_2009_Q2
Inserted Text
 PC can be used in ARM instructions.

ARM_2009_Q2
Inserted Text
 PC can be used in ARM instructions.

ARM_2009_Q2
Inserted Text
 If S is specified and <Rd> is the PC, see SUBS PC, LR and related instructions on page B6-25 [PDF page 1583]. In ARM instructions, if S is not specified and <Rd> is the PC, the instruction is a branch to the address calculated by the operation. This is a simple branch before ARMv7, and an interworking branch from ARMv7.

Instruction Details

A8.6.3 ADC (register-shifted register)

Add with Carry (register-shifted register) adds a register value, the carry flag value, and a register-shifted
register value. It writes the result to the destination register, and can optionally update the condition flags
based on the result.

Encoding Al ARMv4*, ARMV5T*, ARMV6E*, ARMV7
ADC{S}<c> <Rd>,<Rn>,<Rm>,<type> <Rs>

3130292827 2625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 O

cond 0 0/|0|0 1 0 1}S Rn Rd Rs O|type|1 Rm

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); s = UInt(Rs);
setflags = (S == ‘1’); shift_t = DecodeRegShift(type);
if d==15]| n==15 || m==15 || s == 15 then UNPREDICTABLE;

A8-18

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

ADC{S}<c><g> {<Rd>,} <Rn>, <Rm>, <type> <Rs>

where:
S If Sis present, the instruction updates the flags. Otherwise, the flags are not updated.
<C><q> See Standard assembler syntax fields on page A8-7.
<Rd> The destination register.
<Rn> Thefirst operand register.
<Rm> The register that is shifted and used as the second operand.
<type> The type of shift to apply to the value read from <Rm>. It must be one of:
ASR Arithmetic shift right, encoded as type = 0b10
LSL Logical shift left, encoded as type = 0b00
LSR Logical shift right, encoded as type = 0b01
ROR Rotate right, encoded as type = Ob11.
<Rs> The register whose bottom byte contains the amount to shift by.

The pre-UAL syntax ADC<c>S is equivalent to ADCS<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
shift_n = UInt(R[s]<7:0>);
shifted = Shift(R[m], shift_t, shift_n, APSR.C);
(result, carry, overflow) = AddwWithCarry(R[n], shifted, APSR.C);
R[d] = result;
if setflags then
APSR.N = result<31>;

APSR.Z = IsZeroBit(result);

APSR.C = carry;

APSR.V = overflow;
Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-19

Instruction Details

A8.6.4 ADD (immediate, Thumb)
Thisinstruction adds an immediate value to aregister value, and writes the result to the destination register.
It can optionally update the condition flags based on the result.
Encoding T1 ARMVAT, ARMV5T*, ARMvV6*, ARMV7
ADDS <Rd>,<Rn>,#<imm3> Outside I T block.
ADD<c> <Rd>,<Rn>, #<imm3> Inside IT block.
1514131211109 8 7 6 5 4 3 2 1 0
00O0|112(1|0| imm3 Rn Rd
d = UInt(Rd); n = UInt(Rn); setflags = !InITBlock(); imm32 = ZeroExtend(imm3, 32);
Encoding T2 ARMVAT, ARMV5T*, ARMV6E*, ARMV7
ADDS <Rdn>, #<imm8> Outside I T block.
ADD<c> <Rdn>,#<imm8> Inside IT block.
1514131211109 8 7 6 5 4 3 2 1 0
0 0 1|1 0 Rdn imm8
d = UInt(Rdn); n = UInt(Rdn); setflags = !InITBlock(); imm32 = ZeroExtend(imm8, 32);
Encoding T3 ARMvV6ET2, ARMV7
ADD{S}<c>.W <Rd>,<Rn>,#<const>
151413121110 9 8 7 6 5 4 3 2 1 01514131211109 8 7 6 5 4 3 2 1 0
11110(il0[121 0O0O0]S Rn 0| imm3 Rd imm8
if Rd == ‘1111’ && S == ‘1’ then SEE CMN (immediate);
if Rn == ‘1101’ then SEE ADD (SP plus immediate);
d = UInt(Rd); n = UInt(Rn); setflags = (S == ‘1’); imm32 = ThumbExpandImm(i:imm3:imm8);
if BadRegfeh|| n == 15 then UNPREDICTABLE;
Encoding T4 ARMV6T2, ARMV7
ADDW<c> <Rd>,<Rn>,#<imml2>
1514131211109 8 7 6 5 4 3 2 1 01514131211109 8 7 6 5 4 3 2 1 0
11110/|i|2/0 00 0|0 Rn 0| imm3 Rd imm8
if Rn == ‘1111’ then SEE ADR;
if Rn == ‘1101’ then SEE ADD (SP plus immediate);
d = UInt(Rd); n = UInt(Rn); setflags = FALSE; 1imm32 = ZeroExtend(i:imm3:imm8, 32);
if BadReg(d) then UNPREDICTABLE;

A8-20 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
d == 13 || (d == 15 && S == '0')

Instruction Details

Assembler syntax

ADD{S}<c><q> {<Rd>,} <Rn>, #<const> All encodings permitted
ADDW<c><q> {<Rd>,} <Rn>, #<const> Only encoding T4 permitted
where:

S If S ispresent, the instruction updates the flags. Otherwise, the flags are not updated.
<C><q> See Sandard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> Thefirst operand register. If <Rn> is SP, see ADD (SP plusimmediate) on page A8-28. If <Rn>

is PC, see ADR on page A8-32.

<const> Theimmediate value to be added to the value obtained from <Rn>. The range of valuesis0-7
for encoding T1, 0-255 for encoding T2 and 0-4095 for encoding T4. See Modified
immediate constants in Thumb instructions on page A6-17 for the range of values for
encoding T3.

When multiple encodings of the same length are available for an instruction, encoding T3 is preferred to
encoding T4 (if encoding T4 isrequired, use the ADDW syntax). Encoding T1 is preferred to encoding T2 if
<Rd> is specified and encoding T2 is preferred to encoding T1 if <Rd> is omitted.

The pre-UAL syntax ADD<c>S is equivalent to ADDS<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
(result, carry, overflow) = AddwWithCarry(R[n], imm32, ‘0’);
R[d] = result;
if setflags then
APSR.N = result<31>;

APSR.Z = IsZeroBit(result);

APSR.C = carry;

APSR.V = overflow;
Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-21

Instruction Details

A8.6.5

ADD (immediate, ARM)

Thisinstruction adds an immediate value to aregister value, and writes the result to the destination register.
It can optionally update the condition flags based on the result.

Encoding Al ARMv4* ARMV5T*, ARMvV6*, ARMV7
ADD{S}<c> <Rd>,<Rn>,#<const>

31 30 29 28 27 26 2524 232221 2019181716151413121110 9 8 7 6 5 4 3 2 1 O

cond

0 0{1/0 1 0 0fS Rn Rd

imm12

if Rn == ‘1111’ && S == ‘@’ then SEE ADR;

if Rn == ‘1101’ then SEE ADD (SP plus immediate);

if Rd == ‘1111’ && S == ‘1’ then SEE SUBS PC, LR and related instructions;
d = UInt(Rd); n = UInt(Rn); setflags = (S == ‘1’); dimm32 = ARMExpandImm(imml12);

A8-22

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

ARM DDI 0406B

Instruction Details

Assembler syntax

ADD{S}<c><g> {<Rd>,} <Rn>, #<const>

where:

S If S ispresent, the instruction updates the flags. Otherwise, the flags are not updated.

<C><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination registery

<Rn> Thefirst operand register. If the SPis specified for <Rn>, see ADD (SP plusimmediate) on
page A8-28. If the PC is specified for <Rn>, see ADR on page A8-32.

<const> The immediate value to be added to the val ue obtained from <Rn>. See Modified immediate

constants in ARM instructions on page A5-9 for the range of values.

The pre-UAL syntax ADD<c>S is equivalent to ADDS<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
(result, carry, overflow) = AddwWithCarry(R[n], imm32, ‘0’);
if d == 15 then
ALUWritePC(result); // setflags is always FALSE here
else
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
APSR.V = overflow;

Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-23

ARM_2009_Q2
Inserted Text
 If S is specified and <Rd> is the PC, see SUBS PC, LR and related instructions on page B6-25 [PDF page 1583]. If S is not specified and <Rd> is the PC, the instruction is a branch to the address calculated by the operation. This is a simple branch before ARMv7, and an interworking branch from ARMv7.

Instruction Details

A8.6.6

ADD (register)
Thisinstruction adds a register value and an optionally-shifted register value, and writes the result to the
destination register. It can optionally update the condition flags based on the result.

Encoding T1 ARMVAT, ARMV5T*, ARMvV6*, ARMV7
ADDS <Rd>,<Rn>, <Rm> Outside I T block.
ADD<c> <Rd>,<Rn>, <Rm> Inside IT block.

151413121110 9 8 7 6 5 4 3 2 1 O

0 0O0|1 1{0[0| Rm Rn Rd

d = UInt(Rd); n

= UInt(Rn); m = UInt(Rm); setflags = !InITBlock();
(shift_t, shift_n) =

(SRType_LSL, 0);
Encoding T2 ARMV6T2, ARMV7 if <Rdn> and <Rm> are both from RO-R7

ARMVAT, ARMV5T*, ARMv6E*, ARMV7 otherwise
ADD<c> <Rdn>, <Rm> If <Rdn> isthe PC, must be outsideor last in I T block.
151413121110 9 8 7 6 5 4 3 2 1 0
0100010 ODN Rm Rdn

if (DN:Rdn) == ‘1101’ || Rm == ‘1101’ then SEE ADD (SP plus register);

d = UInt(DN:Rdn); n =d; m = UInt(Rm); setflags = FALSE; (shift_t, shift_n) = (SRType_LSL, 0);
if n == 15 & m == 15 then UNPREDICTABLE;

if d == 15 & InITBlock() && !LastInITBlock() then UNPREDICTABLE;

Encoding T3 ARMvV6T2, ARMV7
ADD{S}<c>.W <Rd>,<Rn>,<Rm>{,<shift>}

151413121110 9 8 7 6 5 4 3 2 1 0 1514131211109 8 7 6 54 3 2 10
11101{0 1|12 00 0fS Rn ©)| imm3 Rd imm2 | type Rm

if Rd == ‘1111’ && S == ‘1’ then SEE CMN (register);

if Rn == ‘1101’ then SEE ADD (SP plus register);

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == ‘1");
(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);

if BadRegte) || n == 15 || BadReg(m) then UNPREDICTABLE;

Encoding Al ARMv4* , ARMV5T*, ARMvV6*, ARMV7
ADD{S}<c> <Rd>,<Rn>,<Rm>{,<shift>}

31 30292827 26 2524 2322212019 181716151413121110 9 8 7 6 5 4 3 2 1 O
cond 0 0|00 1 0 0]|S Rn Rd imm5 type | O Rm

if Rd == ‘1111’ && S == ‘1’ then SEE SUBS PC, LR and related instructions;
if Rn == ‘1101’ then SEE ADD (SP plus register);

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == ‘1’);
(shift_t, shift_n) = DecodeImmShift(type, imm5);

A8-24

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
d == 13 || (d == 15 && S == '0')

Instruction Details

Assembler syntax

ADD{S}<c><q> {<Rd>,} <Rn>, <Rm> {,<shift>}

where:

S If S ispresent, the instruction updates the flags. Otherwise, the flags are not updated.

<C><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register. | f omitted, <Rd> isthe same as <Rn> and encoding T2 is preferred to
encoding T1insidean IT block. If <Rd> is present, encoding T1 is preferred to encoding T2.

<Rn> The first operand register. If <Rn> is SP, see ADD (SP plus register) on page A8-304

<Rm> Theregister that is optionally shifted and used as the second operandy

<shift> The shift to apply to the value read from <Rm>. If present, only encoding T3 or Alis

permitted. If omitted, no shift is applied and any encoding is permitted. Shifts applied to a
register on page A8-10 describes the shifts and how they are encoded.

In Thumb assembly, inside an I'T block, if ADD<c> <Rd>, <Rn>,<Rd> cannot be assembled using encoding T1,
it is assembled using encoding T2 as though ADD<c> <Rd>,<Rn> had been written.

To prevent this happening, use the .w qualifier.

The pre-UAL syntax ADD<c>S is equivalent to ADDS<c>.

Operation

if ConditionPassed() then

EncodingSpecificOperations();
shifted = Shift(R[m], shift_t, shift_n, APSR.C);
(result, carry, overflow) = AddwWithCarry(R[n], shifted, ‘0’);
if d == 15 then

ALUWritePC(result); // setflags is always FALSE here
else

R[d] = result;

if setflags then

APSR.N = result<31>;

APSR.Z = IsZeroBit(result);

APSR.C = carry;

APSR.V = overflow;
Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-25

ARM_2009_Q2
Inserted Text
 PC can be used in ARM instructions, and in Thumb encoding T2.

ARM_2009_Q2
Inserted Text
 PC can be used in ARM instructions, and in Thumb encoding T2.

ARM_2009_Q2
Inserted Text
 If S is specified and <Rd> is the PC, see SUBS PC, LR and related instructions on page B6-25 [PDF page 1583]. In ARM instructions and Thumb instructions using encoding T2, if S is not specified and <Rd> is the PC, the instruction is a branch to the address calculated by the operation. For Thumb instructions and ARM instructions before ARMv7 this is a simple branch. For ARM instructions from ARMv7 it is an interworking branch.

Instruction Details

A8.6.7 ADD (register-shifted register)
Add (register-shifted register) adds aregister value and a register-shifted register value. It writes the result
to the destination register, and can optionally update the condition flags based on the result.
Encoding Al ARMv4*, ARMV5T*, ARMVE*, ARMV7
ADD{S}<c> <Rd>,<Rn>,<Rm>,<type> <Rs>
3130292827 2625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 O
cond 0 0|00 1 0 OfS Rn Rd Rs 0| type|1l Rm
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); s = UInt(Rs);
setflags = (S == ‘1’); shift_t = DecodeRegShift(type);
if d ==15 || n==15 || m == 15 || s == 15 then UNPREDICTABLE;
A8-26 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

ADD{S}<c><g> {<Rd>,} <Rn>, <Rm>, <type> <Rs>

where:
S If Sis present, the instruction updates the flags. Otherwise, the flags are not updated.
<C><q> See Standard assembler syntax fields on page A8-7.
<Rd> The destination register.
<Rn> Thefirst operand register.
<Rm> The register that is shifted and used as the second operand.
<type> The type of shift to apply to the value read from <Rm>. It must be one of:
ASR Arithmetic shift right, encoded as type = 0b10
LSL Logical shift left, encoded as type = 0b00
LSR Logical shift right, encoded as type = 0b01
ROR Rotate right, encoded as type = Ob11.
<Rs> The register whose bottom byte contains the amount to shift by.

The pre-UAL syntax ADD<c>S is equivalent to ADDS<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
shift_n = UInt(R[s]<7:0>);
shifted = Shift(R[m], shift_t, shift_n, APSR.C);
(result, carry, overflow) = AddwWithCarry(R[n], shifted, ‘0’);
R[d] = result;
if setflags then
APSR.N = result<31>;

APSR.Z = IsZeroBit(result);

APSR.C = carry;

APSR.V = overflow;
Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-27

Instruction Details

A8.6.8

ADD (SP plus immediate)

Thisinstruction adds an immediate value to the SP value, and writes the result to the destination register.

Encoding T1 ARMVAT, ARMV5T*, ARMvV6*, ARMV7
ADD<c> <Rd>,SP,#<imm>

151413121110 9 8 7 6 5 4 3 2 1 O

10101 Rd imm8

d = UInt(Rd); setflags = FALSE; imm32 = ZeroExtend(imm8:’00’, 32);

Encoding T2 ARMVAT, ARMV5T*, ARMV6*, ARMV7
ADD<c> SP,SP,#<imm>

151413121110 9 8 7 6 5 4 3 2 1 O
101100000 imm7

d = 13; setflags = FALSE; imm32 = ZeroExtend(imm7:’00’, 32);

Encoding T3 ARMvV6T2, ARMV7
ADD{S}<c>.W <Rd>,SP,#<const>

151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0

11110|i|{0/1 0O0O0|S|1T 10 1/{0]| imm3

Rd

imm8

if Rd == ‘1111’ && S == ‘1’ then SEE CMN (immediate);

d = UInt(Rd); setflags = (S == ‘1’); imm32 = ThumbExpandImm(i:imm3:imm8);

if d == 15 then UNPREDICTABLE;

Encoding T4 ARMvV6ET2, ARMV7
ADDW<c> <Rd>,SP,#<imm12>

151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0

11110|i{2/000O0({0|1 1 0 1{{0]| imm3

Rd

imm8

d = UInt(Rd); setflags = FALSE; imm32 = ZeroExtend(i:imm3:imm8, 32);

if d == 15 then UNPREDICTABLE;

Encoding Al ARMv4* ARMvV5T*, ARMvV6*, ARMV7
ADD{S}<c> <Rd>,SP,#<const>

3130292827 2625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 O

cond 0 0/1/10 1 00|S|1 101 Rd

imm12

if Rd == ‘1111’ && S == ‘1’ then SEE SUBS PC, LR and related instructions;

d = UInt(Rd); setflags = (S == ‘1’); imm32 = ARMExpandImm(imm12);

A8-28

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

ARM DDI 0406B

ARM_2009_Q4
Inserted Text
 && S == '0'

Instruction Details

Assembler syntax

ADD{S}<c><g> {<Rd>,} SP, #<const> All encodings permitted

ADDW<c><q> {<Rd>,} SP, #<const> Only encoding T4 is permitted

where:

S If S ispresent, the instruction updates the flags. Otherwise, the flags are not updated.
<C><q> See Sandard assembler syntax fields on page A8-7.

<Rd> The destination register.j|f omitted, <Rd> is SP.

<const> Theimmediate val ue to be added to the value obtained from SP. Valuesare multiplesof 4in

the range 0-1020 for encoding T1, multiples of 4 in the range 0-508 for encoding T2 and
any valuein the range 0-4095 for encoding T4. See Modified immediate constantsin Thumb
instructions on page A6-17 or Modified immediate constants in ARM instructions on

page A5-9 for the range of values for encodings T3 and Al.

When both 32-bit encodings are available for an instruction, encoding T3 is preferred to
encoding T4 (if encoding T4 isrequired, use the ADDW syntax).

The pre-UAL syntax ADD<c>S is equivalent to ADDS<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
(result, carry, overflow) = AddwithCarry(SP, imm32, ‘0’);
if d == 15 then // Can only occur for ARM encoding
ALUWritePC(result); // setflags is always FALSE here
else
R[d] = result;
if setflags then
APSR.N = result<31>;

APSR.Z = IsZeroBit(result);

APSR.C = carry;

APSR.V = overflow;
Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-29

ARM_2009_Q2
Inserted Text
 If S is specified and <Rd> is the PC, see SUBS PC, LR and related instructions on page B6-25 [PDF page 1583]. In ARM instructions, if S is not specified and <Rd> is the PC, the instruction is a branch to the address calculated by the operation. This is a simple branch before ARMv7, and an interworking branch from ARMv7.

Instruction Details

A8.6.9 ADD (SP plus register)

Thisinstruction adds an optionally-shifted register value to the SP value, and writes the result to the
destination register.

Encoding T1 ARMVAT, ARMV5T*, ARMV6E*, ARMV7
ADD<c> <Rdm>, SP, <Rdm>

151413121110 9 8 7 6 5 4 3 2 1 0
01000100DM[1101 Rdm

d = UInt(DM:Rdm); m = UInt(DM:Rdm); setflags = FALSE;
(shift_t, shift_n) = (SRType_LSL, @)

Encoding T2 ARMVAT, ARMV5T*, ARMV6*, ARMV7
ADD<c> SP,<Rm>

151413121110 9 8 7 6 5 4 3 2 1
01 000100|1 Rm 101

if Rm == ‘1101’ then SEE encoding T1;
d =13; m = UInt(Rm); setflags = FALSE;
(shift_t, shift_n) = (SRType_LSL, 0);

Encoding T3 ARMV6T2, ARMV7
ADD{S}<c>.W <Rd>,SP,<Rm>{,<shift>}

151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0
11101011000|S|110 1//0| imm3 Rd imm2| type Rm

d = UInt(Rd); m = UInt(Rm); setflags = (S == ‘1");

(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);

if d == 13 && (shift_t != SRType_LSL || shift_n > 3) then UNPREDICTABLE;
if d == 15 || BadReg(m) then UNPREDICTABLE;

Encoding Al ARMv4*, ARMV5T*, ARMV6*, ARMV7
ADD{S}<c> <Rd>,SP,<Rm>{,<shift>}

31 302928 27 26 2524 2322212019 181716 151413121110 9 8 7 6 5 4 3 2 1 O
cond 0 0/|0|0 1 00|S|1 101 Rd imm5 type | O Rm

if Rd == ‘1111’ && S == ‘1’ then SEE SUBS PC, LR and related instructions;
d = UInt(Rd); m = UInt(Rm); setflags = (S == ‘1’);
(shift_t, shift_n) = DecodeImmShift(type, imm5);

A8-30 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2010_Q3
Inserted Text

if d == 15 && InITBlock() && !LastInITBlock() then UNPREDICTABLE;

Instruction Details

Assembler syntax

ADD{S}<c><q> {<Rd>,} SP, <Rm>{, <shift>}

where:

S If S ispresent, the instruction updates the flags. Otherwise, the flags are not updated.

<C><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register. This register can be SP. If omitted, <Rd> is SP. This register can be
the PC, but if it is, encoding T3 is not permitted. Using the PC is deprecated.

<Rm> The register that is optionally shifted and used as the second operand. This register can be
the PC, but if it is, encoding T3 is not permitted. Using the PC is deprecated. This register
can be SP in both ARM and Thumb instructions, but:
. the use of SPis deprecated
. when assembling for the Thumb instruction set, only encoding T1 is available and so

the instruction can only be ADD SP,SP, SP.
<shift> The shift to apply to the value read from <Rm>. If omitted, no shift is applied and any

encoding is permitted. If present, only encoding T3 or Al is permitted. Shifts applied to a
register on page A8-10 describes the shifts and how they are encoded.

In the Thumb instruction set, if <Rd> is SP or omitted, <shift> isonly permitted to be
omitted, LSL #1, LSL #2, or LSL #3.

The pre-UAL syntax ADD<c>S is equivalent to ADDS<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
shifted = Shift(R[m], shift_t, shift_n, APSR.C);
(result, carry, overflow) = AddwWithCarry(SP, shifted, ‘0’);
if d == 15 then
ALUWritePC(result); // setflags is always FALSE here
else
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);

APSR.C = carry;
APSR.V = overflow;
Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-31

ARM_2009_Q2
Inserted Text
 If S is specified and <Rd> is the PC, see SUBS PC, LR and related instructions on page B6-25 [PDF page 1583]. In ARM instructions and Thumb instructions using encoding T1, if S is not specified and <Rd> is the PC, the instruction is a branch to the address calculated by the operation. For Thumb instructions and ARM instructions before ARMv7 this is a simple branch. For ARM instructions from ARMv7 it is an interworking branch.

Instruction Details

A8.6.10 ADR

Thisinstruction adds an immediate value to the PC value to form a PC-rel ative address, and writes the result
to the destination register.

Encoding T1 ARMVAT, ARMV5T*, ARMV6E*, ARMV7
ADR<c> <Rd>,<Tabel>

151413121110 9 8 7 6 5 4 3 2 1 O
10100 Rd imm8

d = UInt(Rd); 1imm32 = ZeroExtend(imm8:’00’, 32); add = TRUE;

Encoding T2 ARMvV6T2, ARMV7

ADR<c>.W <Rd>,<label> <label> before current instruction

SUB <Rd>,PC,#0 Special case for subtraction of zero
151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0
11110/i{2012012{0/1 1 1 1//0]| imm3 Rd imm8

d = UInt(Rd); 1imm32 = ZeroExtend(i:imm3:imm8, 32); add = FALSE;
if BadReg(d) then UNPREDICTABLE;

Encoding T3 ARMvV6ET2, ARMV7

ADR<c>.W <Rd>,<label> <label> after current instruction
151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0
11110|i|20000({0/2 11 1{/0] imm3 Rd imm8

d = UInt(Rd); 1imm32 = ZeroExtend(i:imm3:imm8, 32); add = TRUE;
if BadReg(d) then UNPREDICTABLE;

Encoding Al ARMv4*, ARMV5T*, ARMvV6*, ARMV7
ADR<c> <Rd>,<label> <label> after current instruction

3130292827 2625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 O
cond 0 0/1/101 00|0j2 111 Rd imm12

d = UInt(Rd); 1imm32 = ARMExpandImm(imml12); add = TRUE;

Encoding A2 ARMv4*, ARMV5T*, ARMV6*, ARMV7
ADR<c> <Rd>,<label> <label> before current instruction
SUB <Rd>,PC,#0 Special case for subtraction of zero

3130292827 26252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
cond 0 0/1/100 1 0|0j2 111 Rd imm12

d = UInt(Rd); 1imm32 = ARMExpandImm(imm12); add = FALSE;

A8-32 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

ADR<c><0g>
ADD<c><g>
SUB<c><o>

where:
<C><0>
<Rd>

<label>

<Rd>, <label> Normal syntax
<Rd>, PC, #<const> Alternative for encodings T1, T3, A1l
<Rd>, PC, #<const> Alternative for encoding T2, A2

See Sandard assembler syntax fields on page A8-7.
The destination registery

The label of aninstruction or literal dataitem whose address is to be loaded into <Rd>. The
assembler calculates the required value of the offset from the Align(PC,4) value of the ADR
instruction to this label. Permitted values of the offset are:

Encoding T1
multiples of 4 in the range -1020 to 1020
EncodingsT2and T3
any value in the range -4095 to 4095
Encodings Al and A2
plus or minus any of the constants described in Modified immediate constants
in ARM instructions on page A5-9.

If the offset is zero or positive, encodings T1, T3, and Al are permitted with imm32 equal to
the offset.

If the offset is negative, encodings T2 and A2 are permitted with imm32 equal to minusthe
offset.

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be
specified separately, including permitting a subtraction of 0 that cannot be specified using the normal
syntax. For more information, see Use of labelsin UAL instruction syntax on page A4-5.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
result = if add then (Align(PC,4) + imm32) else (Align(PC,4) - imm32);
if d == 15 then // Can only occur for ARM encodings
ALUWritePC(result);

else

R[d]

Exceptions

None.

result;

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-33

ARM_2009_Q2
Inserted Text
 In ARM instructions, if <Rd> is the PC, the instruction is a branch to the address calculated by the operation. This is a simple branch before ARMv7, and an interworking branch from ARMv7.

Instruction Details

A8.6.11 AND (immediate)

Thisinstruction performs a bitwise AND of aregister value and an immediate value, and writes the result
to the destination register.

Encoding T1 ARMV6T2, ARMV7
AND{S}<c> <Rd>,<Rn>,#<const>

111

10(i|0j]0 0 0 O|S Rn 0| imm3

Rd

151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0

imm8

if Rd == ‘1111’ && S == ‘1’ then SEE TST (immediate);
d = UInt(Rd); n = UInt(Rn); setflags = (S == ‘1");
(imm32, carry) = ThumbExpandImm_C(i:imm3:imm8, APSR.C);
if BadRegfd) || BadReg(n) then UNPREDICTABLE;

Encoding Al

AND{S}<c> <Rd>,<Rn>,#<const>

ARMv4*, ARMV5T*, ARMV6E*, ARMV7

3130292827 26252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

cond

0 0/1/0 0 0 O|S Rn Rd

imm12

if Rd == ‘1111’ && S == ‘1’ then SEE SUBS PC, LR and related instructions;

d = UInt(Rd); n = UInt(Rn); setflags = (S == ‘1’);
(imm32, carry) = ARMExpandImm_C(imml2, APSR.C);

A8-34

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

ARM DDI 0406B

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
d == 13 || (d == 15 && S == '0')

Instruction Details

Assembler syntax

AND{S}<c><q> {<Rd>,} <Rn>, #<const>

where:

S If S ispresent, the instruction updates the flags. Otherwise, the flags are not updated.
<C><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination registery

<Rn> Thefirst operand registery

<const> Theimmediate value to be ANDed with the value obtained from <Rn>. See Modified

immediate constantsin Thumb instructionson page A6-17 or Modified immediate constants
in ARM instructions on page A5-9 for the range of values.

The pre-UAL syntax AND<c>S is equivalent to ANDS<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
result = R[n] AND imm32;
if d == 15 then // Can only occur for ARM encoding
ALUWritePC(result); // setflags is always FALSE here
else
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
// APSR.V unchanged

Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-35

ARM_2009_Q2
Inserted Text
 PC can be used in ARM instructions.

ARM_2009_Q2
Inserted Text
 If S is specified and <Rd> is the PC, see SUBS PC, LR and related instructions on page B6-25 [PDF page 1583]. In ARM instructions, if S is not specified and <Rd> is the PC, the instruction is a branch to the address calculated by the operation. This is a simple branch before ARMv7, and an interworking branch from ARMv7.

Instruction Details

A8.6.12 AND (register)

Thisinstruction performs a bitwise AND of aregister value and an optionally-shifted register value, and
writes the result to the destination register. It can optionally update the condition flags based on the result.

Encoding T1 ARMVAT, ARMV5T*, ARMV6*, ARMV7
ANDS <Rdn>,<Rm> Qutside I T block.
AND<c> <Rdn>, <Rm> Inside IT block.

151413121110 9 8 7 6 5 4 3 2 1 O
01000O00O0OO0OO Rm Rdn

d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();
(shift_t, shift_n) = (SRType_LSL, 0);

Encoding T2 ARMV6T2, ARMV7

AND{S}<c>.W <Rd>,<Rn>,<Rm>{,<shift>}

1514131211109 8 7 6 5 4 3 2 1 0 1514131211109 8 7 6 54 3 2 1 0
11101{0 1|00 0 0fS Rn ©)| imm3 Rd imm2 | type Rm

if Rd == ‘1111’ && S == ‘1’ then SEE TST (register);

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == ‘1");
(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);

if BadRegte) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

Encoding Al ARMv4*, ARMV5T*, ARMV6*, ARMV7
AND{S}<c> <Rd>,<Rn>,<Rm>{,<shift>}

31 3029 28 27 26 25 24 232221 2019 18 17 16 151413121110 9 8 7 6 5 4 3 2 1 O
cond 0 0|00 0 0 O]|S Rn Rd imm5 type | O Rm

if Rd == ‘1111’ && S == ‘1’ then SEE SUBS PC, LR and related instructions;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == ‘1’);
(shift_t, shift_n) = DecodeImmShift(type, imm5);

A8-36 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
d == 13 || (d == 15 && S == '0')

Instruction Details

Assembler syntax

AND{S}<c><q> {<Rd>,} <Rn>, <Rm> {,<shift>}

where:

S If S ispresent, the instruction updates the flags. Otherwise, the flags are not updated.
<C><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination registery

<Rn> Thefirst operand registery

<Rm> The register that is optionally shifted and used as the second operand

<shift> The shift to apply to the value read from <Rm>. If present, encoding T1 is not permitted. If

absent, no shift is applied and all encodings are permitted. Shifts applied to a register on
page A8-10 describes the shifts and how they are encoded.

In Thumb assembly:

. outsidean I T block, if ANDS <Rd>, <Rn>, <Rd> has <Rd> and <Rn> both in therange RO-R7, it isassembled
using encoding T1 as though ANDS <Rd>,<Rn> had been written

. insidean IT block, if AND<c> <Rd>, <Rn>,<Rd> has <Rd> and <Rn> both in therange RO-R7, it is
assembled using encoding T1 as though AND<c> <Rd>,<Rn> had been written.

To prevent either of these happening, use the .W qudlifier.

The pre-UAL syntax AND<c>S is equivalent to ANDS<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
(shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
result = R[n] AND shifted;
if d == 15 then // Can only occur for ARM encoding
ALUWritePC(result); // setflags is always FALSE here
else
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
// APSR.V unchanged

Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-37

ARM_2009_Q2
Inserted Text
 PC can be used in ARM instructions.

ARM_2009_Q2
Inserted Text
 PC can be used in ARM instructions.

ARM_2009_Q2
Inserted Text
 If S is specified and <Rd> is the PC, see SUBS PC, LR and related instructions on page B6-25 [PDF page 1583]. In ARM instructions, if S is not specified and <Rd> is the PC, the instruction is a branch to the address calculated by the operation. This is a simple branch before ARMv7, and an interworking branch from ARMv7.

Instruction Details

A8.6.13 AND (register-shifted register)

Thisinstruction performs a bitwise AND of aregister value and a register-shifted register value. It writes
the result to the destination register, and can optionally update the condition flags based on the resuilt.

Encoding Al ARMv4* ARMV5T*, ARMvV6*, ARMV7
AND{S}<c> <Rd>,<Rn>,<Rm>,<type> <Rs>

31 30 29 28 27 26 2524 232221 2019181716151413121110 9 8 7 6 5 4 3 2 1 O

cond 0 0|0|0 0 O OfS Rn Rd Rs 0| type|1l Rm

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); s = UInt(Rs);
setflags = (S == ‘1’); shift_t = DecodeRegShift(type);
if d==15]] n==15 || m==15 || s == 15 then UNPREDICTABLE;

A8-38

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

AND{S}<c><g> {<Rd>,} <Rn>, <Rm>, <type> <Rs>

where:
S If Sis present, the instruction updates the flags. Otherwise, the flags are not updated.
<C><q> See Standard assembler syntax fields on page A8-7.
<Rd> The destination register.
<Rn> Thefirst operand register.
<Rm> The register that is shifted and used as the second operand.
<type> The type of shift to apply to the value read from <Rm>. It must be one of:
ASR Arithmetic shift right, encoded as type = 0b10
LSL Logical shift left, encoded as type = 0b00
LSR Logical shift right, encoded as type = 0b01
ROR Rotate right, encoded as type = Ob11.
<Rs> The register whose bottom byte contains the amount to shift by.

The pre-UAL syntax AND<c>S is equivalent to ANDS<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
shift_n = UInt(R[s]<7:0>);
(shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
result = R[n] AND shifted;
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
// APSR.V unchanged

Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-39

Instruction Details

A8.6.14 ASR (immediate)

Arithmetic Shift Right (immediate) shifts aregister value right by an immediate number of bits, shifting in
copies of its sign bit, and writes the result to the destination register. It can optionally update the condition
flags based on the result.

Encoding T1 ARMVAT, ARMV5T*, ARMv6*, ARMV7
ASRS <Rd>, <Rm>, #<imm> Qutside I T block.
ASR<c> <Rd>,<Rm>, #<imm> Inside I'T block.

1514131211109 8 7 6 5 4 3 2 1 0
00O0|10O0 imm5 Rm Rd

d = UInt(Rd); m = UInt(Rm); setflags = !InITBlock();
(-, shift_n) = DecodeImmShift(‘10’, imm5);

Encoding T2 ARMvV6ET2, ARMV7
ASR{S}<c>.W <Rd>,<Rm>,#<imm>

151413121110 9 8 7 6 5 4 3 2 1 0 1514131211109 8 7 6 5 4 3 2 1 0
111010100 10(S{1 11 1{|(0)] imm3 Rd imm2|1 0 Rm

d = UInt(Rd); m = UInt(Rm); setflags = (S == ‘1’);
(-, shift_n) = DecodeImmShift(‘10’, imm3:imm2);
if BadReg(d) || BadReg(m) then UNPREDICTABLE;

Encoding Al ARMv4* ARMV5T*, ARMvV6*, ARMV7

ASR{S}<c> <Rd>,<Rm>,#<imm>

3130292827 26 252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
cond 0 0|01 1 0 1|S|(0)(0)(0)(0 Rd imm5 100 Rm

d = UInt(Rd); m = UInt(Rm); setflags = (S == ‘1’);
(-, shift_n) = DecodeImmShift(‘10’, imm5);

A8-40 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2011_Q2
Inserted Text
if Rd == '1111' && S == '1' then SEE SUBS PC, LR and related instructions;

Instruction Details

Assembler syntax

ASR{S}<c><q> {<Rd>,} <Rm>, #<imm>

where:

S If S ispresent, the instruction updates the flags. Otherwise, the flags are not updated.
<C><0> See Standard assembler syntax fields on page A8-7.

<Rd> The destination registery

<Rm> Thefirst operand registery

<imm> The shift amount, in the range 1 to 32. See Shifts applied to a register on page A8-10.
Operation

if ConditionPassed() then
EncodingSpecificOperations();
(result, carry) = Shift_C(R[m], SRType_ASR, shift_n, APSR.C);
if d == 15 then // Can only occur for ARM encoding
ALUWritePC(result); // setflags is always FALSE here
else
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
// APSR.V unchanged

Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-41

ARM_2009_Q2
Inserted Text
 PC can be used in ARM instructions.

ARM_2009_Q2
Inserted Text
 In ARM instructions, if S is not specified and <Rd> is the PC, the instruction is a branch to the address calculated by the operation. This is a simple branch before ARMv7, and an interworking branch from ARMv7.

Instruction Details

A8.6.15 ASR (register)

Arithmetic Shift Right (register) shifts aregister value right by avariable number of bits, shifting in copies
of its sign bit, and writes the result to the destination register. The variable number of bitsis read from the
bottom byte of aregister. It can optionally update the condition flags based on the result.

Encoding T1 ARMVAT, ARMV5T*, ARMv6*, ARMV7
ASRS <Rdn>, <Rm> Qutside I T block.
ASR<c> <Rdn>,<Rm> Inside I'T block.

151413121110 9 8 7 6 5 4 3 2 1 O
0100000100 Rm Rdn

d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();

Encoding T2 ARMvV6T2, ARMV7
ASR{S}<c>.W <Rd>,<Rn>,<Rm>
1514131211109 8 7 6 5 4 3 2 1 0151413121110 9 8 7 4 3210

11111{010|0|10]|S Rn 1111 Rd 0/0 0O Rm

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == ‘1’);
if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

Encoding Al ARMv4* ARMvV5T*, ARMvV6*, ARMV7

ASR{S}<c> <Rd>,<Rn>,<Rm>

3130292827 262524 232221201918 17 16 151413121110 9 8 7 4 3210
cond 0 0/0|1 1 0 1|S|(0)(0)(0)(0) Rd Rm 0101 Rn

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == ‘1’);
if d==15]| n==15 || m == 15 then UNPREDICTABLE;

A8-42 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

ASR{S}<c><q> {<Rd>,} <Rn>, <Rm>

where:

S If S ispresent, the instruction updates the flags. Otherwise, the flags are not updated.
<C><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> Thefirst operand register.

<Rm> The register whose bottom byte contains the amount to shift by.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
shift_n = UInt(R[m]<7:0>);
(result, carry) = Shift_C(R[n], SRType_ASR, shift_n, APSR.C);
R[d] = result;
if setflags then
APSR.N = result<3l>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
// APSR.V unchanged

Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-43

Instruction Details

A8.6.16 B

Branch causes a branch to atarget address.

Encoding T1 ARMVAT, ARMV5T*, ARMV6*, ARMV7

B<c> <label>

151413121110 9 8 7 6 5 4 3 2 1 O

1101 cond imm8

if cond == ‘1110’ then UNDEFINED;
if cond == ‘1111’ then SEE SVC;

imm32 = SignExtend(imm8:°Q’, 32);
if InITBlock() then UNPREDICTABLE;

Not permitted in IT block.

Encoding T2 ARMVAT, ARMV5T*, ARMV6*, ARMV7

B<c> <label>

151413121110 9 8 7 6 5 4 3 2 1 O

11100 imm11l

imm32 = SignExtend(immll:’Q’, 32);

if InITBlock() && !'LastInITBlock() then UNPREDICTABLE;

Encoding T3 ARMV6ET2, ARMvV7
B<c>.W <label>

Qutside or last in IT block

Not permitted in IT block.
151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0

11110|S cond imm6

10

Ji

0|J2

imm11

if cond<3:1> == ‘111’ then SEE “Related encodings”;

imm32 = SignExtend(S:J2:J1:imm6:immll:’0Q’, 32);
if InITBlock() then UNPREDICTABLE;

Encoding T4 ARMV6ET2, ARMvV7
B<c>.W <label>

Outsideor last in IT block
151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0

11110|S imm10

10

Ji

112

imm11l

I1 = NOT(J1 EOR S); I2 = NOT(J2 EOR S); 1imm32 = SignExtend(S:I1:I2:imml1Q:imml11:°Q’, 32);
if InITBlock() && !'LastInITBlock() then UNPREDICTABLE;

Encoding Al ARMv4* ARMV5T*, ARMvV6*, ARMV7

B<c> <label>

3130292827 2625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 O

cond 1010

imm24

imm32 = SignExtend(imm24:°00°, 32);

A8-44

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

ARM DDI 0406B

Instruction Details

Related encodings See Branches and miscellaneous control on page A6-20

Assembler syntax

B<c><g> <label>

where:

<C><q>

<label>

Operation

See Standard assembler syntax fields on page A8-7.

—— Note

Encodings T1 and T3 are conditional in their own right, and do not require an IT instruction
to make them conditional.

For encodings T1 and T3, <c> must not be AL or omitted. The 4-bit encoding of the condition
isplaced in theinstruction and not in apreceding IT instruction, and theinstruction must not
beinanIT block. Asaresult, encodings T1 and T2 are never both avail able to the assembl er,
nor are encodings T3 and T4.

Thelabel of theinstruction that is to be branched to. The assembler cal culates the required
value of the offset from the PC value of the B instruction to this label, then selects an
encoding that sets imm32 to that offset.

Permitted offsets are:

Encoding T1 Even numbers in the range —256 to 254

Encoding T2 Even numbers in the range —2048 to 2046
Encoding T3 Even numbers in the range —1048576 to 1048574
Encoding T4 Even numbers in the range —16777216 to 16777214
Encoding A1 Multiples of 4 in the range —33554432 to 33554428.

if ConditionPassed() then
EncodingSpecificOperations();
BranchWritePC(PC + imm32);

Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-45

Instruction Details

A8.6.17 BFC

Bit Field Clear clears any number of adjacent bits at any position in aregister, without affecting the other
bitsin the register.

Encoding T1 ARMV6T2, ARMV7
BFC<c> <Rd>,#<1sb>,#<width>

151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0
11110021 1{01 1|01 1 1 1{|0| imm3 Rd imm2 |(0) msb

d = UInt(Rd); mshit = UInt(msb); 1sbit = UInt(imm3:imm2);
if BadReg(d) then UNPREDICTABLE;

Encoding Al ARMvV6ET2, ARMV7
BFC<c> <Rd>,#<1sb>,#<width>

31 3029 28 27 26 2524232221 2019181716151413121110 9 8 7 6 5 4 3 2 1 O
cond 0111110 msb Rd Isb 0001|1111

d = UInt(Rd); msbit = UInt(msbh); T1sbit = UInt(1sh);
if d == 15 then UNPREDICTABLE;

A8-46 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

BFC<c><q> <Rd>, #<1sb>, #<width>

where:

<C><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Isb> The least significant bit that is to be cleared, in the range O to 31. This determines the
required value of Tsbit.

<width> The number of bitsto be cleared, in the range 1 to 32-<1sb>. The required value of mshit is
<Isb>+<width>-1.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
if msbit >= Tshit then
R[d]<msbit:1sbit> = Replicate(‘0’, msbit-Tsbit+l);
// Other bits of R[d] are unchanged
else
UNPREDICTABLE;

Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-47

Instruction Details

A8.6.18 BFI

Bit Field Insert copies any number of low order bitsfrom aregister into the same number of adjacent bits at
any position in the destination register.

Encoding T1 ARMV6T2, ARMV7
BFI<c> <Rd>,<Rn>,#<1sb>,#<width>

151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0
1111001 1{01 1|0 Rn 0| imm3 Rd imm2 |(0) msb

if Rn == ‘1111’ then SEE BFC;
d = UInt(Rd); n = UInt(Rn); msbit = UInt(msb); 1Tsbit = UInt(imm3:imm2);
if BadReg(d) || n == 13 then UNPREDICTABLE;

Encoding Al ARMV6T2, ARMV7
BFI<c> <Rd>,<Rn>,#<1sb>,#<width>

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
cond 0111110 msb Rd 1sb 001 Rn

if Rn == ‘1111’ then SEE BFC;
d = UInt(Rd); n = UInt(Rn); msbit = UInt(msb); Tsbit = UInt(1sb);
if d == 15 then UNPREDICTABLE;

A8-48 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

BFI<c><g> <Rd>, <Rn>, #<Isb>, #<width>

where:

<C><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The source register.

<Isb> Theleast significant destination bit, in the range 0 to 31. This determinesthe required value
of 1sbit.

<width> The number of bitsto be copied, in the range 1 to 32-<1sh>. The required value of mshit is
<1sb>+<width>-1.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
if mshit >= 1sbhit then
R[d]<msbit:1sbit> = R[n]<(msbit-1sbit):0>;
// Other bits of R[d] are unchanged
else
UNPREDICTABLE;

Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-49

Instruction Details

A8.6.19 BIC (immediate)

Bitwise Bit Clear (immediate) performs a bitwise AND of aregister value and the complement of an
immediate value, and writesthe result to the destination register. It can optionally update the condition flags
based on the result.

Encoding T1 ARMvV6ET2, ARMV7
BIC{S}<c> <Rd>,<Rn>,#<const>

111

10(i|0j]0 0O 1|S Rn 0| imm3

Rd

151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0

imm8

d = UInt(Rd); n = UInt(Rn); setflags = (S == ‘1’);
(imm32, carry) = ThumbExpandImm_C(i:imm3:imm8, APSR.C);
if BadReg(d) || BadReg(n) then UNPREDICTABLE;

Encoding Al

BIC{S}<c> <Rd>,<Rn>,#<const>

ARMv4* ARMV5T*, ARMVG*, ARMvV7

31 30 29 28 27 26 2524232221 2019181716151413121110 9 8 7 6 5 4 3 2 1 O

cond

00(1/1 1 10(S Rn Rd

imm12

if Rd == ‘1111’ && S == ‘1’ then SEE SUBS PC, LR and related instructions;

d = UInt(Rd); n = UInt(Rn); setflags = (S == ‘1");
(imm32, carry) = ARMExpandImm_C(imm12, APSR.C);

A8-50

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

ARM DDI 0406B

Instruction Details

Assembler syntax

BIC{S}<c><q> {<Rd>,} <Rn>, #<const>

where:

S If S ispresent, the instruction updates the flags. Otherwise, the flags are not updated.
<C><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination registery

<Rn> The register that contains the operandy

<const> Theimmediate value to be bitwise inverted and ANDed with the value obtained from <Rn>.

See Modified immediate constants in Thumb instructions on page A6-17 or Modified
immediate constants in ARM instructions on page A5-9 for the range of values.

The pre-UAL syntax BIC<c>S is equivalent to BICS<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
result = R[n] AND NOT(imm32);
if d == 15 then // Can only occur for ARM encoding
ALUWritePC(result); // setflags is always FALSE here
else
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
// APSR.V unchanged

Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-51

ARM_2009_Q2
Inserted Text
 PC can be used in ARM instructions.

ARM_2009_Q2
Inserted Text
 If S is specified and <Rd> is the PC, see SUBS PC, LR and related instructions on page B6-25 [PDF page 1583]. In ARM instructions, if S is not specified and <Rd> is the PC, the instruction is a branch to the address calculated by the operation. This is a simple branch before ARMv7, and an interworking branch from ARMv7.

Instruction Details

A8.6.20 BIC (register)

Bitwise Bit Clear (register) performs a bitwise AND of aregister value and the complement of an
optionally-shifted register value, and writesthe result to the destination register. It can optionally update the
condition flags based on the result.

Encoding T1 ARMVAT, ARMV5T*, ARMv6*, ARMV7
BICS <Rdn>,<Rm> Qutside I T block.
BIC<c> <Rdn>,<Rm> Inside I'T block.

151413121110 9 8 7 6 5 4 3 2 1 O
0100002110 Rm Rdn

d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();
(shift_t, shift_n) = (SRType_LSL, 0);

Encoding T2 ARMvV6ET2, ARMV7
BIC{S}<c>.W <Rd>,<Rn>,<Rm>{,<shift>}

151413121110 9 8 7 6 5 4 3 2 1 0 1514131211109 8 7 6 5 4 3 2 1 0
1110110 1{0 00 1|S Rn (0)| imm3 Rd immz2 | type Rm

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == ‘1’);
(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);
if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

Encoding Al ARMv4*, ARMV5T*, ARMvV6*, ARMV7

BIC{S}<c> <Rd>,<Rn>,<Rm>{,<shift>}

3130292827 26 252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
cond 0 00|11 10]S Rn Rd imm5 type | O Rm

if Rd == ‘1111’ && S == ‘1’ then SEE SUBS PC, LR and related instructions;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == ‘1");
(shift_t, shift_n) = DecodeImmShift(type, imm5);

A8-52 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

BIC{S}<c><g> {<Rd>,} <Rn>, <Rm> {,<shift>}

where:

S If S ispresent, the instruction updates the flags. Otherwise, the flags are not updated.
<C><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination registery

<Rn> Thefirst operand registery

<Rm> The register that is optionally shifted and used as the second operand

<shift> The shift to apply to the value read from <Rm>. If present, encoding T1 is not permitted. If

absent, no shift is applied and all encodings are permitted. Shifts applied to a register on
page A8-10 describes the shifts and how they are encoded.

The pre-UAL syntax BIC<c>S is equivalent to BICS<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
(shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
result = R[n] AND NOT(shifted);
if d == 15 then // Can only occur for ARM encoding
ALUWritePC(result); // setflags is always FALSE here
else
R[d] = result;
if setflags then

APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;

// APSR.V unchanged

Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-53

ARM_2009_Q2
Inserted Text
 PC can be used in ARM instructions.

ARM_2009_Q2
Inserted Text
 PC can be used in ARM instructions.

ARM_2009_Q2
Inserted Text
 If S is specified and <Rd> is the PC, see SUBS PC, LR and related instructions on page B6-25 [PDF page 1583]. In ARM instructions, if S is not specified and <Rd> is the PC, the instruction is a branch to the address calculated by the operation. This is a simple branch before ARMv7, and an interworking branch from ARMv7.

Instruction Details

A8.6.21 BIC (register-shifted register)

Bitwise Bit Clear (register-shifted register) performs abitwise AND of aregister value and the complement
of aregister-shifted register value. It writes the result to the destination register, and can optionally update
the condition flags based on the resullt.

Encoding Al ARMv4*, ARMV5T*, ARMV6E*, ARMV7
BIC{S}<c> <Rd>,<Rn>,<Rm>,<type> <Rs>

3130292827 2625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 O

cond 0 0/|0|1 1 1 0fS Rn Rd Rs O|type|1 Rm

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); s = UInt(Rs);
setflags = (S == ‘1’); shift_t = DecodeRegShift(type);
if d==15]| n==15 || m==15 || s == 15 then UNPREDICTABLE;

A8-54

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

BIC{S}<c><q> {<Rd>,} <Rn>, <Rm>, <type> <Rs>

where:
S If Sis present, the instruction updates the flags. Otherwise, the flags are not updated.
<C><q> See Standard assembler syntax fields on page A8-7.
<Rd> The destination register.
<Rn> Thefirst operand register.
<Rm> The register that is shifted and used as the second operand.
<type> The type of shift to apply to the value read from <Rm>. It must be one of:
ASR Arithmetic shift right, encoded as type = 0b10
LSL Logical shift left, encoded as type = 0b00
LSR Logical shift right, encoded as type = 0b01
ROR Rotate right, encoded as type = Ob11.
<Rs> The register whose bottom byte contains the amount to shift by.

The pre-UAL syntax BIC<c>S is equivalent to BICS<c>.

Operation

if ConditionPassed() then

EncodingSpecificOperations();
shift_n = UInt(R[s]<7:0>);
(shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
result = R[n] AND NOT(shifted);
R[d] = result;
if setflags then

APSR.N = result<31>;

APSR.Z = IsZeroBit(result);

APSR.C = carry;

// APSR.V unchanged

Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-55

Instruction Details

A8.6.22 BKPT
Breakpoint causes a software breakpoint to occur.

Breakpoint is always unconditional, even when inside an I'T block.
Encoding T1 ARMV5T*, ARMvV6*, ARMV7

BKPT #<imm8>

151413121110 9 8 7 6 5 4 3 2 1 O
10111110 imm8

imm32 = ZeroExtend(imm8, 32);
// imm32 1is for assembly/disassembly only and is ignored by hardware.

Encoding Al ARMV5T*, ARMvV6*, ARMV7

BKPT #<imml6>

3130292827 26252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
cond 00010010 imm12 0111 imm4

imm32 = ZeroExtend(imml12:imm4, 32);
// imm32 1is for assembly/disassembly only and is ignored by hardware.

if cond !'= ‘1110’ then UNPREDICTABLE; // BKPT must be encoded with AL condition

A8-56 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

BKPT<g> #<imm>

where:

<g> See Standard assembler syntax fields on page A8-7. A BKPT instruction must be
unconditional.

<imm> Specifiesavaluethat isstored in theinstruction, in the range 0-255 for a Thumb instruction
or 0-65535 for an ARM instruction. Thisvalueisignored by the processor, but can be used
by a debugger to store more information about the breakpoint.

Operation

EncodingSpecificOperations();
BKPTInstrDebugEvent();

Exceptions

Prefetch Abort.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-57

ARM_2009_Q3
Cross-Out

ARM_2009_Q3
Replacement Text
{#}

Instruction Details

A8.6.23 BL, BLX (immediate)
Branch with Link calls a subroutine at a PC-relative address.

Branch with Link and Exchange Instruction Sets (immediate) calls a subroutine at a PC-relative address,
and changes instruction set from ARM to Thumb, or from Thumb to ARM.

Encoding T1 ARMVAT, ARMV5T*, ARMV6*, ARMV7 if J1==J2 ==

ARMVET2, ARMV7 otherwise
BL<c> <label> Outside or last in IT block
151413121110 9 8 7 6 5 4 3 2 1 01514131211109 8 7 6 5 4 3 2 1 0
11110(S imm10 1 1(J311(x2 imm1l

I1 = NOT(J1 EOR S); 1I2 = NOT(J2 EOR S); 1imm32 = SignExtend(S:I1:I2:immlQ:imml1l:’0’, 32);

if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

Encoding T2 ARMVST*, ARMVE*, ARMV7 if J1==J2 ==

ARMVET2, ARMV7 otherwise
BLX<c> <label> Outsideor last in IT block
151413121110 9 8 7 6 5 4 3 2 1 01514131211109 8 7 6 5 4 3 2 1 0
11110|S imm10H 1 1|32{0|X imm10L q|

if CurrentinstrSet—==—TnstrSet—FhumbEE then UNDEFINED;
I1 = NOT(J1 EOR S); 1I2 = NOT(J2 EOR S); 1imm32 = SignExtend(S:I1:I2:imm1@H:imm10L:’00’, 32);

_fEeARM—=—RUE:
if InITBlock() && !'LastInITBlock() then UNPREDICTABLE;

Encoding Al ARMv4* ARMvV5T*, ARMvV6*, ARMV7
BL<c> <label>

3130292827 2625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 0
cond 1011 imm24

imm32 = SignExtend(imm24:°00’, 32); _jtoARM-—=—TRUE;

Encoding A2 ARMV5T*, ARMvV6*, ARMvV7
BLX <label>

31 3029 28 27 26 25 24 232221 2019181716 151413121110 9 8 7 6 5 4 3 2 1 O
1111|101|H imm24

imm32 = SignExtend(imm24:H:’0@’, 32); jtoARM—=—FALSE;

A8-58 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
targetInstrSet = CurrentInstrSet();

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
targetInstrSet = InstrSet_ARM;

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
targetInstrSet = InstrSet_ARM;

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
targetInstrSet = InstrSet_Thumb;

ARM_2009_Q3
Cross-Out

ARM_2009_Q3
Replacement Text
H

ARM_2009_Q3
Cross-Out

ARM_2009_Q3
Replacement Text
CurrentInstrSet() == InstrSet_ThumbEE || H==’1’

Instruction Details

Assembler syntax

BL{X}<c><q> <label>

where:

<C><q>

<label>

Operation

See Standard assembler syntax fields on page A8-7. An ARM BLX (immediate) instruction
must be unconditional.

If present, specifies a change of instruction set (from ARM to Thumb or from Thumb to
ARM). If X isomitted, the processor remains in the same state. For ThumbEE code,
specifying X is not permitted.

The label of the instruction that is to be branched to.

For BL (encodings T1, A1), theassembler calculatesthe required value of the offset from the
PC value of the BL instruction to this label, then selects an encoding that sets imm32 to that
offset. Permitted offsets are even numbersin therange—16777216 to 16777214 (Thumb) or
multiples of 4 in the range —33554432 to 33554428 (ARM).

For BLX (encodings T2, A2), the assembler calculates the required value of the offset from
the Align(PC,4) value of the BLX instruction to this label, then selects an encoding that sets
imm32 to that offset. Permitted offsetsare multiples of 4 intherange—16777216to 16777212
(Thumb) or even numbers in the range —33554432 to 33554430 (ARM).

if ConditionPassed() then
EncodingSpecificOperations();

if-CurrentInstrSet == InstrSet_ARM then

Exceptions

None.

Branch range before ARMv6T2

Before ARMV6T2, J1 and J2 in encodings T1 and T2 were both 1, resulting in asmaller branch range. The
instructions could be executed as two separate 16-bit instructions, as described in BL and BLX (immediate)
instructions, before ARMv6T2 on page AppxG-4.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-59

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
if CurrentInstrSet() == InstrSet_ARM then
 LR = PC - 4;
 else
 LR = PC<31:1> : '1';
 if targetInstrSet == InstrSet_ARM then
 targetAddress = Align(PC,4) + imm32;
 else
 targetAddress = PC + imm32;
 SelectInstrSet(targetInstrSet);
 BranchWritePC(targetAddress);

ARM_2009_Q2
Sticky Note
The pseudocode changes in this section fix two errors in the functionality described by the previous pseudocode:
 • When encoding T1 is executed in ThumbEE state, the previous pseudocode incorrectly indicates that execution switches to Thumb state. It instead remains in ThumbEE state.
 • The previous pseudocode incorrectly indicates that the target address is based on a value of the PC read in the new instruction set state. It is instead based on a value of the PC read in the original instruction set state.

Instruction Details

A8.6.24 BLX (register)

Branch with Link and Exchange (register) calls a subroutine at an address and instruction set specified by a
register.

Encoding T1 ARMV5T*, ARMvV6*, ARMV7
BLX<c> <Rm> Outside or last in IT block

151413121110 9 8 7 6 5 4 3 2 1 O

0100011 1/1] Rm |0)(0)(0

m = UInt(Rm);
if m == 15 then UNPREDICTABLE;
if InITBlock() && !'LastInITBlock() then UNPREDICTABLE;

Encoding Al ARMV5T*, ARMvV6*, ARMV7
BLX<c> <Rm>

31 3029 28 27 26 2524232221 2019181716151413121110 9 8 7 6 5 4 3 2 1 O

cond [00010010[LMOAOMDMDLAODWMWMAOMWMDO@MWO 011 Rm

m = UInt(Rm);
if m == 15 then UNPREDICTABLE;

A8-60

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

BLX<c><g> <Rm>

where:

<C><q> See Standard assembler syntax fields on page A8-7.

<Rim> The register that contains the branch target address and instruction set selection bity
Operation

if ConditionPassed() then
EncodingSpecificOperations();

4if CurrentInstrSet() == InstrSet_ARM then
next_instr_addr = PC - 4;
LR = next_instr_addr;

else
next_instr_addr = PC - 2;
LR = next_instr_addr<31:1> : ‘1’;

BXWritePC(REmY) ;

Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-61

ARM_2008_Q4
Inserted Text
 This register can be SP in both ARM and Thumb instructions, but this use of SP is deprecated.

ARM_2008_Q4
Inserted Text
 target = R[m];

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
target

Instruction Details

A8.6.25 BX
Branch and Exchange causes a branch to an address and instruction set specified by aregister.

Encoding T1 ARMVAT, ARMV5T*, ARMV6E*, ARMV7
BX<c> <Rm> Outsideor last in IT block

151413121110 9 8 7 6 5 4 3 2 1 0
010001|1 1|0 Rm (0) (0) (0)

m = UInt(Rm);

if InITBlock() && !LastInITBlock() then UNPREDICTABLE;
Encoding Al ARMVAT, ARMV5T*, ARMV6E*, ARMV7
BX<c> R

3130292827 26252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
cond [000100 1 0l1)QDAMOIMDLAMQWMWMQAMDLMDWAQO 00 1| Rm

m = UInt(Rm);

A8-62 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2010_Q2
Cross-Out

ARM_2010_Q2
Replacement Text
<Rm>

Instruction Details

Assembler syntax

BX<c><g> <Rm>

where:

<C><q> See Standard assembler syntax fields on page A8-7.

<Rm> Theregister that contains the branch target address and instruction set selection bit. The PC
can be used;
— Note
If <Rm> isthe PC in a Thumb instruction at a non word-aligned address, it resultsin
UNPREDICTABLE behavior because the address passed to the BXwritePC() pseudocode
function has bits<1:0> ='10'.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
BXWritePC(R[m]);
Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-63

ARM_2008_Q4
Inserted Text
 This register can be SP in both ARM and Thumb instructions, but this use of SP is deprecated.

Instruction Details

AB.6.26 BXJ

Branch and Exchange Jazelle attempts to change to Jazelle state. If the attempt fails, it branchesto an
address and instruction set specified by aregister as though it were aBX instruction.

Encoding T1 ARMV6T2, ARMV7
BXJ<c> <Rm> Outside or last in IT block

151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0
11110|0/2111|00 Rm 1 04(0) 0 |(D (1) (1) (D|©) (0) (0)(0)(0) (0) (O) (0)

m = UInt(Rm);
if BadReg(m) then UNPREDICTABLE;
if InITBlock() && !'LastInITBlock() then UNPREDICTABLE;

Encoding Al ARMV5TEJ, ARMV6*, ARMV7
BXJ<c> <Rm>

3130292827 26252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
cond [000100 1 01)DAMOIMDLAOMQWMWMQAMWMDW@QWO 0 10| Rm

m = UInt(Rm);
if m == 15 then UNPREDICTABLE;

A8-64 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

BXJ<c><g> <Rm>

where:

<C><q> See Standard assembler syntax fields on page A8-7.

<Rim> The register that specifies the branch target address and instruction set selection bit to be
used if the attempt to switch to Jazelle state fails.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
if JMCR.JE == ‘@’ || CurrentInstrSet() == InstrSet_ThumbEE then
BXWritePC(R[m])
else
if JazelleAcceptsExecution() then
SwitchToJazelleExecution();
else
SUBARCHITECTURE_DEFINED handler call;

Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-65

Instruction Details

A8.6.27 CBNZ, CBZ

Compare and Branch on Nonzero and Compare and Branch on Zero compare the value in aregister with
zero, and conditionally branch forward a constant value. They do not affect the condition flags.

Encoding T1 ARMV6ET2, ARMV7

(B{N}Z <Rn>,<label> Not permitted in IT block.
151413121110 9 8 7 6 5 4 3 2 1 O

101 1jop|Ofi|l imm5 Rn

n = UInt(Rn); imm32 = ZeroExtend(i:imm5:’@’, 32); nonzero = (op == ‘1’);
if InITBlock() then UNPREDICTABLE;

A8-66 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

CB{N}Z<g> <Rn>, <label>

where:

N If specified, causes the branch to occur when the contents of <Rn> are nonzero (encoded as
op = 1). If omitted, causes the branch to occur when the contents of <Rn> are zero (encoded
asop=0).

<q> See Standard assembler syntax fields on page A8-7. A (BZ or CBNZ instruction must be
unconditional.

<Rn> The operand register.

<label> Thelabel of theinstruction that is to be branched to. The assembler calculates the required
va ue of the offset from the PC value of the CB{N}Z instruction to this label, then selects an
encoding that sets imm32 to that offset. Permitted offsets are even numbersin the range 0 to
126.

Operation

EncodingSpecificOperations();
if nonzero A IsZero(R[n]) then

BranchWritePC(PC + imm32);
Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-67

Instruction Details

A8.6.28 CDP, CDP2

Coprocessor Data Processing tells a coprocessor to perform an operation that isindependent of ARM core
registers and memory. If no coprocessor can execute the instruction, an Undefined Instruction exception is
generated.

Thisisageneric coprocessor instruction. Some of thefiel dshave no functionality defined by the architecture
and are free for use by the coprocessor instruction set designer. These fields are the opcl, opc2, CRd, CRn,
and CRm fields.

For more information about the coprocessors see Coprocessor support on page A2-68.

Encoding T1/A1l ARMvV6ET2, ARMV7 for encoding T1
ARMv4* | ARMV5T*, ARMV6E*, ARMV7 for encoding A1

CDP<c> <coproc>,<opcl>,<CRd>,<CRn>, <CRm>, <opc2>

151413121110 9 8 7 6 5 4 3 2 1 01514131211109 8 7 6 5 4 3 2 1 0
1110|1110 opcl CRn CRd coproc opc2 |0 CRm
3130292827 26 2524 2322212019 181716151413121110 9 8 7 6 5 4 3 2 1 O
cond 1110 opcl CRn CRd coproc opc2 |0 CRm

if coproc == ‘101x’ then SEE “VFP instructions”;
cp = UInt(coproc);

Encoding T2/ A2 ARMV6ET2, ARMV7 for encoding T2

ARMVS5T*, ARMvE*, ARMV7 for encodingA2

CDP2<c> <coproc>,<opcl>,<CRd>,<CRn>,<CRm>,<opc2>

1514131211109 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0
1111|1110 opcl CRn CRd coproc opc2 |0 CRm
31302928 27 26 2524 232221201918 1716151413121110 9 8 7 6 5 4 3 2 1 O
1111|1110 opcl CRn CRd coproc opc2 |0 CRm

cp = UInt(coproc);

VFP instructions

See VFP data-processing instructions on page A7-24

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

ARM DDI 0406B

ARM_2008_Q4
Inserted Text

Instruction Details

Assembler syntax

CDP{2}<c><q>
where:

2

<C><0>

<coproc>

<opcl>
<CRd>
<CRn>
<CRm>

<opc2>

Operation

<coproc>, #g<opcl>, <CRd>, <CRn>, <CRm> {,#<opc2>}

If specified, selectsencoding T2/ A2. If omitted, selects encoding T1/Al.

See Standard assembler syntax fields on page A8-7. An ARM (DP2 instruction must be
unconditional.

The name of the coprocessor, and causes the corresponding coprocessor number to be
placed inthe cp_num field of the instruction. The standard generic coprocessor names are

pO, p1, ..., p15.

I's a coprocessor-specific opcode, in therange 0 to 15.

The destination coprocessor register for the instruction.
The coprocessor register that contains the first operand.
The coprocessor register that contains the second operand.

I's a coprocessor-specific opcode in therange 0 to 7. If it is omitted, <opc2> is 0.

if ConditionPassed() then
EncodingSpecificOperations();
if !Coproc_Accepted(cp, ThisInstr()) then
GenerateCoprocessorException();

else

Coproc_InternalOperation(cp, ThisInstr());

Exceptions

Undefined Instruction.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-69

ARM_2009_Q3
Cross-Out

ARM_2009_Q3
Replacement Text
{#}

ARM_2009_Q3
Cross-Out

ARM_2009_Q3
Replacement Text
{#}

Instruction Details

A8.6.29 CHKA
CHKA isa ThumbEE instruction. For details see CHKA on page A9-15.

A8.6.30 CLREX

Clear-Exclusive clears the local record of the executing processor that an address has had a request for an
exclusive access.

Encoding T1 ARMv7

CLREX<c>

1514131211109 8 7 6 5 4 3 2 1 0 1514131211109 8 7 6
11110|0(1 11012/ @||2 0j0jO0ID@MD®W(@)0 O

[&)]

43210
0 (1D D@

[EEY

// No additional decoding required

Encoding Al ARMvEK, ARMv7

CLREX

3130292827 26 252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
11110101011 10HO@OOOMOO@DO@O@O@©]0 00 1{(1)D)D)(QD)

// No additional decoding required

A8-70 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

CLREX<c><qg>

where:

<C><q> See Standard assembler syntax fields on page A8-7. An ARM CLREX instruction must be
unconditional.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
ClearExclusivelocal(ProcessorID());

Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-71

Instruction Details

A8.6.31 CLZ
Count Leading Zeros returns the number of binary zero bits before the first binary one bit in avalue.

Encoding T1 ARMV6T2, ARMV7
CLZ<c> <Rd>,<Rm>

151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0

11111{010(1|011 Rm 1111 Rd 1 0 Rm
if !Consistent(Rm) then UNPREDICTABLE;
d = UInt(Rd); m = UInt(Rm);
if BadReg(d) || BadReg(m) then UNPREDICTABLE;
Encoding Al ARMV5T*, ARMV6*, ARMV7
CLZ<c> <Rd>,<Rm>
3130292827 26 252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

cond [00010110MOAQW R |(D@O@O@DO 00 1| Rm

d = UInt(Rd); m = UInt(Rm);
if d == 15 || m == 15 then UNPREDICTABLE;

A8-72 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

CLZ<c><g> <Rd>, <Rm>

where:

<C><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rim> The register that contains the operand. Its number must be encoded twice in encoding T1.
Operation

if ConditionPassed() then
EncodingSpecificOperations();
result = CountLeadingZeroBits(R[m]);
R[d] = result<31:0>;

Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-73

Instruction Details

A8.6.32 CMN (immediate)

Compare Negative (immediate) adds aregister value and an immediate value. It updates the condition flags
based on the result, and discards the result.

Encoding T1 ARMV6T2, ARMV7
CMN<c> <Rn>,#<const>

151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0
11110|i|0|1 000|121 Rn O imm3 |11 11 imm8

n = UInt(Rn); imm32 = ThumbExpandImm(i:imm3:imm8);
if n == 15 then UNPREDICTABLE;

Encoding Al ARMv4* ARMvV5T*, ARMvV6*, ARMV7

CMN<c> <Rn>, #<const>

3130292827 26252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
cond 00f1{2 01112 Rn (0) (0) (0) (0) imm12

n = UInt(Rn); imm32 = ARMExpandImm(imml2);

A8-74 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

CMN<c><g> <Rn>, #<const>

where:

<C><q> See Standard assembler syntax fields on page A8-7.

<Rn> The register that contains the operand. SP can be used in Thumb aswell asin ARM

<const> The immediate value to be added to the value obtained from <Rn>. See Modified immediate
constants in Thumb instructions on page A6-17 or Modified immediate constants in ARM
instructions on page A5-9 for the range of values.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
(result, carry, overflow) = AddwWithCarry(R[n], imm32, ‘0’);
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
APSR.V = overflow;

Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-75

ARM_2009_Q2
Inserted Text
 PC can be used in ARM instructions.

Instruction Details

A8.6.33 CMN (register)

Compare Negative (register) adds a register value and an optionally-shifted register value. It updates the
condition flags based on the result, and discards the result.

Encoding T1 ARMVAT, ARMV5T*, ARMV6E*, ARMV7
CMN<c> <Rn>, <Rm>

151413121110 9 8 7 6 5 4 3 2 1 O
0100002011 Rm Rn

n = UInt(Rn); m = UInt(Rm);
(shift_t, shift_n) = (SRType_LSL, 0);

Encoding T2 ARMvV6ET2, ARMV7
CMN<c>.W <Rn>,<Rm>{,<shift>}

151413121110 9 8 7 6 5 4 3 2 1 0 1514131211109 8 7 6 5 4 3 2 1 0
111011011 000(1 Rn ©)f imm3 |1 1 1 1|imm2]|type Rm

n = UInt(Rn); m = UInt(Rm);
(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);
if n == 15 || BadReg(m) then UNPREDICTABLE;

Encoding Al ARMv4* ARMV5T*, ARMvV6*, ARMV7
CMN<c> <Rn>,<Rm>{,<shift>}

3130292827 26252423222120191817 161514 13121110 9 8 7 6 5 4 3 2 1 0
cond 0 0|01 01112 Rn (0) (0) (0) (0) imm5 type | O Rm

n = UInt(Rn); m = UInt(Rm);
(shift_t, shift_n) = DecodeImmShift(type, imm5);

A8-76 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

CMN<c><g> <Rn>, <Rm> {,<shift>}

where:

<C><q> See Standard assembler syntax fields on page A8-7.

<Rn> Thefirst operand register. SP can be used in Thumb (encoding T2) aswell asin ARMy

<Rm> Theregister that is optionally shifted and used as the second operandy_

<shift> The shift to apply to the value read from <Rm>. If present, encoding T1 is not permitted. If
absent, no shift is applied and all encodings are permitted. Shifts applied to a register on
page A8-10 describes the shifts and how they are encoded.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
shifted = Shift(R[m], shift_t, shift_n, APSR.C);
(result, carry, overflow) = AddwWithCarry(R[n], shifted, ‘0’);
APSR.N = result<31>;

APSR.Z = IsZeroBit(result);
APSR.C = carry;
APSR.V = overflow;
Exceptions
None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-77

ARM_2009_Q2
Inserted Text
 PC can be used in ARM instructions.

ARM_2009_Q2
Inserted Text
 PC can be used in ARM instructions.

Instruction Details

A8.6.34 CMN (register-shifted register)

Compare Negative (register-shifted register) adds a register value and a register-shifted register value. It
updates the condition flags based on the result, and discards the result.

Encoding Al ARMv4*, ARMV5T*, ARMvV6*, ARMV7
CMN<c> <Rn>,<Rm>,<type> <Rs>

31 30 29 28 27 26 2524 232221 2019181716151413121110 9 8 7 6 5 4 3 2 1 O

cond

00l/0|/1 0111 Rn |0©(@©@©) Rs |0

type

1 Rm

n = UInt(Rn); m = UInt(Rm); s = UInt(Rs);
shift_t = DecodeRegShift(type);
ifn==15 || m==15 || s == 15 then UNPREDICTABLE;

A8-78

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

ARM DDI 0406B

Instruction Details

Assembler syntax

CMN<c><g> <Rn>, <Rm>, <type> <Rs>

where:
<C><0>
<Rn>
<Rm>

<type>

<Rs>

Operation

See Standard assembler syntax fields on page A8-7.
Thefirst operand register.
The register that is shifted and used as the second operand.

The type of shift to apply to the value read from <Rm>. It must be one of:

ASR Arithmetic shift right, encoded as type = 0b10
LSL Logical shift left, encoded as type = 0b00

LSR Logical shift right, encoded as type = 0b01
ROR Rotate right, encoded as type = Ob11.

The register whose bottom byte contains the amount to shift by.

if ConditionPassed() then
EncodingSpecificOperations();

shift_n = UInt(R[s]<7:0>);
shifted = Shift(R[m], shift_t, shift_n, APSR.C);
(result, carry, overflow) = AddwWithCarry(R[n], shifted, ‘0’);
APSR.N = result<3l>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
APSR.V = overflow;
Exceptions
None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

A8-79

Instruction Details

A8.6.35 CMP (immediate)

Compare (immediate) subtracts an immediate value from aregister value. It updates the condition flags

based on the result, and discards the result.

Encoding T1 ARMVAT, ARMV5T*, ARMV6E*, ARMV7
CMP<c> <Rn>,#<imm8>

151413121110 9 8 7 6 5 4 3 2 1 O

0 01|01 Rn imm8

n = UInt(Rdn); imm32 = ZeroExtend(imm8, 32);

Encoding T2 ARMvV6T2, ARMV7
(MP<c>.W <Rn>,#<const>

151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0

11110i|0(1 1011 Rn 0| imm3

1111

imm8

n = UInt(Rn); imm32 = ThumbExpandImm(i:imm3:imm8);
if n == 15 then UNPREDICTABLE;

Encoding Al ARMv4* ARMvV5T*, ARMvV6*, ARMV7
CMP<c> <Rn>,#<const>

31 3029 28 27 26 25 24 232221 2019181716 151413121110 9 8 7 6 5 4 3 2 1 0

cond |0 0[1|1 0 1 0[1| Rn |(0)(0)(0)(0)

imm12

n = UInt(Rn); imm32 = ARMExpandImm(imm12);

A8-80

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

ARM DDI 0406B

ARM_2009_Q2
Cross-Out

Instruction Details

Assembler syntax

CMP<c><g> <Rn>, #<const>

where:

<C><q> See Standard assembler syntax fields on page A8-7.

<Rn> Thefirst operand register. SP can be used in Thumb (encoding T2) aswell asin ARMy

<const> Theimmediate value to be compared with the value obtained from <Rn>. Therange of values
is 0-255 for encoding T1. See Modified immediate constants in Thumb instructions on
page A6-17 or Modified immediate constants in ARM instructions on page A5-9 for the
range of values for encoding T2 and A1.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
(result, carry, overflow) = AddWithCarry(R[n], NOT(imm32), ‘1’);

APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
APSR.V = overflow;
Exceptions
None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-81

ARM_2009_Q2
Inserted Text
 PC can be used in ARM instructions.

Instruction Details

A8.6.36 CMP (register)

Compare (register) subtracts an optionally-shifted register value from aregister value. It updates the
condition flags based on the result, and discards the result.

Encoding T1
CMP<c> <Rn>, <Rm>

151413121110 9 8 7 6 5 4 3 2 1 O

ARMVAT, ARMV5T*, ARMV6E*, ARMV7

0100001010 Rm Rn
n = UInt(Rn); m = UInt(Rm);
(shift_t, shift_n) = (SRType_LSL, 0);

Encoding T2
CMP<c> <Rn>, <Rm>

15 14 13 12 11 10

ARMVAT, ARMV5T*, ARMV6*, ARMV7

9 8 76 543210

010001

0 1|N Rm

Rn

n = UInt(N:Rn); m
(shift_t, shift_n)

UInt(Rm);
= (SRType_LSL,

0);

if n < 8 & m < 8 then UNPREDICTABLE;

if n == 15 || m == 15 then UNPREDICTABLE;

Encoding T3

ARMV6T2, ARMV7

CMP<c>.W <Rn>, <Rm> {,<shift>}
1514131211109 8 7 6 5 4 3 2 1 0 1514131211109 8 7 6 5 4 3 2 1 0

<Rn> and <Rm> both from R0O-R7

<Rn> and <Rm> not both from RO-R7

11101|0

111101

1

Rn

(0)| imm3

1111

imm2 | type Rm

n = UInt(Rn); m=

UInt(Rm);

(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);
if n == 15 || BadReg(m) then UNPREDICTABLE;

Encoding Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9

ARMv4* ARMV5T*, ARMV6*, ARMV7
C(MP<c> <Rn>,<Rm>{,<shift>}

8 7 6 543 210

cond 00

0j1 010

1

Rn

©(©(0) (0

imm5

type

0 Rm

n = UInt(Rn); m = UInt(Rm);

(shift_t, shift_n) = DecodeImmShift(type, imm5);

A8-82

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

ARM DDI 0406B

Instruction Details

Assembler syntax

CMP<c><g> <Rn>, <Rm> {,<shift>}

where:
<C><0>
<Rn>

<Rm>

<shift>

Operation

See Standard assembler syntax fields on page A8-7.
Thefirst operand register. The SP can be usedy

Theregister that is optionally shifted and used as the second operand. jThis register can be
SPin both ARM and Thumb instructions, but:

. the use of SP is deprecated
. when assembling for the Thumb instruction set, only encoding T2 is available.

The shift to apply to the value read from <Rm>. If present, encodings T1 and T2 are not
permitted. If absent, no shift isapplied and all encodings are permitted. Shifts applied to a
register on page A8-10 describes the shifts and how they are encoded.

if ConditionPassed() then
EncodingSpecificOperations();
shifted = Shift(R[m], shift_t, shift_n, APSR.C);
(result, carry, overflow) = AddWithCarry(R[n], NOT(shifted), ‘1’);

APSR.N = result<3l>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
APSR.V = overflow;
Exceptions
None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-83

ARM_2009_Q2
Inserted Text
 PC can be used in ARM instructions.

ARM_2009_Q2
Inserted Text
 PC can be used in ARM instructions.

Instruction Details

A8.6.37 CMP (register-shifted register)

Compare (register-shifted register) subtracts aregister-shifted register value from aregister value. It updates
the condition flags based on the result, and discards the result.

Encoding Al ARMv4*, ARMV5T*, ARMvV6*, ARMV7
CMP<c> <Rn>,<Rm>,<type> <Rs>

3130292827 26252423222120191817 161514 13121110 9 8 7 6 5 4 3 2 1 0
cond 0 0|01 0 10]12 Rn (0) (0) (0) (0) Rs O|type |1l Rm

n = UInt(Rn); m = UInt(Rm); s = UInt(Rs);
shift_t = DecodeRegShift(type);
ifn==15 || m==15 || s == 15 then UNPREDICTABLE;

A8-84 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

CMP<c><g> <Rn>, <Rm>, <type> <Rs>

where:
<C><0>
<Rn>
<Rm>

<type>

<Rs>

Operation

See Standard assembler syntax fields on page A8-7.
Thefirst operand register.
The register that is shifted and used as the second operand.

The type of shift to apply to the value read from <Rm>. It must be one of:

ASR Arithmetic shift right, encoded as type = 0b10
LSL Logical shift left, encoded as type = 0b00

LSR Logical shift right, encoded as type = 0b01
ROR Rotate right, encoded as type = Ob11.

The register whose bottom byte contains the amount to shift by.

if ConditionPassed() then
EncodingSpecificOperations();

shift_n = UInt(R[s]<7:0>);
shifted = Shift(R[m], shift_t, shift_n, APSR.C);
(result, carry, overflow) = AddWithCarry(R[n], NOT(shifted), ‘1’);
APSR.N = result<3l>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
APSR.V = overflow;
Exceptions
None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

A8-85

Instruction Details

A8.6.38 CPS

Change Processor State is a system instruction. For details see CPS on page B6-3.

A8.6.39 CPY
Copy isapre-UAL synonym for MOV (register).

A8-86 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax
CPY <Rd>, <Rn>
Thisisequivalent to:
MOV <Rd>, <Rn>

Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-87

Instruction Details

A8.6.40 DBG

Debug Hint providesahint to debug and rel ated systems. See their documentation for what use (if any) they
make of thisinstruction.

Encoding T1 ARMV7 (executes as NOP in ARMV6T?2)
DBG<c> #<option>

151413121110 9 8 7 6 5 4 3 2 1 0 1514131211109 8 7 6 5 4 3 2 1 0

11110(0/1112{01|0[(L@O® @MW||1 0|0j0|O)JO0 0 0|2 111 option
// Any decoding of ‘option’ is specified by the debug system

Encoding Al ARMV7 (executes as NOP in ARMv6Kand ARMV6T?2)

DBG<c> #<option>

31 3029 28 27 26 25 24 23 22 21 2019 18 17 16 151413121110 9 8 7 6 4 3 2 10

cond [0 011 0/0/1 0000 0|1)D)QDDO)O@OEO[1 1 1 1| option

// Any decoding of ‘option’ is specified by the debug system

A8-88 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

DBG<c><g> #<option>

where:

<C><q> See Standard assembler syntax fields on page A8-7.

<option> Provides extrainformation about the hint, and isin the range 0 to 15.
Operation

if ConditionPassed() then
EncodingSpecificOperations();
Hint_Debug(option);
Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-89

Instruction Details

A8.6.41 DMB

DataMemory Barrierisamemory barrier that ensuresthe ordering of observations of memory accesses, see
Data Memory Barrier (DMB) on page A3-48.

Encoding T1 ARMv7
DMB<c> #<option>

151413121110 9 8 7 6 5 4 3 2 1 0 1514131211109 8 7 6 5 4 3 2 1 0

1111001 12112{01|11|[0D@OO® @1 0ojO0j0lMHD(DM@DW|O0 101 option
// No additional decoding required

Encoding Al ARMv7

DMB #<option>

31 3029 28 27 26 25 24 23 22 21 2019 18 17 16 151413121110 9 8 7 6 4 3 2 10

1111/0101011 1/(1)@OQMWADQDQDMA|OOOO0 1 0 1| option

// No additional decoding required

Assembler syntax

DMB<c><q> {<epi>}

where: @

<C><0> See Standard assembler syntax fields on page A8-7. An ARM DMB instruction must be
unconditional.

<opt> Specifies an optional limitation on the DMB operation. Values are:

SY Full system is the required shareability domain, reads and writes are the
reguired access types. Can be omitted.
This optionisreferred to as the full system DMB. Encoded as option =='1111".

ST Full system isthe required shareability domain, writes are the required access
type. SYST isa synonym for ST. Encoded as option =='1110'.

ISH Inner Shareable is the required shareability domain, reads and writes are the
required access types. Encoded as option == '1011".

ISHST Inner Shareable is the required shareability domain, writes are the required
access type. Encoded as option =='1010'.

NSH Non-shareable is the required shareability domain, reads and writes are the

required access types. Encoded as option == '0111".

NSHST Non-shareable is the required shareability domain, writes are the required
access type. Encoded as option =='0110'.

A8-90 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
option

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
option

ARM_2009_Q1
Sticky Note
This change from opt to option, here and in the Note on the next page, is for consistency with the disassembly syntax shown with the figures on this page.

Operation

OSH

OSHST

Instruction Details

Outer Shareableis the required shareability domain, reads and writes are the
required access types. Encoded as option == '0011".

Outer Shareableis the required shareability domain, writes are the required

access type. Encoded as option =="0010'.

All other encodings of option arereserved. ItiSIMPLEMENTATION DEFINED whether options
other than Sy areimplemented. All unsupported and reserved options must execute as afull
system DMB operation, but software must not-must rely on this eperation,

Note

Thefollowing alternative gppt> values are supported, but ARM recommendsthat you do not
use these alternative values:

SH asan alias for ISH
SHST as an alias for ISHST
UN asan aliasfor NSH
UNST is an alias for NSHST.

if ConditionPassed() then
EncodingSpecificOperations();
case option of

when
when
when
when
when
when
when

‘0010’
‘0010’
‘0110’
‘0111’
‘1010’
‘1011’
‘1110’

otherwise =
DataMemoryBarrier(domain,

Exceptions

None.

domain

domain =

domain

domain =

domain
domain

domain =

domain

MBReqgDomain_OuterShareable;
MBRegDomain_OuterShareable;
MBRegDomain_Nonshareable;
MBRegDomain_Nonshareable;
MBRegDomain_InnerShareable;
MBRegDomain_InnerShareable;
MBRegDomain_FullSystem;
MBRegDomain_FullSystem;
types);

types =
types =

types

types =

types

types =
types =

types

MBReqTypes_Writes;
MBReqTypes_ATT;
MBReqTypes_Writes;
MBReqTypes_ATT;
MBReqTypes_Writes;
MBReqTypes_A11;
MBReqTypes_Writes;
MBReqTypes_ATT;

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-91

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
1

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
option

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
behavior

ARM_2009_Q1
Sticky Note
The change from "operation" to "behavior" is a clarification of the intended meaning.

Instruction Details

A8.6.42 DSB

Data Synchronization Barrier isamemory barrier that ensuresthe completion of memory accesses, see Data
Synchronization Barrier (DSB) on page A3-49.

Encoding T1 ARMv7

DSB<c> #<option>

1514131211109 8 7 6 5 4 3 2 1 0 1514131211109 8 7 6 5 4 3 2 1 0
11110|0(111|0 1|2|()DM@®) @D||2 0|00 1 0 O option

// No additional decoding required

Encoding Al ARMv7

DSB #<option>

31302928 27 26 2524232221 20191817161514131211109 8 7 6 5 4 3 2 1 0
111120101011 100QOOOOOMA)OMOGOOO0 100 option

// No additional decoding required

Assembler syntax

DSB<c><g> {<epi>}

where:

<C><0> See Standard assembler syntax fields on page A8-7. An ARM DSB instruction must be
unconditional.

opt> Specifies an optional limitation on the DSB operation. Values are:

SY Full system is the required shareability domain, reads and writes are the
reguired access types. Can be omitted.

This option isreferred to asthe full system DMB. Encoded as option == '1111".

ST Full system isthe required shareability domain, writes are the required access
type. SYST isa synonym for ST. Encoded as option =='1110'.

ISH Inner Shareable is the required shareability domain, reads and writes are the
required access types. Encoded as option == '1011".

ISHST Inner Shareable is the required shareability domain, writes are the required
access type. Encoded as option =='1010'.

NSH Non-shareable is the required shareability domain, reads and writes are the

required access types. Encoded as option == '0111".

NSHST Non-shareable is the required shareability domain, writes are the required
access type. Encoded as option =='0110'.

A8-92 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
S

ARM_2009_Q1
Sticky Note
This change from opt to option, here and in the Note on the next page, is for consistency with the disassembly syntax shown with the figures on this page.

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
option

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
option

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Cross-Out

Operation

OSH

OSHST

Instruction Details

Outer Shareableis the required shareability domain, reads and writes are the
required access types. Encoded as option == '0011".

Outer Shareableis the required shareability domain, writes are the required
access type. Encoded as option =="0010'.

All other encodings of option arereserved. ItiSIMPLEMENTATION DEFINED whether options
other than Sy areimplemented. All unsupported and reserved options must execute as afull
system DSB operation, but software must not-must rely on this eperation,.

Note

Thefollowing alternative <eptp valuesare supported, but ARM recommendsthat you do not
use these alternative values:

SH asan alias for ISH
SHST as an alias for ISHST
UN asan aliasfor NSH
UNST is an alias for NSHST.

if ConditionPassed() then
EncodingSpecificOperations();
case option of

when
when
when
when
when
when
when

‘0010’
‘0010’
‘0110’
‘0111’
‘1010’
‘1011’
‘1110’

otherwise
DataSynchronizationBarrier(domain, types);

Exceptions

None.

domain =
domain =

domain

domain =

domain

domain =
domain =
domain =

MBReqgDomain_OuterShareable;
MBRegDomain_OuterShareable;
MBRegDomain_Nonshareable;
MBRegDomain_Nonshareable;
MBRegDomain_InnerShareable;
MBRegDomain_InnerShareable;
MBRegDomain_FullSystem;
MBRegDomain_FullSystem;

types =
types =

types

types =

types

types =
types =

types

MBReqTypes_Writes;
MBReqTypes_ATT;
MBReqTypes_Writes;
MBReqTypes_ATT;
MBReqTypes_Writes;
MBReqTypes_A11;
MBReqTypes_Writes;
MBReqTypes_ATT;

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-93

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
1

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Inserted Text
option

ARM_2009_Q1
Sticky Note
The change from "operation" to "behavior" is a clarification of the intended meaning.

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
behavior

Instruction Details

A8.6.43 ENTERX

ENTERX causes a change from Thumb state to ThumbEE state, or has no effect in ThumbEE state. For details
see ENTERX, LEAVEX on page A9-7.

A8.6.44 EOR (immediate)
Bitwise Exclusive OR (immediate) performs a bitwise Exclusive OR of aregister value and an immediate
value, and writes the result to the destination register. It can optionally update the condition flags based on
the resuilt.
Encoding T1 ARMV6ET2, ARMV7
EOR{S}<c> <Rd>,<Rn>,#<const>
1514131211109 8 7 6 5 4 3 2 1 015124131211109 8 7 6 5 4 3 2 10
11110(i|0|]0100]S Rn 0| imm3 Rd imm8
if Rd == ‘1111’ && S == ‘1’ then SEE TEQ (immediate);
d = UInt(Rd); n = UInt(Rn); setflags = (S == ‘1’);
(imm32, carry) = ThumbExpandImm_C(i:imm3:imm8, APSR.C);
if BadRegte) || BadReg(n) then UNPREDICTABLE;
Encoding Al ARMv4* ARMV5T*, ARMvV6*, ARMV7
EOR{S}<c> <Rd>,<Rn>,#<const>
31302928 27 26 252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

cond 0 0|1|0 0 0 1|S Rn Rd imm212

if Rd == ‘1111’ && S == ‘1’ then SEE SUBS PC, LR and related instructions;
d = UInt(Rd); n = UInt(Rn); setflags = (S == ‘1’);
(imm32, carry) = ARMExpandImm_C(imm12, APSR.C);

A8-94 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
d == 13 || (d == 15 && S == '0')

Instruction Details

Assembler syntax

EOR{S}<c><q> {<Rd>,} <Rn>, #<const>

where:

S If S ispresent, the instruction updates the flags. Otherwise, the flags are not updated.
<C><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination registery

<Rn> The register that contains the operandy

<const> Theimmediate value to be exclusive ORed with the val ue obtained from <Rn>. See Modified

immediate constantsin Thumb instructionson page A6-17 or Modified immediate constants
in ARM instructions on page A5-9 for the range of values.

The pre-UAL syntax EOR<c>S is equivalent to EORS<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
result = R[n] EOR imm32;
if d == 15 then // Can only occur for ARM encoding
ALUWritePC(result); // setflags is always FALSE here
else
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
// APSR.V unchanged

Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-95

ARM_2009_Q2
Inserted Text
 PC can be used in ARM instructions.

ARM_2009_Q2
Inserted Text
 If S is specified and <Rd> is the PC, see SUBS PC, LR and related instructions on page B6-25 [PDF page 1583]. In ARM instructions, if S is not specified and <Rd> is the PC, the instruction is a branch to the address calculated by the operation. This is a simple branch before ARMv7, and an interworking branch from ARMv7.

Instruction Details

A8.6.45 EOR (register)

Bitwise Exclusive OR (register) performs a bitwise Exclusive OR of aregister value and an
optionally-shifted register value, and writesthe result to the destination register. It can optionally update the
condition flags based on the result.

Encoding T1 ARMVAT, ARMV5T*, ARMv6*, ARMV7
EORS <Rdn>,<Rm> Qutside I T block.
EOR<c> <Rdn>,<Rm> Inside I'T block.

151413121110 9 8 7 6 5 4 3 2 1 O
0100000O0O01f Rm Rdn

d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();
(shift_t, shift_n) = (SRType_LSL, 0);

Encoding T2 ARMvV6ET2, ARMV7
EOR{S}<c>.W <Rd>,<Rn>,<Rm>{,<shift>}

151413121110 9 8 7 6 5 4 3 2 1 0 1514131211109 8 7 6 5 4 3 2 1 0
1110110 1|0 10 0}S Rn (0)| imm3 Rd immz2 | type Rm

if Rd == ‘1111’ && S == ‘1’ then SEE TEQ (register);

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == ‘1");
(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);

if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

Encoding Al ARMv4*, ARMV5T*, ARMV6*, ARMV7
EOR{S}<c> <Rd>,<Rn>,<Rm>{,<shift>}

3130292827 26 2524 2322212019 181716151413121110 9 8 7 6 5 4 3 2 1 O
cond 0 0|00 0O 0 1|S Rn Rd imm5 type | O Rm

if Rd == ‘1111’ && S == ‘1’ then SEE SUBS PC, LR and related instructions;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == ‘1’);
(shift_t, shift_n) = DecodeImmShift(type, imm5);

A8-96 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
d == 13 || (d == 15 && S == '0')

Instruction Details

Assembler syntax

EOR{S}<c><q> {<Rd>,} <Rn>, <Rm> {,<shift>}

where:

S If S ispresent, the instruction updates the flags. Otherwise, the flags are not updated.
<C><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination registery

<Rn> Thefirst operand registery

<Rm> The register that is optionally shifted and used as the second operand

<shift> The shift to apply to the value read from <Rm>. If present, encoding T1 is not permitted. If

absent, no shift is applied and all encodings are permitted.Shifts applied to a register on
page A8-10 describes the shifts and how they are encoded.

In Thumb assembly:

. outsidean I T block, if EORS <Rd>, <Rn>, <Rd> has <Rd> and <Rn> both in therange RO-R7, it isassembled
using encoding T1 as though EORS <Rd>,<Rn> had been written

. insidean IT block, if EOR<c> <Rd>, <Rn>,<Rd> has <Rd> and <Rn> both in therange RO-R7, it is
assembled using encoding T1 as though EOR<c> <Rd>, <Rn> had been written.

To prevent either of these happening, use the .W qudlifier.

The pre-UAL syntax EOR<c>S is equivalent to EORS<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
(shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
result = R[n] EOR shifted;
if d == 15 then // Can only occur for ARM encoding
ALUWritePC(result); // setflags is always FALSE here
else
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
// APSR.V unchanged

Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-97

ARM_2009_Q2
Inserted Text
 PC can be used in ARM instructions.

ARM_2009_Q2
Inserted Text
 PC can be used in ARM instructions.

ARM_2009_Q2
Inserted Text
 If S is specified and <Rd> is the PC, see SUBS PC, LR and related instructions on page B6-25 [PDF page 1583]. In ARM instructions, if S is not specified and <Rd> is the PC, the instruction is a branch to the address calculated by the operation. This is a simple branch before ARMv7, and an interworking branch from ARMv7.

Instruction Details

A8.6.46 EOR (register-shifted register)

Bitwise Exclusive OR (register-shifted register) performs a bitwise Exclusive OR of aregister value and a
register-shifted register value. It writes the result to the destination register, and can optionally update the
condition flags based on the result.

Encoding Al ARMv4*, ARMV5T*, ARMV6E*, ARMV7
EOR{S}<c> <Rd>,<Rn>,<Rm>,<type> <Rs>

3130292827 2625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 O

cond 0 0|00 0 O 1|S Rn Rd Rs O|type|1 Rm

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); s = UInt(Rs);
setflags = (S == ‘1’); shift_t = DecodeRegShift(type);
if d==15]| n==15 || m==15 || s == 15 then UNPREDICTABLE;

A8-98

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

EOR{S}<c><q> {<Rd>,} <Rn>, <Rm>, <type> <Rs>

where:
S If Sis present, the instruction updates the flags. Otherwise, the flags are not updated.
<C><q> See Standard assembler syntax fields on page A8-7.
<Rd> The destination register.
<Rn> Thefirst operand register.
<Rm> The register that is shifted and used as the second operand.
<type> The type of shift to apply to the value read from <Rm>. It must be one of:
ASR Arithmetic shift right, encoded as type = 0b10
LSL Logical shift left, encoded as type = 0b00
LSR Logical shift right, encoded as type = 0b01
ROR Rotate right, encoded as type = Ob11.
<Rs> The register whose bottom byte contains the amount to shift by.

The pre-UAL syntax EOR<c>S is equivalent to EORS<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
shift_n = UInt(R[s]<7:0>);
(shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
result = R[n] EOR shifted;
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
// APSR.V unchanged

Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-99

Instruction Details

A8.6.47 F* (former VFP instruction mnemonics)

Table A8-2 liststhe UAL equivalents of pre-UAL VFP instruction mnemonics.

Table A8-2 VFP instruction mnemonics

Former ARM assembler UAL

mnemonic equivalent See

FABSD, FABSS VABS VABS on page A8-532

FADDD, FADDS VADD VADD (floating-point) on page A8-538

FCMP, FCMPE, FCMPEZ, FCMPZ VCMP{E} VCMP, VCMPE on page A8-572

FCONSTD, FCONSTS VMOV VMOV (immediate) on page A8-640

FCPYD, FCPYS VMoV VMOV (register) on page A8-642

FCVTDS, FCVTSD VQVT VCVT (between double-precision and single-precision) on page A8-584

FDIVD, FDIVS VDIV VDIV on page A8-590

FLDD VLDR VLDR on page A8-628

FLDMD, FLDMS VLDM, VPOP VLDM on page A8-626. VPOP on page A8-694

FLDMX FLDMX FLDMX, FSTMX on page A8-101

FLDS VLDR VLDR on page A8-628

FMACD, FMACS VMLA VMLA, VMLS (floating-point) on page A8-636

FMDHR, FMDLR VMoV VMOV (ARM core register to scalar) on page A8-644

FMDRR VMOV VMOV (between two ARM core registers and a doubleword extension
register) on page A8-652

FMRDH, FMRDL VMOV VMOV (scalar to ARM core register) on page A8-646

FMRRD VMoV VMOV (between two ARM core registers and a doubleword extension
register) on page A8-652

FMRRS VMOV VMOV (between two ARM core registers and two single-precision
registers) on page A8-650

FMRS VMoV VMOV (between ARM core register and single-precision register) on
page A8-648

FMRX VMRS VMRS on page A8-65§

FMSCD, FMSCS VNMLS VNMLA, VNMLS VNMUL on page A8-674

FMSR VMOV VMOV (between ARM core register and single-precision register) on
page A8-648

FMSRR VMOV VMOV (between two ARM core registers and two single-precision
registers) on page A8-650

FMSTAT VMRS VMRS on page A8-658

FMULD, FMULS VMUL VMUL (floating-point) on page A8-664

FMXR VMSR VMSR on page A8-660

A8-100 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
B6-27 [PDF page 1585]

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
B6-29 [PDF page 1587]

Instruction Details

Table A8-2 VFP instruction mnemonics (continued)

Former ARM assembler UAL_ See
mnemonic equivalent
FNEGD, FNEGS VNEG VNEG on page A8-672
FNMACD, FNMACS VMLS VMLA, VMLS (floating-point) on page A8-636
FNMSCD, FNMSCS VNMLA VNMLA, VNMLS, VNMUL on page A8-674
FNMULD, FNMULS VNMUL VNMLA, VNMLS, VNMUL on page A8-674
FSHTOD, FSHTOS VQVT VCVT (between floating-point and fixed-point, VFP) on page A8-582
FSITOD, FSITOS VQVT VCVT, VCVTR (between floating-point and integer, VFP) on
page A8-578
FSLTOD, FSLTOS VQVT VCVT (between floating-point and fixed-point, VFP) on page A8-582
FSQRTD, FSQRTS VSQRT VSQRT on page A8-762
FSTD VSTR VSTR on page A8-786
FSTMD, FSTMS VSTM, VPUSH VSTM on page A8-784, VPUSH on page A8-696
FSTMX FSTMX FLDMX, FSTMX
FSTS VSTR VSTR on page A8-786
FSUBD, FSUBS VSUB V3UB (floating-point) on page A8-790
FTOSHD, FTOSHS VQVT VCVT (between floating-point and fixed-point, VFP) on page A8-582
FTOSI{Z}D, FTOSI{Z}S VCVT{R} VCVT, VCVTR (between floating-point and integer, VFP) on
page A8-578
FTOSL, FTOUH VQVT VCVT (between floating-point and fixed-point, VFP) on page A8-582
FTOUI{Z}D, FTOUI{Z}S VCVT{R} VCVT, VCVTR (between floating-point and integer, VFP) on
page A8-578
FTOULD, FTOULS, FUHTOD, FUHTOS VCVT VCVT (between floating-point and fixed-point, VFP) on page A8-582
FUITOD, FUITOS VQVT VCVT, VCVTR (between floating-point and integer, VFP) on
page A8-578
FULTOD, FULTOS VQVT VCVT (between floating-point and fixed-point, VFP) on page A8-582

FLDMX, FSTMX

Encodings T1/A1 of the VLDM, VPOP, VPUSH, and VSTM instructions contain an imm8 field that is set to twice
the number of doubleword registersto be transferred. Use of these encodingswith an odd valueinimm8is
deprecated, and there isno UAL syntax for them.

The pre-UAL mnemonics FLDMX and FSTMX result in the same instructions as FLDMD (VLDM. 64 or VPOP. 64) and
FSTMD (VSTM. 64 or VPUSH. 64) respectively, except that imm8 is equal to twice the number of doubleword
registers plusone. Use of FLDMX and FSTMX isdeprecated from ARMV6, except for disassembly purposes, and

reassembly of disassembled code.

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

A8-101

Instruction Details

A8.6.48 HB, HBL, HBLP, HBP

These are ThumbEE instructions. For details see HB, HBL on page A9-16, HBLP on page A9-17, and HBP
on page A9-18.

A8.6.49 ISB

Instruction Synchronization Barrier flushes the pipeline in the processor, so that all instructions following
the 1SB arefetched from cache or memory, after theinstruction has been completed. It ensuresthat the effects
of context altering operations, such as changing the ASID, or completed TLB maintenance operations, or
branch predictor maintenance operations, as well as all changes to the CP15 registers, executed before the
ISB instruction are visible to the instructions fetched after the ISB.

In addition, any branches that appear in program order after the | SB instruction are written into the branch
prediction logic with the context that is visible after the ISB instruction. This is needed to ensure correct
execution of the instruction stream.

Encoding T1 ARMv7
ISB<c> #<option>

151413121110 9 8 7 6 5 4 3 2 1 0 1514131211109 8 7 6 5 4 3 2 1 0
11110/0[1110 1|1{()@Q @|1 0j©O)0olD@ @@ 0 1 1 0| option

// No additional decoding required

Encoding Al ARMv7
ISB #<option>

a

3130292827 26252423222120191817 161514 13121110 9 8 7 6 5 4 3 2 1 0
1111/0101011 1/(1)@OQDMWDQDQDA[OOOO0 1 1 0| option

// No additional decoding required

A8-102 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Cross-Out

Instruction Details

Assembler syntax

ISB<c><g> {<ppe>} @

where:

<C><q> See Standard assembler syntax fields on page A8-7. An ARM ISB instruction must be
unconditional.

<opt> Specifies an optional limitation on the ISB operation. Values are:
SY Full system | SB operation, encoded as option == '1111". Can be omitted.

All other encodings of option are reserved. The corresponding instructions execute as full
system I SB operations, but must not be relied upon by software.
Operation
if ConditionPassed() then
EncodingSpecificOperations();
InstructionSynchronizationBarrier();
Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-103

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
option

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
option

ARM_2009_Q1
Sticky Note
This change from opt to option is for consistency with the disassembly syntax shown with the figures on the previous page.

Instruction Details

A8.6.50 IT

If Then makes up to four following instructions (the I T block) conditional. The conditions for the
instructionsin the I T block can be the same, or some of them can be the inverse of others.

IT does not affect the condition code flags. } toR- Hted; [;]
apart-fromthese-performed-by-exeeptionreturns;

16-bit instructionsin the IT block, other than CMP, CMN and TST, do not set the condition code flags. The AL
condition can be specified to get this changed behavior without conditional execution.

See also ITSTATE on page A2-17, Conditional instructions on page A4-4, and Conditional execution on

page A8-8.
Encoding T1 ARMvV6T2, ARMV7
ey fz3dy <firstcond> Not permitted in IT block

151413121110 9 8 7 6 5 4 3 2 1 0
101 11 11 1] firstcond mask

if mask == ‘0000’ then SEE “Related encodings”;

if firstcond == ‘1111’ then UNPREDICTABLE;

if firstcond == ‘1110’ && BitCount(mask) != 1 then UNPREDICTABLE;
if InITBlock() then UNPREDICTABLE;

Related encodings See If-Then, and hints on page A6-12

Assembler syntax
Froeyzi<ex <firstcond>

where:

<x> The condition for the second instruction in the IT block.

<y> The condition for the third instruction in the I T block.

<z> The condition for the fourth instruction in the I'T block.

<> See Standard assembler syntax fields on page A8-7. An IT instruction must be

unconditional.

<firstcond> Thecondition for thefirst instruction in the IT block. See Table A8-1 on page A8-8 for the
range of conditions available, and the encodings.

Each of <x>, <y>, and <z> can be either:
T Then. The condition attached to the instruction is <firstconds.

E Else. The condition attached to the instruction is the inverse of <firstcond>. The condition
codeisthe same as <firstcond>, except that the least significant bit isinverted. E must not
be specified if <firstcond> iSAL.

A8-104 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
IT{<x>{<y>{<z>}}}

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
IT{<x>{<y>{<z>}}}<q>

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
The architecture permits exception return to an instruction in the IT block, and the transfer of the SPSR to the CPSR restores the conditions specified by the IT instruction. Any other branch to a target instruction in an IT block is not permitted, and if such a branch is made it is UNPREDICTABLE what condition is used when executing that target instruction and any subsequent instruction in the IT block.

ARM_2009_Q2
Sticky Note
This change is a clarification of the consequences of a branch to an instruction in an IT block that is not an exception return. This is not a change to the architecture.

Instruction Details

Table A8-3 shows how the values of <x>, <y>, and <z> determine the value of the mask field.

Table A8-3 Determination of maska field

<xX> <y> <z> mask[3] mask[2] mask[1] mask[0]
Omitted Omitted Omitted 1 0 0 0
T Omitted Omitted firstcond[0] 1 0 0
E Omitted Omitted NOT firstcond[0] 1 0 0
T T Omitted firstcond[Q] firstcond[Q] 1 0
E T Omitted NOT firstcond[0] firstcond[0] 1 0
T E Omitted firstcond[0] NOT firstcond[0] 1 0
E E Omitted NOT firstcond[0] NOT firstcond[0] 1 0
T T T firstcond[0] firstcond[0] firstcond[0] 1
E T T NOT firstcond[0] firstcond[0] firstcond[0] 1
T E T firstcond[Q] NOT firstcond[0] firstcond[O] 1
E E T NOT firstcond[0] NOT firstcond[0] firstcond[Q] 1
T T E firstcond[O] firstcond[O] NOT firstcond[0] 1
E T E NOT firstcond[0] firstcond[0] NOT firstcond[0] 1
T E E firstcond[O] NOT firstcond[0] NOT firstcond[0] 1
E E E NOT firstcond[0] NOT firstcond[0] NOT firstcond[0] 1

a Notethat at least one bit isalways 1 in mask.

The conditions specified in an IT instruction must match those specified in the syntax of theinstructionsin
itsIT block. When assembling to ARM code, assemblers check IT instruction syntax for validity but do not
generate assembled instructions for them. See Conditional instructions on page A4-4.

Operation
EncodingSpecificOperations();
ITSTATE.IT<7:0> = firstcond:mask;
Exceptions

None.

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

A8-105

Instruction Details

A8.6.51 LDC, LDC2 (immediate)

Load Coprocessor |oads memory data from a sequence of consecutive memory addresses to a coprocessor.
If no coprocessor can execute the instruction, an Undefined Instruction exception is generated.

Thisisageneric coprocessor instruction. Some of thefiel dshave no functionality defined by the architecture
and arefreefor use by the coprocessor instruction set designer. Thesefieldsare the D bit, the CRd field, and
in the Unindexed addressing mode only, the imma8 field.

For more information about the coprocessors see Coprocessor support on page A2-68.

Encoding T1/Al ARMvV6ET2, ARMV7 for encoding T1

ARMv4* ARMV5T*, ARMV6*, ARMV7 for encoding Al
LDC{L}<c> <coproc>,<CRd>, [<Rn>,#+/-<imm>]{!}
LDC{L}<c> <coproc>,<CRd>, [<Rn>],#+/-<imm>

LDC{L}<c> <coproc>,<CRd>, [<Rn>],<option>
151413121110 9 8 7 6 5 4 3 2 1 01514131211109 8 7 6 5 4 3 2 1 0
11101 10(PlUDW|1 Rn CRd coproc imm8

31302928 27 26 2524 232221201918 1716151413121110 9 8 7 6 5 4 3 2 1 O
cond 1 10|P|UDW1 Rn CRd coproc imm8

if Rn == ‘1111’ then SEE LDC (literal);

ifP=="0 & U=="0" & D == ‘0’ & W == ‘0’ then UNDEFINED;

if P=="0 & U=="0" & D == ‘1" & W == ‘0’ then SEE MRRC, MRRC2;
if coproc == ‘101x’ then SEE “Advanced SIMD and VFP”;

n = UInt(Rn); cp = UInt(coproc); imm32 = ZeroExtend(imm8:’00’, 32);
index = (P == ‘1’); add = (U== ‘1"); whack = (W=="'1");

Encoding T2/ A2 ARMvV6ET2, ARMV7 for encoding T2
ARMV5T*, ARMvV6*, ARMV7 for encodingA2
LDC2{L}<c> <coproc>,<CRd>, [<Rn>,#+/-<imm>]{!}
LDC2{L}<c> <coproc>,<CRd>, [<Rn>], #+/-<imm>
LDC2{L}<c> <coproc>,<CRd>, [<Rn>],<option>
151413121110 9 8 7 6 5 4 3 2 1 01514131211109 8 7 6 5 4 3 2 1 0
1111|110|P|UDW|1 Rn CRd coproc imm8

31 302928 27 26 2524 2322212019 181716 151413121110 9 8 7 6 5 4 3 2 1 O
1111|121 10(PlUDW|1 Rn CRd coproc imm8

if Rn == ‘1111’ then SEE LDC (literal);

ifP=="0 & U=="0" & D == ‘0" & W == ‘0’ then UNDEFINED;
ifP=="0 & U=="0" && D == ‘1’ & W == ‘0’ then SEE MRRC, MRRC2;
n = UInt(Rn); cp = UInt(coproc); imm32 = ZeroExtend(imm8:’00’, 32);
index = (P == ‘1’); add = (U == ‘1"); wback = (W==‘1");

Advanced SIMD and VFP See Extension register load/store instructions on page A7-26

A8-106

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2008_Q4
Inserted Text

Instruction Details

Assembler syntax

LDC{2}{L}<c><q> <coproc>,<CRd>, [<Rn>{,#+/-<imm>}] Offset. P=1,W=0.

LDC{2}{L}<c><q> <coproc>,<CRd>, [<Rn>,#+/-<imm>]! Pre-indexed. P=1, W = 1.

LDC{2}{L}<c><q> <coproc>,<CRd>,[<Rn>],#+/-<imm> Post-indexed. P=0, W = 1.

LDC{2}{L}<c><q> <coproc>,<CRd>,[<Rn>],<option> Unindexed. P=0,W=0,U=1.

where:

2 If specified, selectsencoding T2/ A2. If omitted, selects encoding T1/ Al.

L If specified, selectsthe D == 1 form of the encoding. If omitted, selectsthe D == 0 form.

<C><q> See Standard assembler syntax fields on page A8-7. An ARM LDC2 instruction must be
unconditional.

<coproc> The name of the coprocessor. The standard generic coprocessor names are p0, pl, ..., p15.

<CRd> The coprocessor destination register.

<Rn> The base register. The SP can be used. For PC use see LDC, LDC2 (literal) on page A8-108.

+/- Is+ or omitted if theimmediate offset isto be added to the baseregister value (add == TRUE),
or —if it isto be subtracted (add == FALSE). #0 and #-0 generate different instructions.

<imm> The immediate offset used to form the address. Values are multiples of 4 in the range
0-1020. For the offset addressing syntax, <imm> can be omitted, meaning an offset of +0.

<option> A coprocessor option. An integer in the range 0-255 enclosed in { }. Encoded in imma8.

The pre-UAL syntax LDC<c>L is equivalent to LDCL<c>.

Operation

if ConditionPassed() then

Enco
if !

else

dingSpecificOperations();
Coproc_Accepted(cp, ThisInstr()) then
GenerateCoprocessorException();

Nu11CheckIfThumbEE(n);
offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
address = if index then offset_addr else R[n];
repeat
Coproc_SendLoadedWord(MemA[address,4], cp, ThisInstr()); address = address + 4;
until Coproc_DonelLoading(cp, ThisInstr());
if wbhack then R[n] = offset_addr;

Exceptions

Undefined Instruction, Data Abort.

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-107

Instruction Details

A8.6.52 LDC, LDC2 (literal)

Load Coprocessor |oads memory data from a sequence of consecutive memory addresses to a coprocessor.
If no coprocessor can execute the instruction, an Undefined Instruction exception is generated.

Thisisageneric coprocessor instruction. The D bit and the CRd field have no functionality defined by the
architecture and are free for use by the coprocessor instruction set designer.

For more information about the coprocessors see Coprocessor support on page A2-68.

Encoding T1/A1l ARMV6T2, ARMV7 for encoding T1
ARMv4* ARMV5T*, ARMvVE*, ARMV7 for encoding A1
LDC{L}<c> <coproc>,<CRd>,<label>
LDC{L}<c> <coproc>,<CRd>, [PC,#-0] Specid case
LDC{L}<c> <coproc>,<CRd>,[PC],<option>
1514131211109 8 7 6 5 4 3 2 1 015124131211109 8 7 6 5 4 3 2 10
111012 10|PUDW11111 CRd coproc imm8

31 302928 27 26 2524 232221201918 1716151413121110 9 8 7 6 5 4 3 2 1 O
cond 110|PlUDW1I1 111 CRd coproc imm8

ifP=="0 & U=="0" & D == ‘0’ & W == ‘0’ then UNDEFINED;

ifP=="0" & U == ‘0" & D == ‘1’ && W == ‘0’ then SEE MRRC, MRRC2;

if coproc == ‘101x’ then SEE “Advanced SIMD and VFP”;

index = (P == ‘1’); add = (U==‘1"); cp = UInt(coproc); 1imm32 = ZeroExtend(imm8:’00’, 32);
ifW=="1 || (P=="0" & CurrentInstrSet() != InstrSet_ARM) then UNPREDICTABLE;

Encoding T2/ A2 ARMV6ET2, ARMV7 for encoding T2
ARMV5T*, ARMvV6*, ARMV7 for encodingA2
LDC2{L}<c> <coproc>,<CRd>,<Tlabel>
LDC2{L}<c> <coproc>,<CRd>, [PC,#-0] Specid case
LDC2{L}<c> <coproc>,<CRd>, [PC],<option>
151413121110 9 8 7 6 5 4 3 2 1 01514131211109 8 7 6 5 4 3 2 1 0
11111 10|PlUDWI1L|I1 111 CRd coproc imm8

31 30 29 28 27 26 25 24 232221 2019181716 151413121110 9 8 7 6 5 4 3 2 1 O

11111 10|PUDW1I1111 CRd coproc imm8

ifP=="0 & U=="0" & D == ‘0’ && W == ‘@’ then UNDEFINED;

ifP=="0 & U=="0"&& D == ‘1" & W == ‘0’ then SEE MRRC, MRRC2;

index = (P == ‘1’); add = (U== ‘1"); cp = UInt(coproc); imm32 = ZeroExtend(imm8:’00’, 32);
ifW== "1 || (P=="0" & CurrentInstrSet() != InstrSet_ARM) then UNPREDICTABLE;

Advanced SIMD and VFP See Extension register load/store instructions on page A7-26

A8-108

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2008_Q4
Inserted Text

Instruction Details

Assembler syntax

LDC{2}{L}<c><q> <coproc>, <CRd>, <label> Normal formwithP=1, W=0

LDC{2}{L}<c><q> <coproc>, <CRd>, [PC,#+/-<imm>] Alternative formwithP=1, W =0

LDC{2}{L}<c><q> <coproc>, <CRd>, [PC], <option> Unindexed form withP=0,U=1, W =0

where:

2 If specified, selectsencoding T2/ A2. If omitted, selects encoding T1/ Al.

L If specified, selectsthe D == 1 form of the encoding. If omitted, selectsthe D == 0 form.

<C><g> See Standard assembler syntax fields on page A8-7. An ARM LDC2 instruction must be
unconditional.

<coproc> The name of the coprocessor. The standard generic coprocessor names are p0, pl, ..., p15.

<CRd> The coprocessor destination register.

<label> Thelabel of the literal dataitem that isto beloaded into <Rt>. The assembler calculates the

required value of the offset from the A1ign(PC,4) value of thisinstruction to the label.
Permitted val ues of the offset are multiples of 4 in the range -1020 to 1020.

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE.
If the offset is negative, imm32 is equal to minus the offset and add == FALSE.

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be
specified separately, including permitting a subtraction of 0 that cannot be specified using the normal
syntax. For more information, see Use of labelsin UAL instruction syntax on page A4-5.

The unindexed form is permitted for the ARM instruction set only. In it, <option> is a coprocessor option,
written as an integer 0-255 enclosed in { } and encoded in imm8.

The pre-UAL syntax LDC<c>L is equivalent to LDCL<c>.

Operation

if ConditionPassed() then

EncodingSpecificOperations();

if !Coproc_Accepted(cp, ThisInstr()) then
GenerateCoprocessorException();

else
Nu11CheckIfThumbEE(15);
offset_addr = if add then (Align(PC,4) + imm32) else (Align(PC,4) - imm32);
address = if index then offset_addr else Align(PC,4);
repeat

Coproc_SendLoadedWord(MemA[address,4], cp, ThisInstr()); address = address + 4;

until Coproc_DonelLoading(cp, ThisInstr());

Exceptions

Undefined Instruction, Data Abort.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-109

Instruction Details

A8.6.53 LDM/LDMIA /LDMFD

Load Multiple (Increment After) loads multiple registers from consecutive memory locations using an
address from a base register. The consecutive memory locations start at this address, and the address just
above the highest of those | ocations can optionally be written back to the base register. The registers|oaded
can include the PC, causing a branch to aloaded address. Related system instructions are LDM (user
registers) on page B6-7 and LDM (exception return) on page B6-5.

Encoding T1 ARMVAT, ARMV5T*, ARMV6*, ARMV7 (not in ThumbEE)
LDM<c> <Rn>!,<registers> <Rn> not included in <registers>
LDM<c> <Rn>,<registers> <Rn> included in <registers>

151413121110 9 8 7 6 5 4 3 2 1 0
1100|121 Rn register_list

n = UInt(Rn); registers = ‘00000000’ :register_list; wback = (registers<n> == ‘0’);
if BitCount(registers) < 1 then UNPREDICTABLE;

Encoding T2 ARMvV6T2, ARMV7
LDM<c>.W <Rn>{!},<registers>

151413121110 9 8 7 6 5 4 3 2 1 01514131211109 8 7 6 5 4 3 2 1 0
11101(00[/010|/wW1l Rn [P[M| register_list

if W== ‘1" & Rn == ‘1101’ then SEE POP;

n = UInt(Rn); registers = P:M:’0":register_Tist; wback = (W == ‘1")

if n == 15 || BitCount(registers) <2 || (P == ‘1" & M == ‘1’) then UNPREDICTABLE;
if registers<15> == ‘1’ && InITBlock() && !LastInITBTock() then UNPREDICTABLE;

if wback & registers<n> == ‘1’ then UNPREDICTABLE;

Encoding Al ARMv4* , ARMV5T*, ARMvV6*, ARMV7
LDM<c> <Rn>{!},<registers>

3130292827 26252423222120191817 161514 13121110 9 8 7 6 5 4 3 2 1 0
cond 100010(W1 Rn register_list

if W== ‘1" & Rn == ‘1101’ && BitCount(register_Tist) >= 2 then SEE POP;
n = UInt(Rn); registers = register_list; wback = (W == ‘1’);

if n == 15 || BitCount(registers) < 1 then UNPREDICTABLE;

if wback && registers<n> == ‘1’ && ArchVersion() >= 7 then UNPREDICTABLE;

_JAssembler syntax
LDM<c><g> <Rn>{!}, <registers>

where:

<C><0> See Standard assembler syntax fields on page A8-7.

A8-110 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2008_Q4
Inserted Text
if CurrentInstrSet() == InstrSet_ThumbEE then SEE "ThumbEE instructions";

ARM_2008_Q4
Inserted Text
ThumbEE instructions See 16-bit ThumbEE instructions on page A9-6 [PDF page 1132]

Instruction Details

<Rn> The base register. SP can be used. If it is the SP-ane--isspecified,theinstructionistreated
oo \8-246

Causes the instruction to write a modified value back to <Rn>. Encoded asW = 1. If ! is
omitted, the instruction does not change <Rn> in this way. Encoded as W = 0.

<registers> Isalist of one or more registers to be loaded, separated by commas and surrounded by
{ and }. The lowest-numbered register is|loaded from the lowest memory address, through
to the highest-numbered register from the highest memory address.

Encoding T2 does not support alist containing only oneregister. If an LDMIA instruction with
just one register <Rt> in thelist is assembled to Thumb and encoding T1 is not available, it
is assembled to the equivalent LDR<c><g> <Rt>, [<Rn>1{,#4} instruction.

The SPcanbeinthelistin ARM code, but not in Thumb code. However, ARM instructions
that include the SP in the list are deprecated.

ThePC can beinthelist. If itis, theinstruction branchesto the address |oaded to the PC. In
ARMVST and above, thisisan interworking branch, see Pseudocode details of operations
on ARM core registers on page A2-12. In Thumb codg, if the PC isin thelist:

. the LR must not be in the list

. the instruction must be either outside any IT block, or the last instructioninan IT
block.

ARM instructions that include both the LR and the PC in the list are deprecated.

Instructions with the base register in thelist and ! specified are only availablein the ARM
instruction set before ARMv7, and the use of such instructions is deprecated. The value of
the base register after such an instruction iS UNKNOWN.

LDMIA and LDMFD are pseudo-instructions for LDM. LDMFD refersto its use for popping data from Full
Descending stacks.

The pre-UAL syntaxes LDM<c>IA and LDM<c>FD are equivalent to LDM<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); NullCheckIfThumbEE(n);
address = R[n];
for i = 0 to 14
if registers<i> == ‘1’ then
R[i1] = MemA[address,4]; address = address + 4;
if registers<15> == ‘1’ then
LoadWritePC(MemA[address,4]);
if wback && registers<n> == ‘@’ then R[n]
if whack & registers<n> == ‘1’ then R[n]

R[n] + 4«BitCount(registers);
bits(32) UNKNOWN;

Exceptions

Data Abort.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-111

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Inserted Text
 then:
 • in the Thumb instruction set, it uses encoding T1, and if ! is specified it is treated as described in POP on page A8-246 [PDF page 558]
 • in the ARM instruction set,if ! is specified and there is more than one register in the list, it is treated as described in POP on page A8-246 [PDF page 558].

Instruction Details

A8.6.54 LDMDA / LDMFA

Load Multiple Decrement After (Load Multiple Full Ascending) loads multiple registers from consecutive
memory locations using an address from a base register. The consecutive memory locations end at this
address, and the address just below the lowest of those locations can optionally be written back to the base
register. The registers loaded can include the PC, causing a branch to aloaded address.

Related system instructions are LDM (user registers) on page B6-7 and LDM (exception return) on
page B6-5.

Encoding Al ARMv4* ARMvV5T*, ARMvV6*, ARMV7
LDMDA<c> <Rn>{!},<registers>

31 3029 28 27 26 25 24 232221 2019181716 151413121110 9 8 7 6 5 4 3 2 1 O

cond 10000O0(W1 Rn register_list

n = UInt(Rn); registers = register_list; wback = (W == ‘1’);
if n == 15 || BitCount(registers) < 1 then UNPREDICTABLE;
if wback && registers<n> == ‘1’ && ArchVersion() >= 7 then UNPREDICTABLE;

A8-112

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

LDMDA<c><q>

where:
<C><0>

<Rn>

<registers>

<Rn>{!}, <registers>

See Standard assembler syntax fields on page A8-7.
The base register. SP can be used.

Causes the instruction to write amodified value back to <Rn>. Encoded as W = 1.
If 1 isomitted, the instruction does not change <Rn> in thisway. Encoded as W = 0.
Isalist of one or more registers to be loaded, separated by commas and surrounded by

{ and }. The lowest-numbered register is|loaded from the lowest memory address, through
to the highest-numbered register from the highest memory address.

The SP can bein thelist. However, instructions that include the SPin the list are deprecated.

The PC can beinthelist. If it is, the instruction branches to the address (data) loaded to the
PC. In ARMV5T and above, this branch is an interworking branch, see Pseudocode details
of operations on ARM core registers on page A2-12.

Instructions that include both the LR and the PC in the list are deprecated.

Instructions with the base register in the list and ! specified are only available before
ARMvV7, and the use of such instructions is deprecated. The value of the base register after
such an instruction iS UNKNOWN.

LDMFA is a pseudo-instruction for LDMDA, referring to its use for popping data from Full Ascending stacks.

The pre-UAL syntaxes LDM<c>DA and LDM<c>FA are equivalent to LDMDA<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
address = R[n] - 4«BitCount(registers) + 4;
for i =0 to 14
if registers<i> == ‘1’ then

R[i1] = MemA[address,4]; address = address + 4;

if registers<15> == ‘1’ then
LoadWritePC(MemA[address,4]);

if wback && registers<n> == ‘@’ then R[n]
if whack & registers<n> == ‘1’ then R[n]

R[n] - 4«BitCount(registers);
bits(32) UNKNOWN;

Exceptions

Data Abort.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-113

Instruction Details

A8.6.55 LDMDB / LDMEA

Load Multiple Decrement Before (Load Multiple Empty Ascending) loads multiple registers from
consecutive memory locations using an address from a base register. The consecutive memory |ocations end
just below this address, and the address of the lowest of those locations can optionally be written back to the
base register. The registers loaded can include the PC, causing a branch to aloaded address.

Related system instructions are LDM (user registers) on page B6-7 and LDM (exception return) on
page B6-5.

Encoding T1 ARMvV6T2, ARMV7

LDMDB<c> <Rn>{!},<registers>

151413121110 9 8 7 6 5 4 3 2 1 01514131211109 8 7 6 5 4 3 2 1 0
11101001 00W|1 Rn P|M|(0) register_list

n = UInt(Rn); registers = P:M:’0’:register_list; wback = (W == ‘1");

if n == 15 || BitCount(registers) <2 || (P == ‘1" & M == ‘1’) then UNPREDICTABLE;
if registers<15> == ‘1’ && InITBlock() && !LastInITBlock() then UNPREDICTABLE;

if wback & registers<n> == ‘1’ then UNPREDICTABLE;

Encoding Al ARMv4*, ARMV5T*, ARMvV6*, ARMV7

LDMDB<c> <Rn>{!},<registers>

31302928 27 26 252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
cond 100100W|1 Rn register_list

n = UInt(Rn); registers = register_list; wback = (W == ‘1’);

if n == 15 || BitCount(registers) < 1 then UNPREDICTABLE;

if whack & registers<n> == ‘1’ && ArchVersion() >= 7 then UNPREDICTABLE;
Assembler syntax

LDMDB<c><q> <Rn>{!}, <registers>

where:
<C><0> See Standard assembler syntax fields on page A8-7.
<Rn> The base register. The SP can be used.

Causes the instruction to write a modified value back to <Rn>. Encoded as W = 1.

If ! isomitted, the instruction does not change <Rn> in this way. Encoded as W = 0.

<registers> Isalist of one or more registers to be loaded, separated by commas and surrounded by
{ and }. The lowest-numbered register is |oaded from the lowest memory address, through
to the highest-numbered register from the highest memory address.

Encoding T1 does not support alist containing only oneregister. If an LDMDB instruction with
just one register <Rt> inthelist is assembled to Thumb, it is assembled to the equivalent
LDR<c><g> <Rt>, [<Rn>,#-4]1{!} instruction.

A8-114

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

The SPcan beinthelistin ARM code, but not in Thumb code. However, ARM instructions
that include the SP in the list are deprecated.

ThePC canbeinthelist. If it is, theinstruction branches to the addressloaded to the PC. In
ARMVS5T and above, thisis an interworking branch, see Pseudocode details of operations
on ARM core registers on page A2-12. In Thumb code, if the PC isin thelist:

. the LR must not be in the list

. the instruction must be either outside any IT block, or the last instructioninan IT
block.

ARM instructions that include both the LR and the PC in the list are deprecated.

Instructions with the base register in the list and ! specified are only available in the ARM
instruction set before ARMv7, and the use of such instructionsis deprecated. The value of
the base register after such an instruction iS UNKNOWN.

LDMEA is a pseudo-instruction for LDMDB, referring to its use for popping data from Empty Ascending stacks.

The pre-UAL syntaxes LDM<c>DB and LDM<c>EA are equivalent to LDMDB<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); NullCheckIfThumbEE(n);
address = R[n] - 4xBitCount(registers);
for i = 0 to 14

if registers<i> == ‘1’ then
R[i] = MemA[address,4]; address = address + 4;
if registers<15> == ‘1’ then
LoadWritePC(MemA[address,4]);
if wback && registers<n> == ‘@’ then R[n] = R[n] - 4:BitCount(registers);
if wback && registers<n> == ‘1’ then R[n] = bits(32) UNKNOWN;
Exceptions
Data Abort.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-115

Instruction Details

A8.6.56 LDMIB /LDMED

Load Multiple Increment Before |oads multiple registers from consecutive memory locations using an
addressfrom abase register. The consecutive memory locations start just above this address, and the address
of the last of those locations can optionally be written back to the base register. The registers |oaded can
include the PC, causing a branch to aloaded address.

Related system instructions are LDM (user registers) on page B6-7 and LDM (exception return) on
page B6-5.

Encoding Al ARMv4* ARMvV5T*, ARMvV6*, ARMV7
LDMIB<c> <Rn>{!},<registers>

31 3029 28 27 26 25 24 232221 2019181716 151413121110 9 8 7 6 5 4 3 2 1 O

cond

100110(W1 Rn register_list

n = UInt(Rn); registers = register_list; wback = (W == ‘1’);
if n == 15 || BitCount(registers) < 1 then UNPREDICTABLE;
if wback && registers<n> == ‘1’ && ArchVersion() >= 7 then UNPREDICTABLE;

A8-116

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

ARM DDI 0406B

Instruction Details

Assembler syntax

LDMIB<c><g>

where:
<C><0>

<Rn>

<registers>

<Rn>{!}, <registers>

See Standard assembler syntax fields on page A8-7.
The base register. The SP can be used.

Causes the instruction to write amodified value back to <Rn>. Encoded as W = 1.
If 1 isomitted, the instruction does not change <Rn> in thisway. Encoded as W = 0.
Isalist of one or more registers to be loaded, separated by commas and surrounded by

{ and }. The lowest-numbered register is|loaded from the lowest memory address, through
to the highest-numbered register from the highest memory address.

The SP can bein thelist. However, instructions that include the SPin the list are deprecated.

The PC can beinthelist. If it is, the instruction branches to the address (data) loaded to the
PC. In ARMV5T and above, this branch is an interworking branch, see Pseudocode details
of operations on ARM core registers on page A2-12.

Instructions that include both the LR and the PC in the list are deprecated.

Instructions with the base register in the list and ! specified are only available before
ARMvV7, and the use of such instructions is deprecated. The value of the base register after
such an instruction iS UNKNOWN.

LDMED is a pseudo-instruction for LDMIB, referring to its use for popping data from Empty Descending stacks.

The pre-UAL syntaxes LDM<c>IB and LDM<c>ED are equivalent to LDMIB<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
address = R[n] + 4;
for i =0 to 14
if registers<i> == ‘1’ then

R[i1] = MemA[address,4]; address = address + 4;

if registers<15> == ‘1’ then
LoadWritePC(MemA[address,4]);

if wback && registers<n> == ‘@’ then R[n]
if whack & registers<n> == ‘1’ then R[n]

R[n] + 4«BitCount(registers);
bits(32) UNKNOWN;

Exceptions

Data Abort.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-117

Instruction Details

A8.6.57 LDR (immediate, Thumb)

Load Register (immediate) calculates an address from a base register value and an immediate offset, loads
aword from memory, and writesit to aregister. It can use offset, post-indexed, or pre-indexed addressing.
For information about memory accesses see Memory accesses on page A8-13.

Encoding T1 ARMVAT, ARMV5T*, ARMV6*, ARMV7
LDR<c> <Rt>, [<Rn>{,#<imm>}]

151413121110 9 8 7 6 5 4 3 2 1 O
01 1|0|1 imm5 Rn Rt

t = UInt(Rt); n = UInt(Rn); 1imm32 = ZeroExtend(imm5:’00’, 32);
index = TRUE; add = TRUE; wback = FALSE;

Encoding T2 ARMVAT, ARMV5T*, ARMV6*, ARMV7
LDR<c> <Rt>, [SP{,#<imm>}]

151413121110 9 8 7 6 5 4 3 2 1 O
10011 Rt imm8

t = UInt(Rt); n

= 13; 1imm32 = ZeroExtend(imm8:’00’, 32);
index = TRUE; add =

TRUE; wback = FALSE;

Encoding T3 ARMvV6T2, ARMV7

LDR<c>.W <Rt>, [<Rn>{,#<imm12>}]

1514131211109 8 7 6 5 4 3 2 1 01514131211109 8 7 6 5 4 3 2 10
11111{0 0011 0|12 Rn Rt imm12

if Rn == ‘1111’ then SEE LDR (literal);

t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imml2, 32);
index = TRUE; add = TRUE; wback = FALSE;

if t == 15 && InITBlock() && !LastInITBlock() then UNPREDICTABLE;

Encoding T4 ARMV6T2, ARMV7

LDR<c> <Rt>, [<Rn>,#-<imm8>]

LDR<c> <Rt>, [<Rn>],#+/-<imm8>

LDR<c> <Rt>, [<Rn>,#+/-<imm8>]!

151413121110 9 8 7 6 5 4 3 2 1 01514131211109 8 7 6 5 4 3 2 1 0

11111/00(0(010]1 Rn Rt 1|/PUW imm8

if Rn == ‘1111’ then SEE LDR (literal);

if P=="1 & U=="1" & W == ‘0’ then SEE LDRT;

if Rno== ‘1101’ && P == ‘0’ && U == ‘1’ & W == ‘1’ && imm8 == ‘00000100’ then SEE POP;
if P == ‘0" & W == ‘©’ then UNDEFINED;

t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);

index = (P == ‘1’); add = (U == ‘1"); wback = (W==‘1");

if (wback && n == t) || (t == 15 & InITBlock() && !LastInITBlock()) then UNPREDICTABLE;

A8-118 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

LDR<c><g> <Rt>, [<Rn> {, #+/-<imm>}] Offset: index==TRUE, whack==FALSE

LDR<c><g> <Rt>, [<Rn>, #+/-<imm>]! Pre-indexed: index==TRUE, wback==TRUE

LDR<c><g> <Rt>, [<Rn>], #+/-<imm> Post-indexed: index==FALSE, wback==TRUE

where:

<C><q> See Sandard assembler syntax fields on page A8-7.

<Rt> The destination register. The SP can be used. The PC can be used, provided the instruction
iseither outside an I T block or the last instruction of an I T block. If the PC is used, the
instruction branches to the address (data) oaded to the PC. In ARMV5T and above, this
branch is an interworking branch, see Pseudocode details of operations on ARM core
registers on page A2-12.

<Rn> The base register. The SP can be used. For PC use see LDR (literal) on page A8-122.

+/- Is+ or omitted if theimmediate offset isto be added to the baseregister value (add == TRUE),
or —if it isto be subtracted (add == FALSE). #0 and #-0 generate different instructions.

<imm> The immediate offset used to form the address. For the offset addressing syntax, <imm> can
be omitted, meaning an offset of 0. Values are:
Encoding T1 multiples of 4 in the range 0-124
Encoding T2 multiples of 4 in the range 0-1020
Encoding T3 any valuein the range 0-4095
Encoding T4 any valuein the range 0-255.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); NullCheckIfThumbEE(n);
offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
address = if index then offset_addr else R[n];
data = MemU[address,4];
if wbhack then R[n] = offset_addr;
if t == 15 then
if address<1:0> == ‘00’ then LoadWritePC(data); else UNPREDICTABLE;
elsif UnalignedSupport() || address<1:0> = ‘00’ then
R[t] = data;
else R[t] = bits(32) UNKNOWN; // Can only apply before ARMv7

Exceptions

Data Abort.

ThumbEE instruction

ThumbEE has additional LDR (immediate) encodings. For details see LDR (immediate) on page A9-19.

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-119

Instruction Details

A8.6.58 LDR (immediate, ARM)

Load Register (immediate) calculates an address from a base register value and an immediate offset, loads
aword from memory, and writesit to aregister. It can use offset, post-indexed, or pre-indexed addressing.
For information about memory accesses see Memory accesses on page A8-13.

Encoding Al ARMv4* ARMVST*, ARMvV6*, ARMV7
LDR<c> <Rt>, [<Rn>{,#+/-<imm12>}]

LDR<c> <Rt>, [<Rn>],#+/-<imm12>

LDR<c> <Rt>, [<Rn>,#+/-<imm12>]!

31 3029 28 27 26 2524 232221 2019181716151413121110 9 8 7 6 5 4 3 2 1 O

cond

01 0/P|lUIOIW|1 Rn Rt imm12

if Rn ==

‘1111’ then SEE LDR (Titeral);

if P == ‘0" & W == ‘1’ then SEE LDRT;
‘1101 @& P == ‘0’ & U == ‘1’ & W == ‘0’ && imml2 == ‘000000000100 then SEE POP;
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imml2, 32);

index = (P == ‘1"); add = (U == ‘1"); wback = (P == ‘0") || (W=="1");
if wback & n == t then UNPREDICTABLE;

if Rn ==

A8-120

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

ARM DDI 0406B

Instruction Details

Assembler syntax

LDR<c><g> <Rt>, [<Rn> {, #+/-<imm>}] Offset: index==TRUE, whack==FALSE

LDR<c><g> <Rt>, [<Rn>, #+/-<imm>]! Pre-indexed: index==TRUE, whack==TRUE
LDR<c><g> <Rt>, [<Rn>], #+/-<imm> Post-indexed: index==FALSE, wback==TRUE

where:

<C><q> See Sandard assembler syntax fields on page A8-7.

<Rt> The destination register. The SP or the PC can be used. If the PC is used, the instruction

branches to the address (data) |oaded to the PC. In ARMV5T and above, this branch isan
interworking branch, see Pseudocode details of operations on ARM core registerson

page A2-12.
<Rn> The base register. The SP can be used. For PC use see LDR (literal) on page A8-122.
+/- Is+ or omitted if theimmediate offset isto be added to the baseregister value (add == TRUE),

or —if it isto be subtracted (add == FALSE). #0 and #-0 generate different instructions.

<imm> The immediate offset used to form the address. For the offset addressing syntax, <imm> can
be omitted, meaning an offset of 0. Any value in the range 0-4095 is permitted.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
address = if index then offset_addr else R[n];
data = MemU[address,4];
if wback then R[n] = offset_addr;
if t == 15 then
if address<1:0> == ‘00’ then LoadWritePC(data); else UNPREDICTABLE;
elsif UnalignedSupport() || address<1l:0> = ‘00’ then
R[t] = data;
else // Can only apply before ARMv7
R[t] = ROR(data, 8+UInt(address<1:0>));

Exceptions

Data Abort.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-121

Instruction Details

A8.6.59 LDR (literal)

Load Register (literal) calculates an address from the PC value and an immediate offset, loads aword from
memory, and writes it to aregister. For information about memory accesses see Memory accesses on
page A8-13.

Encoding T1 ARMVAT, ARMV5T*, ARMV6*, ARMV7
LDR<c> <Rt>,<label>
1514131211109 8 7 6 5 4 3 2 1 0
01001 Rt imm8

t = UInt(Rt); 1imm32 = ZeroExtend(imm8:’00’, 32); add = TRUE;

Encoding T2 ARMvV6T2, ARMV7

LDR<c>.W <Rt>,<label>

LDR<c>.W <Rt>, [PC,#-0] Specid case

151413121110 9 8 7 6 5 4 3 2 1 01514131211109 8 7 6 5 4 3 2 1 0
1111100|0{U/10f2|2 111 Rt imm12

t = UInt(Rt); 1imm32 = ZeroExtend(imml2, 32); add = (U == ‘1");
if t == 15 && InITBlock() && !LastInITBlock() then UNPREDICTABLE;

Encoding Al ARMv4* ARMV5T*, ARMV6*, ARMV7

LDR<c> <Rt>,<label>

LDR<c> <Rt>, [PC,#-0] Special case

3130292827 26252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
cond 01 0|(DUO|O2|11 1211 Rt imm12

t = UInt(Rt); 1imm32 = ZeroExtend(imml2, 32); add = (U == ‘1’);

Assembler syntax

LDR<c><g> <Rt>, <label> Normal form
LDR<c><q> <Rt>, [PC, #+/-<imm>] Alternative form

where:
<C><0> See Standard assembler syntax fields on page A8-7.

<Rt> The destination register. The SP can be used. The PC can be used, provided the instruction
is either outside an I T block or the last instruction of an I T block. If the PC is used, the
instruction branches to the address (data) loaded to the PC. In ARMV5T and above, this
branch is an interworking branch, see Pseudocode details of operations on ARM core
registers on page A2-12.

A8-122 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

<label> Thelabel of the literal dataitem that isto be loaded into <Rt>. The assembler calculatesthe
required value of the offset from the A1ign(PC,4) value of thisinstruction to the label.
Permitted values of the offset are:

Encoding T1 multiples of four in the range 2026 to 1020
Encoding T2or A1 any value in the range -4095 to 4095.
If the offset is zero or positive, imm32 is equal to the offset and add == TRUE.

If the offset is negative, imm32 isequal to minusthe offset and add == FALSE. Negative offset
isnot available in encoding T1.

—— Note

In code examplesin thismanual, the syntax =<value> isused for thelabel of amemory word
whose contents are constant and equal to <value>. The actual syntax for such alabel is
assembl er-dependent.

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be
specified separately, including permitting a subtraction of 0 that cannot be specified using the normal
syntax. For more information, see Use of labelsin UAL instruction syntax on page A4-5.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); NullCheckIfThumbEE(15);
base = Align(PC,4);
address = if add then (base + imm32) else (base - imm32);
data = MemU[address,4];
if t == 15 then
if address<1:0> == ‘00’ then LoadWritePC(data); else UNPREDICTABLE;
elsif UnalignedSupport() || address<1:0> = ‘00’ then
R[t] = data;
else // Can only apply before ARMv7
if CurrentInstrSet() == InstrSet_ARM then
R[t] = ROR(data, 8xUInt(address<1:0>));
else
R[t] = bits(32) UNKNOWN;

Exceptions

Data Abort.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-123

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Replacement Text
0

ARM_2011_Q2
Sticky Note
As indicated later in the description of <label>, and in the pseudocode for encoding T1, this encoding only supports positive offsets.

Instruction Details

A8.6.60 LDR (register)

Load Register (register) calculates an address from a base register value and an offset register value, loads
aword from memory, and writes it to a register. The offset register value can optionally be shifted. For
information about memory accesses, see Memory accesses on page A8-13.

Encoding T1 ARMVAT, ARMV5T*, ARMV6*, ARMV7
LDR<c> <Rt>, [<Rn>,<Rm>]

151413121110 9 8 7 6 5 4 3 2 1 O

01011 00| Rm Rn Rt

if CurrentInstrSet() == InstrSet_ThumbEE then SEE “Modified operation in ThumbEE";
t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);

index = TRUE; add = TRUE; wback = FALSE;

(shift_t, shift_n) = (SRType_LSL, 0);

Encoding T2 ARMvV6T2, ARMV7
LDR<c>.W <Rt>, [<Rn>,<Rm>{,LSL #<imm2>}]

151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0

111110 0(0{0f1 01 Rn Rt 0|0 O 0O O O|imm2 Rm

if Rn == ‘1111" then SEE LDR (Titeral);

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);

index = TRUE; add = TRUE; wback = FALSE;

(shift_t, shift_n) = (SRType_LSL, UInt(imm2));

if BadReg(m) then UNPREDICTABLE;

if t == 15 && InITBlock() && !LastInITBlock() then UNPREDICTABLE;

Encoding A1 ARMV4*, ARMVST*, ARMV6*, ARMV7
LDR<c> <Rt>, [<Rn>,+/-<Rm>{, <shift>}]{!}
LDR<c> <Rt>, [<Rn>],+/-<Rm>{, <shift>}

31 30 29 28 27 26 2524232221 2019181716151413121110 9 8 7 6 5 4 3 2 1 O

cond 01 1|P|U|O|W|1 Rn Rt imm5 type | O Rm

if P == ‘0" & W == ‘1’ then SEE LDRT;

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);

index = (P == ‘1’); add = (U== ‘1"); whack = (P == ‘0") || (W==1");
(shift_t, shift_n) = DecodeImmShift(type, imm5);

if m == 15 then UNPREDICTABLE;

if wback & (n == 15 || n == t) then UNPREDICTABLE;

if ArchVersion() < 6 && wback & m == n then UNPREDICTABLE;

Modified operation in ThumbEE See LDR (register) on page A9-9

A8-124

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

LDR<c><g> <Rt>, [<Rn>, +/-<Rm>{, <shift>}] Offset: index==TRUE, whack==FALSE

LDR<c><g> <Rt>, [<Rn>, +/-<Rm>{, <shift>}]! Pre-indexed: index==TRUE, whack==TRUE

LDR<c><q> <Rt>, [<Rn>], +/-<Rm>{, <shift>} Post-indexed: index==FALSE, wback==TRUE

where:

<C><q> See Sandard assembler syntax fields on page A8-7.

<Rt> The destination register. The SP can be used. The PC can be used, provided the instruction

iseither outside an I T block or the last instruction of an I T block. If the PC is used, the
instruction branches to the address (data) oaded to the PC. In ARMV5T and above, this
branch is an interworking branch, see Pseudocode details of operations on ARM core
registers on page A2-12.

<Rn> The base register. The SP can be used. The PC can be used only in the ARM instruction set.
+/- Is+ or omitted if the optionally shifted value of <Rm> isto be added to the base register value
(add == TRUE), or —if it isto be subtracted (permitted in ARM code only, add == FALSE).
<Rm> The offset that is optionally shifted and applied to the value of <Rn> to form the address.
<shift> The shift to apply to the value read from <Rm>. If present, encoding T1 is not permitted. If

absent, no shift is applied and all encodings are permitted. For encoding T2, <shift> can
only be omitted, encoded asimm2 = 0b@o, or LSL #<imm> with <imm> =1, 2, or 3, and <imm>
encoded in imm2. For encoding A1, see Shifts applied to a register on page A8-10.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); NullCheckIfThumbEE(n);
offset = Shift(R[m], shift_t, shift_n, APSR.C);
offset_addr = if add then (R[n] + offset) else (R[n] - offset);
address = if index then offset_addr else R[n];
data = MemU[address,4];
if wback then R[n] = offset_addr;
if t == 15 then
if address<1:0> == ‘00’ then LoadWritePC(data); else UNPREDICTABLE;
elsif UnalignedSupport() || address<1:0> = ‘00’ then
R[t] = data;
else // Can only apply before ARMv7
if CurrentInstrSet() == InstrSet_ARM then
R[t] = ROR(data, 8+UInt(address<l1:0>));
else
R[t] = bits(32) UNKNOWN;

Exceptions

Data Abort.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-125

Instruction Details

A8.6.61 LDRB (immediate, Thumb)

Load Register Byte (immediate) cal cul ates an address from a base register value and an immediate offset,
|oads a byte from memory, zero-extendsit to form a 32-bit word, and writesit to aregister. It can use offset,
post-indexed, or pre-indexed addressing. For information about memory accesses see Memory accesses on
page A8-13.

Encoding T1 ARMVAT, ARMVST*, ARMV6E*, ARMV7
LDRB<c> <Rt>, [<Rn>{,#<imm5>}]

151413121110 9 8 7 6 5 4 3 2 1 O
011|111 imm5 Rn Rt

t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm5, 32);
index = TRUE; add = TRUE; wback = FALSE;

Encoding T2 ARMvV6T2, ARMV7
LDRB<c>.W <Rt>, [<Rn>{,#<imm12>}]

151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0
11111/00(0{1|0 0f12 Rn Rt imm12

if Rt == ‘1111’ then SEE PLD;

if Rn == ‘1111’ then SEE LDRB (literal);

t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imml2, 32);
index = TRUE; add = TRUE; wback = FALSE;

if t == 13 then UNPREDICTABLE;

Encoding T3 ARMV6T2, ARMV7

LDRB<c> <Rt>, [<Rn>,#-<imm8>]

LDRB<c> <Rt>, [<Rn>],#+/-<imm8>

LDRB<c> <Rt>, [<Rn>,#+/-<imm8>]!

151413121110 9 8 7 6 5 4 3 2 1 01514131211109 8 7 6 5 4 3 2 1 0
111110 0/{0({0|0 0|12 Rn Rt 1{P UW imm8

if Rt == ‘1111 && P == ‘1’ & U == ‘0’ & W == ‘@’ then SEE PLD;
if Rn == ‘1111’ then SEE LDRB (literal);

if P== 1" && U=="‘1" & W == ‘0’ then SEE LDRBT;

if P == ‘0" & W == ‘©’ then UNDEFINED;

t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
index = (P == ‘1’); add = (U== ‘1"); whack = (W=="1");

if BadRegft) || (wback & n == t) then UNPREDICTABLE;

A8-126 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q4 and ARM_2011_Q2
Cross-Out

ARM_2009_Q4 and ARM_2011_Q2
Replacement Text
t == 13 || (t == 15 && W == '1')

ARM_2011_Q2
Sticky Note
The original correction, made in the 2009_Q4 errata release, identified as UNPREDICTABLE some cases that are covered by earlier statements. The general rule, that pseudocode must be interpreted sequentially, means this is acceptable. However the change made in the 2011_Q2 release simplifies the pseudocode and avoids any overlap with earlier statements.

Instruction Details

Assembler syntax

LDRB<c><q> <Rt>, [<Rn> {, #+/-<imm>}] Offset: index==TRUE, whack==FALSE
LDRB<c><g> <Rt>, [<Rn>, #+/-<imm>]! Pre-indexed: index==TRUE, whack==TRUE
LDRB<c><q> <Rt>, [<Rn>], #+/-<imm> Post-indexed: index==FALSE, wback==TRUE
where:
<C><q> See Sandard assembler syntax fields on page A8-7.
<Rt> The destination register.
<Rn> The base register. The SP can be used. For PC use see LDRB (literal) on page A8-130.
+/- Is+ or omitted if theimmediate offset isto be added to the baseregister value (add == TRUE),
or —if itisto be subtracted (add == FALSE). #0 and #-0 generate different instructions.
<imm> The immediate offset used to form the address. For the offset addressing syntax, <imm> can
be omitted, meaning an offset of 0. Values are:
Encoding T1 any valuein the range 0-31
Encoding T2 any value in the range 0-4095
Encoding T3 any valuein the range 0-255.

The pre-UAL syntax LDR<c>B is equivalent to LDRB<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); NullCheckIfThumbEE(n);
offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
address = if index then offset_addr else R[n];
R[t] = ZeroExtend(MemU[address,1], 32);
if wback then R[n] = offset_addr;

Exceptions

Data Abort.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-127

Instruction Details

A8.6.62 LDRB (immediate, ARM)

Load Register Byte (immediate) cal cul ates an address from a base register value and an immediate offset,
|oads a byte from memory, zero-extendsit to form a 32-bit word, and writesit to aregister. It can use offset,
post-indexed, or pre-indexed addressing. For information about memory accesses see Memory accesses on
page A8-13.

Encoding Al ARMv4* ARMV5T*, ARMvV6*, ARMV7
LDRB<c> <Rt>, [<Rn>{,#+/-<imm12>}]

LDRB<c> <Rt>, [<Rn>],#+/-<imm12>

LDRB<c> <Rt>, [<Rn>,#+/-<imm12>]!

31 30 29 28 27 26 2524232221 2019181716151413121110 9 8 7 6 5 4 3 2 1 O

cond 01 0/P|UILTIW|1 Rn Rt imm12

if Rn == ‘1111’ then SEE LDRB (1iteral);

if P == ‘0" & W == ‘1’ then SEE LDRBT;

t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imml2, 32);

index = (P == ‘1’); add = (U==‘1"); wback = (P == ‘0") || (W=="1");
if t == 15 || (wback & n == t) then UNPREDICTABLE;

A8-128

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

LDRB<c><q> <Rt>, [<Rn> {, #+/-<imm>}] Offset: index==TRUE, whack==FALSE

LDRB<c><q> <Rt>, [<Rn>, #+/-<imm>]! Pre-indexed: index==TRUE, wback==TRUE

LDRB<c><q> <Rt>, [<Rn>], #+/-<imm> Post-indexed: index==FALSE, wback==TRUE

where:

<C><q> See Sandard assembler syntax fields on page A8-7.

<Rt> The destination register.

<Rn> The base register. The SP can be used. For PC use see LDRB (literal) on page A8-130.

+/- Is+ or omitted if theimmediate offset isto be added to the baseregister value (add == TRUE),

or —if itisto be subtracted (add == FALSE). #0 and #-0 generate different instructions.

<imm> The immediate offset used to form the address. For the offset addressing syntax, <imm> can
be omitted, meaning an offset of 0. Any value in the range 0-4095 is permitted.

The pre-UAL syntax LDR<c>B is equivalent to LDRB<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
address = if index then offset_addr else R[n];
R[t] = ZeroExtend(MemU[address,1], 32);
if wbhack then R[n] = offset_addr;

Exceptions

Data Abort.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-129

Instruction Details

A8.6.63 LDRB (literal)

Load Register Byte (literal) calculates an address from the PC value and an immediate offset, loads a byte
from memory, zero-extends it to form a 32-bit word, and writes it to aregister. For information about
memory accesses see Memory accesses on page A8-13.

Encoding T1
LDRB<c> <Rt>,<label>
LDRB<c> <Rt>, [PC,#-0]

ARMV6T2, ARMV7

Specid case

151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0

111

11(00

0

u

0

0

1

1111 Rt

imm12

if Rt == ‘1111’ then SEE PLD;

t = UInt(Rt);

if t == 13 then UNPREDICTABLE;

Encoding Al
LDRB<c> <Rt>,<label>
LDRB<c> <Rt>, [PC,#-0]

imm32 = ZeroExtend(imml2, 32); add = (U == ‘1’");

ARMv4* ARMV5T*, ARMV6*, ARMV7

Specid case

3130292827 26252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

cond

010

@

U

1

©)

1

1111 Rt

imm12

t = UInt(Rt);

if t == 15 then UNPREDICTABLE;

imm32 = ZeroExtend(imml2, 32); add = (U == ‘1’);

A8-130

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

ARM DDI 0406B

Instruction Details

Assembler syntax

LDRB<c><q> <Rt>, <label> Normal form

LDRB<c><q> <Rt>, [PC, #+/-<imm>] Alternative form

where:

<C><q> See Standard assembler syntax fields on page A8-7.

<Rt> The destination register.

<label> Thelabel of theliteral dataitem that isto be loaded into <Rt>. The assembler calculates the

required value of the offset from the A1ign(PC,4) value of thisinstruction to the label.
Permitted values of the offset are -4095 to 4095.

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE.
If the offset is negative, imm32 is equal to minus the offset and add == FALSE.

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be
specified separately, including permitting a subtraction of 0 that cannot be specified using the normal
syntax. For more information, see Use of labelsin UAL instruction syntax on page A4-5.

The pre-UAL syntax LDR<c>B is equivalent to LDRB<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); NullCheckIfThumbEE(15);
base = Align(PC,4);
address = if add then (base + imm32) else (base - imm32);
R[t] = ZeroExtend(MemU[address,1], 32);

Exceptions

Data Abort.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-131

Instruction Details

A8.6.64 LDRB (register)

Load Register Byte (register) calculates an address from abase register value and an offset register value,
loads a byte from memory, zero-extends it to form a 32-bit word, and writes it to aregister. The offset
register value can optionally be shifted. For information about memory accesses see Memory accesses on
page A8-13.

Encoding T1 ARMVAT, ARMVST*, ARMV6E*, ARMV7
LDRB<c> <Rt>, [<Rn>,<Rm>]

151413121110 9 8 7 6 5 4 3 2 1 O
0101110 Rm Rn Rt

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; wback = FALSE;
(shift_t, shift_n) = (SRType_LSL, 0);

Encoding T2 ARMvV6ET2, ARMV7
LDRB<c>.W <Rt>, [<Rn>,<Rm>{,LSL #<imm2>}]

151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0
1111100(0(0/00]1 Rn Rt 0|0 0 0O 0 Ofimm2 Rm

if Rt == ‘1111’ then SEE PLD;

if Rn == ‘1111’ then SEE LDRB (1iteral);

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; wback = FALSE;
(shift_t, shift_n) = (SRType_LSL, UInt(imm2));
if t == 13 || BadReg(m) then UNPREDICTABLE;

Encoding Al ARMv4* ARMvV5T*, ARMvV6*, ARMV7

LDRB<c> <Rt>, [<Rn>,+/-<Rm>{, <shift>}]{!}

LDRB<c> <Rt>, [<Rn>],+/-<Rm>{, <shift>}

31302928 27 26 252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
cond 01 1|P|U|1|W|1 Rn Rt imm5 type | O Rm

if P == ‘0" & W == ‘1’ then SEE LDRBT;

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);

index = (P == ‘1’); add = (U==‘1"); wback = (P == ‘0") || (W=="1");
(shift_t, shift_n) = DecodeImmShift(type, imm5);

if t == 15 || m == 15 then UNPREDICTABLE;

if wback & (n == 15 || n == t) then UNPREDICTABLE;

if ArchVersion() < 6 && wback & m == n then UNPREDICTABLE;

A8-132 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

LDRB<c><qg>
LDRB<c><q>
LDRB<c><q>

where:
<C><0>
<Rt>

<Rn>

+/-

<Rm>

<shift>

<Rt>, [<Rn>, +/-<Rm>{, <shift>}] Offset: index==TRUE, whack==FALSE
<Rt>, [<Rn>, +/-<Rm>{, <shift>}]! Pre-indexed: index==TRUE, wback==TRUE
<Rt>, [<Rn>], +/-<Rm>{, <shift>} Post-indexed: index==FALSE, wback==TRUE

See Sandard assembler syntax fields on page A8-7.
The destination register.
The baseregister. The SP can be used. The PC can be used only in the ARM instruction set.

Is+ or omitted if the optionally shifted value of <Rm> isto be added to the base register value
(add == TRUE), or —if it isto be subtracted (permitted in ARM code only, add == FALSE).

Contains the offset that is optionally shifted and applied to the value of <Rn> to form the
address.

The shift to apply to the value read from <Rms>. If present, encoding T1 is not permitted. If
absent, no shift is applied and all encodings are permitted. For encoding T2, <shift> can
only be omitted, encoded asimm2 = 0b@o, or LSL #<imm> with <imm> =1, 2, or 3, and <imm>
encoded in imm2. For encoding A1, see Shifts applied to a register on page A8-10.

The pre-UAL syntax LDR<c>B is equivalent to LDRB<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); NullCheckIfThumbEE(n);
offset = Shift(R[m], shift_t, shift_n, APSR.C);
offset_addr = if add then (R[n] + offset) else (R[n] - offset);
address = if index then offset_addr else R[n];
R[t] = ZeroExtend(MemU[address,1],32);
if wback then R[n] = offset_addr;

Exceptions

Data Abort.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-133

Instruction Details

A8.6.65 LDRBT

Load Register Byte Unprivileged loads a byte from memory, zero-extends it to form a 32-bit word, and
writesit to aregister. For information about memory accesses see Memory accesses on page A8-13.

The memory accessis restricted as if the processor were running in User mode. (This makes no difference
if the processor is actually running in User mode.)

The Thumb instruction uses an offset addressing mode, that cal culates the address used for the memory
access from a base register value and an immediate offset, and leaves the base register unchanged.

The ARM instruction uses a post-indexed addressing mode, that uses abase register value asthe addressfor
the memory access, and calculates a new address from abase register value and an offset and writesit back
to the base register. The offset can be an immediate value or an optionally-shifted register value.

Encoding T1 ARMV6ET2, ARMV7
LDRBT<c> <Rt>, [<Rn>,#<imm8>]

151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 O
11111/00(0(0/00]1 Rn Rt 1111 0 imm8

if Rn == ‘1111’ then SEE LDRB (literal);

t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;
register_form = FALSE; 1imm32 = ZeroExtend(imm8, 32);

if BadReg(t) then UNPREDICTABLE;

Encoding Al ARMv4* ARMvV5T*, ARMvV6*, ARMV7
LDRBT<c> <Rt>,[<Rn>],#+/-<imml2>

313029 28 27 26 252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
cond 01 0|0(U|1|1|12 Rn Rt imm12

t = UInt(Rt); n = UInt(Rn); postindex = TRUE; add = (U == ‘1’);
register_form = FALSE; 1imm32 = ZeroExtend(imml12, 32);
if t == 15 || n==15 || n == t then UNPREDICTABLE;

Encoding A2 ARMv4*, ARMV5T*, ARMV6*, ARMV7
LDRBT<c> <Rt>,[<Rn>1,+/-<Rm>{, <shift>}

31302928 27 26 2524 232221201918 1716151413121110 9 8 7 6 5 4 3 2 1 O
cond 01 1/0{Uf1]|1|1 Rn Rt imm5 type | O Rm

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm); postindex = TRUE; add = (U == ‘1’);
register_form = TRUE; (shift_t, shift_n) = DecodeImmShift(type, imm5);
ift==15]] n==15 || n==t || m == 15 then UNPREDICTABLE;

if ArchVersion() < 6 & m == n then UNPREDICTABLE;

A8-134 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

LDRBT<c><g>
LDRBT<c><0>
LDRBT<c><qg>

where:
<C><0>
<Rt>

<Rn>

+/-

<imm>

<Rm>

<shift>

<Rt>, [<Rn> {, #<imm>}] Offset: Thumb only
<Rt>, [<Rn>] {, #+/-<imm>} Post-indexed: ARM only
<Rt>, [<Rn>], +/-<Rm> {, <shift>} Post-indexed: ARM only

See Sandard assembler syntax fields on page A8-7.
The destination register.
The base register. The SP can be used.

Is+ or omitted if <imm> or the optionally shifted value of <Rm> isto be added to the base
register value (add == TRUE), or —if it isto be subtracted (permitted in ARM code only,
add == FALSE).

The immediate offset applied to the value of <Rn>. Values are 0-255 for encoding T1, and
0-4095 for encoding A1. <imm> can be omitted, meaning an offset of 0.

Contains the offset that is optionally shifted and applied to the value of <Rn> to form the
address.

The shift to apply to the value read from <Rm>. If omitted, no shift is applied. Shifts applied
to a register on page A8-10 describes the shifts and how they are encoded.

The pre-UAL syntax LDR<c>BT is equivalent to LDRBT<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); NullCheckIfThumbEE(n);
offset = if register_form then Shift(R[m], shift_t, shift_n, APSR.C) else imm32;
offset_addr = if add then (R[n] + offset) else (R[n] - offset);
address = if postindex then R[n] else offset_addr;
R[t] = ZeroExtend(MemU_unpriv[address,1],32);
if postindex then R[n] = offset_addr;

Exceptions

Data Abort.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-135

Instruction Details

A8.6.66 LDRD (immediate)

Load Register Dual (immediate) calculates an address from a base register value and an immediate offset,
loads two words from memory, and writes them to two registers. It can use offset, post-indexed, or
pre-indexed addressing. For information about memory accesses see Memory accesses on page A8-13.

Encoding T1 ARMvV6ET2, ARMV7

LDRD<c> <Rt>,<Rt2>, [<Rn>{,#+/-<imm>}]

LDRD<c> <Rt>,<Rt2>,[<Rn>],#+/-<imm>

LDRD<c> <Rt>,<Rt2>, [<Rn>,#+/-<imm>]!

151413121110 9 8 7 6 5 4 3 2 1 01514131211109 8 7 6 5 4 3 2 1 0
111010 0{P|U|1|W|1 Rn Rt Rt2 imm8

if P== ‘0" & W == ‘@’ then SEE “Related encodings”;
if Rn == ‘1111’ then SEE LDRD (literal);
= UInt(Rt); t2 = UInt(Rt2); n = UInt(Rn); imm32 = ZeroExtend(imm8:’00’, 32);
index = (P == ‘1’); add = (U == ‘1"); wback = (W==‘1")
if wback & (n ==t || n == t2) then UNPREDICTABLE;
if BadReg(t) || BadReg(t2) || t == t2 then UNPREDICTABLE;

Encoding Al ARMV5TE*, ARMvV6*, ARMV7

LDRD<c> <Rt>,<Rt2>, [<Rn>{,#+/-<imm8>}]

LDRD<c> <Rt>,<Rt2>, [<Rn>],#+/-<imm8>

LDRD<c> <Rt>,<Rt2>, [<Rn>,#+/-<imm8>]!

3130292827 26252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
cond 0 0 O|P|UlL|W|O Rn Rt imm4H (1 1 0 1| imm4dL

if Rn == ‘1111’ then SEE LDRD (literal);
1f Rt<@> == ‘1’ then UNBEFINED;
= UInt(Rt); t2 = t+l; n = UInt(Rn); 1imm32 = ZeroExtend(imm4H:imm4L, 32);
1'ndex =(P=="1"); add = (U=="'1"); wback = (P == Q") || (W=="'1");
if P == ‘0" & W == ‘1’ then UNPREDICTABLE;
if wback & (n ==t || n == t2) then UNPREDICTABLE;
if t2 == 15 then UNPREDICTABLE;

Related encodings See Load/store dual, load/store exclusive, table branch on page A6-24

A8-136 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
UNPREDICTABLE

Instruction Details

Assembler syntax

LDRD<c><q> <Rt>, <Rt2>, [<Rn> {, #+/-<imm>}] Offset: index==TRUE, whack==FALSE

LDRD<c><q> <Rt>, <Rt2>, [<Rn>, #+/-<imm>]! Pre-indexed: index==TRUE, wback==TRUE

LDRD<c><q> <Rt>, <Rt2>, [<Rn>], #+/-<imm> Post-indexed: index==FALSE, wback==TRUE

where:

<C><q> See Sandard assembler syntax fields on page A8-7.

<Rt> Thefirst destination register. For an ARM instruction, <Rt> must be even-numbered and not
R14.

<Rt2> The second destination register. For an ARM instruction, <Rt2> must be <R(t+1)>.

<Rn> The base register. The SP can be used. For PC use see LDRD (literal) on page A8-138.

+/- Is+ or omitted if theimmediate offset isto be added to the baseregister value (add == TRUE),
or —if itisto be subtracted (add == FALSE). #0 and #-0 generate different instructions.

<imm> The immediate offset used to form the address. For the offset addressing syntax, <imm> can
be omitted, meaning an offset of 0. Values are:
Encoding T1 multiples of 4 in the range 0-1020
Encoding A1 any value in the range 0-255.

The pre-UAL syntax LDR<c>D is equivalent to LDRD<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); NullCheckIfThumbEE(n);
offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
address = if index then offset_addr else R[n];
R[t] = MemA[address,4];
R[t2] = MemA[address+4,4];
if wback then R[n] = offset_addr;

Exceptions

Data Abort.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-137

Instruction Details

A8.6.67 LDRD (literal)

Load Register Dual (literal) calculates an address from the PC value and an immediate offset, loads two
words from memory, and writes them to two registers. For information about memory accesses see Memory
accesses on page A8-13.

Encoding T1 ARMvV6ET2, ARMV7

LDRD<c> <Rt>,<Rt2>,<Tabel>

LDRD<c> <Rt>,<Rt2>,[PC,#-0] Special case

1514131211109 8 7 6 5 4 3 2 1 01514131211109 8 7 6 5 4 3 2 1 0
1110100/PUI1KGY1|2 111 Rt Rt2 imm8

if P == ‘0’ jthen SEE “Related encodings”;

t = UInt(Rt); t2 = UInt(Rt2);

imm32 = ZeroExtend(imm8:’00’, 32); add = (U == ‘1’);

if BadReg(t) || BadReg(t2) || t == t2 then UNPREDICTABLE;

Encoding Al ARMV5TE*, ARMvV6*, ARMV7

LDRD<c> <Rt>,<Rt2>,<label>

LDRD<c> <Rt>,<Rt2>,[PC,#-0] Specid case

313029 28 27 26 2524232221 20191817161514131211109 8 7 6 5 4 3 2 1 0
cond 0 0 O|(jU|1|O)0Oj2 12 11 Rt im4H (1 1 0 1| imm4lL

if Rt<0> == ‘1’ then UNDEFINED;
t = UInt(Rt); t2 = t+l; 1imm32 = ZeroExtend(imm4H:imm4L, 32); add = (U == ‘1’);
if t2 == 15 then UNPREDICTABLE;

Related encodings See Load/store dual, load/store exclusive, table branch on page A6-24

A8-138 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
W

ARM_2009_Q1
Inserted Text
&& W == '0'

ARM_2009_Q1
Inserted Text

if W == '1' then UNPREDICTABLE;

ARM_2009_Q1
Sticky Note
In the case when P == '0' and W == '1', the existing pseudocode results in a cross-reference loop, with this section referring to the section cross-referenced in Related encodings, and that section referring the reader back to this section. These changes break that loop.

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
UNPREDICTABLE

Instruction Details

Assembler syntax

LDRD<c><q> <Rt>, <Rt2>, <label> Normal form

LDRD<c><q> <Rt>, <Rt2>, [PC, #+/-<imm>] Alternative form

where:

<C><q> See Standard assembler syntax fields on page A8-7.

<Rt> Thefirst destination register. For an ARM instruction, <Rt> must be even-numbered and not
R14.

<Rt2> The second destination register. For an ARM instruction, <Rt2> must be <R(t+1)>.

<label> Thelabel of theliteral dataitem that isto beloaded into <Rt>. The assembler calculates the
required value of the offset from the A1ign(PC,4) value of thisinstruction to the label.
Permitted values of the offset are:
Encoding T1 multiples of 4 in the range -1020 to 1020
Encoding Al any value in the range -255 to 255.

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE.
If the offset is negative, imm32 is equal to minus the offset and add == FALSE.

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be
specified separately, including permitting a subtraction of 0 that cannot be specified using the normal
syntax. For more information, see Use of labelsin UAL instruction syntax on page A4-5.

The pre-UAL syntax LDR<c>D is equivalent to LDRD<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); NullCheckIfThumbEE(15);
address = if add then (Align(PC,4) + imm32) else (Align(PC,4) - imm32);
R[t] = MemA[address,4];
R[t2] = MemA[address+4,4];

Exceptions

Data Abort.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-139

Instruction Details

A8.6.68 LDRD (register)

Load Register Dual (register) calculates an address from abase register value and aregister offset, loadstwo
words from memory, and writes them to two registers. It can use offset, post-indexed, or pre-indexed
addressing. For information about memory accesses see Memory accesses on page A8-13.

Encoding Al ARMV5TE*, ARMvV6*, ARMV7

LDRD<c> <Rt>,<Rt2>,[<Rn>,+/-<Rm>]1{!}

LDRD<c> <Rt>,<Rt2>,[<Rn>1,+/-<Rm>

31302928 27 26 252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
cond 0 0 O|P{U|O|W|O Rn Rt O@OO®O1 101 Rm

if Rt<@> == ‘1’ then ;

t = UInt(Rt); t2 = t+l; n = UInt(Rn); m = UInt(Rm);

index = (P == ‘1’); add = (U == ‘1"); wback = (P == ‘0") || (W==‘1");
if P == ‘0" & W == ‘1’ then UNPREDICTABLE;

ift2==15]| m==15 || m==t || m == t2 then UNPREDICTABLE;

if wback & (n == 15 || n ==t || n == t2) then UNPREDICTABLE;

if ArchVersion() < 6 && wback & m == n then UNPREDICTABLE;

A8-140

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
UNPREDICTABLE

Instruction Details

Assembler syntax

LDRD<c><q> <Rt>, <Rt2>, [<Rn>, +/-<Rm>] Offset: index==TRUE, whack==FALSE

LDRD<c><g> <Rt>, <Rt2>, [<Rn>, +/-<Rm>]! Pre-indexed: index==TRUE, whack==TRUE

LDRD<c><g> <Rt>, <Rt2>, [<Rn>], +/-<Rm> Post-indexed: index==FALSE, whack==TRUE

where:

<C><q> See Sandard assembler syntax fields on page A8-7.

<Rt> The first destination register. This register must be even-numbered and not R14.

<Rt2> The second destination register. This register must be <R(t+1)>.

<Rn> The base register. The SP or the PC can be used.

+/- Is+ or omitted if the value of <Rm> isto be added to the base register value (add == TRUE), or

—ifitisto besubtracted (add == FALSE).

<Rm> Contains the offset that is applied to the value of <Rn> to form the address.

The pre-UAL syntax LDR<c>D is equivalent to LDRD<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
offset_addr = if add then (R[n] + R[m]) else (R[n] - R[m]);
address = if index then offset_addr else R[n];
R[t] = MemA[address,4];
R[t2] = MemA[address+4,4];
if wback then R[n] = offset_addr;

Exceptions

Data Abort.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-141

Instruction Details

A8.6.69 LDREX

Load Register Exclusive calculates an address from a base register value and an immediate offset, loads a
word from memory, writes it to aregister and:

. if the address has the Shared Memory attribute, marks the physical address as exclusive access for
the executing processor in a shareg monitor

. causes the executing processor to indicate an active exclusive access in the local monitor.

For more information about support for shared memory see Synchronization and semaphores on
page A3-12. For information about memory accesses see Memory accesses on page A8-13.

Encoding T1 ARMV6T2, ARMV7
LDREX<c> <Rt>, [<Rn>{,#<imm>}]

1514131211109 8 7 6 5 4 3 2 1 01514131211109 8 7 6 5 4 3 2 1 0
11101(0o0|0lo|1{0[1| Rn Rt (D)D) QD)@ imm8

t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8:’00’, 32);
if BadReg(t) || n == 15 then UNPREDICTABLE;

Encoding Al ARMv6*, ARMvV7
LDREX<c> <Rt>,[<Rn>]

3130292827 26 252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
cond [0001100[1] Rn Rt (@@ 1 0 0 11)(D)aQ)(Q)

t = UInt(Rt); n = UInt(Rn); 1imm32 = Zeros(32); // Zero offset
if t == 15 || n == 15 then UNPREDICTABLE;

A8-142 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q3
Cross-Out

ARM_2009_Q3
Replacement Text
global

Instruction Details

Assembler syntax

LDREX<c><qg> <Rt>, [<Rn> {,#<imm>}]

where:

<C><q> See Standard assembler syntax fields on page A8-7.

<Rt> The destination register.

<Rn> The base register. The SP can be used.

<imm> The immediate offset added to the value of <Rn> to form the address. <imm> can be omitted,
meaning an offset of 0. Values are:
Encoding T1 multiples of 4 in the range 0-1020
Encoding Al omitted or 0.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); NullCheckIfThumbEE(n);
address = R[n] + imm32;
SetExclusiveMonitors(address,4);
R[t] = MemA[address,4];

Exceptions

Data Abort.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-143

Instruction Details

A8.6.70 LDREXB

Load Register Exclusive Byte derives an address from a base register value, loads a byte from memory,
zero-extends it to form a 32-bit word, writesit to aregister and:

. if the address has the Shared Memory attribute, marks the physical address as exclusive access for
the executing processor in a sharegymonitor

. causes the executing processor to indicate an active exclusive access in the local monitor.

For more information about support for shared memory see Synchronization and semaphores on
page A3-12. For information about memory accesses see Memory accesses on page A8-13.

Encoding T1 ARMv7
LDREXB<c> <Rt>, [<Rn>]

1514131211109 8 7 6 5 4 3 2 1 01514131211109 8 7 6 5 4 3 2 1 0
11101(000110[1 Rn Rt [(D@O@@0 1 0 0|1)@D) QD)D)

t = UInt(Rt); n = UInt(Rn);
if BadReg(t) || n == 15 then UNPREDICTABLE;

Encoding Al ARMv6K, ARMVv7
LDREXB<c> <Rt>, [<Rn>]

3130292827 26 252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
cond [0 00|11 101 Rn Rt (@@ 1 0 0 11)(D)aQ)(Q)

t = UInt(Rt); n = UInt(Rn);
if t == 15 || n == 15 then UNPREDICTABLE;

A8-144 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q3
Cross-Out

ARM_2009_Q3
Replacement Text
global

Instruction Details

Assembler syntax

LDREXB<c><q> <Rt>, [<Rn>]

where:

<C><q> See Standard assembler syntax fields on page A8-7.
<Rt> The destination register.

<Rn> The base register. The SP can be used.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); NullCheckIfThumbEE(n);
address = R[n];
SetExclusiveMonitors(address,1);
R[t] = ZeroExtend(MemA[address,1], 32);

Exceptions

Data Abort.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-145

Instruction Details

A8.6.71 LDREXD

Load Register Exclusive Doubleword derives an address from a base register value, |oads a 64-bit

doubleword from memory, writesiit to two registers and:

. if the address has the Shared Memory attribute, marks the physical address as exclusive access for

the executing processor in a sharegymonitor

. causes the executing processor to indicate an active exclusive access in the local monitor.

For more information about support for shared memory see Synchronization and semaphores on
page A3-12. For information about memory accesses see Memory accesses on page A8-13.

Encoding T1 ARMv7

LDREXD<c> <Rt>,<Rt2>,[<Rn>]

151413121110 9 8 7 6 5 4 3 2 1 0 1514131211109 8 7 6 4 3 2 10

111010001101 Rn Rt Rt2 01 1@ @ @O

t = UInt(Rt); t2 = UInt(Rt2); n = UInt(Rn);

if BadReg(t) || BadReg(t2) || t == t2 || n == 15 then UNPREDICTABLE;

Encoding Al ARMv6K, ARMVv7

LDREXD<c> <Rt>,<Rt2>,[<Rn>]

31 3029 28 27 26 25 24 23 22 21 2019 18 17 16 151413121110 9 8 7 6 4 3 2 10
cond 000110112 Rn Rt oOOOO1o 1{(D@® @O

t = UInt(Rt); t2 = t+l; n = UInt(Rn);

if Rt<0> = ‘1’ || Rt == ‘1110’ || n == 15 then UNPREDICTABLE;

A8-146

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

ARM DDI 0406B

ARM_2009_Q3
Cross-Out

ARM_2009_Q3
Replacement Text
global

Instruction Details

Assembler syntax

LDREXD<c><q> <Rt>, <Rt2>, [<Rn>]

where:

<C><q> See Standard assembler syntax fields on page A8-7.

<Rt> Thefirst destination register. For an ARM instruction, <Rt> must be even-numbered and not
R14.

<Rt2> The second destination register. For an ARM instruction, <Rt2> must be <R(t+1)>.

<Rn> The base register. The SP can be used.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); NullCheckIfThumbEE(n);
address = R[n];
SetExclusiveMonitors(address,8);
value = MemA[address,8];
// Extract words from 64-bit loaded value such that R[t] is
// loaded from address and R[t2] from address+4.
R[t] = if BigEndian() then value<63:32> else value<31:0>;
R[t2] = if BigEndian() then value<31:0> else value<63:32>;

Exceptions

Data Abort.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-147

Instruction Details

A8.6.72 LDREXH

Load Register Exclusive Halfword derives an address from abase register value, loads a halfword from
memory, zero-extends it to form a 32-bit word, writes it to aregister and:

. if the address has the Shared Memory attribute, marks the physical address as exclusive access for
the executing processor in a sharegymonitor

. causes the executing processor to indicate an active exclusive access in the local monitor.

For more information about support for shared memory see Synchronization and semaphores on
page A3-12. For information about memory accesses see Memory accesses on page A8-13.

Encoding T1 ARMv7
LDREXH<c> <Rt>, [<Rn>]

1514131211109 8 7 6 5 4 3 2 1 01514131211109 8 7 6 5 4 3 2 1 0
11101(000110[1 Rn Rt [(D@O@@0 1 0 1|(1)@D) Q) QD)

t = UInt(Rt); n = UInt(Rn);
if BadReg(t) || n == 15 then UNPREDICTABLE;

Encoding Al ARMv6K, ARMVv7
LDREXH<c> <Rt>, [<Rn>]

3130292827 26 252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
cond [0 00[111 1|1 Rn Rt (@@ 1 0 0 11)(D)aQ)(Q)

t = UInt(Rt); n = UInt(Rn);
if t == 15 || n == 15 then UNPREDICTABLE;

A8-148 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q3
Cross-Out

ARM_2009_Q3
Replacement Text
global

Instruction Details

Assembler syntax

LDREXH<c><q> <Rt>, [<Rn>]

where:

<C><q> See Standard assembler syntax fields on page A8-7.
<Rt> The destination register.

<Rn> The base register. The SP can be used.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); NullCheckIfThumbEE(n);
address = R[n];
SetExclusiveMonitors(address,2);
R[t] = ZeroExtend(MemA[address,2], 32);

Exceptions

Data Abort.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-149

Instruction Details

A8.6.73 LDRH (immediate, Thumb)

Load Register Halfword (immediate) calculates an address from a base register value and an immediate
offset, loads a halfword from memory, zero-extends it to form a 32-bit word, and writesit to aregister. It
can use offset, post-indexed, or pre-indexed addressing. For information about memory accesses see
Memory accesses on page A8-13.

Encoding T1 ARMVAT, ARMVST*, ARMV6E*, ARMV7
LDRH<c> <Rt>, [<Rn>{,#<imm>}]

151413121110 9 8 7 6 5 4 3 2 1 O

1000|121 imm5 Rn Rt

t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm5:’0’, 32);
index = TRUE; add = TRUE; wback = FALSE;

Encoding T2 ARMvV6T2, ARMV7
LDRH<c>.W <Rt>, [<Rn>{,#<imm12>}]

151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0

1111100(0(1|0 1|1 Rn Rt imm12

if Rt == ‘1111’ then SEE “Unallocated memory hints”;

if Rn == ‘1111’ then SEE LDRH (literal);

t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imml2, 32);
index = TRUE; add = TRUE; wback = FALSE;

if t == 13 then UNPREDICTABLE;

Encoding T3 ARMV6T2, ARMV7

LDRH<c> <Rt>, [<Rn>,#-<imm8>]

LDRH<c> <Rt>, [<Rn>],#+/-<imm8>

LDRH<c> <Rt>, [<Rn>,#+/-<imm8>]!

151413121110 9 8 7 6 5 4 3 2 1 01514131211109 8 7 6 5 4 3 2 1 0
111110 0/{0(0|0 1|12 Rn Rt 1{P UW imm8

if Rn == ‘1111’ then SEE LDRH (literal);

if Rt == ‘1111" @& P == ‘1’ & U == ‘@’ && W == ‘@’ then SEE “Unallocated memory hints”;
if P=="1" & U == ‘1" & W == ‘0’ then SEE LDRHT;

if P == ‘0" & W == ‘0’ then UNDEFINED;

t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);

index = (P == ‘1’); add = (U== ‘1"); whack = (W=="1");

if BadRegft) || (wback & n == t) then UNPREDICTABLE;

Unallocated memory hints See Load halfword, memory hints on page A6-26

A8-150

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q4 and ARM_2011_Q2
Cross-Out

ARM_2009_Q4 and ARM_2011_Q2
Replacement Text
t ==13 || (t ==15 && W == '1')

ARM_2011_Q2
Sticky Note
The original correction, made in the 2009_Q4 errata release, identified as UNPREDICTABLE some cases that are covered by earlier statements. The general rule, that pseudocode must be interpreted sequentially, means this is acceptable. However the change made in the 2011_Q2 release simplifies the pseudocode and avoids any overlap with earlier statements.

Instruction Details

Assembler syntax

LDRH<c><q> <Rt>, [<Rn> {, #+/-<imm>}] Offset: index==TRUE, whack==FALSE

LDRH<c><q> <Rt>, [<Rn>, #+/-<imm>]! Pre-indexed: index==TRUE, wback==TRUE
LDRH<c><q> <Rt>, [<Rn>], #+/-<imm> Post-indexed: index==FALSE, wback==TRUE
where:

<C><q> See Sandard assembler syntax fields on page A8-7.

<Rt> The destination register.

<Rn> The base register. The SP can be used. For PC use see LDRH (literal) on page A8-154.
+/- Is+ or omitted to indicate that the immediate offset is added to the base register value

(add == TRUE), or —to indicate that the offset isto be subtracted (add == FALSE). Different
instructions are generated for #0 and #-0.

<imm> The immediate offset used to form the address. For the offset addressing syntax, <imm> can
be omitted, meaning an offset of 0. Values are:
Encoding T1 multiples of 2 in the range 0-62
Encoding T2 any value in the range 0-4095
Encoding T3 any valuein the range 0-255.

The pre-UAL syntax LDR<c>H is equivalent to LDRH<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); NullCheckIfThumbEE(n);
offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
address = if index then offset_addr else R[n];
data = MemU[address,2];
if wback then R[n] = offset_addr;
if UnalignedSupport() || address<@> = ‘@’ then
R[t] = ZeroExtend(data, 32);
else // Can only apply before ARMv7
R[t] = bits(32) UNKNOWN;

Exceptions

Data Abort.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-151

Instruction Details

A8.6.74 LDRH (immediate, ARM)

Load Register Halfword (immediate) calculates an address from a base register value and an immediate
offset, loads a halfword from memory, zero-extends it to form a 32-bit word, and writesit to aregister. It
can use offset, post-indexed, or pre-indexed addressing. For information about memory accesses see
Memory accesses on page A8-13.

Encoding Al ARMv4* ARMV5T*, ARMvV6*, ARMV7
LDRH<c> <Rt>, [<Rn>{,#+/-<imm8>}]

LDRH<c> <Rt>, [<Rn>],#+/-<imm8>

LDRH<c> <Rt>, [<Rn>,#+/-<imm8>]!

31 30 29 28 27 26 2524232221 2019181716151413121110 9 8 7 6 5 4 3 2 1 O

cond 00 O|P|UILTIW|1 Rn Rt imm4H (1 0 1 1| immdL

if Rn == ‘1111’ then SEE LDRH (1iteral);

if P == ‘0" & W == ‘1’ then SEE LDRHT;

t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm4H:imm4L, 32);

index = (P == ‘1’); add = (U==‘1"); wback = (P == ‘0") || (W=="1");
if t == 15 || (wback & n == t) then UNPREDICTABLE;

A8-152

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

LDRH<c><q> <Rt>, [<Rn> {, #+/-<imm>}] Offset: index==TRUE, whack==FALSE

LDRH<c><q> <Rt>, [<Rn>, #+/-<imm>]! Pre-indexed: index==TRUE, wback==TRUE
LDRH<c><q> <Rt>, [<Rn>], #+/-<imm> Post-indexed: index==FALSE, wback==TRUE
where:

<C><q> See Sandard assembler syntax fields on page A8-7.

<Rt> The destination register.

<Rn> The base register. The SP can be used. For PC use see LDRH (literal) on page A8-154.
+/- Is+ or omitted to indicate that the immediate offset is added to the base register value

(add == TRUE), or —to indicate that the offset isto be subtracted (add == FALSE). Different
instructions are generated for #0 and #-0.

<imm> The immediate offset used to form the address. For the offset addressing syntax, <imm> can
be omitted, meaning an offset of 0. Any value in the range 0-255 is permitted.

The pre-UAL syntax LDR<c>H is equivalent to LDRH<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
address = if index then offset_addr else R[n];
data = MemU[address,2];
if wback then R[n] = offset_addr;
if UnalignedSupport() || address<@> = ‘@’ then
R[t] = ZeroExtend(data, 32);
else // Can only apply before ARMv7
R[t] = bits(32) UNKNOWN;

Exceptions

Data Abort.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-153

Instruction Details

A8.6.75 LDRH (literal)

Load Register Halfword (literal) calculates an address from the PC value and an immediate offset, loads a
halfword from memory, zero-extends it to form a 32-bit word, and writes it to aregister. For information
about memory accesses see Memory accesses on page A8-13.

Encoding T1 ARMvV6ET2, ARMV7
LDRH<c> <Rt>,<label>

LDRH<c> <Rt>, [PC,#-0] Special case
151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0

11111/00(0{UO0 1|21 111 Rt imm12

if Rt == ‘1111’ then SEE “Unallocated memory hints”;
t = UInt(Rt); 1imm32 = ZeroExtend(imml2, 32); add = (U == ‘1");
if t == 13 then UNPREDICTABLE;

Encoding Al ARMv4* , ARMV5T*, ARMvV6*, ARMV7

LDRH<c> <Rt>,<label>

LDRH<c> <Rt>, [PC,#-0] Special case

3130292827 26 252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
cond 0 0 O|(|U|1|Oj1|2 1211 Rt im4H (1 0 1 1| imm4lL

t = UInt(Rt); 1imm32 = ZeroExtend(imm4H:imm4L, 32); add = (U == ‘1’);
if t == 15 then UNPREDICTABLE;

Unallocated memory hints See Load halfword, memory hints on page A6-26

A8-154

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

LDRH<c><q> <Rt>, <label> Normal form
LDRH<c><q> <Rt>, [PC, #+/-<imm>] Alternative form
where:
<C><q> See Standard assembler syntax fields on page A8-7.
<Rt> The destination register.
<label> Thelabel of theliteral dataitem that isto be loaded into <Rt>. The assembler calculates the
required value of the offset from the A1ign(PC,4) value of the-ABR instruction to this label. @
Permitted values of the offset are:
Encoding T1 any value in the range -4095 to 4095
Encoding A1 any value in the range -255 to 255.

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE.
If the offset is negative, imm32 is equal to minus the offset and add == FALSE.

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be
specified separately, including permitting a subtraction of 0 that cannot be specified using the normal
syntax. For more information, see Use of labelsin UAL instruction syntax on page A4-5.

The pre-UAL syntax LDR<c>H is equivalent to LDRH<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); NullCheckIfThumbEE(15);
base = Align(PC,4);
address = if add then (base + imm32) else (base - imm32);
data = MemU[address,2];
if UnalignedSupport() || address<@> = ‘@’ then
R[t] = ZeroExtend(data, 32);
else // Can only apply before ARMv7
R[t] = bits(32) UNKNOWN;

Exceptions

Data Abort.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-155

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Sticky Note
The offset is from Align(PC,4) value of the issued LDRH instruction to the address of the label.

Instruction Details

A8.6.76 LDRH (register)

Load Register Halfword (register) cal culates an address from a base register value and an offset register
value, loads a halfword from memory, zero-extends it to form a 32-bit word, and writesit to aregister. The
offset register value can be shifted left by O, 1, 2, or 3 bits. For information about memory accesses see
Memory accesses on page A8-13.

Encoding T1 ARMVAT, ARMVST*, ARMV6E*, ARMV7
LDRH<c> <Rt>, [<Rn>,<Rm>]

151413121110 9 8 7 6 5 4 3 2 1 O

0101|101 Rm Rn Rt

if CurrentInstrSet() == InstrSet_ThumbEE then SEE “Modified operation in ThumbEE”;
t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);

index = TRUE; add = TRUE; wback = FALSE;

(shift_t, shift_n) = (SRType_LSL, 0);

Encoding T2 ARMV6T2, ARMV7
LDRH<c>.W <Rt>, [<Rn>,<Rm>{,LSL #<imm2>}]

151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0

111110 0(0{0(0 1|1 Rn Rt 0|0 O O O O|imm2 Rm

if Rn == ‘1111’ then SEE LDRH (1iteral);

if Rt == ‘1111’ then SEE “Unallocated memory hints”;
t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);

index = TRUE; add = TRUE; wback = FALSE;

(shift_t, shift_n) = (SRType_LSL, UInt(imm2));

if t == 13 || BadReg(m) then UNPREDICTABLE;

Encoding Al ARMv4* ARMvV5T*, ARMvV6*, ARMV7
LDRH<c> <Rt>, [<Rn>,+/-<Rm>]1{'}
LDRH<c> <Rt>, [<Rn>]1,+/-<Rm>

31 3029 28 27 26 2524232221 2019181716151413121110 9 8 7 6 5 4 3 2 1 O

cond |0 0 O|P|U[O|W|1| Rn Rt |(0©(@©@©)1 0 1 1| Rm

if P == ‘0" & W == ‘1’ then SEE LDRHT;

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);

index = (P == ‘1’); add = (U == ‘1"); wback = (P == ‘0") || (W==‘1");
(shift_t, shift_n) = (SRType_LSL, 0);

if t == 15 || m == 15 then UNPREDICTABLE;

if wback & (n == 15 || n == t) then UNPREDICTABLE;

if ArchVersion() < 6 && wback & m == n then UNPREDICTABLE;

Unallocated memory hints See Load halfword, memory hints on page A6-26
Modified operation in ThumbEE See LDRH (register) on page A9-10

A8-156

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

LDRH<c><q> <Rt>, [<Rn>, <Rm>{, LSL #<imm>}] Offset: index==TRUE, whack==FALSE

LDRH<c><g> <Rt>, [<Rn>, +/-<Rm>] Offset: index==TRUE, wback==FALSE

LDRH<c><g> <Rt>, [<Rn>, +/-<Rm>]! Pre-indexed: index==TRUE, wback==TRUE

LDRH<c><gq> <Rt>, [<Rn>], +/-<Rm> Post-indexed: index==FALSE, wback==TRUE

where:

<C><q> See Sandard assembler syntax fields on page A8-7.

<Rt> The destination register.

<Rn> The base register. The SP can be used. The PC can be used only in the ARM instruction set.

+/- Is+ or omitted if the optionally shifted value of <Rm> isto be added to the base register value
(add == TRUE), or —if it isto be subtracted (permitted in ARM code only, add == FALSE).

<Rm> Contains the offset that is optionally left shifted and added to the value of <Rn> to form the
address.

<imm> If present, the size of the |eft shift to apply to the value from <Rm>, in the range 1-3. Only

encoding T2 is permitted, and <imm> is encoded in imm2.

If absent, no shift is specified and al encodings are permitted. In encoding T2, imm2 is
encoded as 0b00.

The pre-UAL syntax LDR<c>H is equivalent to LDRH<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); NullCheckIfThumbEE(n);
offset = Shift(R[m], shift_t, shift_n, APSR.C);
offset_addr = if add then (R[n] + offset) else (R[n] - offset);
address = if index then offset_addr else R[n];
data = MemU[address,2];
if wback then R[n] = offset_addr;
if UnalignedSupport() || address<@> = ‘@’ then
R[t] = ZeroExtend(data, 32);
else // Can only apply before ARMv7
R[t] = bits(32) UNKNOWN;

Exceptions

Data Abort.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-157

Instruction Details

A8.6.77 LDRHT

Load Register Halfword Unprivileged |oads a halfword from memory, zero-extendsit to form a32-bit word,
and writes it to aregister. For information about memory accesses see Memory accesses on page A8-13.

The memory accessis restricted as if the processor were running in User mode. (This makes no difference
if the processor is actually running in User mode.)

The Thumb instruction uses an offset addressing mode, that cal culates the address used for the memory
access from a base register value and an immediate offset, and leaves the base register unchanged.

The ARM instruction uses a post-indexed addressing mode, that uses abase register value asthe addressfor
the memory access, and calculates a new address from abase register value and an offset and writesit back
to the base register. The offset can be an immediate value or aregister value.

Encoding T1 ARMV6ET2, ARMV7
LDRHT<c> <Rt>, [<Rn>,#<imm8>]

151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 O
1111100(0(0(0 1)1 Rn Rt 1111 0 imm8

if Rn == ‘1111’ then SEE LDRH (literal);

t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;
register_form = FALSE; 1imm32 = ZeroExtend(imm8, 32);

if BadReg(t) then UNPREDICTABLE;

Encoding Al ARMvV6T2, ARMV7

LDRHT<c> <Rt>, [<Rn>] {, #+/-<imm8>}

3130292827 2625242322212019181716151413121110 9 8 7 6 4 3210
cond 0 0O0|OjU[1|1|1 Rn Rt imm4H (1 0 1 1| immdL

t = UInt(Rt); n = UInt(Rn); postindex = TRUE; add = (U == ‘1’);

register_form = FALSE; 1imm32 = ZeroExtend(imm4H:imm4L, 32);

if t == 15 || n==15 || n == t then UNPREDICTABLE;

Encoding A2 ARMvV6ET2, ARMV7

LDRHT<c> <Rt>, [<Rn>], +/-<Rm>

3130292827 2625242322212019181716151413121110 9 8 7 6 4 3210
cond 0 0 O|OjU|O|1|12 Rn Rt O@OOO1011 Rm

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm); postindex = TRUE; add = (U == ‘1’);
register_form = FALSE;
ift==15]] n==15 || n==t || m == 15 then UNPREDICTABLE;

A8-158 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

LDRHT<c><g> <Rt>, [<Rn> {, #<imm>}] Offset: Thumb only

LDRHT<c><q> <Rt>, [<Rn>] {, #+/-<imm>} Post-indexed: ARM only

LDRHT<c><g> <Rt>, [<Rn>], +/-<Rm> Post-indexed: ARM only

where:

<C><q> See Sandard assembler syntax fields on page A8-7.

<Rt> The destination register.

<Rn> The base register. The SP can be used.

+/- Is+ or omitted if <imm> or the optionally shifted value of <Rm> isto be added to the base
register value (add == TRUE), or —if it isto be subtracted (permitted in ARM code only,
add == FALSE).

<imm> Theimmediate offset applied to the value of <Rn>. Any valuein therange 0-255 is permitted.
<imm> can be omitted, meaning an offset of 0.

<Rm> Contains the offset that is applied to the value of <Rn> to form the address.

Operation

if ConditionPassed() then

EncodingSpecificOperations(); NullCheckIfThumbEE(n);
offset = if register_form then R[m] else imm32;
offset_addr = if add then (R[n] + offset) else (R[n] - offset);
address = if postindex then R[n] else offset_addr;
data = MemU_unpriv[address,2];
if postindex then R[n] = offset_addr;
if UnalignedSupport() || address<@> = ‘@’ then

R[t] = ZeroExtend(data, 32);
else // Can only apply before ARMv7

R[t] = bits(32) UNKNOWN;

Exceptions

Data Abort.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-159

Instruction Details

A8.6.78 LDRSB (immediate)

Load Register Signed Byte (immediate) calculates an address from a base register value and an immediate
offset, loads a byte from memory, sign-extendsit to form a 32-bit word, and writesit to aregister. It can use
offset, post-indexed, or pre-indexed addressing. For information about memory accesses see Memory
accesses on page A8-13.

Encoding T1 ARMvV6T2, ARMV7
LDRSB<c> <Rt>, [<Rn>,#<imm12>]

151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0

1111100110 0]1 Rn Rt imm12

if Rt == ‘1111’ then SEE PLI;

if Rn == ‘1111’ then SEE LDRSB (literal);

t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imml2, 32);
index = TRUE; add = TRUE; wback = FALSE;

if t == 13 then UNPREDICTABLE;

Encoding T2 ARMV6T2, ARMV7
LDRSB<c> <Rt>, [<Rn>,#-<imm8>]

LDRSB<c> <Rt>, [<Rn>],#+/-<imm8>

LDRSB<c> <Rt>, [<Rn>,#+/-<imm8>]!

151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0

11111/00(1(0(0 0]1 Rn Rt 1|/PUW imm8

if Rt == ‘1111 && P == ‘1’ & U == ‘0’ && W == ‘@’ then SEE PLI;
if Rn == ‘1111’ then SEE LDRSB (literal);

if P== ‘1" & U=="1" & W == ‘0’ then SEE LDRSBT;

if P == ‘0" & W == ‘@’ then UNDEFINED;

t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
index = (P == ‘1’); add = (U== ‘1"); whack = (W=="1");

if BadRegft)4|| (wback & n == t) then UNPREDICTABLE;

Encoding Al ARMv4* ARMV5T*, ARMvV6*, ARMV7
LDRSB<c> <Rt>, [<Rn>{,#+/-<imm8>}]

LDRSB<c> <Rt>,[<Rn>]1,#+/-<imm8>

LDRSB<c> <Rt>, [<Rn>,#+/-<imm8>]!

3130292827 2625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 O
cond 00 OlP|UILTIW|1 Rn Rt imm4H (1 1 0 1| immdL

if Rn == ‘1111’ then SEE LDRSB (literal);

if P == ‘0" & W == ‘1’ then SEE LDRSBT;

t = UInt(Rt); n = UInt(Rn); 1imm32 = ZeroExtend(imm4H:imm4L, 32);

index = (P == ‘1’); add = (U== ‘1"); whack = (P == ‘0") || (W==1");
if t == 15 || (wback & n == t) then UNPREDICTABLE;

A8-160

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q4 and ARM_2011_Q2
Cross-Out

ARM_2009_Q4 and ARM_2011_Q2
Replacement Text
t == 13 || (t == 15 && W == '1')

ARM_2011_Q2
Sticky Note
The original correction, made in the 2009_Q4 errata release, identified as UNPREDICTABLE some cases that are covered by earlier statements. The general rule, that pseudocode must be interpreted sequentially, means this is acceptable. However the change made in the 2011_Q2 release simplifies the pseudocode and avoids any overlap with earlier statements.

Instruction Details

Assembler syntax

LDRSB<c><q>
LDRSB<c><q>
LDRSB<c><q>

where:
<C><0>
<Rt>

<Rn>

+/-

<imm>

<Rt>, [<Rn> {, #+/-<imm>}] Offset: index==TRUE, whack==FALSE
<Rt>, [<Rn>, #+/-<imm>]! Pre-indexed: index==TRUE, wback==TRUE
<Rt>, [<Rn>], #+/-<imm> Post-indexed: index==FALSE, wback==TRUE

See Sandard assembler syntax fields on page A8-7.
The destination register.
The base register. The SP can be used. For PC use see LDRSB (literal) on page A8-162.

Is+ or omitted to indicate that the immediate offset is added to the base register value
(add == TRUE), or —to indicate that the offset isto be subtracted (add == FALSE). Different
instructions are generated for #0 and #-0.

The immediate offset used to form the address. For the offset addressing syntax, <imm> can
be omitted, meaning an offset of 0. Values are:

Encoding T1 any valuein the range 0-4095

Encoding T2 or A1 any vaue in the range0-255.

The pre-UAL syntax LDR<c>SB is equivalent to LDRSB<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); NullCheckIfThumbEE(n);
offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
address = if index then offset_addr else R[n];
R[t] = SignExtend(MemU[address,1], 32);
if wback then R[n] = offset_addr;

Exceptions

Data Abort.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-161

Instruction Details

A8.6.79 LDRSB (literal)

Load Register Signed Byte (literal) calculates an address from the PC value and an immediate offset, loads
abyte from memory, sign-extendsit to form a 32-bit word, and writesit to aregister. For information about
memory accesses see Memory accesses on page A8-13.

Encoding T1 ARMvV6ET2, ARMV7
LDRSB<c> <Rt>,<label>
LDRSB<c> <Rt>, [PC,#-0] Special case

151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0

11111/00f1jUj0O0f2|21 111 Rt imm12

if Rt == ‘1111’ then SEE PLI;
t = UInt(Rt); 1imm32 = ZeroExtend(imml2, 32); add = (U == ‘1");
if t == 13 then UNPREDICTABLE;

Encoding Al ARMv4*, ARMV5T*, ARMvV6*, ARMV7
LDRSB<c> <Rt>,<label>

LDRSB<c> <Rt>, [PC,#-0] Specid case
31 3029 28 27 26 2524232221 20191817 161514131211109 8 7 6 5 4 3 2 1 0

cond |0 0 o|@ul1|©)1|1 1 1 1 Rt imm4H |1 1 0 1| immdL

t = UInt(Rt); 1imm32 = ZeroExtend(imm4H:imm4L, 32); add = (U == ‘1’);
if t == 15 then UNPREDICTABLE;

A8-162

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

LDRSB<c><g> <Rt>, <label> Normal form
LDRSB<c><q> <Rt>, [PC, #+/-<imm>] Alternative form
where:
<C><q> See Standard assembler syntax fields on page A8-7.
<Rt> The destination register.
<label> Thelabel of theliteral dataitem that isto beloaded into <Rt>. The assembler calculates the
required value of the offset from the A1ign(PC,4) value of the-ABR instruction to this label. @
Permitted values of the offset are:
Encoding T1 any value in the range -4095 to 4095
Encoding A1 any value in the range -255 to 255.

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE.
If the offset is negative, imm32 is equal to minus the offset and add == FALSE.

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be
specified separately, including permitting a subtraction of 0 that cannot be specified using the normal
syntax. For more information, see Use of labelsin UAL instruction syntax on page A4-5.

The pre-UAL syntax LDR<c>SB is equivalent to LDRSB<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); NullCheckIfThumbEE(15);
base = Align(PC,4);
address = if add then (base + imm32) else (base - imm32);
R[t] = SignExtend(MemU[address,1], 32);

Exceptions

Data Abort.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-163

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Sticky Note
The offset is from Align(PC,4) value of the issued LDRSB instruction to the address of the label.

Instruction Details

A8.6.80 LDRSB (register)

Load Register Signed Byte (register) calculates an address from a base register value and an offset register
value, loads a byte from memory, sign-extendsit to form a32-bit word, and writesit to aregister. The offset
register value can be shifted left by 0, 1, 2, or 3 bits. For information about memory accesses see Memory
accesses on page A8-13.

Encoding T1 ARMVAT, ARMVST*, ARMV6E*, ARMV7
LDRSB<c> <Rt>, [<Rn>,<Rm>]

151413121110 9 8 7 6 5 4 3 2 1 O
0101011 Rm Rn Rt

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; wback = FALSE;
(shift_t, shift_n) = (SRType_LSL, 0);

Encoding T2 ARMvV6ET2, ARMV7
LDRSB<c>.W <Rt>, [<Rn>,<Rm>{,LSL #<imm2>}]

151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0
1111100(1(0/0 0]|1 Rn Rt 0|0 0 0O 0 Ofimm2 Rm

if Rt == ‘1111’ then SEE PLI;

if Rn == ‘1111’ then SEE LDRSB (literal);

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; wback = FALSE;
(shift_t, shift_n) = (SRType_LSL, UInt(imm2));
if t == 13 || BadReg(m) then UNPREDICTABLE;

Encoding Al ARMv4* ARMvV5T*, ARMvV6*, ARMV7

LDRSB<c> <Rt>,[<Rn>,+/-<Rm>]1{!'}

LDRSB<c> <Rt>,[<Rn>],+/-<Rm>

3130292827 2625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 0
cond 0 0 O|P|U|O|W|1 Rn Rt O©@O@O@O1 101 Rm

if P == ‘0" & W == ‘1’ then SEE LDRSBT;

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);

index = (P == ‘1’); add = (U==‘1"); wback = (P == ‘0") || (W=="1");
(shift_t, shift_n) = (SRType_LSL, 0);

if t == 15 || m == 15 then UNPREDICTABLE;

if wback & (n == 15 || n == t) then UNPREDICTABLE;

if ArchVersion() < 6 && wback & m == n then UNPREDICTABLE;

A8-164 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

LDRSB<c><q> <Rt>, [<Rn>, <Rm>{, LSL #<imm>}] Offset: index==TRUE, whack==FALSE

LDRSB<c><q> <Rt>, [<Rn>, +/-<Rm>] Offset: index==TRUE, whack==FALSE

LDRSB<c><g> <Rt>, [<Rn>, +/-<Rm>]! Pre-indexed: index==TRUE, wback==TRUE

LDRSB<c><q> <Rt>, [<Rn>], +/-<Rm> Post-indexed: index==FALSE, wback==TRUE

where:

<C><q> See Sandard assembler syntax fields on page A8-7.

<Rt> The destination register.

<Rn> The base register. The SP can be used. The PC can be used only in the ARM instruction set.

+/- Is+ or omitted if the optionally shifted value of <Rm> isto be added to the base register value
(add == TRUE), or —if it isto be subtracted (permitted in ARM code only, add == FALSE).

<Rm> Contains the offset that is optionally left shifted and added to the value of <Rn> to form the
address.

<imm> If present, the size of the |eft shift to apply to the value from <Rm>, in the range 1-3. Only

encoding T2 is permitted, and <imm> is encoded in imm2.

If absent, no shift is specified and al encodings are permitted. In encoding T2, imm2 is
encoded as 0b00.

The pre-UAL syntax LDR<c>SB is equivalent to LDRSB<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); NullCheckIfThumbEE(n);
offset = Shift(R[m], shift_t, shift_n, APSR.C);
offset_addr = if add then (R[n] + offset) else (R[n] - offset);
address = if index then offset_addr else R[n];
R[t] = SignExtend(MemU[address,1], 32);
if wback then R[n] = offset_addr;

Exceptions

Data Abort.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-165

Instruction Details

A8.6.81 LDRSBT

Load Register Signed Byte Unprivileged loads a byte from memory, sign-extendsit to form a 32-bit word,
and writes it to aregister. For information about memory accesses see Memory accesses on page A8-13.

The memory accessis restricted as if the processor were running in User mode. (This makes no difference
if the processor is actually running in User mode.)

The Thumb instruction uses an offset addressing mode, that cal culates the address used for the memory
access from a base register value and an immediate offset, and leaves the base register unchanged.

The ARM instruction uses a post-indexed addressing mode, that uses abase register value asthe addressfor
the memory access, and calculates a new address from abase register value and an offset and writesit back
to the base register. The offset can be an immediate value or aregister value.

Encoding T1 ARMV6ET2, ARMV7
LDRSBT<c> <Rt>, [<Rn>,#<imm8>]

151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 O
11111/00(1(0|0 0]1 Rn Rt 1111 0 imm8

if Rn == ‘1111’ then SEE LDRSB (literal);

t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;
register_form = FALSE; 1imm32 = ZeroExtend(imm8, 32);

if BadReg(t) then UNPREDICTABLE;

Encoding Al ARMvV6T2, ARMV7

LDRSBT<c> <Rt>, [<Rn>] {, #+/-<imm8>}

3130292827 2625242322212019181716151413121110 9 8 7 6 4 3210
cond 0 0O0|OjU[1|1|1 Rn Rt imm4H (1 1 0 1| immdL

t = UInt(Rt); n = UInt(Rn); postindex = TRUE; add = (U == ‘1’);

register_form = FALSE; 1imm32 = ZeroExtend(imm4H:imm4L, 32);

if t == 15 || n==15 || n == t then UNPREDICTABLE;

Encoding A2 ARMvV6ET2, ARMV7

LDRSBT<c> <Rt>, [<Rn>], +/-<Rm>

3130292827 2625242322212019181716151413121110 9 8 7 6 4 3210
cond 0 0 O|OjU|O|1|12 Rn Rt O@OOO1 101 Rm

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm); postindex = TRUE; add = (U == ‘1’);
register_form = TRUE;
ift==15]] n==15 || n==t || m == 15 then UNPREDICTABLE;

A8-166 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

LDRSBT<c><0>
LDRSBT<c><0>
LDRSBT<c><g>

where:
<C><0>
<Rt>

<Rn>

+/-

<imm>

<Rm>

Operation

<Rt>, [<Rn> {, #<imm>}] Offset: Thumb only
<Rt>, [<«Rn>] {, #+/-<imm>} Post-indexed: ARM only
<Rt>, [<Rn>], +/-<Rm> Post-indexed: ARM only

See Sandard assembler syntax fields on page A8-7.
The destination register.
The base register. The SP can be used.

Is+ or omitted if <imm> or the optionally shifted value of <Rm> isto be added to the base
register value (add == TRUE), or —if it isto be subtracted (permitted in ARM code only,
add == FALSE).

Theimmediate offset applied to the value of <Rn>. Any valuein therange 0-255 is permitted.
<imm> can be omitted, meaning an offset of 0.

Contains the offset that is applied to the value of <Rn> to form the address.

if ConditionPassed() then
EncodingSpecificOperations(); NullCheckIfThumbEE(n);
offset = if register_form then R[m] else imm32;
offset_addr = if add then (R[n] + offset) else (R[n] - offset);
address = if postindex then R[n] else offset_addr;
R[t] = SignExtend(MemU_unpriv[address,1], 32);
if postindex then R[n] = offset_addr;

Exceptions

Data Abort.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-167

Instruction Details

A8.6.82 LDRSH (immediate)

Load Register Signed Halfword (immediate) cal culates an address from a base register value and an
immediate offset, loads a halfword from memory, sign-extends it to form a 32-bit word, and writesit to a
register. It can use offset, post-indexed, or pre-indexed addressing. For information about memory accesses
see Memory accesses on page A8-13.

Encoding T1 ARMvV6T2, ARMV7
LDRSH<c> <Rt>, [<Rn>,#<imm12>]

151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0

1111100(f1(1|/0 1)1 Rn Rt imm12

if Rn == ‘1111’ then SEE LDRSH (literal);

if Rt == ‘1111’ then SEE “Unallocated memory hints”;

t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imml2, 32);
index = TRUE; add = TRUE; wback = FALSE;

if t == 13 then UNPREDICTABLE;

Encoding T2 ARMV6T2, ARMV7
LDRSH<c> <Rt>, [<Rn>,#-<imm8>]

LDRSH<c> <Rt>, [<Rn>],#+/-<imm8>

LDRSH<c> <Rt>, [<Rn>,#+/-<imm8>]!

151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0

1111100(1(0|0 1|1 Rn Rt 1|/PUW imm8

if Rn == ‘1111’ then SEE LDRSH (literal);

if Rt == ‘1111 && P == ‘1’ & U == ‘0’ && W == ‘@’ then SEE “Unallocated memory hints”;
if P== ‘1" & U == ‘1" & W == ‘@’ then SEE LDRSHT;

if P== ‘0" & W == ‘©’ then UNDEFINED;

t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);

index = (P == ‘1’); add = (U== ‘1"); whack = (W=="1");

if BadRegft) || (wback & n == t) then UNPREDICTABLE;

Encoding Al ARMv4* ARMV5T*, ARMvV6*, ARMV7
LDRSH<c> <Rt>, [<Rn>{,#+/-<imm8>}]

LDRSH<c> <Rt>, [<Rn>]1,#+/-<imm8>

LDRSH<c> <Rt>, [<Rn>,#+/-<imm8>]!

3130292827 2625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 O
cond 00 OlP|UILTIW|1 Rn Rt imm4H (1 1 1 1| immdL

if Rn == ‘1111’ then SEE LDRSH (literal);

if P == ‘0" & W == ‘1’ then SEE LDRSHT;

t = UInt(Rt); n = UInt(Rn); 1imm32 = ZeroExtend(imm4H:imm4L, 32);

index = (P == ‘1’); add = (U== ‘1"); whack = (P == ‘0") || (W==1");
if t == 15 || (wback & n == t) then UNPREDICTABLE;

Unallocated memory hints See Load halfword, memory hints on page A6-26

A8-168

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q4 and ARM_2011_Q2
Cross-Out

ARM_2009_Q4 and ARM_2011_Q2
Replacement Text
t == 13 || (t == 15 && W == '1')

ARM_2011_Q2
Sticky Note
The original correction, made in the 2009_Q4 errata release, identified as UNPREDICTABLE some cases that are covered by earlier statements. The general rule, that pseudocode must be interpreted sequentially, means this is acceptable. However the change made in the 2011_Q2 release simplifies the pseudocode and avoids any overlap with earlier statements.

Instruction Details

Assembler syntax

LDRSH<c><q> <Rt>, [<Rn> {, #+/-<imm>}] Offset: index==TRUE, whack==FALSE

LDRSH<c><g> <Rt>, [<Rn>, #+/-<imm>]! Pre-indexed: index==TRUE, whack==TRUE
LDRSH<c><q> <Rt>, [<Rn>], #+/-<imm> Post-indexed: index==FALSE, wback==TRUE

where:

<C><q> See Sandard assembler syntax fields on page A8-7.

<Rt> The destination register.

<Rn> The base register. The SP can be used. For PC use see LDRSH (literal) on page A8-170.
+/- Is+ or omitted to indicate that the immediate offset is added to the base register value

(add == TRUE), or —to indicate that the offset isto be subtracted (add == FALSE). Different
instructions are generated for #0 and #-0.

<imm> The immediate offset used to form the address, Values are 0-4095 for encoding T1, and
0-255 for encoding T2 or A 1. For the offset syntax, <imm> can be omitted, meaning an offset
of 0.

The pre-UAL syntax LDR<c>SH is equivalent to LDRSH<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); NullCheckIfThumbEE(n);
offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
address = if index then offset_addr else R[n];
data = MemU[address,2];
if wback then R[n] = offset_addr;
if UnalignedSupport() || address<@> = ‘@’ then
R[t] = SignExtend(data, 32);
else // Can only apply before ARMv7
R[t] = bits(32) UNKNOWN;

Exceptions

Data Abort.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-169

Instruction Details

A8.6.83 LDRSH (literal)

Load Register Signed Halfword (literal) calculates an address from the PC value and an immediate offset,
loads a halfword from memory, sign-extends it to form a 32-bit word, and writes it to aregister. For
information about memory accesses see Memory accesses on page A8-13.

Encoding T1 ARMvV6ET2, ARMV7
LDRSH<c> <Rt>,<label>
LDRSH<c> <Rt>, [PC,#-0] Special case

151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0

11111/00f1{Uj0 12111111 Rt imm12

if Rt == ‘1111’ then SEE “Unallocated memory hints”;
t = UInt(Rt); 1imm32 = ZeroExtend(imml2, 32); add = (U == ‘1");
if t == 13 then UNPREDICTABLE;

Encoding Al ARMv4*, ARMV5T*, ARMvV6*, ARMV7
LDRSH<c> <Rt>,<label>

LDRSH<c> <Rt>, [PC,#-0] Specid case
31 3029 28 27 26 2524232221 20191817 161514131211109 8 7 6 5 4 3 2 1 0

cond |0 0 o|@ul1|©)1|1 1 1 1 Rt imm4H |1 1 1 1| immdL

t = UInt(Rt); 1imm32 = ZeroExtend(imm4H:imm4L, 32); add = (U == ‘1’);
if t == 15 then UNPREDICTABLE;

Unallocated memory hints See Load halfword, memory hints on page A6-26

A8-170

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

LDRSH<c><q>
LDRSH<c><q>

where:
<C><0>
<Rt>

<label>

<Rt>, <label> Normal form
<Rt>, [PC, #+/-<imm>] Alternative form

See Standard assembler syntax fields on page A8-7.
The destination register.

Thelabel of theliteral dataitem that isto beloaded into <Rt>. The assembler calculates the
required value of the offset from the A1ign(PC,4) value of the-ABR instruction to this label.
Permitted values of the offset are:

Encoding T1 any value in the range -4095 to 4095

Encoding A1 any value in the range -255 to 255.

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE.
If the offset is negative, imm32 is equal to minus the offset and add == FALSE.

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be
specified separately, including permitting a subtraction of 0 that cannot be specified using the normal
syntax. For more information, see Use of labelsin UAL instruction syntax on page A4-5.

The pre-UAL syntax LDR<c>SH is equivalent to LDRSH<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); NullCheckIfThumbEE(15);
base = Align(PC,4);
address = if add then (base + imm32) else (base - imm32);
data = MemU[address,2];
if UnalignedSupport() || address<@> = ‘@’ then
R[t] = SignExtend(data, 32);
else // Can only apply before ARMv7
R[t] = bits(32) UNKNOWN;

Exceptions

Data Abort.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-171

=

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Sticky Note
The offset is from Align(PC,4) value of the issued LDRSH instruction to the address of the label.

Instruction Details

A8.6.84 LDRSH (register)

Load Register Signed Halfword (register) calculates an address from a base register value and an offset
register value, loads a halfword from memory, sign-extends it to form a 32-bit word, and writesit to a
register. The offset register value can be shifted left by 0, 1, 2, or 3 bits. For information about memory
accesses see Memory accesses on page A8-13.

Encoding T1 ARMVAT, ARMVST*, ARMV6E*, ARMV7
LDRSH<c> <Rt>, [<Rn>,<Rm>]

151413121110 9 8 7 6 5 4 3 2 1 O

0101|111 Rm Rn Rt

if CurrentInstrSet() == InstrSet_ThumbEE then SEE “Modified operation in ThumbEE”;
t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);

index = TRUE; add = TRUE; wback = FALSE;

(shift_t, shift_n) = (SRType_LSL, 0);

Encoding T2 ARMV6T2, ARMV7
LDRSH<c>.W <Rt>, [<Rn>,<Rm>{,LSL #<imm2>}]

151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0

111110 0(1{0(0 1|1 Rn Rt 0|0 O O O O|imm2 Rm

if Rn == ‘1111’ then SEE LDRSH (literal);

if Rt == ‘1111’ then SEE “Unallocated memory hints”;
t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);

index = TRUE; add = TRUE; wback = FALSE;

(shift_t, shift_n) = (SRType_LSL, UInt(imm2));

if t == 13 || BadReg(m) then UNPREDICTABLE;

Encoding Al ARMv4* ARMvV5T*, ARMvV6*, ARMV7
LDRSH<c> <Rt>,[<Rn>,+/-<Rm>]1{!}
LDRSH<c> <Rt>, [<Rn>]1,+/-<Rm>

31 3029 28 27 26 2524232221 2019181716151413121110 9 8 7 6 5 4 3 2 1 O

cond |0 0 O|P|U[O|W|1| Rn Rt |(0©@©@©) 1111 Rm

if P == ‘0" & W == ‘1’ then SEE LDRSHT;

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);

index = (P == ‘1’); add = (U == ‘1"); wback = (P == ‘0") || (W==‘1");
(shift_t, shift_n) = (SRType_LSL, 0);

if t == 15 || m == 15 then UNPREDICTABLE;

if wback & (n == 15 || n == t) then UNPREDICTABLE;

if ArchVersion() < 6 && wback & m == n then UNPREDICTABLE;

Unallocated memory hints See Load halfword, memory hints on page A6-26
Modified operation in ThumbEE See LDRSH (register) on page A9-11

A8-172

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

LDRSH<c><q> <Rt>, [<Rn>, <Rm>{, LSL #<imm>}] Offset: index==TRUE, whack==FALSE

LDRSH<c><g> <Rt>, [<Rn>, +/-<Rm>] Offset: index==TRUE, whack==FALSE

LDRSH<c><g> <Rt>, [<Rn>, +/-<Rm>]! Pre-indexed: index==TRUE, wback==TRUE

LDRSH<c><g> <Rt>, [<Rn>], +/-<Rm> Post-indexed: index==FALSE, wback==TRUE

where:

<C><q> See Sandard assembler syntax fields on page A8-7.

<Rt> The destination register.

<Rn> The base register. The SP can be used. The PC can be used only in the ARM instruction set.

+/- Is+ or omitted if the optionally shifted value of <Rm> isto be added to the base register value
(add == TRUE), or —if it isto be subtracted (permitted in ARM code only, add == FALSE).

<Rm> Contains the offset that is optionally left shifted and added to the value of <Rn> to form the
address.

<imm> If present, the size of the |eft shift to apply to the value from <Rm>, in the range 1-3. Only

encoding T2 is permitted, and <imm> is encoded in imm2.

If absent, no shift is specified and al encodings are permitted. In encoding T2, imm2 is
encoded as 0b00.

The pre-UAL syntax LDR<c>SH is equivalent to LDRSH<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); NullCheckIfThumbEE(n);
offset = Shift(R[m], shift_t, shift_n, APSR.C);
offset_addr = if add then (R[n] + offset) else (R[n] - offset);
address = if index then offset_addr else R[n];
data = MemU[address,2];
if wback then R[n] = offset_addr;
if UnalignedSupport() || address<@> = ‘@’ then
R[t] = SignExtend(data, 32);
else // Can only apply before ARMv7
R[t] = bits(32) UNKNOWN;

Exceptions

Data Abort.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-173

Instruction Details

A8.6.85 LDRSHT

Load Register Signed Halfword Unprivileged |oads a halfword from memory, sign-extendsit to form a
32-bhit word, and writes it to aregister. For information about memory accesses see Memory accesses on
page A8-13.

The memory accessis restricted as if the processor were running in User mode. (This makes no difference
if the processor is actually running in User mode.)

The Thumb instruction uses an offset addressing mode, that cal culates the address used for the memory
access from a base register value and an immediate offset, and |eaves the base register unchanged.

The ARM instruction uses a post-indexed addressing mode, that uses abase register value asthe addressfor
the memory access, and calculates a new address from abase register value and an offset and writesit back
to the base register. The offset can be an immediate value or aregister value.

Encoding T1 ARMV6T2, ARMV7
LDRSHT<c> <Rt>, [<Rn>,#<imm8>]

151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0

11111|00(1{0(0 1|1 Rn Rt 11110 imm8

if Rn == ‘1111’ then SEE LDRSH (1iteral);

t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;
register_form = FALSE; 1imm32 = ZeroExtend(imm8, 32);

if BadReg(t) then UNPREDICTABLE;

Encoding Al ARMvV6T2, ARMV7
LDRSHT<c> <Rt>, [<Rn>] {, #+/-<imm8>}

31 3029 28 27 26 25 24 23222120 191817161514 13121110 9 8 7 6 5 4 3 2 1 O

cond 0 0O0|OjU[L|1|1 Rn Rt imm4H |1 1 1| immdL

t = UInt(Rt); n = UInt(Rn); postindex = TRUE; add = (U == ‘1’);

register_form = FALSE; 1imm32 = ZeroExtend(imm4H:imm4L, 32);

if t == 15 || n==15 || n == t then UNPREDICTABLE;

Encoding A2 ARMvV6T2, ARMV7

LDRSHT<c> <Rt>, [<Rn>], +/-<Rm>

3130292827 2625242322212019181716151413121110 9 8 7 6 4 3210
cond 0 0 O|OjU|O|1]|1 Rn Rt O@OOO1 111 Rm

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm); postindex = TRUE; add = (U == ‘1’);
register_form = TRUE;
ift==15]] n==15 || n==1t || m==15 then UNPREDICTABLE;

A8-174

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

LDRSHT<c><g> <Rt>, [<Rn> {, #<imm>}] Offset: Thumb only

LDRSHT<c><q> <Rt>, [<Rn>] {, #+/-<imm>} Post-indexed: ARM only

LDRSHT<c><g> <Rt>, [<Rn>], +/-<Rm> Post-indexed: ARM only

where:

<C><q> See Sandard assembler syntax fields on page A8-7.

<Rt> The destination register.

<Rn> The base register. The SP can be used.

+/- Is+ or omitted if <imm> or the optionally shifted value of <Rm> isto be added to the base
register value (add == TRUE), or —if it isto be subtracted (permitted in ARM code only,
add == FALSE).

<imm> Theimmediate offset applied to the value of <Rn>. Any valuein therange 0-255 is permitted.
<imm> can be omitted, meaning an offset of 0.

<Rm> Contains the offset that is applied to the value of <Rn> to form the address.

Operation

if ConditionPassed() then

EncodingSpecificOperations(); NullCheckIfThumbEE(n);
offset = if register_form then R[m] else imm32;
offset_addr = if add then (R[n] + offset) else (R[n] - offset);
address = if postindex then R[n] else offset_addr;
data = MemU_unpriv[address,2];
if postindex then R[n] = offset_addr;
if UnalignedSupport() || address<@> = ‘@’ then

R[t] = SignExtend(data, 32);
else // Can only apply before ARMv7

R[t] = bits(32) UNKNOWN;

Exceptions

Data Abort.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-175

Instruction Details

A8.6.86 LDRT

Load Register Unprivileged loads a word from memory, and writes it to a register. For information about
memory accesses see Memory accesses on page A8-13.

The memory accessis restricted as if the processor were running in User mode. (This makes no difference
if the processor is actually running in User mode.)

The Thumb instruction uses an offset addressing mode, that cal culates the address used for the memory
access from a base register value and an immediate offset, and leaves the base register unchanged.

The ARM instruction uses a post-indexed addressing mode, that uses abase register value asthe addressfor
the memory access, and calculates a new address from abase register value and an offset and writesit back
to the base register. The offset can be an immediate value or an optionally-shifted register value.

Encoding T1 ARMV6ET2, ARMV7
LDRT<c> <Rt>, [<Rn>,#<imm8>]

151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 O
11111/00(0(0|1 0]1 Rn Rt 1111 0 imm8

if Rn == ‘1111’ then SEE LDR (literal);

t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;
register_form = FALSE; 1imm32 = ZeroExtend(imm8, 32);

if BadReg(t) then UNPREDICTABLE;

Encoding Al ARMv4* ARMvV5T*, ARMvV6*, ARMV7
LDRT<c> <Rt>, [<Rn>] {, #+/-<imml2>}

313029 28 27 26 252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
cond 0 1(0|0fU|0O|1|1 Rn Rt imm12

t = UInt(Rt); n = UInt(Rn); postindex = TRUE; add = (U == ‘1’);
register_form = FALSE; 1imm32 = ZeroExtend(imml12, 32);
if t == 15 || n==15 || n == t then UNPREDICTABLE;

Encoding A2 ARMv4*, ARMV5T*, ARMV6*, ARMV7

LDRT<c> <Rt>, [<Rn>],+/-<Rm>{, <shift>}

31302928 27 26 252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
cond 0 1{1|/0{U(0|1|1 Rn Rt imm5 type | O Rm

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm); postindex = TRUE; add = (U == ‘1’);
register_form = TRUE; (shift_t, shift_n) = DecodeImmShift(type, imm5);
ift==15]] n==15 || n==t || m == 15 then UNPREDICTABLE;

if ArchVersion() < 6 & m == n then UNPREDICTABLE;

A8-176 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

LDRT<c><q> <Rt>, [<Rn> {, #<imm>}] Offset: Thumb only

LDRT<c><q> <Rt>, [<Rn>] {, #+/-<imm>} Post-indexed: ARM only

LDRT<c><q> <Rt>, [<Rn>], +/-<Rm> {, <shift>} Post-indexed: ARM only

where:

<C><q> See Sandard assembler syntax fields on page A8-7.

<Rt> The destination register.

<Rn> The base register. The SP can be used.

+/- Is+ or omitted if <imm> or the optionally shifted value of <Rm> isto be added to the base
register value (add == TRUE), or —if it isto be subtracted (permitted in ARM code only,
add == FALSE).

<imm> The immediate offset applied to the value of <Rn>. Values are 0-255 for encoding T1, and
0-4095 for encoding A 1. <imm> can be omitted, meaning an offset of 0.

<Rm> Contains the offset that is optionally shifted and applied to the value of <Rn> to form the
address.

<shift> The shift to apply to the value read from <Rms>. If omitted, no shift is applied. Shifts applied

to a register on page A8-10 describes the shifts and how they are encoded.

The pre-UAL syntax LDR<c>T is equivalent to LDRT<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); NullCheckIfThumbEE(n);
offset = if register_form then Shift(R[m], shift_t, shift_n, APSR.C) else imm32;
offset_addr = if add then (R[n] + offset) else (R[n] - offset);
address = if postindex then R[n] else offset_addr;
data = MemU_unpriv[address,4];
if postindex then R[n] = offset_addr;
if t ==15then // Only possible for encodings Al and A2
if-address<l:0> ==‘00" then LoadWritePC(data); else UNPREDICTABLE;
edsif UnalignedSupport() || address<1:0> = ‘00’ then
R[t] = data;
else // Can only apply before ARMv7
if CurrentInstrSet() == InstrSet_ARM then
R[t] = ROR(data, 8«UInt(address<1:0>));
else
R[t] = bits(32) UNKNOWN;

Exceptions

Data Abort.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-177

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
if

Instruction Details

A8.6.87

A8.6.88

LEAVEX

LEAVEX causes a change from ThumbEE to Thumb state, or has no effect in Thumb state. For details see
ENTERX, LEAVEX on page A9-7.

LSL (immediate)

Logical Shift Left (immediate) shifts aregister value left by an immediate number of bits, shifting in zeros,
and writes the result to the destination register. It can optionally update the condition flags based on the
result.

Encoding T1 ARMVAT, ARMV5T*, ARMvV6*, ARMV7

LSLS <Rd>,<Rm>, #<imm5> Outside I T block.
LSL<c> <Rd>, <Rm>, #<imm5> Inside IT block.
151413121110 9 8 7 6 5 4 3 2 1 0
0 0O0|O0O imm5 Rm Rd

if imm5 == ‘00000’ then SEE MOV (register);
d = UInt(Rd); m = UInt(Rm); setflags = !InITBlock();
(-, shift_n) = DecodeImmShift(‘00@’, imm5);

Encoding T2 ARMvV6T2, ARMV7
LSL{S}<c>.W <Rd>,<Rm>,#<imm5>

1514131211109 8 7 6 5 4 3 2 1 0 1514131211109 8 7 6 54 3 2 10
111010100 10(S{1 11 1{(0)] imm3 Rd imm2|0 O Rm

if (imm3:imm2) == ‘00000’ then SEE MOV (register);
d = UInt(Rd); m = UInt(Rm); setflags = (S == ‘1’);
(-, shift_n) = DecodeImmShift(‘00’, imm3:imm2);

if BadReg(d) || BadReg(m) then UNPREDICTABLE;

Encoding Al ARMv4* ARMV5T*, ARMvV6*, ARMV7

LSL{S}<c> <Rd>,<Rm>,#<imm5>

3130292827 26 252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
cond 0 0|01 1 0 1|S|0)(0)(0)(0 Rd imm5 00O Rm

4if imm5 == ‘00000’ then SEE MOV (register);
d = UInt(Rd); m = UInt(Rm); setflags = (S == ‘1");
(-, shift_n) = DecodeImmShift(‘0@’, imm5);

A8-178

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2011_Q2
Inserted Text
if Rd == '1111' && S == '1' then SEE SUBS PC, LR and related instructions;

Instruction Details

Assembler syntax

LSL{S}<c><q> {<Rd>,} <Rm>, #<imm5>

where:

S If S ispresent, the instruction updates the flags. Otherwise, the flags are not updated.
<C><0> See Standard assembler syntax fields on page A8-7.

<Rd> The destination registery

<Rm> Thefirst operand registery

<imm5> The shift amount, in the range 1 to 31. See Shifts applied to a register on page A8-10.
Operation

if ConditionPassed() then
EncodingSpecificOperations();
(result, carry) = Shift_C(R[m], SRType_LSL, shift_n, APSR.C);
if d == 15 then // Can only occur for ARM encoding
ALUWritePC(result); // setflags is always FALSE here
else
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
// APSR.V unchanged

Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-179

ARM_2009_Q2
Inserted Text
 PC can be used in ARM instructions.

ARM_2009_Q2
Inserted Text
 In ARM instructions, if S is not specified and <Rd> is the PC, the instruction is a branch to the address calculated by the operation. This is a simple branch before ARMv7, and an interworking branch from ARMv7.

Instruction Details

A8.6.89 LSL (register)

Logical Shift Left (register) shifts aregister value left by a variable number of bits, shifting in zeros, and
writes the result to the destination register. The variable number of bitsis read from the bottom byte of a
register. It can optionally update the condition flags based on the result.

Encoding T1 ARMVAT, ARMV5T*, ARMv6*, ARMV7
LSLS <Rdn>,<Rm> Qutside I T block.
LSL<c> <Rdn>,<Rm> Inside I'T block.

151413121110 9 8 7 6 5 4 3 2 1 O

01000000110 Rm Rdn

d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();

Encoding T2 ARMvV6T2, ARMV7
LSL{S}<c>.W <Rd>, <Rn>,<Rm>
1514131211109 8 7 6 5 4 3 2 1 0151413121110 9 8 7 4 3210

11111{010|0|/00]|S Rn 1111 Rd 0/0 0O Rm

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == ‘1’);
if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

Encoding Al ARMv4* ARMvV5T*, ARMvV6*, ARMV7
LSL{S}<c> <Rd>,<Rn>,<Rm>

31 3029 28 27 26 25 24 232221 2019181716 151413121110 9 8 7 6 5 4 3 2 1 0

cond |0 0/0|1 1 0 1[S|(0)(0)(0)(0) Rd Rm [000 1| Rn

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == ‘1’);
if d==15]| n==15 || m == 15 then UNPREDICTABLE;

A8-180

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

LSL{S}<c><q> {<Rd>,} <Rn>, <Rm>

where:

S If S ispresent, the instruction updates the flags. Otherwise, the flags are not updated.
<C><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> Thefirst operand register.

<Rm> The register whose bottom byte contains the amount to shift by.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
shift_n = UInt(R[m]<7:0>);
(result, carry) = Shift_C(R[n], SRType_LSL, shift_n, APSR.C);
R[d] = result;
if setflags then
APSR.N = result<3l>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
// APSR.V unchanged

Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-181

Instruction Details

A8.6.90 LSR (immediate)

Logical shift Right (immediate) shifts aregister value right by an immediate number of bits, shifting in
zeros, and writes the result to the destination register. It can optionally update the condition flags based on

the result.

Encoding T1 ARMVAT, ARMV5T*, ARMv6*, ARMV7

LSRS <Rd>,<Rm>, #<imm> Qutside I T block.
LSR<c> <Rd>,<Rm>,#<imm> Inside I'T block.

1514131211109 8 7 6 5 4 3 2 1 0
0 00|01 imm5 Rm Rd

d = UInt(Rd); m = UInt(Rm); setflags = !InITBlock();
(-, shift_n) = DecodeImmShift(‘Q1’, imm5);

Encoding T2 ARMvV6ET2, ARMV7
LSR{S}<c>.W <Rd>,<Rm>,#<imm>

151413121110 9 8 7 6 5 4 3 2 1 0 1514131211109 8 7 6 5 4 3 2 1 0
111010100 10(S{1 11 1{|(0)] imm3 Rd imm2|0 1 Rm

d = UInt(Rd); m = UInt(Rm); setflags = (S == ‘1’);
(-, shift_n) = DecodeImmShift(‘Q1’, imm3:imm2);
if BadReg(d) || BadReg(m) then UNPREDICTABLE;

Encoding Al ARMv4* ARMV5T*, ARMvV6*, ARMV7

LSR{S}<c> <Rd>,<Rm>,#<imm>

3130292827 26 252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
cond 0 0|01 1 0 1|S|(0)(0)(0)(0 Rd imm5 010 Rm

d = UInt(Rd); m = UInt(Rm); setflags = (S == ‘1’);
(-, shift_n) = DecodeImmShift(‘Q1’, imm5);

A8-182 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2011_Q2
Inserted Text
if Rd == '1111' && S == '1' then SEE SUBS PC, LR and related instructions;

Instruction Details

Assembler syntax

LSR{S}<c><q> {<Rd>,} <Rm>, #<imm>

where:

S If S ispresent, the instruction updates the flags. Otherwise, the flags are not updated.
<C><0> See Standard assembler syntax fields on page A8-7.

<Rd> The destination registery

<Rm> Thefirst operand registery

<imm> The shift amount, in the range 1 to 32. See Shifts applied to a register on page A8-10.
Operation

if ConditionPassed() then
EncodingSpecificOperations();
(result, carry) = Shift_C(R[m], SRType_LSR, shift_n, APSR.C);
if d == 15 then // Can only occur for ARM encoding
ALUWritePC(result); // setflags is always FALSE here
else
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
// APSR.V unchanged

Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-183

ARM_2009_Q2
Inserted Text
 PC can be used in ARM instructions.

ARM_2009_Q2
Inserted Text
 In ARM instructions, if S is not specified and <Rd> is the PC, the instruction is a branch to the address calculated by the operation. This is a simple branch before ARMv7, and an interworking branch from ARMv7.

Instruction Details

A8.6.91 LSR (register)

Logical Shift Right (register) shiftsaregister value right by avariable number of bits, shifting in zeros, and
writes the result to the destination register. The variable number of bitsis read from the bottom byte of a
register. It can optionally update the condition flags based on the result.

Encoding T1 ARMVAT, ARMV5T*, ARMv6*, ARMV7
LSRS <Rdn>,<Rm> Qutside I T block.
LSR<c> <Rdn>,<Rm> Inside I'T block.

151413121110 9 8 7 6 5 4 3 2 1 O
0100000011 Rm Rdn

d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();

Encoding T2 ARMvV6T2, ARMV7
LSR{S}<c>.W <Rd>, <Rn>,<Rm>
1514131211109 8 7 6 5 4 3 2 1 0151413121110 9 8 7 4 3210

11111{010|0|01|S Rn 1111 Rd 0/0 0O Rm

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == ‘1’);
if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

Encoding Al ARMv4* ARMvV5T*, ARMvV6*, ARMV7

LSR{S}<c> <Rd>,<Rn>,<Rm>

3130292827 262524 232221201918 17 16 151413121110 9 8 7 4 3210
cond 0 0/0|1 1 0 1|S|(0)(0)(0)(0) Rd Rm 0011 Rn

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == ‘1’);
if d==15]| n==15 || m == 15 then UNPREDICTABLE;

A8-184 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

LSR{S}<c><q> {<Rd>,} <Rn>, <Rm>

where:

S If S ispresent, the instruction updates the flags. Otherwise, the flags are not updated.
<C><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> Thefirst operand register.

<Rm> The register whose bottom byte contains the amount to shift by.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
shift_n = UInt(R[m]<7:0>);
(result, carry) = Shift_C(R[n], SRType_LSR, shift_n, APSR.C);
R[d] = result;
if setflags then
APSR.N = result<3l>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
// APSR.V unchanged

Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-185

Instruction Details

A8.6.92 MCR, MCR2

Move to Coprocessor from ARM core register passes the value of an ARM core register to a coprocessor.
If no coprocessor can execute the instruction, an Undefined Instruction exception is generated.

Thisisageneric coprocessor instruction. Some of thefiel dshave no functionality defined by the architecture
and are free for use by the coprocessor instruction set designer. These fields are the opcl, opc2, CRn, and
CRm fields.

For more information about the coprocessors see Coprocessor support on page A2-68.

Encoding T1/Al ARMvV6ET2, ARMV7 for encoding T1
ARMv4* ARMV5T*, ARMV6*, ARMV7 for encoding Al
MCR<c> <coproc>,<opcl>,<Rt>,<CRn>,<CRm>{,<opc2>}
151413121110 9 8 7 6 5 4 3 2 1 01514131211109 8 7 6 5 4 3 2 1 0
1110{1110| opcl |O CRn Rt coproc opc2 |1 CRm

31 3029 28 27 26 25 24 232221 20191817 161514131211 10 9 8 7 6 5 4 3 2 1 0
cond 111 0| opcl |O CRn Rt coproc opc2 |1 CRm

if coproc == ‘101x’ then SEE “Advanced SIMD and VFP”;
t = UInt(Rt); cp = UInt(coproc);
if t == 15 || (t == 13 && (CurrentInstrSet() != InstrSet_ARM)) then UNPREDICTABLE;

Encoding T2/ A2 ARMvV6ET2, ARMV7 for encoding T2
ARMV5T*, ARMV6*, ARMV7 for encodingA2
MCR2<c> <coproc>,<opcl>,<Rt>,<CRn>,<CRm>{, <opc2>}
151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0
11111 110]| opcl |O CRn Rt coproc opc2 |1 CRm

3130292827 2625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 0
111 1|1 110]| opcl |O CRn Rt coproc opc2 |1 CRm

t = UInt(Rt); cp = UInt(coproc);
if t == 15 || (t == 13 && (CurrentInstrSet() != InstrSet_ARM)) then UNPREDICTABLE;

Advanced SIMD and VFP See 8, 16, and 32-hit transfer between ARM core and extension registers
on page A7-31

A8-186 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2008_Q4
Inserted Text

Instruction Details

Assembler syntax

MCR{2}<c><g> <coproc>, #copcl>, <Rt>, <CRn>, <CRm>{, #<opc2>}

where:

2 If specified, selectsencoding T2/ A2. If omitted, selects encoding T1/Al.

<C><q> See Standard assembler syntax fields on page A8-7. An ARM MCR2 instruction must be
unconditional.

<coproc> The name of the coprocessor. The standard generic coprocessor names are p0, pl, ..., p15.

<opcl> Is a coprocessor-specific opcode in therange O to 7.

<Rt> Isthe ARM core register whose value is transferred to the coprocessor.

<CRn> I's the destination coprocessor register.

<CRm> Is an additional destination coprocessor register.

<opc2> I's a coprocessor-specific opcode in the range 0-7. If omitted, <opc2> is assumed to be 0.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
if !Coproc_Accepted(cp, ThisInstr()) then
GenerateCoprocessorException()
else
Coproc_SendOneWord(R[t], cp, ThisInstr());

Exceptions

Undefined Instruction.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-187

ARM_2009_Q3
Cross-Out

ARM_2009_Q3
Replacement Text
{#}

ARM_2009_Q3
Cross-Out

ARM_2009_Q3
Replacement Text
{#}

Instruction Details

A8.6.93 MCRR, MCRR2

Move to Coprocessor from two ARM core registers passes the values of two ARM core registersto a
coprocessor. If no coprocessor can execute the instruction, an Undefined Instruction exception is generated.

Thisis a generic coprocessor instruction. The opcl and CRm fields have no functionality defined by the
architecture and are free for use by the coprocessor instruction set designer.

For more information about the coprocessors see Coprocessor support on page A2-68.

Encoding T1/A1l ARMV6T2, ARMV7 for encoding T1
ARMVSTE*, ARMV6*, ARMV7 for encoding A1
MCRR<c> <coproc>,<opcl>,<Rt>,<Rt2>,<CRm>
151413121110 9 8 7 6 5 4 3 2 1 01514131211109 8 7 6 5 4 3 2 1 0
1110|110(0|0|1|0]0 Rt2 Rt coproc opcl CRm

31 30 29 28 27 26 25 24 232221 2019181716 151413121110 9 8 7 6 5 4 3 2 1 O
cond 110|0|0(1]|0]|O0 Rt2 Rt coproc opcl CRm

if coproc == ‘101x’ then SEE “Advanced SIMD and VFP”;

t = UInt(Rt); t2 = UInt(Rt2); cp = UInt(coproc);

if t == 15 || t2 == 15 then UNPREDICTABLE;

if (t == 13 || t2 == 13) && (CurrentInstrSet() != InstrSet_ARM) then UNPREDICTABLE;

Encoding T2/ A2 ARMV6T2, ARMV7 for encoding T2
ARMvE*, ARMV7 for encoding A2
MCRR2<c> <coproc>,<opcl>,<Rt>,<Rt2>,<CRm>
151413121110 9 8 7 6 5 4 3 2 1 01514131211109 8 7 6 5 4 3 2 1 0
1111|110(0|0|1|0(O0 Rt2 Rt coproc opcl CRm

31 30 29 28 27 26 25 24 232221 2019181716 151413121110 9 8 7 6 5 4 3 2 1 O
1111|110(0|0|1|0(0 Rt2 Rt coproc opcl CRm

t = UInt(Rt); t2 = UInt(Rt2); cp = UInt(coproc);
if t == 15 || t2 == 15 then UNPREDICTABLE;
if (t == 13 || t2 == 13) && (CurrentInstrSet() != InstrSet_ARM) then UNPREDICTABLE;

Advanced SIMD and VFP See 64-hit transfers between ARM core and extension registers on
page A7-32

A8-188 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

MCRR{2}<c><q> <coproc>, #<opcl>, <Rt>, <Rt2>, <CRm>

where:
2 If specified, selectsencoding T2/ A2. If omitted, selects encoding T1/Al.
<C><q> See Standard assembler syntax fields on page A8-7. An ARM MCRR2 instruction must be
unconditional.
<coproc> The name of the coprocessor.
The standard generic coprocessor names are p0, pl, ..., p15.
<opcl> I's a coprocessor-specific opcode in the range 0 to 15.
<Rt> Isthefirst ARM core register whose value is transferred to the coprocessor.
<Rt2> Isthe second ARM core register whose value is transferred to the coprocessor.
<CRm> I's the destination coprocessor register.
Operation

if ConditionPassed() then
EncodingSpecificOperations();
if !Coproc_Accepted(cp, ThisInstr()) then
GenerateCoprocessorException()
else
Coproc_SendTwoWords(R[t], R[t2], cp, ThisInstr());

Exceptions

Undefined Instruction.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-189

ARM_2009_Q3
Cross-Out

ARM_2009_Q3
Replacement Text
{#}

Instruction Details

A8.6.94 MLA

Multiply Accumulate multipliestwo register values, and adds athird register value. The least significant 32
bits of the result are written to the destination register. These 32 bits do not depend on whether the source
register values are considered to be signed values or unsigned values.

In ARM code, the condition flags can optionally be updated based on the result. Use of thisoption adversely

affects performance on many processor implementations.

Encoding T1 ARMvV6T2, ARMV7

MLA<c> <Rd>,<Rn>,<Rm>,<Ra>

1514131211109 8 7 6 5 4 3 2 1 0 1514131211109 8 7 6 5 4 3 2 10

1111101 10{000 Rn Ra Rd 00O0O Rm

if Ra == ‘1111’ then SEE MUL;

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra); setflags = FALSE;

if BadReg(d) || BadReg(n) || BadReg(m) || a == 13 then UNPREDICTABLE;

Encoding Al ARMv4*, ARMV5T*, ARMV6*, ARMV7

MLA{S}<c> <Rd>,<Rn>,<Rm>,<Ra>

3130292827 2625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 0
cond 000O0O0OTZ1S Rd Ra Rm 1001 Rn

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra); setflags = (S == ‘1");

if d==15 || n==15 || m==15 || a == 15 then UNPREDICTABLE;

if ArchVersion() < 6 & d == n then UNPREDICTABLE;

A8-190

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

ARM DDI 0406B

Instruction Details

Assembler syntax

MLA{S}<c><q> <Rd>, <Rn>, <Rm>, <Ra>

where:

S If S ispresent, the instruction updates the flags. Otherwise, the flags are not updated.
S can be specified only for the ARM instruction set.

<C><q> See Sandard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> Thefirst operand register.

<Rm> The second operand register.

<Ra> The register containing the accumulate value.

The pre-UAL syntax MLA<c>S is equivalent to MLAS<c>.

Operation

if ConditionPassed() then

EncodingSpecificOperations();
operandl = SInt(R[n]); // operandl = UInt(R[n]) produces the same final results
operand2 = SInt(R[m]); // operand2 = UInt(R[m]) produces the same final results
addend = SInt(R[a]); // addend = UInt(R[a]) produces the same final results
result = operandl x operand2 + addend;
R[d] = result<31:0>;
if setflags then

APSR.N = result<31>;

APSR.Z = IsZeroBit(result);

if ArchVersion() == 4 then

APSR.C = bit UNKNOWN;
// else APSR.C unchanged
// APSR.V always unchanged

Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-191

Instruction Details

A8.6.95 MLS

Multiply and Subtract multiplies two register values, and subtracts the product from athird register value.
Theleast significant 32 bits of the result are written to the destination register. These 32 bits do not depend
on whether the source register values are considered to be signed values or unsigned values.

Encoding T1 ARMvV6ET2, ARMV7

MLS<c> <Rd>,<Rn>,<Rm>,<Ra>

1514131211109 8 7 6 5 4 3 2 1 0 1514131211109 8 7 543210

11111{0110(000 Rn Ra Rd 0 Rm

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra);

if BadReg(d) || BadReg(n) || BadReg(m) || BadReg(a) then UNPREDICTABLE;

Encoding Al ARMvV6ET2, ARMV7

MLS<c> <Rd>,<Rn>,<Rm>,<Ra>

31302928 27 26 252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
cond 000O0OO12110O0 Rd Ra Rm 1 Rn

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra);
if d==151]] n==15 || m==15 || a == 15 then UNPREDICTABLE;

A8-192

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

MLS<c><g> <Rd>, <Rn>, <Rm>, <Ra>

where:

<C><q> See Standard assembler syntax fields on page A8-7.
<Rd> The destination register.

<Rn> Thefirst operand register.

<Rm> The second operand register.

<Ra> The register containing the accumulate value.
Operation

if ConditionPassed() then
EncodingSpecificOperations();
operandl = SInt(R[n]); // operandl = UInt(R[n]) produces the same final results
operand2 = SInt(R[m]); // operand2 = UInt(R[m]) produces the same final results
addend = SInt(R[a]); // addend = UInt(R[a]) produces the same final results
result = addend - operandl * operand2;
R[d] = result<31:0>;

Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-193

Instruction Details

A8.6.96 MOV (immediate)

Move (immediate) writes an immediate value to the destination register. It can optionally update the
condition flags based on the value.

Encoding T1 ARMVAT, ARMV5T*, ARMV6*, ARMV7
MOVS <Rd>,#<imm8> Outside I T block.
MOV<c> <Rd>,#<imm8> Inside IT block.

151413121110 9 8 7 6 5 4 3 2 1 0
001|00 Rd imm8

d = UInt(Rd); setflags = !InITBlock(); imm32 = ZeroExtend(imm8, 32); carry = APSR.C;

Encoding T2 ARMvV6ET2, ARMV7
MOV{S}<c>.W <Rd>,#<const>

151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0
11110|i|0/0010|S|1T 11 1/{0]| imm3 Rd imm8

d = UInt(Rd); setflags = (S == ‘1’); (imm32, carry) = ThumbExpandImm_C(i:imm3:imm8, APSR.C);
if BadReg(d) then UNPREDICTABLE;

Encoding T3 ARMvV6ET2, ARMV7
MOVW<c> <Rd>,#<imm1l6>

151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0
11110|i|1 0|{0f1|0]|0 imm4 0| imm3 Rd imm8

d = UInt(Rd); setflags = FALSE; imm32 = ZeroExtend(imm4:i:imm3:imm8, 32);
if BadReg(d) then UNPREDICTABLE;

Encoding Al ARMv4*, ARMV5T*, ARMV6*, ARMV7

MOV{S}<c> <Rd>,#<const>

3130292827 2625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 0
cond 0 01|11 0 1|S|(0)(0)(0)(0) Rd imm12

if Rd == ‘1111’ && S == ‘1’ then SEE SUBS PC, LR and related instructions;
d = UInt(Rd); setflags = (S == ‘1’); (imm32, carry) = ARMExpandImm_C(imm12, APSR.C);

Encoding A2 ARMvV6T2, ARMV7
MOVW<c> <Rd>,#<imml6>

31302928 27 26 252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
cond 0011{0000 imm4 Rd imm12

d = UInt(Rd); setflags = FALSE; imm32 = ZeroExtend(imm4:imml2, 32);
if d == 15 then UNPREDICTABLE;

A8-194 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

MOV{S}<c><q> <Rd>, #<const> All encodings permitted

MOVW<c><g> <Rd>, #<const> Only encoding T3 or A2 permitted

where:

S If S ispresent, the instruction updates the flags. Otherwise, the flags are not updated.
<C><q> See Sandard assembler syntax fields on page A8-7.

<Rd> The destination registery

<const> Theimmediate valueto be placed in <Rd>. The range of valuesis 0-255 for encoding T1 and

0-65535 for encoding T3 or A2. See Modified immediate constants in Thumb instructions
on page A6-17 or Modified immediate constants in ARM instructions on page A5-9 for the
range of values for encoding T2 or Al.

When both 32-bit encodings are available for aninstruction, encoding T2 or Al ispreferred
to encoding T3 or A2 (if encoding T3 or A2 isrequired, use the MOVW syntax).

The pre-UAL syntax MOV<c>S is equivalent to MOVS<c>.

Operation

if ConditionPassed() then

EncodingSpecificOperations();

result = imm32;

if d == 15 then // Can only occur for encoding Al
ALUWritePC(result); // setflags is always FALSE here

else
R[d] = result;
if setflags then

APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;

// APSR.V unchanged

Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-195

ARM_2009_Q2
Inserted Text
 If S is specified and <Rd> is the PC, see SUBS PC, LR and related instructions on page B6-25 [PDF page 1583]. In ARM instructions, for encoding A1, if S is not specified and <Rd> is the PC, the instruction is a branch to the address calculated by the operation. This is a simple branch before ARMv7, and an interworking branch from ARMv7.

Instruction Details

A8.6.97 MOV (register)

Move (register) copies avalue from aregister to the destination register. It can optionally update the
condition flags based on the value.

Encoding T1 ARMvV6E*, ARMV7 if <Rd> and <Rm> both from RO-R7

ARMVAT, ARMV5T*, ARMvV6*, ARMV7 otherwise
MOV<c> <Rd>, <Rm> If <Rd> isthe PC, must be outside or last in IT block.
151413121110 9 8 7 6 5 4 3 2 1 0
0100011 0/D Rm Rd

d = UInt(D:Rd); m = UInt(Rm); setflags = FALSE;
if d == 15 && InITBlock() && !LastInITBlock() then UNPREDICTABLE;

Encoding T2 ARMVAT, ARMV5T*, ARMV6*, ARMV7
MOVS <Rd>,<Rm> Not permitted in I'T block

151413121110 9 8 7 6 5 4 3 2 1 O
0000 0(0OO0O0OOO| Rm Rd

d = UInt(Rd); m = UInt(Rm); setflags = TRUE;
if InITBlock() then UNPREDICTABLE;

Encoding T3 ARMV6T2, ARMV7

MOV{S}<c>.W <Rd>,<Rm>

151413121110 9 8 7 6 5 4 3 2 1 0 1514131211109 8 7 6 54 3 2 1 0
111012{0 1|00 10fS|1111)(0j0 0 O Rd 0 00O Rm

d = UInt(Rd); m = UInt(Rm); setflags = (S == ‘1");
if(d-==13}| BadReg(m)) && setflags then UNPREDICTABLE;

Encoding Al ARMv4* , ARMV5T*, ARMvV6*, ARMV7
MOV{S}<c> <Rd>,<Rm>

31302928 27 26 252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
cond |0 0l0|1 1 0 1/S|(0©@©© RI |0 000O0O0O0O| Rm

if Rd == ‘1111’ && S == ‘1’ then SEE SUBS PC, LR and related instructions;
d = UInt(Rd); m = UInt(Rm); setflags = (S == ‘1");

Assembler syntax

MOV{S}<c><g> <Rd>, <Rm>

where:

S If S ispresent, the instruction updates the flags. Otherwise, the flags are not updated.

A8-196

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
if setflags && (BadReg(d) || BadReg(m)) then UNPREDICTABLE;
if !setflags && (d == 15 || m == 15 || (d == 13 && m == 13)) then UNPREDICTABLE;

Instruction Details

<C><q> See Standard assembler syntax fields on page A8-7.
<Rd> The destination register. Thisregister can bethe SP or PC. If thisregister isthe PC and S is
specified, see SUBSPC, LR and related instructions on page B6-25.
If <Rd> isthe PG
. {he instruction causes a branch to the address moved to the PC_
. 4in the Thumb and ThumbEE instruction sets:

— theinstruction must either be outside an I T block or the last instruction of an
IT block

— encoding T3 is not permitted.
In the Thumb and ThumbEE instruction sets, S must not be specified if <Rd> isthe SP. If <Rd>
isthe SP and <Rm> isthe SP or PC, encoding T3 is not permitted.

<Rm> The source register. This register can be the SP or PC. In the Thumb and ThumbEE
instruction sets, S must not be specified if <Rm> isthe SP or PG,

Note
The use of the following MOV (register) instructions is deprecated:
. ones in which <Rd> isthe SP or PC and <Rm> is also the SP or PC
. onesinwhich S is specified and <Rd> isthe SP, <Rm> is the SP, or <Rm> isthe PC.

See aso Changing between Thumb state and ARM state on page A4-2 about the use of theMov PC,LR
instruction.

The pre-UAL syntax MOV<c>S is equivalent to MOVS<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
result = R[m];
if d == 15 then
ALUWritePC(result); // setflags is always FALSE here
else
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);

APSR—C—=——carryy
// APSR.V unchanged

Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-197

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
// APSR.C unchanged

ARM_2009_Q2
Inserted Text
, and encoding T3 is not permitted if <Rm> is the PC

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
T

ARM_2009_Q2
Inserted Text
. In the ARM instruction set before ARMv7 and in the Thumb instruction set the branch is a simple branch. In the ARM instruction set from ARMv7 it is an interworking branch.

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
I

ARM_2009_Q2
Inserted Text
 and S is not specified

Instruction Details

A8.6.98 MOV (shifted register)
_Move (shifted register) is a pseudo-instruction for ASR, LSL, LSR, ROR, and RRX.

For details see the following sections:

. ASR (immediate) on page A8-40

. ASR (register) on page A8-42

. LS (immediate) on page A8-178
. LSL (register) on page A8-180

. LSR (immediate) on page A8-182
. LSR (register) on page A8-184

. ROR (immediate) on page A8-278
. ROR (register) on page A8-280

. RRX on page A8-282.

A8-198 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q2
Inserted Text
For the special case of MOVS where <Rd> is the PC, see SUBS PC, LR and related instructions on page B6-25 [PDF page 1583]. Otherwise,

Instruction Details

Assembler syntax

Table A8-4 shows the equival ences between MOV (shifted register) and other instructionsy

Table A8-4 MOV (shifted register) equivalences

MOQV instruction Canonical form

MOV{S} <Rd>,<Rm>,ASR #<n> ASR{S} <Rd>,<Rm>,#<n>

MOV{S} <Rd>,<Rm>,LSL #<n> LSL{S} <Rd>,<Rm>,#<n>

MOV{S} <Rd>,<Rm>,LSR #<n> LSR{S} <Rd>,<Rm>,#<n>

MOV{S} <Rd>,<Rm>,ROR #<n> ROR{S} <Rd>,<Rm>,#<n>

MOV{S} <Rd>,<Rm>,ASR <Rs> ASR{S} <Rd>,<Rm>,<Rs>

MOV{S} <Rd>,<Rm>,LSL <Rs> LSL{S} <Rd>,<Rm>,<Rs>

MOV{S} <Rd>,<Rm>,LSR <Rs> LSR{S} <Rd>,<Rm>,<Rs>

MOV{S} <Rd>,<Rm>,ROR <Rs> ROR{S} <Rd>,<Rm>,<Rs>

MOV{S} <Rd>,<Rm>,RRX RRX{S} <Rd>,<Rm>

Disassembly produces the canonical form of the instruction.

Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-199

ARM_2009_Q2
Inserted Text
 In the special case that <Rd> is the PC and S is specified, see SUBS PC, LR and related instructions on page B6-25 [PDF page 1583]. Otherwise, see the section for the canonical form of the instruction.

Instruction Details

A8.6.99 MOVT

Move Top writes an immediate value to the top halfword of the destination register. It does not affect the
contents of the bottom halfword.

Encoding T1

MOVT<c> <Rd>,#<imml6>

ARMV6ET2, ARMV7

111

1 0(i|1 0|1|1|0]|O0

imm4

0

imm3

Rd

151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0

imm8

d = UInt(Rd); imml6 = imm4:i:imm3:imm8;
if BadReg(d) then UNPREDICTABLE;

Encoding Al

MOVT<c> <Rd>,#<imml6>

ARMV6T2, ARMV7

31 3029 28 27 26 2524232221 2019181716151413121110 9 8 7 6 5 4 3 2 1 O

cond

00110100

imm4

Rd

imm12

d = UInt(Rd); imml6 = imm4:imml2;
if d == 15 then UNPREDICTABLE;

A8-200

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

ARM DDI 0406B

Instruction Details

Assembler syntax

MOVT<c><g> <Rd>, #<imml6>

where:

<C><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<imm16> The immediate value to be written to <Rd>. It must be in the range 0-65535.
Operation

if ConditionPassed() then
EncodingSpecificOperations();
R[d]<31:16> = imml6;
// R[d]<15:0> unchanged

Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-201

Instruction Details

A8.6.100 MRC, MRC2

Moveto ARM core register from Coprocessor causes a coprocessor to transfer avalue to an ARM core
register or to the condition flags. If no coprocessor can execute the instruction, an Undefined Instruction
exception is generated.

Thisisageneric coprocessor instruction. Some of thefiel dshave no functionality defined by the architecture
and are free for use by the coprocessor instruction set designer. These fields are the opcl, opc2, CRn, and
CRm fields.

For more information about the coprocessors see Coprocessor support on page A2-68.

Encoding T1/A1l ARMvV6ET2, ARMV7 for encoding T1
ARMv4* | ARMV5T*, ARMV6E*, ARMV7 for encoding A1
MRC<c> <coproc>,<opcl>,<Rt>,<CRn>,<CRm>{,<opc2>}
151413121110 9 8 7 6 5 4 3 2 1 01514131211109 8 7 6 5 4 3 2 1 0
1110{1110| opcl |1 CRn Rt coproc opc2 |1 CRm

3130292827 26 2524 2322212019 181716151413121110 9 8 7 6 5 4 3 2 1 O
cond 111 0| opcl |1 CRn Rt coproc opc2 |1 CRm

if coproc == ‘101x’ then SEE “Advanced SIMD and VFP”;
t = UInt(Rt); cp = UInt(coproc);
if t == 13 & (CurrentInstrSet() != InstrSet_ARM) then UNPREDICTABLE;

Encoding T2/ A2 ARMvV6ET2, ARMV7 for encoding T2
ARMV5T*, ARMv6*, ARMV7 for encodingA2
MRC2<c> <coproc>,<opcl>,<Rt>,<CRn>,<CRm>{,<opc2>}
1514131211109 8 7 6 5 4 3 2 1 01514131211109 8 7 6 5 4 3 2 1 0
11111 110]| opcl |1 CRn Rt coproc opc2 |1 CRm

3130292827 2625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 0
111 1|1 110| opcl |1 CRn Rt coproc opc2 |1 CRm

t = UInt(Rt); cp = UInt(coproc);
if t == 13 & (CurrentInstrSet() != InstrSet_ARM) then UNPREDICTABLE;

Advanced SIMD and VFP See 8, 16, and 32-bit transfer between ARM core and extension registers
on page A7-31

A8-202 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2008_Q4
Inserted Text

Instruction Details

Assembler syntax

MRC{2}<c><g> <coproc>, #copcl>, <Rt>, <CRn>, <CRm>{, #<opc2>}

where:

2 If specified, selectsencoding T2/ A2. If omitted, selects encoding T1/ Al.

<C><q> See Standard assembler syntax fields on page A8-7. An ARM MRC2 instruction must be
unconditional.

<coproc> The name of the coprocessor. The standard generic coprocessor names are p0, pl, ..., p15.

<opcl> I's a coprocessor-specific opcode in the range 0 to 7.

<Rt> Isthe destination ARM core register. This register can be R0-R14 or APSR_nzcv. The last
form writes bits [31:28] of the transferred valueto the N, Z, C and V condition flagsand is
specified by setting the Rt field of the encoding to Ob1111. In pre-UAL assembler syntax,
PC was written instead of APSR_nzcv to select this form.

<CRn> Isthe coprocessor register that contains the first operand.

<CRm> Is an additional source or destination coprocessor register.

<opc2> I's a coprocessor-specific opcode in the range 0 to 7. If omitted, <opc2> is assumed to be 0.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
if !Coproc_Accepted(cp, ThisInstr()) then
GenerateCoprocessorException();
else
value = Coproc_GetOneWord(cp, ThisInstr());
if t != 15 then

R[t] = value;

else
APSR.N = value<31>;
APSR.Z = value<30>;
APSR.C = value<29>;

APSR.V = value<28>;
// value<27:0> are not used.

Exceptions

Undefined Instruction.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-203

ARM_2009_Q3
Cross-Out

ARM_2009_Q3
Replacement Text
{#}

ARM_2009_Q3
Cross-Out

ARM_2009_Q3
Replacement Text
{#}

Instruction Details

A8.6.101 MRRC, MRRC2

Moveto two ARM core registers from Coprocessor causes a coprocessor to transfer valuesto two ARM
core registers. If no coprocessor can execute the instruction, an Undefined Instruction exception is
generated.

Thisis ageneric coprocessor instruction. The opcl and CRm fields have no functionality defined by the
architecture and are free for use by the coprocessor instruction set designer.

For more information about the coprocessors see Coprocessor support on page A2-68.
Encoding T1/Al ARMvV6ET2, ARMV7 for encoding T1

ARMV5TE*, ARMV6*, ARMV7 for encoding A1
MRRC<c> <coproc>,<opc>,<Rt>,<Rt2>,<CRm>

151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0

1110|110(0|0|1|0(12 Rt2 Rt coproc opcl CRm

31 3029 28 27 26 25 24 232221 20191817 161514131211 10 9 8 7 6 5 4 3 2 1 0
cond 110|0|0(1]|0]|1 Rt2 Rt coproc opcl CRm

if coproc == ‘101x’ then SEE “Advanced SIMD and VFP”;

t = UInt(Rt); t2 = UInt(Rt2); cp = UInt(coproc);

if t == 15 || t2 == 15 || t == t2 then UNPREDICTABLE;

if (t == 13 || t2 == 13) && (CurrentInstrSet() != InstrSet_ARM) then UNPREDICTABLE;

Encoding T2/ A2 ARMvV6ET2, ARMV7 for encoding T2
ARMvV6*, ARMV7 for encoding A2
MRRC2<c> <coproc>,<opc>,<Rt>,<Rt2>,<CRm>
151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0
1111|110(0|0|1|0(12 Rt2 Rt coproc opcl CRm

31 30 29 28 27 26 25 24 2322 21 2019 181716151413 121110 9 8 7 6 5 4 3 2 1 O
1111|110(0|0|1|0(12 Rt2 Rt coproc opcl CRm

t = UInt(Rt); t2 = UInt(Rt2); cp = UInt(coproc);
if t == 15 || t2 == 15 || t == t2 then UNPREDICTABLE;
if (t == 13 || t2 == 13) && (CurrentInstrSet() != InstrSet_ARM) then UNPREDICTABLE;

Advanced SIMD and VFP See 64-bit transfers between ARM core and extension registers on
page A7-32

A8-204

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

MRRC{2}<c><q> <coproc>, #<opcl>, <Rt>, <Rt2>, <CRm>

where:

2 If specified, selectsencoding T2/ A2. If omitted, selects encoding T1/Al.

<C><q> See Standard assembler syntax fields on page A8-7. An ARM MRRC2 instruction must be
unconditional.

<coproc> The name of the coprocessor. The standard generic coprocessor names are p0, pl, ..., p15.

<opcl> |'s a coprocessor-specific opcode in the range O to 15.

<Rt> Isthe first destination ARM core register.

<Rt2> Isthe second destination ARM core register.

<CRm> Isthe coprocessor register that supplies the data to be transferred.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
if !Coproc_Accepted(cp, ThisInstr()) then
GenerateCoprocessorException();
else
(R[t], R[t2]) = Coproc_GetTwoWords(cp, ThisInstr());

Exceptions

Undefined Instruction.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-205

ARM_2009_Q3
Cross-Out

ARM_2009_Q3
Replacement Text
{#}

Instruction Details

A8.6.102 MRS
Move to Register from Specia Register moves the value from the APSR into a general-purpose register.

For details of system level use of thisinstruction, see MRS on page B6-10.

Encoding T1 ARMV6T2, ARMV7
MRS<c> <Rd>,<spec_reg>

151413121110 9 8 7 6 5 4 3 2 1 0 151413121110 9 8 7 6 5 4 3 2 1 0
11110(0/1111(1{0(1)@DDD||1 0}|O0)0 Rd (0) (0) (0) (0) (0) (0) (0) (O

d = UInt(Rd);
if BadReg(d) then UNPREDICTABLE;

Encoding Al ARMv4*, ARMV5T*, ARMvV6*, ARMV7

MRS<c> <Rd>,<spec_reg>

313029 28 27 26 2524 232221201918 1716151413121110 9 8 7 6 5 4 3 2 1 O
cond o(o(oj1|jo0jojo|0jMMODQ Rd ©(@©)(@©) (@0 0 0 0{0(()(0)

d = UInt(Rd);
if d == 15 then UNPREDICTABLE;

A8-206 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

MRS<c><g> <Rd>, <spec_reg>

where:
<C><q> See Standard assembler syntax fields on page A8-7.
<Rd> The destination register.
<spec_reg> Is one of:
. APSR
. CPSR.
ARM recommends the APSR form in application level code. For more information, see The
Application Program Satus Register (APSR) on page A2-14.
Operation

if ConditionPassed() then
EncodingSpecificOperations();

R[d] = APSR;
Exceptions
None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-207

Instruction Details

A8.6.103 MSR (immediate)

Move immediate value to Special Register moves selected bits of an immediate value to the corresponding
bitsin the APSR.

For details of system level use of thisinstruction, see MSR (immediate) on page B6-12.

Encoding Al ARMv4*, ARMV5T*, ARMvV6*, ARMV7
MSR<c> <spec_reg>,#<const>

31 3029 28 27 26 2524232221 2019181716151413121110 9 8 7 6 5 4 3 2 1 O

cond 001 10|0{1 Ojmask{0 0O|(1)(1)(1)(D) imm12
if mask == ‘00’ then SEE “Related encodings”;
imm32 = ARMExpandImm(imml2); write_nzcvg = (mask<l> == ‘1’); write_g = (mask<@> == ‘1’);
if-n-==-15then UNPREDICTABLE;

JAssembler syntax
MSR<c><qg> <spec_reg>, #<imm>
where:

<C><0> See Standard assembler syntax fields on page A8-7.

<spec_reg> Isone of:
. APSR_<bits>
. CPSR_<fields>.

ARM recommends the APSR forms in application level code. For more information,
see The Application Program Status Register (APSR) on page A2-14.

<imm> Isthe immediate value to be transferred to <spec_reg>. See Modified immediate
constants in ARM instructions on page A5-9 for the range of values.

<bits> Isone of nzcvg, g, Or nzcvag.

Inthe A and R profiles:

. APSR_nzcvq isthe same as CPSR_f

. APSR_g isthe same as CPSR_s

. APSR_nzcvqg is the same as CPSR_f's.

<fields> Is a sequence of one or more of the following: s, f.

A8-208 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Inserted Text
Related encodings See MSR (immediate), and hints on page A5-17 [PDF page 223].

Operation

if ConditionPassed() then
EncodingSpecificOperations();
if write_nzcvg then

APSR.N
APSR.Z
APSR.C
APSR.V =
APSR.Q =

imm32<31>;
imm32<30>;
imm32<29>;
imm32<28>;
imm32<27>;

if write_g then
APSR.GE = imm32<19:16>;

Exceptions

None.

Usage

Instruction Details

For details of the APSR see The Application Program Satus Register (APSR) on page A2-14. Because of
the Do-Not-Modify nature of its reserved bits, the immediate form of MSR is normally only useful at the

Application level for writing to APSR_nzcvq (CPSR_).

For the A and R profiles, MSR (immediate) on page B6-12 describes additional functionality that isavailable
using the reserved bits. This includes some deprecated functionality that is available in unprivileged and

privileged modes and therefore can be used at the Application level.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

A8-209

Instruction Details

A8.6.104 MSR (register)

Move to Specia Register from ARM core register moves selected bits of a general-purpose register to the
APSR.

For details of system level use of thisinstruction, see MSR (register) on page B6-14.

Encoding T1 ARMV6T2, ARMV7
MSR<c> <spec_reg>,<Rn>

151413121110 9 8 7 6 5 4 3 2 1 0 1514131211109 8 7 6 5 4 3 2 1 0

11110/[0/111o0]|0|0 Rn 1 0(0) 0|mask| 0 0 (0)(0)(0) (0) (0) (0) (0) (0)

n = UInt(Rn); write_nzcvg = (mask<1l> == ‘1’); write_g = (mask<@> == ‘1’);

if mask == ‘00’ then UNPREDICTABLE;

if A—==—25 then UNPREDICTABLE;

Encoding Al ARMv4*, ARMV5T*, ARMvV6*, ARMV7

MSR<c> <spec_reg>,<Rn>

313029 28 27 26 2524 232221201918 1716151413121110 9 8 7 6 5 4 3 2 1 O
cond 00010[{0{/2 0maskj0 0O|H(DDODOO@O@OO 00O Rn

n = UInt(Rn); write_nzcvg = (mask<l> == ‘1’); write_g = (mask<@> == ‘1’);
if mask == ‘00’ then UNPREDICTABLE;

if n == 15 then UNPREDICTABLE;

Assembler syntax

MSR<c><g> <spec_reg>, <Rn>

where:
<C><q> See Sandard assembler syntax fields on page A8-7.
<spec_reg> Isone of:

. APSR_<bits>

. CPSR_<fields>.

ARM recommends the APSR forms in application level code. For more information, see The

Application Program Satus Register (APSR) on page A2-14.
<Rn> Isthe general-purpose register to be transferred to <spec_reg>.
<bits> Isone of nzcvq, g, Or nzcvag.

Inthe A and R profiles:

. APSR_nzcvq is the same as CPSR_f

. APSR_g is the same as CPSR_s

. APSR_nzcvqg is the same as CPSR_fs.
<fields> Is asequence of one or more of the following: s, f.

A8-210

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
BadReg(n)

Instruction Details

Operation

if ConditionPassed() then
EncodingSpecificOperations();
if write_nzcvg then

APSR.N = R[n]<31>;
APSR.Z = R[n]<30>;
APSR.C = R[n]<29>;

APSR.V = R[n]<28>;
APSR.Q = R[n]<27>;

if write_g then
APSR.GE = R[n]<19:16>;

Exceptions

None.

Usage

For details of the APSR see The Application Program Satus Register (APSR) on page A2-14. Because of
the Do-Not-Modify nature of itsreserved hits, aread / modify / write sequenceis normally needed when the
MSR instruction is being used at Application level and its destination is not APSR_nzcvq (CPSR_f).

For the A and R profiles, MSR (register) on page B6-14 describes additional functionality that is available
using the reserved bits. This includes some deprecated functionality that is available in unprivileged and
privileged modes and therefore can be used at the Application level.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-211

Instruction Details

A8.6.105 MUL

Multiply multiplies two register values. The least significant 32 bits of the result are written to the
destination register. These 32 bits do not depend on whether the source register values are considered to be
signed values or unsigned values.

Optionally, it can update the condition flags based on the result. In the Thumb instruction set, thisoption is
limited to only afew forms of the instruction. Use of this option adversely affects performance on many
processor implementations.

Encoding T1 ARMVAT, ARMV5T*, ARMvV6*, ARMV7
MULS <Rdm>, <Rn>, <Rdm> Outside I T block.
MUL<c> <Rdm>,<Rn>, <Rdm> Inside IT block.

151413121110 9 8 7 6 5 4 3 2 1 O
0100002101 Rn Rdm

d = UInt(Rdm); n = UInt(Rn); m = UInt(Rdm); setflags = !InITBlock();
if ArchVersion() < 6 & d == n then UNPREDICTABLE;

Encoding T2 ARMvV6T2, ARMV7
MUL<c> <Rd>,<Rn>,<Rm>

151413121110 9 8 7 6 5 4 3 2 1 0 151413121110 9 8 7 3210
111110110({000 Rn 1111 Rd 00O00O Rm

N

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = FALSE;
if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

Encoding Al ARMv4* ARMvV5T*, ARMvV6*, ARMV7
MUL{S}<c> <Rd>,<Rn>,<Rm>

31 3029 28 27 26 25 24 23 22 21 2019 18 17 16 151413121110 9 8 7 3210
cond [000O0O0O0O|[S| Rd [0©@©@ Rm |100 1| Rn

N

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == ‘1’);
if d==15]| n==15 || m == 15 then UNPREDICTABLE;
if ArchVersion() < 6 & d == n then UNPREDICTABLE;

A8-212 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

MUL{S}<c><q> {<Rd>,} <Rn>, <Rm>

where:

S If S ispresent, the instruction updates the flags. Otherwise, the flags are not updated.
In the Thumb instruction set, S can be specified only if both <Rn> and <Rm> are RO-R7 and
theinstruction is outside an I T block.

<C><q> See Sandard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> Thefirst operand register.

<Rm> The second operand registery

Operation

if ConditionPassed() then

EncodingSpecificOperations();
operandl = SInt(R[n]); // operandl
operand2 = SInt(R[m]); // operand2
result = operandl = operand?;
R[d] = result<31:0>;
if setflags then

APSR.N = result<31>;

APSR.Z = IsZeroBit{result);

if ArchVersion() == 4 then

APSR.C = bit UNKNOWN;
// else APSR.C unchanged
// APSR.V always unchanged

UInt(R[n]) produces the same final results
UInt(R[m]) produces the same final results

Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-213

ARM_2009_Q1
Inserted Text

The pre-UAL syntax MUL<c>S is equivalent to MULS<c>.

ARM_2010_Q3
Cross-Out

ARM_2010_Q3
Replacement Text
IsZeroBit(result<31:0>);

Instruction Details

A8.6.106 MVN (immediate)

Bitwise NOT (immediate) writes the bitwise inverse of an immediate valueto the destination register. It can

optionally update the condition flags based on the value.

Encoding T1 ARMV6T2, ARMV7
MVN{S}<c> <Rd>,#<const>

11110(i|0/0 01 1(S|1 1 1 1{/0| imm3 Rd

151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0

imm8

d = UInt(Rd); setflags = (S == ‘1");
(imm32, carry) = ThumbExpandImm_C(i:imm3:imm8, APSR.C);
if BadReg(d) then UNPREDICTABLE;

Encoding Al ARMv4* ARMV5T*, ARMvV6*, ARMV7
MVN{S}<c> <Rd>,#<const>

31 3029 28 27 26 2524232221 2019181716151413121110 9 8 7 6 5 4 3 2 1 O

cond |0 0[1]1 1 1 1|S|(0(©©) ()] Rd

imm12

if Rd == ‘1111’ && S == ‘1’ then SEE SUBS PC, LR and related instructions;
d = UInt(Rd); setflags = (S == ‘1’);
(imm32, carry) = ARMExpandImm_C(imm12, APSR.C);

A8-214

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

ARM DDI 0406B

Instruction Details

Assembler syntax

MUN{S}<c><q> <Rd>, #<const>

where:

S If S ispresent, the instruction updates the flags. Otherwise, the flags are not updated.
<C><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination registery

<const> The immediate value to be bitwise inverted. See Modified immediate constants in Thumb

instructions on page A6-17 or Modified immediate constants in ARM instructions on
page A5-9 for the range of values.

The pre-UAL syntax MVN<c>S is equivalent to MVNS<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
result = NOT(imm32);
if d == 15 then // Can only occur for ARM encoding
ALUWritePC(result); // setflags is always FALSE here
else
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
// APSR.V unchanged

Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-215

ARM_2009_Q2
Inserted Text
 If S is specified and <Rd> is the PC, see SUBS PC, LR and related instructions on page B6-25 [PDF page 1583]. In ARM instructions, if S is not specified and <Rd> is the PC, the instruction is a branch to the address calculated by the operation. This is a simple branch before ARMv7, and an interworking branch from ARMv7.

Instruction Details

A8.6.107 MVN (register)

Bitwise NOT (register) writes the bitwise inverse of aregister value to the destination register. It can
optionally update the condition flags based on the resuilt.

Encoding T1 ARMVAT, ARMV5T*, ARMvV6*, ARMV7
MVNS <Rd>, <Rm> Qutside I T block.
MVN<c> <Rd>,<Rm> Inside IT block.

151413121110 9 8 7 6 5 4 3 2 1 O
0100002111 Rm Rd

d = UInt(Rd); m = UInt(Rm); setflags = !InITBlock();
(shift_t, shift_n) = (SRType_LSL, 0);

Encoding T2 ARMV6T2, ARMV7

MVN{S}<c>.W <Rd>,<Rm>{,<shift>}

1514131211109 8 7 6 5 4 3 2 1 0 1514131211109 8 7 6 54 3 2 1 0
11101{01{0011|S|11 1 1//(0 imm3 Rd imm2 | type Rm

d = UInt(Rd); m = UInt(Rm); setflags = (S == ‘1");
(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);
if BadReg(d) || BadReg(m) then UNPREDICTABLE;

Encoding Al ARMv4*, ARMV5T*, ARMV6*, ARMV7
MVN{S}<c> <Rd>,<Rm>{,<shift>}

3130292827 26 2524 2322212019 181716151413121110 9 8 7 6 5 4 3 2 1 O
cond 0 001 1 1 1|/S|(0)(0)(0)(0) Rd imm5 type | O Rm

if Rd == ‘1111’ && S == ‘1’ then SEE SUBS PC, LR and related instructions;
d = UInt(Rd); m = UInt(Rm); setflags = (S == ‘1’);
(shift_t, shift_n) = DecodeImmShift(type, imm5);

A8-216 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

MUN{S}<c><g> <Rd>, <Rm> {, <shift>}

where:

S If S ispresent, the instruction updates the flags. Otherwise, the flags are not updated.
<C><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination registery

<Rm> Theregister that is optionally shifted and used as the source registery

<shift> The shift to apply to the value read from <Rm>. If present, encoding T1 is not permitted. If

absent, no shift is applied and all encodings are permitted. Shifts applied to a register on
page A8-10 describes the shifts and how they are encoded.

The pre-UAL syntax MVN<c>S is equivalent to MVNS<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
(shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
result = NOT(shifted);
if d == 15 then // Can only occur for ARM encoding
ALUWritePC(result); // setflags is always FALSE here
else
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
// APSR.V unchanged

Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-217

ARM_2009_Q2
Inserted Text
 PC can be used in ARM instructions.

ARM_2009_Q2
Inserted Text
 If S is specified and <Rd> is the PC, see SUBS PC, LR and related instructions on page B6-25 [PDF page 1583]. In ARM instructions, if S is not specified and <Rd> is the PC, the instruction is a branch to the address calculated by the operation. This is a simple branch before ARMv7, and an interworking branch from ARMv7.

Instruction Details

A8.6.108 MVN (register-shifted register)

Bitwise NOT (register-shifted register) writes the bitwise inverse of aregister-shifted register value to the

destination register. It can optionally update the condition flags based on the result.

Encoding Al ARMv4*, ARMV5T*, ARMVE*, ARMV7

MVN{S}<c> <Rd>,<Rm>,<type> <Rs>

3130292827 2625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 O
cond 0 0|0(1 1 1 1{S|(0)(0)(0)(0) Rd Rs O|type|1 Rm

d = UInt(Rd); m = UInt(Rm); s = UInt(Rs);
setflags = (S == ‘1’); shift_t = DecodeRegShift(type);
if d==15]| m==15 || s == 15 then UNPREDICTABLE;

A8-218 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

MUN{S}<c><q> <Rd>, <Rm>, <type> <Rs>

where:
S If S ispresent, the instruction updates the flags. Otherwise, the flags are not updated.
<C><q> See Standard assembler syntax fields on page A8-7.
<Rd> The destination register.
<Rm> The register that is shifted and used as the operand.
<type> The type of shift to apply to the value read from <Rm>. It must be one of:
ASR Arithmetic shift right, encoded as type = 0b10
LSL Logical shift left, encoded as type = 0b00
LSR Logical shift right, encoded as type = 0b01
ROR Rotate right, encoded as type = Ob11.
<Rs> The register whose bottom byte contains the amount to shift by.

The pre-UAL syntax MVN<c>S is equivalent to MVNS<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
shift_n = UInt(R[s]<7:0>);
(shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
result = NOT(shifted);
R[d] = result;
if setflags then
APSR.N = result<3l>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
// APSR.V unchanged

Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-219

Instruction Details

A8.6.109 NEG

Negate is a pre-UAL synonym for RSB (immediate) with an immediate value of 0. For details see RSB
(immediate) on page A8-284.

A8-220 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax
NEG<c><g> <Rd>, <Rm>
Thisisequivalent to:

RSBS<c><g> <Rd>, <Rm>, #0@

Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-221

Instruction Details

A8.6.110 NOP

No Operation does nothing. Thisinstruction can be used for code alignment purposes.

See Pre-UAL pseudo-instruction NOP on page AppxC-3 for details of NOP before the introduction of UAL
and the ARMV6K and ARMV6T2 architecture variants.

Note

The timing effects of including aNOP instruction in code are not guaranteed. It can increase execution time,
leave it unchanged, or even reduce it. NOP instructions are therefore not suitable for timing loops.

Encoding T1 ARMvV6ET2, ARMV7
NOP<c>

151413121110 9 8 7 6 5 4 3 2 1 O

1011j1111{0000/0000

// No additional decoding required

Encoding T2 ARMvV6T2, ARMV7
NOP<c>.W

151413121110 9 8 7 6 5 4 3 2 1 0 151413121110 9 8 7 6 5

o
o
o

11110/0/111]0 1/0|D)@DQ @)1 ol©)o|0o 0 0|0 0

// No additional decoding required

Encoding Al ARMV6K, ARMV6T2, ARMV7
NOP<c>

3130292827 26252423222120191817161514 131211109 8 7 6 5

cond [0 0 1 1[0 0 1 0/0 0 0 0|1)(1)(1)(D)|O)(0)(©)(©)0 0

o
o
o

// No additional decoding required

A8-222

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax
NOP<c><g>

where:

<C><q> See Standard assembler syntax fields on page A8-7.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
// Do nothing

Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-223

Instruction Details

A8.6.111 ORN (immediate)

Bitwise OR NOT (immediate) performs abitwise (inclusive) OR of aregister value and the complement of
an immediate value, and writes the result to the destination register. It can optionally update the condition
flags based on the result.

Encoding T1 ARMvV6ET2, ARMV7
ORN{S}<c> <Rd>,<Rn>,#<const>

151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0
11110|i|0/0011}S Rn 0| imm3 Rd imm8

if Rn == ‘1111’ then SEE MVN (immediate);

d = UInt(Rd); n = UInt(Rn); setflags = (S == ‘1");
(imm32, carry) = ThumbExpandImm_C(i:imm3:imm8, APSR.C);
if BadReg(d) || n == 13 then UNPREDICTABLE;

A8-224

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

ORN{S}<c><q> {<Rd>,} <Rn>, #<const>

where:

S If S ispresent, the instruction updates the flags. Otherwise, the flags are not updated.

<C><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The register that contains the operand.

<const> The immediate value to be bitwise inverted and ORed with the value obtained from <Rn>.
See Modified immediate constants in Thumb instructions on page A6-17 for the range of
values.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
result = R[n] OR NOT(imm32);
R[d] = result;
if setflags then
APSR.N = result<3l>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
// APSR.V unchanged

Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-225

Instruction Details

A8.6.112 ORN (register)

Bitwise OR NOT (register) performs a bitwise (inclusive) OR of aregister value and the complement of an
optionally-shifted register value, and writesthe result to the destination register. It can optionally update the
condition flags based on the result.

Encoding T1 ARMvV6ET2, ARMV7
ORN{S}<c> <Rd>,<Rn>,<Rm>{,<shift>}

151413121110 9 8 7 6 5 4 3 2 1 0 1514131211109 8 7 6 5 4 3 2 1 0

111010 1{0011(S Rn (0)| imm3 Rd immz2 | type Rm

if Rn == ‘1111’ then SEE MVN (register);

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == ‘1");
(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);

if BadReg(d) || n == 13 || BadReg(m) then UNPREDICTABLE;

A8-226

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

ORN{S}<c><g> {<Rd>,} <Rn>, <Rm> {,<shift>}

where:

S If S ispresent, the instruction updates the flags. Otherwise, the flags are not updated.

<C><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> Thefirst operand register.

<Rm> The register that is optionally shifted and used as the second operand.

<shift> The shift to apply to the value read from <Rms>. If omitted, no shift is applied. Shifts applied
to a register on page A8-10 describes the shifts and how they are encoded.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
(shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
result = R[n] OR NOT(shifted);
R[d] = result;
if setflags then
APSR.N = result<3l>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
// APSR.V unchanged

Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-227

Instruction Details

A8.6.113 ORR (immediate)

Bitwise OR (immediate) performs abitwise (inclusive) OR of aregister value and an immediate value, and
writes the result to the destination register. It can optionally update the condition flags based on the result.

Encoding T1 ARMV6T2, ARMV7
ORR{S}<c> <Rd>,<Rn>,#<const>

111

151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0

10(i|0j0 01 0|S Rn 0| imm3 Rd

imm8

if Rn == ‘1111’ then SEE MOV (immediate);

d = UInt(Rd); n = UInt(Rn); setflags = (S == ‘1");
(imm32, carry) = ThumbExpandImm_C(i:imm3:imm8, APSR.C);
if BadReg(d) || n == 13 then UNPREDICTABLE;

Encoding Al ARMv4*, ARMV5T*, ARMV6*, ARMV7
ORR{S}<c> <Rd>,<Rn>,#<const>

3130292827 26252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

cond

0 01|11 100]|S Rn Rd imm12

if Rd == ‘1111’ && S == ‘1’ then SEE SUBS PC, LR and related instructions;
d = UInt(Rd); n = UInt(Rn); setflags = (S == ‘1’);
(imm32, carry) = ARMExpandImm_C(imml2, APSR.C);

A8-228

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

ARM DDI 0406B

Instruction Details

Assembler syntax

ORR{S}<c><q> {<Rd>,} <Rn>, #<const>

where:

S If S ispresent, the instruction updates the flags. Otherwise, the flags are not updated.
<C><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination registery

<Rn> The register that contains the operandy

<const> Theimmediate value to be bitwise ORed with the value obtained from <Rn>. See Modified

immediate constantsin Thumb instructionson page A6-17 or Modified immediate constants
in ARM instructions on page A5-9 for the range of values.

The pre-UAL syntax ORR<c>S is equivalent to ORRS<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
result = R[n] OR imm32;
if d == 15 then // Can only occur for ARM encoding
ALUWritePC(result); // setflags is always FALSE here
else
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
// APSR.V unchanged

Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-229

ARM_2009_Q2
Inserted Text
 PC can be used in ARM instructions.

ARM_2009_Q2
Inserted Text
 If S is specified and <Rd> is the PC, see SUBS PC, LR and related instructions on page B6-25 [PDF page 1583]. In ARM instructions, if S is not specified and <Rd> is the PC, the instruction is a branch to the address calculated by the operation. This is a simple branch before ARMv7, and an interworking branch from ARMv7.

Instruction Details

A8.6.114 ORR (register)

Bitwise OR (register) performsabitwise (inclusive) OR of aregister value and an optionally-shifted register
value, and writes the result to the destination register. It can optionally update the condition flags based on

the result.

Encoding T1 ARMVAT, ARMV5T*, ARMv6*, ARMV7

ORRS <Rdn>,<Rm> Qutside I T block.
ORR<c> <Rdn>,<Rm> Inside I'T block.

151413121110 9 8 7 6 5 4 3 2 1 O
01 0000|1100 Rm Rdn

d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();
(shift_t, shift_n) = (SRType_LSL, 0);

Encoding T2 ARMvV6ET2, ARMV7
ORR{S}<c>.W <Rd>,<Rn>,<Rm>{,<shift>}

151413121110 9 8 7 6 5 4 3 2 1 0 1514131211109 8 7 6 5 4 3 2 1 0
1110110 1|0 0 10}S Rn (0)| imm3 Rd immz2 | type Rm

if Rn == ‘1111’ then SEE MOV (register);

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == ‘1");
(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);

if BadReg(d) || n == 13 || BadReg(m) then UNPREDICTABLE;

Encoding Al ARMv4*, ARMV5T*, ARMV6*, ARMV7

ORR{S}<c> <Rd>,<Rn>,<Rm>{,<shift>}

3130292827 26 252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
cond 0 0/0|1 1 00]S Rn Rd imm5 type | O Rm

if Rd == ‘1111’ && S == ‘1’ then SEE SUBS PC, LR and related instructions;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == ‘1’);
(shift_t, shift_n) = DecodeImmShift(type, imm5);

A8-230 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

ORR{S}<c><q> {<Rd>,} <Rn>, <Rm> {,<shift>}

where:

S If S ispresent, the instruction updates the flags. Otherwise, the flags are not updated.
<C><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination registery

<Rn> Thefirst operand registery

<Rm> The register that is optionally shifted and used as the second operand

<shift> The shift to apply to the value read from <Rm>. If present, encoding T1 is not permitted. If

absent, no shift is applied and all encodings are permitted. Shifts applied to a register on
page A8-10 describes the shifts and how they are encoded.

In Thumb assembly:

. outsidean IT block, if ORRS <Rd>, <Rn>,<Rd> iswritten with <Rd> and <Rn> both in the range RO-R7, it
is assembled using encoding T1 as though ORRS <Rd>, <Rn> had been written

. insidean IT block, if ORR<c> <Rd>, <Rn>,<Rd> iswritten with <Rd> and <Rn> both in the range RO-R7,
it isassembled using encoding T1 as though ORR<c> <Rd>, <Rn> had been written.

To prevent either of these happening, use the .W qudlifier.

The pre-UAL syntax ORR<c>S is equivalent to ORRS<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
(shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
result = R[n] OR shifted;
if d == 15 then // Can only occur for ARM encoding
ALUWritePC(result); // setflags is always FALSE here
else
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
// APSR.V unchanged

Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-231

ARM_2009_Q2
Inserted Text
 PC can be used in ARM instructions.

ARM_2009_Q2
Inserted Text
 PC can be used in ARM instructions.

ARM_2009_Q2
Inserted Text
 If S is specified and <Rd> is the PC, see SUBS PC, LR and related instructions on page B6-25 [PDF page 1583]. In ARM instructions, if S is not specified and <Rd> is the PC, the instruction is a branch to the address calculated by the operation. This is a simple branch before ARMv7, and an interworking branch from ARMv7.

Instruction Details

A8.6.115 ORR (register-shifted register)

Bitwise OR (register-shifted register) performs a bitwise (inclusive) OR of aregister value and a
register-shifted register value, and writes the result to the destination register. It can optionally update the
condition flags based on the result.

Encoding Al ARMv4*, ARMV5T*, ARMV6E*, ARMV7
ORR{S}<c> <Rd>,<Rn>,<Rm>,<type> <Rs>

3130292827 2625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 O

cond 0 0/|0|1 1 0 0fS Rn Rd Rs O|type|1 Rm

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); s = UInt(Rs);
setflags = (S == ‘1’); shift_t = DecodeRegShift(type);
if d==15]| n==15 || m==15 || s == 15 then UNPREDICTABLE;

A8-232

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

ORR{S}<c><q> {<Rd>,} <Rn>, <Rm>, <type> <Rs>

where:
S If S ispresent, the instruction updates the flags. Otherwise, the flags are not updated.
<C><q> See Standard assembler syntax fields on page A8-7.
<Rd> The destination register.
<Rn> Thefirst operand register.
<Rm> The register that is shifted and used as the second operand.
<type> The type of shift to apply to the value read from <Rm>. It must be one of:
ASR Arithmetic shift right, encoded as type = 0b10
LSL Logical shift left, encoded as type = 0b00
LSR Logical shift right, encoded as type = 0b01
ROR Rotate right, encoded as type = Ob11.
<Rs> The register whose bottom byte contains the amount to shift by.

The pre-UAL syntax ORR<c>S is equivalent to ORRS<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
shift_n = UInt(R[s]<7:0>);
(shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
result = R[n] OR shifted;
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
// APSR.V unchanged

Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-233

Instruction Details

A8.6.116 PKH
Pack Halfword combines one halfword of its first operand with the other halfword of its shifted second
operand.
Encoding T1 ARMV6T2, ARMV7

PKHBT<c> <Rd>,<Rn>,<Rm>{,LSL #<imm>}

PKHTB<c> <Rd>,<Rn>,<Rm>{,ASR #<imm>}

1514131211109 8 7 6 5 4 3 2 1 0 1514131211109 8 7 6 5 4 3 2 1 0
111010101 10|4] Rn (0)| imm3 Rd imm2 |tb| 4| Rm

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); tbform = (tb == ‘1’);
(shift_t, shift_n) = DecodeImmShift(tb:’0’, imm3:imm2);
if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

Encoding Al ARMvV6E*, ARMV7

PKHBT<c> <Rd>,<Rn>,<Rm>{,LSL #<imm>}

PKHTB<c> <Rd>,<Rn>,<Rm>{,ASR #<imm>}

313029 28 27 26 2524232221 20191817161514131211109 8 7 6 5 4 3 2 1 0
cond 01101000 Rn Rd imm5 tb|0 1 Rm

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); tbform = (tb == ‘1’);
(shift_t, shift_n) = DecodeImmShift(th:’0’, imm5);
if d==15]| n==15 || m == 15 then UNPREDICTABLE;

A8-234 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2008_Q4
Inserted Text
if S == '1' || T == '1' then UNDEFINED;

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
T

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
S

Instruction Details

Assembler syntax

PKHBT<c><q> {<Rd>,} <Rn>, <Rm> {, LSL #<imm>} tbform == FALSE
PKHTB<c><q> {<Rd>,} <Rn>, <Rm> {, ASR #<imm>} tbform == TRUE
where:
<C><q> See Standard assembler syntax fields on page A8-7.
<Rd> The destination register.
<Rn> The first operand register.
<Rm> The register that is optionally shifted and used as the second operand.
<imm> The shift to apply to the value read from <Rm>, encoded inimm3:imm2 for encoding T1 and
imm5 for encoding A1l.
For PKHBT, it is one of:
omitted No shift, encoded as 000000
1-31 Left shift by specified number of bits, encoded as a binary number.
For PKHTB, it is one of:
omitted Instruction is a pseudo-instruction and is assembled as though
PKHBT<c><q> <Rd>,<Rm>, <Rn> had been written
1-32 Arithmetic right shift by specified number of bits. A shift by 32 bitsis encoded
as 0b000ee. Other shift amounts are encoded as binary numbers.
—— Note
An assembler can permit <imm> = 0 to mean the same thing as omitting the shift, but thisis
not standard UAL and must not be used for disassembly.
Operation

if ConditionPassed() then
EncodingSpecificOperations();

operand2 =
R[d]<15:0>

R[d]<31:16>

Exceptions

None.

Shift(R[m], shift_t, shift_n, APSR.C); // APSR.C ignored
if tbhform then operand2<15:0> else R[n]<15:0>;
if tbform then R[n]<31:16> else operand2<31:16>;

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-235

Instruction Details

A8.6.117 PLD, PLDW (immediate)

Preload Data signals the memory system that data memory accesses from a specified address are likely in
the near future. The memory system can respond by taking actionsthat are expected to speed up the memory
accesses when they do occur, such as pre-loading the cache line containing the specified address into the
data cache. For more information, see Behavior of Preload Data (PLD, PLDW) and Preload Instruction
(PLI) with caches on page B2-7.

On an architecture variant that includes both the PLD and PLDW instructions, the PLD instruction signals that
the likely memory accessis aread, and the PLDW instruction signalsthat it is awrite.

Encoding T1 ARMvV6ET2, ARMV7 for PLD
ARMvV7 with MP Extensions for PLDW
PLD{W}<c> [<Rn>,#<imm12>]
151413121110 9 8 7 6 5 4 3 2 1 01514131211109 8 7 6 5 4 3 2 1 0
111110 0f{0|1|0(W|1 Rn 1111 imm12

if Rn == ‘1111’ then SEE PLD (literal);
n = UInt(Rn); 1imm32 = ZeroExtend(imml2, 32); add = TRUE; is_pldw = (W == ‘1’);

Encoding T2 ARMvV6ET2, ARMV7 for PLD
ARMvV7 with MP Extensions for PLDW
PLD{W}<c> [<Rn>,#-<imm8>]
151413121110 9 8 7 6 5 4 3 2 1 01514131211109 8 7 6 5 4 3 2 1 0
111110 0({0|0|0W|1 Rn 1111|111 00 imm8

if Rn == ‘1111’ then SEE PLD (literal);
n = UInt(Rn); imm32 = ZeroExtend(imm8, 32); add = FALSE; is_pldw = (W == ‘1");

Encoding Al ARMV5TE*, ARMvV6*, ARMV7 for PLD
ARMV7 with MP Extensions for PLDW
PLD{W} [<Rn>,#+/-<imm12>]
31302928 27 26 252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
1111|{0 1|0|1|U|R|O 1 Rn OOOQ imm12

if Rn == ‘1111’ then SEE PLD (literal);
n = UInt(Rn); imm32 = ZeroExtend(imml2, 32); add = (U == ‘1"); ds_pldw = (R == ‘0’);

A8-236 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

PLD{W}<c><g>
where:

W

<C><q>

<Rn>

+/-

<imm>

Operation

[<Rn> {, #+/-<imm>}]

If specified, selects PLDW, encoded asW = 1 in Thumb encodingsand R =0in ARM
encodings. If omitted, selects PLD, encoded asW = 0in Thumb encodingsand R=1in
ARM encodings.

See Standard assembler syntax fields on page A8-7. An ARM PLD or PLDW instruction must
be unconditional .

The base register. The SP can be used. For PC use in the PLD instruction, see PLD (literal)
on page A8-238.

Is+ or omitted to indicate that the immediate offset is added to the base register value
(add == TRUE), or —to indicate that the offset isto be subtracted (add == FALSE). Different
instructions are generated for #0 and #-0.

Theimmediate offset used to form the address. This offset can be omitted, meaning an offset
of 0. Values are:

Encoding T1, Al any value in the range 0-4095

Encoding T2 any valuein the range 0-255.

if ConditionPassed() then
EncodingSpecificOperations();
address = if add then (R[n] + imm32) else (R[n] - imm32);
if is_pldw then
Hint_PreloadDataForWrite(address);

else

Hint_PreloadData(address);

Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-237

Instruction Details

A8.6.118 PLD (literal)

Preload Data signals the memory system that data memory accesses from a specified address are likely in
the near future. The memory system can respond by taking actionsthat are expected to speed up the memory
accesses when they do occur, such as pre-loading the cache line containing the specified address into the
data cache. For more information, see Behavior of Preload Data (PLD, PLDW) and Preload Instruction
(PLI) with caches on page B2-7.

Encoding T1 ARMvV6T2, ARMV7

PLD<c> <label>

PLD<c> [PC,#-0] Special case

151413121110 9 8 7 6 5 4 3 2 1 01514131211109 8 7 6 5 4 3 2 1 0
11111{00(0|U|O|Oj1]2 2 121 1|j]2 111 imm12

imm32 = ZeroExtend(imml2, 32); add = (U == ‘1’);

Encoding Al ARMV5TE*, ARMvV6*, ARMV7

PLD <label>

PLD [PC,#-0] Specid case

31 302928 27 26 2524 2322212019 181716151413121110 9 8 7 6 5 4 3 2 1 O
11110 1|0(1{U|(1)0 11|12 1 1|1)DD® imm12

imm32 = ZeroExtend(imml2, 32); add = (U == ‘1’);

A8-238 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

PLD<c><0>
PLD<c><g>

where:

<C><0>

<label>

+/-

<imm>

<label> Normal form
[PC, #+/-<imm>] Alternative form

See Standard assembler syntax fields on page A8-7. An ARM PLD instruction must be
unconditional.

The label of the literal dataitem that islikely to be accessed in the near future. The
assembler calculates the required value of the offset from the A1ign(PC,4) value of this
instruction to the label. The offset must be in the range —4095 to 4095.

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE.
If the offset is negative, imm32 is equal to minusthe offset and add == FALSE.
Is+ or omitted to indicate that the immediate offset is added to the A1ign(PC,4) value

(add == TRUE), or —to indicate that the offset isto be subtracted (add == FALSE). Different
instructions are generated for #0 and #-0.

The immediate offset used to form the address. Values are in the range 0-4095.

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be
specified separately, including permitting a subtraction of 0 that cannot be specified using the normal
syntax. For more information, see Use of labelsin UAL instruction syntax on page A4-5.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
address = if add then (Align(PC,4) + imm32) else (Align(PC,4) - imm32);
Hint_PreloadData(address);

Exceptions

None.

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-239

Instruction Details

A8.6.119 PLD, PLDW (register)

Preload Data signals the memory system that data memory accesses from a specified address are likely in
the near future. The memory system can respond by taking actionsthat are expected to speed up the memory
accesses when they do occur, such as pre-loading the cache line containing the specified address into the
data cache. For more information, see Behavior of Preload Data (PLD, PLDW) and Preload Instruction
(PLI) with caches on page B2-7.

On an architecture variant that includes both the PLD and PLDW instructions, the PLD instruction signals that
the likely memory accessis aread, and the PLDW instruction signalsthat it is awrite.

Encoding T1 ARMvV6ET2, ARMV7 for PLD
ARMvV7 with MP Extensions for PLDW
PLD{W}<c> [<Rn>,<Rm>{,LSL #<imm2>}]
151413121110 9 8 7 6 5 4 3 2 1 01514131211109 8 7 6 5 4 3 2 1 0
111110 0({0|0|0W|1 Rn 111 1{0/0 00 0 Ofimm2 Rm

if Rn == ‘1111’ then SEE PLD (literal);

n = UInt(Rn); m = UInt(Rm); add = TRUE; is_pldw = (W == ‘1");
(shift_t, shift_n) = (SRType_LSL, UInt(imm2));

if BadReg(m) then UNPREDICTABLE;

Encoding Al ARMV5TE*, ARMv6*, ARMV7 for PLD
ARMV7 with MP Extensions for PLDW
PLD{W}<e> [<Rn>,+/-<Rm>{, <shift>}]
3130292827 26252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
11110 1|1|1|U|R|O|1 Rn OOO@Q imm5 type | O Rm

n = UInt(Rn); m = UInt(Rm); add = (U == ‘1"); is_pldw = (R == ‘0’);
(shift_t, shift_n) = DecodeImmShift(type, imm5);
if m == 15 then UNPREDICTABLE;

A8-240 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2008_Q4
Inserted Text
 || (n == 15 && is_pldw)

ARM_2010_Q3
Cross-Out

ARM_2010_Q3
Sticky Note
As stated in the Assembler syntax description on the next page, an ARM PLD or PLDW instruction cannot be conditional.

Instruction Details

Assembler syntax

PLD[W]<c><q> [<Rn>, +/-<Rm> {, <shift>}]

where:

W If specified, selects PLDW, encoded asW = 1 in Thumb encodingsand R =0in ARM
encodings. If omitted, selects PLD, encoded as W = 0 in Thumb encodingsand R=11in
ARM encodings.

<C><g> See Standard assembler syntax fields on page A8-7. An ARM PLD or PLDW instruction must
be unconditional .

<Rn> Isthe base register. The SP can be used,

+/- Is+ or omitted if the optionally shifted value of <Rm> isto be added to the base register value
(add == TRUE), or —if it isto be subtracted (permitted in ARM code only, add == FALSE).

<Rm> Contains the offset that is optionally shifted and applied to the value of <Rn> to form the
address.

<shift> The shift to apply to the value read from <Rm>. If absent, no shift is applied. For encoding
T1, <shift> can only be omitted, encoded asimm?2 = 0b0@, or LSL #<imm> with <imm> =1, 2,
or 3, with <imm> encoded in imm2. For encoding A1, see Shifts applied to a register on
page A8-10.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
offset = Shift(R[m], shift_t, shift_n, APSR.C);
address = if add then (R[n] + offset) else (R[n] - offset);
if dis_pldw then
Hint_PreloadDataForWrite(address);
else
Hint_PreloadData(address);

Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-241

ARM_2008_Q4
Inserted Text
 The PC can be used in ARM PLD instructions, but not in Thumb PLD instructions or in any PLDW instructions.

Instruction Details

A8.6.120 PLI (immediate, literal)

Preload Instruction signals the memory system that instruction memory accesses from a specified address
arelikely in the near future. The memory system can respond by taking actions that are expected to speed
up the memory accesses when they do occur, such as pre-loading the cache line containing the specified

address into the instruction cache. For more information, see Behavior of Preload Data (PLD, PLDW) and
Preload Instruction (PLI) with caches on page B2-7.

Encoding T1 ARMv7

PLI<c> [<Rn>,#<imm12>]

151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0

11111{00(1(1/0 0|12 Rn 1111 imm12
if Rn == ‘1111’ then SEE encoding T3;
n = UInt(Rn); 1imm32 = ZeroExtend(imml2, 32); add = TRUE;

Encoding T2 ARMv7

PLI<c> [<Rn>,#-<imm8>]

151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0

11111{00(1

0

0 01

Rn

1111{1j1 00

imm8

if Rn == ‘1111’ then SEE encoding T3;

n = UInt(Rn); 1imm32 = ZeroExtend(imm8, 32);

Encoding T3 ARMv7

PLI<c> <label>
PLI<c> [PC,#-0]

add = FALSE;

Specid case

151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0

11111{00(1

U

0 01

11111111

imm12

n =15; 1imm32 = ZeroExtend(imml12, 32);

Encoding Al ARMv7

PLI [<Rn>,#+/-<imm12>]
PLI <label>
PLI [PC,#-0]

add =

U= 1);

Specid case

313029 28 27 26 25 24 232221 2019181716 151413121110 9 8 7 6 5 4 3 2 1 O

11110100

U

101

Rn

OHO@®@Q)

imm12

n = UInt(Rn); 1imm32 = ZeroExtend(imml2, 32);

add = (U == ‘1");

A8-242

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

PLI<c><0>
PLI<c><g>
PLI<C><0>

where:

<C><0>

<Rn>

+/-

<imm>

<label>

[<Rn> {, #+/-<imm>}] Immediate form
<label> Normal literal form
[PC, #+/-<imm>] Alternative literal form

See Sandard assembler syntax fields on page A8-7. An ARM PLI instruction must be
unconditional.

Isthe base register. The SP can be used.

Is+ or omitted to indicate that the immediate offset is added to the base register value
(add == TRUE), or —to indicate that the offset is to be subtracted (add == FALSE). Different
instructions are generated for #0 and #-0.

Theimmediate offset used to form the address. For the immediate form of the syntax, <imm>
can be omitted, in which case the #0 form of the instruction is assembled. Values are:
Encoding T1, T3, A1 any valuein the range O to 4095

Encoding T2 any valuein therange O to 255.

The label of the instruction that is likely to be accessed in the near future. The assembler

calculates the required value of the offset from the Align(PC,4) value of thisinstruction to
the label. The offset must be in the range —4095 to 4095.

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE.
If the offset is negative, imm32 is equal to minus the offset and add == FALSE.

For the literal forms of the instruction, encoding T3 is used, or Rn isencoded as '1111' in encoding A1, to
indicate that the PC is the base register.

The aternative literal syntax permits the addition or subtraction of the offset and theimmediate offset to be
specified separately, including permitting a subtraction of 0 that cannot be specified using the normal
syntax. For more information, see Use of labelsin UAL instruction syntax on page A4-5.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
base = if n == 15 then Align(PC,4) else R[n];
address = if add then (base + imm32) else (base - imm32);
Hint_PreloadInstr(address);

Exceptions

None.

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-243

Instruction Details

A8.6.121 PLI (register)

Preload Instruction signals the memory system that instruction memory accesses from a specified address
arelikely in the near future. The memory system can respond by taking actions that are expected to speed
up the memory accesses when they do occur, such as pre-loading the cache line containing the specified
address into the instruction cache. For more information, see Behavior of Preload Data (PLD, PLDW) and
Preload Instruction (PLI) with caches on page B2-7.

Encoding T1 ARMv7

PLI<c> [<Rn>,<Rm>{,LSL #<imm2>}]

1514131211109 8 7 6 5 4 3 2 1 01514131211109 8 7 6 5 4 3 2 10
11111{00(1({0(0 0|12 Rn 111 1|/0{0 00 0 Ofimm2 Rm

if Rn == ‘1111’ then SEE PLI (immediate, literal);
n = UInt(Rn); m = UInt(Rm); add = TRUE;
(shift_t, shift_n) = (SRType_LSL, UInt(imm2));

if BadReg(m) then UNPREDICTABLE;

Encoding Al ARMv7

PLI [<Rn>,+/-<Rm>{, <shift>}]

31302928 27 26 252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
111101 10(Uj101 Rn OO0 QO imm5 type | O Rm

n = UInt(Rn); m = UInt(Rm); add = (U == ‘1");
(shift_t, shift_n) = DecodeImmShift(type, imm5);
if m == 15 then UNPREDICTABLE;

A8-244 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

PLI<c><g> [<Rn>, +/-<Rm> {, <shift>}]

where:

<C><q>

<Rn>

+/-

<Rm>

<shift>

Operation

See Standard assembler syntax fields on page A8-7. An ARM PLI instruction must be
unconditional.

Isthe base register. The SP can be used.

Is+ or omitted if the optionally shifted value of <Rm> isto be added to the base register value
(add == TRUE), or —if it isto be subtracted (permitted in ARM code only, add == FALSE).

Contains the offset that is optionally shifted and applied to the value of <Rn> to form the
address.

The shift to apply to the value read from <Rm>. If absent, no shift is applied. For encoding
T1, <shift> can only be omitted, encoded asimm?2 = 0b0@, or LSL #<imm> with <imm> =1, 2,
or 3, with <imm> encoded in imm2. For encoding A1, see Shifts applied to a register on
page A8-10.

if ConditionPassed() then
EncodingSpecificOperations();
offset = Shift(R[m], shift_t, shift_n, APSR.C);
address = if add then (R[n] + offset) else (R[n] - offset);
Hint_PreloadInstr(address);

Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-245

Instruction Details

A8.6.122 POP

Pop Multiple Registers |oads multiple registers from the stack, loading from consecutive memory locations
starting at the address in SP, and updates SP to point just above the loaded data.

Encoding T1 ARMVAT, ARMV5T*, ARMvV6*, ARMV7
POP<c> <registers>

151413121110 9 8 7 6 5 4 3 2 1 O

101 1[1|1 0|P register_list

Encoding T2 ARMvV6T2, ARMV7
POP<c>.W <registers> <registers> contains more than one register

151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0

11101(00[/010[1(1|1 1 0 1||P[M|0) register_list

registers = P:M:’Q’:register_list;
if BitCount(registers) <2 || (P == ‘1’ & M == ‘1’) then UNPREDICTABLE;
if registers<15> == ‘1’ && InITBlock() && !LastInITBTock() then UNPREDICTABLE;

Encoding T3 ARMvV6T2, ARMV7

POP<c>.W <registers> <registers> contains one register, <Rt>
151413121110 9 8 7 6 5 4 3 2 1 01514131211109 8 7 6 5 4 3 2 1 0
1111100[0{0|10f2|1 1012 Rt 1/01 1|10 0000100

t = UInt(Rt); registers = Zeros(16); registers<t> = ‘1’3
if t ==13 || (t == 15 & InITBlock() & !LastInITBlock()) then UNPREDICTABLE;

Encoding Al ARMv4* ARMV5T*, ARMvVE*, ARMV7

POP<c> <registers> <registers> contains more than one register

31302928 27 26 2524 232221201918 1716151413121110 9 8 7 6 5 4 3 2 1 O
cond 100010f1{1|1 101 register_list

if BitCount(register_list) < 2 then SEE LDM / LDMIA / LDMFD;
registers = register_Tist;
if registers<13> == ‘1’ && ArchVersion() >= 7 then UNPREDICTABLE;

Encoding A2 ARMv4* ARMVST*, ARMvV6*, ARMV7

POP<c> <registers> <registers> contains one register, <Rt>

31302928 27 26 2524 232221201918 1716151413121110 9 8 7 6 5 4 3 2 1 0
cond 010(0|1|0f0f1|1 101 Rt 00000O0OO0OOO1O00O

t = UInt(Rt); registers = Zeros(16); registers<t> = ‘1’3
if t == 13 then UNPREDICTABLE;

A8-246

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2010_Q2
Inserted Text
 UnalignedAllowed = FALSE;

ARM_2010_Q2
Inserted Text
 UnalignedAllowed = FALSE;

ARM_2010_Q2
Inserted Text
 UnalignedAllowed = TRUE;

ARM_2010_Q2
Inserted Text
 UnalignedAllowed = TRUE;

ARM_2010_Q2
Cross-Out

ARM_2010_Q2
Replacement Text
registers = P:'0000000':register_list; UnalignedAllowed = FALSE;
if BitCount(registers) < 1 then UNPREDICTABLE;
if registers<15> == ‘1’ && InITBlock() && !LastInITBlock() then UNPREDICTABLE;

Instruction Details

Assembler syntax

POP<c><g> <registers> Standard syntax
LDM<c><g> SP!, <registers> Equivalent LDM syntax
where:

<C><q> See Standard assembler syntax fields on page A8-7.

<registers> Isalist of one or more registers to be loaded, separated by commas and surrounded by
{ and }. The lowest-numbered register is|loaded from the lowest memory address, through
to the highest-numbered register from the highest memory address.

If the list contains more than one register, the instruction is assembled to encoding T1, T2,
or Al. If thelist contains exactly one register, the instruction is assembled to encoding T1,
T3, 0or A2.

The SP can only beinthelistin ARM code before ARMv7. ARM instructions that include
the SPin the list are deprecated, and the value of the SP after such an instructionis
UNKNOWN.

ThePC can beinthelist. Ifitis, theinstruction branchesto the address |oaded to the PC. In
ARMVST and above, thisisan interworking branch, see Pseudocode details of operations
on ARM core registers on page A2-12. In Thumb code, if the PC isin thelist:

. the LR must not bein the list

. the instruction must be either outside any IT block, or the last instructioninan IT
block.

ARM instructions that include both the LR and the PC in the list are deprecated.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); NullCheckIfThumbEE(13);
address = SP;
for i = 0 to 14
if registers<i> == ‘1’ then
R[1} = MemAladdresss4d; address = address + 4;

if registers<15> == ‘1’ then

if registers<13> == ‘@’ then SP = SP + 4:«BitCount(registers);

if registers<13> == ‘1’ then SP = bits(32) UNKNOWN;
Exceptions

Data Abort.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-247

ARM_2010_Q2
Cross-Out

ARM_2010_Q2
Replacement Text
if UnalignedAllowed then MemU[address,4] else MemA[address,4]

ARM_2010_Q2
Cross-Out

ARM_2010_Q2
Replacement Text
 if UnalignedAllowed then
 LoadWritePC(MemU[address,4]);
 else
 LoadWritePC(MemA[address,4]);

Instruction Details

A8.6.123 PUSH

Push Multiple Registers stores multiple registers to the stack, storing to consecutive memory locations
ending just below the addressin SP, and updates SP to point to the start of the stored data.

Encoding T1 ARMVAT, ARMV5T*, ARMV6*, ARMV7
PUSH<c> <registers>

1514131211109 8 7 6 5 4 3 2 1 0
101 1/0l1 0|Mm register_list

registers = ‘0’:M:’000000" :register_Tist;
if BitCount(registers) < 1 then UNPREDICTABLE;

Encoding T2 ARMvV6T2, ARMV7

PUSH<c>.W <registers> <registers> contains more than one register
1514131211109 8 7 6 5 4 3 2 1 0 1514131211109 8 7 6 5 4 3 2 1 0
111011/00{640(1{0|1 1 0 1{/(0)|M|(0) register_list

registers = ‘0’:M:’0’:register_Tist;

if BitCount(registers) < 2 then UNPREDICTABLE;

Encoding T3 ARMvV6T2, ARMV7

PUSH<c>.W <registers> <registers> contains one register, <Rt>

151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0

11111/00(0{0f1 00|21 1001 Rt

111 0100000100

t = UInt(Rt); registers = Zeros(16); registers<t> = ‘1’3
if BadReg(t) then UNPREDICTABLE;

Encoding Al ARMv4*, ARMV5T*, ARMV6*, ARMV7

PUSH<c> <registers> <registers> contains more than one register

31302928 27 26 2524 232221201918 1716151413121110 9 8 7 6 5 4 3 2 1 O
cond 100100(1{0(1 101 register_list

if BitCount(register_list) < 2 then SEE STMDB / STMFD;

registers = register_Tist;

Encoding A2 ARMv4*, ARMV5T*, ARMV6*, ARMV7

PUSH<c> <registers> <registers> contains one register, <Rt>

3130292827 2625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 O

cond 010|1|0|0|1|0|2 101 Rt

0O0000O0OO0OOOO1O00O0

t = UInt(Rt); registers = Zeros(16); registers<t> = ‘1’3
if t == 13 then UNPREDICTABLE;

A8-248

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
1 0

ARM_2010_Q2
Inserted Text
 UnalignedAllowed = FALSE;

ARM_2010_Q2
Inserted Text
 UnalignedAllowed = FALSE;

ARM_2010_Q2
Inserted Text
 UnalignedAllowed = FALSE;

ARM_2010_Q2
Inserted Text
 UnalignedAllowed = TRUE;

ARM_2010_Q2
Inserted Text
 UnalignedAllowed = TRUE;

Instruction Details

Assembler syntax

PUSH<c><q> <registers> Standard syntax
STMDB<c><q> SP!, <registers> Equivalent STM syntax
where:

<C><q> See Standard assembler syntax fields on page A8-7.

<registers> Isalist of one or more registers to be stored, separated by commas and surrounded by
{ and }. The lowest-numbered register is stored to the lowest memory address, through to
the highest-numbered register to the highest memory address.

If the list contains more than one register, the instruction is assembled to encoding T1, T2,
or Al. If thelist contains exactly one register, the instruction is assembled to encoding T1,
T3, 0or A2.

The SP and PC can bein thelist in ARM code, but not in Thumb code. However, ARM
instructions that include the SP or the PC in the list are deprecated, and if the SPisin the
list, the value the instruction stores for the SP is UNKNOWN.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); NullCheckIfThumbEE(13);
address = SP - 4xBitCount(registers);
for i = 0 to 14
if registers<i> == ‘1’ then
if i == 13 && i != LowestSetBit(registers) then // Only possible for encoding Al
MemA[address,4] = bits(32) UNKNOWN;
else
MemAfaddress+4—=—REH
address = address + 4;
if registers<15> == ‘1’ then // Only possible for encoding Al or A2

SP = SP - 4:BitCount(registers);

Exceptions

Data Abort.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-249

ARM_2010_Q2
Cross-Out

ARM_2010_Q2
Replacement Text
 if UnalignedAllowed then
 MemU[address,4] = R[i];
 else
 MemA[address,4] = R[i];

ARM_2010_Q2
Cross-Out

ARM_2010_Q2
Replacement Text
 if UnalignedAllowed then
 MemU[address,4] = PCStoreValue();
 else
 MemA[address,4] = PCStoreValue();

ARM_2011_Q2
Inserted Text
and is not the lowest-numbered register in the list,

ARM_2011_Q2
Sticky Note
The pseudocode correctly describes the operation of the instruction. For the ARM instruction, if SP is the lowest-numbered register in the list then the instruction stores the SP value.

Instruction Details

A8.6.124 QADD

Saturating Add adds two register values, saturates the result to the 32-bit signed integer range
—281 < x <231 1, and writes the result to the destination register. If saturation occurs, it setsthe Q flag in

the APSR.

Encoding T1 ARMvV6ET2, ARMV7

QADD<c> <Rd>,<Rm>,<Rn>

1514131211109 8 7 6 5 4 3 2 1 01514131211109 8 7 6 5 4 3 2 1 0

11111/010(12(000 Rn 1111 Rd 10 0 O Rm

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

Encoding Al ARMV5TE*, ARMvV6*, ARMv7

QADD<c> <Rd>,<Rm>,<Rn>

313029 28 27 26 25 24 23 222120191817 16151413 121110 9 8 7 6 4 3 2 10
cond 000100O00O0 Rn Rd O@O@O@Oo 101 Rm

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d ==15 || n==15 || m == 15 then UNPREDICTABLE;

A8-250 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

QADD<c><q> {<Rd>,} <Rm>, <Rn>

where:

<C><q> See Standard assembler syntax fields on page A8-7.
<Rd> The destination register.

<Rim> Thefirst operand register.

<Rn> The second operand register.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
(R[d], sat) = SignedSatQ(SInt(R[m]) + SInt(R[n]), 32);
if sat then
APSR.Q = ‘17,

Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-251

Instruction Details

A8.6.125 QADD16

Saturating Add 16 performs two 16-bit integer additions, saturates the resultsto the 16-bit signed integer
range —215 < x < 215 — 1, and writes the results to the destination register.

Encoding T1 ARMV6T2, ARMV7
QADD16<c> <Rd>,<Rn>,<Rm>

151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0
111110101001 Rn 1111 Rd o0 O Rm

[EnY

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

Encoding Al ARMvV6*, ARMvV7
QADD16<c> <Rd>, <Rn>,<Rm>

3130292827 26 252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
cond [01100010| Rn Rd (D@ @ @0 0 0 Rm

[EnY

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d==15 || n == 15 || m == 15 then UNPREDICTABLE;

A8-252 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

QADD16<c><q> {<Rd>,} <Rn>, <Rm>

where:

<C><q> See Standard assembler syntax fields on page A8-7.
<Rd> The destination register.

<Rn> Thefirst operand register.

<Rm> The second operand register.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
suml = SInt(R[n]<15:0>) + SInt(R[m]<15:0>);
sum2 = SInt(R[n]<31:16>) + SInt(R[m]<31:16>);
R[d]<15:0> = SignedSat(suml, 16);
R[d]<31:16> = SignedSat(sum2, 16);

Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-253

Instruction Details

A8.6.126 QADDS

Saturating Add 8 performsfour 8-bit integer additions, saturates the resultsto the 8-bit signed integer range
—27 < x <27 -1, and writes the results to the destination register.

Encoding T1 ARMV6T2, ARMV7
QADD8<c> <Rd>,<Rn>,<Rm>

151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0

11111/010(12(000 Rn 1111 Rd 0|0 0 1 Rm

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

Encoding Al ARMvV6*, ARMvV7
QADD8<c> <Rd>,<Rn>, <Rm>

31 3029 28 27 26 2524232221 2019181716151413121110 9 8 7 6 5 4 3 2 1 O

cond [01100010| Rn RA [(H@Q@W@1 00 1| Rm

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d==15 || n == 15 || m == 15 then UNPREDICTABLE;

A8-254

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

QADD8<c><q> {<Rd>,} <Rn>, <Rm>

where:

<C><q> See Standard assembler syntax fields on page A8-7.
<Rd> The destination register.

<Rn> Thefirst operand register.

<Rm> The second operand register.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
suml = SInt(R[n]<7:0>) + SInt(R[m]<7:0>);
sum2 = SInt(R[n]<15:8>) + SInt(R[m]<15:8>);
sum3 = SInt(R[n]<23:16>) + SInt(R[m]<23:16>);
sum4 = SInt(R[n]<31:24>) + SInt(R[m]<31:24>);
R[d]<7:0> = SignedSat(suml, 8);
R[d]<15:8> = SignedSat(sum2, 8);
R[d]<23:16> = SignedSat(sum3, 8);
R[d]<31:24> = SignedSat(sum4, 8);

Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-255

Instruction Details

AB.6.127 QASX

Saturating Add and Subtract with Exchange exchanges the two halfwords of the second operand, performs
one 16-bit integer addition and one 16-hit subtraction, saturatesthe resultsto the 16-bit signed integer range
215 < x < 215 -1, and writes the results to the destination register.

Encoding T1 ARMvV6ET2, ARMV7
QASX<c> <Rd>,<Rn>,<Rm>

151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0

1111101012010 Rn 1111 Rd 0/0 O Rm

[EnY

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

Encoding Al ARMv6*, ARMvV7
QASX<c> <Rd>,<Rn>,<Rm>

3130292827 2625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 O

cod [01100010| Rn Rd (D@ @®@ 0 0 1 Rm

[EnY

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d ==15 || n==15 || m == 15 then UNPREDICTABLE;

A8-256

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Assembler syntax

QASX<c><q> {<Rd>,} <Rn>, <Rm>

where:

<C><q> See Standard assembler syntax fields on page A8-7.
<Rd> The destination register.

<Rn> Thefirst operand register.

<Rm> The second operand register.

The pre-UAL syntax QADDSUBX<c> is equivalent to QASX<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
diff = SInt(R[n]<15:0>) - SInt(R[m]<31:16>);
sum = SInt(R[n]<31:16>) + SInt(R[m]<15:0>);
R[d]<15:0> = SignedSat(diff, 16);
R[d]<31:16> = SignedSat(sum, 16);

Exceptions

None.

Instruction Details

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

A8-257

Instruction Details

A8.6.128 QDADD

Saturating Double and Add adds a doubled register value to another register value, and writes the result to
the destination register. Both the doubling and the addition have their results saturated to the 32-bit signed
integer range —231 < x < 231 — 1. If saturation occurs in either operation, it sets the Q flag in the APSR.

Encoding T1 ARMvV6ET2, ARMV7

QDADD<c> <Rd>,<Rm>, <Rn>

151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 4 3 2 10

11111{010(1/000 Rn 1111 Rd 1 Rm

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);

if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

Encoding Al ARMV5TE*, ARMvV6*, ARMv7

QDADD<c> <Rd>,<Rm>,<Rn>

313029 28 27 26 25 24 23 22 21 20 19 18 17 16 151413121110 9 8 7 4 3 2 10
cond 00010100 Rn Rd ©)(©) () (00 Rm

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d ==15 || n==15 || m == 15 then UNPREDICTABLE;

A8-258

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

ARM DDI 0406B

Instruction Details

Assembler syntax

QDADD<c><q> {<Rd>,} <Rm>, <Rn>

where:

<C><q> See Standard assembler syntax fields on page A8-7.
<Rd> The destination register.

<Rim> Thefirst operand register.

<Rn> The second operand register.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
(doubled, satl) = SignedSatQ(2 * SInt(R[n]), 32);
(R[d], sat2) = SignedSatQ(SInt(R[m]) + SInt(doubled), 32);
if satl || sat2 then
APSR.Q = ‘1’;

Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-259

Instruction Details

A8.6.129 QDSUB

Saturating Double and Subtract subtracts a doubled register value from another register value, and writes
theresult to the destination register. Both the doubling and the subtraction have their results saturated to the
32-hit signed integer range —231 < x < 231 — 1. If saturation occursin either operation, it setsthe Q flagin

the APSR.

Encoding T1 ARMvV6ET2, ARMV7

QDSUB<c> <Rd>,<Rm>,<Rn>

1514131211109 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 4 3210

111110101000 Rn 1111 Rd 110 1 1 Rm

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

Encoding Al ARMVS5TE*, ARMV6*, ARMV7

QDSUB<c> <Rd>,<Rm>,<Rn>

313029 28 27 26 25 24 23 222120191817 16151413121110 9 8 7 6 4 3 2 10
cond 00010110 Rn Rd O©@©O@O@Oo 101 Rm

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d==15]| n==15 || m == 15 then UNPREDICTABLE;

A8-260 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

QDSUB<c><q> {<Rd>,} <Rm>, <Rn>

where:

<C><q> See Standard assembler syntax fields on page A8-7.
<Rd> The destination register.

<Rim> Thefirst operand register.

<Rn> The second operand register.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
(doubled, satl) = SignedSatQ(2 * SInt(R[n]), 32);
(R[d], sat2) = SignedSatQ(SInt(R[m]) - SInt(doubled), 32);
if satl || sat2 then
APSR.Q = ‘1’;

Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-261

Instruction Details

A8.6.130 QSAX

Saturating Subtract and Add with Exchange exchanges the two halfwords of the second operand, performs
one 16-bit integer subtraction and one 16-bit addition, saturatesthe resultsto the 16-bit signed integer range
215 < x < 215 -1, and writes the results to the destination register.

Encoding T1 ARMvV6ET2, ARMV7
QSAX<c> <Rd>,<Rn>,<Rm>

151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0

11111|010|1(110 Rn 1111 Rd 0/0 O Rm

[EnY

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

Encoding Al ARMv6*, ARMvV7
QSAX<c> <Rd>,<Rn>,<Rm>

3130292827 2625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 O

cod [01100010| Rn Rd |(D@O@®0 1 0 Rm

[EnY

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d ==15 || n==15 || m == 15 then UNPREDICTABLE;

A8-262

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

QSAX<c><q> {<Rd>,} <Rn>, <Rm>

where:

<C><q> See Standard assembler syntax fields on page A8-7.
<Rd> The destination register.

<Rn> Thefirst operand register.

<Rm> The second operand register.

The pre-UAL syntax QSUBADDX<c> is equivalent to QSAX<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();

Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-263

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
 sum = SInt(R[n]<15:0>) + SInt(R[m]<31:16>);
 diff = SInt(R[n]<31:16>) - SInt(R[m]<15:0>);
 R[d]<15:0> = SignedSat(sum, 16);
 R[d]<31:16> = SignedSat(diff, 16);

Instruction Details

A8.6.131 QSUB

Saturating Subtract subtracts one register value from another register value, saturatesthe result to the 32-bit
signed integer range —231 < x < 231 —1, and writes the result to the destination register. If saturation occurs,
it setsthe Q flag in the APSR.

Encoding T1 ARMvV6ET2, ARMV7
QSUB<c> <Rd>,<Rm>,<Rn>

151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 3 210
111110101000 Rn 1111 Rd 110 1 0 Rm

o
N

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

Encoding Al ARMV5TE*, ARMv6*, ARMV7

QSUB<c> <Rd>,<Rm>,<Rn>

313029 28 27 26252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
cond 00010010 Rn Rd O@O@O@Oo 101 Rm

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d ==15 || n==15 || m == 15 then UNPREDICTABLE;

A8-264 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

QSUB<c><q> {<Rd>,} <Rm>, <Rn>

where:

<C><q> See Standard assembler syntax fields on page A8-7.
<Rd> The destination register.

<Rim> Thefirst operand register.

<Rn> The second operand register.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
(R[d], sat) = SignedSatQ(SInt(R[m]) - SInt(R[n]), 32);
if sat then
APSR.Q = ‘17,

Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-265

Instruction Details

A8.6.132QSUB16

Saturating Subtract 16 performs two 16-bit integer subtractions, saturates the results to the 16-bit signed
integer range —215 < x < 2151, and writes the results to the destination register.

Encoding T1 ARMV6T2, ARMV7
QSUB16<c> <Rd>,<Rn>,<Rm>

151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0
111110101101 Rn 1111 Rd o0 O Rm

[EnY

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

Encoding Al ARMvV6*, ARMvV7
QSUB16<c> <Rd>, <Rn>,<Rm>

3130292827 26 252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
cond [01100010| Rn RA (@ @@0 1 1 Rm

[EnY

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d==15 || n == 15 || m == 15 then UNPREDICTABLE;

A8-266 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

QSUB16<c><q> {<Rd>,} <Rn>, <Rm>

where:

<C><q> See Standard assembler syntax fields on page A8-7.
<Rd> The destination register.

<Rn> Thefirst operand register.

<Rm> The second operand register.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
diffl = SInt(R[n]<15:0>) - SInt(R[m]<15:0>);
diff2 = SInt(R[n]<31:16>) - SInt(R[m]<31:16>);
R[d]<15:0> = SignedSat(diffl, 16);
R[d]<31:16> = SignedSat(diff2, 16);

Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-267

Instruction Details

A8.6.133QSUB8

Saturating Subtract 8 performsfour 8-bit integer subtractions, saturatesthe resultsto the 8-bit signed integer
range —27 < x < 27 — 1, and writes the results to the destination register.

Encoding T1 ARMV6T2, ARMV7
QSUB8<c> <Rd>,<Rn>, <Rm>

151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0

11111/010|1(1 00 Rn 1111 Rd 0|0 0 1 Rm

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

Encoding Al ARMvV6*, ARMvV7
QSUB8<c> <Rd>,<Rn>, <Rm>

31 3029 28 27 26 2524232221 2019181716151413121110 9 8 7 6 5 4 3 2 1 O

cond [01100010| Rn RA [(@Q@@1 1 1 1| Rm

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d==15 || n == 15 || m == 15 then UNPREDICTABLE;

A8-268

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

QSUB8<c><q> {<Rd>,} <Rn>, <Rm>

where:

<C><q> See Standard assembler syntax fields on page A8-7.
<Rd> The destination register.

<Rn> Thefirst operand register.

<Rm> The second operand register.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
diffl = SInt(R[n]<7:0>) - SInt(R[m]<7:0>);
diff2 = SInt(R[n]<15:8>) - SInt(R[m]<15:8>);
diff3 = SInt(R[n]<23:16>) - SInt(R[m]<23:16>);
(

diff4 = SInt(R[n]<31:24>) - SInt(R[m]<31:24>);
R[d]<7:0> SignedSat(diffl, 8);
R[d]<15:8> SignedSat(diff2, 8);
R[d]<23:16> = SignedSat(diff3, 8);
R[d]<31:24> = SignedSat(diff4, 8);

Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-269

Instruction Details

A8.6.134 RBIT
Reverse Bits reverses the bit order in a 32-bit register.

Encoding T1 ARMV6T2, ARMV7
RBIT<c> <Rd>,<Rm>

151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 3 210
111110101001 Rm 1111 Rd 110 1 0 Rm

o
N

if !Consistent(Rm) then UNPREDICTABLE;
d = UInt(Rd); m = UInt(Rm);
if BadReg(d) || BadReg(m) then UNPREDICTABLE;

Encoding Al ARMVET2, ARMV7
RBIT<c> <Rd>,<Rm>
3130292827 2625242322212019 1817 16151413121110 9 8 7 6 4 3210

cond [01101111HOQ@QW R |(Q@O@O@O 011 Rm

d = UInt(Rd); m = UInt(Rm);
if d == 15 || m == 15 then UNPREDICTABLE;

A8-270 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

RBIT<c><g> <Rd>, <Rm>

where:

<C><q> See Standard assembler syntax fields on page A8