
ARM® Architecture
Reference Manual

ARM®v7-A and ARM®v7-R edition
Errata markup
Copyright © 1996-1998, 2000, 2004-2011 ARM Limited. All rights reserved.
ARM DDI 0406B_errata_2011_Q2 (ID053111)

ARM editor
Sticky Note
ARM tests the PDF errata markups only in Adobe Acrobat and Acrobat Reader, and cannot guarantee that the markups will appear correctly in any other PDF reader.

In body text:
 • red strike-thru indicates a deletion
 • blue strike-thru indicates a replacement
 • a blue caret indicates an insertion.
For replacements and insertions, the new text appears if you hover the mouse pointer over the markup.

Double-clicking on any markup opens a message box that describes the markup.

To ensure you locate all markup you can choose to Show Comments List. By default this lists comments by page number, and appears as a separate pane below the document view. However, you can display the comments list in a separate window. See the Acrobat Help for more information.

ARM Architecture Reference Manual
ARMv7-A and ARMv7-R edition
Errata markup

Copyright © 1996-1998, 2000, 2004-2011 ARM Limited. All rights reserved.

Release Information

The following changes have been made to this document.

From ARMv7, the ARM architecture defines different architectural profiles and this edition of this manual describes only
the A and R profiles. For details of the documentation of the ARMv7-M profile see Additional reading on page xxv.
Before ARMv7 there was only a single ARM Architecture Reference Manual, with document number DDI 0100. The first
issue of this was in February 1996, and the final issue, Issue I, was in July 2005. For more information see Additional
reading on page xxv.

Proprietary Notice

This ARM Architecture Reference Manual is protected by copyright and the practice or implementation of the
information herein may be protected by one or more patents or pending applications. No part of this ARM Architecture
Reference Manual may be reproduced in any form by any means without the express prior written permission of ARM.
No license, express or implied, by estoppel or otherwise to any intellectual property rights is granted by this ARM
Architecture Reference Manual.

Your access to the information in this ARM Architecture Reference Manual is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether implementations of the ARM
architecture infringe any third party patents.

Change History

Date Issue Confidentiality Change

05 April 2007 A Non-Confidential New edition for ARMv7-A and ARMv7-R architecture profiles.
Document number changed from ARM DDI 0100 to ARM DDI 0406, contents restructured.

29 April 2008 B Non-Confidential Addition of the VFP Half-precision and Multiprocessing Extensions, and many clarifications
and enhancements.

November 2008 B Non-Confidential PDF with errata issued, errata identified as ARM_2008_Q4.

March 2009 B Non-Confidential PDF reissued with additional errata. Additional errata identified as ARM_2009_Q1.

July 2009 B Non-Confidential PDF reissued with additional errata. Additional errata identified as ARM_2009_Q2.

October 2009 B Non-Confidential PDF reissued with additional errata. Additional errata identified as ARM_2009_Q3.

February 2010 B Non-Confidential PDF reissued with additional errata. Additional errata identified as ARM_2009_Q4.

July 2010 B Non-Confidential PDF reissued with additional errata. Additional errata identified as ARM_2010_Q2.

October 2010 B Non-Confidential PDF reissued with additional errata. Additional errata identified as ARM_2010_Q3.

July 2011 B Non-Confidential PDF reissued with additional errata. Additional errata identified as ARM_2011_Q2.
ii Copyright © 1996-1998, 2000, 2004-2011 ARM Limited. All rights reserved. ARM DDI 0406B_errata_2011_Q2
Non-Confidential ID053111

This ARM Architecture Reference Manual is provided “as is”. ARM makes no representations or warranties, either
express or implied, included but not limited to, warranties of merchantability, fitness for a particular purpose, or
non-infringement, that the content of this ARM Architecture Reference Manual is suitable for any particular purpose or
that any practice or implementation of the contents of the ARM Architecture Reference Manual will not infringe any third
party patents, copyrights, trade secrets, or other rights.

This ARM Architecture Reference Manual may include technical inaccuracies or typographical errors.

To the extent not prohibited by law, in no event will ARM be liable for any damages, including without limitation any
direct loss, lost revenue, lost profits or data, special, indirect, consequential, incidental or punitive damages, however
caused and regardless of the theory of liability, arising out of or related to any furnishing, practicing, modifying or any
use of this ARM Architecture Reference Manual, even if ARM has been advised of the possibility of such damages.

Words and logos marked with ® or TM are registered trademarks or trademarks of ARM Limited, except as otherwise
stated below in this proprietary notice. Other brands and names mentioned herein may be the trademarks of their
respective owners.

Copyright © 1996-1998, 2000, 2004-2011 ARM Limited

110 Fulbourn Road Cambridge, England CB1 9NJ

Restricted Rights Legend: Use, duplication or disclosure by the United States Government is subject to the restrictions
set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19.

This document is Non-Confidential but any disclosure by you is subject to you providing notice to and the
acceptance by the recipient of, the conditions set out above.

In this document, where the term ARM is used to refer to the company it means “ARM or any of its subsidiaries as
appropriate”.

Note
 The term ARM is also used to refer to versions of the ARM architecture, for example ARMv6 refers to version 6 of the
ARM architecture. The context makes it clear when the term is used in this way.

Note
 For this errata PDF, pages i to iii have been replaced, by an edit to the PDF, to include an updated Proprietary Notice, and
to include the errata PDFs in the Change History table. The remainder of the PDF is the original release PDF of issue B
of the document, with errata markups added.
ARM DDI 0406B_errata_2011_Q2 Copyright © 1996-1998, 2000, 2004-2011 ARM Limited. All rights reserved. iii
ID053111 Non-Confidential

iv Copyright © 1996-1998, 2000, 2004-2011 ARM Limited. All rights reserved. ARM DDI 0406B_errata_2011_Q2
Non-Confidential ID053111

Contents
ARM Architecture Reference Manual
ARMv7-A and ARMv7-R edition

Preface
About this manual ... xiv
Using this manual .. xv
Conventions ... xviii
Further reading .. xx
Feedback .. xxi

Part A Application Level Architecture

Chapter A1 Introduction to the ARM Architecture
A1.1 About the ARM architecture ... A1-2
A1.2 The ARM and Thumb instruction sets .. A1-3
A1.3 Architecture versions, profiles, and variants A1-4
A1.4 Architecture extensions .. A1-6
A1.5 The ARM memory model ... A1-7
A1.6 Debug .. A1-8

Chapter A2 Application Level Programmers’ Model
A2.1 About the Application level programmers’ model A2-2
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. v

Contents
A2.2 ARM core data types and arithmetic .. A2-3
A2.3 ARM core registers .. A2-11
A2.4 The Application Program Status Register (APSR) A2-14
A2.5 Execution state registers .. A2-15
A2.6 Advanced SIMD and VFP extensions .. A2-20
A2.7 Floating-point data types and arithmetic .. A2-32
A2.8 Polynomial arithmetic over {0,1} .. A2-67
A2.9 Coprocessor support .. A2-68
A2.10 Execution environment support ... A2-69
A2.11 Exceptions, debug events and checks ... A2-81

Chapter A3 Application Level Memory Model
A3.1 Address space ... A3-2
A3.2 Alignment support .. A3-4
A3.3 Endian support ... A3-7
A3.4 Synchronization and semaphores .. A3-12
A3.5 Memory types and attributes and the memory order model A3-24
A3.6 Access rights .. A3-38
A3.7 Virtual and physical addressing ... A3-40
A3.8 Memory access order .. A3-41
A3.9 Caches and memory hierarchy .. A3-51

Chapter A4 The Instruction Sets
A4.1 About the instruction sets ... A4-2
A4.2 Unified Assembler Language ... A4-4
A4.3 Branch instructions .. A4-7
A4.4 Data-processing instructions .. A4-8
A4.5 Status register access instructions .. A4-18
A4.6 Load/store instructions ... A4-19
A4.7 Load/store multiple instructions ... A4-22
A4.8 Miscellaneous instructions ... A4-23
A4.9 Exception-generating and exception-handling instructions A4-24
A4.10 Coprocessor instructions ... A4-25
A4.11 Advanced SIMD and VFP load/store instructions A4-26
A4.12 Advanced SIMD and VFP register transfer instructions A4-29
A4.13 Advanced SIMD data-processing operations A4-30
A4.14 VFP data-processing instructions .. A4-38

Chapter A5 ARM Instruction Set Encoding
A5.1 ARM instruction set encoding .. A5-2
A5.2 Data-processing and miscellaneous instructions A5-4
A5.3 Load/store word and unsigned byte ... A5-19
A5.4 Media instructions .. A5-21
A5.5 Branch, branch with link, and block data transfer A5-27
A5.6 Supervisor Call, and coprocessor instructions A5-28
A5.7 Unconditional instructions .. A5-30
vi Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Contents
Chapter A6 Thumb Instruction Set Encoding
A6.1 Thumb instruction set encoding ... A6-2
A6.2 16-bit Thumb instruction encoding ... A6-6
A6.3 32-bit Thumb instruction encoding ... A6-14

Chapter A7 Advanced SIMD and VFP Instruction Encoding
A7.1 Overview .. A7-2
A7.2 Advanced SIMD and VFP instruction syntax A7-3
A7.3 Register encoding .. A7-8
A7.4 Advanced SIMD data-processing instructions A7-10
A7.5 VFP data-processing instructions .. A7-24
A7.6 Extension register load/store instructions A7-26
A7.7 Advanced SIMD element or structure load/store instructions A7-27
A7.8 8, 16, and 32-bit transfer between ARM core and extension registers

A7-31
A7.9 64-bit transfers between ARM core and extension registers A7-32

Chapter A8 Instruction Details
A8.1 Format of instruction descriptions .. A8-2
A8.2 Standard assembler syntax fields .. A8-7
A8.3 Conditional execution ... A8-8
A8.4 Shifts applied to a register ... A8-10
A8.5 Memory accesses .. A8-13
A8.6 Alphabetical list of instructions ... A8-14

Chapter A9 ThumbEE
A9.1 The ThumbEE instruction set ... A9-2
A9.2 ThumbEE instruction set encoding .. A9-6
A9.3 Additional instructions in Thumb and ThumbEE instruction sets A9-7
A9.4 ThumbEE instructions with modified behavior A9-8
A9.5 Additional ThumbEE instructions ... A9-14

Part B System Level Architecture

Chapter B1 The System Level Programmers’ Model
B1.1 About the system level programmers’ model B1-2
B1.2 System level concepts and terminology ... B1-3
B1.3 ARM processor modes and core registers B1-6
B1.4 Instruction set states .. B1-23
B1.5 The Security Extensions .. B1-25
B1.6 Exceptions ... B1-30
B1.7 Coprocessors and system control .. B1-62
B1.8 Advanced SIMD and floating-point support B1-64
B1.9 Execution environment support ... B1-73
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. vii

Contents
Chapter B2 Common Memory System Architecture Features
B2.1 About the memory system architecture ... B2-2
B2.2 Caches ... B2-3
B2.3 Implementation defined memory system features B2-27
B2.4 Pseudocode details of general memory system operations B2-29

Chapter B3 Virtual Memory System Architecture (VMSA)
B3.1 About the VMSA .. B3-2
B3.2 Memory access sequence ... B3-4
B3.3 Translation tables ... B3-7
B3.4 Address mapping restrictions ... B3-23
B3.5 Secure and Non-secure address spaces B3-26
B3.6 Memory access control .. B3-28
B3.7 Memory region attributes ... B3-32
B3.8 VMSA memory aborts .. B3-40
B3.9 Fault Status and Fault Address registers in a VMSA implementation

B3-48
B3.10 Translation Lookaside Buffers (TLBs) .. B3-54
B3.11 Virtual Address to Physical Address translation operations B3-63
B3.12 CP15 registers for a VMSA implementation B3-64
B3.13 Pseudocode details of VMSA memory system operations B3-156

Chapter B4 Protected Memory System Architecture (PMSA)
B4.1 About the PMSA .. B4-2
B4.2 Memory access control .. B4-9
B4.3 Memory region attributes ... B4-11
B4.4 PMSA memory aborts .. B4-13
B4.5 Fault Status and Fault Address registers in a PMSA implementation

B4-18
B4.6 CP15 registers for a PMSA implementation B4-22
B4.7 Pseudocode details of PMSA memory system operations B4-79

Chapter B5 The CPUID Identification Scheme
B5.1 Introduction to the CPUID scheme .. B5-2
B5.2 The CPUID registers .. B5-4
B5.3 Advanced SIMD and VFP feature identification registers B5-34

Chapter B6 System Instructions
B6.1 Alphabetical list of instructions ... B6-2

Part C Debug Architecture

Chapter C1 Introduction to the ARM Debug Architecture
C1.1 Scope of part C of this manual ... C1-2
C1.2 About the ARM Debug architecture ... C1-3
viii Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Contents
C1.3 Security Extensions and debug ... C1-8
C1.4 Register interfaces ... C1-9

Chapter C2 Invasive Debug Authentication
C2.1 About invasive debug authentication ... C2-2

Chapter C3 Debug Events
C3.1 About debug events ... C3-2
C3.2 Software debug events .. C3-5
C3.3 Halting debug events ... C3-38
C3.4 Generation of debug events ... C3-40
C3.5 Debug event prioritization .. C3-43

Chapter C4 Debug Exceptions
C4.1 About debug exceptions .. C4-2
C4.2 Effects of debug exceptions on CP15 registers and the DBGWFAR

C4-4

Chapter C5 Debug State
C5.1 About Debug state ... C5-2
C5.2 Entering Debug state ... C5-3
C5.3 Behavior of the PC and CPSR in Debug state C5-7
C5.4 Executing instructions in Debug state .. C5-9
C5.5 Privilege in Debug state ... C5-13
C5.6 Behavior of non-invasive debug in Debug state C5-19
C5.7 Exceptions in Debug state ... C5-20
C5.8 Memory system behavior in Debug state C5-24
C5.9 Leaving Debug state .. C5-28

Chapter C6 Debug Register Interfaces
C6.1 About the debug register interfaces ... C6-2
C6.2 Reset and power-down support ... C6-4
C6.3 Debug register map ... C6-18
C6.4 Synchronization of debug register updates C6-24
C6.5 Access permissions ... C6-26
C6.6 The CP14 debug register interfaces .. C6-32
C6.7 The memory-mapped and recommended external debug interfaces

C6-43

Chapter C7 Non-invasive Debug Authentication
C7.1 About non-invasive debug authentication .. C7-2
C7.2 v7 Debug non-invasive debug authentication C7-4
C7.3 Effects of non-invasive debug authentication C7-6
C7.4 ARMv6 non-invasive debug authentication C7-8
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ix

Contents
Chapter C8 Sample-based Profiling
C8.1 Program Counter sampling .. C8-2

Chapter C9 Performance Monitors
C9.1 About the performance monitors .. C9-2
C9.2 Status in the ARM architecture .. C9-4
C9.3 Accuracy of the performance monitors .. C9-5
C9.4 Behavior on overflow ... C9-6
C9.5 Interaction with Security Extensions .. C9-7
C9.6 Interaction with trace .. C9-8
C9.7 Interaction with power saving operations ... C9-9
C9.8 CP15 c9 register map .. C9-10
C9.9 Access permissions ... C9-12
C9.10 Event numbers ... C9-13

Chapter C10 Debug Registers Reference
C10.1 Accessing the debug registers ... C10-2
C10.2 Debug identification registers ... C10-3
C10.3 Control and status registers ... C10-10
C10.4 Instruction and data transfer registers ... C10-40
C10.5 Software debug event registers ... C10-48
C10.6 OS Save and Restore registers, v7 Debug only C10-75
C10.7 Memory system control registers ... C10-80
C10.8 Management registers, ARMv7 only .. C10-88
C10.9 Performance monitor registers ... C10-105

Appendix A Recommended External Debug Interface
A.1 System integration signals ... AppxA-2
A.2 Recommended debug slave port ... AppxA-13

Appendix B Common VFP Subarchitecture Specification
B.1 Scope of this appendix ... AppxB-2
B.2 Introduction to the Common VFP subarchitecture AppxB-3
B.3 Exception processing ... AppxB-6
B.4 Support code requirements .. AppxB-11
B.5 Context switching ... AppxB-14
B.6 Subarchitecture additions to the VFP system registers AppxB-15
B.7 Version 1 of the Common VFP subarchitecture AppxB-23
B.8 Version 2 of the Common VFP subarchitecture AppxB-24

Appendix C Legacy Instruction Mnemonics
C.1 Thumb instruction mnemonics ... AppxC-2
C.2 Pre-UAL pseudo-instruction NOP .. AppxC-3
x Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Contents
Appendix D Deprecated and Obsolete Features
D.1 Deprecated features .. AppxD-2
D.2 Deprecated terminology ... AppxD-5
D.3 Obsolete features ... AppxD-6
D.4 Semaphore instructions ... AppxD-7
D.5 Use of the SP as a general-purpose register AppxD-8
D.6 Explicit use of the PC in ARM instructions AppxD-9
D.7 Deprecated Thumb instructions ... AppxD-10

Appendix E Fast Context Switch Extension (FCSE)
E.1 About the FCSE ... AppxE-2
E.2 Modified virtual addresses ... AppxE-3
E.3 Debug and trace .. AppxE-5

Appendix F VFP Vector Operation Support
F.1 About VFP vector mode ... AppxF-2
F.2 Vector length and stride control ... AppxF-3
F.3 VFP register banks .. AppxF-5
F.4 VFP instruction type selection .. AppxF-7

Appendix G ARMv6 Differences
G.1 Introduction to ARMv6 .. AppxG-2
G.2 Application level register support .. AppxG-3
G.3 Application level memory support ... AppxG-6
G.4 Instruction set support ... AppxG-10
G.5 System level register support .. AppxG-16
G.6 System level memory model ... AppxG-20
G.7 System Control coprocessor (CP15) support AppxG-29

Appendix H ARMv4 and ARMv5 Differences
H.1 Introduction to ARMv4 and ARMv5 .. AppxH-2
H.2 Application level register support ... AppxH-4
H.3 Application level memory support .. AppxH-6
H.4 Instruction set support .. AppxH-11
H.5 System level register support ... AppxH-18
H.6 System level memory model .. AppxH-21
H.7 System Control coprocessor (CP15) support AppxH-31

Appendix I Pseudocode Definition
I.1 Instruction encoding diagrams and pseudocode AppxI-2
I.2 Limitations of pseudocode .. AppxI-4
I.3 Data types ... AppxI-5
I.4 Expressions .. AppxI-9
I.5 Operators and built-in functions .. AppxI-11
I.6 Statements and program structure .. AppxI-17
I.7 Miscellaneous helper procedures and functions AppxI-22
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. xi

Contents
Appendix J Pseudocode Index
J.1 Pseudocode operators and keywords .. AppxJ-2
J.2 Pseudocode functions and procedures AppxJ-6

Appendix K Register Index
K.1 Register index .. AppxK-2

Glossary
xii Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Preface

This preface summarizes the contents of this manual and lists the conventions it uses. It contains the
following sections:

• About this manual on page xiv

• Using this manual on page xv

• Conventions on page xviii

• Further reading on page xx

• Feedback on page xxi.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. xiii

Preface
About this manual

This manual describes the ARM®v7 instruction set architecture, including its high code density Thumb®
instruction encoding and the following extensions to it:

• The System Control coprocessor, coprocessor 15 (CP15), used to control memory system
components such as caches, write buffers, Memory Management Units, and Protection Units.

• The optional Advanced SIMD extension, that provides high-performance integer and
single-precision floating-point vector operations.

• The optional VFP extension, that provides high-performance floating-point operations. It can
optionally support double-precision operations.

• The Debug architecture, that provides software access to debug features in ARM processors.

Part A describes the application level view of the architecture. It describes the application level view of the
programmers’ model and the memory model. It also describes the precise effects of each instruction in User
mode (the normal operating mode), including any restrictions on its use. This information is of primary
importance to authors and users of compilers, assemblers, and other programs that generate ARM machine
code.

Part B describes the system level view of the architecture. It gives details of system registers that are not
accessible from User mode, and the system level view of the memory model. It also gives full details of the
effects of instructions in privileged modes (any mode other than User mode), where these are different from
their effects in User mode.

Part C describes the Debug architecture. This is an extension to the ARM architecture that provides
configuration, breakpoint and watchpoint support, and a Debug Communications Channel (DCC) to a debug
host.

Assembler syntax is given for the instructions described in this manual, permitting instructions to be
specified in textual form. However, this manual is not intended as tutorial material for ARM assembler
language, nor does it describe ARM assembler language at anything other than a very basic level. To make
effective use of ARM assembler language, consult the documentation supplied with the assembler being
used.
xiv Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Preface
Using this manual

The information in this manual is organized into four parts, as described below.

Part A, Application Level Architecture

Part A describes the application level view of the architecture. It contains the following chapters:

Chapter A1 Gives a brief overview of the ARM architecture, and the ARM and Thumb instruction sets.

Chapter A2 Describes the application level view of the ARM programmers’ model, including the
application level view of the Advanced SIMD and VFP extensions. It describes the types of
value that ARM instructions operate on, the general-purpose registers that contain those
values, and the Application Program Status Register.

Chapter A3 Describes the application level view of the memory model, including the ARM memory
types and attributes, and memory access control.

Chapter A4 Describes the range of instructions available in the ARM, Thumb, Advanced SIMD, and
VFP instruction sets. It also contains some details of instruction operation, where these are
common to several instructions.

Chapter A5 Gives details of the encoding of the ARM instruction set.

Chapter A6 Gives details of the encoding of the Thumb instruction set.

Chapter A7 Gives details of the encoding of the Advanced SIMD and VFP instruction sets.

Chapter A8 Provides detailed reference information about every instruction available in the Thumb,
ARM, Advanced SIMD, and VFP instruction sets, with the exception of information only
relevant in privileged modes.

Chapter A9 Provides detailed reference information about the ThumbEE (Execution Environment)
variant of the Thumb instruction set.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. xv

Preface
Part B, System Level Architecture

Part B describes the system level view of the architecture. It contains the following chapters:

Chapter B1 Describes the system level view of the programmers’ model.

Chapter B2 Describes the system level view of the memory model features that are common to all
memory systems.

Chapter B3 Describes the system level view of the Virtual Memory System Architecture (VMSA) that
is part of all ARMv7-A implementations. This chapter includes descriptions of all of the
CP15 System Control Coprocessor registers in a VMSA implementation.

Chapter B4 Describes the system level view of the Protected Memory System Architecture (PMSA) that
is part of all ARMv7-R implementations. This chapter includes descriptions of all of the
CP15 System Control Coprocessor registers in a PMSA implementation.

Chapter B5 Describes the CPUID scheme.

Chapter B6 Provides detailed reference information about system instructions, and more information
about instructions where they behave differently in privileged modes.

Part C, Debug Architecture

Part C describes the Debug architecture. It contains the following chapters:

Chapter C1 Gives a brief introduction to the Debug architecture.

Chapter C2 Describes the authentication of invasive debug.

Chapter C3 Describes the debug events.

Chapter C4 Describes the debug exceptions.

Chapter C5 Describes Debug state.

Chapter C6 Describes the permitted debug register interfaces.

Chapter C7 Describes the authentication of non-invasive debug.

Chapter C8 Describes sample-based profiling.

Chapter C9 Describes the ARM performance monitors.

Chapter C10 Describes the debug registers.
xvi Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Preface
Part D, Appendices

This manual contains the following appendices:

Appendix A Describes the recommended external Debug interfaces.

Note
 This description is not part of the ARM architecture specification. It is included here only

as supplementary information, for the convenience of developers and users who might
require this information.

Appendix B The Common VFP subarchitecture specification.

Note
 This specification is not part of the ARM architecture specification. This sub-architectural

information is included here only as supplementary information, for the convenience of
developers and users who might require this information.

Appendix C Describes the legacy mnemonics.

Appendix D Identifies the deprecated architectural features.

Appendix E Describes the Fast Context Switch Extension (FCSE). From ARMv6, the use of this feature
is deprecated, and in ARMv7 the FCSE is optional.

Appendix F Describes the VFP vector operations. Use of these operations is deprecated in ARMv7.

Appendix G Describes the differences in the ARMv6 architecture.

Appendix H Describes the differences in the ARMv4 and ARMv5 architectures.

Appendix I The formal definition of the pseudocode.

Appendix J Index to definitions of pseudocode operators, keywords, functions, and procedures.

Appendix K Index to register descriptions in the manual.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. xvii

Preface
Conventions

This manual employs typographic and other conventions intended to improve its ease of use.

General typographic conventions

typewriter Is used for assembler syntax descriptions, pseudocode descriptions of instructions,
and source code examples. In the cases of assembler syntax descriptions and
pseudocode descriptions, see the additional conventions below.

The typewriter style is also used in the main text for instruction mnemonics and for
references to other items appearing in assembler syntax descriptions, pseudocode
descriptions of instructions and source code examples.

italic Highlights important notes, introduces special terminology, and denotes internal
cross-references and citations.

bold Is used for emphasis in descriptive lists and elsewhere, where appropriate.

SMALL CAPITALS Are used for a few terms that have specific technical meanings. Their meanings can
be found in the Glossary.

Signals

In general this specification does not define processor signals, but it does include some signal examples and
recommendations. It uses the following signal conventions:

Signal level The level of an asserted signal depends on whether the signal is active-HIGH or
active-LOW. Asserted means:

• HIGH for active-HIGH signals

• LOW for active-LOW signals.

Lower-case n At the start or end of a signal name denotes an active-LOW signal.

Numbers

Numbers are normally written in decimal. Binary numbers are preceded by 0b, and hexadecimal numbers
by 0x and written in a typewriter font.

Bit values

Values of bits and bitfields are normally given in binary, in single quotes. The quotes are normally omitted
in encoding diagrams and tables.

Pseudocode descriptions

This manual uses a form of pseudocode to provide precise descriptions of the specified functionality. This
pseudocode is written in a typewriter font, and is described in Appendix I Pseudocode Definition.
xviii Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Preface
Assembler syntax descriptions

This manual contains numerous syntax descriptions for assembler instructions and for components of
assembler instructions. These are shown in a typewriter font, and use the conventions described in
Assembler syntax on page A8-4.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. xix

Preface
Further reading

This section lists publications from both ARM and third parties that provide more information on the ARM
family of processors.

ARM periodically provides updates and corrections to its documentation. See http://www.arm.com for
current errata sheets and addenda, and the ARM Frequently Asked Questions.

ARM publications
• ARM Debug Interface v5 Architecture Specification (ARM IHI 0031)

• ARMv7-M Architecture Reference Manual (ARM DDI 0403)

• CoreSight Architecture Specification (ARM IHI 0029)

• ARM Architecture Reference Manual (ARM DDI 0100I)

Note
 — Issue I of the ARM Architecture Reference Manual (DDI 0100I) was issued in July 2005 and

describes the first version of the ARMv6 architecture, and all previous architecture versions.

— Addison-Wesley Professional publish ARM Architecture Reference Manual, Second Edition
(December 27, 2000). The contents of this are identical to Issue E of the ARM Architecture
Reference Manual (DDI 0100E). It describes ARMv5TE and earlier versions of the ARM
architecture, and is superseded by DDI 0100I.

• Embedded Trace Macrocell Architecture Specification (ARM IHI 0014)

• CoreSight Program Flow Trace Architecture Specification (ARM IHI 0035).

External publications

The following books are referred to in this manual, or provide more information:

• IEEE Std 1596.5-1993, IEEE Standard for Shared-Data Formats Optimized for Scalable Coherent
Interface (SCI) Processors, ISBN 1-55937-354-7

• IEEE Std 1149.1-2001, IEEE Standard Test Access Port and Boundary Scan Architecture (JTAG)

• ANSI/IEEE Std 754-1985, IEEE Standard for Binary Floating-Point Arithmetic

• JEP106, Standard Manufacturers Identification Code, JEDEC Solid State Technology Association

• The Java Virtual Machine Specification Second Edition, Tim Lindholm and Frank Yellin, published
by Addison Wesley (ISBN: 0-201-43294-3)

• Memory Consistency Models for Shared Memory-Multiprocessors, Kourosh Gharachorloo, Stanford
University Technical Report CSL-TR-95-685
xx Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Preface
Feedback

ARM welcomes feedback on its documentation.

Feedback on this manual

If you notice any errors or omissions in this manual, send e-mail to errata@arm.com giving:

• the document title

• the document number

• the page number(s) to which your comments apply

• a concise explanation of the problem.

General suggestions for additions and improvements are also welcome.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. xxi

Preface
xxii Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Part A
Application Level Architecture

Chapter A1
Introduction to the ARM Architecture

This chapter introduces the ARM architecture and contains the following sections:

• About the ARM architecture on page A1-2

• The ARM and Thumb instruction sets on page A1-3

• Architecture versions, profiles, and variants on page A1-4

• Architecture extensions on page A1-6

• The ARM memory model on page A1-7

• Debug on page A1-8.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A1-1

Introduction to the ARM Architecture
A1.1 About the ARM architecture

The ARM architecture supports implementations across a wide range of performance points. It is
established as the dominant architecture in many market segments. The architectural simplicity of ARM
processors leads to very small implementations, and small implementations mean devices can have very low
power consumption. Implementation size, performance, and very low power consumption are key attributes
of the ARM architecture.

The ARM architecture is a Reduced Instruction Set Computer (RISC) architecture, as it incorporates these
typical RISC architecture features:

• a large uniform register file

• a load/store architecture, where data-processing operations only operate on register contents, not
directly on memory contents

• simple addressing modes, with all load/store addresses being determined from register contents and
instruction fields only.

In addition, the ARM architecture provides:

• instructions that combine a shift with an arithmetic or logical operation

• auto-increment and auto-decrement addressing modes to optimize program loops

• Load and Store Multiple instructions to maximize data throughput

• conditional execution of almost all instructions to maximize execution throughput.

These enhancements to a basic RISC architecture enable ARM processors to achieve a good balance of high
performance, small code size, low power consumption, and small silicon area.

Except where the architecture specifies differently, the programmer-visible behavior of an implementation
must be the same as a simple sequential execution of the program. This programmer-visible behavior does
not include the execution time of the program.
A1-2 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Introduction to the ARM Architecture
A1.2 The ARM and Thumb instruction sets

The ARM instruction set is a set of 32-bit instructions providing comprehensive data-processing and control
functions.

The Thumb instruction set was developed as a 16-bit instruction set with a subset of the functionality of the
ARM instruction set. It provides significantly improved code density, at a cost of some reduction in
performance. A processor executing Thumb instructions can change to executing ARM instructions for
performance critical segments, in particular for handling interrupts.

In ARMv6T2, Thumb-2 technology is introduced. This technology makes it possible to extend the original
Thumb instruction set with many 32-bit instructions. The range of 32-bit Thumb instructions included in
ARMv6T2 permits Thumb code to achieve performance similar to ARM code, with code density better than
that of earlier Thumb code.

From ARMv6T2, the ARM and Thumb instruction sets provide almost identical functionality. For more
information, see Chapter A4 The Instruction Sets.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A1-3

Introduction to the ARM Architecture
A1.3 Architecture versions, profiles, and variants

The ARM and Thumb instruction set architectures have evolved significantly since they were first
developed. They will continue to be developed in the future. Seven major versions of the instruction set have
been defined to date, denoted by the version numbers 1 to 7. Of these, the first three versions are now
obsolete.

ARMv7 provides three profiles:

ARMv7-A Application profile, described in this manual. Implements a traditional ARM architecture
with multiple modes and supporting a Virtual Memory System Architecture (VMSA) based
on an MMU. Supports the ARM and Thumb instruction sets.

ARMv7-R Real-time profile, described in this manual. Implements a traditional ARM architecture with
multiple modes and supporting a Protected Memory System Architecture (PMSA) based on
an MPU. Supports the ARM and Thumb instruction sets.

ARMv7-M Microcontroller profile, described in the ARMv7-M Architecture Reference Manual.
Implements a programmers' model designed for fast interrupt processing, with hardware
stacking of registers and support for writing interrupt handlers in high-level languages.
Implements a variant of the ARMv7 PMSA and supports a variant of the Thumb instruction
set.

Versions can be qualified with variant letters to specify additional instructions and other functionality that
are included as an architecture extension. Extensions are typically included in the base architecture of the
next version number. Provision is also made to exclude variants by prefixing the variant letter with x.

Some extensions are described separately instead of using a variant letter. For details of these extensions see
Architecture extensions on page A1-6.

The valid variants of ARMv4, ARMv5, and ARMv6 are as follows:

ARMv4 The earliest architecture variant covered by this manual. It includes only the ARM
instruction set.

ARMv4T Adds the Thumb instruction set.

ARMv5T Improves interworking of ARM and Thumb instructions. Adds count leading zeros (CLZ)
and software breakpoint (BKPT) instructions.

ARMv5TE Enhances arithmetic support for digital signal processing (DSP) algorithms. Adds preload
data (PLD), dual word load (LDRD), store (STRD), and 64-bit coprocessor register transfers
(MCRR, MRRC).

ARMv5TEJ Adds the BXJ instruction and other support for the Jazelle® architecture extension.

ARMv6 Adds many new instructions to the ARM instruction set. Formalizes and revises the memory
model and the Debug architecture.

ARMv6K Adds instructions to support multi-processing to the ARM instruction set, and some extra
memory model features.
A1-4 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Introduction to the ARM Architecture
ARMv6T2 Introduces Thumb-2 technology, giving a major development of the Thumb instruction set
to provide a similar level of functionality to the ARM instruction set.

Note
 ARMv6KZ or ARMv6Z are sometimes used to describe the ARMv6K architecture with the optional
Security Extensions.

For detailed information about versions of the ARM architecture, see Appendix G ARMv6 Differences and
Appendix H ARMv4 and ARMv5 Differences.

The following architecture variants are now obsolete:

ARMv1, ARMv2, ARMv2a, ARMv3, ARMv3G, ARMv3M, ARMv4xM, ARMv4TxM, ARMv5,
ARMv5xM, ARMv5TxM, and ARMv5TExP.

Contact ARM if you require details of obsolete variants.

Instruction descriptions in this manual specify the architecture versions that support them.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A1-5

Introduction to the ARM Architecture
A1.4 Architecture extensions

This manual describes the following extensions to the ARM and Thumb instruction set architectures:

ThumbEE Is a variant of the Thumb instruction set that is designed as a target for dynamically
generated code. It is:

• a required extension to the ARMv7-A profile

• an optional extension to the ARMv7-R profile.

VFP Is a floating-point coprocessor extension to the instruction set architectures. There
have been three main versions of VFP to date:

• VFPv1 is obsolete. Details are available on request from ARM.

• VFPv2 is an optional extension to:

— the ARM instruction set in the ARMv5TE, ARMv5TEJ, ARMv6, and
ARMv6K architectures

— the ARM and Thumb instruction sets in the ARMv6T2 architecture.

• VFPv3 is an optional extension to the ARM, Thumb and ThumbEE
instruction sets in the ARMv7-A and ARMv7-R profiles.

VFPv3 can be implemented with either thirty-two or sixteen doubleword
registers, as described in Advanced SIMD and VFP extension registers on
page A2-21. Where necessary, the terms VFPv3-D32 and VFPv3-D16 are
used to distinguish between these two implementation options. Where the
term VFPv3 is used it covers both options.

VFPv3 can be extended by the half-precision extensions that provide
conversion functions in both directions between half-precision floating-point
and single-precision floating-point.

Advanced SIMD Is an instruction set extension that provides Single Instruction Multiple Data
(SIMD) functionality. It is an optional extension to the ARMv7-A and ARMv7-R
profiles. When VFPv3 and Advanced SIMD are both implemented, they use a
shared register bank and have some shared instructions.

Advanced SIMD can be extended by the half-precision extensions that provide
conversion functions in both directions between half-precision floating-point and
single-precision floating-point.

Security Extensions Are a set of security features that facilitate the development of secure applications.
They are an optional extension to the ARMv6K architecture and the ARMv7-A
profile.

Jazelle Is the Java bytecode execution extension that extended ARMv5TE to ARMv5TEJ.
From ARMv6 Jazelle is a required part of the architecture, but is still often
described as the Jazelle extension.

Multiprocessing Extensions

Are a set of features that enhance multiprocessing functionality. They are an
optional extension to the ARMv7-A and ARMv7-R profiles.
A1-6 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Introduction to the ARM Architecture
A1.5 The ARM memory model

The ARM architecture uses a single, flat address space of 232 8-bit bytes. The address space is also regarded
as 230 32-bit words or 231 16-bit halfwords.

The architecture provides facilities for:

• faulting unaligned memory accesses

• restricting access by applications to specified areas of memory

• translating virtual addresses provided by executing instructions into physical addresses

• altering the interpretation of word and halfword data between big-endian and little-endian

• optionally preventing out-of-order access to memory

• controlling caches

• synchronizing access to shared memory by multiple processors.

For more information, see:

• Chapter A3 Application Level Memory Model

• Chapter B2 Common Memory System Architecture Features

• Chapter B3 Virtual Memory System Architecture (VMSA)

• Chapter B4 Protected Memory System Architecture (PMSA).
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A1-7

Introduction to the ARM Architecture
A1.6 Debug

ARMv7 processors implement two types of debug support:

Invasive debug Debug permitting modification of the state of the processor. This is intended
primarily for run-control debugging.

Non-invasive debug Debug permitting data and program flow observation, without modifying the state
of the processor or interrupting the flow of execution.

This provides for:

• instruction and data tracing

• program counter sampling

• performance monitors.

For more information, see Chapter C1 Introduction to the ARM Debug Architecture.
A1-8 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Chapter A2
Application Level Programmers’ Model

This chapter gives an application level view of the ARM programmers’ model. It contains the following
sections:

• About the Application level programmers’ model on page A2-2

• ARM core data types and arithmetic on page A2-3

• ARM core registers on page A2-11

• The Application Program Status Register (APSR) on page A2-14

• Execution state registers on page A2-15

• Advanced SIMD and VFP extensions on page A2-20

• Floating-point data types and arithmetic on page A2-32

• Polynomial arithmetic over {0,1} on page A2-67

• Coprocessor support on page A2-68

• Execution environment support on page A2-69

• Exceptions, debug events and checks on page A2-81.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-1

Application Level Programmers’ Model
A2.1 About the Application level programmers’ model

This chapter contains the programmers’ model information required for application development.

The information in this chapter is distinct from the system information required to service and support
application execution under an operating system. However, some knowledge of that system information is
needed to put the Application level programmers' model into context.

System level support requires access to all features and facilities of the architecture, a mode of operation
referred to as privileged operation. System code determines whether an application runs in a privileged or
unprivileged manner. When an operating system supports both privileged and unprivileged operation, an
application usually runs unprivileged. This:

• permits the operating system to allocate system resources to it in a unique or shared manner

• provides a degree of protection from other processes and tasks, and so helps protect the operating
system from malfunctioning applications.

This chapter indicates where some system level understanding is helpful, and where appropriate it:

• gives an overview of the system level information

• gives references to the system level descriptions in Chapter B1 The System Level Programmers’
Model and elsewhere.

The Security Extensions extend the architecture to provide hardware security features that support the
development of secure applications. For more information, see The Security Extensions on page B1-25.
A2-2 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Programmers’ Model
A2.2 ARM core data types and arithmetic

All ARMv7-A and ARMv7-R processors support the following data types in memory:

Byte 8 bits

Halfword 16 bits

Word 32 bits

Doubleword 64 bits.

Processor registers are 32 bits in size. The instruction set contains instructions supporting the following data
types held in registers:

• 32-bit pointers

• unsigned or signed 32-bit integers

• unsigned 16-bit or 8-bit integers, held in zero-extended form

• signed 16-bit or 8-bit integers, held in sign-extended form

• two 16-bit integers packed into a register

• four 8-bit integers packed into a register

• unsigned or signed 64-bit integers held in two registers.

Load and store operations can transfer bytes, halfwords, or words to and from memory. Loads of bytes or
halfwords zero-extend or sign-extend the data as it is loaded, as specified in the appropriate load instruction.

The instruction sets include load and store operations that transfer two or more words to and from memory.
You can load and store doublewords using these instructions. The exclusive doubleword load/store
instructions LDREXD and STREXD specify single-copy atomic doubleword accesses to memory.

When any of the data types is described as unsigned, the N-bit data value represents a non-negative integer
in the range 0 to 2N-1, using normal binary format.

When any of these types is described as signed, the N-bit data value represents an integer in the range -2N-1
to +2N-1-1, using two's complement format.

The instructions that operate on packed halfwords or bytes include some multiply instructions that use just
one of two halfwords, and Single Instruction Multiple Data (SIMD) instructions that operate on all of the
halfwords or bytes in parallel.

Direct instruction support for 64-bit integers is limited, and most 64-bit operations require sequences of two
or more instructions to synthesize them.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-3

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Sticky Note
This information about atomicity is incomplete and does not really belong in this section. See, instead, section A3.5.3 Atomicity in the ARM architecture, A3-26 [PDF page 140].

Application Level Programmers’ Model
A2.2.1 Integer arithmetic

The instruction set provides a wide variety of operations on the values in registers, including bitwise logical
operations, shifts, additions, subtractions, multiplications, and many others. These operations are defined
using the pseudocode described in Appendix I Pseudocode Definition, usually in one of three ways:

• By direct use of the pseudocode operators and built-in functions defined in Operators and built-in
functions on page AppxI-11.

• By use of pseudocode helper functions defined in the main text. These can be located using the table
in Appendix J Pseudocode Index.

• By a sequence of the form:

1. Use of the SInt(), UInt(), and Int() built-in functions defined in Converting bitstrings to
integers on page AppxI-14 to convert the bitstring contents of the instruction operands to the
unbounded integers that they represent as two's complement or unsigned integers.

2. Use of mathematical operators, built-in functions and helper functions on those unbounded
integers to calculate other such integers.

3. Use of either the bitstring extraction operator defined in Bitstring extraction on page AppxI-12
or of the saturation helper functions described in Pseudocode details of saturation on
page A2-9 to convert an unbounded integer result into a bitstring result that can be written to
a register.
A2-4 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Programmers’ Model
Shift and rotate operations

The following types of shift and rotate operations are used in instructions:

Logical Shift Left

(LSL) moves each bit of a bitstring left by a specified number of bits. Zeros are shifted in at
the right end of the bitstring. Bits that are shifted off the left end of the bitstring are
discarded, except that the last such bit can be produced as a carry output.

Logical Shift Right

(LSR) moves each bit of a bitstring right by a specified number of bits. Zeros are shifted in
at the left end of the bitstring. Bits that are shifted off the right end of the bitstring are
discarded, except that the last such bit can be produced as a carry output.

Arithmetic Shift Right

(ASR) moves each bit of a bitstring right by a specified number of bits. Copies of the leftmost
bit are shifted in at the left end of the bitstring. Bits that are shifted off the right end of the
bitstring are discarded, except that the last such bit can be produced as a carry output.

Rotate Right (ROR) moves each bit of a bitstring right by a specified number of bits. Each bit that is shifted
off the right end of the bitstring is re-introduced at the left end. The last bit shifted off the
right end of the bitstring can be produced as a carry output.

Rotate Right with Extend

(RRX) moves each bit of a bitstring right by one bit. The carry input is shifted in at the left
end of the bitstring. The bit shifted off the right end of the bitstring can be produced as a
carry output.

Pseudocode details of shift and rotate operations

These shift and rotate operations are supported in pseudocode by the following functions:

// LSL_C()
// =======

(bits(N), bit) LSL_C(bits(N) x, integer shift)
 assert shift > 0;
 extended_x = x : Zeros(shift);
 result = extended_x<N-1:0>;
 carry_out = extended_x<N>;
 return (result, carry_out);

// LSL()
// =====

bits(N) LSL(bits(N) x, integer shift)
 assert shift >= 0;
 if shift == 0 then
 result = x;
 else
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-5

Application Level Programmers’ Model
 (result, -) = LSL_C(x, shift);
 return result;

// LSR_C()
// =======

(bits(N), bit) LSR_C(bits(N) x, integer shift)
 assert shift > 0;
 extended_x = ZeroExtend(x, shift+N);
 result = extended_x<shift+N-1:shift>;
 carry_out = extended_x<shift-1>;
 return (result, carry_out);

// LSR()
// =====

bits(N) LSR(bits(N) x, integer shift)
 assert shift >= 0;
 if shift == 0 then
 result = x;
 else
 (result, -) = LSR_C(x, shift);
 return result;

// ASR_C()
// =======

(bits(N), bit) ASR_C(bits(N) x, integer shift)
 assert shift > 0;
 extended_x = SignExtend(x, shift+N);
 result = extended_x<shift+N-1:shift>;
 carry_out = extended_x<shift-1>;
 return (result, carry_out);

// ASR()
// =====

bits(N) ASR(bits(N) x, integer shift)
 assert shift >= 0;
 if shift == 0 then
 result = x;
 else
 (result, -) = ASR_C(x, shift);
 return result;

// ROR_C()
// =======

(bits(N), bit) ROR_C(bits(N) x, integer shift)
 assert shift != 0;
 m = shift MOD N;
 result = LSR(x,m) OR LSL(x,N-m);
 carry_out = result<N-1>;
 return (result, carry_out);
A2-6 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Programmers’ Model
// ROR()
// =====

bits(N) ROR(bits(N) x, integer shift)
 if n == 0 then
 result = x;
 else
 (result, -) = ROR_C(x, shift);
 return result;

// RRX_C()
// =======

(bits(N), bit) RRX_C(bits(N) x, bit carry_in)
 result = carry_in : x<N-1:1>;
 carry_out = x<0>;
 return (result, carry_out);

// RRX()
// =====

bits(N) RRX(bits(N) x, bit carry_in)
 (result, -) = RRX_C(x, shift);
 return result;
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-7

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
carry_in

Application Level Programmers’ Model
Pseudocode details of addition and subtraction

In pseudocode, addition and subtraction can be performed on any combination of unbounded integers and
bitstrings, provided that if they are performed on two bitstrings, the bitstrings must be identical in length.
The result is another unbounded integer if both operands are unbounded integers, and a bitstring of the same
length as the bitstring operand(s) otherwise. For the precise definition of these operations, see Addition and
subtraction on page AppxI-15.

The main addition and subtraction instructions can produce status information about both unsigned carry
and signed overflow conditions. This status information can be used to synthesize multi-word additions and
subtractions. In pseudocode the AddWithCarry() function provides an addition with a carry input and carry
and overflow outputs:

// AddWithCarry()
// ==============

(bits(N), bit, bit) AddWithCarry(bits(N) x, bits(N) y, bit carry_in)
 unsigned_sum = UInt(x) + UInt(y) + UInt(carry_in);
 signed_sum = SInt(x) + SInt(y) + UInt(carry_in);
 result = unsigned_sum<N-1:0>; // == signed_sum<N-1:0>
 carry_out = if UInt(result) == unsigned_sum then ‘0’ else ‘1’;
 overflow = if SInt(result) == signed_sum then ‘0’ else ‘1’;
 return (result, carry_out, overflow);

An important property of the AddWithCarry() function is that if:

(result, carry_out, overflow) = AddWithCarry(x, NOT(y), carry_in)

then:

• if carry_in == '1', then result == x-y with:

— overflow == '1' if signed overflow occurred during the subtraction

— carry_out == '1' if unsigned borrow did not occur during the subtraction, that is, if x >= y

• if carry_in == '0', then result == x-y-1 with:

— overflow == '1' if signed overflow occurred during the subtraction

— carry_out == '1' if unsigned borrow did not occur during the subtraction, that is, if x > y.

Together, these mean that the carry_in and carry_out bits in AddWithCarry() calls can act as NOT borrow
flags for subtractions as well as carry flags for additions.
A2-8 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Programmers’ Model
Pseudocode details of saturation

Some instructions perform saturating arithmetic, that is, if the result of the arithmetic overflows the
destination signed or unsigned N-bit integer range, the result produced is the largest or smallest value in that
range, rather than wrapping around modulo 2N. This is supported in pseudocode by the SignedSatQ() and
UnsignedSatQ() functions when a boolean result is wanted saying whether saturation occurred, and by the
SignedSat() and UnsignedSat() functions when only the saturated result is wanted:

// SignedSatQ()
// ============

(bits(N), boolean) SignedSatQ(integer i, integer N)
 if i > 2^(N-1) - 1 then
 result = 2^(N-1) - 1; saturated = TRUE;
 elsif i < -(2^(N-1)) then
 result = -(2^(N-1)); saturated = TRUE;
 else
 result = i; saturated = FALSE;
 return (result<N-1:0>, saturated);

// UnsignedSatQ()
// ==============

(bits(N), boolean) UnsignedSatQ(integer i, integer N)
 if i > 2^N - 1 then
 result = 2^N - 1; saturated = TRUE;
 elsif i < 0 then
 result = 0; saturated = TRUE;
 else
 result = i; saturated = FALSE;
 return (result<N-1:0>, saturated);

// SignedSat()
// ===========

bits(N) SignedSat(integer i, integer N)
 (result, -) = SignedSatQ(i, N);
 return result;

// UnsignedSat()
// =============

bits(N) UnsignedSat(integer i, integer N)
 (result, -) = UnsignedSatQ(i, N);
 return result;

SatQ(i, N, unsigned) returns either UnsignedSatQ(i,N) or SignedSatQ(i, N) depending on the value of its
third argument, and Sat(i, N, unsigned) returns either UnsignedSat(i, N) or SignedSat(i, N) depending on
the value of its third argument:
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-9

Application Level Programmers’ Model
// SatQ()
// ======

(bits(N), boolean) SatQ(integer i, integer N, boolean unsigned)
 (result, sat) = if unsigned then UnsignedSatQ(i, N) else SignedSatQ(i, N);
 return (result, sat);

// Sat()
// =====

bits(N) Sat(integer i, integer N, boolean unsigned)
 result = if unsigned then UnsignedSat(i, N) else SignedSat(i, N);
 return result;
A2-10 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Programmers’ Model
A2.3 ARM core registers

In the application level view, an ARM processor has:

• thirteen general-purpose32-bit registers, R0 to R12

• three 32-bit registers, R13 to R15, that sometimes or always have a special use.

Registers R13 to R15 are usually referred to by names that indicate their special uses:

SP, the Stack Pointer

Register R13 is used as a pointer to the active stack.

In Thumb code, most instructions cannot access SP. The only instructions that can access
SP are those designed to use SP as a stack pointer.

The use of SP for any purpose other than as a stack pointer is deprecated.

Note
 Using SP for any purpose other than as a stack pointer is likely to break the requirements of

operating systems, debuggers, and other software systems, causing them to malfunction.

LR, the Link Register

Register R14 is used to store the return address from a subroutine. At other times, LR can
be used for other purposes.

When a BL or BLX instruction performs a subroutine call, LR is set to the subroutine return
address. To perform a subroutine return, copy LR back to the program counter. This is
typically done in one of two ways, after entering the subroutine with a BL or BLX instruction:

• Return with a BX LR instruction.

• On subroutine entry, store LR to the stack with an instruction of the form:
PUSH {<registers>,LR}

and use a matching instruction to return:
POP {<registers>,PC}

ThumbEE checks and handler calls use LR in a similar way. For details see Chapter A9
ThumbEE.

PC, the Program Counter

Register R15 is the program counter:

• When executing an ARM instruction, PC reads as the address of the current
instruction plus 8.

• When executing a Thumb instruction, PC reads as the address of the current
instruction plus 4.

• Writing an address to PC causes a branch to that address.

In Thumb code, most instructions cannot access PC.

See ARM core registers on page B1-9 for the system level view of SP, LR, and PC.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-11

ARM_2009_Q3
Inserted Text

Application Level Programmers’ Model
Note
 The names SP, LR and PC are preferred to R13, R14 and R15. However, sometimes it is simpler to use the
R13-R15 names when referring to a group of registers. For example, it is simpler to refer to Registers R8 to
R15, rather than to Registers R8 to R12, the SP, LR and PC. However these two descriptions of the group of
registers have exactly the same meaning.

A2.3.1 Pseudocode details of operations on ARM core registers

In pseudocode, the R[] function is used to:

• Read or write R0-R12, SP, and LR, using n == 0-12, 13, and 14 respectively.

• Read the PC, using n == 15.

This function has prototypes:

bits(32) R[integer n]
 assert n >= 0 && n <= 15;

R[integer n] = bits(32) value
 assert n >= 0 && n <= 14;

The full operation of this function is explained in Pseudocode details of ARM core register operations on
page B1-12.

Descriptions of ARM store instructions that store the PC value use the PCStoreValue() pseudocode function
to specify the PC value stored by the instruction:

// PCStoreValue()
// ==============

bits(32) PCStoreValue()
 // This function returns the PC value. On architecture versions before ARMv7, it
 // is permitted to instead return PC+4, provided it does so consistently. It is
 // used only to describe ARM instructions, so it returns the address of the current
 // instruction plus 8 (normally) or 12 (when the alternative is permitted).
 return PC;

Writing an address to the PC causes either a simple branch to that address or an interworking branch that
also selects the instruction set to execute after the branch. A simple branch is performed by the
BranchWritePC() function:

// BranchWritePC()
// ===============

BranchWritePC(bits(32) address)
 if CurrentInstrSet() == InstrSet_ARM then
 if ArchVersion() < 6 && address<1:0> != ‘00’ then UNPREDICTABLE;
 BranchTo(address<31:2>:’00’);
 else
 BranchTo(address<31:1>:’0’);

An interworking branch is performed by the BXWritePC() function:
A2-12 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Replacement Text
// BranchWritePC()
// ===============

BranchWritePC(bits(32) address)
 if CurrentInstrSet() == InstrSet_ARM then
 if ArchVersion() < 6 && address<1:0> != '00' then UNPREDICTABLE;
 BranchTo(address<31:2>:'00');
 elsif CurrentInstrSet() == InstrSet_Jazelle then
 if JazelleAcceptsExecute() then
 BranchTo(address<31:0>);
 else
 newaddress = address;
 newaddress<1:0> = UNKNOWN;
 BranchTo(newaddress);
 else
 BranchTo(address<31:1>:'0');

Application Level Programmers’ Model
// BXWritePC()
// ===========

BXWritePC(bits(32) address)
 if CurrentInstrSet() == InstrSet_ThumbEE then
 if address<0> == ‘1’ then
 BranchTo(address<31:1>:’0’); // Remaining in ThumbEE state
 else
 UNPREDICTABLE;
 else
 if address<0> == ‘1’ then
 SelectInstrSet(InstrSet_Thumb);
 BranchTo(address<31:1>:’0’);
 elsif address<1> == ‘0’ then
 SelectInstrSet(InstrSet_ARM);
 BranchTo(address);
 else // address<1:0> == ‘10’
 UNPREDICTABLE;

The LoadWritePC() and ALUWritePC() functions are used for two cases where the behavior was systematically
modified between architecture versions:

// LoadWritePC()
// =============

LoadWritePC(bits(32) address)
 if ArchVersion() >= 5 then
 BXWritePC(address);
 else
 BranchWritePC(address);

// ALUWritePC()
// ============

ALUWritePC(bits(32) address)
 if ArchVersion() >= 7 && CurrentInstrSet() == InstrSet_ARM then
 BXWritePC(address);
 else
 BranchWritePC(address);

Note
 The behavior of the PC writes performed by the ALUWritePC() function is different in Debug state, where
there are more UNPREDICTABLE cases. The pseudocode in this section only handles the non-debug cases. For
more information, see Data-processing instructions with the PC as the target in Debug state on page C5-12.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-13

Application Level Programmers’ Model
A2.4 The Application Program Status Register (APSR)

Program status is reported in the 32-bit Application Program Status Register (APSR). The format of the
APSR is:

In the APSR, the bits are in the following categories:

• Reserved bits are allocated to system features, or are available for future expansion. Unprivileged
execution ignores writes to privileged fields. However, application level software that writes to the
APSR must treat reserved bits as Do-Not-Modify (DNM) bits. For more information about the
reserved bits, see Format of the CPSR and SPSRs on page B1-16.

• Flags that can be set by many instructions:

N, bit [31] Negative condition code flag. Set to bit [31] of the result of the instruction. If the result
is regarded as a two's complement signed integer, then N == 1 if the result is negative and
N == 0 if it is positive or zero.

Z, bit [30] Zero condition code flag. Set to 1 if the result of the instruction is zero, and to 0 otherwise.
A result of zero often indicates an equal result from a comparison.

C, bit [29] Carry condition code flag. Set to 1 if the instruction results in a carry condition, for
example an unsigned overflow on an addition.

V, bit [28] Overflow condition code flag. Set to 1 if the instruction results in an overflow condition,
for example a signed overflow on an addition.

Q, bit [27] Set to 1 to indicate overflow or saturation occurred in some instructions, normally related
to Digital Signal Processing (DSP). For more information, see Pseudocode details of
saturation on page A2-9.

GE[3:0], bits [19:16]
Greater than or Equal flags. SIMD instructions update these flags to indicate the results
from individual bytes or halfwords of the operation. These flags can control a later SEL
instruction. For more information, see SEL on page A8-312.

• Bits [26:24] are RAZ/SBZP. Therefore, software can use MSR instructions that write the top byte of
the APSR without using a read, modify, write sequence. If it does this, it must write zeros to
bits [26:24].

Instructions can test the N, Z, C, and V condition code flags to determine whether the instruction is to be
executed. In this way, execution of the instruction can be made conditional on the result of a previous
operation. For more information about conditional execution see Conditional execution on page A4-3 and
Conditional execution on page A8-8.

In ARMv7-A and ARMv7-R, the APSR is the same register as the CPSR, but the APSR must be used only
to access the N, Z, C, V, Q, and GE[3:0] bits. For more information, see Program Status Registers (PSRs)
on page B1-14.

31 30 29 28 27 26 24 23 20 19 16 15 0

N Z C V Q
RAZ/
SBZP

Reserved GE[3:0] Reserved
A2-14 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Programmers’ Model
A2.5 Execution state registers

The execution state registers modify the execution of instructions. They control:

• Whether instructions are interpreted as Thumb instructions, ARM instructions, ThumbEE
instructions, or Java bytecodes. For more information, see ISETSTATE.

• In Thumb state and ThumbEE state only, what conditions apply to the next four instructions. For
more information, see ITSTATE on page A2-17.

• Whether data is interpreted as big-endian or little-endian. For more information, see ENDIANSTATE
on page A2-19.

In ARMv7-A and ARMv7-R, the execution state registers are part of the Current Program Status Register.
For more information, see Program Status Registers (PSRs) on page B1-14.

There is no direct access to the execution state registers from application level instructions, but they can be
changed by side effects of application level instructions.

A2.5.1 ISETSTATE

The J bit and the T bit determine the instruction set used by the processor. Table A2-1 shows the encoding
of these bits.

ARM state The processor executes the ARM instruction set described in Chapter A5 ARM
Instruction Set Encoding.

Thumb state The processor executes the Thumb instruction set as described in Chapter A6
Thumb Instruction Set Encoding.

Jazelle state The processor executes Java bytecodes as part of a Java Virtual Machine (JVM). For
more information, see Jazelle direct bytecode execution support on page A2-73.

1 0

J T

Table A2-1 J and T bit encoding in ISETSTATE

J T Instruction set state

0 0 ARM

0 1 Thumb

1 0 Jazelle

1 1 ThumbEE
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-15

Application Level Programmers’ Model
ThumbEE state The processor executes a variation of the Thumb instruction set specifically targeted
for use with dynamic compilation techniques associated with an execution
environment. This can be Java or other execution environments. This feature is
required in ARMv7-A, and optional in ARMv7-R. For more information, see
Thumb Execution Environment on page A2-69.

Pseudocode details of ISETSTATE operations

The following pseudocode functions return the current instruction set and select a new instruction set:

enumeration InstrSet {InstrSet_ARM, InstrSet_Thumb, InstrSet_Jazelle, InstrSet_ThumbEE};

// CurrentInstrSet()
// =================

InstrSet CurrentInstrSet()
 case ISETSTATE of
 when ‘00’ result = InstrSet_ARM;
 when ‘01’ result = InstrSet_Thumb;
 when ‘10’ result = InstrSet_Jazelle;
 when ‘11’ result = InstrSet_ThumbEE;
 return result;

// SelectInstrSet()
// ================

SelectInstrSet(InstrSet iset)
 case iset of
 when InstrSet_ARM
 if CurrentInstrSet() == InstrSet_ThumbEE then
 UNPREDICTABLE;
 else
 ISETSTATE = ‘00’;
 when InstrSet_Thumb
 ISETSTATE = ‘01’;
 when InstrSet_Jazelle
 ISETSTATE = ‘10’;
 when InstrSet_ThumbEE
 ISETSTATE = ‘11’;
 return;
A2-16 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Programmers’ Model
A2.5.2 ITSTATE

This field holds the If-Then execution state bits for the Thumb IT instruction. See IT on page A8-104 for a
description of the IT instruction and the associated IT block.

ITSTATE divides into two subfields:

IT[7:5] Holds the base condition for the current IT block. The base condition is the top 3 bits of the
condition specified by the IT instruction.

This subfield is 0b000 when no IT block is active.

IT[4:0] Encodes:

• The size of the IT block. This is the number of instructions that are to be conditionally
executed. The size of the block is implied by the position of the least significant 1 in
this field, as shown in Table A2-2 on page A2-18.

• The value of the least significant bit of the condition code for each instruction in the
block.

Note
 Changing the value of the least significant bit of a condition code from 0 to 1 has the

effect of inverting the condition code.

This subfield is 0b00000 when no IT block is active.

When an IT instruction is executed, these bits are set according to the condition in the instruction, and the
Then and Else (T and E) parameters in the instruction. For more information, see IT on page A8-104.

An instruction in an IT block is conditional, see Conditional instructions on page A4-4 and Conditional
execution on page A8-8. The condition used is the current value of IT[7:4]. When an instruction in an IT
block completes its execution normally, ITSTATE is advanced to the next line of Table A2-2 on page A2-18.

For details of what happens if such an instruction takes an exception see Exception entry on page B1-34.

Note
 Instructions that can complete their normal execution by branching are only permitted in an IT block as its
last instruction, and so always result in ITSTATE advancing to normal execution.

Note
 ITSTATE affects instruction execution only in Thumb and ThumbEE states. In ARM and Jazelle states,
ITSTATE must be '00000000', otherwise behavior is UNPREDICTABLE.

7 6 5 4 3 2 1 0

IT[7:0]
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-17

Application Level Programmers’ Model
Pseudocode details of ITSTATE operations

ITSTATE advances after normal execution of an IT block instruction. This is described by the ITAdvance()
pseudocode function:

// ITAdvance()
// ===========

ITAdvance()
 if ITSTATE<2:0> == ‘000’ then
 ITSTATE.IT = ‘00000000’;
 else
 ITSTATE.IT<4:0> = LSL(ITSTATE.IT<4:0>, 1);

The following functions test whether the current instruction is in an IT block, and whether it is the last
instruction of an IT block:

// InITBlock()
// ===========

boolean InITBlock()
 return (ITSTATE.IT<3:0> != ‘0000’);

// LastInITBlock()
// ===============

boolean LastInITBlock()
 return (ITSTATE.IT<3:0> == ‘1000’);

Table A2-2 Effect of IT execution state bits

IT bits a

a. Combinations of the IT bits not shown in this table are reserved.

Note
[7:5] [4] [3] [2] [1] [0]

cond_base P1 P2 P3 P4 1 Entry point for 4-instruction IT block

cond_base P1 P2 P3 1 0 Entry point for 3-instruction IT block

cond_base P1 P2 1 0 0 Entry point for 2-instruction IT block

cond_base P1 1 0 0 0 Entry point for 1-instruction IT block

000 0 0 0 0 0 Normal execution, not in an IT block
A2-18 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Programmers’ Model
A2.5.3 ENDIANSTATE

ARMv7-A and ARMv7-R support configuration between little-endian and big-endian interpretations of
data memory, as shown in Table A2-3. The endianness is controlled by ENDIANSTATE.

The ARM and Thumb instruction sets both include an instruction to manipulate ENDIANSTATE:

SETEND BE Sets ENDIANSTATE to 1, for big-endian operation

SETEND LE Sets ENDIANSTATE to 0, for little-endian operation.

The SETEND instruction is unconditional. For more information, see SETEND on page A8-314.

Pseudocode details of ENDIANSTATE operations

The BigEndian() pseudocode function tests whether big-endian memory accesses are currently selected.

// BigEndian()
// ===========

boolean BigEndian()
 return (ENDIANSTATE == ‘1’);

Table A2-3 APSR configuration of endianness

ENDIANSTATE Endian mapping

0 Little-endian

1 Big-endian
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-19

Application Level Programmers’ Model
A2.6 Advanced SIMD and VFP extensions

Advanced SIMD and VFP are two optional extensions to ARMv7.

Advanced SIMD performs packed Single Instruction Multiple Data (SIMD) operations, either integer or
single-precision floating-point. VFP performs single-precision or double-precision floating-point
operations.

Both extensions permit floating-point exceptions, such as overflow or division by zero, to be handled in an
untrapped fashion. When handled in this way, a floating-point exception causes a cumulative status register
bit to be set to 1 and a default result to be produced by the operation.

The ARMv7 VFP implementation is VFPv3. ARMv7 also permits a variant of VFPv3, VFPv3U, that
supports the trapping of floating-point exceptions, see VFPv3U on page A2-31. VFPv2 also supports the
trapping of floating-point exceptions.

For more information about floating-point exceptions see Floating-point exceptions on page A2-42.

Each extension can be implemented at a number of levels. Table A2-4 shows the permitted combinations of
implementations of the two extensions.

The optional half-precision extensions provide conversion functions in both directions between
half-precision floating-point and single-precision floating-point. These extensions can be implemented with
any Advanced SIMD and VFP implementation that supports single-precision floating-point. The
half-precision extensions apply to both VFP and Advanced SIMD if they are both implemented.

For system-level information about the Advanced SIMD and VFP extensions see:

• Advanced SIMD and VFP extension system registers on page B1-66

• Advanced SIMD and floating-point support on page B1-64.

Table A2-4 Permitted combinations of Advanced SIMD and VFP extensions

Advanced SIMD VFP

Not implemented Not implemented

Integer only Not implemented

Integer and single-precision floating-point Single-precision floating-point onlya

a. Must be able to load and store double-precision data.

Integer and single-precision floating-point Single-precision and double-precision floating-point

Not implemented Single-precision floating-point onlya

Not implemented Single-precision and double-precision floating-point
A2-20 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Programmers’ Model
Note
 Before ARMv7, the VFP extension was called the Vector Floating-point Architecture, and was used for
vector operations. For details of these deprecated operations see Appendix F VFP Vector Operation
Support. From ARMv7:

• ARM recommends that the Advanced SIMD extension is used for single-precision vector
floating-point operations

• an implementation that requires support for vector operations must implement the Advanced SIMD
extension.

A2.6.1 Advanced SIMD and VFP extension registers

Advanced SIMD and VFPv3 use the same register set. This is distinct from the ARM core register set. These
registers are generally referred to as the extension registers.

The extension register set consists of either thirty-two or sixteen doubleword registers, as follows:

• If VFPv2 is implemented, it consists of sixteen doubleword registers.

• If VFPv3 is implemented, it consists of either thirty-two or sixteen doubleword registers. Where
necessary the terms VFPv3-D32 and VFPv3-D16 are used to distinguish between these two
implementation options.

• If Advanced SIMD is implemented, it consists of thirty-two doubleword registers. If both Advanced
SIMD and VFPv3 are implemented, VFPv3 must be implemented in its VFPv3-D32 form.

The Advanced SIMD and VFP views of the extension register set are not identical. They are described in
the following sections.

Figure A2-1 on page A2-22 shows the views of the extension register set, and the way the word,
doubleword, and quadword registers overlap.

Advanced SIMD views of the extension register set

Advanced SIMD can view this register set as:

• Sixteen 128-bit quadword registers, Q0-Q15.

• Thirty-two 64-bit doubleword registers, D0-D31. This view is also available in VFPv3.

These views can be used simultaneously. For example, a program might hold 64-bit vectors in D0 and D1
and a 128-bit vector in Q1.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-21

Application Level Programmers’ Model
VFP views of the extension register set

In VFPv3-D32, the extension register set consists of thirty-two doubleword registers, that VFP can view as:

• Thirty-two 64-bit doubleword registers, D0-D31. This view is also available in Advanced SIMD.

• Thirty-two 32-bit single word registers, S0-S31. Only half of the set is accessible in this view.

In VFPv3-D16 and VFPv2, the extension register set consists of sixteen doubleword registers, that VFP can
view as:

• Sixteen 64-bit doubleword registers, D0-D15.

• Thirty-two 32-bit single word registers, S0-S31.

In each case, the two views can be used simultaneously.

Advanced SIMD and VFP register mapping

Figure A2-1 Advanced SIMD and VFP register set

��

��

���

���

��

��

��

��

��

�	

��

���

��

�

���

���

���

��

��

���

��	

���

��

���

��

��

�

�

��	

���
���

���

��

��

��

��

���

��	

���

������
��������

�����	
��������
���������

������
������������
���������� !�

�����	
���������� !������
A2-22 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Programmers’ Model
The mapping between the registers is as follows:

• S<2n> maps to the least significant half of D<n>

• S<2n+1> maps to the most significant half of D<n>

• D<2n> maps to the least significant half of Q<n>

• D<2n+1> maps to the most significant half of Q<n>.

For example, you can access the least significant half of the elements of a vector in Q6 by referring to D12,
and the most significant half of the elements by referring to D13.

Pseudocode details of Advanced SIMD and VFP extension registers

The pseudocode function VFPSmallRegisterBank() returns FALSE if all of the 32 registers D0-D31 can be
accessed, and TRUE if only the 16 registers D0-D15 can be accessed:

boolean VFPSmallRegisterBank()

In more detail, VFPSmallRegisterBank():

• returns TRUE for a VFPv2 or VFPv3-D16 implementation

• for a VFPv3-D32 implementation:

— returns FALSE if CPACR.D32DIS == 0

— returns TRUE if CPACR.D32DIS == 1 and CPACR.ASEDIS == 1

— results in UNPREDICTABLE behavior if CPACR.D32DIS == 1 and CPACR.ASEDIS == 0.

For details of the CPACR register, see:

• c1, Coprocessor Access Control Register (CPACR) on page B3-104 for a VMSA implementation

• c1, Coprocessor Access Control Register (CPACR) on page B4-51 for a PMSA implementation.

The S0-S31, D0-D31, and Q0-Q15 views of the registers are provided by the following functions:

// The 64-bit extension register bank for Advanced SIMD and VFP.

array bits(64) _D[0..31];

// S[] - non-assignment form
// =========================

bits(32) S[integer n]
 assert n >= 0 && n <= 31;
 if (n MOD 2) == 0 then
 result = D[n DIV 2]<31:0>;
 else
 result = D[n DIV 2]<63:32>;
 return result;

// S[] - assignment form
// =====================

S[integer n] = bits(32) value
 assert n >= 0 && n <= 31;
 if (n MOD 2) == 0 then
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-23

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Replacement Text
// The 64-bit extension register bank for Advanced SIMD and VFP.

array bits(64) _D[0..31];

// Clone the 64-bit extension register bank to use as input to instruction pseudocode
// to avoid read-after-write for Advanced SIMD and VFP operations.

array bits(64) _Dclone[0..31];

// Din[] - non-assignment form
// ==================

bits(64) Din[integer n]
 assert n >= 0 && n <= 31;
 if n >= 16 && VFPSmallRegisterBank() then UNDEFINED;
 return _Dclone[n];

// Qin[] - non-assignment form
// ==================

bits(128) Qin[integer n]
 assert n >= 0 && n <= 15;
 return Din[2*n+1]:Din[2*n];

ARM_2011_Q2
Sticky Note
The replacement pseudocode defines an additional array, _Dclone[], that _D[] can be copied to, to avoiding possible read-after-write errors in instruction processing pseudocode.

In addition, the function Din[] returns a Doubleword register from the array _Dclone[], and the function Qin[] returns a Quadword register from the array.

Application Level Programmers’ Model
 D[n DIV 2]<31:0> = value;
 else
 D[n DIV 2]<63:32> = value;
 return;

// D[] - non-assignment form
// =========================

bits(64) D[integer n]
 assert n >= 0 && n <= 31;
 if n >= 16 && VFPSmallRegisterBank() then UNDEFINED;
 return _D[n];

// D[] - assignment form
// =====================

D[integer n] = bits(64) value
 assert n >= 0 && n <= 31;
 if n >= 16 && VFPSmallRegisterBank() then UNDEFINED;
 _D[n] = value;
 return;

// Q[] - non-assignment form
// =========================

bits(128) Q[integer n]
 assert n >= 0 && n <= 15;
 return D[2*n+1]:D[2*n];

// Q[] - assignment form
// =====================

Q[integer n] = bits(128) value
 assert n >= 0 && n <= 15;
 D[2*n] = value<63:0>;
 D[2*n+1] = value<127:64>;
 return;
A2-24 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Programmers’ Model
A2.6.2 Data types supported by the Advanced SIMD extension

When the Advanced SIMD extension is implemented, it can operate on integer and floating-point data. It
defines a set of data types to represent the different data formats. Table A2-5 shows the available formats.
Each instruction description specifies the data types that the instruction supports.

The polynomial data type is described in Polynomial arithmetic over {0,1} on page A2-67.

The .F16 data type is the half-precision data type currently selected by the FPSCR.AHP bit, see Advanced
SIMD and VFP system registers on page A2-28. It is supported only when the half-precision extensions are
implemented.

The .F32 data type is the ARM standard single-precision floating-point data type, see Advanced SIMD and
VFP single-precision format on page A2-34.

The instruction definitions use a data type specifier to define the data types appropriate to the operation.
Figure A2-2 on page A2-26 shows the hierarchy of Advanced SIMD data types.

Table A2-5 Advanced SIMD data types

Data type specifier Meaning

.<size> Any element of <size> bits

.F<size> Floating-point number of <size> bits

.I<size> Signed or unsigned integer of <size> bits

.P<size> Polynomial over {0,1} of degree less than <size>

.S<size> Signed integer of <size> bits

.U<size> Unsigned integer of <size> bits
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-25

Application Level Programmers’ Model
Figure A2-2 Advanced SIMD data type hierarchy

For example, a multiply instruction must distinguish between integer and floating-point data types.
However, some multiply instructions use modulo arithmetic for integer instructions and therefore do not
need to distinguish between signed and unsigned inputs.

A multiply instruction that generates a double-width (long) result must specify the input data types as signed
or unsigned, because for this operation it does make a difference.

A2.6.3 Advanced SIMD vectors

When the Advanced SIMD extension is implemented, a register can hold one or more packed elements, all
of the same size and type. The combination of a register and a data type describes a vector of elements. The
vector is considered to be an array of elements of the data type specified in the instruction. The number of
elements in the vector is implied by the size of the data elements and the size of the register.

Vector indices are in the range 0 to (number of elements – 1). An index of 0 refers to the least significant
end of the vector. Figure A2-3 on page A2-27 shows examples of Advanced SIMD vectors:

�"

����

��

� ��

� ��
�"��

���

���

�"��

����

�

�

���
�"��

����

��

����
����

�

�
�

�

�����#

� ��

#��$%%��&��������'(�&)��)��(�%���'*'����+&��*'��*�����',%��,��&��
A2-26 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2011_Q2
Sticky Note
The instructions that can operate on polynomials, VMUL and VMULL, operate only on the .P8 data type. However, VMULL produces a .P16 output.

ARM_2011_Q2
Highlight
See marginal note.

Application Level Programmers’ Model
Figure A2-3 Examples of Advanced SIMD vectors

Pseudocode details of Advanced SIMD vectors

The pseudocode function Elem[] is used to access the element of a specified index and size in a vector:

// Elem[] - non-assignment form
// ============================

bits(size) Elem[bits(N) vector, integer e, integer size]
 assert e >= 0 && (e+1)*size <= N;
 return vector<(e+1)*size-1:e*size>;

// Elem[] - assignment form
// ========================

Elem[bits(N) vector, integer e, integer size] = bits(size) value
 assert e >= 0 && (e+1)*size <= N;
 vector<(e+1)*size-1:e*size> = value;
 return;

��

���-'&����&����(����-'&�*'.����'�&�.��*

/�0

/�0

/�0

/�0/
0 /�0 /	0

���-'&����&����(����-'&�$�*'.����'�&�.��*

��
�-'&����&����(�*'�.���%���'*'��
1���-'&2�(���&'�.�%�'�&��$,-��*

��
�-'&����&����(����-'&�*'.����'�&�.��*

/�0 /�0

/�0 /�0 /�0

��
 �

�� �

���� ���� ���� ����

���� ���� ���� ���� ���� ���� ���� ����

��

���� ����

/�0 /�0

�"�� �"�� �"�� �"��

/�0/�0 /�0 /�0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-27

Application Level Programmers’ Model
A2.6.4 Advanced SIMD and VFP system registers

The Advanced SIMD and VFP extensions have a shared register space for system registers. Only one
register in this space is accessible at the application level, see Floating-point Status and Control Register
(FPSCR).

See Advanced SIMD and VFP extension system registers on page B1-66 for the system level description of
the registers.

Floating-point Status and Control Register (FPSCR)

The Floating-point Status and Control Register (FPSCR) is implemented in any system that implements one
or both of:

• the VFP extension

• the Advanced SIMD extension.

The FPSCR provides all necessary User level control of the floating-point system

The FPSCR is a 32-bit read/write system register, accessible in unprivileged and privileged modes.

The format of the FPSCR is:

Bits [31:28] Condition code bits. These are updated on floating-point comparison operations. They are
not updated on SIMD operations, and do not affect SIMD instructions.

N, bit [31] Negative condition code flag.

Z, bit [30] Zero condition code flag.

C, bit [29] Carry condition code flag.

V, bit [28] Overflow condition code flag.

QC, bit [27] Cumulative saturation flag, Advanced SIMD only. This bit is set to 1 to indicate that an
Advanced SIMD integer operation has saturated since 0 was last written to this bit. For
details of saturation, see Pseudocode details of saturation on page A2-9.

The value of this bit is ignored by the VFP extension. If Advanced SIMD is not implemented
this bit is UNK/SBZP.

����� �� �� �� �� �	 �
 �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� � � � 	
 � �

�
 � � ������ ��� ����
��
�

���
� �
!�

"�
#

$%&��

������
�
�#�
'#�
"
�
�'�

�"(

����
��
�

�#(
'#(
"
(
�'(

��(

�"�
A2-28 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Programmers’ Model
AHP, bit[26] Alternative half-precision control bit:

0 IEEE half-precision format selected.

1 Alternative half-precision format selected.

For more information see Advanced SIMD and VFP half-precision formats on page A2-38.

If the half-precision extensions are not implemented this bit is UNK/SBZP.

Bits [19,14:13,6:5]

Reserved. UNK/SBZP.

DN, bit [25] Default NaN mode control bit:

0 NaN operands propagate through to the output of a floating-point operation.

1 Any operation involving one or more NaNs returns the Default NaN.

For more information, see NaN handling and the Default NaN on page A2-41.

The value of this bit only controls VFP arithmetic. Advanced SIMD arithmetic always uses
the Default NaN setting, regardless of the value of the DN bit.

FZ, bit [24] Flush-to-zero mode control bit:

0 Flush-to-zero mode disabled. Behavior of the floating-point system is fully
compliant with the IEEE 754 standard.

1 Flush-to-zero mode enabled.

For more information, see Flush-to-zero on page A2-39.

The value of this bit only controls VFP arithmetic. Advanced SIMD arithmetic always uses
the Flush-to-zero setting, regardless of the value of the FZ bit.

RMode, bits [23:22]

Rounding Mode control field. The encoding of this field is:

0b00 Round to Nearest (RN) mode

0b01 Round towards Plus Infinity (RP) mode

0b10 Round towards Minus Infinity (RM) mode

0b11 Round towards Zero (RZ) mode.

The specified rounding mode is used by almost all VFP floating-point instructions.
Advanced SIMD arithmetic always uses the Round to Nearest setting, regardless of the
value of the RMode bits.

Stride, bits [21:20] and Len, bits [18:16]

Use of nonzero values of these fields is deprecated in ARMv7. For details of their use in
previous versions of the ARM architecture see Appendix F VFP Vector Operation Support.

The values of these fields are ignored by the Advanced SIMD extension.

Bits [15,12:8] Floating-point exception trap enable bits. These bits are supported only in VFPv2 and
VFPv3U. They are reserved, RAZ/SBZP, on a system that implements VFPv3.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-29

Application Level Programmers’ Model
The possible values of each bit are:

0 Untrapped exception handling selected

1 Trapped exception handling selected.

The values of these bits control only VFP arithmetic. Advanced SIMD arithmetic always
uses untrapped exception handling, regardless of the values of these bits.

For more information, see Floating-point exceptions on page A2-42.

IDE, bit [15] Input Denormal exception trap enable.

IXE, bit [12] Inexact exception trap enable.

UFE, bit [11] Underflow exception trap enable.

OFE, bit [10] Overflow exception trap enable.

DZE, bit [9] Division by Zero exception trap enable.

IOE, bit [8] Invalid Operation exception trap enable.

Bits [7,4:0] Cumulative exception flags for floating-point exceptions. Each of these bits is set to 1 to
indicate that the corresponding exception has occurred since 0 was last written to it. How
VFP instructions update these bits depends on the value of the corresponding exception trap
enable bits:

Trap enable bit = 0
If the floating-point exception occurs then the cumulative exception flag is set
to 1.

Trap enable bit = 1
If the floating-point exception occurs the trap handling software can decide
whether to set the cumulative exception flag to 1.

Advanced SIMD instructions set each cumulative exception flag if the corresponding
exception occurs in one or more of the floating-point calculations performed by the
instruction, regardless of the setting of the trap enable bits.

For more information, see Floating-point exceptions on page A2-42.

IDC, bit [7] Input Denormal cumulative exception flag.

IXC, bit [4] Inexact cumulative exception flag.

UFC, bit [3] Underflow cumulative exception flag.

OFC, bit [2] Overflow cumulative exception flag.

DZC, bit [1] Division by Zero cumulative exception flag.

IOC, bit [0] Invalid Operation cumulative exception flag.

If the processor implements the integer-only Advanced SIMD extension and does not implement the VFP
extension, all of these bits except QC are UNK/SBZP.

Writes to the FPSCR can have side-effects on various aspects of processor operation. All of these
side-effects are synchronous to the FPSCR write. This means they are guaranteed not to be visible to earlier
instructions in the execution stream, and they are guaranteed to be visible to later instructions in the
execution stream.
A2-30 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Programmers’ Model
Accessing the FPSCR

You read or write the FPSCR using the VMRS and VMSR instructions. For more information, see VMRS on
page A8-658 and VMSR on page A8-660. For example:

VMRS <Rt>, FPSCR ; Read Floating-point System Control Register
VMSR FPSCR, <Rt> ; Write Floating-point System Control Register

A2.6.5 VFPv3U

VFPv3 does not support the exception trap enable bits in the FPSCR, see Floating-point Status and Control
Register (FPSCR) on page A2-28. All floating-point exceptions are untrapped.

The VFPv3U variant of the VFPv3 architecture implements the exception trap enable bits in the FPSCR,
and provides exception handling as described in VFP support code on page B1-70. There is a separate trap
enable bit for each of the six floating-point exceptions described in Floating-point exceptions on
page A2-42. The VFPv3U architecture is otherwise identical to VFPv3.

Trapped exception handling never causes the corresponding cumulative exception bit of the FPSCR to be
set to 1. If this behavior is desired, the trap handler routine must use a read, modify, write sequence on the
FPSCR to set the cumulative exception bit.

VFPv3U is backwards compatible with VFPv2.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-31

Application Level Programmers’ Model
A2.7 Floating-point data types and arithmetic

The VFP extension supports single-precision (32-bit) and double-precision (64-bit) floating-point data
types and arithmetic as defined by the IEEE 754 floating-point standard. It also supports the ARM Standard
modifications to that arithmetic described in Flush-to-zero on page A2-39 and NaN handling and the
Default NaN on page A2-41.

Trapped floating-point exception handling is supported in the VFPv3U variant only (see VFPv3U on
page A2-31).

ARM standard floating-point arithmetic means IEEE 754 floating-point arithmetic with the ARM standard
modifications and:

• the Round to Nearest rounding mode selected

• untrapped exception handling selected for all floating-point exceptions.

The Advanced SIMD extension only supports single-precision ARM standard floating-point arithmetic.

Note
 Implementations of the VFP extension require support code to be installed in the system if trapped
floating-point exception handling is required. See VFP support code on page B1-70.

They might also require support code to be installed in the system to support other aspects of their
floating-point arithmetic. It is IMPLEMENTATION DEFINED which aspects of VFP floating-point arithmetic
are supported in a system without support code installed.

Aspects of floating-point arithmetic that are implemented in support code are likely to run much more
slowly than those that are executed in hardware.

ARM recommends that:

• To maximize the chance of getting high floating-point performance, software developers use ARM
standard floating-point arithmetic.

• Software developers check whether their systems have support code installed, and if not, observe the
IMPLEMENTATION DEFINED restrictions on what operations their VFP implementation can handle
without support code.

• VFP implementation developers implement at least ARM standard floating-point arithmetic in
hardware, so that it can be executed without any need for support code.
A2-32 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Programmers’ Model
A2.7.1 ARM standard floating-point input and output values

ARM standard floating-point arithmetic supports the following input formats defined by the IEEE 754
floating-point standard:

• Zeros.

• Normalized numbers.

• Denormalized numbers are flushed to 0 before floating-point operations. For details, see
Flush-to-zero on page A2-39.

• NaNs.

• Infinities.

ARM standard floating-point arithmetic supports the Round to Nearest rounding mode defined by the IEEE
754 standard.

ARM standard floating-point arithmetic supports the following output result formats defined by the IEEE
754 standard:

• Zeros.

• Normalized numbers.

• Results that are less than the minimum normalized number are flushed to zero, see Flush-to-zero on
page A2-39.

• NaNs produced in floating-point operations are always the default NaN, see NaN handling and the
Default NaN on page A2-41.

• Infinities.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-33

Application Level Programmers’ Model
A2.7.2 Advanced SIMD and VFP single-precision format

The single-precision floating-point format used by the Advanced SIMD and VFP extensions is as defined
by the IEEE 754 standard.

This description includes ARM-specific details that are left open by the standard. It is only intended as an
introduction to the formats and to the values they can contain. For full details, especially of the handling of
infinities, NaNs and signed zeros, see the IEEE 754 standard.

A single-precision value is a 32-bit word, and must be word-aligned when held in memory. It has the format:

The interpretation of the format depends on the value of the exponent field, bits [30:23]:

0 < exponent < 0xFF

The value is a normalized number and is equal to:

–1S × 2(exponent – 127) × (1.fraction)

The minimum positive normalized number is 2–126, or approximately 1.175 ×10–38.

The maximum positive normalized number is (2 – 2–23) × 2127, or approximately
3.403 ×1038.

exponent == 0

The value is either a zero or a denormalized number, depending on the fraction bits:

fraction == 0
The value is a zero. There are two distinct zeros:

+0 when S==0

–0 when S==1.

These usually behave identically. In particular, the result is equal if +0 and –0
are compared as floating-point numbers. However, they yield different results in
some circumstances. For example, the sign of the infinity produced as the result
of dividing by zero depends on the sign of the zero. The two zeros can be
distinguished from each other by performing an integer comparison of the two
words.

fraction != 0

The value is a denormalized number and is equal to:

–1S × 2–126 × (0.fraction)

The minimum positive denormalized number is 2–149, or approximately 1.401 × 10–45.

Denormalized numbers are flushed to zero in the Advanced SIMD extension. They are
optionally flushed to zero in the VFP extension. For details see Flush-to-zero on
page A2-39.

31 30 23 22 0

S exponent fraction
A2-34 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Programmers’ Model
exponent == 0xFF

The value is either an infinity or a Not a Number (NaN), depending on the fraction bits:

fraction == 0

The value is an infinity. There are two distinct infinities:

+∞ When S==0. This represents all positive numbers that are too big to
be represented accurately as a normalized number.

-∞ When S==1. This represents all negative numbers with an absolute
value that is too big to be represented accurately as a normalized
number.

fraction != 0

The value is a NaN, and is either a quiet NaN or a signaling NaN.

In the VFP architecture, the two types of NaN are distinguished on the basis of
their most significant fraction bit, bit [22]:

bit [22] == 0
The NaN is a signaling NaN. The sign bit can take any value, and
the remaining fraction bits can take any value except all zeros.

bit [22] == 1
The NaN is a quiet NaN. The sign bit and remaining fraction bits
can take any value.

For details of the default NaN see NaN handling and the Default NaN on page A2-41.

Note
 NaNs with different sign or fraction bits are distinct NaNs, but this does not mean you can use floating-point
comparison instructions to distinguish them. This is because the IEEE 754 standard specifies that a NaN
compares as unordered with everything, including itself. However, you can use integer comparisons to
distinguish different NaNs.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-35

Application Level Programmers’ Model
A2.7.3 VFP double-precision format

The double-precision floating-point format used by the VFP extension is as defined by the IEEE 754
standard.

This description includes VFP-specific details that are left open by the standard. It is only intended as an
introduction to the formats and to the values they can contain. For full details, especially of the handling of
infinities, NaNs and signed zeros, see the IEEE 754 standard.

A double-precision value consists of two 32-bit words, with the formats:

Most significant word:

Least significant word:

When held in memory, the two words must appear consecutively and must both be word-aligned. The order
of the two words depends on the endianness of the memory system:

• In a little-endian memory system, the least significant word appears at the lower memory address and
the most significant word at the higher memory address.

• In a big-endian memory system, the most significant word appears at the lower memory address and
the least significant word at the higher memory address.

Double-precision values represent numbers, infinities and NaNs in a similar way to single-precision values,
with the interpretation of the format depending on the value of the exponent:

0 < exponent < 0x7FF

The value is a normalized number and is equal to:

–1S × 2exponent–1023 × (1.fraction)

The minimum positive normalized number is 2–1022, or approximately 2.225 × 10–308.

The maximum positive normalized number is (2 – 2–52) × 21023, or approximately
1.798 × 10308.

exponent == 0

The value is either a zero or a denormalized number, depending on the fraction bits:

fraction == 0
The value is a zero. There are two distinct zeros that behave analogously to the
two single-precision zeros:

+0 when S==0

–0 when S==1.

31 30 20 19 0

S exponent fraction[51:32]

31 0

fraction[31:0]
A2-36 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Programmers’ Model
fraction != 0

The value is a denormalized number and is equal to:

1–S × 2–1022 × (0.fraction)

The minimum positive denormalized number is 2–1074, or approximately 4.941 × 10–324.

Optionally, denormalized numbers are flushed to zero in the VFP extension. For details see
Flush-to-zero on page A2-39.

exponent == 0x7FF

The value is either an infinity or a NaN, depending on the fraction bits:

fraction == 0
the value is an infinity. As for single-precision, there are two infinities:

+∞ Plus infinity, when S==0

-∞ Minus infinity, when S==1.

fraction != 0
The value is a NaN, and is either a quiet NaN or a signaling NaN.

In the VFP architecture, the two types of NaN are distinguished on the basis of
their most significant fraction bit, bit [19] of the most significant word:

bit [19] == 0

The NaN is a signaling NaN. The sign bit can take any value, and
the remaining fraction bits can take any value except all zeros.

bit [19] == 1

The NaN is a quiet NaN. The sign bit and the remaining fraction bits
can take any value.

For details of the default NaN see NaN handling and the Default NaN on page A2-41.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-37

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Inserted Text
(-1)^S

ARM_2011_Q2
Sticky Note
The first term should be -1 to the power of S, which evaluates to:
 • 1 when S==0
 • -1 when S==1.

Application Level Programmers’ Model
A2.7.4 Advanced SIMD and VFP half-precision formats

Two half-precision floating-point formats are used by the half-precision extensions to Advanced SIMD and
VFP:

• IEEE half-precision, as described in the revised IEEE 754 standard

• Alternative half-precision.

The description of IEEE half-precision includes ARM-specific details that are left open by the standard, and
is only an introduction to the formats and to the values they can contain. For more information, especially
on the handling of infinities, NaNs and signed zeros, see the IEEE 754 standard.

For both half-precision floating-point formats, the layout of the 16-bit number is the same. The format is:

The interpretation of the format depends on the value of the exponent field, bits[14:10] and on which
half-precision format is being used.

0 < exponent < 0x1F

The value is a normalized number and is equal to:

–1S × 2((exponent-15) × (1.fraction)

The minimum positive normalized number is 2–14, or approximately 6.104 ×10–5.

The maximum positive normalized number is (2 – 2–10) × 215, or 65504.

Larger normalized numbers can be expressed using the alternative format when the
exponent == 0x1F.

exponent == 0

The value is either a zero or a denormalized number, depending on the fraction bits:

fraction == 0

The value is a zero. There are two distinct zeros:

+0 when S==0

–0 when S==1.

fraction != 0

The value is a denormalized number and is equal to:

–1S × 2–14 × (0.fraction)

The minimum positive denormalized number is 2–25, or approximately 2.980 × 10–8.

15 14 10 9 0

S Exponent Fraction
A2-38 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
24

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
5.960

Application Level Programmers’ Model
exponent == 0x1F

The value depends on which half-precision format is being used:

IEEE Half-precision

The value is either an infinity or a Not a Number (NaN), depending on the
fraction bits:

fraction == 0

The value is an infinity. There are two distinct infinities:

+∞ When S==0. This represents all positive
numbers that are too big to be represented
accurately as a normalized number.

-∞ When S==1. This represents all negative
numbers with an absolute value that is too
big to be represented accurately as a
normalized number.

fraction != 0
The value is a NaN, and is either a quiet NaN or a signaling NaN.
The two types of NaN are distinguished by their most significant
fraction bit, bit [9]:

bit [9] == 0 The NaN is a signaling NaN. The sign bit
can take any value, and the remaining
fraction bits can take any value except all
zeros.

bit [9] == 1 The NaN is a quiet NaN. The sign bit and
remaining fraction bits can take any value.

Alternative Half-precision

The value is a normalized number and is equal to:

-1S x 216 x (1.fraction)

The maximum positive normalized number is (2-2-10) x 216 or 131008.

A2.7.5 Flush-to-zero

The performance of floating-point implementations can be significantly reduced when performing
calculations involving denormalized numbers and Underflow exceptions. In particular this occurs for
implementations that only handle normalized numbers and zeros in hardware, and invoke support code to
handle any other types of value. For an algorithm where a significant number of the operands and
intermediate results are denormalized numbers, this can result in a considerable loss of performance.

In many of these algorithms, this performance can be recovered, without significantly affecting the accuracy
of the final result, by replacing the denormalized operands and intermediate results with zeros. To permit
this optimization, VFP implementations have a special processing mode called Flush-to-zero mode.
Advanced SIMD implementations always use Flush-to-zero mode.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-39

Application Level Programmers’ Model
Behavior in Flush-to-zero mode differs from normal IEEE 754 arithmetic in the following ways:

• All inputs to floating-point operations that are double-precision de-normalized numbers or
single-precision de-normalized numbers are treated as though they were zero. This causes an Input
Denormal exception, but does not cause an Inexact exception. The Input Denormal exception occurs
only in Flush-to-zero mode.

The FPSCR contains a cumulative exception bit FPSCR.IDC and trap enable bit FPSCR.IDE
corresponding to the Input Denormal exception. For details of how these are used when processing
the exception see Advanced SIMD and VFP system registers on page A2-28.

The occurrence of all exceptions except Input Denormal is determined using the input values after
flush-to-zero processing has occurred.

• The result of a floating-point operation is flushed to zero if the result of the operation before rounding
satisfies the condition:

0 < Abs(result) < MinNorm, where:

— MinNorm == 2-126 for single-precision

— MinNorm == 2-1022 for double-precision.

This causes the FPSCR.UFC bit to be set to 1, and prevents any Inexact exception from occurring for
the operation.

Underflow exceptions occur only when a result is flushed to zero.

In a VFPv2 or VFPv3U implementation Underflow exceptions that occur in Flush-to-zero mode are
always treated as untrapped, even when the Underflow trap enable bit, FPSCR.UFE, is set to 1.

• An Inexact exception does not occur if the result is flushed to zero, even though the final result of
zero is not equivalent to the value that would be produced if the operation were performed with
unbounded precision and exponent range.

For information on the FPSCR bits see Floating-point Status and Control Register (FPSCR) on page A2-28.

When an input or a result is flushed to zero the value of the sign bit of the zero is determined as follows:

• In VFPv3 or VFPv3U, it is preserved. That is, the sign bit of the zero matches the sign bit of the input
or result that is being flushed to zero.

• In VFPv2, it is IMPLEMENTATION DEFINED whether it is preserved or always positive. The same
choice must be made for all cases of flushing an input or result to zero.

Flush-to-zero mode has no effect on half-precision numbers that are inputs to floating-point operations, or
results from floating-point operations.
A2-40 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Programmers’ Model
Note
 Flush-to-zero mode is incompatible with the IEEE 754 standard, and must not be used when IEEE 754
compatibility is a requirement. Flush-to-zero mode must be treated with care. Although it can lead to a major
performance increase on many algorithms, there are significant limitations on its use. These are application
dependent:

• On many algorithms, it has no noticeable effect, because the algorithm does not normally use
denormalized numbers.

• On other algorithms, it can cause exceptions to occur or seriously reduce the accuracy of the results
of the algorithm.

A2.7.6 NaN handling and the Default NaN

The IEEE 754 standard specifies that:

• an operation that produces an Invalid Operation floating-point exception generates a quiet NaN as its
result if that exception is untrapped

• an operation involving a quiet NaN operand, but not a signaling NaN operand, returns an input NaN
as its result.

The VFP behavior when Default NaN mode is disabled adheres to this with the following extra details,
where the first operand means the first argument to the pseudocode function call that describes the
operation:

• If an untrapped Invalid Operation floating-point exception is produced because one of the operands
is a signaling NaN, the quiet NaN result is equal to the signaling NaN with its most significant
fraction bit changed to 1. If both operands are signaling NaNs, the result is produced in this way from
the first operand.

• If an untrapped Invalid Operation floating-point exception is produced for other reasons, the quiet
NaN result is the Default NaN.

• If both operands are quiet NaNs, the result is the first operand.

The VFP behavior when Default NaN mode is enabled, and the Advanced SIMD behavior in all
circumstances, is that the Default NaN is the result of all floating-point operations that:

• generate untrapped Invalid Operation floating-point exceptions

• have one or more quiet NaN inputs.

Table A2-6 on page A2-42 shows the format of the default NaN for ARM floating-point processors.

Default NaN mode is selected for VFP by setting the FPSCR.DN bit to 1, see Floating-point Status and
Control Register (FPSCR) on page A2-28.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-41

Application Level Programmers’ Model
Other aspects of the functionality of the Invalid Operation exception are not affected by Default NaN mode.
These are that:

• If untrapped, it causes the FPSCR.IOC bit be set to 1.

• If trapped, it causes a user trap handler to be invoked. This is only possible in VFPv2 and VFPv3U.

A2.7.7 Floating-point exceptions

The Advanced SIMD and VFP extensions record the following floating-point exceptions in the FPSCR
cumulative flags, see Floating-point Status and Control Register (FPSCR) on page A2-28:

IOC Invalid Operation. The flag is set to 1 if the result of an operation has no mathematical value
or cannot be represented. Cases include infinity * 0, +infinity + (–infinity), for example.
These tests are made after flush-to-zero processing. For example, if flush-to-zero mode is
selected, multiplying a denormalized number and an infinity is treated as 0 * infinity and
causes an Invalid Operation floating-point exception.

IOC is also set on any floating-point operation with one or more signaling NaNs as
operands, except for negation and absolute value, as described in Negation and absolute
value on page A2-47.

DZC Division by Zero. The flag is set to 1 if a divide operation has a zero divisor and a dividend
that is not zero, an infinity or a NaN. These tests are made after flush-to-zero processing, so
if flush-to-zero processing is selected, a denormalized dividend is treated as zero and
prevents Division by Zero from occurring, and a denormalized divisor is treated as zero and
causes Division by Zero to occur if the dividend is a normalized number.

For the reciprocal and reciprocal square root estimate functions the dividend is assumed to
be +1.0. This means that a zero or denormalized operand to these functions sets the DZC
flag.

OFC Overflow. The flag is set to 1 if the absolute value of the result of an operation, produced
after rounding, is greater than the maximum positive normalized number for the destination
precision.

UFC Underflow. The flag is set to 1 if the absolute value of the result of an operation, produced
before rounding, is less than the minimum positive normalized number for the destination
precision, and the rounded result is inexact.

Table A2-6 Default NaN encoding

Half-precision, IEEE Format Single-precision Double-precision

Sign bit 0 0a 0a

Exponent 0x1F 0xFF 0x7FF

Fraction Bit[9] == 1, bits[8:0] == 0 bit [22] == 1, bits [21:0] == 0 bit [51] == 1, bits [50:0] == 0

a. In VFPv2, the sign bit of the Default NaN is UNKNOWN.
A2-42 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Programmers’ Model
The criteria for the Underflow exception to occur are different in Flush-to-zero mode. For
details, see Flush-to-zero on page A2-39.

IXC Inexact. The flag is set to 1 if the result of an operation is not equivalent to the value that
would be produced if the operation were performed with unbounded precision and exponent
range.

The criteria for the Inexact exception to occur are different in Flush-to-zero mode. For
details, see Flush-to-zero on page A2-39.

IDC Input Denormal. The flag is set to 1 if a denormalized input operand is replaced in the
computation by a zero, as described in Flush-to-zero on page A2-39.

With the Advanced SIMD extension and the VFPv3 extension these are non-trapping exceptions and the
data-processing instructions do not generate any trapped exceptions.

With the VFPv2 and VFPv3U extensions:

• These exceptions can be trapped, by setting trap enable flags in the FPSCR, see VFPv3U on
page A2-31. Trapped floating-point exceptions are delivered to user code in an IMPLEMENTATION
DEFINED fashion.

• The definitions of the floating-point exceptions change as follows:

— if the Underflow exception is trapped, it occurs if the absolute value of the result of an
operation, produced before rounding, is less than the minimum positive normalized number
for the destination precision, regardless of whether the rounded result is inexact

— higher priority trapped exceptions can prevent lower priority exceptions from occurring, as
described in Combinations of exceptions on page A2-44.

Table A2-7 shows the default results of the floating-point exceptions:

Table A2-7 Floating-point exception default results

Exception type Default result for positive sign Default result for negative sign

IOC, Invalid Operation Quiet NaN Quiet NaN

DZC, Division by Zero +∞ (plus infinity) –∞ (minus infinity)

OFC, Overflow RN, RP:

RM, RZ:

+∞ (plus infinity)

+MaxNorm

RN, RM:

RP, RZ:

–∞ (minus infinity)

–MaxNorm

UFC, Underflow Normal rounded result Normal rounded result

IXC, Inexact Normal rounded result Normal rounded result

IDC, Input Denormal Normal rounded result Normal rounded result
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-43

Application Level Programmers’ Model
In Table A2-7 on page A2-43:

MaxNorm The maximum normalized number of the destination precision

RM Round towards Minus Infinity mode, as defined in the IEEE 754 standard

RN Round to Nearest mode, as defined in the IEEE 754 standard

RP Round towards Plus Infinity mode, as defined in the IEEE 754 standard

RZ Round towards Zero mode, as defined in the IEEE 754 standard

• For Invalid Operation exceptions, for details of which quiet NaN is produced as the default result see
NaN handling and the Default NaN on page A2-41.

• For Division by Zero exceptions, the sign bit of the default result is determined normally for a
division. This means it is the exclusive OR of the sign bits of the two operands.

• For Overflow exceptions, the sign bit of the default result is determined normally for the overflowing
operation.

Combinations of exceptions

The following pseudocode functions perform floating-point operations:

FixedToFP()
FPAbs()
FPAdd()
FPCompare()
FPCompareGE()
FPCompareGT()
FPDiv()
FPDoubleToSingle()
FPMax()
FPMin()
FPMul()
FPNeg()
FPRecipEstimate()
FPRecipStep()
FPRSqrtEstimate()
FPRSqrtStep()
FPSingleToDouble()
FPSqrt()
FPSub()
FPToFixed()

All of these operations except FPAbs() and FPNeg() can generate floating-point exceptions.

More than one exception can occur on the same operation. The only combinations of exceptions that can
occur are:

• Overflow with Inexact

• Underflow with Inexact

• Input Denormal with other exceptions.
A2-44 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Programmers’ Model
When none of the exceptions caused by an operation are trapped, any exception that occurs causes the
associated cumulative flag in the FPSCR to be set.

When one or more exceptions caused by an operation are trapped, the behavior of the instruction depends
on the priority of the exceptions. The Inexact exception is treated as lowest priority, and Input Denormal as
highest priority:

• If the higher priority exception is trapped, its trap handler is called. It is IMPLEMENTATION DEFINED
whether the parameters to the trap handler include information about the lower priority exception.
Apart from this, the lower priority exception is ignored in this case.

• If the higher priority exception is untrapped, its cumulative bit is set to 1 and its default result is
evaluated. Then the lower priority exception is handled normally, using this default result.

Some floating-point instructions specify more than one floating-point operation, as indicated by the
pseudocode descriptions of the instruction. In such cases, an exception on one operation is treated as higher
priority than an exception on another operation if the occurrence of the second exception depends on the
result of the first operation. Otherwise, it is UNPREDICTABLE which exception is treated as higher priority.

For example, a VMLA.F32 instruction specifies a floating-point multiplication followed by a floating-point
addition. The addition can generate Overflow, Underflow and Inexact exceptions, all of which depend on
both operands to the addition and so are treated as lower priority than any exception on the multiplication.
The same applies to Invalid Operation exceptions on the addition caused by adding opposite-signed
infinities.

The addition can also generate an Input Denormal exception, caused by the addend being a denormalized
number while in Flush-to-zero mode. It is UNPREDICTABLE which of an Input Denormal exception on the
addition and an exception on the multiplication is treated as higher priority, because the occurrence of the
Input Denormal exception does not depend on the result of the multiplication. The same applies to an Invalid
Operation exception on the addition caused by the addend being a signaling NaN.

Note
 Like other details of VFP instruction execution, these rules about exception handling apply to the overall
results produced by an instruction when the system uses a combination of hardware and support code to
implement it. See VFP support code on page B1-70 for more information.

These principles also apply to the multiple floating-point operations generated by VFP instructions in the
deprecated VFP vector mode of operation. For details of this mode of operation see Appendix F VFP Vector
Operation Support.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-45

Application Level Programmers’ Model
A2.7.8 Pseudocode details of floating-point operations

This section contains pseudocode definitions of the floating-point operations used by the architecture.

Generation of specific floating-point values

The following pseudocode functions generate specific floating-point values. The sign argument of
FPInfinity(), FPMaxNormal(), and FPZero() is '0' for the positive version and '1' for the negative version.

// FPZero()
// ========

bits(N) FPZero(bit sign, integer N)
 assert N == 16 || N == 32 || N == 64;
 if N == 16 then
 return sign : ‘00000 0000000000’;
 elsif N == 32 then
 return sign : ‘00000000 00000000000000000000000’;
 else
 return sign : ‘00000000000 00’;

// FPTwo()
// =======

bits(N) FPTwo(integer N)
 assert N == 32 || N == 64;
 if N == 32 then
 return ‘0 10000000 00000000000000000000000’;
 else
 return ‘0 10000000000 00’;

// FPThree()
// =========

bits(N) FPThree(integer N)
 assert N == 32 || N == 64;
 if N == 32 then
 return ‘0 10000000 10000000000000000000000’;
 else
 return ‘0 10000000000 1000’;

// FPMaxNormal()
// =============

bits(N) FPMaxNormal(bit sign, integer N)
 assert N == 16 || N == 32 || N == 64;
 if N == 16 then
 return sign : ‘11110 1111111111’;
 elsif N == 32 then
 return sign : ‘11111110 11111111111111111111111’;
 else
 return sign : ‘11111111110 11’;
A2-46 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Programmers’ Model
// FPInfinity()
// ============

bits(N) FPInfinity(bit sign, integer N)
 assert N == 16 || N == 32 || N == 64;
 if N == 16 then
 return sign : ‘11111 0000000000’;
 elsif N == 32 then
 return sign : ‘11111111 00000000000000000000000’;
 else
 return sign : ‘11111111111 00’;

// FPDefaultNaN()
// ==============

bits(N) FPDefaultNaN(integer N)
 assert N == 16 || N == 32 || N == 64;
 if N == 16 then
 return ‘0 11111 1000000000’;
 elsif N == 32 then
 return ‘0 11111111 10000000000000000000000’;
 else
 return ‘0 11111111111 1000’;

Note
 This definition of FPDefaultNaN() applies to VFPv3 and VFPv3U. For VFPv2, the sign bit of the result is a
single-bit UNKNOWN value, instead of 0.

Negation and absolute value

The floating-point negation and absolute value operations only affect the sign bit. They do not treat NaN
operands specially, nor denormalized number operands when flush-to-zero is selected.

// FPNeg()
// =======

bits(N) FPNeg(bits(N) operand)
 assert N == 32 || N == 64;
 return NOT(operand<N-1>) : operand<N-2:0>;

// FPAbs()
// =======

bits(N) FPAbs(bits(N) operand)
 assert N == 32 || N == 64;
 return ‘0’ : operand<N-2:0>;
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-47

Application Level Programmers’ Model
Floating-point value unpacking

The FPUnpack() function determines the type and numerical value of a floating-point number. It also does
flush-to-zero processing on input operands.

enumeration FPType {FPType_Nonzero, FPType_Zero, FPType_Infinity, FPType_QNaN, FPType_SNaN};

// FPUnpack()
// ==========
//
// Unpack a floating-point number into its type, sign bit and the real number
// that it represents. The real number result has the correct sign for numbers
// and infinities, is very large in magnitude for infinities, and is 0.0 for
// NaNs. (These values are chosen to simplify the description of comparisons
// and conversions.)
//
// The ‘fpscr_val’ argument supplies FPSCR control bits. Status information is
// updated directly in the FPSCR where appropriate.

(FPType, bit, real) FPUnpack(bits(N) fpval, bits(32) fpscr_val)
 assert N == 16 || N == 32 || N == 64;

 if N == 16 then
 sign = fpval<15>;
 exp = fpval<14:10>;
 frac = fpval<9:0>;
 if IsZero(exp) then
 // Produce zero if value is zero
 if IsZero(frac) then
 type = FPType_Zero; value = 0.0;
 else
 type = FPType_Nonzero; value = 2^-14 * (UInt(frac) * 2^-10);
 elsif IsOnes(exp) && fpscr_val<26> == ‘0’ then // Infinity or NaN in IEEE format
 if IsZero(frac) then
 type = FPType_Infinity; value = 2^1000000;
 else
 type = if frac<9> == ‘1’ then FPType_QNaN else FPType_SNaN;
 value = 0.0;
 else
 type = FPType_Nonzero; value = 2^(UInt(exp)-15) * (1.0 + UInt(frac) * 2^-10));

 elsif N == 32 then

 sign = fpval<31>;
 exp = fpval<30:23>;
 frac = fpval<22:0>;
 if IsZero(exp) then
 // Produce zero if value is zero or flush-to-zero is selected.
 if IsZero(frac) || fpscr_val<24> == ‘1’ then
 type = FPType_Zero; value = 0.0;
 if !IsZero(frac) then // Denormalized input flushed to zero
 FPProcessException(FPExc_InputDenorm, fpscr_val);
 else
 type = FPType_Nonzero; value = 2^-126 * (UInt(frac) * 2^-23);
A2-48 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Programmers’ Model
 elsif IsOnes(exp) then
 if IsZero(frac) then
 type = FPType_Infinity; value = 2^1000000;
 else
 type = if frac<22> == ‘1’ then FPType_QNaN else FPType_SNaN;
 value = 0.0;
 else
 type = FPType_Nonzero; value = 2^(UInt(exp)-127) * (1.0 + UInt(frac) * 2^-23));

 else // N == 64

 sign = fpval<63>;
 exp = fpval<62:52>;
 frac = fpval<51:0>;
 if IsZero(exp) then
 // Produce zero if value is zero or flush-to-zero is selected.
 if IsZero(frac) || fpscr_val<24> == ‘1’ then
 type = FPType_Zero; value = 0.0;
 if !IsZero(frac) then // Denormalized input flushed to zero
 FPProcessException(FPExc_InputDenorm, fpscr_val);
 else
 type = FPType_Nonzero; value = 2^-1022 * (UInt(frac) * 2^-52);
 elsif IsOnes(exp) then
 if IsZero(frac) then
 type = FPType_Infinity; value = 2^1000000;
 else
 type = if frac<51> == ‘1’ then FPType_QNaN else FPType_SNaN;
 value = 0.0;
 else
 type = FPType_Nonzero; value = 2^(UInt(exp)-1023) * (1.0 + UInt(frac) * 2^-52));

 if sign == ‘1’ then value = -value;
 return (type, sign, value);

Floating-point exception and NaN handling

The FPProcessException() procedure checks whether a floating-point exception is trapped, and handles it
accordingly:

enumeration FPExc (FPExc_InvalidOp, FPExc_DivideByZero, FPExc_Overflow,
 FPExc_Underflow, FPExc_Inexact, FPExc_InputDenorm};

// FPProcessException()
// ====================
//
// The ‘fpscr_val’ argument supplies FPSCR control bits. Status information is
// updated directly in the FPSCR where appropriate.

FPProcessException(FPExc exception, bits(32) fpscr_val)
 // Get appropriate FPSCR bit numbers
 case exception of
 when FPExc_InvalidOp enable = 8; cumul = 0;
 when FPExc_DivideByZero enable = 9; cumul = 1;
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-49

Application Level Programmers’ Model
 when FPExc_Overflow enable = 10; cumul = 2;
 when FPExc_Underflow enable = 11; cumul = 3;
 when FPExc_Inexact enable = 12; cumul = 4;
 when FPExc_InputDenorm enable = 15; cumul = 7;
 if fpscr_val<enable> then
 IMPLEMENTATION_DEFINED floating-point trap handling;
 else
 FPSCR<cumul> = ‘1’;
 return;

The FPProcessNaN() function processes a NaN operand, producing the correct result value and generating an
Invalid Operation exception if necessary:

// FPProcessNaN()
// ==============
//
// The ‘fpscr_val’ argument supplies FPSCR control bits. Status information is
// updated directly in the FPSCR where appropriate.

bits(N) FPProcessNaN(FPType type, bits(N) operand, bits(32) fpscr_val)
 assert N == 32 || N == 64;
 topfrac = if N == 32 then 22 else 51;
 result = operand;
 if type = FPType_SNaN then
 result<topfrac> = ‘1’;
 FPProcessException(FPExc_InvalidOp, fpscr_val);
 if fpscr_val<25> == ‘1’ then // DefaultNaN requested
 result = FPDefaultNaN(N);
 return result;

The FPProcessNaNs() function performs the standard NaN processing for a two-operand operation:

// FPProcessNaNs()
// ===============
//
// The boolean part of the return value says whether a NaN has been found and
// processed. The bits(N) part is only relevant if it has and supplies the
// result of the operation.
//
// The ‘fpscr_val’ argument supplies FPSCR control bits. Status information is
// updated directly in the FPSCR where appropriate.

(boolean, bits(N)) FPProcessNaNs(FPType type1, FPType type2,
 bits(N) op1, bits(N) op2,
 bits(32) fpscr_val)
 assert N == 32 || N == 64;
 if type1 == FPType_SNaN then
 done = TRUE; result = FPProcessNaN(type1, op1, fpscr_val);
 elsif type2 == FPType_SNaN then
 done = TRUE; result = FPProcessNaN(type2, op2, fpscr_val);
 elsif type1 == FPType_QNaN then
 done = TRUE; result = FPProcessNaN(type1, op1, fpscr_val);
 elsif type2 == FPType_QNaN then
 done = TRUE; result = FPProcessNaN(type2, op2, fpscr_val);
A2-50 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2011_Q2
Inserted Text
=

Application Level Programmers’ Model
 else
 done = FALSE; result = Zeros(N); // ‘Don’t care’ result
 return (done, result);

Floating-point rounding

The FPRound() function rounds and encodes a floating-point result value to a specified destination format.
This includes processing Overflow, Underflow and Inexact floating-point exceptions and performing
flush-to-zero processing on result values.

// FPRound()
// =========
//
// The ‘fpscr_val’ argument supplies FPSCR control bits. Status information is
// updated directly in the FPSCR where appropriate.

bits(N) FPRound(real result, integer N, bits(32) fpscr_val)
 assert N == 16 || N == 32 || N == 64;
 assert result != 0.0;

 // Obtain format parameters - minimum exponent, numbers of exponent and fraction bits.
 if N == 16 then
 minimum_exp = -14; E = 5; F = 10;
 elsif N == 32 then
 minimum_exp = -126; E = 8; F = 23;
 else // N == 64
 minimum_exp = -1022; E = 11; F = 52;

 // Split value into sign, unrounded mantissa and exponent.
 if result < 0.0 then
 sign = ‘1’; mantissa = -result;
 else
 sign = ‘0’; mantissa = result;
 exponent = 0;
 while mantissa < 1.0 do
 mantissa = mantissa * 2.0; exponent = exponent - 1;
 while mantissa >= 2.0 do
 mantissa = mantissa / 2.0; exponent = exponent + 1;

 // Deal with flush-to-zero.
 if fpscr_val<24> == ‘1’ && N != 16 && exponent < minimum_exp then
 result = FPZero(sign, N);
 FPSCR.UFC = ‘1’; // Flush-to-zero never generates a trapped exception
 else

 // Start creating the exponent value for the result. Start by biasing the actual exponent
 // so that the minimum exponent becomes 1, lower values 0 (indicating possible underflow).
 biased_exp = Max(exponent - minimum_exp + 1, 0);
 if biased_exp == 0 then mantissa = mantissa / 2^(minimum_exp - exponent);

 // Get the unrounded mantissa as an integer, and the “units in last place” rounding error.
 int_mant = RoundDown(mantissa * 2^F); // < 2^F if biased_exp == 0, >= 2^F if not
 error = mantissa * 2^F - int_mant;
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-51

Application Level Programmers’ Model
 // Underflow occurs if exponent is too small before rounding, and result is inexact or
 // the Underflow exception is trapped.
 if biased_exp == 0 && (error != 0.0 || fpscr_val<11> == ‘1’) then
 FPProcessException(FPExc_Underflow, fpscr_val);

 // Round result according to rounding mode.
 case fpscr_val<23:22> of
 when ‘00’ // Round to Nearest (rounding to even if exactly halfway)
 round_up = (error > 0.5 || (error == 0.5 && int_mant<0> == ‘1’));
 overflow_to_inf = TRUE;
 when ‘01’ // Round towards Plus Infinity
 round_up = (error != 0.0 && sign == ‘0’);
 overflow_to_inf = (sign == ‘0’);
 when ‘10’ // Round towards Minus Infinity
 round_up = (error != 0.0 && sign == ‘1’);
 overflow_to_inf = (sign == ‘1’);
 when ‘11’ // Round towards Zero
 round_up = FALSE;
 overflow_to_inf = FALSE;
 if round_up then
 int_mant = int_mant + 1;
 if int_mant == 2^F then // Rounded up from denormalized to normalized
 biased_exp = 1;
 if int_mant == 2^(F+1) then // Rounded up to next exponent
 biased_exp = biased_exp + 1; int_mant = int_mant DIV 2;

 // Deal with overflow and generate result.
 if N != 16 || fpscr_val<26> == ‘0’ then // Single, double or IEEE half precision
 if biased_exp >= 2^E - 1 then
 result = if overflow_to_inf then FPInfinity(sign, N) else FPMaxNormal(sign, N);
 FPProcessException(FPExc_Overflow, fpscr_val);
 else
 result = sign : biased_exp<E-1:0> : int_mant<F-1:0>;
 else // Alternative half precision
 if biased_exp >= 2^E then
 result = sign : Ones(15);
 FPProcessException(FPExc_InvalidOp, fpscr_val);
 error = 0.0; // avoid an Inexact exception
 else
 result = sign : biased_exp<E-1:0> : int_mant<F-1:0>;

 // Deal with Inexact exception.
 if error != 0 then
 FPProcessException(FPExc_Inexact, fpscr_val);

 return result;

Selection of ARM standard floating-point arithmetic

StandardFPSCRValue is an FPSCR value that selects ARM standard floating-point arithmetic. Most of the
arithmetic functions have a boolean fpscr_controlled argument that is TRUE for VFP operations and FALSE
for Advanced SIMD operations, and that selects between using the real FPSCR value and this value.
A2-52 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2008_Q4
Inserted Text
 error = 1.0; // Ensure that an Inexact exception does occur

Application Level Programmers’ Model
// StandardFPSCRValue()
// ====================

bits(32) StandardFPSCRValue()
 return ‘00000’ : FPSCR<26> : ‘11000000000000000000000000’;

Comparisons

The FPCompare() function compares two floating-point numbers, producing an (N,Z,C,V) flags result as
shown in Table A2-8:

This result is used to define the VCMP instruction in the VFP extension. The VCMP instruction writes these flag
values in the FPSCR. After using a VMRS instruction to transfer them to the APSR, they can be used to control
conditional execution as shown in Table A8-1 on page A8-8.

// FPCompare()
// ===========

(bit, bit, bit, bit) FPCompare(bits(N) op1, bits(N) op2, boolean quiet_nan_exc,
 boolean fpscr_controlled)
 assert N == 32 || N == 64;
 fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
 (type1,sign1,value1) = FPUnpack(op1, fpscr_val);
 (type2,sign2,value2) = FPUnpack(op2, fpscr_val);
 if type1==FPType_SNaN || type1==FPType_QNaN || type2==FPType_SNaN || type2==FPType_QNaN then
 result = (‘0’,’0’,’1’,’1’);
 if type1==FPType_SNaN || type2==FPType_SNaN || quiet_nan_exc then
 FPProcessException(FPExc_InvalidOp, fpscr_val);
 else
 // All non-NaN cases can be evaluated on the values produced by FPUnpack()
 if value1 == value2 then
 result = (‘0’,’1’,’1’,’0’);
 elsif value1 < value2 then
 result = (‘1’,’0’,’0’,’0’);
 else // value1 > value2
 result = (‘0’,’0’,’1’,’0’);
 return result;

Table A2-8 VFP comparison flag values

Comparison result N Z C V

Equal 0 1 1 0

Less than 1 0 0 0

Greater than 0 0 1 0

Unordered 0 0 1 1
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-53

Application Level Programmers’ Model
The FPCompareEQ(), FPCompareGE() and FPCompareGT() functions are used to describe Advanced SIMD
instructions that perform floating-point comparisons.

// FPCompareEQ()
// =============

boolean FPCompareEQ(bits(32) op1, bits(32) op2, boolean fpscr_controlled)
 fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
 (type1,sign1,value1) = FPUnpack(op1, fpscr_val);
 (type2,sign2,value2) = FPUnpack(op2, fpscr_val);
 if type1==FPType_SNaN || type1==FPType_QNaN || type2==FPType_SNaN || type2==FPType_QNaN then
 result = FALSE;
 if type1==FPType_SNaN || type2==FPType_SNaN then
 FPProcessException(FPExc_InvalidOp, fpscr_val);
 else
 // All non-NaN cases can be evaluated on the values produced by FPUnpack()
 result = (value1 == value2);
 return result;

// FPCompareGE()
// =============

boolean FPCompareGE(bits(32) op1, bits(32) op2, boolean fpscr_controlled)
 fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
 (type1,sign1,value1) = FPUnpack(op1, fpscr_val);
 (type2,sign2,value2) = FPUnpack(op2, fpscr_val);
 if type1==FPType_SNaN || type1==FPType_QNaN || type2==FPType_SNaN || type2==FPType_QNaN then
 result = FALSE;
 FPProcessException(FPExc_InvalidOp, fpscr_val);
 else
 // All non-NaN cases can be evaluated on the values produced by FPUnpack()
 result = (value1 >= value2);
 return result;

// FPCompareGT()
// =============

boolean FPCompareGT(bits(32) op1, bits(32) op2, boolean fpscr_controlled)
 fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
 (type1,sign1,value1) = FPUnpack(op1, fpscr_val);
 (type2,sign2,value2) = FPUnpack(op2, fpscr_val);
 if type1==FPType_SNaN || type1==FPType_QNaN || type2==FPType_SNaN || type2==FPType_QNaN then
 result = FALSE;
 FPProcessException(FPExc_InvalidOp, fpscr_val);
 else
 // All non-NaN cases can be evaluated on the values produced by FPUnpack()
 result = (value1 > value2);
 return result;
A2-54 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Programmers’ Model
Maximum and minimum

// FPMax()
// =======

bits(N) FPMax(bits(N) op1, bits(N) op2, boolean fpscr_controlled)
 assert N == 32 || N == 64;
 fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
 (type1,sign1,value1) = FPUnpack(op1, fpscr_val);
 (type2,sign2,value2) = FPUnpack(op2, fpscr_val);
 (done,result) = FPProcessNaNs(type1, type2, op1, op2, fpscr_val);
 if !done then
 if type1 == FPType_Zero && type2 == FPType_Zero && sign1 == NOT(sign2) then
 // Opposite-signed zeros produce +0.0
 result = FPZero(‘0’, N);
 else
 // All other cases can be evaluated on the values produced by FPUnpack()
 result = if value1 > value2 then op1 else op2;
 return result;

// FPMin()
// =======

bits(N) FPMin(bits(N) op1, bits(N) op2, boolean fpscr_controlled)
 assert N == 32 || N == 64;
 fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
 (type1,sign1,value1) = FPUnpack(op1, fpscr_val);
 (type2,sign2,value2) = FPUnpack(op2, fpscr_val);
 (done,result) = FPProcessNaNs(type1, type2, op1, op2, fpscr_val);
 if !done then
 if type1 == FPType_Zero && type2 == FPType_Zero && sign1 == NOT(sign2) then
 // Opposite-signed zeros produce -0.0
 result = FPZero(‘1’, N);
 else
 // All other cases can be evaluated on the values produced by FPUnpack()
 result = if value1 < value2 then op1 else op2;
 return result;

Addition and subtraction

// FPAdd()
// =======

bits(N) FPAdd(bits(N) op1, bits(N) op2, boolean fpscr_controlled)
 assert N == 32 || N == 64;
 fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
 (type1,sign1,value1) = FPUnpack(op1, fpscr_val);
 (type2,sign2,value2) = FPUnpack(op2, fpscr_val);
 (done,result) = FPProcessNaNs(type1, type2, op1, op2, fpscr_val);
 if !done then
 inf1 = (type1 == FPType_Infinity); inf2 = (type2 == FPType_Infinity);
 zero1 = (type1 == FPType_Zero); zero2 = (type2 == FPType_Zero);
 if inf1 && inf2 && sign1 == NOT(sign2) then
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-55

ARM_2011_Q2
Sticky Note
The inserted change corrects an error in the handling of flushed zeros.

ARM_2011_Q2
Sticky Note
The inserted change corrects an error in the handling of flushed zeros.

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Replacement Text
 if value1 > value2 then
 (type,sign,value) = (type1,sign1,value1);
 else
 (type,sign,value) = (type2,sign2,value2);
 if type == FPType_Infinity then
 result = FPInfinity(sign, N);
 elsif type == FPType_Zero then
 sign = sign1 AND sign2; // Use most positive sign
 result = FPZero(sign, N);
 else
 result = FPRound(value, N, fpscr_val);

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Replacement Text
 if value1 < value2 then
 (type,sign,value) = (type1,sign1,value1);
 else
 (type,sign,value) = (type2,sign2,value2);
 if type == FPType_Infinity then
 result = FPInfinity(sign, N);
 elsif type == FPType_Zero then
 sign = sign1 OR sign2; // Use most negative sign
 result = FPZero(sign, N);
 else
 result = FPRound(value, N, fpscr_val);

Application Level Programmers’ Model
 result = FPDefaultNaN(N);
 FPProcessException(FPExc_InvalidOp, fpscr_val);
 elsif (inf1 && sign1 == ‘0’) || (inf2 && sign2 == ‘0’) then
 result = FPInfinity(‘0’, N);
 elsif (inf1 && sign1 == ‘1’) || (inf2 && sign2 == ‘1’) then
 result = FPInfinity(‘1’, N);
 elsif zero1 && zero2 && sign1 == sign2 then
 result = FPZero(sign1, N);
 else
 result_value = value1 + value2;
 if result_value == 0.0 then // Sign of exact zero result depends on rounding mode
 result_sign = if fpscr_val<23:22> == ‘10’ then ‘1’ else ‘0’;
 result = FPZero(result_sign, N);
 else
 result = FPRound(result_value, N, fpscr_val);
 return result;

// FPSub()
// =======

bits(N) FPSub(bits(N) op1, bits(N) op2, boolean fpscr_controlled)
 assert N == 32 || N == 64;
 fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
 (type1,sign1,value1) = FPUnpack(op1, fpscr_val);
 (type2,sign2,value2) = FPUnpack(op2, fpscr_val);
 (done,result) = FPProcessNaNs(type1, type2, op1, op2, fpscr_val);
 if !done then
 inf1 = (type1 == FPType_Infinity); inf2 = (type2 == FPType_Infinity);
 zero1 = (type1 == FPType_Zero); zero2 = (type2 == FPType_Zero);
 if inf1 && inf2 && sign1 == sign2 then
 result = FPDefaultNaN(N);
 FPProcessException(FPExc_InvalidOp, fpscr_val);
 elsif (inf1 && sign1 == ‘0’) || (inf2 && sign2 == ‘1’) then
 result = FPInfinity(‘0’, N);
 elsif (inf1 && sign1 == ‘1’) || (inf2 && sign2 == ‘0’) then
 result = FPInfinity(‘1’, N);
 elsif zero1 && zero2 && sign1 == NOT(sign2) then
 result = FPZero(sign1, N);
 else
 result_value = value1 - value2;
 if result_value == 0.0 then // Sign of exact zero result depends on rounding mode
 result_sign = if fpscr_val<23:22> == ‘10’ then ‘1’ else ‘0’;
 result = FPZero(result_sign, N);
 else
 result = FPRound(result_value, N, fpscr_val);
 return result;
A2-56 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Programmers’ Model
Multiplication and division

// FPMul()
// =======

bits(N) FPMul(bits(N) op1, bits(N) op2, boolean fpscr_controlled)
 assert N == 32 || N == 64;
 fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
 (type1,sign1,value1) = FPUnpack(op1, fpscr_val);
 (type2,sign2,value2) = FPUnpack(op2, fpscr_val);
 (done,result) = FPProcessNaNs(type1, type2, op1, op2, fpscr_val);
 if !done then
 inf1 = (type1 == FPType_Infinity); inf2 = (type2 == FPType_Infinity);
 zero1 = (type1 == FPType_Zero); zero2 = (type2 == FPType_Zero);
 if (inf1 && zero2) || (zero1 && inf2) then
 result = FPDefaultNaN(N);
 FPProcessException(FPExc_InvalidOp, fpscr_val);
 elsif inf1 || inf2 then
 result_sign = if sign1 == sign2 then ‘0’ else ‘1’;
 result = FPInfinity(result_sign, N);
 elsif zero1 || zero2 then
 result_sign = if sign1 == sign2 then ‘0’ else ‘1’;
 result = FPZero(result_sign, N);
 else
 result = FPRound(value1*value2, N, fpscr_val);
 return result;

// FPDiv()
// =======

bits(N) FPDiv(bits(N) op1, bits(N) op2, boolean fpscr_controlled)
 assert N == 32 || N == 64;
 fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
 (type1,sign1,value1) = FPUnpack(op1, fpscr_val);
 (type2,sign2,value2) = FPUnpack(op2, fpscr_val);
 (done,result) = FPProcessNaNs(type1, type2, op1, op2, fpscr_val);
 if !done then
 inf1 = (type1 == FPType_Infinity); inf2 = (type2 == FPType_Infinity);
 zero1 = (type1 == FPType_Zero); zero2 = (type2 == FPType_Zero);
 if (inf1 && inf2) || (zero1 && zero2) then
 result = FPDefaultNaN(N);
 FPProcessException(FPExc_InvalidOp, fpscr_val);
 elsif inf1 || zero2 then
 result_sign = if sign1 == sign2 then ‘0’ else ‘1’;
 result = FPInfinity(result_sign, N);
 if !inf1 then FPProcessException(FPExc_DivideByZero);
 elsif zero1 || inf2 then
 result_sign = if sign1 == sign2 then ‘0’ else ‘1’;
 result = FPZero(result_sign, N);
 else
 result = FPRound(value1/value2, N, fpscr_val);
 return result;
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-57

Application Level Programmers’ Model
Reciprocal estimate and step

The Advanced SIMD extension includes instructions that support Newton-Raphson calculation of the
reciprocal of a number.

The VRECPE instruction produces the initial estimate of the reciprocal. It uses the following pseudocode
functions:

// FPRecipEstimate()
// =================

bits(32) FPRecipEstimate(bits(32) operand)

 (type,sign,value) = FPUnpack(operand, StandardFPSCRValue());
 if type == FPType_SNaN || type == FPType_QNaN then
 result = FPProcessNaN(type, operand, StandardFPSCRValue());
 elsif type = FPType_Infinity then
 result = FPZero(sign, 32);
 elsif type = FPType_Zero then
 result = FPInfinity(sign, 32);
 FPProcessException(FPExc_DivideByZero, StandardFPSCRValue());
 elsif Abs(value) >= 2^126 then // Result underflows to zero of correct sign
 result = FPZero(sign, 32);
 FPProcessException(FPExc_Underflow, StandardFPSCRValue());;
 else
 // Operand must be normalized, since denormalized numbers are flushed to zero. Scale to a
 // double-precision value in the range 0.5 <= x < 1.0, and calculate result exponent.
 // Scaled value has copied sign bit, exponent = 1022 = double-precision biased version of
 // -1, fraction = original fraction extended with zeros.
 scaled = operand<31> : ‘01111111110’ : operand<22:0> : Zeros(29);
 result_exp = 253 - UInt(operand<30:23>); // In range 253-252 = 1 to 253-1 = 252

 // Call C function to get reciprocal estimate of scaled value.
 estimate = recip_estimate(scaled);

 // Result is double-precision and a multiple of 1/256 in the range 1 to 511/256. Convert
 // to scaled single-precision result with copied sign bit and high-order fraction bits,
 // and exponent calculated above.
 result = estimate<63> : result_exp<7:0> : estimate<51:29>;

 return result;

// UnsignedRecipEstimate()
// =======================

bits(32) UnsignedRecipEstimate(bits(32) operand)

 if operand<31> == ‘0’ then // Operands <= 0x7FFFFFFF produce 0xFFFFFFFF
 result = Ones(32);
 else
 // Generate double-precision value = operand * 2^-32. This has zero sign bit,
 // exponent = 1022 = double-precision biased version of -1, fraction taken from
 // operand, excluding its most significant bit.
 dp_operand = ‘0 01111111110’ : operand<30:0> : Zeros(21);
A2-58 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
==

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
==

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
positive

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
'0'

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
sign

ARM_2009_Q1
Sticky Note
These changes ensure that the result for a negative value of operand is always minus the result for the corresponding positive value of operand, as intended. The existing pseudocode fails to have this property because the recip_estimate() function does not have the corresponding property that recip_estimate(-a) is always equal to -recip_estimate(a).

Application Level Programmers’ Model
 // Call C function to get reciprocal estimate of scaled value.
 estimate = recip_estimate(dp_operand);

 // Result is double-precision and a multiple of 1/256 in the range 1 to 511/256.
 // Multiply by 2^31 and convert to an unsigned integer - this just involves
 // concatenating the implicit units bit with the top 31 fraction bits.
 result = ‘1’ : estimate<51:21>;

 return result;

where recip_estimate() is defined by the following C function:

double recip_estimate(double a)
{
int q, s;
double r;
q = (int)(a * 512.0); /* a in units of 1/512 rounded down */
r = 1.0 / (((double)q + 0.5) / 512.0); /* reciprocal r */
s = (int)(256.0 * r + 0.5); /* r in units of 1/256 rounded to nearest */
return (double)s / 256.0;

}

Table A2-9 shows the results where input values are out of range.

The Newton-Raphson iteration:

xn+1 = xn(2-dxn)

converges to (1/d) if x0 is the result of VRECPE applied to d.

The VRECPS instruction performs a 2 - op1*op2 calculation and can be used with a multiplication to
perform a step of this iteration. The functionality of this instruction is defined by the following pseudocode
function:

// FPRecipStep()
// =============

Table A2-9 VRECPE results for out-of-range inputs

Number type Input Vm[i] Result Vd[i]

Integer <= 0x7FFFFFFF 0xFFFFFFFF

Floating-point NaN Default NaN

Floating-point +/– 0 or denormalized number +/– Infinity a

a. The Division by Zero exception bit in the FPSCR (FPSCR[1]) is set

Floating-point +/– infinity +/– 0

Floating-point Absolute value >= 2126 +/– 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-59

Application Level Programmers’ Model
bits(32) FPRecipStep(bits(32) op1, bits(32) op2)
 (type1,sign1,value1) = FPUnpack(op1, StandardFPSCRValue());
 (type2,sign2,value2) = FPUnpack(op2, StandardFPSCRValue());
 (done,result) = FPProcessNaNs(type1, type2, op1, op2, StandardFPSCRValue());
 if !done then
 inf1 = (type1 == FPType_Infinity); inf2 = (type2 == FPType_Infinity);
 zero1 = (type1 == FPType_Zero); zero2 = (type2 == FPType_Zero);
 if (inf1 && zero2) || (zero1 && inf2) then
 product = FPZero(‘0’, 32);
 else
 product = FPMul(op1, op2, FALSE);
 result = FPSub(FPTwo(32), product, FALSE);
 return result;

Table A2-10 shows the results where input values are out of range.

Square root

// FPSqrt()
// ========

bits(N) FPSqrt(bits(N) operand, boolean fpscr_controlled)
 assert N == 32 || N == 64;
 fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
 (type,sign,value) = FPUnpack(operand, fpscr_val);
 if type == FPType_SNaN || type == FPType_QNaN then
 result = FPProcessNaN(type, operand, fpscr_val);
 elsif type == FPType_Zero || (type = FPType_Infinity && sign == ‘0’) then
 result = operand;
 elsif sign == ‘1’ then
 result = FPDefaultNaN(N);
 FPProcessException(FPExc_InvalidOp, fpscr_val);
 else
 result = FPRound(Sqrt(value), N, fpscr_val);
 return result;

Table A2-10 VRECPS results for out-of-range inputs

Input Vn[i] Input Vm[i] Result Vd[i]

Any NaN - Default NaN

- Any NaN Default NaN

+/– 0.0 or denormalized number +/– infinity 2.0

+/– infinity +/– 0.0 or denormalized number 2.0
A2-60 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Programmers’ Model
Reciprocal square root

The Advanced SIMD extension includes instructions that support Newton-Raphson calculation of the
reciprocal of the square root of a number.

The VRSQRTE instruction produces the initial estimate of the reciprocal of the square root. It uses the following
pseudocode functions:

// FPRSqrtEstimate()
// =================

bits(32) FPRSqrtEstimate(bits(32) operand)

 (type,sign,value) = FPUnpack(operand, StandardFPSCRValue());
 if type == FPType_SNaN || type == FPType_QNaN then
 result = FPProcessNaN(type, operand, StandardFPSCRValue());
 elsif type = FPType_Zero then
 result = FPInfinity(sign, 32);
 FPProcessException(FPExc_DivideByZero, StandardFPSCRValue());
 elsif sign == ‘1’ then
 result = FPDefaultNaN(32);
 FPProcessException(FPExc_InvalidOp, StandardFPSCRValue());
 elsif type = FPType_Infinity then
 result = FPZero(‘0’, 32);
 else
 // Operand must be normalized, since denormalized numbers are flushed to zero. Scale to a
 // double-precision value in the range 0.25 <= x < 1.0, with the evenness or oddness of
 // the exponent unchanged, and calculate result exponent. Scaled value has copied sign
 // bit, exponent = 1022 or 1021 = double-precision biased version of -1 or -2, fraction
 // = original fraction extended with zeros.
 if operand<23> == ‘0’ then
 scaled = operand<31> : ‘01111111110’ : operand<22:0> : Zeros(29);
 else
 scaled = operand<31> : ‘01111111101’ : operand<22:0> : Zeros(29);
 result_exp = (380 - UInt(operand<30:23>)) DIV 2;

 // Call C function to get reciprocal estimate of scaled value.
 estimate = recip_sqrt_estimate(scaled);

 // Result is double-precision and a multiple of 1/256 in the range 1 to 511/256. Convert
 // to scaled single-precision result with copied sign bit and high-order fraction bits,
 // and exponent calculated above.
 result = estimate<63> : result_exp<7:0> : estimate<51:29>;

 return result;

// UnsignedRSqrtEstimate()
// =======================

bits(32) UnsignedRSqrtEstimate(bits(32) operand)

 if operand<31:30> == ‘00’ then // Operands <= 0x3FFFFFFF produce 0xFFFFFFFF
 result = Ones(32);
 else
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-61

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
==

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
==

Application Level Programmers’ Model
 // Generate double-precision value = operand * 2^-32. This has zero sign bit,
 // exponent = 1022 or 1021 = double-precision biased version of -1 or -2,
 // fraction taken from operand, excluding its most significant one or two bits.
 if operand<31> == ‘1’ then
 dp_operand = ‘0 01111111110’ : operand<30:0> : Zeros(21);
 else // operand<31:30> == ‘01’
 dp_operand = ‘0 01111111101’ : operand<29:0> : Zeros(22);

 // Call C function to get reciprocal estimate of scaled value.
 estimate = recip_sqrt_estimate(dp_operand);

 // Result is double-precision and a multiple of 1/256 in the range 1 to 511/256.
 // Multiply by 2^31 and convert to an unsigned integer - this just involves
 // concatenating the implicit units bit with the top 31 fraction bits.
 result = ‘1’ : estimate<51:21>;

 return result;

where recip_sqrt_estimate() is defined by the following C function:

double recip_sqrt_estimate(double a)
{
int q0, q1, s;
double r;
if (a < 0.5) /* range 0.25 <= a < 0.5 */
{
q0 = (int)(a * 512.0); /* a in units of 1/512 rounded down */
r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); /* reciprocal root r */

}
else /* range 0.5 <= a < 1.0 */
{
q1 = (int)(a * 256.0); /* a in units of 1/256 rounded down */
r = 1.0 / sqrt(((double)q1 + 0.5) / 256.0); /* reciprocal root r */

}
s = (int)(256.0 * r + 0.5); /* r in units of 1/256 rounded to nearest */
return (double)s / 256.0;

}

Table A2-11 shows the results where input values are out of range.

Table A2-11 VRSQRTE results for out-of-range inputs

Number type Input Vm[i] Result Vd[i]

Integer <= 0x3FFFFFFF 0xFFFFFFFF

Floating-point NaN, – normalized number, – infinity Default NaN

Floating-point – 0 or – denormalized number – infinity a

Floating-point + 0 or + denormalized number + infinity a

Floating-point + infinity + 0
A2-62 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Programmers’ Model
The Newton-Raphson iteration:

xn+1 = xn(3-dxn2)/2

converges to (1/√d) if x0 is the result of VRSQRTE applied to d.

The VRSQRTS instruction performs a (3 – op1*op2)/2 calculation and can be used with two multiplications to
perform a step of this iteration. The functionality of this instruction is defined by the following pseudocode
function:

// FPRSqrtStep()
// =============

bits(32) FPRSqrtStep(bits(32) op1, bits(32) op2)
 (type1,sign1,value1) = FPUnpack(op1, StandardFPSCRValue());
 (type2,sign2,value2) = FPUnpack(op2, StandardFPSCRValue());
 (done,result) = FPProcessNaNs(type1, type2, op1, op2, StandardFPSCRValue());
 if !done then
 inf1 = (type1 == FPType_Infinity); inf2 = (type2 == FPType_Infinity);
 zero1 = (type1 == FPType_Zero); zero2 = (type2 == FPType_Zero);
 if (inf1 && zero2) || (zero1 && inf2) then
 product = FPZero(‘0’, 32);
 else
 product = FPMul(op1, op2, FALSE);
 result = FPDiv(FPSub(FPThree(32), product, FALSE), FPTwo(32), FALSE);
 return result;

Table A2-12 shows the results where input values are out of range.

a. The Division by Zero exception bit in the FPSCR (FPSCR[1]) is set.

Table A2-12 VRSQRTS results for out-of-range inputs

Input Vn[i] Input Vm[i] Result Vd[i]

Any NaN - Default NaN

- Any NaN Default NaN

+/– 0.0 or denormalized number +/– infinity 1.5

+/– infinity +/– 0.0 or denormalized number 1.5
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-63

Application Level Programmers’ Model
Conversions

The following functions perform conversions between half-precision and single-precision floating-point
numbers.

// FPHalfToSingle()
// ================

bits(32) FPHalfToSingle(bits(16) operand, boolean fpscr_controlled)
 fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
 (type,sign,value) = FPUnpack(operand, fpscr_val);
 if type == FPType_SNaN || type == FPType_QNaN then
 if fpscr_val<25> == ‘1’ then // DN bit set
 result = FPDefaultNaN(32);
 else
 result = sign : ‘11111111 1’ : operand<8:0> : Zeros(13);
 if type == FPType_SNaN then
 FPProcessException(FPExc_InvalidOp, fpscr_val);
 elsif type = FPType_Infinity then
 result = FPInfinity(sign, 32);
 elsif type = FPType_Zero then
 result = FPZero(sign, 32);
 else
 result = FPRound(value, 32, fpscr_val); // Rounding will be exact
 return result;

// FPSingleToHalf()
// ================

bits(16) FPSingleToHalf(bits(32) operand, boolean fpscr_controlled)
 fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
 (type,sign,value) = FPUnpack(operand, fpscr_val);
 if type == FPType_SNaN || type == FPType_QNaN then
 if fpscr_val<26> == ‘1’ then // AH bit set
 result = FPZero(sign, 16);
 elsif fpscr_val<25> == ‘1’ then // DN bit set
 result = FPDefaultNaN(16);
 else
 result = sign : ‘11111 1’ : operand<21:13>;
 if type == FPType_SNaN || fpscr_val<26> == ‘1’ then
 FPProcessException(FPExc_InvalidOp, fpscr_val);
 elsif type = FPType_Infinity then
 if fpscr_val<26> == ‘1’ then // AH bit set
 result = sign : Ones(15);
 FPProcessException(FPExc_InvalidOp, fpscr_val);
 else
 result = FPInfinity(sign, 16);
 elsif type = FPType_Zero then
 result = FPZero(sign, 16);
 else
 result = FPRound(value, 16, fpscr_val);
 return result;
A2-64 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2011_Q2
Inserted Text
=

ARM_2011_Q2
Inserted Text
=

ARM_2011_Q2
Inserted Text
=

ARM_2011_Q2
Inserted Text
=

Application Level Programmers’ Model
The following functions perform conversions between single-precision and double-precision floating-point
numbers.

// FPSingleToDouble()
// ==================

bits(64) FPSingleToDouble(bits(32) operand, boolean fpscr_controlled)
 fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
 (type,sign,value) = FPUnpack(operand, fpscr_val);
 if type == FPType_SNaN || type == FPType_QNaN then
 if fpscr_val<25> == ‘1’ then // DN bit set
 result = FPDefaultNaN(64);
 else
 result = sign : ‘11111111111 1’ : operand<21:0> : Zeros(29);
 if type == FPType_SNaN then
 FPProcessException(FPExc_InvalidOp, fpscr_val);
 elsif type = FPType_Infinity then
 result = FPInfinity(sign, 64);
 elsif type = FPType_Zero then
 result = FPZero(sign, 64);
 else
 result = FPRound(value, 64, fpscr_val); // Rounding will be exact
 return result;

// FPDoubleToSingle()
// ==================

bits(32) FPDoubleToSingle(bits(64) operand, boolean fpscr_controlled)
 fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
 (type,sign,value) = FPUnpack(operand, fpscr_val);
 if type == FPType_SNaN || type == FPType_QNaN then
 if fpscr_val<25> == ‘1’ then // DN bit set
 result = FPDefaultNaN(32);
 else
 result = sign : ‘11111111 1’ : operand<50:29>;
 if type == FPType_SNaN then
 FPProcessException(FPExc_InvalidOp, fpscr_val);
 elsif type = FPType_Infinity then
 result = FPInfinity(sign, 32);
 elsif type = FPType_Zero then
 result = FPZero(sign, 32);
 else
 result = FPRound(value, 32, fpscr_val);
 return result;

The following functions perform conversions between floating-point numbers and integers or fixed-point
numbers:
// FPToFixed()
// ===========

bits(M) FPToFixed(bits(N) operand, integer M, integer fraction_bits, boolean unsigned,
 boolean round_towards_zero, boolean fpscr_controlled)
 assert N == 32 || N == 64;
 fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-65

ARM_2011_Q2
Inserted Text
=

ARM_2011_Q2
Inserted Text
=

ARM_2011_Q2
Inserted Text
=

ARM_2011_Q2
Inserted Text
=

Application Level Programmers’ Model
 if round_towards_zero then fpscr_val<23:22> = ‘11’;
 (type,sign,value) = FPUnpack(operand, fpscr_val);

 // For NaNs and infinities, FPUnpack() has produced a value that will round to the
 // required result of the conversion. Also, the value produced for infinities will
 // cause the conversion to overflow and signal an Invalid Operation floating-point
 // exception as required. NaNs must also generate such a floating-point exception.
 if type == FPType_SNaN || type == FPType_QNaN then
 FPProcessException(FPExc_InvalidOp, fpscr_val);

 // Scale value by specified number of fraction bits, then start rounding to an integer
 // and determine the rounding error.
 value = value * 2^fraction_bits;
 int_result = RoundDown(value);
 error = value - int_result;

 // Apply the specified rounding mode.
 case fpscr_val<23:22> of
 when ‘00’ // Round to Nearest (rounding to even if exactly halfway)
 round_up = (error > 0.5 || (error == 0.5 && int_result<0> == ‘1’));
 when ‘01’ // Round towards Plus Infinity
 round_up = (error != 0.0);
 when ‘10’ // Round towards Minus Infinity
 round_up = FALSE;
 when ‘11’ // Round towards Zero
 round_up = (error != 0.0 && int_result < 0);
 if round_up then int_result = int_result + 1;

 // Bitstring result is the integer result saturated to the destination size, with
 // saturation indicating overflow of the conversion (signaled as an Invalid
 // Operation floating-point exception).
 (result, overflow) = SatQ(int_result, M, unsigned);
 if overflow then
 FPProcessException(FPExc_InvalidOp, fpscr_val);
 elsif error != 0 then
 FPProcessException(FPExc_Inexact, fpscr_val);

 return result;

// FixedToFP()
// ===========

bits(N) FixedToFP(bits(M) operand, integer N, integer fraction_bits, boolean unsigned,
 boolean round_to_nearest, boolean fpscr_controlled)
 assert N == 32 || N == 64;
 fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
 if round_to_nearest then fpscr_val<23:22> = ‘00’;
 int_operand = if unsigned then UInt(operand) else SInt(operand);
 real_operand = int_operand / 2^fraction_bits;
 if real_operand == 0.0 then
 result = FPZero(‘0’, N);
 else
 result = FPRound(real_operand, N, fpscr_val);
 return result;
A2-66 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Programmers’ Model
A2.8 Polynomial arithmetic over {0,1}

The polynomial data type represents a polynomial in x of the form bn–1xn–1 + … + b1x + b0 where bk is
bit [k] of the value.

The coefficients 0 and 1 are manipulated using the rules of Boolean arithmetic:

• 0 + 0 = 1 + 1 = 0

• 0 + 1 = 1 + 0 = 1

• 0 * 0 = 0 * 1 = 1 * 0 = 0

• 1 * 1 = 1.

That is:

• adding two polynomials over {0,1} is the same as a bitwise exclusive OR

• multiplying two polynomials over {0,1} is the same as integer multiplication except that partial
products are exclusive-ORed instead of being added.

A2.8.1 Pseudocode details of polynomial multiplication

In pseudocode, polynomial addition is described by the EOR operation on bitstrings.

Polynomial multiplication is described by the PolynomialMult() function:

// PolynomialMult()
// ================

bits(M+N) PolynomialMult(bits(M) op1, bits(N) op2)
 result = Zeros(M+N);
 extended_op2 = Zeros(M) : op2;
 for i=0 to M-1
 if op1<i> == ‘1’ then
 result = result EOR LSL(extended_op2, i);
 return result;
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-67

Application Level Programmers’ Model
A2.9 Coprocessor support

Coprocessor space is used to extend the functionality of an ARM processor. There are sixteen coprocessors
defined in the coprocessor instruction space. These are commonly known as CP0 to CP15. The following
coprocessors are reserved by ARM for specific purposes:

• Coprocessor 15 (CP15) provides system control functionality. This includes architecture and feature
identification, as well as control, status information and configuration support. The following
sections describe CP15:

— CP15 registers for a VMSA implementation on page B3-64

— CP15 registers for a PMSA implementation on page B4-22.

CP15 also provides performance monitor registers, see Chapter C9 Performance Monitors.

• Coprocessor 14 (CP14) supports:

— debug, see Chapter C6 Debug Register Interfaces

— the execution environment features defined by the architecture, see Execution environment
support on page A2-69.

• Coprocessor 11 (CP11) supports double-precision floating-point operations.

• Coprocessor 10 (CP10) supports single-precision floating-point operations and the control and
configuration of both the VFP and the Advanced SIMD architecture extensions.

• Coprocessors 8, 9, 12, and 13 are reserved for future use by ARM.

Note
 Any implementation that includes either or both of the Advanced SIMD extension and the VFP extension
must enable access to both CP10 and CP11, see Enabling Advanced SIMD and floating-point support on
page B1-64.

In general, privileged access is required for:

• system control through CP15

• debug control and configuration

• access to the identification registers

• access to any register bits that enable or disable coprocessor features.

For details of the exact split between the privileged and unprivileged coprocessor operations see the relevant
sections of this manual.

All load, store, branch and data operation instructions associated with floating-point, Advanced SIMD and
execution environment support can execute unprivileged.

Coprocessors 0 to 7 can be used to provide vendor specific features.
A2-68 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Programmers’ Model
A2.10 Execution environment support

The Jazelle and ThumbEE states, introduced in ISETSTATE on page A2-15, support execution
environments:

• The ThumbEE state is more generic, supporting a variant of the Thumb instruction set that minimizes
the code size overhead generated by a Just-In-Time (JIT) or Ahead-Of-Time (AOT) compiler. JIT and
AOT compilers convert execution environment source code to a native executable. For more
information, see Thumb Execution Environment.

• The Jazelle state is specific to hardware acceleration of Java bytecodes. For more information, see
Jazelle direct bytecode execution support on page A2-73.

A2.10.1 Thumb Execution Environment

Thumb Execution Environment (ThumbEE) is a variant of the Thumb instruction set designed as a target for
dynamically generated code. This is code that is compiled on the device, from a portable bytecode or other
intermediate or native representation, either shortly before or during execution. ThumbEE provides support
for Just-In-Time (JIT), Dynamic Adaptive Compilation (DAC) and Ahead-Of-Time (AOT) compilers, but
cannot interwork freely with the ARM and Thumb instruction sets.

ThumbEE is particularly suited to languages that feature managed pointers and array types.

ThumbEE executes instructions in the ThumbEE instruction set state. For information about instruction set
states see ISETSTATE on page A2-15.

See Thumb Execution Environment on page B1-73 for system level information about ThumbEE.

ThumbEE instructions

In ThumbEE state, the processor executes almost the same instruction set as in Thumb state. However some
instructions behave differently, some are removed, and some ThumbEE instructions are added.

The key differences are:

• additional instructions to change instruction set in both Thumb state and ThumbEE state

• new ThumbEE instructions to branch to handlers

• null pointer checking on load/store instructions executed in ThumbEE state

• an additional instruction in ThumbEE state to check array bounds

• some other modifications to load, store, and control flow instructions.

For more information about the ThumbEE instructions see Chapter A9 ThumbEE.

ThumbEE configuration

ThumbEE introduces two new registers:

• ThumbEE Configuration Register, TEECR. This contains a single bit, the ThumbEE configuration
control bit, XED.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-69

ARM_2011_Q2
Inserted Text

From the publication of the ARM_2011_Q2 release of this errata PDF, ARM deprecates any use of the ThumbEE instruction set.

ARM_2011_Q2
Sticky Note
The insertion after this paragraph deprecates use of the ThumbEE instruction set.

Application Level Programmers’ Model
• ThumbEE Handler Base Register. This contains the base address for ThumbEE handlers.

A handler is a short, commonly executed, sequence of instructions. It is typically, but not always,
associated directly with one or more bytecodes or other intermediate language elements.

Changes to these CP14 registers have the same synchronization requirements as changes to the CP15
registers. These are described in:

• Changes to CP15 registers and the memory order model on page B3-77 for a VMSA implementation

• Changes to CP15 registers and the memory order model on page B4-28 for a PMSA implementation.

ThumbEE is an unprivileged, user-level facility, and there are no special provisions for using it securely. For
more information, see ThumbEE and the Security Extensions on page B1-73.

ThumbEE Configuration Register (TEECR)

The ThumbEE Configuration Register (TEECR) controls unprivileged access to the ThumbEE Handler
Base Register.

The TEECR is:

• a CP14 register

• a 32-bit register, with access rights that depend on the current privilege:

— the result of an unprivileged write to the register is UNDEFINED

— unprivileged reads, and privileged reads and writes, are permitted.

• when the Security Extensions are implemented, a Common register.

The format of the TEECR is:

Bits [31:1] UNK/SBZP.

XED, bit [0] Execution Environment Disable bit. Controls unprivileged access to the ThumbEE Handler
Base Register:

0 Unprivileged access permitted.

1 Unprivileged access disabled.

The reset value of this bit is 0.

The effects of a write to this register on ThumbEE configuration are only guaranteed to be visible to
subsequent instructions after the execution of an ISB instruction, an exception entry or an exception return.
However, a read of this register always returns the value most recently written to the register.

To access the TEECR, read or write the CP14 registers with an MRC or MCR instruction with <opc1> set to 6,
<CRn> set to c0, <CRm> set to c0, and <opc2> set to 0. For example:

MRC p14, 6, <Rt>, c0, c0, 0 ; Read ThumbEE Configuration Register
MCR p14, 6, <Rt>, c0, c0, 0 ; Write ThumbEE Configuration Register

31 1 0

UNK/SBZP XED
A2-70 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Programmers’ Model
ThumbEE Handler Base Register (TEEHBR)

The ThumbEE Handler Base Register (TEEHBR) holds the base address for ThumbEE handlers.

The TEEHBR is:

• a CP14 register

• a 32-bit read/write register, with access rights that depend on the current privilege and the value of
the TEECR.XED bit:

— privileged accesses are always permitted

— when TEECR.XED == 0, unprivileged accesses are permitted

— when TEECR.XED == 1, the result of an unprivileged access is UNDEFINED.

• when the Security Extensions are implemented, a Common register.

The format of the TEEHBR is:

HandlerBase, bits [31:2]

The address of the ThumbEE Handler_00 implementation. This is the address of the first of
the ThumbEE handlers.

The reset value of this field is UNKNOWN.

bits [1:0] Reserved, SBZ.

The effects of a write to this register on ThumbEE handler entry are only guaranteed to be visible to
subsequent instructions after the execution of an ISB instruction, an exception entry or an exception return.
However, a read of this register always returns the value most recently written to the register.

To access the TEEHBR, read or write the CP14 registers with an MRC or MCR instruction with <opc1> set to 6,
<CRn> set to c1, <CRm> set to c0, and <opc2> set to 0. For example:

MRC p14, 6, <Rt>, c1, c0, 0 ; Read ThumbEE Handler Base Register
MCR p14, 6, <Rt>, c1, c0, 0 ; Write ThumbEE Handler Base Register

31 2 1 0

HandlerBase SBZ
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-71

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
UNK/SBZP

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
UNK/SBZP

Application Level Programmers’ Model
Use of HandlerBase

ThumbEE handlers are entered by reference to a HandlerBase address, defined by the TEEHBR. See
ThumbEE Handler Base Register (TEEHBR) on page A2-71. Table A2-13 shows how the handlers are
arranged in relation to the value of HandlerBase:

The IndexCheck occurs when a CHKA instruction detects an index out of range. For more information, see
CHKA on page A9-15.

The NullCheck occurs when any memory access instruction is executed with a value of 0 in the base register.
For more information, see Null checking on page A9-3.

Note
 Checks are similar to conditional branches, with the added property that they clear the IT bits when taken.

Other handlers are called using explicit handler call instructions. For details see the following sections:

• HB, HBL on page A9-16

• HBLP on page A9-17

• HBP on page A9-18.

Table A2-13 Access to ThumbEE handlers

Offset from HandlerBase Name Value stored

-0x0008 IndexCheck Branch to IndexCheck handler

-0x0004 NullCheck Branch to NullCheck handler

+0x0000 Handler_00 Implementation of Handler_00

+0x0020 Handler_01 Implementation of Handler_01

...

+(0x0000 + 32n) Handler_<n> Implementation of Handler_<n>

... ... Implementation of additional handlers
A2-72 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Programmers’ Model
A2.10.2 Jazelle direct bytecode execution support

From ARMv5TEJ, the architecture requires every system to include an implementation of the Jazelle
extension. The Jazelle extension provides architectural support for hardware acceleration of bytecode
execution by a Java Virtual Machine (JVM).

In the simplest implementations of the Jazelle extension, the processor does not accelerate the execution of
any bytecodes, and the JVM uses software routines to execute all bytecodes. Such an implementation is
called a trivial implementation of the Jazelle extension, and has minimal additional cost compared with not
implementing the Jazelle extension at all. An implementation that provides hardware acceleration of
bytecode execution is a non-trivial Jazelle implementation.

These requirements for the Jazelle extension mean a JVM can be written to both:

• function correctly on all processors that include a Jazelle extension implementation

• automatically take advantage of the accelerated bytecode execution provided by a processor that
includes a non-trivial implementation.

Typically, a non-trivial implementation of the Jazelle extension implements a subset of the bytecodes in
hardware, choosing bytecodes that:

• can have simple hardware implementations

• account for a large percentage of bytecode execution time.

The required features of a non-trivial implementation are:

• provision of the Jazelle state

• a new instruction, BXJ, to enter Jazelle state

• system support that enables an operating system to regulate the use of the Jazelle extension hardware

• system support that enables a JVM to configure the Jazelle extension hardware to its specific needs.

The required features of a trivial implementation are:

• Normally, the Jazelle instruction set state is never entered. If an incorrect exception return causes
entry to the Jazelle instruction set state, the next instruction executed is treated as UNDEFINED.

• The BXJ instruction behaves as a BX instruction.

• Configuration support that maintains the interface to the Jazelle extension is permanently disabled.

For more information about trivial implementations see Trivial implementation of the Jazelle extension on
page B1-81.

A JVM that has been written to take advantage automatically of hardware-accelerated bytecode execution
is known as an Enabled JVM (EJVM).
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-73

Application Level Programmers’ Model
Subarchitectures

A processor implementation that includes the Jazelle extension expects the general-purpose register values
and other resources of the ARM processor to conform to an interface standard defined by the Jazelle
implementation when Jazelle state is entered and exited. For example, a specific general-purpose register
might be reserved for use as the pointer to the current bytecode.

In order for an EJVM and associated debug support to function correctly, it must be written to comply with
the interface standard defined by the acceleration hardware at Jazelle state execution entry and exit points.

An implementation of the Jazelle extension might define other configuration registers in addition to the
architecturally defined ones.

The interface standard and any additional configuration registers used to communicate with the Jazelle
extension are known collectively as the subarchitecture of the implementation. They are not described in
this manual. Only EJVM implementations and debug or similar software can depend on the subarchitecture.
All other software must rely only on the architectural definition of the Jazelle extension given in this manual.
A particular subarchitecture is identified by reading the JIDR described in Jazelle ID Register (JIDR) on
page A2-76.

Jazelle state

While the processor is in Jazelle state, it executes bytecode programs. A bytecode program is defined as an
executable object that comprises one or more class files, or is derived from and functionally equivalent to
one or more class files. See Lindholm and Yellin, The Java Virtual Machine Specification 2nd Edition for
the definition of class files.

While the processor is in Jazelle state, the PC identifies the next JVM bytecode to be executed. A JVM
bytecode is a bytecode defined in Lindholm and Yellin, or a functionally equivalent transformed version of
a bytecode defined in Lindholm and Yellin.

For the Jazelle extension, the functionality of Native methods, as described in Lindholm and Yellin, must be
specified using only instructions from the ARM, Thumb, and ThumbEE instruction sets.

An implementation of the Jazelle extension must not be documented or promoted as performing any task
while it is in Jazelle state other than the acceleration of bytecode programs in accordance with this section
and The Java Virtual Machine Specification.

Jazelle state entry instruction, BXJ

ARMv7 includes an ARM instruction similar to BX. The BXJ instruction has a single register operand that
specifies a target instruction set state, ARM state or Thumb state, and branch target address for use if entry
to Jazelle state is not available. For more information, see BXJ on page A8-64.

Correct entry into Jazelle state involves the EJVM executing the BXJ instruction at a time when both:

• the Jazelle extension Control and Configuration registers are initialized correctly, see Application
level configuration and control of the Jazelle extension on page A2-75
A2-74 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Programmers’ Model
• application level registers and any additional configuration registers are initialized as required by the
subarchitecture of the implementation.

Executing BXJ with Jazelle extension enabled

Executing a BXJ instruction when the JMCR.JE bit is 1, see Jazelle Main Configuration Register (JMCR) on
page A2-77, causes the Jazelle hardware to do one of the following:

• enter Jazelle state and start executing bytecodes directly from a SUBARCHITECTURE DEFINED address

• branch to a SUBARCHITECTURE DEFINED handler.

Which of these occurs is SUBARCHITECTURE DEFINED.

The Jazelle subarchitecture can use Application Level registers (but not System Level registers) to transfer
information between the Jazelle extension and the EJVM. There are SUBARCHITECTURE DEFINED
restrictions on what Application Level registers must contain when a BXJ instruction is executed, and
Application Level registers have SUBARCHITECTURE DEFINED values when Jazelle state execution ends and
ARM or Thumb state execution resumes.

Jazelle subarchitectures and implementations must not use any unallocated bits in Application Level
registers such as the CPSR or FPSCR. All such bits are reserved for future expansion of the ARM
architecture.

Executing BXJ with Jazelle extension disabled

If a BXJ instruction is executed when the JMCR.JE bit is 0, it is executed identically to a BX instruction with
the same register operand.

This means that BXJ instructions can be executed freely when the JMCR.JE bit is 0. In particular, if an EJVM
determines that it is executing on a processor whose Jazelle extension implementation is trivial or uses an
incompatible subarchitecture, it can set JE == 0 and execute correctly. In this case it executes without the
benefit of any Jazelle hardware acceleration that might be present.

Application level configuration and control of the Jazelle extension

All registers associated with the Jazelle extension are implemented in coprocessor space as part of
coprocessor 14 (CP14). The registers are accessed using the instructions:

• MCR, see MCR, MCR2 on page A8-186

• MRC, see MRC, MRC2 on page A8-202.

In a non-trivial implementation at least three registers are required. These are described in:

• Jazelle ID Register (JIDR) on page A2-76

• Jazelle Main Configuration Register (JMCR) on page A2-77

• Jazelle OS Control Register (JOSCR) on page B1-77.

Additional configuration registers might be provided and are SUBARCHITECTURE DEFINED.

The following rules apply to all Jazelle extension control and configuration registers:

• All configuration registers are accessed by CP14 MRC and MCR instructions with <opc1> set to 7.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-75

Application Level Programmers’ Model
• The values contained in configuration registers are changed only by the execution of MCR instructions.
In particular, they are never changed by Jazelle state execution of bytecodes.

• The access policy for the required registers is fully defined in their descriptions. With unprivileged
operation:

— all MCR accesses to the JIDR are UNDEFINED

— MRC and MCR accesses that are restricted to privileged modes are UNDEFINED.

The access policy of other configuration registers is SUBARCHITECTURE DEFINED.

• When the Security Extensions are implemented, the registers are common to the Secure and
Non-secure security states. For more information, see Effect of the Security Extensions on the CP15
registers on page B3-71. This section applies to some CP14 registers as well as to the CP15 registers.

• When a configuration register is readable, reading the register returns the last value written to it.
Reading a readable configuration register has no side effects.

When a configuration register is not readable, attempting to read it returns an UNKNOWN value.

• When a configuration register can be written, the effect of writing to it must be idempotent. That is,
the overall effect of writing the same value more than once must not differ from the effect of writing
it once.

Changes to these CP14 registers have the same synchronization requirements as changes to the CP15
registers. These are described in:

• Changes to CP15 registers and the memory order model on page B3-77 for a VMSA implementation

• Changes to CP15 registers and the memory order model on page B4-28 for a PMSA implementation.

For more information, see Jazelle state configuration and control on page B1-77.

Jazelle ID Register (JIDR)

The Jazelle ID Register (JIDR) enables an EJVM to determine the architecture and subarchitecture under
which it is running.

The JIDR is:

• a CP14 register

• a 32-bit read-only register

• accessible during privileged and unprivileged execution

• when the Security Extensions are implemented, a Common register, see Common CP15 registers on
page B3-74.
A2-76 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Programmers’ Model
The format of the JIDR is:

Architecture, bits [31:28]

Architecture code. This uses the same Architecture code that appears in the Main ID register
in coprocessor 15, see c0, Main ID Register (MIDR) on page B3-81 (VMSA
implementation) or c0, Main ID Register (MIDR) on page B4-32 (PMSA implementation).

Implementer, bits [27:20]

Implementer code of the designer of the subarchitecture. This uses the same Implementer
code that appears in the Main ID register in coprocessor 15, see c0, Main ID Register
(MIDR) on page B3-81 (VMSA implementation) or c0, Main ID Register (MIDR) on
page B4-32 (PMSA implementation).

If the trivial implementation of the Jazelle extension is used, the Implementer code is 0x00.

Subarchitecture, bits [19:12]

Contain the subarchitecture code. The following subarchitecture code is defined:

0x00 Jazelle v1 subarchitecture, or trivial implementation of Jazelle extension if
Implementer code is 0x00.

bits [11:0] Contain additional SUBARCHITECTURE DEFINED information.

To access the JIDR, read the CP14 registers with an MRC instruction with <opc1> set to 7, <CRn> set to c0, <CRm>
set to c0, and <opc2> set to 0. For example:

MRC p14, 7, <Rt>, c0, c0, 0 ; Read Jazelle ID register

Jazelle Main Configuration Register (JMCR)

The Jazelle Main Configuration Register (JMCR) controls the Jazelle extension.

The JMCR is:

• a CP14 register

• a 32-bit register, with access rights that depend on the current privilege:

— for privileged operations the register is read/write

— for unprivileged operations, the register is normally write-only

• when the Security Extensions are implemented, a Common register, see Common CP15 registers on
page B3-74.

For more information about unprivileged access restrictions see Access to Jazelle registers on page A2-78.

31 28 27 20 19 12 11 0

Architecture Implementer Subarchitecture SUBARCHITECTURE DEFINED
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-77

Application Level Programmers’ Model
The format of the JMCR is:

bit [31:1] SUBARCHITECTURE DEFINED information.

JE, bit [0] Jazelle Enable bit:

0 Jazelle extension disabled. The BXJ instruction does not cause Jazelle state
execution. BXJ behaves exactly as a BX instruction, see Jazelle state entry
instruction, BXJ on page A2-74.

1 Jazelle extension enabled.

The reset value of this bit is 0.

To access the JMCR, read or write the CP14 registers with an MRC or MCR instruction with <opc1> set to 7,
<CRn> set to c2, <CRm> set to c0, and <opc2> set to 0. For example:

MRC p14, 7, <Rt>, c2, c0, 0 ; Read Jazelle Main Configuration register
MCR p14, 7, <Rt>, c2, c0, 0 ; Write Jazelle Main Configuration register

Access to Jazelle registers

Table A2-14 shows the access permissions for the Jazelle registers, and how unprivileged access to the
registers depends on the value of the JOSCR.

31 1 0

SUBARCHITECTURE DEFINED JE

Table A2-14 Access to Jazelle registers

Jazelle register
Unprivileged access

Privileged access
JOSCR.CD == 0a JOSCR.CD == 1a

JIDR
Read access permitted Read and write access

UNDEFINED

Read access permitted

Write access ignored Write access ignored

JMCR
Read access UNDEFINED Read and write access

UNDEFINED
Read and write access permitted

Write access permitted

SUBARCHITECTURE
DEFINED configuration
registers

Read access UNDEFINED
Read and write access
UNDEFINED

Read access SUBARCHITECTURE
DEFINED

Write access permitted Write access permitted

a. See Jazelle OS Control Register (JOSCR) on page B1-77.
A2-78 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Programmers’ Model
EJVM operation

The following subsections summarize how an EJVM must operate, to meet the requirements of the
architecture:

• Initialization

• Bytecode execution

• Jazelle exception conditions

• Other considerations on page A2-80.

Initialization

During initialization, the EJVM must first check which subarchitecture is present, by checking the
Implementer and Subarchitecture codes in the value read from the JIDR.

If the EJVM is incompatible with the subarchitecture, it must do one of the following:

• write a value with JE == 0 to the JMCR

• if unaccelerated bytecode execution is unacceptable, generate an error.

If the EJVM is compatible with the subarchitecture, it must write its required configuration to the JMCR
and any SUBARCHITECTURE DEFINED configuration registers.

Bytecode execution

The EJVM must contain a handler for each bytecode.

The EJVM initiates bytecode execution by executing a BXJ instruction with:

• the register operand specifying the target address of the bytecode handler for the first bytecode of the
program

• the Application Level registers set up in accordance with the SUBARCHITECTURE DEFINED interface
standard.

The bytecode handler:

• performs the data-processing operations required by the bytecode indicated

• determines the address of the next bytecode to be executed

• determines the address of the handler for that bytecode

• performs a BXJ to that handler address with the registers again set up to the SUBARCHITECTURE
DEFINED interface standard.

Jazelle exception conditions

During bytecode execution, the EJVM might encounter SUBARCHITECTURE DEFINED Jazelle exception
conditions that must be resolved by a software handler. For example, in the case of a configuration invalid
handler, the handler rewrites the desired configuration to the JMCR and to any SUBARCHITECTURE DEFINED
configuration registers.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-79

Application Level Programmers’ Model
On entry to a Jazelle exception condition handler the contents of the Application Level registers are
SUBARCHITECTURE DEFINED. This interface to the Jazelle exception condition handler might differ from the
interface standard for the bytecode handler, in order to supply information about the Jazelle exception
condition.

The Jazelle exception condition handler:

• resolves the Jazelle exception condition

• determines the address of the next bytecode to be executed

• determines the address of the handler for that bytecode

• performs a BXJ to that handler address with the registers again set up to the SUBARCHITECTURE
DEFINED interface standard.

Other considerations

To ensure application execution and correct interaction with an operating system, an EJVM must only
perform operations that are permitted in unprivileged operation. In particular, for register accesses they must
only:

• read the JIDR,

• write to the JMCR, and other configuration registers.

An EJVM must not attempt to access the JOSCR.
A2-80 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Programmers’ Model
A2.11 Exceptions, debug events and checks

ARMv7 uses the following terms to describe various types of exceptional condition:

Exceptions In the ARM architecture, exceptions cause entry into a privileged mode and execution of a
software handler for the exception.

Note
 The terms floating-point exception and Jazelle exception condition do not use this meaning

of exception. These terms are described later in this list.

Exceptions include:

• reset

• interrupts

• memory system aborts

• undefined instructions

• supervisor calls (SVCs).

Most details of exception handling are not visible to application-level code, and are
described in Exceptions on page B1-30. Aspects that are visible to application-level code
are:

• The SVC instruction causes an SVC exception. This provides a mechanism for
unprivileged code to make a call to the operating system (or other privileged
component of the software system).

• If the Security Extensions are implemented, the SMC instruction causes an SMC
exception, but only if it is executed in a privileged mode. Unprivileged code can only
cause SMC exceptions to occur by methods defined by the operating system (or other
privileged component of the software system).

• The WFI instruction provides a hint that nothing needs to be done until an interrupt or
similar exception is taken, see Wait For Interrupt on page B1-47. This permits the
processor to enter a low-power state until that happens.

• The WFE instruction provides a hint that nothing needs to be done until either an event
is generated by an SEV instruction or an interrupt or similar exception is taken, see
Wait For Event and Send Event on page B1-44. This permits the processor to enter a
low-power state until one of these happens.

• The YIELD instruction provides a hint that the current execution thread is of low
importance, see The Yield instruction on page A2-82.

Floating-point exceptions

These relate to exceptional conditions encountered during floating-point arithmetic, such as
division by zero or overflow. For more information see:

• Floating-point exceptions on page A2-42

• Floating-point Status and Control Register (FPSCR) on page A2-28

• ANSI/IEEE Std. 754-1985, IEEE Standard for Binary Floating-Point Arithmetic.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-81

Application Level Programmers’ Model
Jazelle exception conditions

These are conditions that cause Jazelle hardware acceleration to exit into a software handler,
as described in Jazelle exception conditions on page A2-79.

Debug events These are conditions that cause a debug system to take action. Most aspects of debug events
are not visible to application-level code, and are described in Chapter C3 Debug Events.
Aspects that are visible to application-level code include:

• The BKPT instruction causes a BKPT Instruction debug event to occur, see BKPT
Instruction debug events on page C3-20.

• The DBG instruction provides a hint to the debug system.

Checks These are provided in the ThumbEE extension. A check causes an unconditional branch to
a specific handler entry point. The base address of the ThumbEE check handlers is held in
the TEEHBR, see ThumbEE Handler Base Register (TEEHBR) on page A2-71.

A2.11.1 The Yield instruction

In a Symmetric Multi-Threading (SMT) design, a thread can use a Yield instruction to give a hint to the
processor that it is running on. The Yield hint indicates that whatever the thread is currently doing is of low
importance, and so could yield. For example, the thread might be sitting in a spin-lock. Similar behavior
might be used to modify the arbitration priority of the snoop bus in a multiprocessor (MP) system. Defining
such an instruction permits binary compatibility between SMT and SMP systems.

ARMv7 defines a YIELD instruction as a specific NOP-hint instruction, see YIELD on page A8-812.

The YIELD instruction has no effect in a single-threaded system, but developers of such systems can use the
instruction to flag its intended use on migration to a multiprocessor or multithreading system. Operating
systems can use YIELD in places where a yield hint is wanted, knowing that it will be treated as a NOP if there
is no implementation benefit.
A2-82 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Chapter A3
Application Level Memory Model

This chapter gives an application level view of the memory model. It contains the following sections:

• Address space on page A3-2

• Alignment support on page A3-4

• Endian support on page A3-7

• Synchronization and semaphores on page A3-12

• Memory types and attributes and the memory order model on page A3-24

• Access rights on page A3-38

• Virtual and physical addressing on page A3-40

• Memory access order on page A3-41

• Caches and memory hierarchy on page A3-51.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A3-1

Application Level Memory Model
A3.1 Address space

The ARM architecture uses a single, flat address space of 232 8-bit bytes. Byte addresses are treated as
unsigned numbers, running from 0 to 232 - 1. The address space is also regarded as:

• 230 32-bit words:

— the address of each word is word-aligned, meaning that the address is divisible by 4 and the
last two bits of the address are 0b00

— the word at word-aligned address A consists of the four bytes with addresses A, A+1, A+2 and
A+3.

• 231 16-bit halfwords:

— the address of each halfword is halfword-aligned, meaning that the address is divisible by 2
and the last bit of the address is 0

— the halfword at halfword-aligned address A consists of the two bytes with addresses A and
A+1.

In some situations the ARM architecture supports accesses to halfwords and words that are not aligned to
the appropriate access size, see Alignment support on page A3-4.

Normally, address calculations are performed using ordinary integer instructions. This means that the
address wraps around if the calculation overflows or underflows the address space. Another way of
describing this is that any address calculation is reduced modulo 232.

A3.1.1 Address incrementing and address space overflow

When a processor performs normal sequential execution of instructions, it effectively calculates:

(address_of_current_instruction) + (size_of_executed_instruction)

after each instruction to determine which instruction to execute next.

Note
 The size of the executed instruction depends on the current instruction set, and might depend on the
instruction executed.

If this address calculation overflows the top of the address space, the result is UNPREDICTABLE. In other
words, a program must not rely on sequential execution of the instruction at address 0x00000000 after the
instruction at address:

• 0xFFFFFFFC, when a 4-byte instruction is executed

• 0xFFFFFFFE, when a 2-byte instruction is executed

• 0xFFFFFFFF, when a single byte instruction is executed.
A3-2 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Memory Model
This UNPREDICTABLE behavior only applies to instructions that are executed, including those that fail their
condition code check. Most ARM implementations prefetch instructions ahead of the currently-executing
instruction. If this prefetching overflows the top of the address space, it does not cause UNPREDICTABLE
behavior unless a prefetched instruction with an overflowed address is actually executed.

LDC, LDM, LDRD, POP, PUSH, STC, STRD, and STM instructions access a sequence of words at increasing memory
addresses, effectively incrementing the memory address by 4 for each load or store. If this calculation
overflows the top of the address space, the result is UNPREDICTABLE. In other words, programs must not use
these instructions in such a way that they attempt to access the word at address 0x00000000 sequentially after
the word at address 0xFFFFFFFC.

Note
 In some cases instructions that operate on multiple words can decrement the memory address by 4 after each
word access. If this calculation underflows the address space, by decrementing the address 0x00000000, the
result is UNPREDICTABLE.

The behavior of any unaligned load or store with a calculated address that would access the byte at
0xFFFFFFFF and the byte at address 0x00000000 as part of the instruction is UNPREDICTABLE.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A3-3

Application Level Memory Model
A3.2 Alignment support

Instructions in the ARM architecture are aligned as follows:

• ARM instructions are word-aligned

• Thumb and ThumbEE instructions are halfword-aligned

• Java bytecodes are byte-aligned.

The data alignment behavior supported by the ARM architecture has changed significantly between ARMv4
and ARMv7. This behavior is indicated by the SCTLR.U bit, see:

• c1, System Control Register (SCTLR) on page B3-96 for a VMSAv7 implementation

• c1, System Control Register (SCTLR) on page B4-45 for a PMSAv7 implementation

• c1, System Control Register (SCTLR) on page AppxG-34 for architecture versions before ARMv7.

This bit defines the alignment behavior of the memory system for data accesses. Table A3-1 shows the
values of SCTLR.U for the different architecture versions.

On an ARMv6 processor, the SCTLR.U bit indicates which of two possible alignment models is selected:

U == 0 The processor implements the legacy alignment model. This is described in Alignment on
page AppxG-6.

Note
 The use of U == 0 is deprecated in ARMv6T2, and is obsolete from ARMv7.

U == 1 The processor implements the alignment model described in this section. This model
supports unaligned data accesses.

ARMv7 requires the processor to implement the alignment model described in this section.

Table A3-1 SCTLR.U bit values for different architecture versions

Architecture version SCTLR.U value

Before ARMv6 0

ARMv6 0 or 1

ARMv7 1
A3-4 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Memory Model
A3.2.1 Unaligned data access

An ARMv7 implementation must support unaligned data accesses. The SCTLR.U bit is RAO to indicate
this support. The SCTLR.A bit, the strict alignment bit, controls whether strict alignment is required. The
checking of load and store alignment depends on the value of this bit. For more information, see c1, System
Control Register (SCTLR) on page B3-96 for a VMSA implementation, or c1, System Control Register
(SCTLR) on page B4-45 for a PMSA implementation.

Table A3-2 shows how the checking of load and store alignment depends on the instruction type and the
value of SCTLR.A.

Table A3-2 Alignment requirements of load/store instructions

Instructions
Alignment
check

Result if check fails when:

SCTLR.A == 0 SCTLR.A == 1

LDRB, LDREXB, LDRBT, LDRSB, LDRSBT, STRB, STREXB, STRBT,
SWPB, TBB

None - -

LDRH, LDRHT, LDRSH, LDRSHT, STRH, STRHT, TBH Halfword Unaligned access Alignment fault

LDREXH, STREXH Halfword Alignment fault Alignment fault

LDR, LDRT, STR, STRT Word Unaligned access Alignment fault

LDREX, STREX Word Alignment fault Alignment fault

LDREXD, STREXD Doubleword Alignment fault Alignment fault

All forms of LDM, LDRD, PUSH, POP, RFE, SRS, all forms of
STM, STRD, SWP

Word Alignment fault Alignment fault

LDC, LDC2, STC, STC2 Word Alignment fault Alignment fault

VLDM, VLDR, VSTM, VSTR Word Alignment fault Alignment fault

VLD1, VLD2, VLD3, VLD4, VST1, VST2, VST3, VST4, all with
standard alignmenta

Element size Unaligned access Alignment fault

VLD1, VLD2, VLD3, VLD4, VST1, VST2, VST3, VST4, all with
@<align> specifieda

As specified by
@<align>

Alignment fault Alignment fault

a. These element and structure load/store instructions are only in the Advanced SIMD extension to the ARMv7 ARM and
Thumb instruction sets. ARMv7 does not support the pre-ARMv6 alignment model, so you cannot use that model with
these instructions.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A3-5

ARM_2009_Q3
Inserted Text
, VPOP, VPUSH

ARM_2010_Q2
Cross-Out

ARM_2010_Q2
Replacement Text
PUSH, except for encodings T3 and A2,

ARM_2010_Q2
Cross-Out

ARM_2010_Q2
Replacement Text
POP, except for encodings T3 and A2,

ARM_2010_Q2
Inserted Text
, PUSH encodings T3 and A2, POP encodings T3 and A2.

Application Level Memory Model
A3.2.2 Cases where unaligned accesses are UNPREDICTABLE

The following cases cause the resulting unaligned accesses to be UNPREDICTABLE, and overrule any
successful load or store behavior described in Unaligned data access on page A3-5:

• Any load instruction that is not faulted by the alignment restrictions and that loads the PC has
UNPREDICTABLE behavior if it the address it loads from is not word-aligned.

• Any unaligned access that is not faulted by the alignment restrictions and that accesses memory with
the Strongly-ordered or Device attribute has UNPREDICTABLE behavior.

Note
 These memory attributes are described in Memory types and attributes and the memory order model

on page A3-24.

A3.2.3 Unaligned data access restrictions in ARMv7 and ARMv6

ARMv7 and ARMv6 have the following restrictions on unaligned data accesses:

• Accesses are not guaranteed to be single-copy atomic, see Atomicity in the ARM architecture on
page A3-26. An access can be synthesized out of a series of aligned operations in a shared memory
system without guaranteeing locked transaction cycles.

• Unaligned accesses typically take a number of additional cycles to complete compared to a naturally
aligned transfer. The real-time implications must be analyzed carefully and key data structures might
need to have their alignment adjusted for optimum performance.

• If an unaligned access occurs across a page boundary, the operation can abort on either or both halves
of the access.

Shared memory schemes must not rely on seeing monotonic updates of non-aligned data of loads and stores
for data items larger than byte wide. For more information, see Atomicity in the ARM architecture on
page A3-26.

Unaligned access operations must not be used for accessing Device memory-mapped registers. They must
only be used with care in shared memory structures that are protected by aligned semaphores or
synchronization variables.
A3-6 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2008_Q4
Cross-Out

Application Level Memory Model
A3.3 Endian support

The rules in Address space on page A3-2 require that for a word-aligned address A:

• the word at address A consists of the bytes at addresses A, A+1, A+2 and A+3

• the halfword at address A consists of the bytes at addresses A and A+1

• the halfword at address A+2 consists of the bytes at addresses A+2 and A+3.

• the word at address A therefore consists of the halfwords at addresses A and A+2.

However, this does not specify completely the mappings between words, halfwords, and bytes.

A memory system uses one of the two following mapping schemes. This choice is known as the endianness
of the memory system.

In a little-endian memory system:

• the byte or halfword at a word-aligned address is the least significant byte or halfword in the word at
that address

• the byte at a halfword-aligned address is the least significant byte in the halfword at that address.

In a big-endian memory system:

• the byte or halfword at a word-aligned address is the most significant byte or halfword in the word at
that address

• the byte at a halfword-aligned address is the most significant byte in the halfword at that address.

For a word-aligned address A, Table A3-3 and Table A3-4 on page A3-8 show the relationship between:

• the word at address A

• the halfwords at addresses A and A+2

• the bytes at addresses A, A+1, A+2 and A+3.

Table A3-3 shows this relationship for a big-endian memory system, and Table A3-4 on page A3-8 shows
the relationship for a little-endian memory system.

Table A3-3 Big-endian memory system

MSByte MSByte - 1 LSByte + 1 LSByte

Word at Address A

Halfword at Address A Halfword at Address A+2

Byte at Address A Byte at Address A+1 Byte at Address A+2 Byte at Address A+3
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A3-7

Application Level Memory Model
The big-endian and little-endian mapping schemes determine the order in which the bytes of a word or
halfword are interpreted. For example, a load of a word (4 bytes) from address 0x1000 always results in an
access of the bytes at memory locations 0x1000, 0x1001, 0x1002, and 0x1003. The endianness mapping scheme
determines the significance of these four bytes.

A3.3.1 Control of the endianness mapping scheme in ARMv7

In ARMv7-A, the mapping of instruction memory is always little-endian. In ARMv7-R, instruction
endianness can be controlled at the system level, see Instruction endianness.

For information about data memory endianness control, see ENDIANSTATE on page A2-19.

Note
 Versions of the ARM architecture before ARMv7 had a different mechanism to control the endianness, see
Endian configuration and control on page AppxG-20.

A3.3.2 Instruction endianness

Before ARMv7, the ARM architecture included legacy support for an alternative big-endian memory model,
described as BE-32 and controlled by the B bit, bit [7], of the SCTLR, see c1, System Control Register
(SCTLR) on page AppxG-34. ARMv7 does not support BE-32 operation, and bit [7] of the SCTLR is RAZ.

Where legacy object code for ARM processors contains instructions with a big-endian byte order, the
removal of support for BE-32 operation requires the instructions in the object files to have their bytes
reversed for the code to be executed on an ARMv7 processor. This means that:

• each Thumb instruction, whether a 32-bit Thumb instruction or a 16-bit Thumb instruction, must
have the byte order of each halfword of instruction reversed

• each ARM instruction must have the byte order of each word of instruction reversed.

For most situations, this can be handled in the link stage of a tool-flow, provided the object files include
sufficient information to permit this to happen. In practice, this is the situation for all applications with the
ARMv7-A profile.

Table A3-4 Little-endian memory system

MSByte MSByte - 1 LSByte + 1 LSByte

Word at Address A

Halfword at Address A+2 Halfword at Address A

Byte at Address A+3 Byte at Address A+2 Byte at Address A+1 Byte at Address A
A3-8 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Memory Model
For applications of the ARMv7-R profile, there are some legacy code situations where the arrangement of
the bytes in the object files cannot be adjusted by the linker. For these object files to be used by an ARMv7-R
processor the byte order of the instructions must be reversed by the processor at runtime. Therefore, the
ARMv7-R profile permits configuration of the instruction endianness.

Instruction endianness static configuration, ARMv7-R only

To provide support for legacy big-endian object code, the ARMv7-R profile supports optional byte order
reversal hardware as a static option from reset. The ARMv7-R profile includes a read-only bit in the CP15
Control Register, SCTLR.IE, bit [31]. For more information, see c1, System Control Register (SCTLR) on
page B4-45.

A3.3.3 Element size and endianness

The effect of the endianness mapping on data transfers depends on the size of the data element or elements
transferred by the load/store instructions. Table A3-5 lists the element sizes of all the load/store instructions,
for all instruction sets.

A3.3.4 Instructions to reverse bytes in a general-purpose register

An application or device driver might have to interface to memory-mapped peripheral registers or shared
memory structures that are not the same endianness as the internal data structures. Similarly, the endianness
of the operating system might not match that of the peripheral registers or shared memory. In these cases,
the processor requires an efficient method to transform explicitly the endianness of the data.

In ARMv7, the ARM and Thumb instruction sets provide this functionality. There are instructions to:

• Reverse word (four bytes) register, for transforming big and little-endian 32-bit representations. See
REV on page A8-272.

Table A3-5 Element size of load/store instructions

Instructions Element size

LDRB, LDREXB, LDRBT, LDRSB, LDRSBT, STRB, STREXB, STRBT, SWPB, TBB Byte

LDRH, LDREXH, LDRHT, LDRSH, LDRSHT, STRH, STREXH, STRHT, TBH Halfword

LDR, LDRT, LDREX, STR, STRT, STREX Word

LDRD, LDREXD, STRD, STREXD Word

All forms of LDM, PUSH, POP, RFE, SRS, all forms of STM, SWP Word

LDC, LDC2, STC, STC2, VLDM, VLDR, VSTM, VSTR Word

VLD1, VLD2, VLD3, VLD4, VST1, VST2, VST3, VST4 Element size of the Advanced SIMD access
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A3-9

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
Replace this line of the table with the following three lines:
 Instructions Element size
 ======= ========
 LDC, LDC2, STC, STC2 Word
 Forms of VLDM, VLDR, VPOP, VPUSH, VSTM, VSTR that transfer 32-bit Si registers Word
 Forms of VLDM, VLDR, VPOP, VPUSH, VSTM, VSTR that transfer 64-bit Di registers Doubleword

Application Level Memory Model
• Reverse halfword and sign-extend, for transforming signed 16-bit representations. See REVSH on
page A8-276.

• Reverse packed halfwords in a register for transforming big- and little-endian 16-bit representations.
See REV16 on page A8-274.

A3.3.5 Endianness in Advanced SIMD

Advanced SIMD element load/store instructions transfer vectors of elements between memory and the
Advanced SIMD register bank. An instruction specifies both the length of the transfer and the size of the
data elements being transferred. This information is used by the processor to load and store data correctly
in both big-endian and little-endian systems.

Consider. for example, the instruction:

VLD1.16 {D0}, [R1]

This loads a 64-bit register with four 16-bit values. The four elements appear in the register in array order,
with the lowest indexed element fetched from the lowest address. The order of bytes in the elements depends
on the endianness configuration, as shown in Figure A3-1. Therefore, the order of the elements in the
registers is the same regardless of the endianness configuration. This means that Advanced SIMD code is
usually independent of endianness.

Figure A3-1 Advanced SIMD byte order example

The Advanced SIMD extension supports Little-Endian (LE) and Big-Endian (BE) models.

For information about the alignment of Advanced SIMD instructions see Unaligned data access on
page A3-5.

�3������4��56�/7�0

���-'&���.'*&������&�'�'�.�(�$�����-'&����,��&*

!�,����*�*&�,�8'&)
9'.����'��������**'�.�19:2

�/�	;
0

�/
;�0

</�	;
0

</
;�0

9/
;�0

�/�	;
0

�/
;�0�

�

�

�

	

�

�
�3������4��56�/7�0

9/�	;
0

!�,����*�*&�,�8'&)
3'&&������'��������**'�.�13:2

�/�	;
0

�/
;�0

</�	;
0

</
;�0

9/
;�0

�/�	;
0

�/
;�0

�

�

�

�

	

�

� 9/�	;
0

�/�	;
0 �/
;�0 </�	;
0 </
;�0 9/�	;
0 9/
;�0 �/�	;
0 �/
;�0
A3-10 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Memory Model
Note
 Advanced SIMD is an extension to the ARMv7 ARM and Thumb instruction sets. In ARMv7, the SCTLR.B
bit always has the value 0, indicating that ARMv7 does not support the legacy BE-32 endianness model, and
you cannot use this model with Advanced SIMD element and structure load/store instructions.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A3-11

Application Level Memory Model
A3.4 Synchronization and semaphores

In architecture versions before ARMv6, support for the synchronization of shared memory depends on the
SWP and SWPB instructions. These are read-locked-write operations that swap register contents with memory,
and are described in SWP, SWPB on page A8-432. These instructions support basic busy/free semaphore
mechanisms, but do not support mechanisms that require calculation to be performed on the semaphore
between the read and write phases.

ARMv6 introduced a new mechanism to support more comprehensive non-blocking synchronization of
shared memory, using synchronization primitives that scale for multiprocessor system designs. ARMv6
provided a pair of synchronization primitives, LDREX and STREX. ARMv7 extends the new model by:

• adding byte, halfword and doubleword versions of the synchronization primitives

• adding a Clear-Exclusive instruction, CLREX

• adding the synchronization primitives to the Thumb instruction set.

Note
 From ARMv6, use of the SWP and SWPB instructions is deprecated. ARM strongly recommends that all
software migrates to using the new synchronization primitives described in this section.

In ARMv7, the synchronization primitives provided in the ARM and Thumb instruction sets are:

• Load-Exclusives:

— LDREX, see LDREX on page A8-142

— LDREXB, see LDREXB on page A8-144

— LDREXD, see LDREXD on page A8-146

— LDREXH, see LDREXH on page A8-148

• Store-Exclusives:

— STREX, see STREX on page A8-400

— STREXB, see STREXB on page A8-402

— STREXD, see STREXD on page A8-404

— STREXH, see STREXH on page A8-406

• Clear-Exclusive, CLREX, see CLREX on page A8-70.

Note
 This section describes the operation of a Load-Exclusive/Store-Exclusive pair of synchronization primitives
using, as examples, the LDREX and STREX instructions. The same description applies to any other pair of
synchronization primitives:

• LDREXB used with STREXB

• LDREXD used with STREXD

• LDREXH used with STREXH.

Each Load-Exclusive instruction must be used only with the corresponding Store-Exclusive instruction.
A3-12 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text

ARMv6T2 adds LDREX and STREX to the Thumb instruction set.

ARMv6K has LDREX and STREX in the ARM instruction set only, and adds the following synchronization primitives to the ARM instruction set:
 • byte, halfword and doubleword versions of the Load-Exclusive and Store-Exclusive instructions
 • a Clear-Exclusive instruction, CLREX.

ARMv7 has all of the ARMv6K synchronization primitives in both the ARM and Thumb instruction sets.

ARM_2009_Q1
Sticky Note
The replacement here only clarifies the wording of the changes in the previous issue of this errata document.

Application Level Memory Model
The model for the use of a Load-Exclusive/Store-Exclusive instruction pair, accessing a non-aborting
memory address x is:

• The Load-Exclusive instruction reads a value from memory address x.

• The corresponding Store-Exclusive instruction succeeds in writing back to memory address x only if
no other observer, process, or thread has performed a more recent store of address x. The
Store-Exclusive operation returns a status bit that indicates whether the memory write succeeded.

A Load-Exclusive instruction tags a small block of memory for exclusive access. The size of the tagged
block is IMPLEMENTATION DEFINED, see Tagging and the size of the tagged memory block on page A3-20.
A Store-Exclusive instruction to the same address clears the tag.

Note
 In this section, the term processor includes any observer that can generate a Load-Exclusive or a
Store-Exclusive.

A3.4.1 Exclusive access instructions and Non-shareable memory regions

For memory regions that do not have the Shareable attribute, the exclusive access instructions rely on a local
monitor that tags any address from which the processor executes a Load-Exclusive. Any non-aborted
attempt by the same processor to use a Store-Exclusive to modify any address is guaranteed to clear the tag.

A Load-Exclusive performs a load from memory, and:

• the executing processor tags the physical memory address for exclusive access

• the local monitor of the executing processor transitions to its Exclusive Access state.

A Store-Exclusive performs a conditional store to memory, that depends on the state of the local monitor:

If the local monitor is in its Exclusive Access state

• If the address of the Store-Exclusive is the same as the address that has been tagged
in the monitor by an earlier Load-Exclusive, then the store takes place, otherwise it
is IMPLEMENTATION DEFINED whether the store takes place.

• A status value is returned to a register:

— if the store took place the status value is 0

— otherwise, the status value is 1.

• The local monitor of the executing processor transitions to its Open Access state.

If the local monitor is in its Open Access state

• no store takes place

• a status value of 1 is returned to a register.

• the local monitor remains in its Open Access state.

The Store-Exclusive instruction defines the register to which the status value is returned.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A3-13

Application Level Memory Model
When a processor writes using any instruction other than a Store-Exclusive:

• if the write is to a physical address that is not covered by its local monitor the write does not affect
the state of the local monitor

• if the write is to a physical address that is covered by its local monitor it is IMPLEMENTATION DEFINED
whether the write affects the state of the local monitor.

If the local monitor is in its Exclusive Access state and the processor performs a Store-Exclusive to any
address other than the last one from which it performed a Load-Exclusive, it is IMPLEMENTATION DEFINED
whether the store updates memory, but in all cases the local monitor is reset to its Open Access state. This
mechanism:

• is used on a context switch, see Context switch support on page A3-21

• must be treated as a software programming error in all other cases.

Note
 It is UNPREDICTABLE whether a store to a tagged physical address causes a tag in the local monitor to be
cleared if that store is by an observer other than the one that caused the physical address to be tagged.

Figure A3-2 shows the state machine for the local monitor. Table A3-6 on page A3-15 shows the effect of
each of the operations shown in the figure.

Figure A3-2 Local monitor state machine diagram

=%���&'��*�,��>���������%�**'-�����&����&'��� !�3:!:?@�@ =?��:� ?:���%&'��*�

�����������	��%���&'���$%��&�*�&)��&�..��������**�&��&)��,�*&�*'.�'('���&�-'&*��(�&)�������**�+�$*��
(���&)���%���&'��������,����'�(��,�&'���*���&)��*��&'�����������	
��	����
��������������

 ��&)���'�.��,;��������	���%��*��&*�����3����:+��$*'���'�*&�$�&'��

���
���	���%��*��&*������&����:+��$*'���'�*&�$�&'��

���
���%��*��&*������&)���*&����'�*&�$�&'���

�����

���
���	1+2

���
1+2

�������	1+2 �������	1+2

�����

���
1@�..��A�����**2��

���
���	1@�..��A�����**2

���
���	1B@�..��A�����**2

=%��
����**

���
1B@�..��A�����**2

���
1@�..��A�����**2��

:+��$*'��
����**
A3-14 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Memory Model
Note
 For the local monitor state machine, as shown in Figure A3-2 on page A3-14:

• The IMPLEMENTATION DEFINED options for the local monitor are consistent with the local monitor
being constructed so that it does not hold any physical address, but instead treats any access as
matching the address of the previous LoadExcl.

• A local monitor implementation can be unaware of Load-Exclusive and Store-Exclusive operations
from other processors.

• It is UNPREDICTABLE whether the transition from Exclusive Access to Open Access state occurs when
the Store or StoreExcl is from another observer.

Table A3-6 shows the effect of the operations shown in Figure A3-2 on page A3-14.

Table A3-6 Effect of Exclusive instructions and write operations on local monitor

Initial state Operationa Effect Final state

Open Access CLREX No effect Open Access

Open Access StoreExcl(x) Does not update memory, returns status 1 Open Access

Open Access LoadExcl(x) Loads value from memory, tags address x Exclusive Access

Open Access Store(x) Updates memory, no effect on monitor Open Access

Exclusive Access CLREX Clears tagged address Open Access

Exclusive Access StoreExcl(t) Updates memory, returns status 0 Open Access

Exclusive Access StoreExcl(!t)
Updates memory, returns status 0b

Open Access
Does not update memory, returns status 1b

Exclusive Access LoadExcl(x) Loads value from memory, changes tag to address to x Exclusive Access

Exclusive Access Store(!t) Updates memory, no effect on monitor Exclusive Access

Exclusive Access Store(t) Updates memory
Exclusive Accessb

Open Accessb

a. In the table:
LoadExcl represents any Load-Exclusive instruction
StoreExcl represents any Store-Exclusive instruction
Store represents any store operation other than a Store-Exclusive operation.

t is the tagged address, bits [31:a] of the address of the last Load-Exclusive instruction. For more information, see
Tagging and the size of the tagged memory block on page A3-20.

b. IMPLEMENTATION DEFINED alternative actions.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A3-15

ARM_2009_Q2
Inserted Text
[This is a new subsection at the end of section A3.4.1.]

Changes to the local monitor state resulting from speculative execution

The architecture permits a local monitor to transition to the Open Access state as a result of speculation, or from some other cause. This is in addition to the transitions to Open Access state caused by the architectural execution of an operation shown in Table A3-6.

An implementation must ensure that:

 • The local monitor cannot be seen to transition to the Exclusive Access state except as a result of the architectural execution of one of the operations shown in Table A3-6

 • Any transition of the local monitor to the Open Access state not caused by the architectural execution of an operation shown in Table A3-6 must not indefinitely delay forward progress of execution.

ARM_2010_Q2
Sticky Note
The following Note should be inserted between the table footnotes and the new subsection added by the ARM_2009_Q2 erratum update shown here:

----- Note -----
Normal memory that is Inner Non-cacheable, Outer Non-cacheable is inherently coherent between different processors, and it is IMPLEMENTATION DEFINED whether such memory, if it does not have the Shareable attribute, is treated as Non-shareable or as Shareable.

Application Level Memory Model
A3.4.2 Exclusive access instructions and Shareable memory regions

For memory regions that have the Shareable attribute, exclusive access instructions rely on:

• A local monitor for each processor in the system, that tags any address from which the processor
executes a Load-Exclusive. The local monitor operates as described in Exclusive access instructions
and Non-shareable memory regions on page A3-13, except that for Shareable memory any
Store-Exclusive is then subject to checking by the global monitor if it is described in that section as
doing at least one of:

— updating memory

— returning a status value of 0.

The local monitor can ignore exclusive accesses from other processors in the system.

• A global monitor that tags a physical address as exclusive access for a particular processor. This tag
is used later to determine whether a Store-Exclusive to that address that has not been failed by the
local monitor can occur. Any successful write to the tagged address by any other observer in the
shareability domain of the memory location is guaranteed to clear the tag. For each processor in the
system, the global monitor:

— holds a single tagged address

— maintains a state machine.

The global monitor can either reside in a processor block or exist as a secondary monitor at the memory
interfaces.

Note
 An implementation can combine the functionality of the global and local monitors into a single unit.

Operation of the global monitor

Load-Exclusive from Shareable memory performs a load from memory, and causes the physical address of
the access to be tagged as exclusive access for the requesting processor. This access also causes the exclusive
access tag to be removed from any other physical address that has been tagged by the requesting processor.
The global monitor only supports a single outstanding exclusive access to Shareable memory per processor.

Store-Exclusive performs a conditional store to memory:

• The store is guaranteed to succeed only if the physical address accessed is tagged as exclusive access
for the requesting processor and both the local monitor and the global monitor state machines for the
requesting processor are in the Exclusive Access state. In this case:

— a status value of 0 is returned to a register to acknowledge the successful store

— the final state of the global monitor state machine for the requesting processor is
IMPLEMENTATION DEFINED

— if the address accessed is tagged for exclusive access in the global monitor state machine for
any other processor then that state machine transitions to Open Access state.
A3-16 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2008_Q4
Inserted Text

For Shareable regions of memory, in some implementations and for some memory types, the properties of the global monitor can be met only by functionality outside the processor. Some system implementations might not implement this functionality for all regions of memory. In particular, this can apply to:
• any type of memory in the system implementation that does not support hardware cache coherency
• Non-cacheable memory, or memory treated as non-cacheable, in an implementation that does support hardware cache coherency.

In such systems, it is defined by the system:
• whether the global monitor is implemented
• if the global monitor is implemented, which address ranges or memory types it monitors.

The behavior of Load Exclusive and Store Exclusive instructions when accessing an address not monitored by the global monitor is UNPREDICTABLE.

Application Level Memory Model
• If no address is tagged as exclusive access for the requesting processor, the store does not succeed:

— a status value of 1 is returned to a register to indicate that the store failed

— the global monitor is not affected and remains in Open Access state for the requesting
processor.

• If a different physical address is tagged as exclusive access for the requesting processor, it is
IMPLEMENTATION DEFINED whether the store succeeds or not:

— if the store succeeds a status value of 0 is returned to a register, otherwise a value of 1 is
returned

— if the global monitor state machine for the processor was in the Exclusive Access state before
the Store-Exclusive it is IMPLEMENTATION DEFINED whether that state machine transitions to
the Open Access state.

The Store-Exclusive instruction defines the register to which the status value is returned.

In a shared memory system, the global monitor implements a separate state machine for each processor in
the system. The state machine for accesses to Shareable memory by processor (n) can respond to all the
Shareable memory accesses visible to it. This means it responds to:

• accesses generated by the associated processor (n)

• accesses generated by the other observers in the shareability domain of the memory location (!n).

In a shared memory system, the global monitor implements a separate state machine for each observer that
can generate a Load-Exclusive or a Store-Exclusive in the system.

Figure A3-3 on page A3-18 shows the state machine for processor(n) in a global monitor. Table A3-7 on
page A3-19 shows the effect of each of the operations shown in the figure.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A3-17

Application Level Memory Model
Figure A3-3 Global monitor state machine diagram for processor(n) in a multiprocessor system

Note
 For the global monitor state machine, as shown in Figure A3-3:

• Whether a Store-Exclusive successfully updates memory or not depends on whether the address
accessed matches the tagged Shareable memory address for the processor issuing the Store-Exclusive
instruction. For this reason, Figure A3-3 and Table A3-7 on page A3-19 only show how the (!n)
entries cause state transitions of the state machine for processor(n).

• An Load-Exclusive can only update the tagged Shareable memory address for the processor issuing
the Load-Exclusive instruction.

• The effect of the CLREX instruction on the global monitor is IMPLEMENTATION DEFINED.

• It is IMPLEMENTATION DEFINED:

— whether a modification to a non-shareable memory location can cause a global monitor to
transition from Exclusive Access to Open Access state

— whether a Load-Exclusive to a non-shareable memory location can cause a global monitor to
transition from Open Access to Exclusive Access state.

#�
���
���	1@�..��A�����**6B�2������*�&)��,��'&��������'(�&)��
���
���	�$%��&�*�,�,���

�����������	��%���&'���$%��&�*�&)��&�..��������**�&��&)��,�*&�*'.�'('���&�-'&*��(�&)�������**�+
$*���(���&)���%���&'��������,����'�(��,�&'���*���&)��*��&'�����������	
��	����
��������������

�������	1+6�2

=%��
����**

:+��$*'��
����**

�����1�26������1B�26
�������	1+6B�26

���
���	1+6�26

���
���	1+6B�26

���
1+6�26�
���
1+6B�2

���
���	1@�..��A�����**6B�2#

���
1@�..��A�����**6B�2

���
���	1@�..��A�����**6�2��

���
���	1B@�..��A�����**6�2��

���
1@�..��A�����**6�2��
�����1�2��

���
���	1@�..��A�����**6B�2#

���
1B@�..��A�����**6�2

���
���	1@�..��A�����**6�2��

���
���	1B@�..��A�����**6�2��

���
1@�..��A�����**6�2��
�����1�2��

���
���	1B@�..��A�����**6B�2

���
1B@�..��A�����**6B�2
�����1B�2

�������	1+6�2

=%���&'��*�,��>���������%�**'-�����&����&'��� !�3:!:?@�@ =?��:� ?:���%&'��*�
 ��&)���'�.��,;��������	���%��*��&*�����3����:+��$*'���'�*&�$�&'��

���
���	���%��*��&*������&����:+��$*'���'�*&�$�&'��

���
���%��*��&*������&)���*&����'�*&�$�&'���
A3-18 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Memory Model
Table A3-7 shows the effect of the operations shown in Figure A3-3 on page A3-18.

Table A3-7 Effect of load/store operations on global monitor for processor(n)

Initial
statea Operationb Effect

Final
statea

Open CLREX(n),
CLREX(!n)

None Open

StoreExcl(x,n) Does not update memory, returns status 1 Open

LoadExcl(x,!n) Loads value from memory, no effect on tag address for processor(n) Open

StoreExcl(x,!n) Depends on state machine and tag address for processor issuing
STREXc

Open

Store(x,n),
Store(x,!n)

Updates memory, no effect on monitor Open

LoadExcl(x,n) Loads value from memory, tags address x Exclusive

Exclusive LoadExcl(x,n) Loads value from memory, tags address x Exclusive

CLREX(n) None. Effect on the final state is IMPLEMENTATION DEFINED.
Exclusivee

Opene

CLREX(!n) None Exclusive

StoreExcl(t,!n)
Updates memory, returns status 0c Open

Does not update memory, returns status 1c Exclusive

StoreExcl(t,n) Updates memory, returns status 0d
Open

Exclusive

StoreExcl(!t,n)

Updates memory, returns status 0e
Open

Exclusive

Does not update memory, returns status 1e
Open

Exclusive

StoreExcl(!t,!n) Depends on state machine and tag address for processor issuing
STREX

Exclusive
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A3-19

Application Level Memory Model
A3.4.3 Tagging and the size of the tagged memory block

As stated in the footnotes to Table A3-6 on page A3-15 and Table A3-7 on page A3-19, when a
Load-Exclusive instruction is executed, the resulting tag address ignores the least significant bits of the
memory address.

Tagged_address = Memory_address[31:a]

The value of a in this assignment is IMPLEMENTATION DEFINED, between a minimum value of 3 and a
maximum value of 11. For example, in an implementation where a == 4, a successful LDREX of address
0x000341B4 gives a tag value of bits [31:4] of the address, giving 0x000341B. This means that the four words
of memory from 0x000341B0 to 0x000341BF are tagged for exclusive access.

The size of the tagged memory block called the Exclusives Reservation Granule. The Exclusives
Reservation Granule is IMPLEMENTATION DEFINED between:

• two words, in an implementation with a == 3

• 512 words, in an implementation with a == 11.

In some implementations the CTR identifies the Exclusives Reservation Granule, see:

• c0, Cache Type Register (CTR) on page B3-83 for a VMSA implementation

• c0, Cache Type Register (CTR) on page B4-34 for a PMSA implementation.

Exclusive
Store(t,n) Updates memory

Exclusivee

Opene

Store(t,!n) Updates memory Open

Store(!t,n),
Store(!t,!n)

Updates memory, no effect on monitor Exclusive

a. Open = Open Access state, Exclusive = Exclusive Access state.
b. In the table:

LoadExcl represents any Load-Exclusive instruction
StoreExcl represents any Store-Exclusive instruction
Store represents any store operation other than a Store-Exclusive operation.

t is the tagged address for processor(n), bits [31:a] of the address of the last Load-Exclusive instruction issued by
processor(n), see Tagging and the size of the tagged memory block.

c. The result of a STREX(x,!n) or a STREX(t,!n) operation depends on the state machine and tagged address for the processor
issuing the STREX instruction. This table shows how each possible outcome affects the state machine for processor(n).

d. After a successful STREX to the tagged address, the state of the state machine is IMPLEMENTATION DEFINED. However,
this state has no effect on the subsequent operation of the global monitor.

e. Effect is IMPLEMENTATION DEFINED. The table shows all permitted implementations.

Table A3-7 Effect of load/store operations on global monitor for processor(n) (continued)

Initial
statea Operationb Effect

Final
statea
A3-20 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2008_Q4
Inserted Text
is

Application Level Memory Model
A3.4.4 Context switch support

After a context switch, software must ensure that the local monitor is in the Open Access state. This requires
it to either:

• execute a CLREX instruction

• execute a dummy STREX to a memory address allocated for this purpose.

Note
 • Using a dummy STREX for this purpose is backwards-compatible with the ARMv6 implementation of

the exclusive operations. The CLREX instruction is introduced in ARMv6K.

• Context switching is not an application level operation. However, this information is included here to
complete the description of the exclusive operations.

The STREX or CLREX instruction following a context switch might cause a subsequent Store-Exclusive to fail,
requiring a load … store sequence to be replayed. To minimize the possibility of this happening, ARM
recommends that the Store-Exclusive instruction is kept as close as possible to the associated
Load-Exclusive instruction, see Load-Exclusive and Store-Exclusive usage restrictions.

A3.4.5 Load-Exclusive and Store-Exclusive usage restrictions

The Load-Exclusive and Store-Exclusive instructions are intended to work together, as a pair, for example
a LDREX/STREX pair or a LDREXB/STREXB pair. As mentioned in Context switch support, ARM recommends that
the Store-Exclusive instruction always follows within a few instructions of its associated Load-Exclusive
instructions. To support different implementations of these functions, software must follow the notes and
restrictions given here.

These notes describe use of an LDREX/STREX pair, but apply equally to any other
Load-Exclusive/Store-Exclusive pair:

• The exclusives support a single outstanding exclusive access for each processor thread that is
executed. The architecture makes use of this by not requiring an address or size check as part of the
IsExclusiveLocal() function. If the target address of an STREX is different from the preceding LDREX in
the same execution thread, behavior can be UNPREDICTABLE. As a result, an LDREX/STREX pair can only
be relied upon to eventually succeed if they are executed with the same address. Where a context
switch or exception might result in a change of execution thread, a CLREX instruction or a dummy
STREX instruction must be executed to avoid unwanted effects, as described in Context switch support
Using an STREX in this way is the only occasion where software can program an STREX with a different
address from the previously executed LDREX.

• An explicit store to memory can cause the clearing of exclusive monitors associated with other
processors, therefore, performing a store between the LDREX and the STREX can result in a livelock
situation. As a result, code must avoid placing an explicit store between an LDREX and an STREX in a
single code sequence.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A3-21

Application Level Memory Model
• If two STREX instructions are executed without an intervening LDREX the second STREX returns a status
value of 1. This means that:

— every STREX must have a preceding LDREX associated with it in a given thread of execution

— it is not necessary for every LDREX to have a subsequent STREX.

• An implementation of the Load-Exclusive and Store-Exclusive instructions can require that, in any
thread of execution, the transaction size of a Store-Exclusive is the same as the transaction size of the
preceding Load-Exclusive that was executed in that thread. If the transaction size of a
Store-Exclusive is different from the preceding Load-Exclusive in the same execution thread,
behavior can be UNPREDICTABLE. As a result, an LDREX/STREX pair can only be relied upon to
eventually succeed only if they have the same size. Where a context switch or exception might result
in a change of execution thread, the software must execute a CLREX instruction or a dummy STREX
instruction to avoid unwanted effects, as described in Context switch support on page A3-21. Using
an STREX in this way is the only occasion where software can use a Store-Exclusive instruction with
a different transaction size from the previously executed Load-Exclusive instruction.

• An implementation might clear an exclusive monitor between the LDREX and the STREX, without any
application-related cause. For example, this might happen because of cache evictions. Code written
for such an implementation must avoid having any explicit memory accesses or cache maintenance
operations between the LDREX and STREX instructions.

• Implementations can benefit from keeping the LDREX and STREX operations close together in a single
code sequence. This minimizes the likelihood of the exclusive monitor state being cleared between
the LDREX instruction and the STREX instruction. Therefore, ARM strongly recommends a limit of 128
bytes between LDREX and STREX instructions in a single code sequence, for best performance.

• Implementations that implement coherent protocols, or have only a single master, might combine the
local and global monitors for a given processor. The IMPLEMENTATION DEFINED and UNPREDICTABLE
parts of the definitions in Exclusive monitors operations on page B2-35 are provided to cover this
behavior.

• The architecture sets an upper limit of 2048 bytes on the size of a region that can be marked as
exclusive. Therefore, for performance reasons, ARM recommends that software separates objects
that will be accessed by exclusive accesses by at least 2048 bytes. This is a performance guideline
rather than a functional requirement.

• LDREX and STREX operations must be performed only on memory with the Normal memory attribute.

• The effect of Data Abort exceptions on the state of monitors is UNPREDICTABLE. ARM recommends
that abort handling code performs a CLREX instruction or a dummy STREX instruction to clear the
monitor state.

• If the memory attributes for the memory being accessed by an LDREX/STREX pair are changed between
the LDREX and the STREX, behavior is UNPREDICTABLE.
A3-22 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2008_Q4
Inserted Text

• The effect of a data or unified cache invalidate instruction on a local or global exclusive monitor that is in the Exclusive Access state is UNPREDICTABLE. The operation might clear the monitor, or it might leave it in the Exclusive Access state. For address-based invalidation this also applies to the monitors of other processors in the same shareability domain as the processor executing the cache invalidation instruction, as determined by the shareability domain of the address being invalidated.

----- NOTE -----
ARM strongly recommends that implementations ensure that the use of such maintenance instructions by a processor in the Non-secure state cannot cause a denial of service on a processor in the Secure state.

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
After taking a Data Abort exception, the state of the exclusive monitors is UNKNOWN. Therefore,

ARM_2009_Q2
Sticky Note
This change is a clarification of the intended meaning, not a change to the architecture.

ARM_2009_Q4
Inserted Text

• In some implementations, a load to Strongly-ordered or Device memory might clear the exclusive monitor. Therefore, software must not place a load to Strongly-ordered or Device memory between a LDREX and an STREX in a single code sequence.

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Replacement Text
Whether an ARMv7 implementation permits LDREX and STREX operations to a memory region with the Device or Strongly-ordered attribute is IMPLEMENTATION DEFINED. Unless the processor documentation explicitly states that the implementation permits these operations, the effect of an LDREX or STREX operation to a memory region with the Device or Strongly-ordered attribute is UNPREDICTABLE.

ARM_2011_Q2
Sticky Note
This is a change to the architecture. No ARMv7 processors released before January 2011 permit LDREX and STREX operations to memory regions with the Device or Strongly-ordered attribute.

Application Level Memory Model
A3.4.6 Semaphores

The Swap (SWP) and Swap Byte (SWPB) instructions must be used with care to ensure that expected behavior
is observed. Two examples are as follows:

1. A system with multiple bus masters that uses Swap instructions to implement semaphores that control
interactions between different bus masters.

In this case, the semaphores must be placed in an uncached region of memory, where any buffering
of writes occurs at a point common to all bus masters using the mechanism. The Swap instruction
then causes a locked read-write bus transaction.

2. A systems with multiple threads running on a uniprocessor that uses the Swap instructions to
implement semaphores that control interaction of the threads.

In this case, the semaphores can be placed in a cached region of memory, and a locked read-write bus
transaction might or might not occur. The Swap and Swap Byte instructions are likely to have better
performance on such a system than they do on a system with multiple bus masters such as that
described in example 1.

Note
 From ARMv6, use of the Swap and Swap Byte instructions is deprecated. All new software should use the
Load-Exclusive and Store-Exclusive synchronization primitives described in Synchronization and
semaphores on page A3-12, for example LDREX and STREX.

A3.4.7 Synchronization primitives and the memory order model

The synchronization primitives follow the memory order model of the memory type accessed by the
instructions. For this reason:

• Portable code for claiming a spin-lock must include a Data Memory Barrier (DMB) operation,
performed by a DMB instruction, between claiming the spin-lock and making any access that makes
use of the spin-lock.

• Portable code for releasing a spin-lock must include a DMB instruction before writing to clear the
spin-lock.

This requirement applies to code using:

• the Load-Exclusive/Store-Exclusive instruction pairs, for example LDREX/STREX

• the deprecated synchronization primitives, SWP/SWPB.

A3.4.8 Use of WFE and SEV instructions by spin-locks

ARMv7 and ARMv6K provide Wait For Event and Send Event instructions, WFE and SEV, that can assist with
reducing power consumption and bus contention caused by processors repeatedly attempting to obtain a
spin-lock. These instructions can be used at application level, but a complete understanding of what they do
depends on system-level understanding of exceptions. They are described in Wait For Event and Send Event
on page B1-44.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A3-23

Application Level Memory Model
A3.5 Memory types and attributes and the memory order model

ARMv6 defined a set of memory attributes with the characteristics required to support the memory and
devices in the system memory map. In ARMv7 this set of attributes is extended by the addition of the Outer
Shareable attribute for Normal memory.

Note
 Whether an ARMv7 implementation supports the Outer Shareable memory attribute is IMPLEMENTATION
DEFINED.

The ordering of accesses for regions of memory, referred to as the memory order model, is defined by the
memory attributes. This model is described in the following sections:

• Memory types

• Summary of ARMv7 memory attributes on page A3-25

• Atomicity in the ARM architecture on page A3-26

• Normal memory on page A3-28

• Device memory on page A3-33

• Strongly-ordered memory on page A3-34

• Memory access restrictions on page A3-35

• Backwards compatibility on page A3-37

• The effect of the Security Extensions on page A3-37.

A3.5.1 Memory types

For each memory region, the most significant memory attribute specifies the memory type. There are three
mutually exclusive memory types:

• Normal

• Device

• Strongly-ordered.

Normal and Device memory regions have additional attributes.

Usually, memory used for program code and for data storage is Normal memory. Examples of Normal
memory technologies are:

• programmed Flash ROM

Note
 During programming, Flash memory can be ordered more strictly than Normal memory.

• ROM

• SRAM

• DRAM and DDR memory.
A3-24 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q2
Sticky Note
This change is a clarification of the intended meaning, not a change to the architecture.

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
distinguishes between Inner Shareable and Outer Shareable memory

Application Level Memory Model
System peripherals (I/O) generally conform to different access rules to Normal memory. Examples of I/O
accesses are:

• FIFOs where consecutive accesses

— add queued values on write accesses

— remove queued values on read accesses.

• interrupt controller registers where an access can be used as an interrupt acknowledge, changing the
state of the controller itself

• memory controller configuration registers that are used to set up the timing and correctness of areas
of Normal memory

• memory-mapped peripherals, where accessing a memory location can cause side effects in the
system.

In ARMv7, regions of the memory map for these accesses are defined as Device or Strongly-ordered
memory. To ensure system correctness, access rules for Device and Strongly-ordered memory are more
restrictive than those for Normal memory:

• both read and write accesses can have side effects

• accesses must not be repeated, for example, on return from an exception

• the number, order and sizes of the accesses must be maintained.

In addition, for Strongly-ordered memory, all memory accesses are strictly ordered to correspond to the
program order of the memory access instructions.

A3.5.2 Summary of ARMv7 memory attributes

Table A3-8 summarizes the memory attributes. For more information about theses attributes see:

• Normal memory on page A3-28 and Shareable attribute for Device memory regions on page A3-34,
for the shareability attribute

• Write-Through Cacheable, Write-Back Cacheable and Non-cacheable Normal memory on
page A3-32, for the cacheability attribute.

Table A3-8 Memory attribute summary

Memory type
attribute

Shareability Other attributes Description

Strongly-
ordered

- - All memory accesses to
Strongly-ordered memory
occur in program order. All
Strongly-ordered regions are
assumed to be Shareable.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A3-25

ARM_2008_Q4
Inserted Text
explicit

ARM_2008_Q4
Inserted Text
explicit

Application Level Memory Model
A3.5.3 Atomicity in the ARM architecture

Atomicity is a feature of memory accesses, described as atomic accesses. The ARM architecture description
refers to two types of atomicity, defined in:

• Single-copy atomicity on page A3-27

• Multi-copy atomicity on page A3-28.

Device Shareable - Intended to handle memory-
mapped peripherals that are
shared by several processors.

Non-
shareable

- Intended to handle memory-
mapped peripherals that are
used only by a single processor.

Normal Outer
Shareable

Cacheability, one of: a The Outer Shareable attribute
qualifies the Shareable attribute
for Normal memory regions
and enables two levels of
Normal memory sharing.b

Non-cacheable

Write-Through Cacheable

Write-Back Write-Allocate Cacheable

Write-Back no Write-Allocate Cacheable

Inner
Shareable

Cacheability, one of: a Intended to handle Normal
memory that is shared between
several processors.Non-cacheable

Write-Through Cacheable

Write-Back Write-Allocate Cacheable
Write-Back no Write-Allocate Cacheable

Non-
shareable

Cacheability, one of: a Intended to handle Normal
memory that is used by only a
single processor.Non-cacheable

Write-Through Cacheable

Write-Back Write-Allocate Cacheable

Write-Back no Write-Allocate Cacheable

a. The cacheability attribute is defined independently for inner and outer cache regions.
b. The significance of the Outer Shareable attribute is IMPLEMENTATION DEFINED.

Table A3-8 Memory attribute summary (continued)

Memory type
attribute

Shareability Other attributes Description
A3-26 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q2
Sticky Note
This change is a clarification of the intended meaning, not a change to the architecture.

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
Whether an ARMv7 implementation distinguishes between Inner Shareable and Outer Shareable

ARM_2010_Q3
Highlight
See sticky note

ARM_2010_Q3
Sticky Note
Device memory that has the Shareable attribute can also have the Outer Shareable attribute. This means the shareability attribute for a Device memory region is one of:
 • Outer Shareable
 • Inner Shareable
 • Non-shareable.
For more information, see the description of the NOSn fields in section c10, Primary Region Remap Register (PRRR) on page B3-143 [PDF page 1417].

Application Level Memory Model
Single-copy atomicity

A read or write operation is single-copy atomic if the following conditions are both true:

• After any number of write operations to an operand, the value of the operand is the value written by
one of the write operations. It is impossible for part of the value of the operand to come from one
write operation and another part of the value to come from a different write operation.

• When a read operation and a write operation are made to the same operand, the value obtained by the
read operation is one of:

— the value of the operand before the write operation

— the value of the operand after the write operation.

It is never the case that the value of the read operation is partly the value of the operand before the
write operation and partly the value of the operand after the write operation.

In ARMv7, the single-copy atomic processor accesses are:

• all byte accesses

• all halfword accesses to halfword-aligned locations

• all word accesses to word-aligned locations

• memory accesses caused by LDREXD and STREXD instructions to doubleword-aligned locations.

LDM, LDC, LDC2, LDRD, STM, STC, STC2, STRD, PUSH, POP, RFE, SRS, VLDM, VLDR, VSTM, and VSTR instructions are
executed as a sequence of word-aligned word accesses. Each 32-bit word access is guaranteed to be
single-copy atomic. A subsequence of two or more word accesses from the sequence might not exhibit
single-copy atomicity.

Advanced SIMD element and structure loads and stores are executed as a sequence of accesses of the
element or structure size. The element accesses are single-copy atomic if and only if both:

• the element size is 32 bits, or smaller

• the elements are naturally aligned.

Accesses to 64-bit elements or structures that are at least word-aligned are executed as a sequence of 32-bit
accesses, each of which is single-copy atomic. Subsequences of two or more 32-bit accesses from the
sequence might not be single-copy atomic.

When an access is not single-copy atomic, it is executed as a sequence of smaller accesses, each of which
is single-copy atomic, at least at the byte level.

If an instruction is executed as a sequence of accesses according to these rules, some exceptions can be taken
in the sequence and cause execution of the instruction to be abandoned. These exceptions are:

• synchronous Data Abort exceptions

• if low interrupt latency configuration is selected and the accesses are to Normal memory, see Low
interrupt latency configuration on page B1-43:

— IRQ interrupts

— FIQ interrupts

— asynchronous aborts.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A3-27

Application Level Memory Model
If any of these exceptions are returned from using their preferred exception return, the instruction that
generated the sequence of accesses is re-executed and so any accesses that had already been performed
before the exception was taken are repeated.

Note
 The exception behavior for these multiple access instructions means they are not suitable for use for writes
to memory for the purpose of software synchronization.

For implicit accesses:

• Cache linefills and evictions have no effect on the single-copy atomicity of explicit transactions or
instruction fetches.

• Instruction fetches are single-copy atomic for each instruction fetched.

Note
 32-bit Thumb instructions are fetched as two 16-bit items.

• Translation table walks are performed as 32-bit accesses aligned to 32 bits, each of which is
single-copy atomic.

Multi-copy atomicity

In a multiprocessing system, writes to a memory location are multi-copy atomic if the following conditions
are both true:

• All writes to the same location are serialized, meaning they are observed in the same order by all
observers, although some observers might not observe all of the writes.

• A read of a location does not return the value of a write until all observers observe that write.

Writes to Normal memory are not multi-copy atomic.

All writes to Device and Strongly-ordered memory that are single-copy atomic are also multi-copy atomic.

All write accesses to the same location are serialized. Write accesses to Normal memory can be repeated up
to the point that another write to the same address is observed.

For Normal memory, serialization of writes does not prohibit the merging of writes.

A3.5.4 Normal memory

Normal memory is idempotent, meaning that it exhibits the following properties:

• read accesses can be repeated with no side effects

• repeated read accesses return the last value written to the resource being read

• read accesses can prefetch additional memory locations with no side effects
A3-28 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2011_Q2
Inserted Text
A3.5.4 Concurrent modification and execution of instructions

The ARMv7 architecture limits the set of instructions that can be executed by one thread of execution as they are being modified by another thread of execution without requiring explicit synchronization.
Except for the instructions identified in this section, the effect of the concurrent modification and execution of an instruction is UNPREDICTABLE.

For the following instructions only, the architecture guarantees that, after modification of the instruction, behavior is consistent with execution of either:
 • The instruction originally fetched.
 • A fetch of the new instruction. That is, a fetch of the instruction that results from the modification.

The instructions to which this guarantee applies are:
In the Thumb instruction set:
 The 16-bit encodings of the B, NOP, BKPT, and SVC instructions.
 In addition:
 • The most-significant halfword of a BL instruction can be concurrently modified to the most significant halfword of another BL instruction. This means that the most significant bits of the immediate value can be modified.
 • The most-significant halfword of a BL instruction can be concurrently modified to a 16-bit B, BKPT, or SVC instruction.
 • A 16-bit B, BKPT, or SVC instruction can be concurrently modified to the most-significant halfword of a BL instruction.
 -------- Note --------
 In the Thumb instruction set:
 • the only encodings of BKPT and SVC are 16-bit
 • the only encoding of BL is 32-bit.

In the ARM instruction set:
 The B, BL, NOP, BKPT, SVC, HVC, and SMC instructions.

For all other instructions, to avoid unpredictable behavior, instruction modifications must be explicitly synchronized before they are executed. The required synchronization is as follows:
 1. To ensure that the modified instructions are observable, the thread of execution that is modifying the instructions must issue the following sequence of instructions and operations:
 DCCMVAU [instruction location] ; Clean data cache by MVA to point of unification
 DSB ; Ensure visibility of the data cleaned from the cache
 2. Once the modified instructions are observable, the thread of execution that is executing the modified instructions must issue the following sequence of instructions and operations to ensure execution of the modified instructions:
 ICIMVAU [instruction location] ; Invalidate instruction cache by MVA to PoU
 BPIMVAU [instruction location] ; Invalidate branch predictor by MVA to PoU
 DSB ; Ensure completion of the invalidations
 ISB ; Synchronize fetched instruction stream

ARM_2011_Q2
Sticky Note
An important new section, A3.5.4 Concurrent modification and execution of instructions, is added at the end of this line of text.

Although this is the first time this architecture reference manual has described this behavior, the description applies to all ARMv7 implementation.

ARM_2011_Q2
Sticky Note
The new section inserted on this page, immediately before section A3.5.4, describes additional constraints on instruction fetches during concurrent modification and execution of instructions.

Application Level Memory Model
• write accesses can be repeated with no side effects, provided that the contents of the location are
unchanged between the repeated writes

• unaligned accesses can be supported

• accesses can be merged before accessing the target memory system.

Normal memory can be read/write or read-only, and a Normal memory region is defined as being either
Shareable or Non-shareable. In a VMSA implementation, Shareable Normal memory can be either Inner
Shareable or Outer Shareable. In a PMSA implementation, no distinction is made between Inner Shareable
and Outer Shareable regions.

The Normal memory type attribute applies to most memory used in a system.

Accesses to Normal Memory have a weakly consistent model of memory ordering. See a standard text
describing memory ordering issues for a description of weakly consistent memory models, for example
chapter 2 of Memory Consistency Models for Shared Memory-Multiprocessors, Kourosh Gharachorloo,
Stanford University Technical Report CSL-TR-95-685. In general, for Normal memory, barrier operations
are required where the order of memory accesses observed by other observers must be controlled. This
requirement applies regardless of the cacheablility and shareability attributes of the Normal memory region.

The ordering requirements of accesses described in Ordering requirements for memory accesses on
page A3-45 apply to all explicit accesses.

An instruction that generates a sequence of accesses as described in Atomicity in the ARM architecture on
page A3-26 might be abandoned as a result of an exception being taken during the sequence of accesses. On
return from the exception the instruction is restarted, and therefore one or more of the memory locations
might be accessed multiple times. This can result in repeated write accesses to a location that has been
changed between the write accesses.

The architecture permits speculative accesses to memory locations marked as Normal if the access
permissions and domain permit an access to the locations.

A Normal memory region has shareability attributes that define the data coherency properties of the region.
These attributes do not affect the coherency requirements of:

• instruction fetches, see Instruction coherency issues on page A3-53

• translation table walks, if supported, in the base ARMv7 architecture and in versions of the
architecture before ARMv7, see TLB maintenance operations and the memory order model on
page B3-59.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A3-29

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
in the following cases:
 - if the contents of the accessed location are unchanged between the repeated writes
 - as a result of an exception, as described in this section

ARM_2009_Q1
Sticky Note
This change clarifies the description of the behavior of Normal memory, by indicating another case when a write access can be repeated with no side effects. It does not modify the case originally described.

ARM_2009_Q2
Inserted Text
for

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
it is IMPLEMENTATION DEFINED whether there is a distinction between

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
and

ARM_2009_Q2
Sticky Note
This change is a clarification of the intended meaning, not a change to the architecture.

Application Level Memory Model
Non-shareable Normal memory

For a Normal memory region, the Non-shareable attribute identifies Normal memory that is likely to be
accessed only by a single processor.

A region of Normal memory with the Non-shareable attribute does not have any requirement to make data
accesses by different observers coherent, unless the memory is non-cacheable. If other observers share the
memory system, software must use cache maintenance operations if the presence of caches might lead to
coherency issues when communicating between the observers. This cache maintenance requirement is in
addition to the barrier operations that are required to ensure memory ordering.

For Non-shareable Normal memory, the Load-Exclusive and Store-Exclusive synchronization primitives do
not take account of the possibility of accesses by more than one observer.

Shareable, Inner Shareable, and Outer Shareable Normal memory

For Normal memory, the Shareable and Outer Shareable memory attributes describe Normal memory that
is expected to be accessed by multiple processors or other system masters:

• In a VMSA implementation, Normal memory that has the Shareable attribute but not the Outer
Shareable attribute assigned is described as having the Inner Shareable attribute.

• In a PMSA implementation, no distinction is made between Inner Shareable and Outer Shareable
Normal memory, and you cannot assign the Outer Shareable attribute to Normal memory regions.

A region of Normal memory with the Shareable attribute is one for which data accesses to memory by
different observers within the same shareability domain are coherent.

The Outer Shareable attribute is introduced in ARMv7, and can be applied only to a Normal memory region
in a VMSA implementation that has the Shareable attribute assigned. It creates three levels of shareability
for a Normal memory region:

Non-shareable

A Normal memory region that does not have the Shareable attribute assigned.

Inner Shareable

A Normal memory region that has the Shareable attribute assigned, but not the Outer
Shareable attribute.

Outer Shareable

A Normal memory region that has both the Shareable and the Outer Shareable attributes
assigned.

These attributes can be used to define sets of observers for which the shareability attributes make the data
or unified caches transparent for data accesses. The sets of observers that are affected by the shareability
attributes are described as shareability domains. The details of the use of these attributes are
system-specific. Example A3-1 on page A3-31 shows how they might be used:
A3-30 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2010_Q2
Inserted Text
it is IMPLEMENTATION DEFINED whether

ARM_2010_Q2
Cross-Out

Application Level Memory Model
Example A3-1 Use of shareability attributes

In a VMSA implementation, a particular sub-system with two clusters of processors has the requirement
that:

• in each cluster, the data or unified caches of the processors in the cluster are transparent for all data
accesses with the Inner Shareable attribute

• however, between the two clusters, the caches:

— are not transparent for data accesses that have only the Inner Shareable attribute

— are transparent for data accesses that have the Outer Shareable attribute.

In this system, each cluster is in a different shareability domain for the Inner Shareable attribute, but all
components of the sub-system are in the same shareability domain for the Outer Shareable attribute.

A system might implement two such sub-systems. If the data or unified caches of one subsystem are not
transparent to the accesses from the other subsystem, this system has two Outer Shareable shareability
domains.

Having two levels of shareability attribute means you can reduce the performance and power overhead for
shared memory regions that do not need to be part of the Outer Shareable shareability domain.

Whether an ARMv7 implementation supports the Outer Shareable attribute is IMPLEMENTATION DEFINED.
If the Outer Shareable attribute is supported, its significance in the implementation is IMPLEMENTATION
DEFINED.

For Shareable Normal memory, the Load-Exclusive and Store-Exclusive synchronization primitives take
account of the possibility of accesses by more than one observer in the same Shareability domain.

Note
 The Shareable concept enables system designers to specify the locations in Normal memory that must have
coherency requirements. However, to facilitate porting of software, software developers must not assume
that specifying a memory region as Non-shareable permits software to make assumptions about the
incoherency of memory locations between different processors in a shared memory system. Such
assumptions are not portable between different multiprocessing implementations that make use of the
Shareable concept. Any multiprocessing implementation might implement caches that, inherently, are
shared between different processing elements.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A3-31

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
In a VMSA implementation, for Shareable Normal memory, whether there is a distinction between Inner Shareable and Outer Shareable is IMPLEMENTATION DEFINED

ARM_2009_Q2
Sticky Note
This change is a clarification of the intended meaning, not a change to the architecture.

Application Level Memory Model
Write-Through Cacheable, Write-Back Cacheable and Non-cacheable Normal
memory

In addition to being Outer Shareable, Inner Shareable or Non-shareable, each region of Normal memory can
be marked as being one of:

• Write-Through Cacheable

• Write-Back Cacheable, with an additional qualifier that marks it as one of:

— Write-Back, Write-Allocate

— Write-Back, no Write-Allocate

• Non-cacheable.

If the same memory locations are marked as having different cacheability attributes, for example by the use
of aliases in a virtual to physical address mapping, behavior is UNPREDICTABLE.

The cacheability attributes provide a mechanism of coherency control with observers that lie outside the
shareability domain of a region of memory. In some cases, the use of Write-Through Cacheable or
Non-cacheable regions of memory might provide a better mechanism for controlling coherency than the use
of hardware coherency mechanisms or the use of cache maintenance routines. To this end, the architecture
requires the following properties for Non-cacheable or Write-Through Cacheable memory:

• a completed write to a memory location that is Non-cacheable or Write-Through Cacheable for a
level of cache made by an observer accessing the memory system inside the level of cache is visible
to all observers accessing the memory system outside the level of cache without the need of explicit
cache maintenance

• a completed write to a memory location that is Non-cacheable for a level of cache made by an
observer accessing the memory system outside the level of cache is visible to all observers accessing
the memory system inside the level of cache without the need of explicit cache maintenance.

Note
 Implementations can also use the cacheability attributes to provide a performance hint regarding the
performance benefit of caching. For example, it might be known to a programmer that a piece of memory
is not going to be accessed again and would be better treated as Non-cacheable. The distinction between
Write-Back Write-Allocate and Write-Back no Write-Allocate memory exists only as a hint for
performance.

The ARM architecture provides independent cacheability attributes for Normal memory for two conceptual
levels of cache, the inner and the outer cache. The relationship between these conceptual levels of cache and
the implemented physical levels of cache is IMPLEMENTATION DEFINED, and can differ from the boundaries
between the Inner and Outer Shareability domains. However:

• inner refers to the innermost caches, and always includes the lowest level of cache

• no cache controlled by the Inner cacheability attributes can lie outside a cache controlled by the Outer
cacheability attributes

• an implementation might not have any outer cache.
A3-32 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q4
Inserted Text
, except for marking with allocations hints

Application Level Memory Model
Example A3-2 to Example A3-4 describe the three possible ways of implementing a system with three
levels of cache, L1 to L3. L1 is the level closest to the processor, see Memory hierarchy on page A3-52.

Example A3-2 Implementation with two inner and one outer cache levels

Implement the three levels of cache in the system, L1 to L3, with:

• the Inner cacheability attribute applied to L1 and L2 cache

• the Outer cacheability attribute applied to L3 cache.

Example A3-3 Implementation with three inner and no outer cache levels

Implement the three levels of cache in the system, L1 to L3, with the Inner cacheability attribute applied to
L1, L2, and L3 cache. Do not use the Outer cacheability attribute.

Example A3-4 Implementation with one inner and two outer cache levels

Implement the three levels of cache in the system, L1 to L3, with:

• the Inner cacheability attribute applied to L1 cache

• the Outer cacheability attribute applied to L2 and L3 cache.

A3.5.5 Device memory

The Device memory type attribute defines memory locations where an access to the location can cause side
effects, or where the value returned for a load can vary depending on the number of loads performed.
Memory-mapped peripherals and I/O locations are examples of memory regions normally marked as being
Device memory.

For explicit accesses from the processor to memory marked as Device:

• all accesses occur at their program size

• the number of accesses is the number specified by the program.

An implementation must not repeat an access to a Device memory location if the program has only one
access to that location. In other words, accesses to Device memory locations are not restartable.

The architecture does not permit speculative accesses to memory marked as Device.

The architecture permits an Advanced SIMD element or structure load instruction to access bytes in Device
memory that are not explicitly accessed by the instruction, provided the bytes accessed are within a 16-byte
window, aligned to 16-bytes, that contains at least one byte that is explicitly accessed by the instruction.

Address locations marked as Device are never held in a cache.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A3-33

ARM_2008_Q4
Inserted Text
----- Note -----
When managing coherency, system designs must consider both the inner and outer cacheability attributes, as well as the shareability attributes. This is because hardware might have to manage the coherency of caches at one conceptual level, even when another conceptual level has the Non-cacheable attribute.

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
perform more accesses to a Device memory location than are specified by a simple sequential execution of the program, except as a result of an exception. This section describes this permitted effect of an exception.

ARM_2009_Q1
Sticky Note
This is a clarification of the intended meaning of this paragraph, not a change to the architectural specification.

ARM_2009_Q3
Inserted Text
data

ARM_2009_Q3
Inserted Text

----- Note -----
For information about restrictions on speculative instruction prefetching see:
• The Execute Never (XN) attribute and instruction prefetching on page B3-30 [PDF page 1304] for a VMSA implementation
• The Execute Never (XN) attribute and instruction prefetching on page B4-10 [PDF page 1446] for a PMSA implementation.

Application Level Memory Model
All explicit accesses to Device memory must comply with the ordering requirements of accesses described
in Ordering requirements for memory accesses on page A3-45.

An instruction that generates a sequence of accesses as described in Atomicity in the ARM architecture on
page A3-26 might be abandoned as a result of an exception being taken during the sequence of accesses. On
return from the exception the instruction is restarted, and therefore one or more of the memory locations
might be accessed multiple times. This can result in repeated write accesses to a location that has been
changed between the write accesses.

Note
 Do not use an instruction that generates a sequence of accesses to access Device memory if the instruction
might generate an abort on any access other than the first one.

Any unaligned access that is not faulted by the alignment restrictions and accesses Device memory has
UNPREDICTABLE behavior.

Shareable attribute for Device memory regions

Device memory regions can be given the Shareable attribute. This means that a region of Device memory
can be described as either:

• Shareable Device memory

• Non-shareable Device memory.

Non-shareable Device memory is defined as only accessible by a single processor. An example of a system
supporting Shareable and Non-shareable Device memory is an implementation that supports both:

• a local bus for its private peripherals

• system peripherals implemented on the main shared system bus.

Such a system might have more predictable access times for local peripherals such as watchdog timers or
interrupt controllers. In particular, a specific address in a Non-shareable Device memory region might
access a different physical peripheral for each processor.

A3.5.6 Strongly-ordered memory

The Strongly-ordered memory type attribute defines memory locations where an access to the location can
cause side effects, or where the value returned for a load can vary depending on the number of loads
performed. Examples of memory regions normally marked as being Strongly-ordered are memory-mapped
peripherals and I/O locations.

For explicit accesses from the processor to memory marked as Strongly-ordered:

• all accesses occur at their program size

• the number of accesses is the number specified by the program.

An implementation must not repeat an access to a Strongly-ordered memory location if the program has
only one access to that location. In other words, accesses to Strongly-ordered memory locations are not
restartable.
A3-34 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
perform more accesses to a Strongly-ordered memory location than are specified by a simple sequential execution of the program, except as a result of an exception. This section describes this permitted effect of an exception.

ARM_2009_Q1
Sticky Note
This is a clarification of the intended meaning of this paragraph, not a change to the architectural specification.

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
 synchronous Data Abort exception

ARM_2009_Q1
Sticky Note
This is a clarification of the meaning of this Note. A synchronous Data Abort exception is the only abort that might occur on such an access.

ARM_2009_Q3
Cross-Out

ARM_2009_Q3
Replacement Text
For Device memory regions, the significance of the Shareability attributes is IMPLEMENTATION DEFINED. However, an

ARM_2010_Q2
Inserted Text

ARM deprecates the marking of Device memory with a Shareability attribute other than Outer Shareable or Shareable.

ARM_2010_Q2
Cross-Out

ARM_2010_Q2
Replacement Text
one of:
 • Outer Shareable Device memory
 • Inner Shareable Device memory
 • Non-shareable Device memory.

Some implementations make no distinction between Outer Shareable Device memory and Inner Shareable Device memory, and refer to both memory types as Shareable Device memory.

Application Level Memory Model
The architecture does not permit speculative accesses to memory marked as Strongly-ordered.

The architecture permits an Advanced SIMD element or structure load instruction to access bytes in
Strongly-ordered memory that are not explicitly accessed by the instruction, provided the bytes accessed are
within a 16-byte window, aligned to 16-bytes, that contains at least one byte that is explicitly accessed by
the instruction.

Address locations in Strongly-ordered memory are not held in a cache, and are always treated as Shareable
memory locations.

All explicit accesses to Strongly-ordered memory must correspond to the ordering requirements of accesses
described in Ordering requirements for memory accesses on page A3-45.

An instruction that generates a sequence of accesses as described in Atomicity in the ARM architecture on
page A3-26 might be abandoned as a result of an exception being taken during the sequence of accesses. On
return from the exception the instruction is restarted, and therefore one or more of the memory locations
might be accessed multiple times. This can result in repeated write accesses to a location that has been
changed between the write accesses.

Note
 Do not use an instruction that generates a sequence of accesses to access Strongly-ordered memory if the
instruction might generate an abort on any access other than the first one.

Any unaligned access that is not faulted by the alignment restrictions and accesses Strongly-ordered
memory has UNPREDICTABLE behavior.

Note
 See Ordering of instructions that change the CPSR interrupt masks on page AppxG-8 for additional
requirements that apply to accesses to Strongly-ordered memory in ARMv6.

A3.5.7 Memory access restrictions

The following restrictions apply to memory accesses:

• For any access X, the bytes accessed by X must all have the same memory type attribute, otherwise
the behavior of the access is UNPREDICTABLE. That is, an unaligned access that spans a boundary
between different memory types is UNPREDICTABLE.

• For any two memory accesses X and Y that are generated by the same instruction, the bytes accessed
by X and Y must all have the same memory type attribute, otherwise the results are UNPREDICTABLE.
For example, an LDC, LDM, LDRD, STC, STM, or STRD that spans a boundary between Normal and Device
memory is UNPREDICTABLE.

• An instruction that generates an unaligned memory access to Device or Strongly-ordered memory is
UNPREDICTABLE.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A3-35

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
a synchronous Data Abort exception

ARM_2009_Q1
Sticky Note
This is a clarification of the meaning of this Note. A synchronous Data Abort exception is the only abort that might occur on such an access.

ARM_2009_Q3
Inserted Text
----- Note -----
For information about restrictions on speculative instruction prefetching see:
· The Execute Never (XN) attribute and instruction prefetching on page B3-30 [PDF page 1304] for a VMSA implementation
· The Execute Never (XN) attribute and instruction prefetching on page B4-10 [PDF page 1446] for a PMSA implementation.

ARM_2009_Q3
Inserted Text
data

ARM_2009_Q3 and ARM_2011_Q2
Cross-Out

ARM_2009_Q3 and ARM_2011_Q2
Replacement Text
 • For accesses to any two bytes, p and q, that are generated by the same instruction:
 — The bytes p and q must have the same memory type and shareability attributes, otherwise the results are UNPREDICTABLE. For example, an LDC, LDM, LDRD, STC, STM, STRD , or unaligned load or store that spans a boundary between Normal and Device memory is UNPREDICTABLE.
 — Except for possible differences in the cache allocation hints, ARM deprecates having different cacheability attributes for the bytes p and q.

ARM_2011_Q2
Sticky Note
The new text inserted by the 2011_Q2 change combines the two bullets into a single simplified bullet, and clarifies that:
 • the memory type attribute in the original text includes the shareability attribute.
 • the deprecation of having different cacheability attributes, added in the ARM_2009_Q3 errata release, applies to all accesses covered by the two original bullets, but excludes any differences in the cache allocation hints.

Application Level Memory Model
• To ensure access rules are maintained, an instruction that causes multiple accesses to Device or
Strongly-ordered memory must not cross a 4KB address boundary, otherwise the effect is
UNPREDICTABLE. For this reason, it is important that an access to a volatile memory device is not
made using a single instruction that crosses a 4KB address boundary.

ARM expects this restriction to impose constraints on the placing of volatile memory devices in the
memory map of a system, rather than expecting a compiler to be aware of the alignment of memory
accesses.

• For instructions that generate accesses to Device or Strongly-ordered memory, implementations must
not change the sequence of accesses specified by the pseudocode of the instruction. This includes not
changing:

— how many accesses there are

— the time order of the accesses

— the data sizes and other properties of each access.

In addition, processor implementations expect any attached memory system to be able to identify the
memory type of an accesses, and to obey similar restrictions with regard to the number, time order,
data sizes and other properties of the accesses.

Exceptions to this rule are:

— An implementation of a processor can break this rule, provided that the information it supplies
to the memory system enables the original number, time order, and other details of the accesses
to be reconstructed. In addition, the implementation must place a requirement on attached
memory systems to do this reconstruction when the accesses are to Device or Strongly-ordered
memory.

For example, an implementation with a 64-bit bus might pair the word loads generated by an
LDM into 64-bit accesses. This is because the instruction semantics ensure that the 64-bit access
is always a word load from the lower address followed by a word load from the higher address.
However the implementation must permit the memory systems to unpack the two word loads
when the access is to Device or Strongly-ordered memory.

— Any implementation technique that produces results that cannot be observed to be different
from those described above is legitimate.

— An Advanced SIMD element or structure load instruction can access bytes in Device or
Strongly-ordered memory that are not explicitly accessed by the instruction, provided the
bytes accessed are within a 16-byte window, aligned to 16-bytes, that contains at least one byte
that is explicitly accessed by the instruction.

• Any multi-access instruction that loads or stores the PC must access only Normal memory. If the
instruction accesses Device or Strongly-ordered memory the result is UNPREDICTABLE. There is one
exception to this restriction. In the VMSA architecture, when the MMU is disabled any multi-access
instruction that loads or stores the PC functions correctly, see Enabling and disabling the MMU on
page B3-5.

• Any instruction fetch must access only Normal memory. If it accesses Device or Strongly-ordered
memory, the result is UNPREDICTABLE. For example, instruction fetches must not be performed to an
area of memory that contains read-sensitive devices, because there is no ordering requirement
between instruction fetches and explicit accesses.
A3-36 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q2
Inserted Text
 at any particular memory-mapped peripheral

ARM_2009_Q2
Sticky Note
This change is a clarification of the intended meaning, not a change to the architecture.

ARM_2009_Q3
Inserted Text

 — There is no requirement for the memory system to be able to identify the size of the elements accessed by an Advanced SIMD element or structure load/store instruction.

Application Level Memory Model
• Behavior is UNPREDICTABLE if the same memory location:

— is marked as Shareable Normal and Non-shareable Normal

— is marked as having different memory types (Normal, Device, or Strongly-ordered)

— is marked as having different cacheability attributes

— is marked as being Shareable Device and Non-shareable Device memory.

Such memory marking contradictions can occur, for example, by the use of aliases in a virtual to
physical address mapping.

Before ARMv6, it is IMPLEMENTATION DEFINED whether a low interrupt latency mode is supported. From
ARMv6, low interrupt latency support is controlled by the SCTLR.FI bit. It is IMPLEMENTATION DEFINED
whether multi-access instructions behave correctly in low interrupt latency configurations.

A3.5.8 Backwards compatibility

From ARMv6, the memory attributes are significantly different from those in previous versions of the
architecture. Table A3-9 shows the interpretation of the earlier memory types in the light of this definition.

A3.5.9 The effect of the Security Extensions

The Security Extensions can be included as part of an ARMv7-A implementation, with a VMSA. They
provide two distinct 4GByte virtual memory spaces:

• a Secure virtual memory space

• a Non-secure virtual memory space.

The Secure virtual memory space is accessed by memory accesses in the Secure state, and the Non-secure
virtual memory space is accessed by memory accesses in the Non-secure state.

By providing different virtual memory spaces, the Security Extensions permit memory accesses made from
the Non-secure state to be distinguished from those made from the Secure state.

Table A3-9 Backwards compatibility

Previous architectures ARMv6 and ARMv7 attribute

NCNB (Non-cacheable, Non-bufferable) Strongly-ordered

NCB (Non-cacheable, Bufferable) Shareable Device

Write-Through Cacheable, Bufferable Non-shareable Normal, Write-Through Cacheable

Write-Back Cacheable, Bufferable Non-shareable Normal, Write-Back Cacheable
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A3-37

ARM_2009_Q1
Inserted Text
, except for marking with allocation hints

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Sticky Note
The first two sentences are accurate but not required in this section.

Application Level Memory Model
A3.6 Access rights

ARMv7 includes additional attributes for memory regions, that enable:

• Data accesses to be restricted, based on the privilege of the access. See Privilege level access controls
for data accesses.

• Instruction fetches to be restricted, based on the privilege of the process or thread making the fetch.
See Privilege level access controls for instruction accesses.

• On a system that implements the Security Extensions, accesses to be restricted to memory accesses
with the Secure memory attribute. See Memory region security status on page A3-39.

A3.6.1 Privilege level access controls for data accesses

The memory attributes can define that a memory region is:

• not accessible to any accesses

• accessible only to Privileged accesses

• accessible to Privileged and Unprivileged accesses.

The access privilege level is defined separately for explicit read and explicit write accesses. However, a
system that defines the memory attributes is not required to support all combinations of memory attributes
for read and write accesses.

A Privileged access is an access made during privileged execution, as a result of a load or store operation
other than LDRT, STRT, LDRBT, STRBT, LDRHT, STRHT, LDRSHT, or LDRSBT.

An Unprivileged access is an access made as a result of load or store operation performed in one of these
cases:

• when the processor is in an unprivileged mode

• when the processor is in any mode and the access is made as a result of a LDRT, STRT, LDRBT, STRBT,
LDRHT, STRHT, LDRSHT, or LDRSBT instruction.

A Data Abort exception is generated if the processor attempts a data access that the access rights do not
permit. For example, a Data Abort exception is generated if the processor is in unprivileged mode and
attempts to access a memory region that is marked as only accessible to Privileged accesses.

A3.6.2 Privilege level access controls for instruction accesses

Memory attributes can define that a memory region is:

• Not accessible for execution

• Accessible for execution by Privileged processes only

• Accessible for execution by Privileged and Unprivileged processes.

To define the instruction access rights to a memory region, the memory attributes describe, separately, for
the region:

• its read access rights, see Privilege level access controls for data accesses
A3-38 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Memory Model
• whether it is suitable for execution.

For example, a region that is accessible for execution by Privileged processes only has the memory
attributes:

• accessible only to Privileged read accesses

• suitable for execution.

This means there is some linkage between the memory attributes that define the accessibility of a region to
explicit memory accesses, and those that define that a region can be executed.

A memory fault occurs if a processor attempts to execute code from a memory location with attributes that
do not permit code execution.

A3.6.3 Memory region security status

An additional memory attribute determines whether the memory region is Secure or Non-secure in an
ARMv7-A system that implements the Security Extensions. When the Security Extensions are
implemented, this attribute is checked by the system hardware to ensure that a region of memory that is
designated as Secure by the system hardware is not accessed by memory accesses with the Non-secure
memory attribute. For more information, see Memory region attributes on page B3-32.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A3-39

Application Level Memory Model
A3.7 Virtual and physical addressing

ARMv7 provides three alternative architectural profiles, ARMv7-A, ARMv7-R and ARMv7-M. Each of the
profiles specifies a different memory system. This manual describes two of these profiles:

ARMv7-A profile

The ARMv7-A memory system incorporates a Memory Management Unit (MMU),
controlled by CP15 registers. The memory system supports virtual addressing, with the
MMU performing virtual to physical address translation, in hardware, as part of program
execution.

ARMv7-R profile

The ARMv7-R memory system incorporates a Memory Protection Unit (MPU), controlled
by CP15 registers. The MPU does not support virtual addressing.

At the application level, the difference between the ARMv7-A and ARMv7-R memory systems is
transparent. Regardless of which profile is implemented, an application accesses the memory map described
in Address space on page A3-2, and the implemented memory system makes the features described in this
chapter available to the application.

For a system-level description of the ARMv7-A and ARMv7-R memory models see:

• Chapter B2 Common Memory System Architecture Features

• Chapter B3 Virtual Memory System Architecture (VMSA)

• Chapter B4 Protected Memory System Architecture (PMSA).

Note
 This manual does not describe the ARMv7-M profile. For details of this profile see:

• ARMv7-M Architecture Application Level Reference Manual, for an application-level description

• ARMv7-M Architecture Reference Manual, for a full description.
A3-40 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q3
Cross-Out

ARM_2009_Q3
Replacement Text
the

ARM_2009_Q3
Cross-Out

ARM_2009_Q3
Sticky Note
ARM has removed distribution restrictions on the ARMv7-M Architecture Reference Manual, and therefore is making the application-level version of the manual obsolete.

Application Level Memory Model
A3.8 Memory access order

ARMv7 provides a set of three memory types, Normal, Device, and Strongly-ordered, with well-defined
memory access properties.

The ARMv7 application-level view of the memory attributes is described in:

• Memory types and attributes and the memory order model on page A3-24

• Access rights on page A3-38.

When considering memory access ordering, an important feature of the ARMv6 memory model is the
Shareable memory attribute, that indicates whether a region of memory can be shared between multiple
processors, and therefore requires an appearance of cache transparency in the ordering model.

The key issues with the memory order model depend on the target audience:

• For software programmers, considering the model at the application level, the key factor is that for
accesses to Normal memory barriers are required in some situations where the order of accesses
observed by other observers must be controlled.

• For silicon implementers, considering the model at the system level, the Strongly-ordered and Device
memory attributes place certain restrictions on the system designer in terms of what can be built and
when to indicate completion of an access.

Note
 Implementations remain free to choose the mechanisms required to implement the functionality of

the memory model.

More information about the memory order model is given in the following subsections:

• Reads and writes on page A3-42

• Ordering requirements for memory accesses on page A3-45

• Memory barriers on page A3-47.

Additional attributes and behaviors relate to the memory system architecture. These features are defined in
the system level section of this manual:

• Virtual memory systems based on an MMU, described in Chapter B3 Virtual Memory System
Architecture (VMSA).

• Protected memory systems based on an MPU, described in Chapter B4 Protected Memory System
Architecture (PMSA).

• Caches, described in Caches on page B2-3.

Note
 In these system level descriptions, some attributes are described in relation to an MMU. In general, these
descriptions can also be applied to an MPU based system.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A3-41

Application Level Memory Model
A3.8.1 Reads and writes

Each memory access is either a read or a write. Explicit memory accesses are the memory accesses required
by the function of an instruction. The following can cause memory accesses that are not explicit:

• instruction fetches

• cache loads and writebacks

• translation table walks.

Except where otherwise stated, the memory ordering requirements only apply to explicit memory accesses.

Reads

Reads are defined as memory operations that have the semantics of a load.

The memory accesses of the following instructions are reads:

• LDR, LDRB, LDRH, LDRSB, and LDRSH

• LDRT, LDRBT, LDRHT, LDRSBT, and LDRSHT

• LDREX, LDREXB, LDREXD, and LDREXH

• LDM, LDRD, POP, and RFE

• LDC, LDC2, VLDM, VLDR, VLD1, VLD2, VLD3, and VLD4

• the return of status values by STREX, STREXB, STREXD, and STREXH

• in the ARM instruction set only, SWP and SWPB

• in the Thumb instruction set only, TBB and TBH.

Hardware-accelerated opcode execution by the Jazelle extension can cause a number of reads to occur,
according to the state of the operand stack and the implementation of the Jazelle hardware acceleration.

Writes

Writes are defined as memory operations that have the semantics of a store.

The memory accesses of the following instructions are Writes:

• STR, STRB, and STRH

• STRT, STRBT, and STRHT

• STREX, STREXB, STREXD, and STREXH

• STM, STRD, PUSH, and SRS

• STC, STC2, VSTM, VSTR, VST1, VST2, VST3, and VST4

• in the ARM instruction set only, SWP and SWPB.

Hardware-accelerated opcode execution by the Jazelle extension can cause a number of writes to occur,
according to the state of the operand stack and the implementation of the Jazelle hardware acceleration.
A3-42 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q3
Inserted Text
, and VPOP

ARM_2009_Q3
Cross-Out

ARM_2009_Q3
Inserted Text
VPUSH,

Application Level Memory Model
Synchronization primitives

Synchronization primitives must ensure correct operation of system semaphores in the memory order
model. The synchronization primitive instructions are defined as those instructions that are used to ensure
memory synchronization:

• LDREX, STREX, LDREXB, STREXB, LDREXD, STREXD, LDREXH, STREXH.

• SWP, SWPB. Use of these instructions is deprecated from ARMv6.

Before ARMv6, support consisted of the SWP and SWPB instructions. ARMv6 introduced new Load-Exclusive
and Store-Exclusive instructions LDREX and STREX, and deprecated using the SWP and SWPB instructions.
ARMv7 introduces:

• additional Load-Exclusive and Store-Exclusive instructions, LDREXB, LDREXD, LDREXH, STREXB, STREXD,
and STREXH

• the Clear-Exclusive instruction CLREX

• the Load-Exclusive, Store-Exclusive and Clear-Exclusive instructions in the Thumb instruction set.

For details of the Load-Exclusive, Store-Exclusive and Clear-Exclusive instructions see Synchronization
and semaphores on page A3-12.

The Load-Exclusive and Store-Exclusive instructions are supported to Shareable and Non-shareable
memory. Non-shareable memory can be used to synchronize processes that are running on the same
processor. Shareable memory must be used to synchronize processes that might be running on different
processors.

Observability and completion

An observer is an agent in the system that can access memory. For a processor, the following mechanisms
must be treated as independent observers:

• the mechanism that performs reads or writes to memory

• a mechanism that causes an instruction cache to be filled from memory or that fetches instructions to
be executed directly from memory

• a mechanism that performs translation table walks.

The set of observers that can observe a memory access is defined by the system.

For all memory:

• a write to a location in memory is said to be observed by an observer when a subsequent read of the
location by the same observer will return the value written by the write

• a write to a location in memory is said to be globally observed for a shareability domain when a
subsequent read of the location by any observer in that shareability domain will return the value
written by the write
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A3-43

ARM_2009_Q2 and ARM_2011_Q2
Cross-Out

ARM_2009_Q2 and ARM_2011_Q2
Replacement Text
 • a write to a location in memory is said to be observed by an observer when:
 - a subsequent read of the location by the same observer will return the value written by the observed write, or by a subsequent write to that location
 - a subsequent write of the location by the same observer will be ordered after the observed write

• a write to a location in memory is said to be globally observed for a shareability domain when:
 - a subsequent read of the location by any observer in that shareability domain will return the value written by the globally-observed write, or by a subsequent write that has been observed by that observer
 - a subsequent write of the location by any observer in that shareability domain will be ordered after the globally-observed write

ARM_2009_Q2 and ARM_2011_Q2
Sticky Note
This change clarifies and extends the change made in the 2008_Q4 errata document.
The additional change made in the ARM_2010_Q1 changes add a clarification to the first sub-bullet of the first bullet, to align it with the equivalent text in the second bullet.

Application Level Memory Model
• a read of a location in memory is said to be observed by an observer when a subsequent write to the
location by the same observer will have no effect on the value returned by the read

• a read of a location in memory is said to be globally observed for a shareability domain when a
subsequent write to the location by any observer in that shareability domain will have no effect on
the value returned by the read.

Additionally, for Strongly-ordered memory:

• A read or write of a memory-mapped location in a peripheral that exhibits side-effects is said to be
observed, and globally observed, only when the read or write:

— meets the general conditions listed

— can begin to affect the state of the memory-mapped peripheral

— can trigger all associated side effects, whether they affect other peripheral devices, processors
or memory.

For all memory, the completion rules are defined as:

• A read or write is complete for a shareability domain when all of the following are true:

— the read or write is globally observed for that shareability domain

— any translation table walks associated with the read or write are complete for that shareability
domain.

• A translation table walk is complete for a shareability domain when the memory accesses associated
with the translation table walk are globally observed for that shareability domain, and the TLB is
updated.

• A cache, branch predictor or TLB maintenance operation is complete for a shareability domain when
the effects of operation are globally observed for that shareability domain and any translation table
walks that arise from the operation are complete for that shareability domain.

The completion of any cache, branch predictor and TLB maintenance operation includes its
completion on all processors that are affected by both the operation and the DSB.

Side effect completion in Strongly-ordered and Device memory

The completion of a memory access in Strongly-ordered or Device memory is not guaranteed to be
sufficient to determine that the side effects of the memory access are visible to all observers. The mechanism
that ensures the visibility of side-effects of a memory accesses is IMPLEMENTATION DEFINED.
A3-44 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q1
Cross-Out

Application Level Memory Model
A3.8.2 Ordering requirements for memory accesses

ARMv7 and ARMv6 define access restrictions in the permitted ordering of memory accesses. These
restrictions depend on the memory attributes of the accesses involved.

Two terms used in describing the memory access ordering requirements are:

Address dependency

An address dependency exists when the value returned by a read access is used to compute
the virtual address of a subsequent read or write access. An address dependency exists even
if the value read by the first read access does not change the virtual address of the second
read or write access. This might be the case if the value returned is masked off before it is
used, or if it has no effect on the predicted address value for the second access.

Control dependency

A control dependency exists when the data value returned by a read access is used to
determine the condition code flags, and the values of the flags are used for condition code
checking to determine the address of a subsequent read access. This address determination
might be through conditional execution, or through the evaluation of a branch.

Figure A3-4 on page A3-46 shows the memory ordering between two explicit accesses A1 and A2, where
A1 occurs before A2 in program order. The symbols used in the figure are as follows:

< Accesses must be observed in program order, that is, A1 must be observed before A2.

- Accesses can be observed in any order, provided that the requirements of uniprocessor
semantics, for example respecting dependencies between instructions in a single processor,
are maintained.

The following additional restrictions apply to the ordering of memory accesses that have this
symbol:

• If there is an address dependency then the two memory accesses are observed in
program order by any observer in the common shareability domain of the two
accesses.

This ordering restriction does not apply if there is only a control dependency between
the two read accesses.

If there is both an address dependency and a control dependency between two read
accesses the ordering requirements of the address dependency apply.

• If the value returned by a read access is used as data written by a subsequent write
access, then the two memory accesses are observed in program order.

• It is impossible for an observer in the shareability domain of a memory location to
observe a write access to that memory location if that location would not be written
to in a sequential execution of a program.

• It is impossible for an observer in the shareability domain of a memory location to
observe a write value written to that memory location if that value would not be
written in a sequential execution of a program.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A3-45

ARM_2008_Q4
Inserted Text
 by any observer in the common shareability domain of the two accesses.

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Inserted Text
all

ARM_2008_Q4
Sticky Note
The text from "The following additional restrictions..." to the table on the next page should not be indented.

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
arrive at any particular memory-mapped peripheral or block of memory in program order, that is, A1 must arrive before A2. There are no ordering restrictions about when accesses arrive at different peripherals or blocks of memory, provided that the accesses follow the general ordering rules given in this section.

ARM_2008_Q4
Inserted Text
<new bullet>
• For all accesses from a single observer, the requirements of uniprocessor semantics must be maintained, for example:
 - respecting dependencies between instructions in a single processor
 - coherency.

ARM_2008_Q4
Inserted Text
The size of a memory mapped peripheral, or a block of memory, is IMPLEMENTATION DEFINED, but is not smaller than 1KByte.
<new paragraph>

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
arrive at any memory-mapped peripheral or block of memory in any order, provided that the accesses follow the general ordering rules given in this section

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Sticky Note
This bullet duplicates the previous bullet. Therefore, this deletion is not a change to the architecture.

ARM_2011_Q2
Sticky Note
This note clarifies the rationale of the ARM_2008_Q4 changes to these two paragraphs.

The description of the < symbol, and the first paragraph of the - symbol, describe requirements for the arrival of accesses at a slave device.

In this manual, "observed" is defined precisely, and relates to visibility by masters. This is not the meaning intended in these paragraphs, and therefore these paragraphs have been reworded.

Application Level Memory Model
• It is impossible for an observer in the shareability domain of a memory location to
observe two reads to the same memory location performed by the same observer in
an order that would not occur in a sequential execution of a program.

In Figure A3-4, an access refers to a read or a write access to the specified memory type.
For example, Device access, Non-shareable refers to a read or write access to Non-shareable
Device memory.

Figure A3-4 Memory ordering restrictions

There are no ordering requirements for implicit accesses to any type of memory.

Program order for instruction execution

The program order of instruction execution is the order of the instructions in the control flow trace.

Explicit memory accesses in an execution can be either:

Strictly Ordered
Denoted by <. Must occur strictly in order.

Ordered Denoted by <=. Can occur either in order or simultaneously.

Load/store multiple instructions, such as LDM, LDRD, STM, and STRD, generate multiple word accesses, each of
which is a separate access for the purpose of determining ordering.

The rules for determining program order for two accesses A1 and A2 are:

If A1 and A2 are generated by two different instructions:

• A1 < A2 if the instruction that generates A1 occurs before the instruction that generates A2 in
program order

• A2 < A1 if the instruction that generates A2 occurs before the instruction that generates A1 in
program order.

If A1 and A2 are generated by the same instruction:

• If A1 and A2 are the load and store generated by a SWP or SWPB instruction:

— A1 < A2 if A1 is the load and A2 is the store

— A2 < A1 if A2 is the load and A1 is the store.

��

?��,�������**

���'�������**6�?���*)����-��

�&���.���
�������
����**�)����-��?���*)����-��

���'�������**?��,��
����**

��

C

�&���.���������������** � C C C

���'�������**6��)����-��

�

C

C

C

� ��

� �

� �
A3-46 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q2 and ARM_2010_Q2
Inserted Text

• For an implementation that does not include the Multiprocessing Extensions, it is IMPLEMENTATION DEFINED whether all writes complete in a finite period of time, or whether software must execute a DSB to ensure the completion of some writes.

• For an implementation that includes the Multiprocessing Extensions, all writes complete in a finite period of time.

ARM_2010_Q2
Sticky Note
The original additions to this list have been simplified, to clarify their meaning.

Application Level Memory Model
• In these descriptions:

— an LDM-class instruction is any form of LDM, LDMDA, LDMDB, LDMIB, or POP instruction

— an LDC-class instruction is an LDC, VLDM, or VLDR instruction

— an STM-class instruction is any form of STM, STMDA, STMDB, STMIB, or PUSH instruction

— an STC-class instruction is an STC, VSTM, or VSTR instruction.

If A1 and A2 are two word loads generated by an LDC-class or LDM-class instruction, or two word
stores generated by an STC-class or STM-class instruction, excluding LDM-class and STM-class
instructions with a register list that includes the PC:

— A1 <= A2 if the address of A1 is less than the address of A2

— A2 <= A1 if the address of A2 is less than the address of A1.

If A1 and A2 are two word loads generated by an LDM-class instruction with a register list that
includes the PC or two word stores generated by an STM-class instruction with a register list that
includes the PC, the program order of the memory accesses is not defined.

• If A1 and A2 are two word loads generated by an LDRD instruction or two word stores generated by
an STRD instruction, the program order of the memory accesses is not defined.

• If A1 and A2 are load or store accesses generated by Advanced SIMD element or structure load/store
instructions, the program order of the memory accesses is not defined.

• For any instruction or operation not explicitly mentioned in this section, if the single-copy atomicity
rules described in Single-copy atomicity on page A3-27 mean the operation becomes a sequence of
accesses, then the time-ordering of those accesses is not defined.

A3.8.3 Memory barriers

Memory barrier is the general term applied to an instruction, or sequence of instructions, used to force
synchronization events by a processor with respect to retiring load/store instructions. The ARM architecture
defines a number of memory barriers that provide a range of functionality, including:

• ordering of issued load/store instructions to the programmers’ model

• completion of preceding load/store instructions to the programmers’ model

• flushing of any instructions prefetched before the memory barrier operation.

ARMv7 and ARMv6 require three explicit memory barriers to support the memory order model described
in this chapter. In ARMv7 the memory barriers are provided as instructions that are available in the ARM
and Thumb instruction sets, and in ARMv6 the memory barriers are performed by CP15 register writes. The
three memory barriers are:

• Data Memory Barrier, see Data Memory Barrier (DMB) on page A3-48

• Data Synchronization Barrier, see Data Synchronization Barrier (DSB) on page A3-49

• Instruction Synchronization Barrier, see Instruction Synchronization Barrier (ISB) on page A3-49.

Depending on the synchronization needed, a program might use memory barriers on their own, or it might
use them in conjunction with cache and memory management maintenance operations that are only
available in privileged modes.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A3-47

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Sticky Note
These edits are a simplification, to remove possible confusion. They do not indicate a change to the architecture.

Application Level Memory Model
The DMB and DSB memory barriers affect reads and writes to the memory system generated by load/store
instructions and data or unified cache maintenance operations being executed by the processor. Instruction
fetches or accesses caused by a hardware translation table access are not explicit accesses.

Data Memory Barrier (DMB)

The DMB instruction is a data memory barrier. The processor that executes the DMB instruction is referred to
as the executing processor, Pe. The DMB instruction takes the required shareability domain and required
access types as arguments. If the required shareability is Full system then the operation applies to all
observers within the system.

A DMB creates two groups of memory accesses, Group A and Group B:

Group A Contains:

• All explicit memory accesses of the required access types from observers in the same
required shareability domain as Pe that are observed by Pe before the DMB instruction.
These accesses include any accesses of the required access types and required
shareability domain performed by Pe.

• All loads of required access types from observers in the same required shareability
domain as Pe that have been observed by any given observer, Py, in the same required
shareability domain as Pe before Py has performed a memory access that is a member
of Group A.

Group B Contains:

• All explicit memory accesses of the required access types by Pe that occur in program
order after the DMB instruction.

• All explicit memory accesses of the required access types by any given observer Px
in the same required shareability domain as Pe that can only occur after Px has
observed a store that is a member of Group B.

Any observer with the same required shareability domain as Pe observes all members of Group A before it
observes any member of Group B to the extent that those group members are required to be observed, as
determined by the shareability and cacheability of the memory locations accessed by the group members.
Where members of Group A and Group B access the same memory-mapped peripheral, all members of
Group A will be visible at the memory-mapped peripheral before any members of Group B are visible at
that peripheral.

Note
 • A memory access might be in neither Group A nor Group B. The DMB does not affect the order of

observation of such a memory access.

• The second part of the definition of Group A is recursive. Ultimately, membership of Group A derives
from the observation by Py of a load before Py performs an access that is a member of Group A as a
result of the first part of the definition of Group A.
A3-48 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
an observer Px

ARM_2009_Q2
Inserted Text
different

ARM_2011_Q2
Cross-Out

ARM_2009_Q4 and ARM_2011_Q2
Cross-Out

ARM_2009_Q4 and ARM_2011_Q2
Replacement Text
Where members of Group A and members of Group B access the same memory-mapped peripheral, of arbitrary system-defined size, then members of Group A that are using Strongly-ordered or Device memory type arrive at that peripheral before members of Group B that are using Strongly-ordered or Device memory type.

ARM_2011_Q2
Sticky Note
The original statement was deleted in the ARM_2009_Q4 issue of this errata document. A replacement statement is added in the ARM_2011_Q2 issue.

The ARM_2011_Q2 issue also adds an additional bullet point at the start of the Note that follows this paragraph.

ARM_2011_Q2
Inserted Text
 • Where the members of Group A and Group B that must be ordered are from the same processor, a DMB NSH is sufficient for this guarantee.

Application Level Memory Model
• The second part of the definition of Group B is recursive. Ultimately, membership of Group B derives
from the observation by any observer of an access by Pe that is a member of Group B as a result of
the first part of the definition of Group B.

DMB only affects memory accesses. It has no effect on the ordering of any other instructions executing on the
processor.

For details of the DMB instruction in the Thumb and ARM instruction sets see DMB on page A8-90.

Data Synchronization Barrier (DSB)

The DSB instruction is a special memory barrier, that synchronizes the execution stream with memory
accesses. The DSB instruction takes the required shareability domain and required access types as arguments.
If the required shareability is Full system then the operation applies to all observers within the system.

A DSB behaves as a DMB with the same arguments, and also has the additional properties defined here.

A DSB completes when both:

• all explicit memory accesses that are observed by Pe before the DSB is executed, are of the required
access types, and are from observers in the same required shareability domain as Pe, are complete for
the set of observers in the required shareability domain

• all cache, branch predictor, and TLB maintenance operations issued by Pe before the DSB are complete
for the required shareability domain.

In addition, no instruction that appears in program order after the DSB instruction can execute until the DSB
completes.

For details of the DSB instruction in the Thumb and ARM instruction sets see DSB on page A8-92.

Note
 Historically, this operation was referred to as Drain Write Buffer or Data Write Barrier (DWB). From
ARMv6, these names and the use of DWB were deprecated in favor of the new Data Synchronization Barrier
name and DSB abbreviation. DSB better reflects the functionality provided from ARMv6, because DSB is
architecturally defined to include all cache, TLB and branch prediction maintenance operations as well as
explicit memory operations.

Instruction Synchronization Barrier (ISB)

An ISB instruction flushes the pipeline in the processor, so that all instructions that come after the ISB
instruction in program order are fetched from cache or memory only after the ISB instruction has completed.
Using an ISB ensures that the effects of context altering operations executed before the ISB are visible to the
instructions fetched after the ISB instruction. Examples of context altering operations that require the
insertion of an ISB instruction to ensure the operations are complete are:

• cache, TLB, and branch predictor maintenance operations

• changes to the CP14 and CP15 registers.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A3-49

ARM_2009_Q2
Inserted Text
effects of the

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Inserted Text
visible to instructions fetched after the ISB instruction

ARM_2009_Q2
Inserted Text
completed

ARM_2009_Q2
Sticky Note
This is not an architectural change. The current text wrongly described the required behavior and is contradicted elsewhere in this manual.

ARM_2011_Q2
Inserted Text
 and data and unified cache maintenance operations

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Replacement Text
 and

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Replacement Text

• if the required access types of the DSB is both reads and writes, all TLB maintenance operations issued by Pe before the DSB are complete for the required shareability domain.

ARM_2011_Q2
Sticky Note
The changes in this list clarify the intended meaning of the original statement. The requirements for TLB maintenance operation completion apply only when the required access type of the DSB is both reads and writes, as indicated in the inserted third bullet.

ARM_2011_Q2
Cross-Out

Application Level Memory Model
In addition, any branches that appear in program order after the ISB instruction are written into the branch
prediction logic with the context that is visible after the ISB instruction. This is needed to ensure correct
execution of the instruction stream.

Any context altering operations appearing in program order after the ISB instruction only take effect after
the ISB has been executed.

For details of the ISB instruction in the Thumb and ARM instruction sets see ISB on page A8-102.

Pseudocode details of memory barriers

The following types define the required shareability domains and required access types used as arguments
for DMB and DSB instructions:

enumeration MBReqDomain {MBReqDomain_FullSystem,
 MBReqDomain_OuterShareable,
 MBReqDomain_InnerShareable,
 MBReqDomain_Nonshareable};

enumeration MBReqTypes {MBReqTypes_All, MBReqTypes_Writes};

The following procedures perform the memory barriers:

DataMemoryBarrier(MBReqDomain domain, MBReqTypes types)
DataSynchronizationBarrier(MBReqDomain domain, MBReqTypes types)
InstructionSynchronizationBarrier()
A3-50 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2010_Q3
Sticky Note
The deleted explanation is not necessary, and has been interpreted wrongly.

ARM_2010_Q3
Cross-Out

Application Level Memory Model
A3.9 Caches and memory hierarchy

The implementation of a memory system depends heavily on the microarchitecture and therefore the details
of the system are IMPLEMENTATION DEFINED. ARMv7 defines the application level interface to the memory
system, and supports a hierarchical memory system with multiple levels of cache. This section provides an
application level view of this system. It contains the subsections:

• Introduction to caches

• Memory hierarchy on page A3-52

• Implication of caches for the application programmer on page A3-52

• Preloading caches on page A3-54.

A3.9.1 Introduction to caches

A cache is a block of high-speed memory that contains a number of entries, each consisting of:

• main memory address information, commonly known as a tag

• the associated data.

Caches are used to increase the average speed of a memory access. Cache operation takes account of two
principles of locality:

Spatial locality

An access to one location is likely to be followed by accesses to adjacent locations.
Examples of this principle are:

• sequential instruction execution

• accessing a data structure.

Temporal locality

An access to an area of memory is likely to be repeated in a short time period. An example
of this principle is the execution of a code loop

To minimize the quantity of control information stored, the spatial locality property is used to group several
locations together under the same tag. This logical block is commonly known as a cache line. When data is
loaded into a cache, access times for subsequent loads and stores are reduced, resulting in overall
performance benefits. An access to information already in a cache is known as a cache hit, and other
accesses are called cache misses.

Normally, caches are self-managing, with the updates occurring automatically. Whenever the processor
wants to access a cacheable location, the cache is checked. If the access is a cache hit, the access occurs in
the cache, otherwise a location is allocated and the cache line loaded from memory. Different cache
topologies and access policies are possible, however, they must comply with the memory coherency model
of the underlying architecture.

Caches introduce a number of potential problems, mainly because of:

• Memory accesses occurring at times other than when the programmer would normally expect them

• There being multiple physical locations where a data item can be held
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A3-51

Application Level Memory Model
A3.9.2 Memory hierarchy

Memory close to a processor has very low latency, but is limited in size and expensive to implement. Further
from the processor it is easier to implement larger blocks of memory but these have increased latency. To
optimize overall performance, an ARMv7 memory system can include multiple levels of cache in a
hierarchical memory system. Figure A3-5 shows such a system, in an ARMv7-A implementation of a
VMSA, supporting virtual addressing.

Figure A3-5 Multiple levels of cache in a memory hierarchy

Note
 In this manual, in a hierarchical memory system, Level 1 refers to the level closest to the processor, as shown
in Figure A3-5.

A3.9.3 Implication of caches for the application programmer

In normal operation, the caches are largely invisible to the application programmer. However they can
become visible when there is a breakdown in the coherency of the caches. Such a breakdown can occur:

• when memory locations are updated by other agents in the system

• when memory updates made from the application code must be made visible to other agents in the
system.

For example:

• In a system with a DMA controller that reads memory locations that are held in the data cache of a
processor, a breakdown of coherency occurs when the processor has written new data in the data
cache, but the DMA controller reads the old data held in memory.

• In a Harvard architecture of caches, where there are separate instruction and data caches, a
breakdown of coherency occurs when new instruction data has been written into the data cache, but
the instruction cache still contains the old instruction data.

3������
(����+�,%��6
<������6��'*>

�����**��

7�	

7�

�
�
�

�����**
@���*��&'��

3������
<��)�

3������
<��)�

3������

�7�!
�7�!
���*)
7=!

 �*&�$�&'��
���(�&�)

<��	����('.$��&'��
�������&���

�)�*'���������**
�'�&$��

�����**

3���

�&���
A3-52 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Memory Model
Data coherency issues

You can ensure the data coherency of caches in the following ways:

• By not using the caches in situations where coherency issues can arise. You can achieve this by:

— using Non-cacheable or, in some cases, Write-Through Cacheable memory for the caches

— not enabling caches in the system.

• By using cache maintenance operations to manage the coherency issues in software, see Cache
maintenance functionality on page B2-9. Many of these operations are only available to system
software.

• By using hardware coherency mechanisms to ensure the coherency of data accesses to memory for
cacheable locations by observers within the different shareability domains, see Non-shareable
Normal memory on page A3-30 and Shareable, Inner Shareable, and Outer Shareable Normal
memory on page A3-30.

The performance of these hardware coherency mechanisms is highly implementation specific. In
some implementations the mechanism suppresses the ability to cache shareable locations. In other
implementations, cache coherency hardware can hold data in caches while managing coherency
between observers within the shareability domains.

Instruction coherency issues

How far ahead of the current point of execution instructions are prefetched from is IMPLEMENTATION
DEFINED. Such prefetching can be either a fixed or a dynamically varying number of instructions, and can
follow any or all possible future execution paths. For all types of memory:

• the processor might have fetched the instructions from memory at any time since the last ISB,
exception entry or exception return executed by that processor

• any instructions fetched in this way might be executed multiple times, if this is required by the
execution of the program, without being refetched from memory

In addition, the ARM architecture does not require the hardware to ensure coherency between instruction
caches and memory, even for regions of memory with Shareable attributes. This means that for cacheable
regions of memory, an instruction cache can hold instructions that were fetched from memory before the
last ISB, exception entry or exception return.

If software requires coherency between instruction execution and memory, it must manage this coherency
using the ISB and DSB memory barriers and cache maintenance operations, see Ordering of cache and
branch predictor maintenance operations on page B2-21. Many of these operations are only available to
system software.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A3-53

ARM_2011_Q2
Cross-Out

Application Level Memory Model
A3.9.4 Preloading caches

The ARM architecture provides memory system hints PLD (Preload Data) and PLI (Preload Instruction) to
permit software to communicate the expected use of memory locations to the hardware. The memory system
can respond by taking actions that are expected to speed up the memory accesses if and when they do occur.
The effect of these memory system hints is IMPLEMENTATION DEFINED. Typically, implementations will use
this information to bring the data or instruction locations into caches that have faster access times than
normal memory.

The Preload instructions are hints, and so implementations can treat them as NOPs without affecting the
functional behavior of the device. The instructions do not generate synchronous Data Abort exceptions, but
the memory system operations might, under exceptional circumstances, generate asynchronous aborts. For
more information, see Data Abort exception on page B1-55.

Hardware implementations can provide other implementation-specific mechanisms to prefetch memory
locations in the cache. These must comply with the general cache behavior described in Cache behavior on
page B2-5.
A3-54 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Chapter A4
The Instruction Sets

This chapter describes the ARM and Thumb instruction sets. It contains the following sections:

• About the instruction sets on page A4-2

• Unified Assembler Language on page A4-4

• Branch instructions on page A4-7

• Data-processing instructions on page A4-8

• Status register access instructions on page A4-18

• Load/store instructions on page A4-19

• Load/store multiple instructions on page A4-22

• Miscellaneous instructions on page A4-23

• Exception-generating and exception-handling instructions on page A4-24

• Coprocessor instructions on page A4-25

• Advanced SIMD and VFP load/store instructions on page A4-26

• Advanced SIMD and VFP register transfer instructions on page A4-29

• Advanced SIMD data-processing operations on page A4-30

• VFP data-processing instructions on page A4-38.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A4-1

The Instruction Sets
A4.1 About the instruction sets

ARMv7 contains two main instruction sets, the ARM and Thumb instruction sets. Much of the functionality
available is identical in the two instruction sets. This chapter describes the functionality available in the
instruction sets, and the Unified Assembler Language (UAL) that can be assembled to either instruction set.

The two instruction sets differ in how instructions are encoded:

• Thumb instructions are either 16-bit or 32-bit, and are aligned on a two-byte boundary. 16-bit and
32-bit instructions can be intermixed freely. Many common operations are most efficiently executed
using 16-bit instructions. However:

— Most 16-bit instructions can only access eight of the general-purpose registers, R0-R7. These
are known as the low registers. A small number of 16-bit instructions can access the high
registers, R8-R15.

— Many operations that would require two or more 16-bit instructions can be more efficiently
executed with a single 32-bit instruction.

• ARM instructions are always 32-bit, and are aligned on a four-byte boundary.

The ARM and Thumb instruction sets can interwork freely, that is, different procedures can be compiled or
assembled to different instruction sets, and still be able to call each other efficiently.

ThumbEE is a variant of the Thumb instruction set that is designed as a target for dynamically generated
code. However, it cannot interwork freely with the ARM and Thumb instruction sets.

See:

• Chapter A5 ARM Instruction Set Encoding for encoding details of the ARM instruction set

• Chapter A6 Thumb Instruction Set Encoding for encoding details of the Thumb instruction set

• Chapter A8 Instruction Details for detailed descriptions of the instructions

• Chapter A9 ThumbEE for encoding details of the ThumbEE instruction set.

A4.1.1 Changing between Thumb state and ARM state

A processor in Thumb state (that is, executing Thumb instructions) can enter ARM state (and change to
executing ARM instructions) by executing any of the following instructions: BX, BLX, or an LDR or LDM that
loads the PC.

A processor in ARM state (that is, executing ARM instructions) can enter Thumb state (and change to
executing Thumb instructions) by executing any of the same instructions.

In ARMv7, a processor in ARM state can also enter Thumb state (and change to executing Thumb
instructions) by executing an ADC, ADD, AND, ASR, BIC, EOR, LSL, LSR, MOV, MVN, ORR, ROR, RRX, RSB, RSC, SBC, or SUB
instruction that has the PC as destination register and does not set the condition flags.
A4-2 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The Instruction Sets
Note
 This permits calls and returns between ARM code written for ARMv4 processors and Thumb code running
on ARMv7 processors to function correctly. In new code, ARM recommends that you use BX or BLX
instructions instead. In particular, use BX LR to return from a procedure, not MOV PC,LR.

The target instruction set is either encoded directly in the instruction (for the immediate offset version of
BLX), or is held as bit [0] of an interworking address. For details, see the description of the BXWritePC()
function in Pseudocode details of operations on ARM core registers on page A2-12.

Exception entries and returns can also change between ARM and Thumb states. For details see Exceptions
on page B1-30.

A4.1.2 Conditional execution

Most ARM instructions can be conditionally executed. This means that they only have their normal effect
on the programmers’ model operation, memory and coprocessors if the N, Z, C and V flags in the APSR
satisfy a condition specified in the instruction. If the flags do not satisfy this condition, the instruction acts
as a NOP, that is, execution advances to the next instruction as normal, including any relevant checks for
exceptions being taken, but has no other effect.

Most Thumb instructions are unconditional. Conditional execution in Thumb code can be achieved using
any of the following instructions:

• A 16-bit conditional branch instruction, with a branch range of –256 to +254 bytes. For details see B
on page A8-44. Before ARMv6T2, this was the only mechanism for conditional execution in Thumb
code.

• A 32-bit conditional branch instruction, with a branch range of approximately ± 1MB. For details see
B on page A8-44.

• 16-bit Compare and Branch on Zero and Compare and Branch on Nonzero instructions, with a branch
range of +4 to +130 bytes. For details see CBNZ, CBZ on page A8-66.

• A 16-bit If-Then instruction that makes up to four following instructions conditional. For details see
IT on page A8-104. The instructions that are made conditional by an IT instruction are called its IT
block. Instructions in an IT block must either all have the same condition, or some can have one
condition, and others can have the inverse condition.

For more information about conditional execution see Conditional execution on page A8-8.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A4-3

The Instruction Sets
A4.2 Unified Assembler Language

This document uses the ARM Unified Assembler Language (UAL). This assembly language syntax
provides a canonical form for all ARM and Thumb instructions.

UAL describes the syntax for the mnemonic and the operands of each instruction. In addition, it assumes
that instructions and data items can be given labels. It does not specify the syntax to be used for labels, nor
what assembler directives and options are available. See your assembler documentation for these details.

Most earlier ARM assembly language mnemonics are still supported as synonyms, as described in the
instruction details.

Note
 Most earlier Thumb assembly language mnemonics are not supported. For details see Appendix C Legacy
Instruction Mnemonics.

UAL includes instruction selection rules that specify which instruction encoding is selected when more than
one can provide the required functionality. For example, both 16-bit and 32-bit encodings exist for an
ADD R0,R1,R2 instruction. The most common instruction selection rule is that when both a 16-bit encoding
and a 32-bit encoding are available, the 16-bit encoding is selected, to optimize code density.

Syntax options exist to override the normal instruction selection rules and ensure that a particular encoding
is selected. These are useful when disassembling code, to ensure that subsequent assembly produces the
original code, and in some other situations.

A4.2.1 Conditional instructions

For maximum portability of UAL assembly language between the ARM and Thumb instruction sets, ARM
recommends that:

• IT instructions are written before conditional instructions in the correct way for the Thumb
instruction set.

• When assembling to the ARM instruction set, assemblers check that any IT instructions are correct,
but do not generate any code for them.

Although other Thumb instructions are unconditional, all instructions that are made conditional by an IT
instruction must be written with a condition. These conditions must match the conditions imposed by the IT
instruction. For example, an ITTEE EQ instruction imposes the EQ condition on the first two following
instructions, and the NE condition on the next two. Those four instructions must be written with EQ, EQ, NE
and NE conditions respectively.

Some instructions cannot be made conditional by an IT instruction. Some instructions can be conditional if
they are the last instruction in the IT block, but not otherwise.

The branch instruction encodings that include a condition field cannot be made conditional by an IT
instruction. If the assembler syntax indicates a conditional branch that correctly matches a preceding IT
instruction, it is assembled using a branch instruction encoding that does not include a condition field.
A4-4 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The Instruction Sets
A4.2.2 Use of labels in UAL instruction syntax

The UAL syntax for some instructions includes the label of an instruction or a literal data item that is at a
fixed offset from the instruction being specified. The assembler must:

1. Calculate the PC or Align(PC,4) value of the instruction. The PC value of an instruction is its address
plus 4 for a Thumb instruction, or plus 8 for an ARM instruction. The Align(PC,4) value of an
instruction is its PC value ANDed with 0xFFFFFFFC to force it to be word-aligned. There is no
difference between the PC and Align(PC,4) values for an ARM instruction, but there can be for a
Thumb instruction.

2. Calculate the offset from the PC or Align(PC,4) value of the instruction to the address of the labelled
instruction or literal data item.

3. Assemble a PC-relative encoding of the instruction, that is, one that reads its PC or Align(PC,4) value
and adds the calculated offset to form the required address.

Note
 For instructions that can encode a subtraction operation, if the instruction cannot encode the

calculated offset but can encode minus the calculated offset, the instruction encoding specifies a
subtraction of minus the calculated offset.

The syntax of the following instructions includes a label:

• B, BL, and BLX (immediate). The assembler syntax for these instructions always specifies the label of
the instruction that they branch to. Their encodings specify a sign-extended immediate offset that is
added to the PC value of the instruction to form the target address of the branch.

• CBNZ and CBZ. The assembler syntax for these instructions always specifies the label of the instruction
that they branch to. Their encodings specify a zero-extended immediate offset that is added to the PC
value of the instruction to form the target address of the branch. They do not support backward
branches.

• LDC, LDC2, LDR, LDRB, LDRD, LDRH, LDRSB, LDRSH, PLD, PLDW, PLI, and VLDR. The normal assembler syntax of
these load instructions can specify the label of a literal data item that is to be loaded. The encodings
of these instructions specify a zero-extended immediate offset that is either added to or subtracted
from the Align(PC,4) value of the instruction to form the address of the data item. A few such
encodings perform a fixed addition or a fixed subtraction and must only be used when that operation
is required, but most contain a bit that specifies whether the offset is to be added or subtracted.

When the assembler calculates an offset of 0 for the normal syntax of these instructions, it must
assemble an encoding that adds 0 to the Align(PC,4) value of the instruction. Encodings that subtract
0 from the Align(PC,4) value cannot be specified by the normal syntax.

There is an alternative syntax for these instructions that specifies the addition or subtraction and the
immediate offset explicitly. In this syntax, the label is replaced by [PC, #+/-<imm>], where:

+/- Is + or omitted to specify that the immediate offset is to be added to the Align(PC,4) value,
or - if it is to be subtracted.

<imm> Is the immediate offset.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A4-5

The Instruction Sets
This alternative syntax makes it possible to assemble the encodings that subtract 0 from the
Align(PC,4) value, and to disassemble them to a syntax that can be re-assembled correctly.

• ADR. The normal assembler syntax for this instruction can specify the label of an instruction or literal
data item whose address is to be calculated. Its encoding specifies a zero-extended immediate offset
that is either added to or subtracted from the Align(PC,4) value of the instruction to form the address
of the data item, and some opcode bits that determine whether it is an addition or subtraction.

When the assembler calculates an offset of 0 for the normal syntax of this instruction, it must
assemble the encoding that adds 0 to the Align(PC,4) value of the instruction. The encoding that
subtracts 0 from the Align(PC,4) value cannot be specified by the normal syntax.

There is an alternative syntax for this instruction that specifies the addition or subtraction and the
immediate value explicitly, by writing them as additions ADD <Rd>,PC,#<imm> or subtractions
SUB <Rd>,PC,#<imm>. This alternative syntax makes it possible to assemble the encoding that subtracts
0 from the Align(PC,4) value, and to disassemble it to a syntax that can be re-assembled correctly.

Note
 ARM recommends that where possible, you avoid using:

• the alternative syntax for the ADR, LDC, LDC2, LDR, LDRB, LDRD, LDRH, LDRSB, LDRSH, PLD, PLI, PLDW, and VLDR
instructions

• the encodings of these instructions that subtract 0 from the Align(PC,4) value.
A4-6 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The Instruction Sets
A4.3 Branch instructions

Table A4-1 summarizes the branch instructions in the ARM and Thumb instruction sets. In addition to
providing for changes in the flow of execution, some branch instructions can change instruction set.

Branches to loaded and calculated addresses can be performed by LDR, LDM and data-processing instructions.
For details see Load/store instructions on page A4-19, Load/store multiple instructions on page A4-22,
Standard data-processing instructions on page A4-8, and Shift instructions on page A4-10.

Table A4-1 Branch instructions

Instruction See
Range
(Thumb)

Range
(ARM)

Branch to target address B on page A8-44 +/–16MB +/–32MB

Compare and Branch on Nonzero, Compare
and Branch on Zero

CBNZ, CBZ on page A8-66 0-126B a

Call a subroutine

Call a subroutine, change instruction setb

BL, BLX (immediate) on page A8-58 +/–16MB

+/–16MB

+/–32MB

+/–32MB

Call a subroutine, optionally change instruction
set

BLX (register) on page A8-60 Any Any

Branch to target address, change instruction set BX on page A8-62 Any Any

Change to Jazelle state BXJ on page A8-64 - -

Table Branch (byte offsets)

Table Branch (halfword offsets)

TBB, TBH on page A8-446 0-510B

0-131070B

a

a. These instructions do not exist in the ARM instruction set.
b. The range is determined by the instruction set of the BLX instruction, not of the instruction it branches to.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A4-7

The Instruction Sets
A4.4 Data-processing instructions

Core data-processing instructions belong to one of the following groups:

• Standard data-processing instructions. These instructions perform basic data-processing operations,
and share a common format with some variations.

• Shift instructions on page A4-10.

• Saturating instructions on page A4-13.

• Packing and unpacking instructions on page A4-14.

• Miscellaneous data-processing instructions on page A4-15.

• Parallel addition and subtraction instructions on page A4-16.

• Divide instructions on page A4-17.

For extension data-processing instructions, see Advanced SIMD data-processing operations on page A4-30
and VFP data-processing instructions on page A4-38.

A4.4.1 Standard data-processing instructions

These instructions generally have a destination register Rd, a first operand register Rn, and a second
operand. The second operand can be another register Rm, or an immediate constant.

If the second operand is an immediate constant, it can be:

• Encoded directly in the instruction.

• A modified immediate constant that uses 12 bits of the instruction to encode a range of constants.
Thumb and ARM instructions have slightly different ranges of modified immediate constants. For
details see Modified immediate constants in Thumb instructions on page A6-17 and Modified
immediate constants in ARM instructions on page A5-9.

If the second operand is another register, it can optionally be shifted in any of the following ways:

LSL Logical Shift Left by 1-31 bits.

LSR Logical Shift Right by 1-32 bits.

ASR Arithmetic Shift Right by 1-32 bits.

ROR Rotate Right by 1-31 bits.

RRX Rotate Right with Extend. For details see Shift and rotate operations on page A2-5.

In Thumb code, the amount to shift by is always a constant encoded in the instruction. In ARM code, the
amount to shift by is either a constant encoded in the instruction, or the value of a register Rs.

For instructions other than CMN, CMP, TEQ, and TST, the result of the data-processing operation is placed in the
destination register. In the ARM instruction set, the destination register can be the PC, causing the result to
be treated as an address to branch to. In the Thumb instruction set, this is only permitted for some 16-bit
forms of the ADD and MOV instructions.
A4-8 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The Instruction Sets
These instructions can optionally set the condition code flags, according to the result of the operation. If
they do not set the flags, existing flag settings from a previous instruction are preserved.

Table A4-2 summarizes the main data-processing instructions in the Thumb and ARM instruction sets.
Generally, each of these instructions is described in three sections in Chapter A8 Instruction Details, one
section for each of the following:

• INSTRUCTION (immediate) where the second operand is a modified immediate constant.

• INSTRUCTION (register) where the second operand is a register, or a register shifted by a constant.

• INSTRUCTION (register-shifted register) where the second operand is a register shifted by a value
obtained from another register. These are only available in the ARM instruction set.

Table A4-2 Standard data-processing instructions

Instruction Mnemonic Notes

Add with Carry ADC -

Add ADD Thumb instruction set permits use of a modified immediate
constant or a zero-extended 12-bit immediate constant.

Form PC-relative Address ADR First operand is the PC. Second operand is an immediate constant.
Thumb instruction set uses a zero-extended 12-bit immediate
constant. Operation is an addition or a subtraction.

Bitwise AND AND -

Bitwise Bit Clear BIC -

Compare Negative CMN Sets flags. Like ADD but with no destination register.

Compare CMP Sets flags. Like SUB but with no destination register.

Bitwise Exclusive OR EOR -

Copy operand to destination MOV Has only one operand, with the same options as the second
operand in most of these instructions. If the operand is a shifted
register, the instruction is an LSL, LSR, ASR, or ROR instruction
instead. For details see Shift instructions on page A4-10.

The ARM and Thumb instruction sets permit use of a modified
immediate constant or a zero-extended 16-bit immediate constant.

Bitwise NOT MVN Has only one operand, with the same options as the second
operand in most of these instructions.

Bitwise OR NOT ORN Not available in the ARM instruction set.

Bitwise OR ORR -
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A4-9

The Instruction Sets
A4.4.2 Shift instructions

Table A4-3 lists the shift instructions in the ARM and Thumb instruction sets.

In the ARM instruction set only, the destination register of these instructions can be the PC, causing the
result to be treated as an address to branch to.

Reverse Subtract RSB Subtracts first operand from second operand. This permits
subtraction from constants and shifted registers.

Reverse Subtract with Carry RSC Not available in the Thumb instruction set.

Subtract with Carry SBC -

Subtract SUB Thumb instruction set permits use of a modified immediate
constant or a zero-extended 12-bit immediate constant.

Test Equivalence TEQ Sets flags. Like EOR but with no destination register.

Test TST Sets flags. Like AND but with no destination register.

Table A4-2 Standard data-processing instructions (continued)

Instruction Mnemonic Notes

Table A4-3 Shift instructions

Instruction See

Arithmetic Shift Right ASR (immediate) on page A8-40

Arithmetic Shift Right ASR (register) on page A8-42

Logical Shift Left LSL (immediate) on page A8-178

Logical Shift Left LSL (register) on page A8-180

Logical Shift Right LSR (immediate) on page A8-182

Logical Shift Right LSR (register) on page A8-184

Rotate Right ROR (immediate) on page A8-278

Rotate Right ROR (register) on page A8-280

Rotate Right with Extend RRX on page A8-282
A4-10 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The Instruction Sets
A4.4.3 Multiply instructions

These instructions can operate on signed or unsigned quantities. In some types of operation, the results are
same whether the operands are signed or unsigned.

• Table A4-4 summarizes the multiply instructions where there is no distinction between signed and
unsigned quantities.

The least significant 32 bits of the result are used. More significant bits are discarded.

• Table A4-5 summarizes the signed multiply instructions.

• Table A4-6 on page A4-12 summarizes the unsigned multiply instructions.

Table A4-4 General multiply instructions

Instruction See Operation (number of bits)

Multiply Accumulate MLA on page A8-190 32 = 32 + 32 x 32

Multiply and Subtract MLS on page A8-192 32 = 32 – 32 x 32

Multiply MUL on page A8-212 32 = 32 x 32

Table A4-5 Signed multiply instructions

Instruction See Operation (number of bits)

Signed Multiply Accumulate (halfwords) SMLABB, SMLABT,
SMLATB, SMLATT on
page A8-330

32 = 32 + 16 x 16

Signed Multiply Accumulate Dual SMLAD on page A8-332 32 = 32 + 16 x 16 + 16 x 16

Signed Multiply Accumulate Long SMLAL on page A8-334 64 = 64 + 32 x 32

Signed Multiply Accumulate Long (halfwords) SMLALBB, SMLALBT,
SMLALTB, SMLALTT on
page A8-336

64 = 64 + 16 x 16

Signed Multiply Accumulate Long Dual SMLALD on page A8-338 64 = 64 + 16 x 16 + 16 x 16

Signed Multiply Accumulate (word by
halfword)

SMLAWB, SMLAWT on
page A8-340

32 = 32 + 32 x 16 a

Signed Multiply Subtract Dual SMLSD on page A8-342 32 = 32 + 16 x 16 – 16 x 16

Signed Multiply Subtract Long Dual SMLSLD on page A8-344 64 = 64 + 16 x 16 – 16 x 16

Signed Most Significant Word Multiply
Accumulate

SMMLA on page A8-346 32 = 32 + 32 x 32 b
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A4-11

The Instruction Sets
Signed Most Significant Word Multiply
Subtract

SMMLS on page A8-348 32 = 32 – 32 x 32 b

Signed Most Significant Word Multiply SMMUL on page A8-350 32 = 32 x 32 b

Signed Dual Multiply Add SMUAD on page A8-352 32 = 16 x 16 + 16 x 16

Signed Multiply (halfwords) SMULBB, SMULBT,
SMULTB, SMULTT on
page A8-354

32 = 16 x 16

Signed Multiply Long SMULL on page A8-356 64 = 32 x 32

Signed Multiply (word by halfword) SMULWB, SMULWT on
page A8-358

32 = 32 x 16 a

Signed Dual Multiply Subtract SMUSD on page A8-360 32 = 16 x 16 – 16 x 16

a. The most significant 32 bits of the 48-bit product are used. Less significant bits are discarded.
b. The most significant 32 bits of the 64-bit product are used. Less significant bits are discarded.

Table A4-6 Unsigned multiply instructions

Instruction See Operation (number of bits)

Unsigned Multiply Accumulate Accumulate Long UMAAL on page A8-482 64 = 32 + 32 + 32 x 32

Unsigned Multiply Accumulate Long UMLAL on page A8-484 64 = 64 + 32 x 32

Unsigned Multiply Long UMULL on page A8-486 64 = 32 x 32

Table A4-5 Signed multiply instructions (continued)

Instruction See Operation (number of bits)
A4-12 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The Instruction Sets
A4.4.4 Saturating instructions

Table A4-7 lists the saturating instructions in the ARM and Thumb instruction sets. For more information,
see Pseudocode details of saturation on page A2-9.

Table A4-7 Saturating instructions

Instruction See Operation

Signed Saturate SSAT on page A8-362 Saturates optionally shifted 32-bit value to selected range

Signed Saturate 16 SSAT16 on page A8-364 Saturates two 16-bit values to selected range

Unsigned Saturate USAT on page A8-504 Saturates optionally shifted 32-bit value to selected range

Unsigned Saturate 16 USAT16 on page A8-506 Saturates two 16-bit values to selected range
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A4-13

The Instruction Sets
A4.4.5 Packing and unpacking instructions

Table A4-8 lists the packing and unpacking instructions in the ARM and Thumb instruction sets. These are
all available from ARMv6T2 in the Thumb instruction set, and from ARMv6 onwards in the ARM
instruction set.

Table A4-8 Packing and unpacking instructions

Instruction See Operation

Pack Halfword PKH on page A8-234 Combine halfwords

Signed Extend and Add Byte SXTAB on page A8-434 Extend 8 bits to 32 and add

Signed Extend and Add Byte 16 SXTAB16 on page A8-436 Dual extend 8 bits to 16 and add

Signed Extend and Add Halfword SXTAH on page A8-438 Extend 16 bits to 32 and add

Signed Extend Byte SXTB on page A8-440 Extend 8 bits to 32

Signed Extend Byte 16 SXTB16 on page A8-442 Dual extend 8 bits to 16

Signed Extend Halfword SXTH on page A8-444 Extend 16 bits to 32

Unsigned Extend and Add Byte UXTAB on page A8-514 Extend 8 bits to 32 and add

Unsigned Extend and Add Byte 16 UXTAB16 on page A8-516 Dual extend 8 bits to 16 and add

Unsigned Extend and Add Halfword UXTAH on page A8-518 Extend 16 bits to 32 and add

Unsigned Extend Byte UXTB on page A8-520 Extend 8 bits to 32

Unsigned Extend Byte 16 UXTB16 on page A8-522 Dual extend 8 bits to 16

Unsigned Extend Halfword UXTH on page A8-524 Extend 16 bits to 32
A4-14 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The Instruction Sets
A4.4.6 Miscellaneous data-processing instructions

Table A4-9 lists the miscellaneous data-processing instructions in the ARM and Thumb instruction sets.
Immediate values in these instructions are simple binary numbers.

Table A4-9 Miscellaneous data-processing instructions

Instruction See Notes

Bit Field Clear BFC on page A8-46 -

Bit Field Insert BFI on page A8-48 -

Count Leading Zeros CLZ on page A8-72 -

Move Top MOVT on page A8-200 Moves 16-bit immediate value to top
halfword. Bottom halfword unchanged.

Reverse Bits RBIT on page A8-270 -

Byte-Reverse Word REV on page A8-272 -

Byte-Reverse Packed Halfword REV16 on page A8-274 -

Byte-Reverse Signed Halfword REVSH on page A8-276 -

Signed Bit Field Extract SBFX on page A8-308 -

Select Bytes using GE flags SEL on page A8-312 -

Unsigned Bit Field Extract UBFX on page A8-466 -

Unsigned Sum of Absolute Differences USAD8 on page A8-500 -

Unsigned Sum of Absolute Differences
and Accumulate

USADA8 on page A8-502 -
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A4-15

The Instruction Sets
A4.4.7 Parallel addition and subtraction instructions

These instructions perform additions and subtractions on the values of two registers and write the result to
a destination register, treating the register values as sets of two halfwords or four bytes. They are available
in ARMv6 and above.

These instructions consist of a prefix followed by a main instruction mnemonic. The prefixes are as follows:

S Signed arithmetic modulo 28 or 216.

Q Signed saturating arithmetic.

SH Signed arithmetic, halving the results.

U Unsigned arithmetic modulo 28 or 216.

UQ Unsigned saturating arithmetic.

UH Unsigned arithmetic, halving the results.

The main instruction mnemonics are as follows:

ADD16 Adds the top halfwords of two operands to form the top halfword of the result, and the
bottom halfwords of the same two operands to form the bottom halfword of the result.

ASX Exchanges halfwords of the second operand, and then adds top halfwords and subtracts
bottom halfwords.

SAX Exchanges halfwords of the second operand, and then subtracts top halfwords and adds
bottom halfwords.

SUB16 Subtracts each halfword of the second operand from the corresponding halfword of the first
operand to form the corresponding halfword of the result.

ADD8 Adds each byte of the second operand to the corresponding byte of the first operand to form
the corresponding byte of the result.

SUB8 Subtracts each byte of the second operand from the corresponding byte of the first operand
to form the corresponding byte of the result.

The instruction set permits all 36 combinations of prefix and main instruction operand.

See also Advanced SIMD parallel addition and subtraction on page A4-31.
A4-16 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The Instruction Sets
A4.4.8 Divide instructions

In the ARMv7-R profile, the Thumb instruction set includes signed and unsigned integer divide instructions
that are implemented in hardware. For details of the instructions see:

• SDIV on page A8-310

• UDIV on page A8-468.

Note
 • SDIV and UDIV are UNDEFINED in the ARMv7-A profile.

• The ARMv7-M profile also includes the SDIV and UDIV instructions.

In the ARMv7-R profile, the SCTLR.DZ bit enables divide by zero fault detection, see c1, System Control
Register (SCTLR) on page B4-45:

DZ == 0 Divide-by-zero returns a zero result.

DZ == 1 SDIV and UDIV generate an Undefined Instruction exception on a divide-by-zero.

The SCTLR.DZ bit is cleared to zero on reset.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A4-17

The Instruction Sets
A4.5 Status register access instructions

The MRS and MSR instructions move the contents of the Application Program Status Register (APSR) to or
from a general-purpose register.

The APSR is described in The Application Program Status Register (APSR) on page A2-14.

The condition flags in the APSR are normally set by executing data-processing instructions, and are
normally used to control the execution of conditional instructions. However, you can set the flags explicitly
using the MSR instruction, and you can read the current state of the flags explicitly using the MRS instruction.

For details of the system level use of status register access instructions CPS, MRS, and MSR, see Chapter B6
System Instructions.
A4-18 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The Instruction Sets
A4.6 Load/store instructions

Table A4-10 summarizes the general-purpose register load/store instructions in the ARM and Thumb
instruction sets. See also:

• Load/store multiple instructions on page A4-22

• Advanced SIMD and VFP load/store instructions on page A4-26.

Load/store instructions have several options for addressing memory. For more information, see Addressing
modes on page A4-20.

A4.6.1 Loads to the PC

The LDR instruction can be used to load a value into the PC. The value loaded is treated as an interworking
address, as described by the LoadWritePC() pseudocode function in Pseudocode details of operations on
ARM core registers on page A2-12.

A4.6.2 Halfword and byte loads and stores

Halfword and byte stores store the least significant halfword or byte from the register, to 16 or 8 bits of
memory respectively. There is no distinction between signed and unsigned stores.

Halfword and byte loads load 16 or 8 bits from memory into the least significant halfword or byte of a
register. Unsigned loads zero-extend the loaded value to 32 bits, and signed loads sign-extend the value to
32 bits.

Table A4-10 Load/store instructions

Data type Load Store
Load
unprivileged

Store
unprivileged

Load-
Exclusive

Store-
Exclusive

32-bit word LDR STR LDRT STRT LDREX STREX

16-bit halfword - STRH - STRHT - STREXH

16-bit unsigned halfword LDRH - LDRHT - LDREXH -

16-bit signed halfword LDRSH - LDRSHT - - -

8-bit byte - STRB - STRBT - STREXB

8-bit unsigned byte LDRB - LDRBT - LDREXB -

8-bit signed byte LDRSB - LDRSBT - - -

Two 32-bit words LDRD STRD - - - -

64-bit doubleword - - - - LDREXD STREXD
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A4-19

The Instruction Sets
A4.6.3 Unprivileged loads and stores

In an unprivileged mode, unprivileged loads and stores operate in exactly the same way as the corresponding
ordinary operations. In a privileged mode, unprivileged loads and stores are treated as though they were
executed in an unprivileged mode. For more information, see Privilege level access controls for data
accesses on page A3-38.

A4.6.4 Exclusive loads and stores

Exclusive loads and stores provide for shared memory synchronization. For more information, see
Synchronization and semaphores on page A3-12.

A4.6.5 Addressing modes

The address for a load or store is formed from two parts: a value from a base register, and an offset.

The base register can be any one of the general-purpose registers.

For loads, the base register can be the PC. This permits PC-relative addressing for position-independent
code. Instructions marked (literal) in their title in Chapter A8 Instruction Details are PC-relative loads.

The offset takes one of three formats:

Immediate The offset is an unsigned number that can be added to or subtracted from the base
register value. Immediate offset addressing is useful for accessing data elements that
are a fixed distance from the start of the data object, such as structure fields, stack
offsets and input/output registers.

Register The offset is a value from a general-purpose register. This register cannot be the PC.
The value can be added to, or subtracted from, the base register value. Register
offsets are useful for accessing arrays or blocks of data.

Scaled register The offset is a general-purpose register, other than the PC, shifted by an immediate
value, then added to or subtracted from the base register. This means an array index
can be scaled by the size of each array element.

The offset and base register can be used in three different ways to form the memory address. The addressing
modes are described as follows:

Offset The offset is added to or subtracted from the base register to form the memory
address.

Pre-indexed The offset is added to or subtracted from the base register to form the memory
address. The base register is then updated with this new address, to permit automatic
indexing through an array or memory block.

Post-indexed The value of the base register alone is used as the memory address. The offset is then
added to or subtracted from the base register. The result is stored back in the base
register, to permit automatic indexing through an array or memory block.
A4-20 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The Instruction Sets
Note
 Not every variant is available for every instruction, and the range of permitted immediate values and the
options for scaled registers vary from instruction to instruction. See Chapter A8 Instruction Details for full
details for each instruction.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A4-21

The Instruction Sets
A4.7 Load/store multiple instructions

Load Multiple instructions load a subset, or possibly all, of the general-purpose registers from memory.

Store Multiple instructions store a subset, or possibly all, of the general-purpose registers to memory.

The memory locations are consecutive word-aligned words. The addresses used are obtained from a base
register, and can be either above or below the value in the base register. The base register can optionally be
updated by the total size of the data transferred.

Table A4-11 summarizes the load/store multiple instructions in the ARM and Thumb instruction sets.

System level variants of the LDM and STM instructions load and store User mode registers from a privileged
mode. Another system level variant of the LDM instruction performs an exception return. For details, see
Chapter B6 System Instructions.

A4.7.1 Loads to the PC

The LDM, LDMDA, LDMDB, LDMIB, and POP instructions can be used to load a value into the PC. The value loaded
is treated as an interworking address, as described by the LoadWritePC() pseudocode function in Pseudocode
details of operations on ARM core registers on page A2-12.

Table A4-11 Load/store multiple instructions

Instruction See

Load Multiple, Increment After or Full Descending LDM / LDMIA / LDMFD on page A8-110

Load Multiple, Decrement After or Full Ascending a

a. Not available in the Thumb instruction set.

LDMDA / LDMFA on page A8-112

Load Multiple, Decrement Before or Empty Ascending LDMDB / LDMEA on page A8-114

Load Multiple, Increment Before or Empty Descending a LDMIB / LDMED on page A8-116

Pop multiple registers off the stack b

b. This instruction is equivalent to an LDM instruction with the SP as base register, and base register updating.

POP on page A8-246

Push multiple registers onto the stack c

c. This instruction is equivalent to an STMDB instruction with the SP as base register, and base register
updating.

PUSH on page A8-248

Store Multiple, Increment After or Empty Ascending STM / STMIA / STMEA on page A8-374

Store Multiple, Decrement After or Empty Descending a STMDA / STMED on page A8-376

Store Multiple, Decrement Before or Full Descending STMDB / STMFD on page A8-378

Store Multiple, Increment Before or Full Ascending a STMIB / STMFA on page A8-380
A4-22 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The Instruction Sets
A4.8 Miscellaneous instructions

Table A4-12 summarizes the miscellaneous instructions in the ARM and Thumb instruction sets.

Table A4-12 Miscellaneous instructions

Instruction See

Clear-Exclusive CLREX on page A8-70

Debug hint DBG on page A8-88

Data Memory Barrier DMB on page A8-90

Data Synchronization Barrier DSB on page A8-92

Instruction Synchronization Barrier ISB on page A8-102

If Then (makes following instructions conditional) IT on page A8-104

No Operation NOP on page A8-222

Preload Data PLD, PLDW (immediate) on page A8-236

PLD (literal) on page A8-238

PLD, PLDW (register) on page A8-240

Preload Instruction PLI (immediate, literal) on page A8-242

PLI (register) on page A8-244

Set Endianness SETEND on page A8-314

Send Event SEV on page A8-316

Supervisor Call SVC (previously SWI) on page A8-430

Swap, Swap Byte. Use deprecated. a

a. Use Load/Store-Exclusive instructions instead, see Load/store instructions on page A4-19.

SWP, SWPB on page A8-432

Wait For Event WFE on page A8-808

Wait For Interrupt WFI on page A8-810

Yield YIELD on page A8-812
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A4-23

The Instruction Sets
A4.9 Exception-generating and exception-handling instructions

The following instructions are intended specifically to cause a processor exception to occur:

• The Supervisor Call (SVC, previously SWI) instruction is used to cause an SVC exception to occur. This
is the main mechanism for User mode code to make calls to privileged operating system code. For
more information, see Supervisor Call (SVC) exception on page B1-52.

• The Breakpoint instruction BKPT provides for software breakpoints. For more information, see About
debug events on page C3-2.

• In privileged system level code, the Secure Monitor Call (SMC, previously SMI) instruction. For more
information, see Secure Monitor Call (SMC) exception on page B1-53.

System level variants of the SUBS and LDM instructions can be used to return from exceptions. From ARMv6,
the SRS instruction can be used near the start of an exception handler to store return information, and the RFE
instruction can be used to return from an exception using the stored return information. For details of these
instructions, see Chapter B6 System Instructions.
A4-24 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The Instruction Sets
A4.10 Coprocessor instructions

There are three types of instruction for communicating with coprocessors. These permit the processor to:

• Initiate a coprocessor data-processing operation. For details see CDP, CDP2 on page A8-68.

• Transfer general-purpose registers to and from coprocessor registers. For details, see:

— MCR, MCR2 on page A8-186

— MCRR, MCRR2 on page A8-188

— MRC, MRC2 on page A8-202

— MRRC, MRRC2 on page A8-204.

• Load or store the values of coprocessor registers. For details, see:

— LDC, LDC2 (immediate) on page A8-106

— LDC, LDC2 (literal) on page A8-108

— STC, STC2 on page A8-372.

The instruction set distinguishes up to 16 coprocessors with a 4-bit field in each coprocessor instruction, so
each coprocessor is assigned a particular number.

Note
 One coprocessor can use more than one of the 16 numbers if a large coprocessor instruction set is required.

Coprocessors 10 and 11 are used, together, for VFP and some Advanced SIMD functionality. There are
different instructions for accessing these coprocessors, of similar types to the instructions for the other
coprocessors, that is, to:

• Initiate a coprocessor data-processing operation. For details see VFP data-processing instructions on
page A4-38.

• Transfer general-purpose registers to and from coprocessor registers. For details, see Advanced SIMD
and VFP register transfer instructions on page A4-29.

• Load or store the values of coprocessor registers. For details, see Advanced SIMD and VFP load/store
instructions on page A4-26.

Coprocessors execute the same instruction stream as the processor, ignoring non-coprocessor instructions
and coprocessor instructions for other coprocessors. Coprocessor instructions that cannot be executed by
any coprocessor hardware cause an Undefined Instruction exception.

For more information about specific coprocessors see Coprocessor support on page A2-68.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A4-25

The Instruction Sets
A4.11 Advanced SIMD and VFP load/store instructions

Table A4-13 summarizes the extension register load/store instructions in the Advanced SIMD and VFP
instruction sets.

Advanced SIMD also provides instructions for loading and storing multiple elements, or structures of
elements, see Element and structure load/store instructions on page A4-27.

Table A4-13 Extension register load/store instructions

Instruction See Operation

Vector Load Multiple VLDM on page A8-626 Load 1-16 consecutive 64-bit registers (Adv. SIMD and VFP)

Load 1-16 consecutive 32-bit registers (VFP only)

Vector Load Register VLDR on page A8-628 Load one 64-bit register (Adv. SIMD and VFP)

Load one 32-bit register (VFP only)

Vector Store Multiple VSTM on page A8-784 Store 1-16 consecutive 64-bit registers (Adv. SIMD and VFP)

Store 1-16 consecutive 32-bit registers (VFP only)

Vector Store Register VSTR on page A8-786 Store one 64-bit register (Adv. SIMD and VFP)

Store one 32-bit register (VFP only)
A4-26 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The Instruction Sets
A4.11.1 Element and structure load/store instructions

Table A4-14 shows the element and structure load/store instructions available in the Advanced SIMD
instruction set. Loading and storing structures of more than one element automatically de-interleaves or
interleaves the elements, see Figure A4-1 on page A4-28 for an example of de-interleaving. Interleaving is
the inverse process.

Table A4-14 Element and structure load/store instructions

Instruction See

Load single element

Multiple elements VLD1 (multiple single elements) on page A8-602

To one lane VLD1 (single element to one lane) on page A8-604

To all lanes VLD1 (single element to all lanes) on page A8-606

Load 2-element structure

Multiple structures VLD2 (multiple 2-element structures) on page A8-608

To one lane VLD2 (single 2-element structure to one lane) on page A8-610

To all lanes VLD2 (single 2-element structure to all lanes) on page A8-612

Load 3-element structure

Multiple structures VLD3 (multiple 3-element structures) on page A8-614

To one lane VLD3 (single 3-element structure to one lane) on page A8-616

To all lanes VLD3 (single 3-element structure to all lanes) on page A8-618

Load 4-element structure

Multiple structures VLD4 (multiple 4-element structures) on page A8-620

To one lane VLD4 (single 4-element structure to one lane) on page A8-622

To all lanes VLD4 (single 4-element structure to all lanes) on page A8-624

Store single element

Multiple elements VST1 (multiple single elements) on page A8-768

From one lane VST1 (single element from one lane) on page A8-770
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A4-27

The Instruction Sets
Figure A4-1 De-interleaving an array of 3-element structures

Store 2-element structure

Multiple structures VST2 (multiple 2-element structures) on page A8-772

From one lane VST2 (single 2-element structure from one lane) on page A8-774

Store 3-element structure

Multiple structures VST3 (multiple 3-element structures) on page A8-776

From one lane VST3 (single 3-element structure from one lane) on page A8-778

Store 4-element structure

Multiple structures VST4 (multiple 4-element structures) on page A8-780

From one lane VST4 (single 4-element structure from one lane) on page A8-782

Table A4-14 Element and structure load/store instructions (continued)

Instruction See

D� ��

�/�0�+

�/�0��

�/�0�E

D� D� D�

�/�0�+

�/�0��

�/�0�E

�/�0�+

�/�0��

�/�0�E

�/�0�+

�/�0��

�/�0�E

F� ��F� F� F�

G� ��G� G� G�

!�,���

7�.'*&��*
A4-28 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The Instruction Sets
A4.12 Advanced SIMD and VFP register transfer instructions

Table A4-15 summarizes the extension register transfer instructions in the Advanced SIMD and VFP
instruction sets. These instructions transfer data from ARM core registers to extension registers, or from
extension registers to ARM core registers.

Advanced SIMD vectors, and single-precision and double-precision VFP registers, are all views of the same
extension register set. For details see Advanced SIMD and VFP extension registers on page A2-21.

Table A4-15 Extension register transfer instructions

Instruction See

Copy element from ARM core register to every element of
Advanced SIMD vector

VDUP (ARM core register) on page A8-594

Copy byte, halfword, or word from ARM core register to
extension register

VMOV (ARM core register to scalar) on
page A8-644

Copy byte, halfword, or word from extension register to ARM
core register

VMOV (scalar to ARM core register) on
page A8-646

Copy from single-precision VFP register to ARM core register,
or from ARM core register to single-precision VFP register

VMOV (between ARM core register and
single-precision register) on page A8-648

Copy two words from ARM core registers to consecutive
single-precision VFP registers, or from consecutive
single-precision VFP registers to ARM core registers

VMOV (between two ARM core registers and
two single-precision registers) on page A8-650

Copy two words from ARM core registers to doubleword
extension register, or from doubleword extension register to
ARM core registers

VMOV (between two ARM core registers and a
doubleword extension register) on page A8-652

Copy from Advanced SIMD and VFP extension System Register
to ARM core register

VMRS on page A8-658

VMRS on page B6-27 (system level view)

Copy from ARM core register to Advanced SIMD and VFP
extension System Register

VMSR on page A8-660

VMSR on page B6-29 (system level view)
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A4-29

The Instruction Sets
A4.13 Advanced SIMD data-processing operations

Advanced SIMD data-processing operations process registers containing vectors of elements of the same
type packed together, enabling the same operation to be performed on multiple items in parallel.

Instructions operate on vectors held in 64-bit or 128-bit registers. Figure A4-2 shows an operation on two
64-bit operand vectors, generating a 64-bit vector result.

Note
 Figure A4-2 and other similar figures show 64-bit vectors that consist of four 16-bit elements, and 128-bit
vectors that consist of four 32-bit elements. Other element sizes produce similar figures, but with one, two,
eight, or sixteen operations performed in parallel instead of four.

Figure A4-2 Advanced SIMD instruction operating on 64-bit registers

Many Advanced SIMD instructions have variants that produce vectors of elements double the size of the
inputs. In this case, the number of elements in the result vector is the same as the number of elements in the
operand vectors, but each element, and the whole vector, is double the size.

Figure A4-3 shows an example of an Advanced SIMD instruction operating on 64-bit registers, and
generating a 128-bit result.

Figure A4-3 Advanced SIMD instruction producing wider result

There are also Advanced SIMD instructions that have variants that produce vectors containing elements half
the size of the inputs. Figure A4-4 on page A4-31 shows an example of an Advanced SIMD instruction
operating on one 128-bit register, and generating a 64-bit result.

=%

��

�,

��

=%=%=%

=%

��

�,

��

=%=%=%
A4-30 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The Instruction Sets
Figure A4-4 Advanced SIMD instruction producing narrower result

Some Advanced SIMD instructions do not conform to these standard patterns. Their operation patterns are
described in the individual instruction descriptions.

Advanced SIMD instructions that perform floating-point arithmetic use the ARM standard floating-point
arithmetic defined in Floating-point data types and arithmetic on page A2-32.

A4.13.1 Advanced SIMD parallel addition and subtraction

Table A4-16 shows the Advanced SIMD parallel add and subtract instructions.

=%

��

��

=%=%=%

Table A4-16 Advanced SIMD parallel add and subtract instructions

Instruction See

Vector Add VADD (integer) on page A8-536

VADD (floating-point) on page A8-538

Vector Add and Narrow, returning High Half VADDHN on page A8-540

Vector Add Long, Vector Add Wide VADDL, VADDW on page A8-542

Vector Halving Add, Vector Halving Subtract VHADD, VHSUB on page A8-600

Vector Pairwise Add and Accumulate Long VPADAL on page A8-682

Vector Pairwise Add VPADD (integer) on page A8-684

VPADD (floating-point) on page A8-686

Vector Pairwise Add Long VPADDL on page A8-688

Vector Rounding Add and Narrow, returning High Half VRADDHN on page A8-726

Vector Rounding Halving Add VRHADD on page A8-734

Vector Rounding Subtract and Narrow, returning High Half VRSUBHN on page A8-748

Vector Saturating Add VQADD on page A8-700

Vector Saturating Subtract VQSUB on page A8-724
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A4-31

The Instruction Sets
A4.13.2 Bitwise Advanced SIMD data-processing instructions

Table A4-17 shows bitwise Advanced SIMD data-processing instructions. These operate on the doubleword
(64-bit) or quadword (128-bit) extension registers, and there is no division into vector elements.

Vector Subtract VSUB (integer) on page A8-788

VSUB (floating-point) on page A8-790

Vector Subtract and Narrow, returning High Half VSUBHN on page A8-792

Vector Subtract Long, Vector Subtract Wide VSUBL, VSUBW on page A8-794

Table A4-16 Advanced SIMD parallel add and subtract instructions (continued)

Instruction See

Table A4-17 Bitwise Advanced SIMD data-processing instructions

Instruction See

Vector Bitwise AND VAND (register) on page A8-544

Vector Bitwise Bit Clear (AND complement) VBIC (immediate) on page A8-546

VBIC (register) on page A8-548

Vector Bitwise Exclusive OR VEOR on page A8-596

Vector Bitwise Insert if False
VBIF, VBIT, VBSL on page A8-550

Vector Bitwise Insert if True

Vector Bitwise Move VMOV (immediate) on page A8-640

VMOV (register) on page A8-642

Vector Bitwise NOT VMVN (immediate) on page A8-668

VMVN (register) on page A8-670

Vector Bitwise OR VORR (immediate) on page A8-678

VORR (register) on page A8-680

Vector Bitwise OR NOT VORN (register) on page A8-676

Vector Bitwise Select VBIF, VBIT, VBSL on page A8-550
A4-32 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The Instruction Sets
A4.13.3 Advanced SIMD comparison instructions

Table A4-18 shows Advanced SIMD comparison instructions.

Table A4-18 Advanced SIMD comparison instructions

Instruction See

Vector Absolute Compare VACGE, VACGT, VACLE,VACLT on page A8-534

Vector Compare Equal VCEQ (register) on page A8-552

Vector Compare Equal to Zero VCEQ (immediate #0) on page A8-554

Vector Compare Greater Than or Equal VCGE (register) on page A8-556

Vector Compare Greater Than or Equal to Zero VCGE (immediate #0) on page A8-558

Vector Compare Greater Than VCGT (register) on page A8-560

Vector Compare Greater Than Zero VCGT (immediate #0) on page A8-562

Vector Compare Less Than or Equal to Zero VCLE (immediate #0) on page A8-564

Vector Compare Less Than Zero VCLT (immediate #0) on page A8-568

Vector Test Bits VTST on page A8-802
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A4-33

The Instruction Sets
A4.13.4 Advanced SIMD shift instructions

Table A4-19 lists the shift instructions in the Advanced SIMD instruction set.

Table A4-19 Advanced SIMD shift instructions

Instruction See

Vector Saturating Rounding Shift Left VQRSHL on page A8-714

Vector Saturating Rounding Shift Right and Narrow VQRSHRN, VQRSHRUN on page A8-716

Vector Saturating Shift Left VQSHL (register) on page A8-718

VQSHL, VQSHLU (immediate) on page A8-720

Vector Saturating Shift Right and Narrow VQSHRN, VQSHRUN on page A8-722

Vector Rounding Shift Left VRSHL on page A8-736

Vector Rounding Shift Right VRSHR on page A8-738

Vector Rounding Shift Right and Accumulate VRSRA on page A8-746

Vector Rounding Shift Right and Narrow VRSHRN on page A8-740

Vector Shift Left VSHL (immediate) on page A8-750

VSHL (register) on page A8-752

Vector Shift Left Long VSHLL on page A8-754

Vector Shift Right VSHR on page A8-756

Vector Shift Right and Narrow VSHRN on page A8-758

Vector Shift Left and Insert VSLI on page A8-760

Vector Shift Right and Accumulate VSRA on page A8-764

Vector Shift Right and Insert VSRI on page A8-766
A4-34 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The Instruction Sets
A4.13.5 Advanced SIMD multiply instructions

Table A4-20 summarizes the Advanced SIMD multiply instructions.

Advanced SIMD multiply instructions can operate on vectors of:

• 8-bit, 16-bit, or 32-bit unsigned integers

• 8-bit, 16-bit, or 32-bit signed integers

• 8-bit or 16-bit polynomials over {0,1} (VMUL and VMULL only)

• single-precision (32-bit) floating-point numbers.

They can also act on one vector and one scalar.

Long instructions have doubleword (64-bit) operands, and produce quadword (128-bit) results. Other
Advanced SIMD multiply instructions can have either doubleword or quadword operands, and produce
results of the same size.

VFP multiply instructions can operate on:

• single-precision (32-bit) floating-point numbers

• double-precision (64-bit) floating-point numbers.

Some VFP implementations do not support double-precision numbers.

Table A4-20 Advanced SIMD multiply instructions

Instruction See

Vector Multiply Accumulate VMLA, VMLAL, VMLS, VMLSL (integer) on
page A8-634

VMLA, VMLS (floating-point) on page A8-636

VMLA, VMLAL, VMLS, VMLSL (by scalar) on
page A8-638

Vector Multiply Accumulate Long

Vector Multiply Subtract

Vector Multiply Subtract Long

Vector Multiply VMUL, VMULL (integer and polynomial) on
page A8-662

VMUL (floating-point) on page A8-664

VMUL, VMULL (by scalar) on page A8-666

Vector Multiply Long

Vector Saturating Doubling Multiply Accumulate Long
VQDMLAL, VQDMLSL on page A8-702

Vector Saturating Doubling Multiply Subtract Long

Vector Saturating Doubling Multiply Returning High Half VQDMULH on page A8-704

Vector Saturating Rounding Doubling Multiply Returning
High Half

VQRDMULH on page A8-712

Vector Saturating Doubling Multiply Long VQDMULL on page A8-706
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A4-35

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Inserted Text
, VMULL produces a 16-bit polynomial over {0,1}

ARM_2011_Q2
Sticky Note
As indicated by the insertion at the end of this line, VMULL produces a 16-bit polynomial over {0.1} as its result.

The Instruction Sets
A4.13.6 Miscellaneous Advanced SIMD data-processing instructions

Table A4-21 shows miscellaneous Advanced SIMD data-processing instructions.

Table A4-21 Miscellaneous Advanced SIMD data-processing instructions

Instruction See

Vector Absolute Difference and Accumulate VABA, VABAL on page A8-526

Vector Absolute Difference VABD, VABDL (integer) on page A8-528

VABD (floating-point) on page A8-530

Vector Absolute VABS on page A8-532

Vector Convert between floating-point and
fixed point

VCVT (between floating-point and fixed-point, Advanced SIMD) on
page A8-580

Vector Convert between floating-point and
integer

VCVT (between floating-point and integer, Advanced SIMD) on
page A8-576

Vector Convert between half-precision and
single-precision

VCVT (between half-precision and single-precision, Advanced
SIMD) on page A8-586

Vector Count Leading Sign Bits VCLS on page A8-566

Vector Count Leading Zeros VCLZ on page A8-570

Vector Count Set Bits VCNT on page A8-574

Vector Duplicate scalar VDUP (scalar) on page A8-592

Vector Extract VEXT on page A8-598

Vector Move and Narrow VMOVN on page A8-656

Vector Move Long VMOVL on page A8-654

Vector Maximum, Minimum VMAX, VMIN (integer) on page A8-630

VMAX, VMIN (floating-point) on page A8-632

Vector Negate VNEG on page A8-672

Vector Pairwise Maximum, Minimum VPMAX, VPMIN (integer) on page A8-690

VPMAX, VPMIN (floating-point) on page A8-692

Vector Reciprocal Estimate VRECPE on page A8-728

Vector Reciprocal Step VRECPS on page A8-730

Vector Reciprocal Square Root Estimate VRSQRTE on page A8-742
A4-36 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The Instruction Sets
Vector Reciprocal Square Root Step VRSQRTS on page A8-744

Vector Reverse VREV16, VREV32, VREV64 on page A8-732

Vector Saturating Absolute VQABS on page A8-698

Vector Saturating Move and Narrow VQMOVN, VQMOVUN on page A8-708

Vector Saturating Negate VQNEG on page A8-710

Vector Swap VSWP on page A8-796

Vector Table Lookup VTBL, VTBX on page A8-798

Vector Transpose VTRN on page A8-800

Vector Unzip VUZP on page A8-804

Vector Zip VZIP on page A8-806

Table A4-21 Miscellaneous Advanced SIMD data-processing instructions (continued)

Instruction See
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A4-37

The Instruction Sets
A4.14 VFP data-processing instructions

Table A4-22 summarizes the data-processing instructions in the VFP instruction set.

For details of the floating-point arithmetic used by VFP instructions, see Floating-point data types and
arithmetic on page A2-32.

Table A4-22 VFP data-processing instructions

Instruction See

Absolute value VABS on page A8-532

Add VADD (floating-point) on page A8-538

Compare (optionally with exceptions enabled) VCMP, VCMPE on page A8-572

Convert between floating-point and integer VCVT, VCVTR (between floating-point and integer, VFP) on
page A8-578

Convert between floating-point and fixed-point VCVT (between floating-point and fixed-point, VFP) on
page A8-582

Convert between double-precision and
single-precision

VCVT (between double-precision and single-precision) on
page A8-584

Convert between half-precision and single-precision VCVTB, VCVTT (between half-precision and
single-precision, VFP) on page A8-588

Divide VDIV on page A8-590

Multiply Accumulate, Multiply Subtract VMLA, VMLS (floating-point) on page A8-636

Move immediate value to extension register VMOV (immediate) on page A8-640

Copy from one extension register to another VMOV (register) on page A8-642

Multiply VMUL (floating-point) on page A8-664

Negate (invert the sign bit) VNEG on page A8-672

Multiply Accumulate and Negate, Multiply Subtract
and Negate, Multiply and Negate

VNMLA, VNMLS, VNMUL on page A8-674

Square Root VSQRT on page A8-762

Subtract VSUB (floating-point) on page A8-790
A4-38 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Chapter A5
ARM Instruction Set Encoding

This chapter describes the encoding of the ARM instruction set. It contains the following sections:

• ARM instruction set encoding on page A5-2

• Data-processing and miscellaneous instructions on page A5-4

• Load/store word and unsigned byte on page A5-19

• Media instructions on page A5-21

• Branch, branch with link, and block data transfer on page A5-27

• Supervisor Call, and coprocessor instructions on page A5-28

• Unconditional instructions on page A5-30.

Note
 • Architecture variant information in this chapter describes the architecture variant or extension in

which the instruction encoding was introduced into the ARM instruction set. All means that the
instruction encoding was introduced in ARMv4 or earlier, and so is in all variants of the ARM
instruction set covered by this manual.

• In the decode tables in this chapter, an entry of - for a field value means the value of the field does
not affect the decoding.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A5-1

ARM Instruction Set Encoding
A5.1 ARM instruction set encoding

The ARM instruction stream is a sequence of word-aligned words. Each ARM instruction is a single 32-bit
word in that stream.

Table A5-1 shows the major subdivisions of the ARM instruction set, determined by bits [31:25,4].

Most ARM instructions can be conditional, with a condition determined by bits [31:28] of the instruction,
the cond field. For details see The condition field. This applies to all instructions except those with the cond
field equal to 0b1111.

A5.1.1 The condition field

Every conditional instruction contains a 4-bit condition code field in bits 31 to 28:

This field contains one of the values 0b0000-0b1110 described in Table A8-1 on page A8-8. Most
instruction mnemonics can be extended with the letters defined in the mnemonic extension field.

If the always (AL) condition is specified, the instruction is executed irrespective of the value of the condition
code flags. The absence of a condition code on an instruction mnemonic implies the AL condition code.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond op1 op

Table A5-1 ARM instruction encoding

cond op1 op Instruction classes

not 1111 00x - Data-processing and miscellaneous instructions on page A5-4.

010 - Load/store word and unsigned byte on page A5-19.

011 0 Load/store word and unsigned byte on page A5-19.

1 Media instructions on page A5-21.

10x - Branch, branch with link, and block data transfer on page A5-27.

11x - Supervisor Call, and coprocessor instructions on page A5-28.

Includes VFP instructions and Advanced SIMD data transfers, see Chapter A7 Advanced
SIMD and VFP Instruction Encoding.

1111 - - If the cond field is 0b1111, the instruction can only be executed unconditionally, see
Unconditional instructions on page A5-30.

Includes Advanced SIMD instructions, see Chapter A7 Advanced SIMD and VFP
Instruction Encoding.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond
A5-2 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM Instruction Set Encoding
A5.1.2 UNDEFINED and UNPREDICTABLE instruction set space

An attempt to execute an unallocated instruction results in either:

• Unpredictable behavior. The instruction is described as UNPREDICTABLE.

• An Undefined Instruction exception. The instruction is described as UNDEFINED.

An instruction is UNDEFINED if it is declared as UNDEFINED in an instruction description, or in this chapter.

An instruction is UNPREDICTABLE if:

• it is declared as UNPREDICTABLE in an instruction description or in this chapter

• the pseudocode for that encoding does not indicate that a different special case applies, and a bit
marked (0) or (1) in the encoding diagram of an instruction is not 0 or 1 respectively.

Unless otherwise specified:

• ARM instructions introduced in an architecture variant are UNDEFINED in earlier architecture variants.

• ARM instructions introduced in one or more architecture extensions are UNDEFINED if none of those
extensions are implemented.

A5.1.3 The PC and the use of 0b1111 as a register specifier

In ARM instructions, the use of 0b1111 as a register specifier specifies the PC.

Many instructions are UNPREDICTABLE if they use 0b1111 as a register specifier. This is specified by
pseudocode in the instruction description.

Note
 Use of the PC as the base register in any store instruction is deprecated in ARMv7.

A5.1.4 The SP and the use of 0b1101 as a register specifier

In ARM instructions, the use of 0b1101 as a register specifier specifies the SP.

ARM deprecates:

• using SP for any purpose other than as a stack pointer

• using the SP in ARM instructions in ways other that those listed in 32-bit Thumb instruction support
for R13 on page A6-4, except that ARM does not deprecate the use of instructions of the following
form that write a word-aligned address to SP:

SUB SP, <Rd>, #<const>
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A5-3

ARM_2011_Q2
Inserted Text
.

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Sticky Note
These uses are no longer deprecated. See appendix section D.5 Use of the SP as a general-purpose register on page AppxD-8 [PDF page 1942].

ARM Instruction Set Encoding
A5.2 Data-processing and miscellaneous instructions

Table A5-2 shows the allocation of encodings in this space.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 op op1 op2

Table A5-2 Data-processing and miscellaneous instructions

op op1 op2 Instruction or instruction class Variant

0 not 10xx0 xxx0 Data-processing (register) on page A5-5 -

0xx1 Data-processing (register-shifted register) on page A5-7 -

10xx0 0xxx Miscellaneous instructions on page A5-18 -

1xx0 Halfword multiply and multiply-accumulate on page A5-13 -

0xxxx 1001 Multiply and multiply-accumulate on page A5-12 -

1xxxx 1001 Synchronization primitives on page A5-16 -

not 0xx1x 1011 Extra load/store instructions on page A5-14 -

11x1 Extra load/store instructions on page A5-14 -

0xx1x 1011 Extra load/store instructions (unprivileged) on page A5-15 -

11x1 Extra load/store instructions (unprivileged) on page A5-15 -

1 not 10xx0 - Data-processing (immediate) on page A5-8 -

10000 - 16-bit immediate load (MOV (immediate) on page A8-194) v6T2

10100 - High halfword 16-bit immediate load (MOVT on page A8-200) v6T2

10x10 - MSR (immediate), and hints on page A5-17 -
A5-4 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM Instruction Set Encoding
A5.2.1 Data-processing (register)

If op1 == 0b10xx0, see Data-processing and miscellaneous instructions on page A5-4.

Table A5-3 shows the allocation of encodings in this space. These encodings are in all architecture variants.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 op1 op2 op3 0

Table A5-3 Data-processing (register) instructions

op1 op2 op3 Instruction See

0000x - - Bitwise AND AND (register) on page A8-36

0001x - - Bitwise Exclusive OR EOR (register) on page A8-96

0010x - - Subtract SUB (register) on page A8-422

0011x - - Reverse Subtract RSB (register) on page A8-286

0100x - - Add ADD (register) on page A8-24

0101x - - Add with Carry ADC (register) on page A8-16

0110x - - Subtract with Carry SBC (register) on page A8-304

0111x - - Reverse Subtract with Carry RSC (register) on page A8-292

10001 - - Test TST (register) on page A8-456

10011 - - Test Equivalence TEQ (register) on page A8-450

10101 - - Compare CMP (register) on page A8-82

10111 - - Compare Negative CMN (register) on page A8-76

1100x - - Bitwise OR ORR (register) on page A8-230

1101x 00000 00 Move MOV (register) on page A8-196

not 00000 00 Logical Shift Left LSL (immediate) on page A8-178

- 01 Logical Shift Right LSR (immediate) on page A8-182

- 10 Arithmetic Shift Right ASR (immediate) on page A8-40

00000 11 Rotate Right with Extend RRX on page A8-282

not 00000 11 Rotate Right ROR (immediate) on page A8-278
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A5-5

ARM Instruction Set Encoding
1110x - - Bitwise Bit Clear BIC (register) on page A8-52

1111x - - Bitwise NOT MVN (register) on page A8-216

Table A5-3 Data-processing (register) instructions (continued)

op1 op2 op3 Instruction See
A5-6 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM Instruction Set Encoding
A5.2.2 Data-processing (register-shifted register)

If op1 == 0b10xx0, see Data-processing and miscellaneous instructions on page A5-4.

Table A5-4 shows the allocation of encodings in this space. These encodings are in all architecture variants.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 op1 0 op2 1

Table A5-4 Data-processing (register-shifted register) instructions

op1 op2 Instruction See

0000x - Bitwise AND AND (register-shifted register) on page A8-38

0001x - Bitwise Exclusive OR EOR (register-shifted register) on page A8-98

0010x - Subtract SUB (register-shifted register) on page A8-424

0011x - Reverse Subtract RSB (register-shifted register) on page A8-288

0100x - Add ADD (register-shifted register) on page A8-26

0101x - Add with Carry ADC (register-shifted register) on page A8-18

0110x - Subtract with Carry SBC (register-shifted register) on page A8-306

0111x - Reverse Subtract with Carry RSC (register-shifted register) on page A8-294

10001 - Test TST (register-shifted register) on page A8-458

10011 - Test Equivalence TEQ (register-shifted register) on page A8-452

10101 - Compare CMP (register-shifted register) on page A8-84

10111 - Compare Negative CMN (register-shifted register) on page A8-78

1100x - Bitwise OR ORR (register-shifted register) on page A8-232

1101x 00 Logical Shift Left LSL (register) on page A8-180

01 Logical Shift Right LSR (register) on page A8-184

10 Arithmetic Shift Right ASR (register) on page A8-42

11 Rotate Right ROR (register) on page A8-280

1110x - Bitwise Bit Clear BIC (register-shifted register) on page A8-54

1111x - Bitwise NOT MVN (register-shifted register) on page A8-218
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A5-7

ARM Instruction Set Encoding
A5.2.3 Data-processing (immediate)

If op == 0b10xx0, see Data-processing and miscellaneous instructions on page A5-4.

Table A5-5 shows the allocation of encodings in this space. These encodings are in all architecture variants.

These instructions all have modified immediate constants, rather than a simple 12-bit binary number. This
provides a more useful range of values. For details see Modified immediate constants in ARM instructions
on page A5-9.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 1 op Rn

Table A5-5 Data-processing (immediate) instructions

op Rn Instruction See

0000x - Bitwise AND AND (immediate) on page A8-34

0001x - Bitwise Exclusive OR EOR (immediate) on page A8-94

0010x not 1111 Subtract SUB (immediate, ARM) on page A8-420

1111 Form PC-relative address ADR on page A8-32

0011x - Reverse Subtract RSB (immediate) on page A8-284

0100x not 1111 Add ADD (immediate, ARM) on page A8-22

1111 Form PC-relative address ADR on page A8-32

0101x - Add with Carry ADC (immediate) on page A8-14

0110x - Subtract with Carry SBC (immediate) on page A8-302

0111x - Reverse Subtract with Carry RSC (immediate) on page A8-290

10001 - Test TST (immediate) on page A8-454

10011 - Test Equivalence TEQ (immediate) on page A8-448

10101 - Compare CMP (immediate) on page A8-80

10111 - Compare Negative CMN (immediate) on page A8-74

1100x - Bitwise OR ORR (immediate) on page A8-228

1101x - Move MOV (immediate) on page A8-194

1110x - Bitwise Bit Clear BIC (immediate) on page A8-50

1111x - Bitwise NOT MVN (immediate) on page A8-214
A5-8 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM Instruction Set Encoding
A5.2.4 Modified immediate constants in ARM instructions

Table A5-6 shows the range of modified immediate constants available in ARM data-processing
instructions, and how they are encoded in the a, b, c, d, e, f, g, h, and rotation fields in the instruction.

Note
 The range of values available in ARM modified immediate constants is slightly different from the range of
values available in 32-bit Thumb instructions. See Modified immediate constants in Thumb instructions on
page A6-17.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rotation a b c d e f g h

Table A5-6 Encoding of modified immediates in ARM processing instructions

rotation <const> a

a. In this table, the immediate constant value is shown in binary form, to relate
abcdefgh to the encoding diagram. In assembly syntax, the immediate value
is specified in the usual way (a decimal number by default).

0000 00000000 00000000 00000000 abcdefgh

0001 gh000000 00000000 00000000 00abcdef

0010 efgh0000 00000000 00000000 0000abcd

0011 cdefgh00 00000000 00000000 000000ab

0100 abcdefgh 00000000 00000000 00000000

. .

8-bit values shifted to other even-numbered positions. .

. .

1001 00000000 00abcdef gh000000 00000000

. .

8-bit values shifted to other even-numbered positions. .

. .

1110 00000000 00000000 0000abcd efgh0000

1111 00000000 00000000 000000ab cdefgh00
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A5-9

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

ARM Instruction Set Encoding
Carry out

A logical instruction with rotation == 0b0000 does not affect APSR.C. Otherwise, a logical instruction that
sets the flags sets APSR.C to the value of bit [31] of the modified immediate constant.

Constants with multiple encodings

Some constant values have multiple possible encodings. In this case, a UAL assembler must select the
encoding with the lowest unsigned value of the rotation field. This is the encoding that appears first in
Table A5-6 on page A5-9. For example, the constant #3 must be encoded with (rotation, abcdefgh) ==
(0b0000, 0b00000011), not (0b0001, 0b00001100), (0b0010, 0b00110000), or (0b0011, 0b11000000).

In particular, this means that all constants in the range 0-255 are encoded with rotation == 0b0000, and
permitted constants outside that range are encoded with rotation != 0b0000. A flag-setting logical instruction
with a modified immediate constant therefore leaves APSR.C unchanged if the constant is in the range 0-255
and sets it to the most significant bit of the constant otherwise. This matches the behavior of Thumb
modified immediate constants for all constants that are permitted in both the ARM and Thumb instruction
sets.

An alternative syntax is available for a modified immediate constant that permits the programmer to specify
the encoding directly. In this syntax, #<const> is instead written as #<byte>,#<rot>, where:

<byte> is the numeric value of abcdefgh, in the range 0-255

<rot> is twice the numeric value of rotation, an even number in the range 0-30.

This syntax permits all ARM data-processing instructions with modified immediate constants to be
disassembled to assembler syntax that will assemble to the original instruction.

This syntax also makes it possible to write variants of some flag-setting logical instructions that have
different effects on APSR.C to those obtained with the normal #<const> syntax. For example,
ANDS R1,R2,#12,#2 has the same behavior as ANDS R1,R2,#3 except that it sets APSR.C to 0 instead of leaving
it unchanged. Such variants of flag-setting logical instructions do not have equivalents in the Thumb
instruction set, and their use is deprecated.

Operation

// ARMExpandImm()
// ==============

bits(32) ARMExpandImm(bits(12) imm12)

 // APSR.C argument to following function call does not affect the imm32 result.
 (imm32, -) = ARMExpandImm_C(imm12, APSR.C);

 return imm32;

// ARMExpandImm_C()
// ================

(bits(32), bit) ARMExpandImm_C(bits(12) imm12, bit carry_in)
A5-10 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM Instruction Set Encoding

 unrotated_value = ZeroExtend(imm12<7:0>, 32);
 (imm32, carry_out) = Shift_C(unrotated_value, SRType_ROR, 2*UInt(imm12<11:8>), carry_in);

 return (imm32, carry_out);
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A5-11

ARM Instruction Set Encoding
A5.2.5 Multiply and multiply-accumulate

Table A5-7 shows the allocation of encodings in this space.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 0 op 1 0 0 1

Table A5-7 Multiply and multiply-accumulate instructions

op Instruction See Variant

000x Multiply MUL on page A8-212 All

001x Multiply Accumulate MLA on page A8-190 All

0100 Unsigned Multiply Accumulate Accumulate Long UMAAL on page A8-482 v6

0101 UNDEFINED - -

0110 Multiply and Subtract MLS on page A8-192 v6T2

0111 UNDEFINED - -

100x Unsigned Multiply Long UMULL on page A8-486 All

101x Unsigned Multiply Accumulate Long UMLAL on page A8-484 All

110x Signed Multiply Long SMULL on page A8-356 All

111x Signed Multiply Accumulate Long SMLAL on page A8-334 All
A5-12 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM Instruction Set Encoding
A5.2.6 Saturating addition and subtraction

Table A5-8 shows the allocation of encodings in this space. These encodings are all available in ARMv5TE
and above, and are UNDEFINED in earlier variants of the architecture.

A5.2.7 Halfword multiply and multiply-accumulate

Table A5-9 shows the allocation of encodings in this space.

These encodings are signed multiply (SMUL) and signed multiply-accumulate (SMLA) instructions, operating
on 16-bit values, or mixed 16-bit and 32-bit values. The results and accumulators are 32-bit or 64-bit.

These encodings are all available in ARMv5TE and above, and are UNDEFINED in earlier variants of the
architecture.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 1 0 op 0 0 1 0 1

Table A5-8 Saturating addition and subtraction instructions

op Instruction See

00 Saturating Add QADD on page A8-250

01 Saturating Subtract QSUB on page A8-264

10 Saturating Double and Add QDADD on page A8-258

11 Saturating Double and Subtract QDSUB on page A8-260

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 1 0 op1 0 1 op 0

Table A5-9 Halfword multiply and multiply-accumulate instructions

op1 op Instruction See

00 - Signed 16-bit multiply, 32-bit accumulate SMLABB, SMLABT, SMLATB, SMLATT on
page A8-330

01 0 Signed 16-bit x 32-bit multiply, 32-bit accumulate SMLAWB, SMLAWT on page A8-340

01 1 Signed 16-bit x 32-bit multiply, 32-bit result SMULWB, SMULWT on page A8-358

10 - Signed 16-bit multiply, 64-bit accumulate SMLALBB, SMLALBT, SMLALTB, SMLALTT
on page A8-336

11 - Signed 16-bit multiply, 32-bit result SMULBB, SMULBT, SMULTB, SMULTT on
page A8-354
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A5-13

ARM Instruction Set Encoding
A5.2.8 Extra load/store instructions

If op1 == 0b0xx1x or op2 == 0b00, see Data-processing and miscellaneous instructions on page A5-4.

Table A5-10 shows the allocation of encodings in this space.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 op1 Rn 1 op2 1

Table A5-10 Extra load/store instructions

op2 op1 Rn Instruction See Variant

01 xx0x0 - Store Halfword STRH (register) on page A8-412 All

xx0x1 - Load Halfword LDRH (register) on page A8-156 All

xx1x0 - Store Halfword STRH (immediate, ARM) on page A8-410 All

xx1x1 not 1111 Load Halfword LDRH (immediate, ARM) on page A8-152 All

1111 Load Halfword LDRH (literal) on page A8-154 All

10 xx0x0 - Load Dual LDRD (register) on page A8-140 v5TE

xx0x1 - Load Signed Byte LDRSB (register) on page A8-164 All

xx1x0 not 1111 Load Dual LDRD (immediate) on page A8-136 v5TE

1111 Load Dual LDRD (literal) on page A8-138 v5TE

xx1x1 not 1111 Load Signed Byte LDRSB (immediate) on page A8-160 All

1111 Load Signed Byte LDRSB (literal) on page A8-162 All

11 xx0x0 - Store Dual STRD (register) on page A8-398 All

xx0x1 - Load Signed Halfword LDRSH (register) on page A8-172 All

xx1x0 - Store Dual STRD (immediate) on page A8-396 All

xx1x1 not 1111 Load Signed Halfword LDRSH (immediate) on page A8-168 All

1111 Load Signed Halfword LDRSH (literal) on page A8-170 All
A5-14 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM Instruction Set Encoding
A5.2.9 Extra load/store instructions (unprivileged)

If op2 == 0b00, see Data-processing and miscellaneous instructions on page A5-4.

Table A5-11 shows the allocation of encodings in this space. The instruction encodings are all available in
ARMv6T2 and above, and are UNDEFINED in earlier variants of the architecture.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 0 1 op Rt 1 op2 1

Table A5-11 Extra load/store instructions (unprivileged)

op2 op Rt Instruction See

01 0 - Store Halfword Unprivileged STRHT on page A8-414

1 - Load Halfword Unprivileged LDRHT on page A8-158

1x 0 xxx0 UNPREDICTABLE -

xxx1 UNDEFINED -

10 1 - Load Signed Byte Unprivileged LDRSBT on page A8-166

11 1 - Load Signed Halfword Unprivileged LDRSHT on page A8-174
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A5-15

ARM Instruction Set Encoding
A5.2.10 Synchronization primitives

Table A5-12 shows the allocation of encodings in this space.

Other encodings in this space are UNDEFINED.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 1 op 1 0 0 1

Table A5-12 Synchronization primitives

op Instruction See Variant

0x00 Swap Word, Swap Byte SWP, SWPB on page A8-432 a

a. Use of these instructions is deprecated.

All

1000 Store Register Exclusive STREX on page A8-400 v6

1001 Load Register Exclusive LDREX on page A8-142 v6

1010 Store Register Exclusive Doubleword STREXD on page A8-404 v6K

1011 Load Register Exclusive Doubleword LDREXD on page A8-146 v6K

1100 Store Register Exclusive Byte STREXB on page A8-402 v6K

1101 Load Register Exclusive Byte LDREXB on page A8-144 v6K

1110 Store Register Exclusive Halfword STREXH on page A8-406 v6K

1111 Load Register Exclusive Halfword LDREXH on page A8-148 v6K
A5-16 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM Instruction Set Encoding
A5.2.11 MSR (immediate), and hints

Table A5-13 shows the allocation of encodings in this space.

Other encodings in this space are unallocated hints. They execute as NOPs, but software must not use them.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 1 1 0 op 1 0 op1 op2

Table A5-13 MSR (immediate), and hints

op op1 op2 Instruction See Variant

0 0000 00000000 No Operation hint NOP on page A8-222 v6K, v6T2

00000001 Yield hint YIELD on page A8-812 v6K

00000010 Wait For Event hint WFE on page A8-808 v6K

00000011 Wait For Interrupt hint WFI on page A8-810 v6K

00000100 Send Event hint SEV on page A8-316 v6K

1111xxxx Debug hint DBG on page A8-88 v7

0100 - Move to Special Register,
application level

MSR (immediate) on page A8-208 All

1x00 -

xx01 - Move to Special Register, system
level

MSR (immediate) on page B6-12 All

xx1x -

1 - - Move to Special Register, system
level

MSR (immediate) on page B6-12 All
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A5-17

ARM Instruction Set Encoding
A5.2.12 Miscellaneous instructions

Table A5-14 shows the allocation of encodings in this space.

Other encodings in this space are UNDEFINED.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 1 0 op 0 op1 0 op2

Table A5-14 Miscellaneous instructions

op2 op op1 Instruction or instruction class See Variant

000 x0 xxxx Move Special Register to Register MRS on page A8-206

MRS on page B6-10

All

01 xx00 Move to Special Register, application level MSR (register) on page A8-210 All

xx01

xx1x

Move to Special Register, system level MSR (register) on page B6-14 All

11 - Move to Special Register, system level MSR (register) on page B6-14 All

001 01 - Branch and Exchange BX on page A8-62 v4T

11 - Count Leading Zeros CLZ on page A8-72 v6

010 01 - Branch and Exchange Jazelle BXJ on page A8-64 v5TEJ

011 01 - Branch with Link and Exchange BLX (register) on page A8-60 v5T

101 - - Saturating addition and subtraction Saturating addition and
subtraction on page A5-13

-

111 01 - Breakpoint BKPT on page A8-56 v5T

11 - Secure Monitor Call SMC (previously SMI) on
page B6-18

Security
Extensions
A5-18 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
v5T

ARM Instruction Set Encoding
A5.3 Load/store word and unsigned byte

These instructions have either A == 0 or B == 0. For instructions with A == 1 and B == 1, see Media
instructions on page A5-21.

Table A5-15 shows the allocation of encodings in this space. These encodings are in all architecture
variants.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 A op1 Rn B

Table A5-15 Single data transfer instructions

A op1 B Rn Instruction See

0 xx0x0 not 0x010 - - Store Register STR (immediate, ARM) on
page A8-384

1 xx0x0 not 0x010 0 - Store Register STR (register) on page A8-386

0 0x010 - - Store Register Unprivileged STRT on page A8-416

1 0x010 0 -

0 xx0x1 not 0x011 - not 1111 Load Register (immediate) LDR (immediate, ARM) on
page A8-120

xx0x1 not 0x011 - 1111 Load Register (literal) LDR (literal) on page A8-122

1 xx0x1 not 0x011 0 - Load Register LDR (register) on page A8-124

0 0x011 - - Load Register Unprivileged LDRT on page A8-176

1 0x011 0 -

0 xx1x0 not 0x110 - - Store Register Byte (immediate) STRB (immediate, ARM) on
page A8-390

1 xx1x0 not 0x110 0 - Store Register Byte (register) STRB (register) on page A8-392

0 0x110 - - Store Register Byte Unprivileged STRBT on page A8-394

1 0x110 0 -

0 xx1x1 not 0x111 - not 1111 Load Register Byte (immediate) LDRB (immediate, ARM) on
page A8-128

xx1x1 not 0x111 - 1111 Load Register Byte (literal) LDRB (literal) on page A8-130
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A5-19

ARM Instruction Set Encoding
1 xx1x1 not 0x111 0 - Load Register Byte (register) LDRB (register) on page A8-132

0 0x111 - - Load Register Byte Unprivileged LDRBT on page A8-134

1 0x111 0 -

Table A5-15 Single data transfer instructions (continued)

A op1 B Rn Instruction See
A5-20 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM Instruction Set Encoding
A5.4 Media instructions

Table A5-16 shows the allocation of encodings in this space.

Other encodings in this space are UNDEFINED.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 op1 Rd op2 1 Rn

Table A5-16 Media instructions

op1 op2 Rd Rn Instructions See Variant

000xx - - - - Parallel addition and
subtraction, signed on
page A5-22

-

001xx - - - - Parallel addition and
subtraction, unsigned on
page A5-23

-

01xxx - - - - Packing, unpacking,
saturation, and reversal on
page A5-24

-

10xxx - - - - Signed multiplies on
page A5-26

-

11000 000 1111 - Unsigned Sum of Absolute
Differences

USAD8 on page A8-500 v6

000 not 1111 - Unsigned Sum of Absolute
Differences and Accumulate

USADA8 on page A8-502 v6

1101x x10 - - Signed Bit Field Extract SBFX on page A8-308 v6T2

1110x x00 - 1111 Bit Field Clear BFC on page A8-46 v6T2

- not 1111 Bit Field Insert BFI on page A8-48 v6T2

1111x x10 - - Unsigned Bit Field Extract UBFX on page A8-466 v6T2

11111 111 - - Permanently UNDEFINED. This space will not be allocated in future.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A5-21

ARM Instruction Set Encoding
A5.4.1 Parallel addition and subtraction, signed

Table A5-17 shows the allocation of encodings in this space. These encodings are all available in ARMv6
and above, and are UNDEFINED in earlier variants of the architecture.

Other encodings in this space are UNDEFINED.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 0 0 0 op1 op2 1

Table A5-17 Signed parallel addition and subtraction instructions

op1 op2 Instruction See

01 000 Add 16-bit SADD16 on page A8-296

01 001 Add and Subtract with Exchange SASX on page A8-300

01 010 Subtract and Add with Exchange SSAX on page A8-366

01 011 Subtract 16-bit SSUB16 on page A8-368

01 100 Add 8-bit SADD8 on page A8-298

01 111 Subtract 8-bit SSUB8 on page A8-370

Saturating instructions

10 000 Saturating Add 16-bit QADD16 on page A8-252

10 001 Saturating Add and Subtract with Exchange QASX on page A8-256

10 010 Saturating Subtract and Add with Exchange QSAX on page A8-262

10 011 Saturating Subtract 16-bit QSUB16 on page A8-266

10 100 Saturating Add 8-bit QADD8 on page A8-254

10 111 Saturating Subtract 8-bit QSUB8 on page A8-268

Halving instructions

11 000 Halving Add 16-bit SHADD16 on page A8-318

11 001 Halving Add and Subtract with Exchange SHASX on page A8-322

11 010 Halving Subtract and Add with Exchange SHSAX on page A8-324

11 011 Halving Subtract 16-bit SHSUB16 on page A8-326

11 100 Halving Add 8-bit SHADD8 on page A8-320

11 111 Halving Subtract 8-bit SHSUB8 on page A8-328
A5-22 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM Instruction Set Encoding
A5.4.2 Parallel addition and subtraction, unsigned

Table A5-18 shows the allocation of encodings in this space. These encodings are all available in ARMv6
and above, and are UNDEFINED in earlier variants of the architecture.

Other encodings in this space are UNDEFINED.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 0 0 1 op1 op2 1

Table A5-18 Unsigned parallel addition and subtractions instructions

op1 op2 Instruction See

01 000 Add 16-bit UADD16 on page A8-460

01 001 Add and Subtract with Exchange UASX on page A8-464

01 010 Subtract and Add with Exchange USAX on page A8-508

01 011 Subtract 16-bit USUB16 on page A8-510

01 100 Add 8-bit UADD8 on page A8-462

01 111 Subtract 8-bit USUB8 on page A8-512

Saturating instructions

10 000 Saturating Add 16-bit UQADD16 on page A8-488

10 001 Saturating Add and Subtract with Exchange UQASX on page A8-492

10 010 Saturating Subtract and Add with Exchange UQSAX on page A8-494

10 011 Saturating Subtract 16-bit UQSUB16 on page A8-496

10 100 Saturating Add 8-bit UQADD8 on page A8-490

10 111 Saturating Subtract 8-bit UQSUB8 on page A8-498

Halving instructions

11 000 Halving Add 16-bit UHADD16 on page A8-470

11 001 Halving Add and Subtract with Exchange UHASX on page A8-474

11 010 Halving Subtract and Add with Exchange UHSAX on page A8-476

11 011 Halving Subtract 16-bit UHSUB16 on page A8-478

11 100 Halving Add 8-bit UHADD8 on page A8-472

11 111 Halving Subtract 8-bit UHSUB8 on page A8-480
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A5-23

ARM Instruction Set Encoding
A5.4.3 Packing, unpacking, saturation, and reversal

Table A5-19 shows the allocation of encodings in this space.

Other encodings in this space are UNDEFINED.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 0 1 op1 A op2 1

Table A5-19 Packing, unpacking, saturation, and reversal instructions

op1 op2 A Instructions See Variant

000 xx0 - Pack Halfword PKH on page A8-234 v6

01x xx0 - Signed Saturate SSAT on page A8-362 v6

11x xx0 - Unsigned Saturate USAT on page A8-504 v6

000 011 not 1111 Signed Extend and Add Byte 16 SXTAB16 on page A8-436 v6

1111 Signed Extend Byte 16 SXTB16 on page A8-442 v6

101 - Select Bytes SEL on page A8-312 v6

010 001 - Signed Saturate 16 SSAT16 on page A8-364 v6

011 not 1111 Signed Extend and Add Byte SXTAB on page A8-434 v6

1111 Signed Extend Byte SXTB on page A8-440 v6

011 001 - Byte-Reverse Word REV on page A8-272 v6

011 not 1111 Signed Extend and Add Halfword SXTAH on page A8-438 v6

1111 Signed Extend Halfword SXTH on page A8-444 v6

011 101 - Byte-Reverse Packed Halfword REV16 on page A8-274 v6

100 011 not 1111 Unsigned Extend and Add Byte 16 UXTAB16 on page A8-516 v6

1111 Unsigned Extend Byte 16 UXTB16 on page A8-522 v6

110 001 - Unsigned Saturate 16 USAT16 on page A8-506 v6

011 not 1111 Unsigned Extend and Add Byte UXTAB on page A8-514 v6

1111 Unsigned Extend Byte UXTB on page A8-520 v6
A5-24 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM Instruction Set Encoding
111 001 - Reverse Bits RBIT on page A8-270 v6T2

011 not 1111 Unsigned Extend and Add Halfword UXTAH on page A8-518 v6

1111 Unsigned Extend Halfword UXTH on page A8-524 v6

101 - Byte-Reverse Signed Halfword REVSH on page A8-276 v6

Table A5-19 Packing, unpacking, saturation, and reversal instructions (continued)

op1 op2 A Instructions See Variant
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A5-25

ARM Instruction Set Encoding
A5.4.4 Signed multiplies

Table A5-20 shows the allocation of encodings in this space. These encodings are all available in ARMv6T2
and above, and are UNDEFINED in earlier variants of the architecture.

Other encodings in this space are UNDEFINED.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 1 0 op1 A op2 1

Table A5-20 Signed multiply instructions

op1 op2 A Instruction See

000 00x not 1111 Signed Multiply Accumulate Dual SMLAD on page A8-332

1111 Signed Dual Multiply Add SMUAD on page A8-352

01x not 1111 Signed Multiply Subtract Dual SMLSD on page A8-342

1111 Signed Dual Multiply Subtract SMUSD on page A8-360

100 00x - Signed Multiply Accumulate Long Dual SMLALD on page A8-338

01x - Signed Multiply Subtract Long Dual SMLSLD on page A8-344

101 00x not 1111 Signed Most Significant Word Multiply Accumulate SMMLA on page A8-346

1111 Signed Most Significant Word Multiply SMMUL on page A8-350

11x - Signed Most Significant Word Multiply Subtract SMMLS on page A8-348
A5-26 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q2
Cross-Out

ARM Instruction Set Encoding
A5.5 Branch, branch with link, and block data transfer

Table A5-21 shows the allocation of encodings in this space. These encodings are in all architecture
variants.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 0 op R

Table A5-21 Branch, branch with link, and block data transfer instructions

op R Instructions See

0000x0 - Store Multiple Decrement After STMDA / STMED on page A8-376

0000x1 - Load Multiple Decrement After LDMDA / LDMFA on page A8-112

0010x0 - Store Multiple (Increment After) STM / STMIA / STMEA on page A8-374

0010x1 - Load Multiple (Increment After) LDM / LDMIA / LDMFD on page A8-110

0100x0 - Store Multiple Decrement Before STMDB / STMFD on page A8-378

0100x1 - Load Multiple Decrement Before LDMDB / LDMEA on page A8-114

0110x0 - Store Multiple Increment Before STMIB / STMFA on page A8-380

0110x1 - Load Multiple Increment Before LDMIB / LDMED on page A8-116

0xx1x0 - Store Multiple (user registers) STM (user registers) on page B6-22

0xx1x1 0 Load Multiple (user registers) LDM (user registers) on page B6-7

1 Load Multiple (exception return) LDM (exception return) on page B6-5

10xxxx - Branch B on page A8-44

11xxxx - Branch with Link BL, BLX (immediate) on page A8-58
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A5-27

ARM_2008_Q4
Callout
Rn

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text

op R Rn Instructions See

001001 - - Load Multiple (Increment After) LDM / LDMIA / LDMFD on page A8-110 [PDF page 422]

001011 - not 1101 Load Multiple (Increment After) LDM / LDMIA / LDMFD on page A8-110 [PDF page 422]

 1101 Pop multiple registers POP on page A8-246 [PDF page 558]
--
010000 - - Store Multiple Decrement Before STMDB / STMFD on page A8-378 [PDF page 690]
--
010010 - not 1101 Store Multiple Decrement Before STMDB / STMFD on page A8-378 [PDF page 690]
 --
 1101 Push multiple registers PUSH on page A8-248 [PDF page 560]
--

ARM Instruction Set Encoding
A5.6 Supervisor Call, and coprocessor instructions

Table A5-22 shows the allocation of encodings in this space.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 op1 Rn coproc op

Table A5-22 Supervisor Call, and coprocessor instructions

op1 op coproc Rn Instructions See Variant

0xxxxxa - 101x - Advanced SIMD, VFP Extension register load/store
instructions on page A7-26

0xxxx0a - not 101x - Store Coprocessor STC, STC2 on page A8-372 All

0xxxx1a - not 101x not 1111 Load Coprocessor LDC, LDC2 (immediate) on
page A8-106

All

1111 Load Coprocessor LDC, LDC2 (literal) on
page A8-108

All

00000x - - - UNDEFINED - -

00010x - 101x - Advanced SIMD, VFP 64-bit transfers between ARM core and
extension registers on page A7-32

000100 - not 101x - Move to Coprocessor from
two ARM core registers

MCRR, MCRR2 on
page A8-188

v5TE

000101 - not 101x - Move to two ARM core
registers from Coprocessor

MRRC, MRRC2 on
page A8-204

v5TE

10xxxx 0 101x - - VFP data-processing instructions on
page A7-24

not 101x - Coprocessor data operations CDP, CDP2 on page A8-68 All

1 101x - Advanced SIMD, VFP 8, 16, and 32-bit transfer between ARM
core and extension registers on
page A7-31

10xxx0 1 not 101x - Move to Coprocessor from
ARM core register

MCR, MCR2 on
page A8-186

All
A5-28 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM Instruction Set Encoding
For more information about specific coprocessors see Coprocessor support on page A2-68.

10xxx1 1 not 101x - Move to ARM core register
from Coprocessor

MRC, MRC2 on
page A8-202

All

11xxxx - - - Supervisor Call SVC (previously SWI) on
page A8-430

All

a. But not 000x0x

Table A5-22 Supervisor Call, and coprocessor instructions (continued)

op1 op coproc Rn Instructions See Variant
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A5-29

ARM Instruction Set Encoding
A5.7 Unconditional instructions

Table A5-23 shows the allocation of encodings in this space.

Other encodings in this space are UNDEFINED in ARMv5 and above.

All encodings in this space are UNPREDICTABLE in ARMv4 and ARMv4T.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 op1 Rn op

Table A5-23 Unconditional instructions

op1 op Rn Instruction See Variant

0xxxxxxx - - - Miscellaneous instructions, memory hints, and
Advanced SIMD instructions on page A5-31

100xx1x0 - - Store Return State SRS on page B6-20 v6

100xx0x1 - - Return From Exception RFE on page B6-16 v6

101xxxxx - - Branch with Link and Exchange BL, BLX (immediate) on
page A8-58

v5

11000x11 - not 1111 Load Coprocessor (immediate) LDC, LDC2 (immediate) on
page A8-106

v5

11001xx1 - 1111 Load Coprocessor (literal) LDC, LDC2 (literal) on
page A8-108

v5

1101xxx1 - 1111

11000x10

11001xx0

1101xxx0

- - Store Coprocessor STC, STC2 on page A8-372 v5

11000100 - - Move to Coprocessor from two
ARM core registers

MCRR, MCRR2 on page A8-188 v6

11000101 - - Move to two ARM core registers
from Coprocessor

MRRC, MRRC2 on page A8-204 v6

1110xxxx 0 - Coprocessor data operations CDP, CDP2 on page A8-68 v5

1110xxx0 1 - Move to Coprocessor from
ARM core register

MCR, MCR2 on page A8-186 v5

1110xxx1 1 - Move to ARM core register from
Coprocessor

MRC, MRC2 on page A8-202 v5
A5-30 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM Instruction Set Encoding
A5.7.1 Miscellaneous instructions, memory hints, and Advanced SIMD instructions

Table A5-24 shows the allocation of encodings in this space.

Other encodings in this space are UNDEFINED in ARMv5 and above. All these encodings are
UNPREDICTABLE in ARMv4 and ARMv4T.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 op1 Rn op2

Table A5-24 Hints, and Advanced SIMD instructions

op1 op2 Rn Instruction See Variant

0010000 xx0x xxx0 Change Processor State CPS on page B6-3 v6

0010000 0000 xxx1 Set Endianness SETEND on page A8-314 v6

01xxxxx - - See Advanced SIMD data-processing instructions on page A7-10 v7

100xxx0 - - See Advanced SIMD element or structure load/store instructions on
page A7-27

v7

100x001 - - Unallocated memory hint (treat as NOP) MPa

Extensions

100x101 - - Preload Instruction PLI (immediate, literal) on
page A8-242

v7

101x001 - not 1111 Preload Data with intent to
Write

PLD, PLDW (immediate) on
page A8-236

MPa

Extensions

1111 UNPREDICTABLE - -

101x101 - not 1111 Preload Data PLD, PLDW (immediate) on
page A8-236

v5TE

1111 Preload Data PLD (literal) on page A8-238 v5TE

1010111 0001 - Clear-Exclusive CLREX on page A8-70 v6K

0100 - Data Synchronization Barrier DSB on page A8-92 v6T2

0101 - Data Memory Barrier DMB on page A8-90 v7

0110 - Instruction Synchronization
Barrier

ISB on page A8-102 v6T2

10xxx11 - - UNPREDICTABLE except as shown above -
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A5-31

ARM Instruction Set Encoding
110x001 xxx0 - Unallocated memory hint (treat as NOP) MPa

Extensions

110x101 xxx0 - Preload Instruction PLI (register) on page A8-244 v7

111x001 xxx0 - Preload Data with intent to
Write

PLD, PLDW (register) on
page A8-240

MPa

Extensions

111x101 xxx0 - Preload Data PLD, PLDW (register) on
page A8-240

v5TE

11xxx11 xxx0 - UNPREDICTABLE - -

a. Multiprocessing Extensions.

Table A5-24 Hints, and Advanced SIMD instructions (continued)

op1 op2 Rn Instruction See Variant
A5-32 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Chapter A6
Thumb Instruction Set Encoding

This chapter introduces the Thumb instruction set and describes how it uses the ARM programmers’ model.
It contains the following sections:

• Thumb instruction set encoding on page A6-2

• 16-bit Thumb instruction encoding on page A6-6

• 32-bit Thumb instruction encoding on page A6-14.

For details of the differences between the Thumb and ThumbEE instruction sets see Chapter A9 ThumbEE.

Note
 • Architecture variant information in this chapter describes the architecture variant or extension in

which the instruction encoding was introduced into the Thumb instruction set.

• In the decode tables in this chapter, an entry of - for a field value means the value of the field does
not affect the decoding.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A6-1

Thumb Instruction Set Encoding
A6.1 Thumb instruction set encoding

The Thumb instruction stream is a sequence of halfword-aligned halfwords. Each Thumb instruction is
either a single 16-bit halfword in that stream, or a 32-bit instruction consisting of two consecutive halfwords
in that stream.

If bits [15:11] of the halfword being decoded take any of the following values, the halfword is the first
halfword of a 32-bit instruction:

• 0b11101

• 0b11110

• 0b11111.

Otherwise, the halfword is a 16-bit instruction.

For details of the encoding of 16-bit Thumb instructions see 16-bit Thumb instruction encoding on
page A6-6.

For details of the encoding of 32-bit Thumb instructions see 32-bit Thumb instruction encoding on
page A6-14.

A6.1.1 UNDEFINED and UNPREDICTABLE instruction set space

An attempt to execute an unallocated instruction results in either:

• Unpredictable behavior. The instruction is described as UNPREDICTABLE.

• An Undefined Instruction exception. The instruction is described as UNDEFINED.

An instruction is UNDEFINED if it is declared as UNDEFINED in an instruction description, or in this chapter.

An instruction is UNPREDICTABLE if:

• a bit marked (0) or (1) in the encoding diagram of an instruction is not 0 or 1 respectively, and the
pseudocode for that encoding does not indicate that a different special case applies

• it is declared as UNPREDICTABLE in an instruction description or in this chapter.

Unless otherwise specified:

• Thumb instructions introduced in an architecture variant are either UNPREDICTABLE or UNDEFINED in
earlier architecture variants.

• A Thumb instruction that is provided by one or more of the architecture extensions is either
UNPREDICTABLE or UNDEFINED in an implementation that does not include any of those extensions.

In both cases, the instruction is UNPREDICTABLE if it is a 32-bit instruction in an architecture variant before
ARMv6T2, and UNDEFINED otherwise.
A6-2 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Thumb Instruction Set Encoding
A6.1.2 Use of 0b1111 as a register specifier

The use of 0b1111 as a register specifier is not normally permitted in Thumb instructions. When a value of
0b1111 is permitted, a variety of meanings is possible. For register reads, these meanings are:

• Read the PC value, that is, the address of the current instruction + 4. The base register of the table
branch instructions TBB and TBH can be the PC. This enables branch tables to be placed in memory
immediately after the instruction.

Note
 Use of the PC as the base register in the STC instruction is deprecated in ARMv7.

• Read the word-aligned PC value, that is, the address of the current instruction + 4, with bits [1:0]
forced to zero. The base register of LDC, LDR, LDRB, LDRD (pre-indexed, no writeback), LDRH, LDRSB, and
LDRSH instructions can be the word-aligned PC. This enables PC-relative data addressing. In addition,
some encodings of the ADD and SUB instructions permit their source registers to be 0b1111 for the same
purpose.

• Read zero. This is done in some cases when one instruction is a special case of another, more general
instruction, but with one operand zero. In these cases, the instructions are listed on separate pages,
with a special case in the pseudocode for the more general instruction cross-referencing the other
page.

For register writes, these meanings are:

• The PC can be specified as the destination register of an LDR instruction. This is done by encoding Rt
as 0b1111. The loaded value is treated as an address, and the effect of execution is a branch to that
address. bit [0] of the loaded value selects whether to execute ARM or Thumb instructions after the
branch.

Some other instructions write the PC in similar ways, either implicitly (for example branch
instructions) or by using a register mask rather than a register specifier (LDM). The address to branch
to can be:

— a loaded value, for example, RFE

— a register value, for example, BX

— the result of a calculation, for example, TBB or TBH.

The method of choosing the instruction set used after the branch can be:

— similar to the LDR case, for LDM or BX

— a fixed instruction set other than the one currently being used, for example, the immediate form
of BLX

— unchanged, for example branch instructions

— set from the (J,T) bits of the SPSR, for RFE and SUBS PC,LR,#imm8.

• Discard the result of a calculation. This is done in some cases when one instruction is a special case
of another, more general instruction, but with the result discarded. In these cases, the instructions are
listed on separate pages, with a special case in the pseudocode for the more general instruction
cross-referencing the other page.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A6-3

Thumb Instruction Set Encoding
• If the destination register specifier of an LDRB, LDRH, LDRSB, or LDRSH instruction is 0b1111, the
instruction is a memory hint instead of a load operation.

• If the destination register specifier of an MRC instruction is 0b1111, bits [31:28] of the value
transferred from the coprocessor are written to the N, Z, C, and V flags in the APSR, and bits [27:0]
are discarded.

A6.1.3 Use of 0b1101 as a register specifier

R13 is defined in the Thumb instruction set so that its use is primarily as a stack pointer, and R13 is normally
identified as SP in Thumb instructions. In 32-bit Thumb instructions, if you use R13 as a general-purpose
register beyond the architecturally defined constraints described in this section, the results are
UNPREDICTABLE.

The restrictions applicable to R13 are described in:

• R13[1:0] definition

• 32-bit Thumb instruction support for R13.

See also 16-bit Thumb instruction support for R13 on page A6-5.

R13[1:0] definition

Bits [1:0] of R13 are SBZP. Writing a nonzero value to bits [1:0] causes UNPREDICTABLE behavior.

32-bit Thumb instruction support for R13

R13 instruction support is restricted to the following:

• R13 as the source or destination register of a MOV instruction. Only register to register transfers without
shifts are supported, with no flag setting:

MOV SP,<Rm>
MOV <Rn>,SP

• Using the following instructions to adjust R13 up or down by a multiple of 4:

ADD{W} SP,SP,#<imm>
SUB{W} SP,SP,#<imm>
ADD SP,SP,<Rm>
ADD SP,SP,<Rm>,LSL #<n> ; For <n> = 1,2,3
SUB SP,SP,<Rm>
SUB SP,SP,<Rm>,LSL #<n> ; For <n> = 1,2,3

• R13 as a base register <Rn> of any load/store instruction. This supports SP-based addressing for load,
store, or memory hint instructions, with positive or negative offsets, with and without writeback.

• R13 as the first operand <Rn> in any ADD{S}, CMN, CMP, or SUB{S} instruction. The add and subtract
instructions support SP-based address generation, with the address going into a general-purpose
register. CMN and CMP are useful for stack checking in some circumstances.

• R13 as the transferred register <Rt> in any LDR or STR instruction.
A6-4 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Thumb Instruction Set Encoding
16-bit Thumb instruction support for R13

For 16-bit data-processing instructions that affect high registers, R13 can only be used as described in 32-bit
Thumb instruction support for R13 on page A6-4. Any other use is deprecated. This affects the high register
forms of CMP and ADD, where the use of R13 as <Rm> is deprecated.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A6-5

Thumb Instruction Set Encoding
A6.2 16-bit Thumb instruction encoding

Table A6-1 shows the allocation of 16-bit instruction encodings.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Opcode

Table A6-1 16-bit Thumb instruction encoding

Opcode Instruction or instruction class Variant

00xxxx Shift (immediate), add, subtract, move, and compare on page A6-7 -

010000 Data-processing on page A6-8 -

010001 Special data instructions and branch and exchange on page A6-9 -

01001x Load from Literal Pool, see LDR (literal) on page A8-122 v4T

0101xx Load/store single data item on page A6-10 -

011xxx

100xxx

10100x Generate PC-relative address, see ADR on page A8-32 v4T

10101x Generate SP-relative address, see ADD (SP plus immediate) on page A8-28 v4T

1011xx Miscellaneous 16-bit instructions on page A6-11 -

11000x Store multiple registers, see STM / STMIA / STMEA on page A8-374 a

a. In ThumbEE, 16-bit load/store multiple instructions are not available. This encoding is used for special
ThumbEE instructions. For details see Chapter A9 ThumbEE.

v4T

11001x Load multiple registers, see LDM / LDMIA / LDMFD on page A8-110 a v4T

1101xx Conditional branch, and Supervisor Call on page A6-13 -

11100x Unconditional Branch, see B on page A8-44 v4T
A6-6 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Thumb Instruction Set Encoding
A6.2.1 Shift (immediate), add, subtract, move, and compare

Table A6-2 shows the allocation of encodings in this space.

All these instructions are available since the Thumb instruction set was introduced in ARMv4T.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 Opcode

Table A6-2 16-bit Thumb shift (immediate), add, subtract, move, and compare instructions

Opcode Instruction See

000xx Logical Shift Left LSL (immediate) on page A8-178

001xx Logical Shift Right LSR (immediate) on page A8-182

010xx Arithmetic Shift Right ASR (immediate) on page A8-40

01100 Add register ADD (register) on page A8-24

01101 Subtract register SUB (register) on page A8-422

01110 Add 3-bit immediate ADD (immediate, Thumb) on page A8-20

01111 Subtract 3-bit immediate SUB (immediate, Thumb) on page A8-418

100xx Move MOV (immediate) on page A8-194

101xx Compare CMP (immediate) on page A8-80

110xx Add 8-bit immediate ADD (immediate, Thumb) on page A8-20

111xx Subtract 8-bit immediate SUB (immediate, Thumb) on page A8-418
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A6-7

Thumb Instruction Set Encoding
A6.2.2 Data-processing

Table A6-3 shows the allocation of encodings in this space.

All these instructions are available since the Thumb instruction set was introduced in ARMv4T.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 Opcode

Table A6-3 16-bit Thumb data-processing instructions

Opcode Instruction See

0000 Bitwise AND AND (register) on page A8-36

0001 Bitwise Exclusive OR EOR (register) on page A8-96

0010 Logical Shift Left LSL (register) on page A8-180

0011 Logical Shift Right LSR (register) on page A8-184

0100 Arithmetic Shift Right ASR (register) on page A8-42

0101 Add with Carry ADC (register) on page A8-16

0110 Subtract with Carry SBC (register) on page A8-304

0111 Rotate Right ROR (register) on page A8-280

1000 Test TST (register) on page A8-456

1001 Reverse Subtract from 0 RSB (immediate) on page A8-284

1010 Compare High Registers CMP (register) on page A8-82

1011 Compare Negative CMN (register) on page A8-76

1100 Bitwise OR ORR (register) on page A8-230

1101 Multiply Two Registers MUL on page A8-212

1110 Bitwise Bit Clear BIC (register) on page A8-52

1111 Bitwise NOT MVN (register) on page A8-216
A6-8 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Thumb Instruction Set Encoding
A6.2.3 Special data instructions and branch and exchange

Table A6-4 shows the allocation of encodings in this space.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 1 Opcode

Table A6-4 16-bit Thumb special data instructions and branch and exchange

Opcode Instruction See Variant

0000 Add Low Registers ADD (register) on page A8-24 v6T2 a

a. UNPREDICTABLE in earlier variants.

0001

001x

Add High Registers ADD (register) on page A8-24 v4T

0100 UNPREDICTABLE - -

0101

011x

Compare High Registers CMP (register) on page A8-82 v4T

1000 Move Low Registers MOV (register) on page A8-196 v6 a

1001

101x

Move High Registers MOV (register) on page A8-196 v4T

110x Branch and Exchange BX on page A8-62 v4T

111x Branch with Link and Exchange BLX (register) on page A8-60 v5T a
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A6-9

Thumb Instruction Set Encoding
A6.2.4 Load/store single data item

These instructions have one of the following values in opA:

• 0b0101

• 0b011x

• 0b100x.

Table A6-5 shows the allocation of encodings in this space.

All these instructions are available since the Thumb instruction set was introduced in ARMv4T.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

opA opB

Table A6-5 16-bit Thumb Load/store instructions

opA opB Instruction See

0101 000 Store Register STR (register) on page A8-386

001 Store Register Halfword STRH (register) on page A8-412

010 Store Register Byte STRB (register) on page A8-392

011 Load Register Signed Byte LDRSB (register) on page A8-164

100 Load Register LDR (register) on page A8-124

101 Load Register Halfword LDRH (register) on page A8-156

110 Load Register Byte LDRB (register) on page A8-132

111 Load Register Signed Halfword LDRSH (register) on page A8-172

0110 0xx Store Register STR (immediate, Thumb) on page A8-382

1xx Load Register LDR (immediate, Thumb) on page A8-118

0111 0xx Store Register Byte STRB (immediate, Thumb) on page A8-388

1xx Load Register Byte LDRB (immediate, Thumb) on page A8-126

1000 0xx Store Register Halfword STRH (immediate, Thumb) on page A8-408

1xx Load Register Halfword LDRH (immediate, Thumb) on page A8-150

1001 0xx Store Register SP relative STR (immediate, Thumb) on page A8-382

1xx Load Register SP relative LDR (immediate, Thumb) on page A8-118
A6-10 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Thumb Instruction Set Encoding
A6.2.5 Miscellaneous 16-bit instructions

Table A6-6 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 Opcode

Table A6-6 Miscellaneous 16-bit instructions

Opcode Instruction See Variant

0110010 Set Endianness SETEND on page A8-314 v6

0110011 Change Processor State CPS on page B6-3 v6

00000xx Add Immediate to SP ADD (SP plus immediate) on page A8-28 v4T

00001xx Subtract Immediate from SP SUB (SP minus immediate) on page A8-426 v4T

0001xxx Compare and Branch on Zero CBNZ, CBZ on page A8-66 v6T2

001000x Signed Extend Halfword SXTH on page A8-444 v6

001001x Signed Extend Byte SXTB on page A8-440 v6

001010x Unsigned Extend Halfword UXTH on page A8-524 v6

001011x Unsigned Extend Byte UXTB on page A8-520 v6

0011xxx Compare and Branch on Zero CBNZ, CBZ on page A8-66 v6T2

010xxxx Push Multiple Registers PUSH on page A8-248 v4T

1001xxx Compare and Branch on Nonzero CBNZ, CBZ on page A8-66 v6T2

101000x Byte-Reverse Word REV on page A8-272 v6

101001x Byte-Reverse Packed Halfword REV16 on page A8-274 v6

101011x Byte-Reverse Signed Halfword REVSH on page A8-276 v6

1011xxx Compare and Branch on Nonzero CBNZ, CBZ on page A8-66 v6T2

110xxxx Pop Multiple Registers POP on page A8-246 v4T

1110xxx Breakpoint BKPT on page A8-56 v5

1111xxx If-Then, and hints If-Then, and hints on page A6-12 -
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A6-11

Thumb Instruction Set Encoding
If-Then, and hints

Table A6-7 shows the allocation of encodings in this space.

Other encodings in this space are unallocated hints. They execute as NOPs, but software must not use them.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 1 opA opB

Table A6-7 Miscellaneous 16-bit instructions

opA opB Instruction See Variant

- not 0000 If-Then IT on page A8-104 v6T2

0000 0000 No Operation hint NOP on page A8-222 v6T2

0001 0000 Yield hint YIELD on page A8-812 v7

0010 0000 Wait For Event hint WFE on page A8-808 v7

0011 0000 Wait For Interrupt hint WFI on page A8-810 v7

0100 0000 Send Event hint SEV on page A8-316 v7
A6-12 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Thumb Instruction Set Encoding
A6.2.6 Conditional branch, and Supervisor Call

Table A6-8 shows the allocation of encodings in this space.

All these instructions are available since the Thumb instruction set was introduced in ARMv4T.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 Opcode

Table A6-8 Conditional branch and Supervisor Call instructions

Opcode Instruction See

not 111x Conditional branch B on page A8-44

1110 Permanently UNDEFINED. This space will not be allocated in future.

1111 Supervisor Call SVC (previously SWI) on page A8-430
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A6-13

Thumb Instruction Set Encoding
A6.3 32-bit Thumb instruction encoding

If op1 == 0b00, a 16-bit instruction is encoded, see 16-bit Thumb instruction encoding on page A6-6.

Table A6-9 shows the allocation of encodings in this space.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 op1 op2 op

Table A6-9 32-bit Thumb instruction encoding

op1 op2 op Instruction class, see

01 00xx0xx - Load/store multiple on page A6-23

00xx1xx - Load/store dual, load/store exclusive, table branch on page A6-24

01xxxxx - Data-processing (shifted register) on page A6-31

1xxxxxx - Coprocessor instructions on page A6-40

10 x0xxxxx 0 Data-processing (modified immediate) on page A6-15

x1xxxxx 0 Data-processing (plain binary immediate) on page A6-19

- 1 Branches and miscellaneous control on page A6-20

11 000xxx0 - Store single data item on page A6-30

001xxx0 - Advanced SIMD element or structure load/store instructions on page A7-27

00xx001 - Load byte, memory hints on page A6-28

00xx011 - Load halfword, memory hints on page A6-26

00xx101 - Load word on page A6-25

00xx111 - UNDEFINED

010xxxx - Data-processing (register) on page A6-33

0110xxx - Multiply, multiply accumulate, and absolute difference on page A6-38

0111xxx - Long multiply, long multiply accumulate, and divide on page A6-39

1xxxxxx - Coprocessor instructions on page A6-40
A6-14 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Thumb Instruction Set Encoding
A6.3.1 Data-processing (modified immediate)

Table A6-10 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.

In the Rn, Rd and S columns, - indicates that the field value of the field does affect the decoding.

These encodings are all available in ARMv6T2 and above.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 op S Rn 0 Rd

Table A6-10 32-bit modified immediate data-processing instructions

op Rn Rd S Instruction See

0000 - not 1111 x Bitwise AND AND (immediate) on page A8-34

- 1111 0 UNPREDICTABLE -

- 1111 1 Test TST (immediate) on page A8-454

0001 - - - Bitwise Bit Clear BIC (immediate) on page A8-50

0010 not 1111 - - Bitwise OR ORR (immediate) on page A8-228

1111 - - Move MOV (immediate) on page A8-194

0011 not 1111 - - Bitwise OR NOT ORN (immediate) on page A8-224

1111 - - Bitwise NOT MVN (immediate) on page A8-214

0100 - not 1111 x Bitwise Exclusive OR EOR (immediate) on page A8-94

1111 0 UNPREDICTABLE -

1 Test Equivalence TEQ (immediate) on page A8-448

1000 - not 1111 - Add ADD (immediate, Thumb) on page A8-20

1111 0 UNPREDICTABLE -

1 Compare Negative CMN (immediate) on page A8-74

1010 - - - Add with Carry ADC (immediate) on page A8-14

1011 - - - Subtract with Carry SBC (immediate) on page A8-302
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A6-15

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Sticky Note
This sentence is incorrect, because the word "not" is missing. The intended meaning is covered by the Note on page A6-1 [PDF page 239].

Thumb Instruction Set Encoding
These instructions all have modified immediate constants, rather than a simple 12-bit binary number. This
provides a more useful range of values. For details see Modified immediate constants in Thumb instructions
on page A6-17.

1101 - not 1111 - Subtract SUB (immediate, Thumb) on page A8-418

1111 0 UNPREDICTABLE -

1 Compare CMP (immediate) on page A8-80

1110 - - - Reverse Subtract RSB (immediate) on page A8-284

Table A6-10 32-bit modified immediate data-processing instructions (continued)

op Rn Rd S Instruction See
A6-16 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Thumb Instruction Set Encoding
A6.3.2 Modified immediate constants in Thumb instructions

Table A6-11 shows the range of modified immediate constants available in Thumb data-processing
instructions, and how they are encoded in the a, b, c, d, e, f, g, h, i, and imm3 fields in the instruction.

Note
 The range of values available in Thumb modified immediate constants is slightly different from the range
of values available in ARM instructions. See Modified immediate constants in ARM instructions on
page A5-9 for the ARM values.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

i imm3 a b c d e f g h

Table A6-11 Encoding of modified immediates in Thumb data-processing instructions

i:imm3:a <const> a

a. In this table, the immediate constant value is shown in binary form, to relate
abcdefgh to the encoding diagram. In assembly syntax, the immediate value is
specified in the usual way (a decimal number by default).

0000x 00000000 00000000 00000000 abcdefgh

0001x 00000000 abcdefgh 00000000 abcdefgh b

b. Not available in ARM instructions. UNPREDICTABLE if abcdefgh == 00000000.

0010x abcdefgh 00000000 abcdefgh 00000000 b

0011x abcdefgh abcdefgh abcdefgh abcdefgh b

01000 1bcdefgh 00000000 00000000 00000000

01001 01bcdefg h0000000 00000000 00000000 c

01010 001bcdef gh000000 00000000 00000000

01011 0001bcde fgh00000 00000000 00000000 c

.

.

.

.

.

.

8-bit values shifted to other positions

11101 00000000 00000000 000001bc defgh000 c

11110 00000000 00000000 0000001b cdefgh00

11111 00000000 00000000 00000001 bcdefgh0 c

c. Not available in ARM instructions if h == 1.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A6-17

Thumb Instruction Set Encoding
Carry out

A logical instruction with i:imm3:a == ’00xxx’ does not affect the carry flag. Otherwise, a logical
instruction that sets the flags sets the Carry flag to the value of bit [31] of the modified immediate constant.

Operation

// ThumbExpandImm()
// ================

bits(32) ThumbExpandImm(bits(12) imm12)

 // APSR.C argument to following function call does not affect the imm32 result.
 (imm32, -) = ThumbExpandImm_C(imm12, APSR.C);

 return imm32;

// ThumbExpandImm_C()
// ==================

(bits(32), bit) ThumbExpandImm_C(bits(12) imm12, bit carry_in)

 if imm12<11:10> == ‘00’ then

 case imm12<9:8> of
 when ‘00’
 imm32 = ZeroExtend(imm12<7:0>, 32);
 when ‘01’
 if imm12<7:0> == ‘00000000’ then UNPREDICTABLE;
 imm32 = ‘00000000’ : imm12<7:0> : ‘00000000’ : imm12<7:0>;
 when ‘10’
 if imm12<7:0> == ‘00000000’ then UNPREDICTABLE;
 imm32 = imm12<7:0> : ‘00000000’ : imm12<7:0> : ‘00000000’;
 when ‘11’
 if imm12<7:0> == ‘00000000’ then UNPREDICTABLE;
 imm32 = imm12<7:0> : imm12<7:0> : imm12<7:0> : imm12<7:0>;
 carry_out = carry_in;

 else

 unrotated_value = ZeroExtend(‘1’:imm12<6:0>, 32);
 (imm32, carry_out) = ROR_C(unrotated_value, UInt(imm12<11:7>));

 return (imm32, carry_out);
A6-18 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Thumb Instruction Set Encoding
A6.3.3 Data-processing (plain binary immediate)

Table A6-12 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.

These encodings are all available in ARMv6T2 and above.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 op Rn 0

Table A6-12 32-bit unmodified immediate data-processing instructions

op Rn Instruction See

00000 not 1111 Add Wide (12-bit) ADD (immediate, Thumb) on page A8-20

1111 Form PC-relative Address ADR on page A8-32

00100 - Move Wide (16-bit) MOV (immediate) on page A8-194

01010 not 1111 Subtract Wide (12-bit) SUB (immediate, Thumb) on page A8-418

1111 Form PC-relative Address ADR on page A8-32

01100 - Move Top (16-bit) MOVT on page A8-200

100x0 a

a. In the second halfword of the instruction, bits [14:12.7:6] != 0b00000.

- Signed Saturate SSAT on page A8-362

10010 b

b. In the second halfword of the instruction, bits [14:12.7:6] == 0b00000.

- Signed Saturate (two 16-bit) SSAT16 on page A8-364

10100 - Signed Bit Field Extract SBFX on page A8-308

10110 not 1111 Bit Field Insert BFI on page A8-48

1111 Bit Field Clear BFC on page A8-46

110x0 a - Unsigned Saturate USAT on page A8-504

11010 b - Unsigned Saturate 16 USAT16 on page A8-506

11100 - Unsigned Bit Field Extract UBFX on page A8-466
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A6-19

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
10000

10010 a

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
11000

11010 a

Thumb Instruction Set Encoding
A6.3.4 Branches and miscellaneous control

Table A6-13 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 op 1 op1 op2

Table A6-13 Branches and miscellaneous control instructions

op1 op op2 Instruction See Variant

0x0 not x111xxx - Conditional branch B on page A8-44 v6T2

0111000 xx00 Move to Special Register,
application level

MSR (register) on page A8-210 All

xx01 Move to Special Register,
system level

MSR (register) on page B6-14 All

xx1x

0111001 -

0111010 - - Change Processor State, and hints
on page A6-21

-

0111011 - - Miscellaneous control instructions
on page A6-21

-

0111100 - Branch and Exchange Jazelle BXJ on page A8-64 v6T2

0111101 - Exception Return SUBS PC, LR and related
instructions on page B6-25

v6T2

011111x - Move from Special Register MRS on page A8-206 v6T2

000 1111111 - Secure Monitor Call SMC (previously SMI) on
page B6-18

Security
Extensions

010 1111111 - Permanently UNDEFINED. This space will not be allocated in future.

0x1 - - Branch B on page A8-44 v6T2

1x0 - - Branch with Link and
Exchange BL, BLX (immediate) on

page A8-58

v5T a

1x1 - - Branch with Link v4T

a. UNDEFINED in ARMv4T.
A6-20 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
Replace this single entry with the following two entries:

 op1 op op2 Instruction See Variant

 0x0 0111110 - Move from Special Register, MRS on page A8-206 v6T2
 application level [PDF page 518]
 --
 0111111 - Move from Special Register, MRS on page B6-10 v6T2
 system level [PDF page 1568]

Thumb Instruction Set Encoding
Change Processor State, and hints

Table A6-14 shows the allocation of encodings in this space. Other encodings in this space are unallocated
hints that execute as NOPs. These unallocated hint encodings are reserved and software must not use them.

Miscellaneous control instructions

Table A6-15 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED
in ARMv7. They are UNPREDICTABLE in ARMv6.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 0 1 0 0 op1 op2

Table A6-14 Change Processor State, and hint instructions

op1 op2 Instruction See Variant

not 000 - Change Processor State CPS on page B6-3 v6T2

000 00000000 No Operation hint NOP on page A8-222 v6T2

00000001 Yield hint YIELD on page A8-812 v7

00000010 Wait For Event hint WFE on page A8-808 v7

00000011 Wait For Interrupt hint WFI on page A8-810 v7

00000100 Send Event hint SEV on page A8-316 v7

1111xxxx Debug hint DBG on page A8-88 v7

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 1 1 0 0 op

Table A6-15 Miscellaneous control instructions

op Instruction See Variant

0000 Leave ThumbEE state a ENTERX, LEAVEX on page A9-7 ThumbEE

0001 Enter ThumbEE state ENTERX, LEAVEX on page A9-7 ThumbEE

0010 Clear-Exclusive CLREX on page A8-70 v7
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A6-21

ARM_2009_Q3
Cross-Out

ARM_2009_Q3
Inserted Text
6T2

Thumb Instruction Set Encoding
0100 Data Synchronization Barrier DSB on page A8-92 v7

0101 Data Memory Barrier DMB on page A8-90 v7

0110 Instruction Synchronization Barrier ISB on page A8-102 v7

a. This instruction is a NOP in Thumb state.

Table A6-15 Miscellaneous control instructions (continued)

op Instruction See Variant
A6-22 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Thumb Instruction Set Encoding
A6.3.5 Load/store multiple

Table A6-16 shows the allocation of encodings in this space.

These encodings are all available in ARMv6T2 and above.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 op 0 L Rn

Table A6-16 Load/store multiple instructions

op L Rn Instruction See

00 0 - Store Return State SRS on page B6-20

1 - Return From Exception RFE on page B6-16

01 0 - Store Multiple (Increment After, Empty Ascending) STM / STMIA / STMEA on
page A8-374

1 not 1101 Load Multiple (Increment After, Full Descending) LDM / LDMIA / LDMFD on
page A8-110

1101 Pop Multiple Registers from the stack POP on page A8-246

10 0 not 1101 Store Multiple (Decrement Before, Full Descending) STMDB / STMFD on
page A8-378

1101 Push Multiple Registers to the stack. PUSH on page A8-248

1 - Load Multiple (Decrement Before, Empty Ascending) LDMDB / LDMEA on
page A8-114

11 0 - Store Return State SRS on page B6-20

1 - Return From Exception RFE on page B6-16
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A6-23

ARM_2008_Q4
Callout
W

ARM_2008_Q4
Inserted Text
W:

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
11101

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
11101

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
11101

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
11101

Thumb Instruction Set Encoding
A6.3.6 Load/store dual, load/store exclusive, table branch

Table A6-17 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 op1 1 op2 Rn op3

Table A6-17 Load/store double or exclusive, table branch

op1 op2 op3 Rn Instruction See Variant

00 00 - - Store Register Exclusive STREX on page A8-400 v6T2

01 - - Load Register Exclusive LDREX on page A8-142 v6T2

0x

1x

10

x0

- - Store Register Dual STRD (immediate) on
page A8-396

v6T2

0x 11 - not 1111 Load Register Dual (immediate) LDRD (immediate) on
page A8-136

v6T2

1x x1 - not 1111

0x 11 - 1111 Load Register Dual (literal) LDRD (literal) on
page A8-138

v6T2

1x x1 - 1111

01 00 0100 - Store Register Exclusive Byte STREXB on page A8-402 v7

0101 - Store Register Exclusive Halfword STREXH on page A8-406 v7

0111 - Store Register Exclusive
Doubleword

STREXD on page A8-404 v7

01 0000 - Table Branch Byte TBB, TBH on page A8-446 v6T2

0001 - Table Branch Halfword TBB, TBH on page A8-446 v6T2

0100 - Load Register Exclusive Byte LDREXB on page A8-144 v7

0101 - Load Register Exclusive Halfword LDREXH on page A8-148 v7

0111 - Load Register Exclusive
Doubleword

LDREXD on page A8-146 v7
A6-24 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Thumb Instruction Set Encoding
A6.3.7 Load word

Table A6-18 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.

These encodings are all available in ARMv6T2 and above.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 op1 1 0 1 Rn op2

Table A6-18 Load word

op1 op2 Rn Instruction See

01 - not 1111 Load Register LDR (immediate, Thumb) on page A8-118

00 1xx1xx not 1111

1100xx not 1111

1110xx not 1111 Load Register Unprivileged LDRT on page A8-176

000000 not 1111 Load Register LDR (register) on page A8-124

0x - 1111 Load Register LDR (literal) on page A8-122
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A6-25

Thumb Instruction Set Encoding
A6.3.8 Load halfword, memory hints

Table A6-19 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.

Except where otherwise noted, these encodings are available in ARMv6T2 and above.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 op1 0 1 1 Rn Rt op2

Table A6-19 Load halfword, preload

op1 op2 Rn Rt Instruction See

0x - 1111 not 1111 Load Register Halfword LDRH (literal) on page A8-154

01 - not 1111 not 1111 Load Register Halfword LDRH (immediate, Thumb) on
page A8-150

00 1xx1xx not 1111 not 1111

1100xx not 1111 not 1111

1110xx not 1111 not 1111 Load Register Halfword
Unprivileged

LDRHT on page A8-158

000000 not 1111 not 1111 Load Register Halfword LDRH (register) on page A8-156

1x - 1111 not 1111 Load Register Signed
Halfword

LDRSH (literal) on page A8-170

11 - not 1111 not 1111 Load Register Signed
Halfword

LDRSH (immediate) on page A8-168

10 1xx1xx not 1111 not 1111

1100xx not 1111 not 1111

1110xx not 1111 not 1111 Load Register Signed
Halfword Unprivileged

LDRSHT on page A8-174

000000 not 1111 not 1111 Load Register Signed
Halfword

LDRSH (register) on page A8-172

0x - 1111 1111 UNPREDICTABLE -

01 - not 1111 1111 Preload Data with intent to
Writea

PLD, PLDW (immediate) on
page A8-236

00 1100xx not 1111 1111 Preload Data with intent to
Writea

PLD, PLDW (immediate) on
page A8-236

000000 not 1111 1111 Preload Data with intent to
Writea

PLD, PLDW (register) on
page A8-240
A6-26 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Thumb Instruction Set Encoding
00 1xx1xx not 1111 1111 UNPREDICTABLE -

1110xx not 1111 1111

1x - 1111 1111 Unallocated memory hint (treat as NOP)

10 1100xx not 1111 1111

000000 not 1111 1111

10 1xx1xx not 1111 1111 UNPREDICTABLE -

1110xx not 1111 1111

11 - not 1111 1111 Unallocated memory hint (treat as NOP)

a. Available in ARMv7 with the Multiprocessing Extensions. In the ARMv7 base architecture and in ARMv6T2 these are
unallocated memory hints (treat as NOP).

Table A6-19 Load halfword, preload (continued)

op1 op2 Rn Rt Instruction See
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A6-27

Thumb Instruction Set Encoding
A6.3.9 Load byte, memory hints

Table A6-20 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.

These encodings are all available in ARMv6T2 and above.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 op1 0 0 1 Rn Rt op2

Table A6-20 Load byte, preload

op1 op2 Rn Rt Instruction See

0x - 1111 not 1111 Load Register Byte LDRB (literal) on page A8-130

01 - not 1111 not 1111 Load Register Byte LDRB (immediate, Thumb) on
page A8-126

00 1xx1xx not 1111 not 1111

1100xx not 1111 not 1111

1110xx not 1111 not 1111 Load Register Byte
Unprivileged

LDRBT on page A8-134

000000 not 1111 not 1111 Load Register Byte LDRB (register) on page A8-132

1x - 1111 not 1111 Load Register Signed Byte LDRSB (literal) on page A8-162

11 - not 1111 not 1111 Load Register Signed Byte LDRSB (immediate) on page A8-160

10 1xx1xx not 1111 not 1111

1100xx not 1111 not 1111

1110xx not 1111 not 1111 Load Register Signed Byte
Unprivileged

LDRSBT on page A8-166

000000 not 1111 not 1111 Load Register Signed Byte LDRSB (register) on page A8-164

0x - 1111 1111 Preload Data PLD (literal) on page A8-238

01 - not 1111 1111 Preload Data PLD, PLDW (immediate) on
page A8-236

00 1100xx not 1111 1111 Preload Data PLD, PLDW (immediate) on
page A8-236

000000 not 1111 1111 Preload Data PLD, PLDW (register) on page A8-240

1xx1xx not 1111 1111 UNPREDICTABLE -

1110xx not 1111 1111
A6-28 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Thumb Instruction Set Encoding
1x - 1111 1111 Preload Instruction PLI (immediate, literal) on page A8-242

11 - not 1111 1111

10 1100xx not 1111 1111

000000 not 1111 1111 Preload Instruction PLI (register) on page A8-244

1xx1xx not 1111 1111 UNPREDICTABLE -

1110xx not 1111 1111

Table A6-20 Load byte, preload (continued)

op1 op2 Rn Rt Instruction See
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A6-29

Thumb Instruction Set Encoding
A6.3.10 Store single data item

Table A6-21 show the allocation of encodings in this space. Other encodings in this space are UNDEFINED.

These encodings are all available in ARMv6T2 and above.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 op1 0 op2

Table A6-21 Store single data item

op1 op2 Instruction See

100 - Store Register Byte STRB (immediate, Thumb) on page A8-388

000 1xx1xx

1100xx

1110xx Store Register Byte Unprivileged STRBT on page A8-394

0xxxxx Store Register Byte STRB (register) on page A8-392

101 - Store Register Halfword STRH (immediate, Thumb) on page A8-408

001 1xx1xx

1100xx

1110xx Store Register Halfword Unprivileged STRHT on page A8-414

001 0xxxxx Store Register Halfword STRH (register) on page A8-412

110 - Store Register (immediate) STR (immediate, Thumb) on page A8-382

010 1xx1xx

1100xx

1110xx Store Register Unprivileged STRT on page A8-416

0xxxxx Store Register (register) STR (register) on page A8-386
A6-30 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
000000

ARM_2009_Q1
Sticky Note
Other encodings with op2==0xxxxx are UNDEFINED.

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
000000

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
000000

ARM_2009_Q1
Sticky Note
Other encodings with op2==0xxxxx are UNDEFINED.

ARM_2009_Q1
Sticky Note
Other encodings with op2==0xxxxx are UNDEFINED.

Thumb Instruction Set Encoding
A6.3.11 Data-processing (shifted register)

Table A6-22 shows the allocation of encodings in this space.

Other encodings in this space are UNDEFINED.

These encodings are all available in ARMv6T2 and above.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 op S Rn Rd

Table A6-22 Data-processing (shifted register)

op Rn Rd S Instruction See

0000 - not 1111 x Bitwise AND AND (register) on page A8-36

1111 0 UNPREDICTABLE -

1 Test TST (register) on page A8-456

0001 - - - Bitwise Bit Clear BIC (register) on page A8-52

0010 not 1111 - - Bitwise OR ORR (register) on page A8-230

1111 - - Move MOV (register) on page A8-196

0011 not 1111 - - Bitwise OR NOT ORN (register) on page A8-226

1111 - - Bitwise NOT MVN (register) on page A8-216

0100 - not 1111 - Bitwise Exclusive OR EOR (register) on page A8-96

1111 0 UNPREDICTABLE -

1 Test Equivalence TEQ (register) on page A8-450

0110 - - - Pack Halfword PKH on page A8-234

1000 - not 1111 - Add ADD (register) on page A8-24

1111 0 UNPREDICTABLE -

1 Compare Negative CMN (register) on page A8-76

1010 - - - Add with Carry ADC (register) on page A8-16

1011 - - - Subtract with Carry SBC (register) on page A8-304
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A6-31

ARM_2008_Q4
Line

ARM_2008_Q4
Line

ARM_2008_Q4
Line

ARM_2008_Q4
Callout
imm3

ARM_2008_Q4
Callout
imm2

ARM_2008_Q4
Callout
type

ARM_2008_Q4
Highlight

ARM_2008_Q4
Sticky Note
This entry needs further decode based on the "type" field and the concatenation of the "imm3" and "imm2" fields marked in the encoding diagram, as follows:

type imm3:imm2 Instruction See

00 00000 Move MOV (register) on page A8-196 [PDF page 508]
 --
 not 00000 Logical Shift Left LSL (immediate) on page A8-178 [PDF page 490]

01 - Logical Shift Right LSR (immediate) on page A8-182 [PDF page 494]

10 - Arithmetic Shift Right ASR (immediate) on page A8-40 [PDF page 352]

11 00000 Rotate Right with Extend RRX on page A8-282 [PDF page 594]
 --
 not 00000 Rotate Right ROR (immediate) on page A8-278 [PDF page 590]

Thumb Instruction Set Encoding
1101 - not 1111 - Subtract SUB (register) on page A8-422

1111 0 UNPREDICTABLE -

1 Compare CMP (register) on page A8-82

1110 - - - Reverse Subtract RSB (register) on page A8-286

Table A6-22 Data-processing (shifted register) (continued)

op Rn Rd S Instruction See
A6-32 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Thumb Instruction Set Encoding
A6.3.12 Data-processing (register)

If, in the second halfword of the instruction, bits [15:12] != 0b1111, the instruction is UNDEFINED.

Table A6-23 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.

These encodings are all available in ARMv6T2 and above.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 op1 Rn 1 1 1 1 op2

Table A6-23 Data-processing (register)

op1 op2 Rn Instruction See

000x 0000 - Logical Shift Left LSL (register) on page A8-180

001x 0000 - Logical Shift Right LSR (register) on page A8-184

010x 0000 - Arithmetic Shift Right ASR (register) on page A8-42

011x 0000 - Rotate Right ROR (register) on page A8-280

0000 1xxx not 1111 Signed Extend and Add Halfword SXTAH on page A8-438

1111 Signed Extend Halfword SXTH on page A8-444

0001 1xxx not 1111 Unsigned Extend and Add Halfword UXTAH on page A8-518

1111 Unsigned Extend Halfword UXTH on page A8-524

0010 1xxx not 1111 Signed Extend and Add Byte 16 SXTAB16 on page A8-436

1111 Signed Extend Byte 16 SXTB16 on page A8-442

0011 1xxx not 1111 Unsigned Extend and Add Byte 16 UXTAB16 on page A8-516

1111 Unsigned Extend Byte 16 UXTB16 on page A8-522

0100 1xxx not 1111 Signed Extend and Add Byte SXTAB on page A8-434

1111 Signed Extend Byte SXTB on page A8-440

0101 1xxx not 1111 Unsigned Extend and Add Byte UXTAB on page A8-514

1111 Unsigned Extend Byte UXTB on page A8-520
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A6-33

Thumb Instruction Set Encoding
1xxx 00xx - - Parallel addition and subtraction, signed on
page A6-35

01xx - - Parallel addition and subtraction, unsigned on
page A6-36

10xx 10xx - - Miscellaneous operations on page A6-37

Table A6-23 Data-processing (register) (continued)

op1 op2 Rn Instruction See
A6-34 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Thumb Instruction Set Encoding
A6.3.13 Parallel addition and subtraction, signed

If, in the second halfword of the instruction, bits [15:12] != 0b1111, the instruction is UNDEFINED.

Table A6-24 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.
These encodings are all available in ARMv6T2 and above.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 op1 1 1 1 1 0 0 op2

Table A6-24 Signed parallel addition and subtraction instructions

op1 op2 Instruction See

001 00 Add 16-bit SADD16 on page A8-296

010 00 Add, Subtract SASX on page A8-300

110 00 Subtract, Add SSAX on page A8-366

101 00 Subtract 16-bit SSUB16 on page A8-368

000 00 Add 8-bit SADD8 on page A8-298

100 00 Subtract 8-bit SSUB8 on page A8-370

Saturating instructions

001 01 Saturating Add 16-bit QADD16 on page A8-252

010 01 Saturating Add, Subtract QASX on page A8-256

110 01 Saturating Subtract, Add QSAX on page A8-262

101 01 Saturating Subtract 16-bit QSUB16 on page A8-266

000 01 Saturating Add 8-bit QADD8 on page A8-254

100 01 Saturating Subtract 8-bit QSUB8 on page A8-268

Halving instructions

001 10 Halving Add 16-bit SHADD16 on page A8-318

010 10 Halving Add, Subtract SHASX on page A8-322

110 10 Halving Subtract, Add SHSAX on page A8-324

101 10 Halving Subtract 16-bit SHSUB16 on page A8-326

000 10 Halving Add 8-bit SHADD8 on page A8-320

100 10 Halving Subtract 8-bit SHSUB8 on page A8-328
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A6-35

Thumb Instruction Set Encoding
A6.3.14 Parallel addition and subtraction, unsigned

If, in the second halfword of the instruction, bits [15:12] != 0b1111, the instruction is UNDEFINED.

Table A6-25 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.
These encodings are all available in ARMv6T2 and above.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 op1 1 1 1 1 0 1 op2

Table A6-25 Unsigned parallel addition and subtraction instructions

op1 op2 Instruction See

001 00 Add 16-bit UADD16 on page A8-460

010 00 Add, Subtract UASX on page A8-464

110 00 Subtract, Add USAX on page A8-508

101 00 Subtract 16-bit USUB16 on page A8-510

000 00 Add 8-bit UADD8 on page A8-462

100 00 Subtract 8-bit USUB8 on page A8-512

Saturating instructions

001 01 Saturating Add 16-bit UQADD16 on page A8-488

010 01 Saturating Add, Subtract UQASX on page A8-492

110 01 Saturating Subtract, Add UQSAX on page A8-494

101 01 Saturating Subtract 16-bit UQSUB16 on page A8-496

000 01 Saturating Add 8-bit UQADD8 on page A8-490

100 01 Saturating Subtract 8-bit UQSUB8 on page A8-498

Halving instructions

001 10 Halving Add 16-bit UHADD16 on page A8-470

010 10 Halving Add, Subtract UHASX on page A8-474

110 10 Halving Subtract, Add UHSAX on page A8-476

101 10 Halving Subtract 16-bit UHSUB16 on page A8-478

000 10 Halving Add 8-bit UHADD8 on page A8-472

100 10 Halving Subtract 8-bit UHSUB8 on page A8-480
A6-36 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Thumb Instruction Set Encoding
A6.3.15 Miscellaneous operations

If, in the second halfword of the instruction, bits [15:12] != 0b1111, the instruction is UNDEFINED.

Table A6-26 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.
These encodings are all available in ARMv6T2 and above.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 op1 1 1 1 1 1 0 op2

Table A6-26 Miscellaneous operations

op1 op2 Instruction See

00 00 Saturating Add QADD on page A8-250

01 Saturating Double and Add QDADD on page A8-258

10 Saturating Subtract QSUB on page A8-264

11 Saturating Double and Subtract QDSUB on page A8-260

01 00 Byte-Reverse Word REV on page A8-272

01 Byte-Reverse Packed Halfword REV16 on page A8-274

10 Reverse Bits RBIT on page A8-270

11 Byte-Reverse Signed Halfword REVSH on page A8-276

10 00 Select Bytes SEL on page A8-312

11 00 Count Leading Zeros CLZ on page A8-72
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A6-37

Thumb Instruction Set Encoding
A6.3.16 Multiply, multiply accumulate, and absolute difference

If, in the second halfword of the instruction, bits [7:6] != 0b00, the instruction is UNDEFINED.

Table A6-27 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.
These encodings are all available in ARMv6T2 and above.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 0 op1 Ra 0 0 op2

Table A6-27 Multiply, multiply accumulate, and absolute difference operations

op1 op2 Ra Instruction See

000 00 not 1111 Multiply Accumulate MLA on page A8-190

1111 Multiply MUL on page A8-212

01 - Multiply and Subtract MLS on page A8-192

001 - not 1111 Signed Multiply Accumulate (Halfwords) SMLABB, SMLABT, SMLATB,
SMLATT on page A8-330

1111 Signed Multiply (Halfwords) SMULBB, SMULBT, SMULTB,
SMULTT on page A8-354

010 0x not 1111 Signed Multiply Accumulate Dual SMLAD on page A8-332

1111 Signed Dual Multiply Add SMUAD on page A8-352

011 0x not 1111 Signed Multiply Accumulate (Word by halfword) SMLAWB, SMLAWT on
page A8-340

1111 Signed Multiply (Word by halfword) SMULWB, SMULWT on
page A8-358

100 0x not 1111 Signed Multiply Subtract Dual SMLSD on page A8-342

1111 Signed Dual Multiply Subtract SMUSD on page A8-360

101 0x not 1111 Signed Most Significant Word Multiply Accumulate SMMLA on page A8-346

1111 Signed Most Significant Word Multiply SMMUL on page A8-350

110 0x - Signed Most Significant Word Multiply Subtract SMMLS on page A8-348

111 00 not 1111 Unsigned Sum of Absolute Differences USAD8 on page A8-500

1111 Unsigned Sum of Absolute Differences, Accumulate USADA8 on page A8-502
A6-38 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2010_Q3
Cross-Out

ARM_2010_Q3
Inserted Text
not

ARM_2010_Q3
Sticky Note
The two Ra field encodings were reversed in the table.

Thumb Instruction Set Encoding
A6.3.17 Long multiply, long multiply accumulate, and divide

Table A6-28 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 1 op1 op2

Table A6-28 Multiply, multiply accumulate, and absolute difference operations

op1 op2 Instruction See Variant

000 0000 Signed Multiply Long SMULL on page A8-356 v6T2

001 1111 Signed Divide SDIV on page A8-310 v7-R a

010 0000 Unsigned Multiply Long UMULL on page A8-486 v6T2

011 1111 Unsigned Divide UDIV on page A8-468 v7-R a

100 0000 Signed Multiply Accumulate Long SMLAL on page A8-334 v6T2

10xx Signed Multiply Accumulate Long
(Halfwords)

SMLALBB, SMLALBT, SMLALTB,
SMLALTT on page A8-336

v6T2

110x Signed Multiply Accumulate Long Dual SMLALD on page A8-338 v6T2

101 110x Signed Multiply Subtract Long Dual SMLSLD on page A8-344 v6T2

110 0000 Unsigned Multiply Accumulate Long UMLAL on page A8-484 v6T2

0110 Unsigned Multiply Accumulate Accumulate
Long

UMAAL on page A8-482 v6T2

a. UNDEFINED in ARMv7-A.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A6-39

Thumb Instruction Set Encoding
A6.3.18 Coprocessor instructions

Table A6-29 shows the allocation of encodings in this space. These encodings are all available in ARMv6T2
and above.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 op1 Rn coproc op

Table A6-29 Coprocessor instructions

op1 op coproc Rn Instructions See

000x1x

001xxx

01xxxx

- 101x - Advanced SIMD, VFP Extension register load/store
instructions on page A7-26

000x10

001xx0

01xxx0

- not 101x - Store Coprocessor STC, STC2 on page A8-372

000x11

001xx1

01xxx1

- not 101x not 1111 Load Coprocessor (immediate) LDC, LDC2 (immediate) on
page A8-106

000x11

001xx1

01xxx1

- not 101x 1111 Load Coprocessor (literal) LDC, LDC2 (literal) on page A8-108

00000x - - - UNDEFINED -

00010x - 101x - Advanced SIMD, VFP 64-bit transfers between ARM core
and extension registers on page A7-32

000100 - not 101x - Move to Coprocessor from two
ARM core registers

MCRR, MCRR2 on page A8-188

000101 - not 101x - Move to two ARM core
registers from Coprocessor

MRRC, MRRC2 on page A8-204

10xxxx 0 101x - VFP VFP data-processing instructions on
page A7-24

not 101x - Coprocessor data operations CDP, CDP2 on page A8-68
A6-40 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Thumb Instruction Set Encoding
For more information about specific coprocessors see Coprocessor support on page A2-68.

10xxxx 1 101x - Advanced SIMD, VFP 8, 16, and 32-bit transfer between
ARM core and extension registers on
page A7-31

10xxx0 1 not 101x - Move to Coprocessor from
ARM core register

MCR, MCR2 on page A8-186

10xxx1 1 not 101x - Move to ARM core register
from Coprocessor

MRC, MRC2 on page A8-202

11xxxx - - - Advanced SIMD Advanced SIMD data-processing
instructions on page A7-10

Table A6-29 Coprocessor instructions (continued)

op1 op coproc Rn Instructions See
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A6-41

Thumb Instruction Set Encoding
A6-42 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Chapter A7
Advanced SIMD and VFP
Instruction Encoding

This chapter gives an overview of the Advanced SIMD and VFP instruction sets. It contains the following
sections:

• Overview on page A7-2

• Advanced SIMD and VFP instruction syntax on page A7-3

• Register encoding on page A7-8

• Advanced SIMD data-processing instructions on page A7-10

• VFP data-processing instructions on page A7-24

• Extension register load/store instructions on page A7-26

• Advanced SIMD element or structure load/store instructions on page A7-27

• 8, 16, and 32-bit transfer between ARM core and extension registers on page A7-31

• 64-bit transfers between ARM core and extension registers on page A7-32.

Note
 • The Advanced SIMD architecture extension, its associated implementations, and supporting

software, are commonly referred to as NEON™ technology.

• In the decode tables in this chapter, an entry of - for a field value means the value of the field does
not affect the decoding.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A7-1

Advanced SIMD and VFP Instruction Encoding
A7.1 Overview

All Advanced SIMD and VFP instructions are available in both ARM state and Thumb state.

A7.1.1 Advanced SIMD

The following sections describe the classes of instruction in the Advanced SIMD extension:

• Advanced SIMD data-processing instructions on page A7-10

• Advanced SIMD element or structure load/store instructions on page A7-27

• Extension register load/store instructions on page A7-26

• 8, 16, and 32-bit transfer between ARM core and extension registers on page A7-31

• 64-bit transfers between ARM core and extension registers on page A7-32.

A7.1.2 VFP

The following sections describe the classes of instruction in the VFP extension:

• Extension register load/store instructions on page A7-26

• 8, 16, and 32-bit transfer between ARM core and extension registers on page A7-31

• 64-bit transfers between ARM core and extension registers on page A7-32

• VFP data-processing instructions on page A7-24.
A7-2 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Advanced SIMD and VFP Instruction Encoding
A7.2 Advanced SIMD and VFP instruction syntax

Advanced SIMD and VFP instructions use the general conventions of the ARM instruction set.

Advanced SIMD and VFP data-processing instructions use the following general format:

V{<modifier>}<operation>{<shape>}<c><q>{.<dt>} {<dest>,} <src1>, <src2>

All Advanced SIMD and VFP instructions begin with a V. This distinguishes Advanced SIMD vector and
VFP instructions from ARM scalar instructions.

The main operation is specified in the <operation> field. It is usually a three letter mnemonic the same as or
similar to the corresponding scalar integer instruction.

The <c> and <q> fields are standard assembler syntax fields. For details see Standard assembler syntax fields
on page A8-7.

A7.2.1 Advanced SIMD Instruction modifiers

The <modifier> field provides additional variants of some instructions. Table A7-1 provides definitions of
the modifiers. Modifiers are not available for every instruction.

Table A7-1 Advanced SIMD instruction modifiers

<modifier> Meaning

Q The operation uses saturating arithmetic.

R The operation performs rounding.

D The operation doubles the result (before accumulation, if any).

H The operation halves the result.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A7-3

Advanced SIMD and VFP Instruction Encoding
A7.2.2 Advanced SIMD Operand shapes

The <shape> field provides additional variants of some instructions. Table A7-2 provides definitions of the
shapes. Operand shapes are not available for every instruction.

A7.2.3 Data type specifiers

The <dt> field normally contains one data type specifier. This indicates the data type contained in

• the second operand, if any

• the operand, if there is no second operand

• the result, if there are no operand registers.

The data types of the other operand and result are implied by the <dt> field combined with the instruction
shape. For information about data type formats see Data types supported by the Advanced SIMD extension
on page A2-25.

In the instruction syntax descriptions in Chapter A8 Instruction Details, the <dt> field is usually specified
as a single field. However, where more convenient, it is sometimes specified as a concatenation of two fields,
<type><size>.

Table A7-2 Advanced SIMD operand shapes

<shape> Meaning Typical register shape

(none) The operands and result are all the same width. Dd, Dn, Dm Qd, Qn, Qm

L Long operation - result is twice the width of both operands Qd, Dn, Dm

N Narrow operation - result is half the width of both operands Dd, Qn, Qm

W Wide operation - result and first operand are twice the width of the
second operand

Qd, Qn, Dm
A7-4 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Advanced SIMD and VFP Instruction Encoding
Syntax flexibility

There is some flexibility in the data type specifier syntax:

• You can specify three data types, specifying the result and both operand data types. For example:

VSUBW.I16.I16.S8 Q3,Q5,D0

instead of:

VSUBW.S8 Q3,Q5,D0

• You can specify two data types, specifying the data types of the two operands. The data type of the
result is implied by the instruction shape.

• You can specify two data types, specifying the data types of the single operand and the result.

• Where an instruction requires a less specific data type, you can instead specify a more specific type,
as shown in Table A7-3.

• Where an instruction does not require a data type, you can provide one.

• The F32 data type can be abbreviated to F.

• The F64 data type can be abbreviated to D.

In all cases, if you provide additional information, the additional information must match the instruction
shape. Disassembly does not regenerate this additional information.

Table A7-3 Data type specification flexibility

Specified data type Permitted more specific data types

None Any

.I<size> - .S<size> .U<size> - -

.8 .I8 .S8 .U8 .P8 -

.16 .I16 .S16 .U16 .P16 .F16

.32 .I32 .S32 .U32 - .F32 or .F

.64 .I64 .S64 .U64 - .F64 or .D
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A7-5

Advanced SIMD and VFP Instruction Encoding
A7.2.4 Register specifiers

The <dest>, <src1>, and <src2> fields contain register specifiers, or in some cases scalar specifiers or register
lists. Table A7-4 shows the register and scalar specifier formats that appear in the instruction descriptions.

If <dest> is omitted, it is the same as <src1>.

Table A7-4 Advanced SIMD and VFP register specifier formats

<specifier> Usual meaning a

<Qd> A quadword destination register for the result vector (Advanced SIMD only).

<Qn> A quadword source register for the first operand vector (Advanced SIMD only).

<Qm> A quadword source register for the second operand vector (Advanced SIMD only).

<Dd> A doubleword destination register for the result vector.

<Dn> A doubleword source register for the first operand vector.

<Dm> A doubleword source register for the second operand vector.

<Sd> A singleword destination register for the result vector (VFP only).

<Sn> A singleword source register for the first operand vector (VFP only).

<Sm> A singleword source register for the second operand vector (VFP only).

<Dd[x]> A destination scalar for the result. Element x of vector <Dd>. (Advanced SIMD only).

<Dn[x]> A source scalar for the first operand. Element x of vector <Dn>. (Advanced SIMD only).

<Dm[x]> A source scalar for the second operand. Element x of vector <Dm>. (Advanced SIMD only).

<Rd> An ARM core register. Can be source or destination.

<Rm> An ARM core register. Can be source or destination.

a. In some instructions the roles of registers are different.
A7-6 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
t

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
t2

ARM_2009_Q4
Inserted Text

 <Rn> An ARM core register used as a load or store base address.

 <Rm> An ARM core register used as a post-indexed address source.

Advanced SIMD and VFP Instruction Encoding
A7.2.5 Register lists

A register list is a list of register specifiers separated by commas and enclosed in brackets { and }. There are
restrictions on what registers can appear in a register list. These restrictions are described in the individual
instruction descriptions. Table A7-5 shows some register list formats, with examples of actual register lists
corresponding to those formats.

Note
 Register lists must not wrap around the end of the register bank.

Syntax flexibility

There is some flexibility in the register list syntax:

• Where a register list contains consecutive registers, they can be specified as a range, instead of listing
every register, for example {D0-D3} instead of {D0,D1,D2,D3}.

• Where a register list contains an even number of consecutive doubleword registers starting with an
even numbered register, it can be written as a list of quadword registers instead, for example {Q1,Q2}
instead of {D2-D5}.

• Where a register list contains only one register, the enclosing braces can be omitted, for example
VLD1.8 D0,[R0] instead of VLD1.8 {D0},[R0].

Table A7-5 Example register lists

Format Example Alternative

{<Dd>} {D3} D3

{<Dd>,<Dd+1>,<Dd+2>} {D3,D4,D5} {D3-D5}

{<Dd[x]>,<Dd+2[x]} {D0[3],D2[3]} -

{<Dd[]>} {D7[]} D7[]
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A7-7

Advanced SIMD and VFP Instruction Encoding
A7.3 Register encoding

Advanced SIMD registers are either quadword (128 bits wide) or doubleword (64 bits wide). Some
instructions have options for either doubleword or quadword registers. This is normally encoded in Q
(bit [6]) as Q = 0 for doubleword operations, Q = 1 for quadword operations.

VFP registers are either double-precision (64 bits wide) or single-precision (32 bits wide). This is encoded
in the sz field (bit [8]) as sz = 1 for double-precision operations, or sz = 0 for single-precision operations.

Some instructions use only one or two registers, and use the unused register fields as additional opcode bits.

Table A7-6 shows the encodings for the registers.

Thumb encoding

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

D Vn Vd sz N Q M Vm

ARM encoding

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

D Vn Vd sz N Q M Vm

Table A7-6 Encoding of register numbers

Register
mnemonic

Usual usage
Register number
encoded in Notes a Used in

<Qd> Destination (quadword) D, Vd (bits [22,15:13]) bit [12] == 0 Adv. SIMD

<Qn> First operand (quadword) N, Vn (bits [7,19:17]) bit [16] == 0 Adv. SIMD

<Qm> Second operand (quadword) M, Vm (bits [5,3:1]) bit [0] == 0 Adv. SIMD

<Dd> Destination (doubleword) D, Vd (bits [22,15:12]) - Both

<Dn> First operand (doubleword) N, Vn (bits [7,19:16]) - Both

<Dm> Second operand (doubleword) M, Vm (bits [5,3:0]) - Both

<Sd> Destination (single-precision) Vd, D (bits [15:12,22]) - VFP

<Sn> First operand (single-precision) Vn, N (bits [19:16,7]) - VFP

<Sm> Second operand (single-precision) Vm, M (bits [3:0,5]) - VFP

a. If one of these bits is 1, the instruction is UNDEFINED.
A7-8 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Advanced SIMD and VFP Instruction Encoding
A7.3.1 Advanced SIMD scalars

Advanced SIMD scalars can be 8-bit, 16-bit, 32-bit, or 64-bit. Instructions other than multiply instructions
can access any element in the register set. The instruction syntax refers to the scalars using an index into a
doubleword vector. The descriptions of the individual instructions contain details of the encodings.

Table A7-7 shows the form of encoding for scalars used in multiply instructions. These instructions cannot
access scalars in some registers. The descriptions of the individual instructions contain cross references to
this section where appropriate.

32-bit Advanced SIMD scalars, when used as single-precision floating-point numbers, are equivalent to
VFP single-precision registers. That is, Dm[x] in a 32-bit context (0 <= m <= 15, 0 <= x <=1) is equivalent to
S[2m + x].

Table A7-7 Encoding of scalars in multiply instructions

Scalar
mnemonic

Usual usage
Scalar
size

Register
specifier

Index
specifier

Accessible
registers

<Dm[x]> Second operand 16-bit Vm[2:0] M, Vm[3] D0-D7

32-bit Vm[3:0] M D0-D15
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A7-9

Advanced SIMD and VFP Instruction Encoding
A7.4 Advanced SIMD data-processing instructions

Table A7-8 shows the encoding for Advanced SIMD data-processing instructions. Other encodings in this
space are UNDEFINED.

In these instructions, the U bit is in a different location in ARM and Thumb instructions. This is bit [12] of
the first halfword in the Thumb encoding, and bit [24] in the ARM encoding. Other variable bits are in
identical locations in the two encodings, after adjusting for the fact that the ARM encoding is held in
memory as a single word and the Thumb encoding is held as two consecutive halfwords.

The ARM instructions can only be executed unconditionally. The Thumb instructions can be executed
conditionally by using the IT instruction. For details see IT on page A8-104.

Thumb encoding

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 A B C

ARM encoding

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U A B C

Table A7-8 Data-processing instructions

U A B C See

- 0xxxx - - Three registers of the same length on page A7-12

1x000 - 0xx1 One register and a modified immediate value on page A7-21

1x001 - 0xx1 Two registers and a shift amount on page A7-17

1x01x - 0xx1

1x1xx - 0xx1

1xxxx - 1xx1

1x0xx - x0x0 Three registers of different lengths on page A7-15

1x10x - x0x0

1x0xx - x1x0 Two registers and a scalar on page A7-16

1x10x - x1x0
A7-10 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Advanced SIMD and VFP Instruction Encoding
0 1x11x - xxx0 Vector Extract, VEXT on page A8-598

1 1x11x 0xxx xxx0 Two registers, miscellaneous on page A7-19

10xx xxx0 Vector Table Lookup, VTBL, VTBX on page A8-798

1100 0xx0 Vector Duplicate, VDUP (scalar) on page A8-592

Table A7-8 Data-processing instructions (continued)

U A B C See
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A7-11

Advanced SIMD and VFP Instruction Encoding
A7.4.1 Three registers of the same length

Table A7-9 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.

Thumb encoding

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 0 C A B

ARM encoding

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U 0 C A B

Table A7-9 Three registers of the same length

A B U C Instruction See

0000 0 - - Vector Halving Add VHADD, VHSUB on page A8-600

1 - - Vector Saturating Add VQADD on page A8-700

0001 0 - - Vector Rounding Halving Add VRHADD on page A8-734

1 0 00 Vector Bitwise AND VAND (register) on page A8-544

01 Vector Bitwise Bit Clear (AND complement) VBIC (register) on page A8-548

10 Vector Bitwise OR (if source registers differ) VORR (register) on page A8-680

Vector Move (if source registers identical) VMOV (register) on page A8-642

11 Vector Bitwise OR NOT VORN (register) on page A8-676

1 00 Vector Bitwise Exclusive OR VEOR on page A8-596

01 Vector Bitwise Select VBIF, VBIT, VBSL on page A8-550

10 Vector Bitwise Insert if True VBIF, VBIT, VBSL on page A8-550

11 Vector Bitwise Insert if False VBIF, VBIT, VBSL on page A8-550

0010 0 - - Vector Halving Subtract VHADD, VHSUB on page A8-600

1 - - Vector Saturating Subtract VQSUB on page A8-724

0011 0 - - Vector Compare Greater Than VCGT (register) on page A8-560

1 - - Vector Compare Greater Than or Equal VCGE (register) on page A8-556
A7-12 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Advanced SIMD and VFP Instruction Encoding
0100 0 - - Vector Shift Left VSHL (register) on page A8-752

1 - - Vector Saturating Shift Left VQSHL (register) on page A8-718

0101 0 - - Vector Rounding Shift Left VRSHL on page A8-736

1 - - Vector Saturating Rounding Shift Left VQRSHL on page A8-714

0110 - - - Vector Maximum or Minimum VMAX, VMIN (integer) on page A8-630

0111 0 - - Vector Absolute Difference VABD, VABDL (integer) on page A8-528

1 - - Vector Absolute Difference and Accumulate VABA, VABAL on page A8-526

1000 0 0 - Vector Add VADD (integer) on page A8-536

1 - Vector Subtract VSUB (integer) on page A8-788

1 0 - Vector Test Bits VTST on page A8-802

1 - Vector Compare Equal VCEQ (register) on page A8-552

1001 0 - - Vector Multiply Accumulate or Subtract VMLA, VMLAL, VMLS, VMLSL (integer)
on page A8-634

1 - - Vector Multiply VMUL, VMULL (integer and polynomial)
on page A8-662

1010 - - - Vector Pairwise Maximum or Minimum VPMAX, VPMIN (integer) on
page A8-690

1011 0 0 - Vector Saturating Doubling Multiply
Returning High Half

VQDMULH on page A8-704

1 - Vector Saturating Rounding Doubling
Multiply Returning High Half

VQRDMULH on page A8-712

1 0 - Vector Pairwise Add VPADD (integer) on page A8-684

Table A7-9 Three registers of the same length (continued)

A B U C Instruction See
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A7-13

Advanced SIMD and VFP Instruction Encoding
1101 0 0 0x Vector Add VADD (floating-point) on page A8-538

1x Vector Subtract VSUB (floating-point) on page A8-790

1 0x Vector Pairwise Add VPADD (floating-point) on page A8-686

1x Vector Absolute Difference VABD (floating-point) on page A8-530

1 0 - Vector Multiply Accumulate or Subtract VMLA, VMLS (floating-point) on
page A8-636

1 0x Vector Multiply VMUL (floating-point) on page A8-664

1110 0 0 0x Vector Compare Equal VCEQ (register) on page A8-552

1 0x Vector Compare Greater Than or Equal VCGE (register) on page A8-556

1x Vector Compare Greater Than VCGT (register) on page A8-560

1 1 - Vector Absolute Compare Greater or Less
Than (or Equal)

VACGE, VACGT, VACLE,VACLT on
page A8-534

1111 0 0 - Vector Maximum or Minimum VMAX, VMIN (floating-point) on
page A8-632

1 - Vector Pairwise Maximum or Minimum VPMAX, VPMIN (floating-point) on
page A8-692

1 0 0x Vector Reciprocal Step VRECPS on page A8-730

0 1x Vector Reciprocal Square Root Step VRSQRTS on page A8-744

Table A7-9 Three registers of the same length (continued)

A B U C Instruction See
A7-14 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Advanced SIMD and VFP Instruction Encoding
A7.4.2 Three registers of different lengths

If B == 0b11, see Advanced SIMD data-processing instructions on page A7-10.

Table A7-10 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.

Thumb encoding

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 1 B A 0 0

ARM encoding

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U 1 B A 0 0

Table A7-10 Data-processing instructions with three registers of different lengths

A U Instruction See

000x - Vector Add Long or Wide VADDL, VADDW on page A8-542

001x - Vector Subtract Long or Wide VSUBL, VSUBW on page A8-794

0100 0 Vector Add and Narrow, returning High Half VADDHN on page A8-540

1 Vector Rounding Add and Narrow, returning High Half VRADDHN on page A8-726

0101 - Vector Absolute Difference and Accumulate VABA, VABAL on page A8-526

0110 0 Vector Subtract and Narrow, returning High Half VSUBHN on page A8-792

1 Vector Rounding Subtract and Narrow, returning High Half VRSUBHN on page A8-748

0111 - Vector Absolute Difference VABD, VABDL (integer) on
page A8-528

10x0 - Vector Multiply Accumulate or Subtract VMLA, VMLAL, VMLS, VMLSL
(integer) on page A8-634

10x1 0 Vector Saturating Doubling Multiply Accumulate or
Subtract Long

VQDMLAL, VQDMLSL on
page A8-702

1100 - Vector Multiply (integer) VMUL, VMULL (integer and
polynomial) on page A8-662

1101 0 Vector Saturating Doubling Multiply Long VQDMULL on page A8-706

1110 - Vector Multiply (polynomial) VMUL, VMULL (integer and
polynomial) on page A8-662
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A7-15

Advanced SIMD and VFP Instruction Encoding
A7.4.3 Two registers and a scalar

If B == 0b11, see Advanced SIMD data-processing instructions on page A7-10.

Table A7-11 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.

Thumb encoding

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 1 B A 1 0

ARM encoding

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U 1 B A 1 0

Table A7-11 Data-processing instructions with two registers and a scalar

A U Instruction See

0x0x - Vector Multiply Accumulate or Subtract VMLA, VMLAL, VMLS, VMLSL (by scalar) on
page A8-638

0x10 - Vector Multiply Accumulate or Subtract Long VMLA, VMLAL, VMLS, VMLSL (by scalar) on
page A8-638

0x11 0 Vector Saturating Doubling Multiply
Accumulate or Subtract Long

VQDMLAL, VQDMLSL on page A8-702

100x - Vector Multiply VMUL, VMULL (by scalar) on page A8-666

1010 - Vector Multiply Long VMUL, VMULL (by scalar) on page A8-666

1011 0 Vector Saturating Doubling Multiply Long VQDMULL on page A8-706

1100 - Vector Saturating Doubling Multiply returning
High Half

VQDMULH on page A8-704

1101 - Vector Saturating Rounding Doubling
Multiply returning High Half

VQRDMULH on page A8-712
A7-16 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Advanced SIMD and VFP Instruction Encoding
A7.4.4 Two registers and a shift amount

If [L, imm3] == 0b0000, see One register and a modified immediate value on page A7-21.

Table A7-12 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.

Thumb encoding

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 1 imm3 A L B 1

ARM encoding

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U 1 imm3 A L B 1

Table A7-12 Data-processing instructions with two registers and a shift amount

A U B L Instruction See

0000 - - - Vector Shift Right VSHR on page A8-756

0001 - - - Vector Shift Right and Accumulate VSRA on page A8-764

0010 - - - Vector Rounding Shift Right VRSHR on page A8-738

0011 - - - Vector Rounding Shift Right and Accumulate VRSRA on page A8-746

0100 1 - - Vector Shift Right and Insert VSRI on page A8-766

0101 0 - - Vector Shift Left VSHL (immediate) on page A8-750

0101 1 - - Vector Shift Left and Insert VSLI on page A8-760

011x - - - Vector Saturating Shift Left VQSHL, VQSHLU (immediate) on
page A8-720

1000 0 0 0 Vector Shift Right Narrow VSHRN on page A8-758

1 - Vector Rounding Shift Right Narrow VRSHRN on page A8-740

1 0 - Vector Saturating Shift Right, Unsigned Narrow VQSHRN, VQSHRUN on page A8-722

1 - Vector Saturating Shift Right, Rounded
Unsigned Narrow

VQRSHRN, VQRSHRUN on
page A8-716

1001 - 0 - Vector Saturating Shift Right, Narrow VQSHRN, VQSHRUN on page A8-722

1 - Vector Saturating Shift Right, Rounded Narrow VQRSHRN, VQRSHRUN on
page A8-716
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A7-17

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
0

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
0

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
0

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
0

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
0

Advanced SIMD and VFP Instruction Encoding
1010 - 0 - Vector Shift Left Long VSHLL on page A8-754

Vector Move Long VMOVL on page A8-654

111x - - - Vector Convert VCVT (between floating-point and
fixed-point, Advanced SIMD) on
page A8-580

Table A7-12 Data-processing instructions with two registers and a shift amount (continued)

A U B L Instruction See
A7-18 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
0

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
0

Advanced SIMD and VFP Instruction Encoding
A7.4.5 Two registers, miscellaneous

The allocation of encodings in this space is shown in Table A7-13. Other encodings in this space are
UNDEFINED.

Thumb encoding

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 1 1 A 0 B 0

ARM encoding

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 1 1 A 0 B 0

Table A7-13 Instructions with two registers, miscellaneous

A B Instruction See

00 0000x Vector Reverse in doublewords VREV16, VREV32, VREV64 on page A8-732

0001x Vector Reverse in words VREV16, VREV32, VREV64 on page A8-732

0010x Vector Reverse in halfwords VREV16, VREV32, VREV64 on page A8-732

010xx Vector Pairwise Add Long VPADDL on page A8-688

1000x Vector Count Leading Sign Bits VCLS on page A8-566

1001x Vector Count Leading Zeros VCLZ on page A8-570

1010x Vector Count VCNT on page A8-574

1011x Vector Bitwise NOT VMVN (register) on page A8-670

110xx Vector Pairwise Add and Accumulate Long VPADAL on page A8-682

1110x Vector Saturating Absolute VQABS on page A8-698

1111x Vector Saturating Negate VQNEG on page A8-710
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A7-19

Advanced SIMD and VFP Instruction Encoding
01 x000x Vector Compare Greater Than Zero VCGT (immediate #0) on page A8-562

x001x Vector Compare Greater Than or Equal to Zero VCGE (immediate #0) on page A8-558

x010x Vector Compare Equal to zero VCEQ (immediate #0) on page A8-554

x011x Vector Compare Less Than or Equal to Zero VCLE (immediate #0) on page A8-564

x100x Vector Compare Less Than Zero VCLT (immediate #0) on page A8-568

x110x Vector Absolute VABS on page A8-532

x111x Vector Negate VNEG on page A8-672

0000x Vector Swap VSWP on page A8-796

0001x Vector Transpose VTRN on page A8-800

0010x Vector Unzip VUZP on page A8-804

0011x Vector Zip VZIP on page A8-806

10 01000 Vector Move and Narrow VMOVN on page A8-656

01001 Vector Saturating Move and Unsigned Narrow VQMOVN, VQMOVUN on page A8-708

0101x Vector Saturating Move and Narrow VQMOVN, VQMOVUN on page A8-708

01100 Vector Shift Left Long (maximum shift) VSHLL on page A8-754

11x00 Vector Convert VCVT (between half-precision and
single-precision, Advanced SIMD) on
page A8-586

11 10x0x Vector Reciprocal Estimate VRECPE on page A8-728

10x1x Vector Reciprocal Square Root Estimate VRSQRTE on page A8-742

11xxx Vector Convert VCVT (between floating-point and integer,
Advanced SIMD) on page A8-576

Table A7-13 Instructions with two registers, miscellaneous (continued)

A B Instruction See
A7-20 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2008_Q4
Line

ARM_2008_Q4
Callout
10

Advanced SIMD and VFP Instruction Encoding
A7.4.6 One register and a modified immediate value

Table A7-14 shows the allocation of encodings in this space.

Table A7-15 on page A7-22 shows the modified immediate constants available with these instructions, and
how they are encoded.

Thumb encoding

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 a 1 1 1 1 1 0 0 0 b c d cmode 0 op 1 e f g h

ARM encoding

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 a 1 0 0 0 b c d cmode 0 op 1 e f g h

Table A7-14 Data-processing instructions with one register and
a modified immediate value

op cmode Instruction See

0 0xx0 Vector Move VMOV (immediate) on page A8-640

0xx1 Vector Bitwise OR VORR (immediate) on page A8-678

10x0 Vector Move VMOV (immediate) on page A8-640

10x1 Vector Bitwise OR VORR (immediate) on page A8-678

11xx Vector Move VMOV (immediate) on page A8-640

1 0xx0 Vector Bitwise NOT VMVN (immediate) on page A8-668

0xx1 Vector Bit Clear VBIC (immediate) on page A8-546

10x0 Vector Bitwise NOT VMVN (immediate) on page A8-668

10x1 Vector Bit Clear VBIC (immediate) on page A8-546

110x Vector Bitwise NOT VMVN (immediate) on page A8-668

1110 Vector Move VMOV (immediate) on page A8-640

1111 UNDEFINED -
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A7-21

Advanced SIMD and VFP Instruction Encoding
Table A7-15 Modified immediate values for Advanced SIMD instructions

op cmode Constant a <dt>b Notes

- 000x 00000000 00000000 00000000 abcdefgh 00000000 00000000 00000000 abcdefgh I32 c

001x 00000000 00000000 abcdefgh 00000000 00000000 00000000 abcdefgh 00000000 I32 c, d

010x 00000000 abcdefgh 00000000 00000000 00000000 abcdefgh 00000000 00000000 I32 c, d

011x abcdefgh 00000000 00000000 00000000 abcdefgh 00000000 00000000 00000000 I32 c, d

100x 00000000 abcdefgh 00000000 abcdefgh 00000000 abcdefgh 00000000 abcdefgh I16 c

101x abcdefgh 00000000 abcdefgh 00000000 abcdefgh 00000000 abcdefgh 00000000 I16 c, d

1100 00000000 00000000 abcdefgh 11111111 00000000 00000000 abcdefgh 11111111 I32 d, e

1101 00000000 abcdefgh 11111111 11111111 00000000 abcdefgh 11111111 11111111 I32 d, e

0 1110 abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh I8 f

1 1110 aaaaaaaa bbbbbbbb cccccccc dddddddd eeeeeeee ffffffff gggggggg hhhhhhhh I64 f

0 1111 aBbbbbbc defgh000 00000000 00000000 aBbbbbbc defgh000 00000000 00000000 F32 f, g

1 1111 UNDEFINED - -

a. In this table, the immediate value is shown in binary form, to relate abcdefgh to the encoding diagram. In assembler
syntax, the constant is specified by a data type and a value of that type. That value is specified in the normal way (a
decimal number by default) and is replicated enough times to fill the 64-bit immediate. For example, a data type of I32
and a value of 10 specify the 64-bit constant 0x0000000A0000000A.

b. This specifies the data type used when the instruction is disassembled. On assembly, the data type must be matched in
the table if possible. Other data types are permitted as pseudo-instructions when code is assembled, provided the 64-bit
constant specified by the data type and value is available for the instruction (if it is available in more than one way, the
first entry in this table that can produce it is used). For example, VMOV.I64 D0,#0x8000000080000000 does not specify a
64-bit constant that is available from the I64 line of the table, but does specify one that is available from the fourth I32
line or the F32 line. It is assembled to the former, and therefore is disassembled as VMOV.I32 D0,#0x80000000.

c. This constant is available for the VBIC, VMOV, VMVN, and VORR instructions.
d. UNPREDICTABLE if abcdefgh == 00000000.
e. This constant is available for the VMOV and VMVN instructions only.
f. This constant is available for the VMOV instruction only.
g. In this entry, B = NOT(b). The bit pattern represents the floating-point number (–1)S * 2exp * mantissa, where

S = UInt(a), exp = UInt(NOT(b):c:d)-3 and mantissa = (16+UInt(e:f:g:h))/16.
A7-22 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Advanced SIMD and VFP Instruction Encoding
Operation

// AdvSIMDExpandImm()
// ==================

bits(64) AdvSIMDExpandImm(bit op, bits(4) cmode, bits(8) imm8)

 case cmode<3:1> of
 when ‘000’
 testimm8 = FALSE; imm64 = Replicate(Zeros(24):imm8, 2);
 when ‘001’
 testimm8 = TRUE; imm64 = Replicate(Zeros(16):imm8:Zeros(8), 2);
 when ‘010’
 testimm8 = TRUE; imm64 = Replicate(Zeros(8):imm8:Zeros(16), 2);
 when ‘011’
 testimm8 = TRUE; imm64 = Replicate(imm8:Zeros(24), 2);
 when ‘100’
 testimm8 = FALSE; imm64 = Replicate(Zeros(8):imm8, 4);
 when ‘101’
 testimm8 = TRUE; imm64 = Replicate(imm8:Zeros(8), 4);
 when ‘110’
 testimm8 = TRUE;
 if cmode<0> == ‘0’ then
 imm64 = Replicate(Zeros(16):imm8:Ones(8), 2);
 else
 imm64 = Replicate(Zeros(8):imm8:Ones(16), 2);
 when ‘111’
 testimm8 = FALSE;
 if cmode<0> == ‘0’ && op == ‘0’ then
 imm64 = Replicate(imm8, 8);
 if cmode<0> == ‘0’ && op == ‘1’ then
 imm8a = Replicate(imm8<7>, 8); imm8b = Replicate(imm8<6>, 8);
 imm8c = Replicate(imm8<5>, 8); imm8d = Replicate(imm8<4>, 8);
 imm8e = Replicate(imm8<3>, 8); imm8f = Replicate(imm8<2>, 8);
 imm8g = Replicate(imm8<1>, 8); imm8h = Replicate(imm8<0>, 8);
 imm64 = imm8a:imm8b:imm8c:imm8d:imm8e:imm8f:imm8g:imm8h;
 if cmode<0> == ‘1’ && op == ‘0’ then
 imm32 = imm8<7>:NOT(imm8<6>):Replicate(imm8<6>,5):imm8<5:0>:Zeros(19);
 imm64 = Replicate(imm32, 2);
 if cmode<0> == ‘1’ && op == ‘1’ then
 UNDEFINED;

 if testimm8 && imm8 == ‘00000000’ then
 UNPREDICTABLE;

 return imm64;
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A7-23

Advanced SIMD and VFP Instruction Encoding
A7.5 VFP data-processing instructions

If T == 1 in the Thumb encoding or cond == 0b1111 in the ARM encoding, the instruction is UNDEFINED.

Otherwise:

• Table A7-16 shows the encodings for three-register VFP data-processing instructions. Other
encodings in this space are UNDEFINED.

• Table A7-17 on page A7-25 applies only if Table A7-16 indicates that it does. It shows the encodings
for VFP data-processing instructions with two registers or a register and an immediate. Other
encodings in this space are UNDEFINED.

• Table A7-18 on page A7-25 shows the immediate constants available in the VMOV (immediate)
instruction.

These instructions are CDP instructions for coprocessors 10 and 11.

Thumb encoding

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 T 1 1 1 0 opc1 opc2 1 0 1 opc3 0 opc4

ARM encoding

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 1 0 opc1 opc2 1 0 1 opc3 0 opc4

Table A7-16 Three-register VFP data-processing instructions

opc1 opc3 Instruction See

0x00 - Vector Multiply Accumulate or Subtract VMLA, VMLS (floating-point) on
page A8-636

0x01 - Vector Negate Multiply Accumulate or Subtract VNMLA, VNMLS, VNMUL on page A8-674

0x10 x1

x0 Vector Multiply VMUL (floating-point) on page A8-664

0x11 x0 Vector Add VADD (integer) on page A8-536

x1 Vector Subtract VSUB (integer) on page A8-788

1x00 x0 Vector Divide VDIV on page A8-590

1x11 - Other VFP data-processing instructions Table A7-17 on page A7-25
A7-24 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
VADD (floating-point) on page A8-538 [PDF page 850]

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
VSUB (floating-point) on page A8-790 [PDF page 1102]

Advanced SIMD and VFP Instruction Encoding
A7.5.1 Operation

// VFPExpandImm()
// ==============

bits(N) VFPExpandImm(bits(8) imm8, integer N)
 assert N == 32 || N == 64;
 if N == 32 then
 return imm8<7>:NOT(imm8<6>):Replicate(imm8<6>,5):imm8<5:0>:Zeros(19);
 else
 return imm8<7>:NOT(imm8<6>):Replicate(imm8<6>,8):imm8<5:0>:Zeros(48);

Table A7-17 Other VFP data-processing instructions

opc2 opc3 Instruction See

- x0 Vector Move VMOV (immediate) on page A8-640

0000 01 Vector Move VMOV (register) on page A8-642

11 Vector Absolute VABS on page A8-532

0001 01 Vector Negate VNEG on page A8-672

11 Vector Square Root VSQRT on page A8-762

001x x1 Vector Convert VCVTB, VCVTT (between half-precision and single-precision, VFP) on
page A8-588

010x x1 Vector Compare VCMP, VCMPE on page A8-572

0111 11 Vector Convert VCVT (between double-precision and single-precision) on page A8-584

1000 x1 Vector Convert VCVT, VCVTR (between floating-point and integer, VFP) on page A8-578

101x x1 Vector Convert VCVT (between floating-point and fixed-point, VFP) on page A8-582

110x x1 Vector Convert VCVT, VCVTR (between floating-point and integer, VFP) on page A8-578

111x x1 Vector Convert VCVT (between floating-point and fixed-point, VFP) on page A8-582

Table A7-18 VFP modified immediate constants

Data type opc2 opc4 Constant a

F32 abcd efgh aBbbbbbc defgh000 00000000 00000000

F64 abcd efgh aBbbbbbb bbcdefgh 00000000 00000000 00000000 00000000 00000000 00000000

a. In this column, B = NOT(b). The bit pattern represents the floating-point number (–1)S * 2exp * mantissa, where
S = UInt(a), exp = UInt(NOT(b):c:d)-3 and mantissa = (16+UInt(e:f:g:h))/16.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A7-25

Advanced SIMD and VFP Instruction Encoding
A7.6 Extension register load/store instructions

If T == 1 in the Thumb encoding or cond == 0b1111 in the ARM encoding, the instruction is UNDEFINED.

Otherwise, the allocation of encodings in this space is shown in Table A7-19. Other encodings in this space
are UNDEFINED.

These instructions are LDC and STC instructions for coprocessors 10 and 11.

Thumb encoding

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 T 1 1 0 Opcode Rn 1 0 1

ARM encoding

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 0 Opcode Rn 1 0 1

Table A7-19 Extension register load/store instructions

Opcode Rn Instruction See

0010x - - 64-bit transfers between ARM
core and extension registers on
page A7-32

01x00 - Vector Store Multiple (Increment After, no writeback) VSTM on page A8-784

01x10 - Vector Store Multiple (Increment After, writeback) VSTM on page A8-784

1xx00 - Vector Store Register VSTR on page A8-786

10x10 not 1101 Vector Store Multiple (Decrement Before, writeback) VSTM on page A8-784

1101 Vector Push Registers VPUSH on page A8-696

01x01 - Vector Load Multiple (Increment After, no writeback) VLDM on page A8-626

01x11 not 1101 Vector Load Multiple (Increment After, writeback) VLDM on page A8-626

1101 Vector Pop Registers VPOP on page A8-694

1xx01 - Vector Load Register VLDR on page A8-628

10x11 - Vector Load Multiple (Decrement Before, writeback) VLDM on page A8-626
A7-26 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Advanced SIMD and VFP Instruction Encoding
A7.7 Advanced SIMD element or structure load/store instructions

The allocation of encodings in this space is shown in:

• Table A7-20 if L == 0, store instructions

• Table A7-21 on page A7-28 if L == 1, load instructions.

Other encodings in this space are UNDEFINED.

The variable bits are in identical locations in the two encodings, after adjusting for the fact that the ARM
encoding is held in memory as a single word and the Thumb encoding is held as two consecutive halfwords.

The ARM instructions can only executed unconditionally. The Thumb instructions can be executed
conditionally by using the IT instruction. For details see IT on page A8-104.

Thumb encoding

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 A L 0 B

ARM encoding

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 A L 0 B

Table A7-20 Element and structure store instructions (L == 0)

A B Instruction See

0 0010

011x

1010

Vector Store VST1 (multiple single elements) on page A8-768

0011

100x

Vector Store VST2 (multiple 2-element structures) on page A8-772

010x Vector Store VST3 (multiple 3-element structures) on page A8-776

000x Vector Store VST4 (multiple 4-element structures) on page A8-780
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A7-27

ARM_2009_Q1
Inserted Text
be

Advanced SIMD and VFP Instruction Encoding
1 0x00

1000

Vector Store VST1 (single element from one lane) on page A8-770

0x01

1001

Vector Store VST2 (single 2-element structure from one lane) on page A8-774

0x10

1010

Vector Store VST3 (single 3-element structure from one lane) on page A8-778

0x11

1011

Vector Store VST4 (single 4-element structure from one lane) on page A8-782

Table A7-21 Element and structure load instructions (L == 1)

A B Instruction See

0 0010

011x

1010

Vector Load VLD1 (multiple single elements) on page A8-602

0011

100x

Vector Load VLD2 (multiple 2-element structures) on page A8-608

010x Vector Load VLD3 (multiple 3-element structures) on page A8-614

000x Vector Load VLD4 (multiple 4-element structures) on page A8-620

Table A7-20 Element and structure store instructions (L == 0) (continued)

A B Instruction See
A7-28 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Advanced SIMD and VFP Instruction Encoding
1 0x00

1000

Vector Load VLD1 (single element to one lane) on page A8-604

1100 Vector Load VLD1 (single element to all lanes) on page A8-606

0x01

1001

Vector Load VLD2 (single 2-element structure to one lane) on page A8-610

1101 Vector Load VLD2 (single 2-element structure to all lanes) on page A8-612

0x10

1010

Vector Load VLD3 (single 3-element structure to one lane) on page A8-616

1110 Vector Load VLD3 (single 3-element structure to all lanes) on page A8-618

0x11

1011

Vector Load VLD4 (single 4-element structure to one lane) on page A8-622

1111 Vector Load VLD4 (single 4-element structure to all lanes) on page A8-624

Table A7-21 Element and structure load instructions (L == 1) (continued)

A B Instruction See
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A7-29

Advanced SIMD and VFP Instruction Encoding
A7.7.1 Advanced SIMD addressing mode

All the element and structure load/store instructions use this addressing mode. There is a choice of three
formats:

[<Rn>{@<align>}] The address is contained in ARM core register Rn.

Rn is not updated by this instruction.

Encoded as Rm = 0b1111.

If Rn is encoded as 0b1111, the instruction is UNPREDICTABLE.

[<Rn>{@<align>}]! The address is contained in ARM core register Rn.

Rn is updated by this instruction: Rn = Rn + transfer_size

Encoded as Rm = 0b1101.

transfer_size is the number of bytes transferred by the instruction. This means that,
after the instruction is executed, Rn points to the address in memory immediately
following the last address loaded from or stored to.

If Rn is encoded as 0b1111, the instruction is UNPREDICTABLE.

This addressing mode can also be written as:

[<Rn>{@align}], #<transfer_size>

However, disassembly produces the [<Rn>{@align}]! form.

[<Rn>{@<align>}], <Rm>

The address is contained in ARM core register <Rn>.

Rn is updated by this instruction: Rn = Rn + Rm

Encoded as Rm = Rm. Rm must not be encoded as 0b1111 or 0b1101 (the PC or
the SP).

If Rn is encoded as 0b1111, the instruction is UNPREDICTABLE.

In all cases, <align> specifies an optional alignment. Details are given in the individual instruction
descriptions.
A7-30 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Advanced SIMD and VFP Instruction Encoding
A7.8 8, 16, and 32-bit transfer between ARM core and extension registers

If T == 1 in the Thumb encoding or cond == 0b1111 in the ARM encoding, the instruction is UNDEFINED.

Otherwise, the allocation of encodings in this space is shown in Table A7-22. Other encodings in this space
are UNDEFINED.

These instructions are MRC and MCR instructions for coprocessors 10 and 11.

Thumb encoding

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 T 1 1 1 0 A L 1 0 1 C B 1

ARM encoding

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 1 0 A L 1 0 1 C B 1

Table A7-22 8-bit, 16-bit and 32-bit data transfer instructions

L C A B Instruction See

0 0 000 - Vector Move VMOV (between ARM core register and
single-precision register) on page A8-648

111 - Move to VFP Special Register from
ARM core register

VMSR on page A8-660

VMSR on page B6-29 (System level view)

0 1 0xx - Vector Move VMOV (ARM core register to scalar) on
page A8-644

1xx 0x Vector Duplicate VDUP (ARM core register) on page A8-594

1 0 000 - Vector Move VMOV (between ARM core register and
single-precision register) on page A8-648

111 - Move to ARM core register from VFP
Special Register

VMRS on page A8-658

VMRS on page B6-27 (System level view)

1 xxx - Vector Move VMOV (scalar to ARM core register) on
page A8-646
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A7-31

Advanced SIMD and VFP Instruction Encoding
A7.9 64-bit transfers between ARM core and extension registers

If T == 1 in the Thumb encoding or cond == 0b1111 in the ARM encoding, the instruction is UNDEFINED.

Otherwise, the allocation of encodings in this space is shown in Table A7-23. Other encodings in this space
are UNDEFINED.

These instructions are MRRC and MCRR instructions for coprocessors 10 and 11.

Thumb encoding

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 T 1 1 0 0 0 1 0 1 0 1 C op

ARM encoding

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 0 0 0 1 0 1 0 1 C op

Table A7-23 8-bit, 16-bit and 32-bit data transfer instructions

C op Instruction

0 00x1 VMOV (between two ARM core registers and two single-precision registers) on page A8-650

1 00x1 VMOV (between two ARM core registers and a doubleword extension register) on page A8-652
A7-32 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
64-

Chapter A8
Instruction Details

This chapter describes each instruction. It contains the following sections:

• Format of instruction descriptions on page A8-2

• Standard assembler syntax fields on page A8-7

• Conditional execution on page A8-8

• Shifts applied to a register on page A8-10

• Memory accesses on page A8-13

• Alphabetical list of instructions on page A8-14.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-1

Instruction Details
A8.1 Format of instruction descriptions

The instruction descriptions in Alphabetical list of instructions on page A8-14 normally use the following
format:

• instruction section title

• introduction to the instruction

• instruction encoding(s) with architecture information

• assembler syntax

• pseudocode describing how the instruction operates

• exception information

• notes (where applicable).

Each of these items is described in more detail in the following subsections.

A few instruction descriptions describe alternative mnemonics for other instructions and use an abbreviated
and modified version of this format.

A8.1.1 Instruction section title

The instruction section title gives the base mnemonic for the instructions described in the section. When one
mnemonic has multiple forms described in separate instruction sections, this is followed by a short
description of the form in parentheses. The most common use of this is to distinguish between forms of an
instruction in which one of the operands is an immediate value and forms in which it is a register.

Parenthesized text is also used to document the former mnemonic in some cases where a mnemonic has been
replaced entirely by another mnemonic in the new assembler syntax.

A8.1.2 Introduction to the instruction

The instruction section title is followed by text that briefly describes the main features of the instruction.
This description is not necessarily complete and is not definitive. If there is any conflict between it and the
more detailed information that follows, the latter takes priority.

A8.1.3 Instruction encodings

This is a list of one or more instruction encodings. Each instruction encoding is labelled as:

• T1, T2, T3 … for the first, second, third and any additional Thumb encodings

• A1, A2, A3 … for the first, second, third and any additional ARM encodings

• E1, E2, E3 … for the first, second, third and any additional ThumbEE encodings that are not also
Thumb encodings.

Where Thumb and ARM encodings are very closely related, the two encodings are described together, for
example as encoding T1 / A1.
A8-2 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Each instruction encoding description consists of:

• Information about which architecture variants include the particular encoding of the instruction. This
is presented in one of two ways:

— For instruction encodings that are in the main instruction set architecture, as a list of the
architecture variants that include the encoding. See Architecture versions, profiles, and
variants on page A1-4 for a summary of these variants.

— For instruction encodings that are in the architecture extensions, as a list of the architecture
extensions that include the encoding. See Architecture extensions on page A1-6 for a summary
of the architecture extensions and the architecture variants that they can extend.

In architecture variant lists:

— ARMv7 means ARMv7-A and ARMv7-R profiles. The architecture variant information in this
manual does not cover the ARMv7-M profile.

— * is used as a wildcard. For example, ARMv5T* means ARMv5T, ARMv5TE, and
ARMv5TEJ.

• An assembly syntax that ensures that the assembler selects the encoding in preference to any other
encoding. In some cases, multiple syntaxes are given. The correct one to use is sometimes indicated
by annotations to the syntax, such as Inside IT block and Outside IT block. In other cases, the correct
one to use can be determined by looking at the assembler syntax description and using it to determine
which syntax corresponds to the instruction being disassembled.

There is usually more than one syntax that ensures re-assembly to any particular encoding, and the
exact set of syntaxes that do so usually depends on the register numbers, immediate constants and
other operands to the instruction. For example, when assembling to the Thumb instruction set, the
syntax AND R0,R0,R8 ensures selection of a 32-bit encoding but AND R0,R0,R1 selects a 16-bit encoding.

The assembly syntax documented for the encoding is chosen to be the simplest one that ensures
selection of that encoding for all operand combinations supported by that encoding. This often means
that it includes elements that are only necessary for a small subset of operand combinations. For
example, the assembler syntax documented for the 32-bit Thumb AND (register) encoding includes
the .W qualifier to ensure that the 32-bit encoding is selected even for the small proportion of operand
combinations for which the 16-bit encoding is also available.

The assembly syntax given for an encoding is therefore a suitable one for a disassembler to
disassemble that encoding to. However, disassemblers might wish to use simpler syntaxes when they
are suitable for the operand combination, in order to produce more readable disassembled code.

• An encoding diagram, or a Thumb encoding diagram followed by an ARM encoding diagram when
they are being described together. This is half-width for 16-bit Thumb encodings and full-width for
32-bit Thumb and ARM encodings. The 32-bit Thumb encodings use a double vertical line between
the two halfwords of the instruction to distinguish them from ARM encodings and to act as a
reminder that 32-bit Thumb instructions consist of two consecutive halfwords rather than a word.

In particular, if instructions are stored using the standard little-endian instruction endianness, the
encoding diagram for an ARM instruction at address A shows the bytes at addressees A+3, A+2,
A+1, A from left to right, but the encoding diagram for a 32-bit Thumb instruction shows them in the
order A+1, A for the first halfword, followed by A+3, A+2 for the second halfword.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-3

ARM_2008_Q4
Cross-Out

Instruction Details
• Encoding-specific pseudocode. This is pseudocode that translates the encoding-specific instruction
fields into inputs to the encoding-independent pseudocode in the later Operation subsection, and that
picks out any special cases in the encoding. For a detailed description of the pseudocode used and of
the relationship between the encoding diagram, the encoding-specific pseudocode and the
encoding-independent pseudocode, see Appendix I Pseudocode Definition.

A8.1.4 Assembler syntax

The Assembly syntax subsection describes the standard UAL syntax for the instruction.

Each syntax description consists of the following elements:

• One or more syntax prototype lines written in a typewriter font, using the conventions described in
Assembler syntax prototype line conventions on page A8-5. Each prototype line documents the
mnemonic and (where appropriate) operand parts of a full line of assembler code. When there is more
than one such line, each prototype line is annotated to indicate required results of the
encoding-specific pseudocode. For each instruction encoding, this information can be used to
determine whether any instructions matching that encoding are available when assembling that
syntax, and if so, which ones.

• The line where: followed by descriptions of all of the variable or optional fields of the prototype
syntax line.

Some syntax fields are standardized across all or most instructions. Standard assembler syntax fields
on page A8-7 describes these fields.

By default, syntax fields that specify registers, such as <Rd>, <Rn>, or <Rt>, can be any of R0-R12 or
LR in Thumb instructions, and any of R0-R12, SP or LR in ARM instructions. These require that the
encoding-specific pseudocode set the corresponding integer variable (such as d, n, or t) to the
corresponding register number (0-12 for R0-R12, 13 for SP, 14 for LR). This can normally be done
by setting the corresponding bitfield in the instruction (named Rd, Rn, Rt…) to the binary encoding
of that number. In the case of 16-bit Thumb encodings, this bitfield is normally of length 3 and so the
encoding is only available when one of R0-R7 is specified in the assembler syntax. It is also common
for such encodings to use a bitfield name such as Rdn. This indicates that the encoding is only
available if <Rd> and <Rn> specify the same register, and that the register number of that register is
encoded in the bitfield if they do.

The description of a syntax field that specifies a register sometimes extends or restricts the permitted
range of registers or documents other differences from the default rules for such fields. Typical
extensions are to permit the use of the SP in Thumb instructions and to permit the use of the PC (using
register number 15).

• Where appropriate, text that briefly describes changes from the pre-UAL ARM assembler syntax.
Where present, this usually consists of an alternative pre-UAL form of the assembler mnemonic. The
pre-UAL ARM assembler syntax does not conflict with UAL, and support for it is a recommended
optional extension to UAL, to enable the assembly of pre-UAL ARM assembler source files.
A8-4 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q4
Inserted Text
You must read this pseudocode sequentially, but in some cases reuse of common pseudocode segments means that the pseudocode re-tests for cases excluded by earlier statements in the pseudocode for the encoding.

Instruction Details
Note
 The pre-UAL Thumb assembler syntax is incompatible with UAL and is not documented in the instruction
sections. For details see Appendix C Legacy Instruction Mnemonics.

Assembler syntax prototype line conventions

The following conventions are used in assembler syntax prototype lines and their subfields:

< > Any item bracketed by < and > is a short description of a type of value to be supplied by the
user in that position. A longer description of the item is normally supplied by subsequent
text. Such items often correspond to a similarly named field in an encoding diagram for an
instruction. When the correspondence simply requires the binary encoding of an integer
value or register number to be substituted into the instruction encoding, it is not described
explicitly. For example, if the assembler syntax for an ARM instruction contains an item
<Rn> and the instruction encoding diagram contains a 4-bit field named Rn, the number of
the register specified in the assembler syntax is encoded in binary in the instruction field.

If the correspondence between the assembler syntax item and the instruction encoding is
more complex than simple binary encoding of an integer or register number, the item
description indicates how it is encoded. This is often done by specifying a required output
from the encoding-specific pseudocode, such as add = TRUE. The assembler must only use
encodings that produce that output.

{ } Any item bracketed by { and } is optional. A description of the item and of how its presence
or absence is encoded in the instruction is normally supplied by subsequent text.

Many instructions have an optional destination register. Unless otherwise stated, if such a
destination register is omitted, it is the same as the immediately following source register in
the instruction syntax.

spaces Single spaces are used for clarity, to separate items. When a space is obligatory in the
assembler syntax, two or more consecutive spaces are used.

+/- This indicates an optional + or - sign. If neither is coded, + is assumed.

All other characters must be encoded precisely as they appear in the assembler syntax. Apart from { and },
the special characters described above do not appear in the basic forms of assembler instructions
documented in this manual. The { and } characters need to be encoded in a few places as part of a variable
item. When this happens, the long description of the variable item indicates how they must be used.

A8.1.5 Pseudocode describing how the instruction operates

The Operation subsection contains encoding-independent pseudocode that describes the main operation of
the instruction. For a detailed description of the pseudocode used and of the relationship between the
encoding diagram, the encoding-specific pseudocode and the encoding-independent pseudocode, see
Appendix I Pseudocode Definition.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-5

ARM_2009_Q3
Inserted Text

In the assembler syntax, numeric constants are normally preceded
 by a #. Some UAL instruction syntax descriptions explicitly show the
 # as optional. Any UAL assembler:
 • must treat the # as optional where an instruction syntax description
 shows it as optional
 • can treat the # either as mandatory or as optional where an instruction
 syntax description does not show it as optional.

----- Note -----
ARM recommends that UAL assemblers treat all uses of # shown in this
manual as optional.

ARM_2009_Q3
Sticky Note
This addition is a correction to the addition made in the ARM_2009_Q1 errata document.

Instruction Details
A8.1.6 Exception information

The Exceptions subsection contains a list of the exceptional conditions that can be caused by execution of
the instruction.

Processor exceptions are listed as follows:

• Resets and interrupts (both IRQs and FIQs) are not listed. They can occur before or after the
execution of any instruction, and in some cases during the execution of an instruction, but they are
not in general caused by the instruction concerned.

• Prefetch Abort exceptions are normally caused by a memory abort when an instruction is fetched,
followed by an attempt to execute that instruction. This can happen for any instruction, but is caused
by the aborted attempt to fetch the instruction rather than by the instruction itself, and so is not listed.
A special case is the BKPT instruction, that is defined as causing a Prefetch Abort exception in some
circumstances.

• Data Abort exceptions are listed for all instructions that perform data memory accesses.

• Undefined Instruction exceptions are listed when they are part of the effects of a defined instruction.
For example, all coprocessor instructions are defined to produce the Undefined Instruction exception
if not accepted by their coprocessor. Undefined Instruction exceptions caused by the execution of an
UNDEFINED instruction are not listed, even when the UNDEFINED instruction is a special case of one
or more of the encodings of the instruction. Such special cases are instead indicated in the
encoding-specific pseudocode for the encoding.

• Supervisor Call and Secure Monitor Call exceptions are listed for the SVC and SMC instructions
respectively. Supervisor Call exceptions and the SVC instruction were previously called Software
Interrupt exceptions and the SWI instruction. Secure Monitor Call exceptions and the SMC instruction
were previously called Secure Monitor interrupts and the SMI instruction.

Floating-point exceptions are listed for instructions that can produce them. Floating-point exceptions on
page A2-42 describes these exceptions. They do not normally result in processor exceptions.

A8.1.7 Notes

Where appropriate, other notes about the instruction appear under additional subheadings.

Note
 Information that was documented in notes in previous versions of the ARM Architecture Reference Manual
and its supplements has often been moved elsewhere. For example, operand restrictions on the values of
bitfields in an instruction encoding are now normally documented in the encoding-specific pseudocode for
that encoding.
A8-6 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
A8.2 Standard assembler syntax fields

The following assembler syntax fields are standard across all or most instructions:

<c> Is an optional field. It specifies the condition under which the instruction is executed. See
Conditional execution on page A8-8 for the range of available conditions and their
encoding. If <c> is omitted, it defaults to always (AL).

<q> Specifies optional assembler qualifiers on the instruction. The following qualifiers are
defined:

.N Meaning narrow, specifies that the assembler must select a 16-bit encoding for
the instruction. If this is not possible, an assembler error is produced.

.W Meaning wide, specifies that the assembler must select a 32-bit encoding for the
instruction. If this is not possible, an assembler error is produced.

If neither .W nor .N is specified, the assembler can select either 16-bit or 32-bit encodings.
If both are available, it must select a 16-bit encoding. In a few cases, more than one encoding
of the same length can be available for an instruction. The rules for selecting between such
encodings are instruction-specific and are part of the instruction description.

Note
 When assembling to the ARM instruction set, the .N qualifier produces an assembler error

and the .W qualifier has no effect.

Although the instruction descriptions throughout this manual show the <c> and <q> fields without { } around
them, these fields are optional as described in this section.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-7

Instruction Details
A8.3 Conditional execution

Most ARM instructions, and most Thumb instructions from ARMv6T2 onwards, can be executed
conditionally, based on the values of the APSR condition flags. Before ARMv6T2, the only conditional
Thumb instruction was the 16-bit conditional branch instruction. Table A8-1 lists the available conditions.

In Thumb instructions, the condition (if it is not AL) is normally encoded in a preceding IT instruction. For
details see Conditional instructions on page A4-4 and IT on page A8-104. Some conditional branch
instructions do not require a preceding IT instruction, and include a condition code in their encoding.

In ARM instructions, bits [31:28] of the instruction contain the condition, or contain 1111 for some ARM
instructions that can only be executed unconditionally.

Table A8-1 Condition codes

cond
Mnemonic
extension

Meaning (integer) Meaning (floating-point) a Condition flags

0000 EQ Equal Equal Z == 1

0001 NE Not equal Not equal, or unordered Z == 0

0010 CS b Carry set Greater than, equal, or unordered C == 1

0011 CC c Carry clear Less than C == 0

0100 MI Minus, negative Less than N == 1

0101 PL Plus, positive or zero Greater than, equal, or unordered N == 0

0110 VS Overflow Unordered V == 1

0111 VC No overflow Not unordered V == 0

1000 HI Unsigned higher Greater than, or unordered C == 1 and Z == 0

1001 LS Unsigned lower or same Less than or equal C == 0 or Z == 1

1010 GE Signed greater than or equal Greater than or equal N == V

1011 LT Signed less than Less than, or unordered N != V

1100 GT Signed greater than Greater than Z == 0 and N == V

1101 LE Signed less than or equal Less than, equal, or unordered Z == 1 or N != V

1110 None (AL) d Always (unconditional) Always (unconditional) Any

a. Unordered means at least one NaN operand.
b. HS (unsigned higher or same) is a synonym for CS.
c. LO (unsigned lower) is a synonym for CC.
d. AL is an optional mnemonic extension for always, except in IT instructions. For details see IT on page A8-104.
A8-8 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
A8.3.1 Pseudocode details of conditional execution

The CurrentCond() pseudocode function has prototype:

bits(4) CurrentCond()

and returns a 4-bit condition specifier as follows:

• For ARM instructions, it returns bits[31:28] of the instruction.

• For the T1 and T3 encodings of the Branch instruction (see B on page A8-44), it returns the 4-bit
'cond' field of the encoding.

• For all other Thumb and ThumbEE instructions, it returns ITSTATE.IT<7:4>. See ITSTATE on
page A2-17.

The ConditionPassed() function uses this condition specifier and the APSR condition flags to determine
whether the instruction must be executed:

// ConditionPassed()
// =================

boolean ConditionPassed()
 cond = CurrentCond();

 // Evaluate base condition.
 case cond<3:1> of
 when ‘000’ result = (APSR.Z == ‘1’); // EQ or NE
 when ‘001’ result = (APSR.C == ‘1’); // CS or CC
 when ‘010’ result = (APSR.N == ‘1’); // MI or PL
 when ‘011’ result = (APSR.V == ‘1’); // VS or VC
 when ‘100’ result = (APSR.C == ‘1’) && (APSR.Z == ‘0’); // HI or LS
 when ‘101’ result = (APSR.N == APSR.V); // GE or LT
 when ‘110’ result = (APSR.N == APSR.V) && (APSR.Z == ‘0’); // GT or LE
 when ‘111’ result = TRUE; // AL

 // Condition bits ‘111x’ indicate the instruction is always executed. Otherwise,
 // invert condition if necessary.
 if cond<0> == ‘1’ && cond != ‘1111’ then
 result = !result;

 return result;
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-9

ARM_2011_Q2
Inserted Text

Section B1.6.11 Undefined Instruction exception on page B1-49 [PDF page 1199] describes the handling of conditional instructions that are UNDEFINED or UNPREDICTABLE. The pseudocode in the manual, as a sequential description of the instructions, has limitations in this respect. For more information, see Appendix I.2 Limitations of pseudocode on page AppxI-4 [PDF page 2080].

ARM_2011_Q2
Sticky Note
The inserted text after the pseudocode indicates limitations on this pseudocode.

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Replacement Text
:
 - if ITSTATE.IT<3:0> != '0000' it returns ITSTATE.IT<7:4>
 - if ITSTATE.IT<7:0> == '0000000' it returns '1110'
 - otherwise, execution of the instruction is UNPREDICTABLE.
For more information, see ITSTATE on page A2-17 [PDF page 49].

The existing link, immediately after the deleted text, is to the description of ITSTATE.

ARM_2011_Q2
Sticky Note
The edit in this line replaces the single return value with a list of three possible behaviors.

The ITSTATE reference is not deleted because it gives more information about two of the three list items.

Instruction Details
A8.4 Shifts applied to a register

ARM register offset load/store word and unsigned byte instructions can apply a wide range of different
constant shifts to the offset register. Both Thumb and ARM data-processing instructions can apply the same
range of different constant shifts to the second operand register. For details see Constant shifts.

ARM data-processing instructions can apply a register-controlled shift to the second operand register.

A8.4.1 Constant shifts

These are the same in Thumb and ARM instructions, except that the input bits come from different
positions.

<shift> is an optional shift to be applied to <Rm>. It can be any one of:

(omitted) No shift.

LSL #<n> Logical shift left <n> bits. 1 <= <n> <= 31.

LSR #<n> Logical shift right <n> bits. 1 <= <n> <= 32.

ASR #<n> Arithmetic shift right <n> bits. 1 <= <n> <= 32.

ROR #<n> Rotate right <n> bits. 1 <= <n> <= 31.

RRX Rotate right one bit, with extend. Bit [0] is written to shifter_carry_out, bits [31:1] are
shifted right one bit, and the Carry Flag is shifted into bit [31].

Note
 Assemblers can permit the use of some or all of ASR #0, LSL #0, LSR #0, and ROR #0 to specify that no shift is
to be performed. This is not standard UAL, and the encoding selected for Thumb instructions might vary
between UAL assemblers if it is used. To ensure disassembled code assembles to the original instructions,
disassemblers must omit the shift specifier when the instruction specifies no shift.

Similarly, assemblers can permit the use of #0 in the immediate forms of ASR, LSL, LSR, and ROR instructions
to specify that no shift is to be performed, that is, that a MOV (register) instruction is wanted. Again, this is
not standard UAL, and the encoding selected for Thumb instructions might vary between UAL assemblers
if it is used. To ensure disassembled code assembles to the original instructions, disassemblers must use the
MOV (register) syntax when the instruction specifies no shift.
A8-10 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Encoding

The assembler encodes <shift> into two type bits and five immediate bits, as follows:

(omitted) type = 0b00, immediate = 0.

LSL #<n> type = 0b00, immediate = <n>.

LSR #<n> type = 0b01.

If <n> < 32, immediate = <n>.

If <n> == 32, immediate = 0.

ASR #<n> type = 0b10.

If <n> < 32, immediate = <n>.

If <n> == 32, immediate = 0.

ROR #<n> type = 0b11, immediate = <n>.

RRX type = 0b11, immediate = 0.

A8.4.2 Register controlled shifts

These are only available in ARM instructions.

<type> is the type of shift to apply to the value read from <Rm>. It must be one of:

ASR Arithmetic shift right, encoded as type = 0b10

LSL Logical shift left, encoded as type = 0b00

LSR Logical shift right, encoded as type = 0b01

ROR Rotate right, encoded as type = 0b11.

The bottom byte of <Rs> contains the shift amount.

A8.4.3 Pseudocode details of instruction-specified shifts and rotates

enumeration SRType (SRType_LSL, SRType_LSR, SRType_ASR, SRType_ROR, SRType_RRX);

// DecodeImmShift()
// ================

(SRType, integer) DecodeImmShift(bits(2) type, bits(5) imm5)

 case type of
 when ‘00’
 shift_t = SRType_LSL; shift_n = UInt(imm5);
 when ‘01’
 shift_t = SRType_LSR; shift_n = if imm5 == ‘00000’ then 32 else UInt(imm5);
 when ‘10’
 shift_t = SRType_ASR; shift_n = if imm5 == ‘00000’ then 32 else UInt(imm5);
 when ‘11’
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-11

Instruction Details
 if imm5 == ‘00000’ then
 shift_t = SRType_RRX; shift_n = 1;
 else
 shift_t = SRType_ROR; shift_n = UInt(imm5);

 return (shift_t, shift_n);

// DecodeRegShift()
// ================

SRType DecodeRegShift(bits(2) type)
 case type of
 when ‘00’ shift_t = SRType_LSL;
 when ‘01’ shift_t = SRType_LSR;
 when ‘10’ shift_t = SRType_ASR;
 when ‘11’ shift_t = SRType_ROR;
 return shift_t;

// Shift()
// =======

bits(N) Shift(bits(N) value, SRType type, integer amount, bit carry_in)
 (result, -) = Shift_C(value, type, amount, carry_in);
 return result;

// Shift_C()
// =========

(bits(N), bit) Shift_C(bits(N) value, SRType type, integer amount, bit carry_in)
 assert !(type == SRType_RRX && amount != 1);

 if amount == 0 then
 (result, carry_out) = (value, carry_in);
 else
 case type of
 when SRType_LSL
 (result, carry_out) = LSL_C(value, amount);
 when SRType_LSR
 (result, carry_out) = LSR_C(value, amount);
 when SRType_ASR
 (result, carry_out) = ASR_C(value, amount);
 when SRType_ROR
 (result, carry_out) = ROR_C(value, amount);
 when SRType_RRX
 (result, carry_out) = RRX_C(value, carry_in);

 return (result, carry_out);
A8-12 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
A8.5 Memory accesses

Commonly, the following addressing modes are permitted for memory access instructions:

Offset addressing

The offset value is applied to an address obtained from the base register. The result is used
as the address for the memory access. The value of the base register is unchanged.

The assembly language syntax for this mode is:

[<Rn>,<offset>]

Pre-indexed addressing

The offset value is applied to an address obtained from the base register. The result is used
as the address for the memory access, and written back into the base register.

The assembly language syntax for this mode is:

[<Rn>,<offset>]!

Post-indexed addressing

The address obtained from the base register is used, unchanged, as the address for the
memory access. The offset value is applied to the address, and written back into the base
register

The assembly language syntax for this mode is:

[<Rn>],<offset>

In each case, <Rn> is the base register. <offset> can be:

• an immediate constant, such as <imm8> or <imm12>

• an index register, <Rm>

• a shifted index register, such as <Rm>, LSL #<shift>.

For information about unaligned access, endianness, and exclusive access, see:

• Alignment support on page A3-4

• Endian support on page A3-7

• Synchronization and semaphores on page A3-12.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-13

Instruction Details
A8.6 Alphabetical list of instructions

Every instruction is listed in this section. For details of the format used see Format of instruction
descriptions on page A8-2.

A8.6.1 ADC (immediate)

Add with Carry (immediate) adds an immediate value and the carry flag value to a register value, and writes
the result to the destination register. It can optionally update the condition flags based on the result.

d = UInt(Rd); n = UInt(Rn); setflags = (S == ‘1’); imm32 = ThumbExpandImm(i:imm3:imm8);
if BadReg(d) || BadReg(n) then UNPREDICTABLE;

if Rd == ‘1111’ && S == ‘1’ then SEE SUBS PC, LR and related instructions;
d = UInt(Rd); n = UInt(Rn); setflags = (S == ‘1’); imm32 = ARMExpandImm(imm12);

Encoding T1 ARMv6T2, ARMv7

ADC{S}<c> <Rd>,<Rn>,#<const>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 1 0 1 0 S Rn 0 imm3 Rd imm8

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7

ADC{S}<c> <Rd>,<Rn>,#<const>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 1 0 1 0 1 S Rn Rd imm12
A8-14 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

ADC{S}<c><q> {<Rd>,} <Rn>, #<const>

where:

S If S is present, the instruction updates the flags. Otherwise, the flags are not updated.

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<const> The immediate value to be added to the value obtained from <Rn>. See Modified immediate
constants in Thumb instructions on page A6-17 or Modified immediate constants in ARM
instructions on page A5-9 for the range of values.

The pre-UAL syntax ADC<c>S is equivalent to ADCS<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 (result, carry, overflow) = AddWithCarry(R[n], imm32, APSR.C);
 if d == 15 then // Can only occur for ARM encoding
 ALUWritePC(result); // setflags is always FALSE here
 else
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 APSR.V = overflow;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-15

ARM_2009_Q2
Inserted Text
 PC can be used in ARM instructions.

ARM_2009_Q2
Inserted Text
 If S is specified and <Rd> is the PC, see SUBS PC, LR and related instructions on page B6-25 [PDF page 1583]. In ARM instructions, if S is not specified and <Rd> is the PC, the instruction is a branch to the address calculated by the operation. This is a simple branch before ARMv7, and an interworking branch from ARMv7.

Instruction Details
A8.6.2 ADC (register)

Add with Carry (register) adds a register value, the carry flag value, and an optionally-shifted register value,
and writes the result to the destination register. It can optionally update the condition flags based on the
result.

d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();
(shift_t, shift_n) = (SRType_LSL, 0);

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == ‘1’);
(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);
if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

if Rd == ‘1111’ && S == ‘1’ then SEE SUBS PC, LR and related instructions;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == ‘1’);
(shift_t, shift_n) = DecodeImmShift(type, imm5);

Encoding T1 ARMv4T, ARMv5T*, ARMv6*, ARMv7

ADCS <Rdn>,<Rm> Outside IT block.

ADC<c> <Rdn>,<Rm> Inside IT block.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 0 1 0 1 Rm Rdn

Encoding T2 ARMv6T2, ARMv7

ADC{S}<c>.W <Rd>,<Rn>,<Rm>{,<shift>}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 1 0 1 0 S Rn (0) imm3 Rd imm2 type Rm

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
ADC{S}<c> <Rd>,<Rn>,<Rm>{,<shift>}

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 0 1 0 1 S Rn Rd imm5 type 0 Rm
A8-16 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

ADC{S}<c><q> {<Rd>,} <Rn>, <Rm> {,<shift>}

where:

S If S is present, the instruction updates the flags. Otherwise, the flags are not updated.

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The optionally shifted second operand register.

<shift> The shift to apply to the value read from <Rm>. If present, encoding T1 is not permitted. If
absent, no shift is applied and any encoding is permitted. Shifts applied to a register on
page A8-10 describes the shifts and how they are encoded.

In Thumb assembly:

• outside an IT block, if ADCS <Rd>,<Rn>,<Rd> has <Rd> and <Rn> both in the range R0-R7, it is assembled
using encoding T1 as though ADCS <Rd>,<Rn> had been written.

• inside an IT block, if ADC<c> <Rd>,<Rn>,<Rd> has <Rd> and <Rn> both in the range R0-R7, it is
assembled using encoding T1 as though ADC<c> <Rd>,<Rn> had been written.

To prevent either of these happening, use the .W qualifier.

The pre-UAL syntax ADC<c>S is equivalent to ADCS<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 shifted = Shift(R[m], shift_t, shift_n, APSR.C);
 (result, carry, overflow) = AddWithCarry(R[n], shifted, APSR.C);
 if d == 15 then // Can only occur for ARM encoding
 ALUWritePC(result); // setflags is always FALSE here
 else
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 APSR.V = overflow;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-17

ARM_2009_Q2
Inserted Text
 PC can be used in ARM instructions.

ARM_2009_Q2
Inserted Text
 PC can be used in ARM instructions.

ARM_2009_Q2
Inserted Text
 If S is specified and <Rd> is the PC, see SUBS PC, LR and related instructions on page B6-25 [PDF page 1583]. In ARM instructions, if S is not specified and <Rd> is the PC, the instruction is a branch to the address calculated by the operation. This is a simple branch before ARMv7, and an interworking branch from ARMv7.

Instruction Details
A8.6.3 ADC (register-shifted register)

Add with Carry (register-shifted register) adds a register value, the carry flag value, and a register-shifted
register value. It writes the result to the destination register, and can optionally update the condition flags
based on the result.

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); s = UInt(Rs);
setflags = (S == ‘1’); shift_t = DecodeRegShift(type);
if d == 15 || n == 15 || m == 15 || s == 15 then UNPREDICTABLE;

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7

ADC{S}<c> <Rd>,<Rn>,<Rm>,<type> <Rs>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 0 1 0 1 S Rn Rd Rs 0 type 1 Rm
A8-18 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

ADC{S}<c><q> {<Rd>,} <Rn>, <Rm>, <type> <Rs>

where:

S If S is present, the instruction updates the flags. Otherwise, the flags are not updated.

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The register that is shifted and used as the second operand.

<type> The type of shift to apply to the value read from <Rm>. It must be one of:

ASR Arithmetic shift right, encoded as type = 0b10

LSL Logical shift left, encoded as type = 0b00

LSR Logical shift right, encoded as type = 0b01

ROR Rotate right, encoded as type = 0b11.

<Rs> The register whose bottom byte contains the amount to shift by.

The pre-UAL syntax ADC<c>S is equivalent to ADCS<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 shift_n = UInt(R[s]<7:0>);
 shifted = Shift(R[m], shift_t, shift_n, APSR.C);
 (result, carry, overflow) = AddWithCarry(R[n], shifted, APSR.C);
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 APSR.V = overflow;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-19

Instruction Details
A8.6.4 ADD (immediate, Thumb)

This instruction adds an immediate value to a register value, and writes the result to the destination register.
It can optionally update the condition flags based on the result.

d = UInt(Rd); n = UInt(Rn); setflags = !InITBlock(); imm32 = ZeroExtend(imm3, 32);

d = UInt(Rdn); n = UInt(Rdn); setflags = !InITBlock(); imm32 = ZeroExtend(imm8, 32);

if Rd == ‘1111’ && S == ‘1’ then SEE CMN (immediate);
if Rn == ‘1101’ then SEE ADD (SP plus immediate);
d = UInt(Rd); n = UInt(Rn); setflags = (S == ‘1’); imm32 = ThumbExpandImm(i:imm3:imm8);
if BadReg(d) || n == 15 then UNPREDICTABLE;

if Rn == ‘1111’ then SEE ADR;
if Rn == ‘1101’ then SEE ADD (SP plus immediate);
d = UInt(Rd); n = UInt(Rn); setflags = FALSE; imm32 = ZeroExtend(i:imm3:imm8, 32);
if BadReg(d) then UNPREDICTABLE;

Encoding T1 ARMv4T, ARMv5T*, ARMv6*, ARMv7
ADDS <Rd>,<Rn>,#<imm3> Outside IT block.
ADD<c> <Rd>,<Rn>,#<imm3> Inside IT block.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 1 0 imm3 Rn Rd

Encoding T2 ARMv4T, ARMv5T*, ARMv6*, ARMv7
ADDS <Rdn>,#<imm8> Outside IT block.
ADD<c> <Rdn>,#<imm8> Inside IT block.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 Rdn imm8

Encoding T3 ARMv6T2, ARMv7
ADD{S}<c>.W <Rd>,<Rn>,#<const>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 1 0 0 0 S Rn 0 imm3 Rd imm8

Encoding T4 ARMv6T2, ARMv7
ADDW<c> <Rd>,<Rn>,#<imm12>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 1 0 0 0 0 0 Rn 0 imm3 Rd imm8
A8-20 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
d == 13 || (d == 15 && S == '0')

Instruction Details
Assembler syntax

where:

S If S is present, the instruction updates the flags. Otherwise, the flags are not updated.

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register. If <Rn> is SP, see ADD (SP plus immediate) on page A8-28. If <Rn>
is PC, see ADR on page A8-32.

<const> The immediate value to be added to the value obtained from <Rn>. The range of values is 0-7
for encoding T1, 0-255 for encoding T2 and 0-4095 for encoding T4. See Modified
immediate constants in Thumb instructions on page A6-17 for the range of values for
encoding T3.

When multiple encodings of the same length are available for an instruction, encoding T3 is preferred to
encoding T4 (if encoding T4 is required, use the ADDW syntax). Encoding T1 is preferred to encoding T2 if
<Rd> is specified and encoding T2 is preferred to encoding T1 if <Rd> is omitted.

The pre-UAL syntax ADD<c>S is equivalent to ADDS<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 (result, carry, overflow) = AddWithCarry(R[n], imm32, ‘0’);
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 APSR.V = overflow;

Exceptions

None.

ADD{S}<c><q> {<Rd>,} <Rn>, #<const> All encodings permitted
ADDW<c><q> {<Rd>,} <Rn>, #<const> Only encoding T4 permitted
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-21

Instruction Details
A8.6.5 ADD (immediate, ARM)

This instruction adds an immediate value to a register value, and writes the result to the destination register.
It can optionally update the condition flags based on the result.

if Rn == ‘1111’ && S == ‘0’ then SEE ADR;
if Rn == ‘1101’ then SEE ADD (SP plus immediate);
if Rd == ‘1111’ && S == ‘1’ then SEE SUBS PC, LR and related instructions;
d = UInt(Rd); n = UInt(Rn); setflags = (S == ‘1’); imm32 = ARMExpandImm(imm12);

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
ADD{S}<c> <Rd>,<Rn>,#<const>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 1 0 1 0 0 S Rn Rd imm12
A8-22 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

S If S is present, the instruction updates the flags. Otherwise, the flags are not updated.

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register. If the SP is specified for <Rn>, see ADD (SP plus immediate) on
page A8-28. If the PC is specified for <Rn>, see ADR on page A8-32.

<const> The immediate value to be added to the value obtained from <Rn>. See Modified immediate
constants in ARM instructions on page A5-9 for the range of values.

The pre-UAL syntax ADD<c>S is equivalent to ADDS<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 (result, carry, overflow) = AddWithCarry(R[n], imm32, ‘0’);
 if d == 15 then
 ALUWritePC(result); // setflags is always FALSE here
 else
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 APSR.V = overflow;

Exceptions

None.

ADD{S}<c><q> {<Rd>,} <Rn>, #<const>
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-23

ARM_2009_Q2
Inserted Text
 If S is specified and <Rd> is the PC, see SUBS PC, LR and related instructions on page B6-25 [PDF page 1583]. If S is not specified and <Rd> is the PC, the instruction is a branch to the address calculated by the operation. This is a simple branch before ARMv7, and an interworking branch from ARMv7.

Instruction Details
A8.6.6 ADD (register)

This instruction adds a register value and an optionally-shifted register value, and writes the result to the
destination register. It can optionally update the condition flags based on the result.

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = !InITBlock();
(shift_t, shift_n) = (SRType_LSL, 0);

if (DN:Rdn) == ‘1101’ || Rm == ‘1101’ then SEE ADD (SP plus register);
d = UInt(DN:Rdn); n = d; m = UInt(Rm); setflags = FALSE; (shift_t, shift_n) = (SRType_LSL, 0);
if n == 15 && m == 15 then UNPREDICTABLE;
if d == 15 && InITBlock() && !LastInITBlock() then UNPREDICTABLE;

if Rd == ‘1111’ && S == ‘1’ then SEE CMN (register);
if Rn == ‘1101’ then SEE ADD (SP plus register);
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == ‘1’);
(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);
if BadReg(d) || n == 15 || BadReg(m) then UNPREDICTABLE;

if Rd == ‘1111’ && S == ‘1’ then SEE SUBS PC, LR and related instructions;
if Rn == ‘1101’ then SEE ADD (SP plus register);
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == ‘1’);
(shift_t, shift_n) = DecodeImmShift(type, imm5);

Encoding T1 ARMv4T, ARMv5T*, ARMv6*, ARMv7
ADDS <Rd>,<Rn>,<Rm> Outside IT block.
ADD<c> <Rd>,<Rn>,<Rm> Inside IT block.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 0 0 Rm Rn Rd

Encoding T2 ARMv6T2, ARMv7 if <Rdn> and <Rm> are both from R0-R7

ARMv4T, ARMv5T*, ARMv6*, ARMv7 otherwise
ADD<c> <Rdn>,<Rm> If <Rdn> is the PC, must be outside or last in IT block.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 1 0 0 DN Rm Rdn

Encoding T3 ARMv6T2, ARMv7
ADD{S}<c>.W <Rd>,<Rn>,<Rm>{,<shift>}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 1 0 0 0 S Rn (0) imm3 Rd imm2 type Rm

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
ADD{S}<c> <Rd>,<Rn>,<Rm>{,<shift>}

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 0 1 0 0 S Rn Rd imm5 type 0 Rm
A8-24 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
d == 13 || (d == 15 && S == '0')

Instruction Details
Assembler syntax

ADD{S}<c><q> {<Rd>,} <Rn>, <Rm> {,<shift>}

where:

S If S is present, the instruction updates the flags. Otherwise, the flags are not updated.

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register. If omitted, <Rd> is the same as <Rn> and encoding T2 is preferred to
encoding T1 inside an IT block. If <Rd> is present, encoding T1 is preferred to encoding T2.

<Rn> The first operand register. If <Rn> is SP, see ADD (SP plus register) on page A8-30.

<Rm> The register that is optionally shifted and used as the second operand.

<shift> The shift to apply to the value read from <Rm>. If present, only encoding T3 or A1 is
permitted. If omitted, no shift is applied and any encoding is permitted. Shifts applied to a
register on page A8-10 describes the shifts and how they are encoded.

In Thumb assembly, inside an IT block, if ADD<c> <Rd>,<Rn>,<Rd> cannot be assembled using encoding T1,
it is assembled using encoding T2 as though ADD<c> <Rd>,<Rn> had been written.

To prevent this happening, use the .W qualifier.

The pre-UAL syntax ADD<c>S is equivalent to ADDS<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 shifted = Shift(R[m], shift_t, shift_n, APSR.C);
 (result, carry, overflow) = AddWithCarry(R[n], shifted, ‘0’);
 if d == 15 then
 ALUWritePC(result); // setflags is always FALSE here
 else
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 APSR.V = overflow;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-25

ARM_2009_Q2
Inserted Text
 PC can be used in ARM instructions, and in Thumb encoding T2.

ARM_2009_Q2
Inserted Text
 PC can be used in ARM instructions, and in Thumb encoding T2.

ARM_2009_Q2
Inserted Text
 If S is specified and <Rd> is the PC, see SUBS PC, LR and related instructions on page B6-25 [PDF page 1583]. In ARM instructions and Thumb instructions using encoding T2, if S is not specified and <Rd> is the PC, the instruction is a branch to the address calculated by the operation. For Thumb instructions and ARM instructions before ARMv7 this is a simple branch. For ARM instructions from ARMv7 it is an interworking branch.

Instruction Details
A8.6.7 ADD (register-shifted register)

Add (register-shifted register) adds a register value and a register-shifted register value. It writes the result
to the destination register, and can optionally update the condition flags based on the result.

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); s = UInt(Rs);
setflags = (S == ‘1’); shift_t = DecodeRegShift(type);
if d == 15 || n == 15 || m == 15 || s == 15 then UNPREDICTABLE;

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7

ADD{S}<c> <Rd>,<Rn>,<Rm>,<type> <Rs>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 0 1 0 0 S Rn Rd Rs 0 type 1 Rm
A8-26 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

ADD{S}<c><q> {<Rd>,} <Rn>, <Rm>, <type> <Rs>

where:

S If S is present, the instruction updates the flags. Otherwise, the flags are not updated.

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The register that is shifted and used as the second operand.

<type> The type of shift to apply to the value read from <Rm>. It must be one of:

ASR Arithmetic shift right, encoded as type = 0b10

LSL Logical shift left, encoded as type = 0b00

LSR Logical shift right, encoded as type = 0b01

ROR Rotate right, encoded as type = 0b11.

<Rs> The register whose bottom byte contains the amount to shift by.

The pre-UAL syntax ADD<c>S is equivalent to ADDS<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 shift_n = UInt(R[s]<7:0>);
 shifted = Shift(R[m], shift_t, shift_n, APSR.C);
 (result, carry, overflow) = AddWithCarry(R[n], shifted, ‘0’);
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 APSR.V = overflow;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-27

Instruction Details
A8.6.8 ADD (SP plus immediate)

This instruction adds an immediate value to the SP value, and writes the result to the destination register.

d = UInt(Rd); setflags = FALSE; imm32 = ZeroExtend(imm8:’00’, 32);

d = 13; setflags = FALSE; imm32 = ZeroExtend(imm7:’00’, 32);

if Rd == ‘1111’ && S == ‘1’ then SEE CMN (immediate);
d = UInt(Rd); setflags = (S == ‘1’); imm32 = ThumbExpandImm(i:imm3:imm8);
if d == 15 then UNPREDICTABLE;

d = UInt(Rd); setflags = FALSE; imm32 = ZeroExtend(i:imm3:imm8, 32);
if d == 15 then UNPREDICTABLE;

if Rd == ‘1111’ && S == ‘1’ then SEE SUBS PC, LR and related instructions;
d = UInt(Rd); setflags = (S == ‘1’); imm32 = ARMExpandImm(imm12);

Encoding T1 ARMv4T, ARMv5T*, ARMv6*, ARMv7
ADD<c> <Rd>,SP,#<imm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 1 Rd imm8

Encoding T2 ARMv4T, ARMv5T*, ARMv6*, ARMv7
ADD<c> SP,SP,#<imm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 0 0 0 0 imm7

Encoding T3 ARMv6T2, ARMv7
ADD{S}<c>.W <Rd>,SP,#<const>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 1 0 0 0 S 1 1 0 1 0 imm3 Rd imm8

Encoding T4 ARMv6T2, ARMv7
ADDW<c> <Rd>,SP,#<imm12>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 1 0 0 0 0 0 1 1 0 1 0 imm3 Rd imm8

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
ADD{S}<c> <Rd>,SP,#<const>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 1 0 1 0 0 S 1 1 0 1 Rd imm12
A8-28 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q4
Inserted Text
 && S == '0'

Instruction Details
Assembler syntax

where:

S If S is present, the instruction updates the flags. Otherwise, the flags are not updated.

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register. If omitted, <Rd> is SP.

<const> The immediate value to be added to the value obtained from SP. Values are multiples of 4 in
the range 0-1020 for encoding T1, multiples of 4 in the range 0-508 for encoding T2 and
any value in the range 0-4095 for encoding T4. See Modified immediate constants in Thumb
instructions on page A6-17 or Modified immediate constants in ARM instructions on
page A5-9 for the range of values for encodings T3 and A1.

When both 32-bit encodings are available for an instruction, encoding T3 is preferred to
encoding T4 (if encoding T4 is required, use the ADDW syntax).

The pre-UAL syntax ADD<c>S is equivalent to ADDS<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 (result, carry, overflow) = AddWithCarry(SP, imm32, ‘0’);
 if d == 15 then // Can only occur for ARM encoding
 ALUWritePC(result); // setflags is always FALSE here
 else
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 APSR.V = overflow;

Exceptions

None.

ADD{S}<c><q> {<Rd>,} SP, #<const> All encodings permitted
ADDW<c><q> {<Rd>,} SP, #<const> Only encoding T4 is permitted
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-29

ARM_2009_Q2
Inserted Text
 If S is specified and <Rd> is the PC, see SUBS PC, LR and related instructions on page B6-25 [PDF page 1583]. In ARM instructions, if S is not specified and <Rd> is the PC, the instruction is a branch to the address calculated by the operation. This is a simple branch before ARMv7, and an interworking branch from ARMv7.

Instruction Details
A8.6.9 ADD (SP plus register)

This instruction adds an optionally-shifted register value to the SP value, and writes the result to the
destination register.

d = UInt(DM:Rdm); m = UInt(DM:Rdm); setflags = FALSE;
(shift_t, shift_n) = (SRType_LSL, 0);

if Rm == ‘1101’ then SEE encoding T1;
d = 13; m = UInt(Rm); setflags = FALSE;
(shift_t, shift_n) = (SRType_LSL, 0);

d = UInt(Rd); m = UInt(Rm); setflags = (S == ‘1’);
(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);
if d == 13 && (shift_t != SRType_LSL || shift_n > 3) then UNPREDICTABLE;
if d == 15 || BadReg(m) then UNPREDICTABLE;

if Rd == ‘1111’ && S == ‘1’ then SEE SUBS PC, LR and related instructions;
d = UInt(Rd); m = UInt(Rm); setflags = (S == ‘1’);
(shift_t, shift_n) = DecodeImmShift(type, imm5);

Encoding T1 ARMv4T, ARMv5T*, ARMv6*, ARMv7
ADD<c> <Rdm>, SP, <Rdm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 1 0 0 DM 1 1 0 1 Rdm

Encoding T2 ARMv4T, ARMv5T*, ARMv6*, ARMv7
ADD<c> SP,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 1 0 0 1 Rm 1 0 1

Encoding T3 ARMv6T2, ARMv7
ADD{S}<c>.W <Rd>,SP,<Rm>{,<shift>}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 1 0 0 0 S 1 1 0 1 0 imm3 Rd imm2 type Rm

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
ADD{S}<c> <Rd>,SP,<Rm>{,<shift>}

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 0 1 0 0 S 1 1 0 1 Rd imm5 type 0 Rm
A8-30 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2010_Q3
Inserted Text

if d == 15 && InITBlock() && !LastInITBlock() then UNPREDICTABLE;

Instruction Details
Assembler syntax

ADD{S}<c><q> {<Rd>,} SP, <Rm>{, <shift>}

where:

S If S is present, the instruction updates the flags. Otherwise, the flags are not updated.

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register. This register can be SP. If omitted, <Rd> is SP. This register can be
the PC, but if it is, encoding T3 is not permitted. Using the PC is deprecated.

<Rm> The register that is optionally shifted and used as the second operand. This register can be
the PC, but if it is, encoding T3 is not permitted. Using the PC is deprecated. This register
can be SP in both ARM and Thumb instructions, but:

• the use of SP is deprecated

• when assembling for the Thumb instruction set, only encoding T1 is available and so
the instruction can only be ADD SP,SP,SP.

<shift> The shift to apply to the value read from <Rm>. If omitted, no shift is applied and any
encoding is permitted. If present, only encoding T3 or A1 is permitted. Shifts applied to a
register on page A8-10 describes the shifts and how they are encoded.

In the Thumb instruction set, if <Rd> is SP or omitted, <shift> is only permitted to be
omitted, LSL #1, LSL #2, or LSL #3.

The pre-UAL syntax ADD<c>S is equivalent to ADDS<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 shifted = Shift(R[m], shift_t, shift_n, APSR.C);
 (result, carry, overflow) = AddWithCarry(SP, shifted, ‘0’);
 if d == 15 then
 ALUWritePC(result); // setflags is always FALSE here
 else
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 APSR.V = overflow;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-31

ARM_2009_Q2
Inserted Text
 If S is specified and <Rd> is the PC, see SUBS PC, LR and related instructions on page B6-25 [PDF page 1583]. In ARM instructions and Thumb instructions using encoding T1, if S is not specified and <Rd> is the PC, the instruction is a branch to the address calculated by the operation. For Thumb instructions and ARM instructions before ARMv7 this is a simple branch. For ARM instructions from ARMv7 it is an interworking branch.

Instruction Details
A8.6.10 ADR

This instruction adds an immediate value to the PC value to form a PC-relative address, and writes the result
to the destination register.

d = UInt(Rd); imm32 = ZeroExtend(imm8:’00’, 32); add = TRUE;

d = UInt(Rd); imm32 = ZeroExtend(i:imm3:imm8, 32); add = FALSE;
if BadReg(d) then UNPREDICTABLE;

d = UInt(Rd); imm32 = ZeroExtend(i:imm3:imm8, 32); add = TRUE;
if BadReg(d) then UNPREDICTABLE;

d = UInt(Rd); imm32 = ARMExpandImm(imm12); add = TRUE;

d = UInt(Rd); imm32 = ARMExpandImm(imm12); add = FALSE;

Encoding T1 ARMv4T, ARMv5T*, ARMv6*, ARMv7
ADR<c> <Rd>,<label>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 0 Rd imm8

Encoding T2 ARMv6T2, ARMv7
ADR<c>.W <Rd>,<label> <label> before current instruction

SUB <Rd>,PC,#0 Special case for subtraction of zero

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 1 0 1 0 1 0 1 1 1 1 0 imm3 Rd imm8

Encoding T3 ARMv6T2, ARMv7
ADR<c>.W <Rd>,<label> <label> after current instruction

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 1 0 0 0 0 0 1 1 1 1 0 imm3 Rd imm8

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
ADR<c> <Rd>,<label> <label> after current instruction

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 1 0 1 0 0 0 1 1 1 1 Rd imm12

Encoding A2 ARMv4*, ARMv5T*, ARMv6*, ARMv7
ADR<c> <Rd>,<label> <label> before current instruction

SUB <Rd>,PC,#0 Special case for subtraction of zero

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 1 0 0 1 0 0 1 1 1 1 Rd imm12
A8-32 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<label> The label of an instruction or literal data item whose address is to be loaded into <Rd>. The
assembler calculates the required value of the offset from the Align(PC,4) value of the ADR
instruction to this label. Permitted values of the offset are:

Encoding T1
multiples of 4 in the range -1020 to 1020

Encodings T2 and T3

any value in the range -4095 to 4095

Encodings A1 and A2

plus or minus any of the constants described in Modified immediate constants
in ARM instructions on page A5-9.

If the offset is zero or positive, encodings T1, T3, and A1 are permitted with imm32 equal to
the offset.

If the offset is negative, encodings T2 and A2 are permitted with imm32 equal to minus the
offset.

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be
specified separately, including permitting a subtraction of 0 that cannot be specified using the normal
syntax. For more information, see Use of labels in UAL instruction syntax on page A4-5.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 result = if add then (Align(PC,4) + imm32) else (Align(PC,4) - imm32);
 if d == 15 then // Can only occur for ARM encodings
 ALUWritePC(result);
 else
 R[d] = result;

Exceptions

None.

ADR<c><q> <Rd>, <label> Normal syntax
ADD<c><q> <Rd>, PC, #<const> Alternative for encodings T1, T3, A1
SUB<c><q> <Rd>, PC, #<const> Alternative for encoding T2, A2
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-33

ARM_2009_Q2
Inserted Text
 In ARM instructions, if <Rd> is the PC, the instruction is a branch to the address calculated by the operation. This is a simple branch before ARMv7, and an interworking branch from ARMv7.

Instruction Details
A8.6.11 AND (immediate)

This instruction performs a bitwise AND of a register value and an immediate value, and writes the result
to the destination register.

if Rd == ‘1111’ && S == ‘1’ then SEE TST (immediate);
d = UInt(Rd); n = UInt(Rn); setflags = (S == ‘1’);
(imm32, carry) = ThumbExpandImm_C(i:imm3:imm8, APSR.C);
if BadReg(d) || BadReg(n) then UNPREDICTABLE;

if Rd == ‘1111’ && S == ‘1’ then SEE SUBS PC, LR and related instructions;
d = UInt(Rd); n = UInt(Rn); setflags = (S == ‘1’);
(imm32, carry) = ARMExpandImm_C(imm12, APSR.C);

Encoding T1 ARMv6T2, ARMv7
AND{S}<c> <Rd>,<Rn>,#<const>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 0 0 0 0 S Rn 0 imm3 Rd imm8

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
AND{S}<c> <Rd>,<Rn>,#<const>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 1 0 0 0 0 S Rn Rd imm12
A8-34 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
d == 13 || (d == 15 && S == '0')

Instruction Details
Assembler syntax

AND{S}<c><q> {<Rd>,} <Rn>, #<const>

where:

S If S is present, the instruction updates the flags. Otherwise, the flags are not updated.

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<const> The immediate value to be ANDed with the value obtained from <Rn>. See Modified
immediate constants in Thumb instructions on page A6-17 or Modified immediate constants
in ARM instructions on page A5-9 for the range of values.

The pre-UAL syntax AND<c>S is equivalent to ANDS<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 result = R[n] AND imm32;
 if d == 15 then // Can only occur for ARM encoding
 ALUWritePC(result); // setflags is always FALSE here
 else
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 // APSR.V unchanged

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-35

ARM_2009_Q2
Inserted Text
 PC can be used in ARM instructions.

ARM_2009_Q2
Inserted Text
 If S is specified and <Rd> is the PC, see SUBS PC, LR and related instructions on page B6-25 [PDF page 1583]. In ARM instructions, if S is not specified and <Rd> is the PC, the instruction is a branch to the address calculated by the operation. This is a simple branch before ARMv7, and an interworking branch from ARMv7.

Instruction Details
A8.6.12 AND (register)

This instruction performs a bitwise AND of a register value and an optionally-shifted register value, and
writes the result to the destination register. It can optionally update the condition flags based on the result.

d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();
(shift_t, shift_n) = (SRType_LSL, 0);

if Rd == ‘1111’ && S == ‘1’ then SEE TST (register);
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == ‘1’);
(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);
if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

if Rd == ‘1111’ && S == ‘1’ then SEE SUBS PC, LR and related instructions;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == ‘1’);
(shift_t, shift_n) = DecodeImmShift(type, imm5);

Encoding T1 ARMv4T, ARMv5T*, ARMv6*, ARMv7
ANDS <Rdn>,<Rm> Outside IT block.
AND<c> <Rdn>,<Rm> Inside IT block.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 0 0 0 0 Rm Rdn

Encoding T2 ARMv6T2, ARMv7
AND{S}<c>.W <Rd>,<Rn>,<Rm>{,<shift>}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 0 0 S Rn (0) imm3 Rd imm2 type Rm

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
AND{S}<c> <Rd>,<Rn>,<Rm>{,<shift>}

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 0 0 0 0 S Rn Rd imm5 type 0 Rm
A8-36 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
d == 13 || (d == 15 && S == '0')

Instruction Details
Assembler syntax

AND{S}<c><q> {<Rd>,} <Rn>, <Rm> {,<shift>}

where:

S If S is present, the instruction updates the flags. Otherwise, the flags are not updated.

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The register that is optionally shifted and used as the second operand.

<shift> The shift to apply to the value read from <Rm>. If present, encoding T1 is not permitted. If
absent, no shift is applied and all encodings are permitted. Shifts applied to a register on
page A8-10 describes the shifts and how they are encoded.

In Thumb assembly:

• outside an IT block, if ANDS <Rd>,<Rn>,<Rd> has <Rd> and <Rn> both in the range R0-R7, it is assembled
using encoding T1 as though ANDS <Rd>,<Rn> had been written

• inside an IT block, if AND<c> <Rd>,<Rn>,<Rd> has <Rd> and <Rn> both in the range R0-R7, it is
assembled using encoding T1 as though AND<c> <Rd>,<Rn> had been written.

To prevent either of these happening, use the .W qualifier.

The pre-UAL syntax AND<c>S is equivalent to ANDS<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
 result = R[n] AND shifted;
 if d == 15 then // Can only occur for ARM encoding
 ALUWritePC(result); // setflags is always FALSE here
 else
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 // APSR.V unchanged

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-37

ARM_2009_Q2
Inserted Text
 PC can be used in ARM instructions.

ARM_2009_Q2
Inserted Text
 PC can be used in ARM instructions.

ARM_2009_Q2
Inserted Text
 If S is specified and <Rd> is the PC, see SUBS PC, LR and related instructions on page B6-25 [PDF page 1583]. In ARM instructions, if S is not specified and <Rd> is the PC, the instruction is a branch to the address calculated by the operation. This is a simple branch before ARMv7, and an interworking branch from ARMv7.

Instruction Details
A8.6.13 AND (register-shifted register)

This instruction performs a bitwise AND of a register value and a register-shifted register value. It writes
the result to the destination register, and can optionally update the condition flags based on the result.

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); s = UInt(Rs);
setflags = (S == ‘1’); shift_t = DecodeRegShift(type);
if d == 15 || n == 15 || m == 15 || s == 15 then UNPREDICTABLE;

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7

AND{S}<c> <Rd>,<Rn>,<Rm>,<type> <Rs>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 0 0 0 0 S Rn Rd Rs 0 type 1 Rm
A8-38 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

AND{S}<c><q> {<Rd>,} <Rn>, <Rm>, <type> <Rs>

where:

S If S is present, the instruction updates the flags. Otherwise, the flags are not updated.

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The register that is shifted and used as the second operand.

<type> The type of shift to apply to the value read from <Rm>. It must be one of:

ASR Arithmetic shift right, encoded as type = 0b10

LSL Logical shift left, encoded as type = 0b00

LSR Logical shift right, encoded as type = 0b01

ROR Rotate right, encoded as type = 0b11.

<Rs> The register whose bottom byte contains the amount to shift by.

The pre-UAL syntax AND<c>S is equivalent to ANDS<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 shift_n = UInt(R[s]<7:0>);
 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
 result = R[n] AND shifted;
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 // APSR.V unchanged

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-39

Instruction Details
A8.6.14 ASR (immediate)

Arithmetic Shift Right (immediate) shifts a register value right by an immediate number of bits, shifting in
copies of its sign bit, and writes the result to the destination register. It can optionally update the condition
flags based on the result.

d = UInt(Rd); m = UInt(Rm); setflags = !InITBlock();
(-, shift_n) = DecodeImmShift(‘10’, imm5);

d = UInt(Rd); m = UInt(Rm); setflags = (S == ‘1’);
(-, shift_n) = DecodeImmShift(‘10’, imm3:imm2);
if BadReg(d) || BadReg(m) then UNPREDICTABLE;

d = UInt(Rd); m = UInt(Rm); setflags = (S == ‘1’);
(-, shift_n) = DecodeImmShift(‘10’, imm5);

Encoding T1 ARMv4T, ARMv5T*, ARMv6*, ARMv7
ASRS <Rd>,<Rm>,#<imm> Outside IT block.
ASR<c> <Rd>,<Rm>,#<imm> Inside IT block.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 0 imm5 Rm Rd

Encoding T2 ARMv6T2, ARMv7
ASR{S}<c>.W <Rd>,<Rm>,#<imm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 S 1 1 1 1 (0) imm3 Rd imm2 1 0 Rm

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
ASR{S}<c> <Rd>,<Rm>,#<imm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 1 1 0 1 S (0) (0) (0) (0) Rd imm5 1 0 0 Rm
A8-40 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2011_Q2
Inserted Text
if Rd == '1111' && S == '1' then SEE SUBS PC, LR and related instructions;

Instruction Details
Assembler syntax

ASR{S}<c><q> {<Rd>,} <Rm>, #<imm>

where:

S If S is present, the instruction updates the flags. Otherwise, the flags are not updated.

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rm> The first operand register.

<imm> The shift amount, in the range 1 to 32. See Shifts applied to a register on page A8-10.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 (result, carry) = Shift_C(R[m], SRType_ASR, shift_n, APSR.C);
 if d == 15 then // Can only occur for ARM encoding
 ALUWritePC(result); // setflags is always FALSE here
 else
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 // APSR.V unchanged

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-41

ARM_2009_Q2
Inserted Text
 PC can be used in ARM instructions.

ARM_2009_Q2
Inserted Text
 In ARM instructions, if S is not specified and <Rd> is the PC, the instruction is a branch to the address calculated by the operation. This is a simple branch before ARMv7, and an interworking branch from ARMv7.

Instruction Details
A8.6.15 ASR (register)

Arithmetic Shift Right (register) shifts a register value right by a variable number of bits, shifting in copies
of its sign bit, and writes the result to the destination register. The variable number of bits is read from the
bottom byte of a register. It can optionally update the condition flags based on the result.

d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == ‘1’);
if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == ‘1’);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

Encoding T1 ARMv4T, ARMv5T*, ARMv6*, ARMv7
ASRS <Rdn>,<Rm> Outside IT block.
ASR<c> <Rdn>,<Rm> Inside IT block.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 0 1 0 0 Rm Rdn

Encoding T2 ARMv6T2, ARMv7
ASR{S}<c>.W <Rd>,<Rn>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0 1 0 S Rn 1 1 1 1 Rd 0 0 0 0 Rm

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
ASR{S}<c> <Rd>,<Rn>,<Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 1 1 0 1 S (0) (0) (0) (0) Rd Rm 0 1 0 1 Rn
A8-42 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

ASR{S}<c><q> {<Rd>,} <Rn>, <Rm>

where:

S If S is present, the instruction updates the flags. Otherwise, the flags are not updated.

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The register whose bottom byte contains the amount to shift by.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 shift_n = UInt(R[m]<7:0>);
 (result, carry) = Shift_C(R[n], SRType_ASR, shift_n, APSR.C);
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 // APSR.V unchanged

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-43

Instruction Details
A8.6.16 B

Branch causes a branch to a target address.

if cond == ‘1110’ then UNDEFINED;
if cond == ‘1111’ then SEE SVC;
imm32 = SignExtend(imm8:’0’, 32);
if InITBlock() then UNPREDICTABLE;

imm32 = SignExtend(imm11:’0’, 32);
if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

if cond<3:1> == ‘111’ then SEE “Related encodings”;
imm32 = SignExtend(S:J2:J1:imm6:imm11:’0’, 32);
if InITBlock() then UNPREDICTABLE;

I1 = NOT(J1 EOR S); I2 = NOT(J2 EOR S); imm32 = SignExtend(S:I1:I2:imm10:imm11:’0’, 32);
if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

imm32 = SignExtend(imm24:’00’, 32);

Encoding T1 ARMv4T, ARMv5T*, ARMv6*, ARMv7
B<c> <label> Not permitted in IT block.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 cond imm8

Encoding T2 ARMv4T, ARMv5T*, ARMv6*, ARMv7
B<c> <label> Outside or last in IT block

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 0 imm11

Encoding T3 ARMv6T2, ARMv7
B<c>.W <label> Not permitted in IT block.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 S cond imm6 1 0 J1 0 J2 imm11

Encoding T4 ARMv6T2, ARMv7
B<c>.W <label> Outside or last in IT block

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 S imm10 1 0 J1 1 J2 imm11

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
B<c> <label>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 0 1 0 imm24
A8-44 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

B<c><q> <label>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

Note
 Encodings T1 and T3 are conditional in their own right, and do not require an IT instruction

to make them conditional.

For encodings T1 and T3, <c> must not be AL or omitted. The 4-bit encoding of the condition
is placed in the instruction and not in a preceding IT instruction, and the instruction must not
be in an IT block. As a result, encodings T1 and T2 are never both available to the assembler,
nor are encodings T3 and T4.

<label> The label of the instruction that is to be branched to. The assembler calculates the required
value of the offset from the PC value of the B instruction to this label, then selects an
encoding that sets imm32 to that offset.

Permitted offsets are:

Encoding T1 Even numbers in the range –256 to 254

Encoding T2 Even numbers in the range –2048 to 2046

Encoding T3 Even numbers in the range –1048576 to 1048574

Encoding T4 Even numbers in the range –16777216 to 16777214

Encoding A1 Multiples of 4 in the range –33554432 to 33554428.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 BranchWritePC(PC + imm32);

Exceptions

None.

Related encodings See Branches and miscellaneous control on page A6-20
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-45

Instruction Details
A8.6.17 BFC

Bit Field Clear clears any number of adjacent bits at any position in a register, without affecting the other
bits in the register.

d = UInt(Rd); msbit = UInt(msb); lsbit = UInt(imm3:imm2);
if BadReg(d) then UNPREDICTABLE;

d = UInt(Rd); msbit = UInt(msb); lsbit = UInt(lsb);
if d == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
BFC<c> <Rd>,#<lsb>,#<width>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 (0) 1 1 0 1 1 0 1 1 1 1 0 imm3 Rd imm2 (0) msb

Encoding A1 ARMv6T2, ARMv7
BFC<c> <Rd>,#<lsb>,#<width>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 1 1 1 0 msb Rd lsb 0 0 1 1 1 1 1
A8-46 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

BFC<c><q> <Rd>, #<lsb>, #<width>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<lsb> The least significant bit that is to be cleared, in the range 0 to 31. This determines the
required value of lsbit.

<width> The number of bits to be cleared, in the range 1 to 32-<lsb>. The required value of msbit is
<lsb>+<width>-1.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 if msbit >= lsbit then
 R[d]<msbit:lsbit> = Replicate(‘0’, msbit-lsbit+1);
 // Other bits of R[d] are unchanged
 else
 UNPREDICTABLE;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-47

Instruction Details
A8.6.18 BFI

Bit Field Insert copies any number of low order bits from a register into the same number of adjacent bits at
any position in the destination register.

if Rn == ‘1111’ then SEE BFC;
d = UInt(Rd); n = UInt(Rn); msbit = UInt(msb); lsbit = UInt(imm3:imm2);
if BadReg(d) || n == 13 then UNPREDICTABLE;

if Rn == ‘1111’ then SEE BFC;
d = UInt(Rd); n = UInt(Rn); msbit = UInt(msb); lsbit = UInt(lsb);
if d == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
BFI<c> <Rd>,<Rn>,#<lsb>,#<width>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 (0) 1 1 0 1 1 0 Rn 0 imm3 Rd imm2 (0) msb

Encoding A1 ARMv6T2, ARMv7
BFI<c> <Rd>,<Rn>,#<lsb>,#<width>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 1 1 1 0 msb Rd 1sb 0 0 1 Rn
A8-48 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

BFI<c><q> <Rd>, <Rn>, #<lsb>, #<width>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The source register.

<lsb> The least significant destination bit, in the range 0 to 31. This determines the required value
of lsbit.

<width> The number of bits to be copied, in the range 1 to 32-<lsb>. The required value of msbit is
<lsb>+<width>-1.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 if msbit >= lsbit then
 R[d]<msbit:lsbit> = R[n]<(msbit-lsbit):0>;
 // Other bits of R[d] are unchanged
 else
 UNPREDICTABLE;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-49

Instruction Details
A8.6.19 BIC (immediate)

Bitwise Bit Clear (immediate) performs a bitwise AND of a register value and the complement of an
immediate value, and writes the result to the destination register. It can optionally update the condition flags
based on the result.

d = UInt(Rd); n = UInt(Rn); setflags = (S == ‘1’);
(imm32, carry) = ThumbExpandImm_C(i:imm3:imm8, APSR.C);
if BadReg(d) || BadReg(n) then UNPREDICTABLE;

if Rd == ‘1111’ && S == ‘1’ then SEE SUBS PC, LR and related instructions;
d = UInt(Rd); n = UInt(Rn); setflags = (S == ‘1’);
(imm32, carry) = ARMExpandImm_C(imm12, APSR.C);

Encoding T1 ARMv6T2, ARMv7
BIC{S}<c> <Rd>,<Rn>,#<const>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 0 0 0 1 S Rn 0 imm3 Rd imm8

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
BIC{S}<c> <Rd>,<Rn>,#<const>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 1 1 1 1 0 S Rn Rd imm12
A8-50 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

BIC{S}<c><q> {<Rd>,} <Rn>, #<const>

where:

S If S is present, the instruction updates the flags. Otherwise, the flags are not updated.

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The register that contains the operand.

<const> The immediate value to be bitwise inverted and ANDed with the value obtained from <Rn>.
See Modified immediate constants in Thumb instructions on page A6-17 or Modified
immediate constants in ARM instructions on page A5-9 for the range of values.

The pre-UAL syntax BIC<c>S is equivalent to BICS<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 result = R[n] AND NOT(imm32);
 if d == 15 then // Can only occur for ARM encoding
 ALUWritePC(result); // setflags is always FALSE here
 else
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 // APSR.V unchanged

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-51

ARM_2009_Q2
Inserted Text
 PC can be used in ARM instructions.

ARM_2009_Q2
Inserted Text
 If S is specified and <Rd> is the PC, see SUBS PC, LR and related instructions on page B6-25 [PDF page 1583]. In ARM instructions, if S is not specified and <Rd> is the PC, the instruction is a branch to the address calculated by the operation. This is a simple branch before ARMv7, and an interworking branch from ARMv7.

Instruction Details
A8.6.20 BIC (register)

Bitwise Bit Clear (register) performs a bitwise AND of a register value and the complement of an
optionally-shifted register value, and writes the result to the destination register. It can optionally update the
condition flags based on the result.

d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();
(shift_t, shift_n) = (SRType_LSL, 0);

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == ‘1’);
(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);
if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

if Rd == ‘1111’ && S == ‘1’ then SEE SUBS PC, LR and related instructions;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == ‘1’);
(shift_t, shift_n) = DecodeImmShift(type, imm5);

Encoding T1 ARMv4T, ARMv5T*, ARMv6*, ARMv7
BICS <Rdn>,<Rm> Outside IT block.
BIC<c> <Rdn>,<Rm> Inside IT block.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 1 1 1 0 Rm Rdn

Encoding T2 ARMv6T2, ARMv7
BIC{S}<c>.W <Rd>,<Rn>,<Rm>{,<shift>}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 0 1 S Rn (0) imm3 Rd imm2 type Rm

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
BIC{S}<c> <Rd>,<Rn>,<Rm>{,<shift>}

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 1 1 1 0 S Rn Rd imm5 type 0 Rm
A8-52 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

BIC{S}<c><q> {<Rd>,} <Rn>, <Rm> {,<shift>}

where:

S If S is present, the instruction updates the flags. Otherwise, the flags are not updated.

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The register that is optionally shifted and used as the second operand.

<shift> The shift to apply to the value read from <Rm>. If present, encoding T1 is not permitted. If
absent, no shift is applied and all encodings are permitted. Shifts applied to a register on
page A8-10 describes the shifts and how they are encoded.

The pre-UAL syntax BIC<c>S is equivalent to BICS<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
 result = R[n] AND NOT(shifted);
 if d == 15 then // Can only occur for ARM encoding
 ALUWritePC(result); // setflags is always FALSE here
 else
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 // APSR.V unchanged

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-53

ARM_2009_Q2
Inserted Text
 PC can be used in ARM instructions.

ARM_2009_Q2
Inserted Text
 PC can be used in ARM instructions.

ARM_2009_Q2
Inserted Text
 If S is specified and <Rd> is the PC, see SUBS PC, LR and related instructions on page B6-25 [PDF page 1583]. In ARM instructions, if S is not specified and <Rd> is the PC, the instruction is a branch to the address calculated by the operation. This is a simple branch before ARMv7, and an interworking branch from ARMv7.

Instruction Details
A8.6.21 BIC (register-shifted register)

Bitwise Bit Clear (register-shifted register) performs a bitwise AND of a register value and the complement
of a register-shifted register value. It writes the result to the destination register, and can optionally update
the condition flags based on the result.

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); s = UInt(Rs);
setflags = (S == ‘1’); shift_t = DecodeRegShift(type);
if d == 15 || n == 15 || m == 15 || s == 15 then UNPREDICTABLE;

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7

BIC{S}<c> <Rd>,<Rn>,<Rm>,<type> <Rs>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 1 1 1 0 S Rn Rd Rs 0 type 1 Rm
A8-54 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

BIC{S}<c><q> {<Rd>,} <Rn>, <Rm>, <type> <Rs>

where:

S If S is present, the instruction updates the flags. Otherwise, the flags are not updated.

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The register that is shifted and used as the second operand.

<type> The type of shift to apply to the value read from <Rm>. It must be one of:

ASR Arithmetic shift right, encoded as type = 0b10

LSL Logical shift left, encoded as type = 0b00

LSR Logical shift right, encoded as type = 0b01

ROR Rotate right, encoded as type = 0b11.

<Rs> The register whose bottom byte contains the amount to shift by.

The pre-UAL syntax BIC<c>S is equivalent to BICS<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 shift_n = UInt(R[s]<7:0>);
 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
 result = R[n] AND NOT(shifted);
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 // APSR.V unchanged

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-55

Instruction Details
A8.6.22 BKPT

Breakpoint causes a software breakpoint to occur.

Breakpoint is always unconditional, even when inside an IT block.

imm32 = ZeroExtend(imm8, 32);
// imm32 is for assembly/disassembly only and is ignored by hardware.

imm32 = ZeroExtend(imm12:imm4, 32);
// imm32 is for assembly/disassembly only and is ignored by hardware.

if cond != ‘1110’ then UNPREDICTABLE; // BKPT must be encoded with AL condition

Encoding T1 ARMv5T*, ARMv6*, ARMv7
BKPT #<imm8>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 0 imm8

Encoding A1 ARMv5T*, ARMv6*, ARMv7
BKPT #<imm16>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 1 0 0 1 0 imm12 0 1 1 1 imm4
A8-56 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

BKPT<q> #<imm>

where:

<q> See Standard assembler syntax fields on page A8-7. A BKPT instruction must be
unconditional.

<imm> Specifies a value that is stored in the instruction, in the range 0-255 for a Thumb instruction
or 0-65535 for an ARM instruction. This value is ignored by the processor, but can be used
by a debugger to store more information about the breakpoint.

Operation

EncodingSpecificOperations();
BKPTInstrDebugEvent();

Exceptions

Prefetch Abort.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-57

ARM_2009_Q3
Cross-Out

ARM_2009_Q3
Replacement Text
{#}

Instruction Details
A8.6.23 BL, BLX (immediate)

Branch with Link calls a subroutine at a PC-relative address.

Branch with Link and Exchange Instruction Sets (immediate) calls a subroutine at a PC-relative address,
and changes instruction set from ARM to Thumb, or from Thumb to ARM.

I1 = NOT(J1 EOR S); I2 = NOT(J2 EOR S); imm32 = SignExtend(S:I1:I2:imm10:imm11:’0’, 32);
toARM = FALSE;
if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

if CurrentInstrSet() == InstrSet_ThumbEE then UNDEFINED;
I1 = NOT(J1 EOR S); I2 = NOT(J2 EOR S); imm32 = SignExtend(S:I1:I2:imm10H:imm10L:’00’, 32);
toARM = TRUE;
if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

imm32 = SignExtend(imm24:’00’, 32); toARM = TRUE;

imm32 = SignExtend(imm24:H:’0’, 32); toARM = FALSE;

Encoding T1 ARMv4T, ARMv5T*, ARMv6*, ARMv7 if J1 == J2 == 1

ARMv6T2, ARMv7 otherwise
BL<c> <label> Outside or last in IT block

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 S imm10 1 1 J1 1 J2 imm11

Encoding T2 ARMv5T*, ARMv6*, ARMv7 if J1 == J2 == 1

ARMv6T2, ARMv7 otherwise
BLX<c> <label> Outside or last in IT block

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 S imm10H 1 1 J1 0 J2 imm10L 0

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
BL<c> <label>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 0 1 1 imm24

Encoding A2 ARMv5T*, ARMv6*, ARMv7
BLX <label>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 H imm24
A8-58 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
targetInstrSet = CurrentInstrSet();

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
targetInstrSet = InstrSet_ARM;

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
targetInstrSet = InstrSet_ARM;

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
targetInstrSet = InstrSet_Thumb;

ARM_2009_Q3
Cross-Out

ARM_2009_Q3
Replacement Text
H

ARM_2009_Q3
Cross-Out

ARM_2009_Q3
Replacement Text
CurrentInstrSet() == InstrSet_ThumbEE || H==’1’

Instruction Details
Assembler syntax

BL{X}<c><q> <label>

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM BLX (immediate) instruction
must be unconditional.

X If present, specifies a change of instruction set (from ARM to Thumb or from Thumb to
ARM). If X is omitted, the processor remains in the same state. For ThumbEE code,
specifying X is not permitted.

<label> The label of the instruction that is to be branched to.

For BL (encodings T1, A1), the assembler calculates the required value of the offset from the
PC value of the BL instruction to this label, then selects an encoding that sets imm32 to that
offset. Permitted offsets are even numbers in the range –16777216 to 16777214 (Thumb) or
multiples of 4 in the range −33554432 to 33554428 (ARM).

For BLX (encodings T2, A2), the assembler calculates the required value of the offset from
the Align(PC,4) value of the BLX instruction to this label, then selects an encoding that sets
imm32 to that offset. Permitted offsets are multiples of 4 in the range –16777216 to 16777212
(Thumb) or even numbers in the range −33554432 to 33554430 (ARM).

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 if CurrentInstrSet == InstrSet_ARM then
 next_instr_addr = PC - 4;
 LR = next_instr_addr;
 else
 next_instr_addr = PC;
 LR = next_instr_addr<31:1> : ‘1’;
 if toARM then
 SelectInstrSet(InstrSet_ARM);
 BranchWritePC(Align(PC,4) + imm32);
 else
 SelectInstrSet(InstrSet_Thumb);
 BranchWritePC(PC + imm32);

Exceptions

None.

Branch range before ARMv6T2

Before ARMv6T2, J1 and J2 in encodings T1 and T2 were both 1, resulting in a smaller branch range. The
instructions could be executed as two separate 16-bit instructions, as described in BL and BLX (immediate)
instructions, before ARMv6T2 on page AppxG-4.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-59

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
if CurrentInstrSet() == InstrSet_ARM then
 LR = PC - 4;
 else
 LR = PC<31:1> : '1';
 if targetInstrSet == InstrSet_ARM then
 targetAddress = Align(PC,4) + imm32;
 else
 targetAddress = PC + imm32;
 SelectInstrSet(targetInstrSet);
 BranchWritePC(targetAddress);

ARM_2009_Q2
Sticky Note
The pseudocode changes in this section fix two errors in the functionality described by the previous pseudocode:
 • When encoding T1 is executed in ThumbEE state, the previous pseudocode incorrectly indicates that execution switches to Thumb state. It instead remains in ThumbEE state.
 • The previous pseudocode incorrectly indicates that the target address is based on a value of the PC read in the new instruction set state. It is instead based on a value of the PC read in the original instruction set state.

Instruction Details
A8.6.24 BLX (register)

Branch with Link and Exchange (register) calls a subroutine at an address and instruction set specified by a
register.

m = UInt(Rm);
if m == 15 then UNPREDICTABLE;
if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

m = UInt(Rm);
if m == 15 then UNPREDICTABLE;

Encoding T1 ARMv5T*, ARMv6*, ARMv7
BLX<c> <Rm> Outside or last in IT block

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 1 1 1 1 Rm (0) (0) (0)

Encoding A1 ARMv5T*, ARMv6*, ARMv7
BLX<c> <Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 1 0 0 1 0 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) 0 0 1 1 Rm
A8-60 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

BLX<c><q> <Rm>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rm> The register that contains the branch target address and instruction set selection bit.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 if CurrentInstrSet() == InstrSet_ARM then
 next_instr_addr = PC - 4;
 LR = next_instr_addr;
 else
 next_instr_addr = PC - 2;
 LR = next_instr_addr<31:1> : ‘1’;
 BXWritePC(R[m]);

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-61

ARM_2008_Q4
Inserted Text
 This register can be SP in both ARM and Thumb instructions, but this use of SP is deprecated.

ARM_2008_Q4
Inserted Text
 target = R[m];

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
target

Instruction Details
A8.6.25 BX

Branch and Exchange causes a branch to an address and instruction set specified by a register.

m = UInt(Rm);
if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

m = UInt(Rm);

Encoding T1 ARMv4T, ARMv5T*, ARMv6*, ARMv7
BX<c> <Rm> Outside or last in IT block

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 1 1 1 0 Rm (0) (0) (0)

Encoding A1 ARMv4T, ARMv5T*, ARMv6*, ARMv7
BX<c> Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 1 0 0 1 0 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) 0 0 0 1 Rm
A8-62 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2010_Q2
Cross-Out

ARM_2010_Q2
Replacement Text
<Rm>

Instruction Details
Assembler syntax

BX<c><q> <Rm>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rm> The register that contains the branch target address and instruction set selection bit. The PC
can be used.

Note
 If <Rm> is the PC in a Thumb instruction at a non word-aligned address, it results in

UNPREDICTABLE behavior because the address passed to the BXWritePC() pseudocode
function has bits<1:0> = '10'.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 BXWritePC(R[m]);

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-63

ARM_2008_Q4
Inserted Text
 This register can be SP in both ARM and Thumb instructions, but this use of SP is deprecated.

Instruction Details
A8.6.26 BXJ

Branch and Exchange Jazelle attempts to change to Jazelle state. If the attempt fails, it branches to an
address and instruction set specified by a register as though it were a BX instruction.

m = UInt(Rm);
if BadReg(m) then UNPREDICTABLE;
if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

m = UInt(Rm);
if m == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
BXJ<c> <Rm> Outside or last in IT block

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 1 0 0 Rm 1 0 (0) 0 (1) (1) (1) (1) (0) (0) (0) (0) (0) (0) (0) (0)

Encoding A1 ARMv5TEJ, ARMv6*, ARMv7
BXJ<c> <Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 1 0 0 1 0 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) 0 0 1 0 Rm
A8-64 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

BXJ<c><q> <Rm>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rm> The register that specifies the branch target address and instruction set selection bit to be
used if the attempt to switch to Jazelle state fails.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 if JMCR.JE == ‘0’ || CurrentInstrSet() == InstrSet_ThumbEE then
 BXWritePC(R[m]);
 else
 if JazelleAcceptsExecution() then
 SwitchToJazelleExecution();
 else
 SUBARCHITECTURE_DEFINED handler call;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-65

Instruction Details
A8.6.27 CBNZ, CBZ

Compare and Branch on Nonzero and Compare and Branch on Zero compare the value in a register with
zero, and conditionally branch forward a constant value. They do not affect the condition flags.

n = UInt(Rn); imm32 = ZeroExtend(i:imm5:’0’, 32); nonzero = (op == ‘1’);
if InITBlock() then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
CB{N}Z <Rn>,<label> Not permitted in IT block.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 op 0 i 1 imm5 Rn
A8-66 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

CB{N}Z<q> <Rn>, <label>

where:

N If specified, causes the branch to occur when the contents of <Rn> are nonzero (encoded as
op = 1). If omitted, causes the branch to occur when the contents of <Rn> are zero (encoded
as op = 0).

<q> See Standard assembler syntax fields on page A8-7. A CBZ or CBNZ instruction must be
unconditional.

<Rn> The operand register.

<label> The label of the instruction that is to be branched to. The assembler calculates the required
value of the offset from the PC value of the CB{N}Z instruction to this label, then selects an
encoding that sets imm32 to that offset. Permitted offsets are even numbers in the range 0 to
126.

Operation

EncodingSpecificOperations();
if nonzero ^ IsZero(R[n]) then
 BranchWritePC(PC + imm32);

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-67

Instruction Details
A8.6.28 CDP, CDP2

Coprocessor Data Processing tells a coprocessor to perform an operation that is independent of ARM core
registers and memory. If no coprocessor can execute the instruction, an Undefined Instruction exception is
generated.

This is a generic coprocessor instruction. Some of the fields have no functionality defined by the architecture
and are free for use by the coprocessor instruction set designer. These fields are the opc1, opc2, CRd, CRn,
and CRm fields.

For more information about the coprocessors see Coprocessor support on page A2-68.

if coproc == ‘101x’ then SEE “VFP instructions”;
cp = UInt(coproc);

cp = UInt(coproc);

Encoding T1 / A1 ARMv6T2, ARMv7 for encoding T1

ARMv4*, ARMv5T*, ARMv6*, ARMv7 for encoding A1
CDP<c> <coproc>,<opc1>,<CRd>,<CRn>,<CRm>,<opc2>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 opc1 CRn CRd coproc opc2 0 CRm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 1 0 opc1 CRn CRd coproc opc2 0 CRm

Encoding T2 / A2 ARMv6T2, ARMv7 for encoding T2

ARMv5T*, ARMv6*, ARMv7 for encodingA2
CDP2<c> <coproc>,<opc1>,<CRd>,<CRn>,<CRm>,<opc2>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 opc1 CRn CRd coproc opc2 0 CRm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 opc1 CRn CRd coproc opc2 0 CRm

VFP instructions See VFP data-processing instructions on page A7-24
A8-68 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2008_Q4
Inserted Text

Instruction Details
Assembler syntax

CDP{2}<c><q> <coproc>, #<opc1>, <CRd>, <CRn>, <CRm> {,#<opc2>}

where:

2 If specified, selects encoding T2 / A2. If omitted, selects encoding T1 / A1.

<c><q> See Standard assembler syntax fields on page A8-7. An ARM CDP2 instruction must be
unconditional.

<coproc> The name of the coprocessor, and causes the corresponding coprocessor number to be
placed in the cp_num field of the instruction. The standard generic coprocessor names are
p0, p1, …, p15.

<opc1> Is a coprocessor-specific opcode, in the range 0 to 15.

<CRd> The destination coprocessor register for the instruction.

<CRn> The coprocessor register that contains the first operand.

<CRm> The coprocessor register that contains the second operand.

<opc2> Is a coprocessor-specific opcode in the range 0 to 7. If it is omitted, <opc2> is 0.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 if !Coproc_Accepted(cp, ThisInstr()) then
 GenerateCoprocessorException();
 else
 Coproc_InternalOperation(cp, ThisInstr());

Exceptions

Undefined Instruction.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-69

ARM_2009_Q3
Cross-Out

ARM_2009_Q3
Replacement Text
{#}

ARM_2009_Q3
Cross-Out

ARM_2009_Q3
Replacement Text
{#}

Instruction Details
A8.6.29 CHKA

CHKA is a ThumbEE instruction. For details see CHKA on page A9-15.

A8.6.30 CLREX

Clear-Exclusive clears the local record of the executing processor that an address has had a request for an
exclusive access.

// No additional decoding required

// No additional decoding required

Encoding T1 ARMv7
CLREX<c>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 1 (1) (1) (1) (1) 1 0 (0) 0 (1) (1) (1) (1) 0 0 1 0 (1) (1) (1) (1)

Encoding A1 ARMv6K, ARMv7
CLREX

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 1 0 1 1 1 (1) (1) (1) (1) (1) (1) (1) (1) (0) (0) (0) (0) 0 0 0 1 (1) (1) (1) (1)
A8-70 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

CLREX<c><q>

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM CLREX instruction must be
unconditional.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 ClearExclusiveLocal(ProcessorID());

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-71

Instruction Details
A8.6.31 CLZ

Count Leading Zeros returns the number of binary zero bits before the first binary one bit in a value.

if !Consistent(Rm) then UNPREDICTABLE;
d = UInt(Rd); m = UInt(Rm);
if BadReg(d) || BadReg(m) then UNPREDICTABLE;

d = UInt(Rd); m = UInt(Rm);
if d == 15 || m == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
CLZ<c> <Rd>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 1 1 Rm 1 1 1 1 Rd 1 0 0 0 Rm

Encoding A1 ARMv5T*, ARMv6*, ARMv7
CLZ<c> <Rd>,<Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 1 0 1 1 0 (1) (1) (1) (1) Rd (1) (1) (1) (1) 0 0 0 1 Rm
A8-72 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

CLZ<c><q> <Rd>, <Rm>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rm> The register that contains the operand. Its number must be encoded twice in encoding T1.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 result = CountLeadingZeroBits(R[m]);
 R[d] = result<31:0>;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-73

Instruction Details
A8.6.32 CMN (immediate)

Compare Negative (immediate) adds a register value and an immediate value. It updates the condition flags
based on the result, and discards the result.

n = UInt(Rn); imm32 = ThumbExpandImm(i:imm3:imm8);
if n == 15 then UNPREDICTABLE;

n = UInt(Rn); imm32 = ARMExpandImm(imm12);

Encoding T1 ARMv6T2, ARMv7
CMN<c> <Rn>,#<const>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 1 0 0 0 1 Rn 0 imm3 1 1 1 1 imm8

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
CMN<c> <Rn>,#<const>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 1 1 0 1 1 1 Rn (0) (0) (0) (0) imm12
A8-74 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

CMN<c><q> <Rn>, #<const>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rn> The register that contains the operand. SP can be used in Thumb as well as in ARM.

<const> The immediate value to be added to the value obtained from <Rn>. See Modified immediate
constants in Thumb instructions on page A6-17 or Modified immediate constants in ARM
instructions on page A5-9 for the range of values.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 (result, carry, overflow) = AddWithCarry(R[n], imm32, ‘0’);
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 APSR.V = overflow;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-75

ARM_2009_Q2
Inserted Text
 PC can be used in ARM instructions.

Instruction Details
A8.6.33 CMN (register)

Compare Negative (register) adds a register value and an optionally-shifted register value. It updates the
condition flags based on the result, and discards the result.

n = UInt(Rn); m = UInt(Rm);
(shift_t, shift_n) = (SRType_LSL, 0);

n = UInt(Rn); m = UInt(Rm);
(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);
if n == 15 || BadReg(m) then UNPREDICTABLE;

n = UInt(Rn); m = UInt(Rm);
(shift_t, shift_n) = DecodeImmShift(type, imm5);

Encoding T1 ARMv4T, ARMv5T*, ARMv6*, ARMv7
CMN<c> <Rn>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 1 0 1 1 Rm Rn

Encoding T2 ARMv6T2, ARMv7
CMN<c>.W <Rn>,<Rm>{,<shift>}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 1 0 0 0 1 Rn (0) imm3 1 1 1 1 imm2 type Rm

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
CMN<c> <Rn>,<Rm>{,<shift>}

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 1 0 1 1 1 Rn (0) (0) (0) (0) imm5 type 0 Rm
A8-76 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

CMN<c><q> <Rn>, <Rm> {,<shift>}

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rn> The first operand register. SP can be used in Thumb (encoding T2) as well as in ARM.

<Rm> The register that is optionally shifted and used as the second operand.

<shift> The shift to apply to the value read from <Rm>. If present, encoding T1 is not permitted. If
absent, no shift is applied and all encodings are permitted. Shifts applied to a register on
page A8-10 describes the shifts and how they are encoded.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 shifted = Shift(R[m], shift_t, shift_n, APSR.C);
 (result, carry, overflow) = AddWithCarry(R[n], shifted, ‘0’);
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 APSR.V = overflow;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-77

ARM_2009_Q2
Inserted Text
 PC can be used in ARM instructions.

ARM_2009_Q2
Inserted Text
 PC can be used in ARM instructions.

Instruction Details
A8.6.34 CMN (register-shifted register)

Compare Negative (register-shifted register) adds a register value and a register-shifted register value. It
updates the condition flags based on the result, and discards the result.

n = UInt(Rn); m = UInt(Rm); s = UInt(Rs);
shift_t = DecodeRegShift(type);
if n == 15 || m == 15 || s == 15 then UNPREDICTABLE;

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7

CMN<c> <Rn>,<Rm>,<type> <Rs>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 1 0 1 1 1 Rn (0) (0) (0) (0) Rs 0 type 1 Rm
A8-78 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

CMN<c><q> <Rn>, <Rm>, <type> <Rs>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rn> The first operand register.

<Rm> The register that is shifted and used as the second operand.

<type> The type of shift to apply to the value read from <Rm>. It must be one of:

ASR Arithmetic shift right, encoded as type = 0b10

LSL Logical shift left, encoded as type = 0b00

LSR Logical shift right, encoded as type = 0b01

ROR Rotate right, encoded as type = 0b11.

<Rs> The register whose bottom byte contains the amount to shift by.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 shift_n = UInt(R[s]<7:0>);
 shifted = Shift(R[m], shift_t, shift_n, APSR.C);
 (result, carry, overflow) = AddWithCarry(R[n], shifted, ‘0’);
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 APSR.V = overflow;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-79

Instruction Details
A8.6.35 CMP (immediate)

Compare (immediate) subtracts an immediate value from a register value. It updates the condition flags
based on the result, and discards the result.

n = UInt(Rdn); imm32 = ZeroExtend(imm8, 32);

n = UInt(Rn); imm32 = ThumbExpandImm(i:imm3:imm8);
if n == 15 then UNPREDICTABLE;

n = UInt(Rn); imm32 = ARMExpandImm(imm12);

Encoding T1 ARMv4T, ARMv5T*, ARMv6*, ARMv7
CMP<c> <Rn>,#<imm8>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 1 Rn imm8

Encoding T2 ARMv6T2, ARMv7
CMP<c>.W <Rn>,#<const>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 1 1 0 1 1 Rn 0 imm3 1 1 1 1 imm8

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
CMP<c> <Rn>,#<const>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 1 1 0 1 0 1 Rn (0) (0) (0) (0) imm12
A8-80 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q2
Cross-Out

Instruction Details
Assembler syntax

CMP<c><q> <Rn>, #<const>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rn> The first operand register. SP can be used in Thumb (encoding T2) as well as in ARM.

<const> The immediate value to be compared with the value obtained from <Rn>. The range of values
is 0-255 for encoding T1. See Modified immediate constants in Thumb instructions on
page A6-17 or Modified immediate constants in ARM instructions on page A5-9 for the
range of values for encoding T2 and A1.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 (result, carry, overflow) = AddWithCarry(R[n], NOT(imm32), ‘1’);
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 APSR.V = overflow;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-81

ARM_2009_Q2
Inserted Text
 PC can be used in ARM instructions.

Instruction Details
A8.6.36 CMP (register)

Compare (register) subtracts an optionally-shifted register value from a register value. It updates the
condition flags based on the result, and discards the result.

n = UInt(Rn); m = UInt(Rm);
(shift_t, shift_n) = (SRType_LSL, 0);

n = UInt(N:Rn); m = UInt(Rm);
(shift_t, shift_n) = (SRType_LSL, 0);
if n < 8 && m < 8 then UNPREDICTABLE;
if n == 15 || m == 15 then UNPREDICTABLE;

n = UInt(Rn); m = UInt(Rm);
(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);
if n == 15 || BadReg(m) then UNPREDICTABLE;

n = UInt(Rn); m = UInt(Rm);
(shift_t, shift_n) = DecodeImmShift(type, imm5);

Encoding T1 ARMv4T, ARMv5T*, ARMv6*, ARMv7
CMP<c> <Rn>,<Rm> <Rn> and <Rm> both from R0-R7

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 1 0 1 0 Rm Rn

Encoding T2 ARMv4T, ARMv5T*, ARMv6*, ARMv7
CMP<c> <Rn>,<Rm> <Rn> and <Rm> not both from R0-R7

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 1 0 1 N Rm Rn

Encoding T3 ARMv6T2, ARMv7
CMP<c>.W <Rn>, <Rm> {,<shift>}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 1 1 0 1 1 Rn (0) imm3 1 1 1 1 imm2 type Rm

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
CMP<c> <Rn>,<Rm>{,<shift>}

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 1 0 1 0 1 Rn (0) (0) (0) (0) imm5 type 0 Rm
A8-82 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

CMP<c><q> <Rn>, <Rm> {,<shift>}

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rn> The first operand register. The SP can be used.

<Rm> The register that is optionally shifted and used as the second operand. This register can be
SP in both ARM and Thumb instructions, but:

• the use of SP is deprecated

• when assembling for the Thumb instruction set, only encoding T2 is available.

<shift> The shift to apply to the value read from <Rm>. If present, encodings T1 and T2 are not
permitted. If absent, no shift is applied and all encodings are permitted. Shifts applied to a
register on page A8-10 describes the shifts and how they are encoded.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 shifted = Shift(R[m], shift_t, shift_n, APSR.C);
 (result, carry, overflow) = AddWithCarry(R[n], NOT(shifted), ‘1’);
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 APSR.V = overflow;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-83

ARM_2009_Q2
Inserted Text
 PC can be used in ARM instructions.

ARM_2009_Q2
Inserted Text
 PC can be used in ARM instructions.

Instruction Details
A8.6.37 CMP (register-shifted register)

Compare (register-shifted register) subtracts a register-shifted register value from a register value. It updates
the condition flags based on the result, and discards the result.

n = UInt(Rn); m = UInt(Rm); s = UInt(Rs);
shift_t = DecodeRegShift(type);
if n == 15 || m == 15 || s == 15 then UNPREDICTABLE;

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7

CMP<c> <Rn>,<Rm>,<type> <Rs>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 1 0 1 0 1 Rn (0) (0) (0) (0) Rs 0 type 1 Rm
A8-84 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

CMP<c><q> <Rn>, <Rm>, <type> <Rs>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rn> The first operand register.

<Rm> The register that is shifted and used as the second operand.

<type> The type of shift to apply to the value read from <Rm>. It must be one of:

ASR Arithmetic shift right, encoded as type = 0b10

LSL Logical shift left, encoded as type = 0b00

LSR Logical shift right, encoded as type = 0b01

ROR Rotate right, encoded as type = 0b11.

<Rs> The register whose bottom byte contains the amount to shift by.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 shift_n = UInt(R[s]<7:0>);
 shifted = Shift(R[m], shift_t, shift_n, APSR.C);
 (result, carry, overflow) = AddWithCarry(R[n], NOT(shifted), ‘1’);
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 APSR.V = overflow;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-85

Instruction Details
A8.6.38 CPS

Change Processor State is a system instruction. For details see CPS on page B6-3.

A8.6.39 CPY

Copy is a pre-UAL synonym for MOV (register).
A8-86 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

CPY <Rd>, <Rn>

This is equivalent to:

MOV <Rd>, <Rn>

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-87

Instruction Details
A8.6.40 DBG

Debug Hint provides a hint to debug and related systems. See their documentation for what use (if any) they
make of this instruction.

// Any decoding of ‘option’ is specified by the debug system

// Any decoding of ‘option’ is specified by the debug system

Encoding T1 ARMv7 (executes as NOP in ARMv6T2)
DBG<c> #<option>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 0 (1) (1) (1) (1) 1 0 (0) 0 (0) 0 0 0 1 1 1 1 option

Encoding A1 ARMv7 (executes as NOP in ARMv6Kand ARMv6T2)
DBG<c> #<option>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 1 1 0 0 1 0 0 0 0 0 (1) (1) (1) (1) (0) (0) (0) (0) 1 1 1 1 option
A8-88 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

DBG<c><q> #<option>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<option> Provides extra information about the hint, and is in the range 0 to 15.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 Hint_Debug(option);

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-89

Instruction Details
A8.6.41 DMB

Data Memory Barrier is a memory barrier that ensures the ordering of observations of memory accesses, see
Data Memory Barrier (DMB) on page A3-48.

// No additional decoding required

// No additional decoding required

Assembler syntax

DMB<c><q> {<opt>}

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM DMB instruction must be
unconditional.

<opt> Specifies an optional limitation on the DMB operation. Values are:

SY Full system is the required shareability domain, reads and writes are the
required access types. Can be omitted.

This option is referred to as the full system DMB. Encoded as option == '1111'.

ST Full system is the required shareability domain, writes are the required access
type. SYST is a synonym for ST. Encoded as option == '1110'.

ISH Inner Shareable is the required shareability domain, reads and writes are the
required access types. Encoded as option == '1011'.

ISHST Inner Shareable is the required shareability domain, writes are the required
access type. Encoded as option == '1010'.

NSH Non-shareable is the required shareability domain, reads and writes are the
required access types. Encoded as option == '0111'.

NSHST Non-shareable is the required shareability domain, writes are the required
access type. Encoded as option == '0110'.

Encoding T1 ARMv7
DMB<c> #<option>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 1 (1) (1) (1) (1) 1 0 (0) 0 (1) (1) (1) (1) 0 1 0 1 option

Encoding A1 ARMv7
DMB #<option>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 1 0 1 1 1 (1) (1) (1) (1) (1) (1) (1) (1) (0) (0) (0) (0) 0 1 0 1 option
A8-90 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
option

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
option

ARM_2009_Q1
Sticky Note
This change from opt to option, here and in the Note on the next page, is for consistency with the disassembly syntax shown with the figures on this page.

Instruction Details
OSH Outer Shareable is the required shareability domain, reads and writes are the
required access types. Encoded as option == '0011'.

OSHST Outer Shareable is the required shareability domain, writes are the required
access type. Encoded as option == '0010'.

All other encodings of option are reserved. It is IMPLEMENTATION DEFINED whether options
other than SY are implemented. All unsupported and reserved options must execute as a full
system DMB operation, but software must not must rely on this operation.

Note
 The following alternative <opt> values are supported, but ARM recommends that you do not

use these alternative values:

• SH as an alias for ISH

• SHST as an alias for ISHST

• UN as an alias for NSH

• UNST is an alias for NSHST.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 case option of
 when ‘0010’ domain = MBReqDomain_OuterShareable; types = MBReqTypes_Writes;
 when ‘0010’ domain = MBReqDomain_OuterShareable; types = MBReqTypes_All;
 when ‘0110’ domain = MBReqDomain_Nonshareable; types = MBReqTypes_Writes;
 when ‘0111’ domain = MBReqDomain_Nonshareable; types = MBReqTypes_All;
 when ‘1010’ domain = MBReqDomain_InnerShareable; types = MBReqTypes_Writes;
 when ‘1011’ domain = MBReqDomain_InnerShareable; types = MBReqTypes_All;
 when ‘1110’ domain = MBReqDomain_FullSystem; types = MBReqTypes_Writes;
 otherwise domain = MBReqDomain_FullSystem; types = MBReqTypes_All;
 DataMemoryBarrier(domain, types);

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-91

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
1

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
option

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
behavior

ARM_2009_Q1
Sticky Note
The change from "operation" to "behavior" is a clarification of the intended meaning.

Instruction Details
A8.6.42 DSB

Data Synchronization Barrier is a memory barrier that ensures the completion of memory accesses, see Data
Synchronization Barrier (DSB) on page A3-49.

// No additional decoding required

// No additional decoding required

Assembler syntax

DSB<c><q> {<opt>}

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM DSB instruction must be
unconditional.

<opt> Specifies an optional limitation on the DSB operation. Values are:

SY Full system is the required shareability domain, reads and writes are the
required access types. Can be omitted.

This option is referred to as the full system DMB. Encoded as option == '1111'.

ST Full system is the required shareability domain, writes are the required access
type. SYST is a synonym for ST. Encoded as option == '1110'.

ISH Inner Shareable is the required shareability domain, reads and writes are the
required access types. Encoded as option == '1011'.

ISHST Inner Shareable is the required shareability domain, writes are the required
access type. Encoded as option == '1010'.

NSH Non-shareable is the required shareability domain, reads and writes are the
required access types. Encoded as option == '0111'.

NSHST Non-shareable is the required shareability domain, writes are the required
access type. Encoded as option == '0110'.

Encoding T1 ARMv7
DSB<c> #<option>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 1 (1) (1) (1) (1) 1 0 (0) 0 (1) (1) (1) (1) 0 1 0 0 option

Encoding A1 ARMv7
DSB #<option>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 1 0 1 1 1 (1) (1) (1) (1) (1) (1) (1) (1) (0) (0) (0) (0) 0 1 0 0 option
A8-92 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
S

ARM_2009_Q1
Sticky Note
This change from opt to option, here and in the Note on the next page, is for consistency with the disassembly syntax shown with the figures on this page.

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
option

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
option

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Cross-Out

Instruction Details
OSH Outer Shareable is the required shareability domain, reads and writes are the
required access types. Encoded as option == '0011'.

OSHST Outer Shareable is the required shareability domain, writes are the required
access type. Encoded as option == '0010'.

All other encodings of option are reserved. It is IMPLEMENTATION DEFINED whether options
other than SY are implemented. All unsupported and reserved options must execute as a full
system DSB operation, but software must not must rely on this operation.

Note
 The following alternative <opt> values are supported, but ARM recommends that you do not

use these alternative values:

• SH as an alias for ISH

• SHST as an alias for ISHST

• UN as an alias for NSH

• UNST is an alias for NSHST.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 case option of
 when ‘0010’ domain = MBReqDomain_OuterShareable; types = MBReqTypes_Writes;
 when ‘0010’ domain = MBReqDomain_OuterShareable; types = MBReqTypes_All;
 when ‘0110’ domain = MBReqDomain_Nonshareable; types = MBReqTypes_Writes;
 when ‘0111’ domain = MBReqDomain_Nonshareable; types = MBReqTypes_All;
 when ‘1010’ domain = MBReqDomain_InnerShareable; types = MBReqTypes_Writes;
 when ‘1011’ domain = MBReqDomain_InnerShareable; types = MBReqTypes_All;
 when ‘1110’ domain = MBReqDomain_FullSystem; types = MBReqTypes_Writes;
 otherwise domain = MBReqDomain_FullSystem; types = MBReqTypes_All;
 DataSynchronizationBarrier(domain, types);

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-93

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
1

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Inserted Text
option

ARM_2009_Q1
Sticky Note
The change from "operation" to "behavior" is a clarification of the intended meaning.

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
behavior

Instruction Details
A8.6.43 ENTERX

ENTERX causes a change from Thumb state to ThumbEE state, or has no effect in ThumbEE state. For details
see ENTERX, LEAVEX on page A9-7.

A8.6.44 EOR (immediate)

Bitwise Exclusive OR (immediate) performs a bitwise Exclusive OR of a register value and an immediate
value, and writes the result to the destination register. It can optionally update the condition flags based on
the result.

if Rd == ‘1111’ && S == ‘1’ then SEE TEQ (immediate);
d = UInt(Rd); n = UInt(Rn); setflags = (S == ‘1’);
(imm32, carry) = ThumbExpandImm_C(i:imm3:imm8, APSR.C);
if BadReg(d) || BadReg(n) then UNPREDICTABLE;

if Rd == ‘1111’ && S == ‘1’ then SEE SUBS PC, LR and related instructions;
d = UInt(Rd); n = UInt(Rn); setflags = (S == ‘1’);
(imm32, carry) = ARMExpandImm_C(imm12, APSR.C);

Encoding T1 ARMv6T2, ARMv7
EOR{S}<c> <Rd>,<Rn>,#<const>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 0 1 0 0 S Rn 0 imm3 Rd imm8

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
EOR{S}<c> <Rd>,<Rn>,#<const>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 1 0 0 0 1 S Rn Rd imm12
A8-94 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
d == 13 || (d == 15 && S == '0')

Instruction Details
Assembler syntax

EOR{S}<c><q> {<Rd>,} <Rn>, #<const>

where:

S If S is present, the instruction updates the flags. Otherwise, the flags are not updated.

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The register that contains the operand.

<const> The immediate value to be exclusive ORed with the value obtained from <Rn>. See Modified
immediate constants in Thumb instructions on page A6-17 or Modified immediate constants
in ARM instructions on page A5-9 for the range of values.

The pre-UAL syntax EOR<c>S is equivalent to EORS<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 result = R[n] EOR imm32;
 if d == 15 then // Can only occur for ARM encoding
 ALUWritePC(result); // setflags is always FALSE here
 else
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 // APSR.V unchanged

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-95

ARM_2009_Q2
Inserted Text
 PC can be used in ARM instructions.

ARM_2009_Q2
Inserted Text
 If S is specified and <Rd> is the PC, see SUBS PC, LR and related instructions on page B6-25 [PDF page 1583]. In ARM instructions, if S is not specified and <Rd> is the PC, the instruction is a branch to the address calculated by the operation. This is a simple branch before ARMv7, and an interworking branch from ARMv7.

Instruction Details
A8.6.45 EOR (register)

Bitwise Exclusive OR (register) performs a bitwise Exclusive OR of a register value and an
optionally-shifted register value, and writes the result to the destination register. It can optionally update the
condition flags based on the result.

d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();
(shift_t, shift_n) = (SRType_LSL, 0);

if Rd == ‘1111’ && S == ‘1’ then SEE TEQ (register);
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == ‘1’);
(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);
if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

if Rd == ‘1111’ && S == ‘1’ then SEE SUBS PC, LR and related instructions;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == ‘1’);
(shift_t, shift_n) = DecodeImmShift(type, imm5);

Encoding T1 ARMv4T, ARMv5T*, ARMv6*, ARMv7
EORS <Rdn>,<Rm> Outside IT block.
EOR<c> <Rdn>,<Rm> Inside IT block.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 0 0 0 1 Rm Rdn

Encoding T2 ARMv6T2, ARMv7
EOR{S}<c>.W <Rd>,<Rn>,<Rm>{,<shift>}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 1 0 0 S Rn (0) imm3 Rd imm2 type Rm

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
EOR{S}<c> <Rd>,<Rn>,<Rm>{,<shift>}

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 0 0 0 1 S Rn Rd imm5 type 0 Rm
A8-96 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
d == 13 || (d == 15 && S == '0')

Instruction Details
Assembler syntax

EOR{S}<c><q> {<Rd>,} <Rn>, <Rm> {,<shift>}

where:

S If S is present, the instruction updates the flags. Otherwise, the flags are not updated.

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The register that is optionally shifted and used as the second operand.

<shift> The shift to apply to the value read from <Rm>. If present, encoding T1 is not permitted. If
absent, no shift is applied and all encodings are permitted.Shifts applied to a register on
page A8-10 describes the shifts and how they are encoded.

In Thumb assembly:

• outside an IT block, if EORS <Rd>,<Rn>,<Rd> has <Rd> and <Rn> both in the range R0-R7, it is assembled
using encoding T1 as though EORS <Rd>,<Rn> had been written

• inside an IT block, if EOR<c> <Rd>,<Rn>,<Rd> has <Rd> and <Rn> both in the range R0-R7, it is
assembled using encoding T1 as though EOR<c> <Rd>,<Rn> had been written.

To prevent either of these happening, use the .W qualifier.

The pre-UAL syntax EOR<c>S is equivalent to EORS<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
 result = R[n] EOR shifted;
 if d == 15 then // Can only occur for ARM encoding
 ALUWritePC(result); // setflags is always FALSE here
 else
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 // APSR.V unchanged

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-97

ARM_2009_Q2
Inserted Text
 PC can be used in ARM instructions.

ARM_2009_Q2
Inserted Text
 PC can be used in ARM instructions.

ARM_2009_Q2
Inserted Text
 If S is specified and <Rd> is the PC, see SUBS PC, LR and related instructions on page B6-25 [PDF page 1583]. In ARM instructions, if S is not specified and <Rd> is the PC, the instruction is a branch to the address calculated by the operation. This is a simple branch before ARMv7, and an interworking branch from ARMv7.

Instruction Details
A8.6.46 EOR (register-shifted register)

Bitwise Exclusive OR (register-shifted register) performs a bitwise Exclusive OR of a register value and a
register-shifted register value. It writes the result to the destination register, and can optionally update the
condition flags based on the result.

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); s = UInt(Rs);
setflags = (S == ‘1’); shift_t = DecodeRegShift(type);
if d == 15 || n == 15 || m == 15 || s == 15 then UNPREDICTABLE;

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7

EOR{S}<c> <Rd>,<Rn>,<Rm>,<type> <Rs>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 0 0 0 1 S Rn Rd Rs 0 type 1 Rm
A8-98 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

EOR{S}<c><q> {<Rd>,} <Rn>, <Rm>, <type> <Rs>

where:

S If S is present, the instruction updates the flags. Otherwise, the flags are not updated.

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The register that is shifted and used as the second operand.

<type> The type of shift to apply to the value read from <Rm>. It must be one of:

ASR Arithmetic shift right, encoded as type = 0b10

LSL Logical shift left, encoded as type = 0b00

LSR Logical shift right, encoded as type = 0b01

ROR Rotate right, encoded as type = 0b11.

<Rs> The register whose bottom byte contains the amount to shift by.

The pre-UAL syntax EOR<c>S is equivalent to EORS<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 shift_n = UInt(R[s]<7:0>);
 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
 result = R[n] EOR shifted;
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 // APSR.V unchanged

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-99

Instruction Details
A8.6.47 F* (former VFP instruction mnemonics)

Table A8-2 lists the UAL equivalents of pre-UAL VFP instruction mnemonics.

Table A8-2 VFP instruction mnemonics

Former ARM assembler
mnemonic

UAL
equivalent

See

FABSD, FABSS VABS VABS on page A8-532

FADDD, FADDS VADD VADD (floating-point) on page A8-538

FCMP, FCMPE, FCMPEZ, FCMPZ VCMP{E} VCMP, VCMPE on page A8-572

FCONSTD, FCONSTS VMOV VMOV (immediate) on page A8-640

FCPYD, FCPYS VMOV VMOV (register) on page A8-642

FCVTDS, FCVTSD VCVT VCVT (between double-precision and single-precision) on page A8-584

FDIVD, FDIVS VDIV VDIV on page A8-590

FLDD VLDR VLDR on page A8-628

FLDMD, FLDMS VLDM, VPOP VLDM on page A8-626. VPOP on page A8-694

FLDMX FLDMX FLDMX, FSTMX on page A8-101

FLDS VLDR VLDR on page A8-628

FMACD, FMACS VMLA VMLA, VMLS (floating-point) on page A8-636

FMDHR, FMDLR VMOV VMOV (ARM core register to scalar) on page A8-644

FMDRR VMOV VMOV (between two ARM core registers and a doubleword extension
register) on page A8-652

FMRDH, FMRDL VMOV VMOV (scalar to ARM core register) on page A8-646

FMRRD VMOV VMOV (between two ARM core registers and a doubleword extension
register) on page A8-652

FMRRS VMOV VMOV (between two ARM core registers and two single-precision
registers) on page A8-650

FMRS VMOV VMOV (between ARM core register and single-precision register) on
page A8-648

FMRX VMRS VMRS on page A8-658

FMSCD, FMSCS VNMLS VNMLA, VNMLS, VNMUL on page A8-674

FMSR VMOV VMOV (between ARM core register and single-precision register) on
page A8-648

FMSRR VMOV VMOV (between two ARM core registers and two single-precision
registers) on page A8-650

FMSTAT VMRS VMRS on page A8-658

FMULD, FMULS VMUL VMUL (floating-point) on page A8-664

FMXR VMSR VMSR on page A8-660
A8-100 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
B6-27 [PDF page 1585]

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
B6-29 [PDF page 1587]

Instruction Details
FLDMX, FSTMX

Encodings T1/A1 of the VLDM, VPOP, VPUSH, and VSTM instructions contain an imm8 field that is set to twice
the number of doubleword registers to be transferred. Use of these encodings with an odd value in imm8 is
deprecated, and there is no UAL syntax for them.

The pre-UAL mnemonics FLDMX and FSTMX result in the same instructions as FLDMD (VLDM.64 or VPOP.64) and
FSTMD (VSTM.64 or VPUSH.64) respectively, except that imm8 is equal to twice the number of doubleword
registers plus one. Use of FLDMX and FSTMX is deprecated from ARMv6, except for disassembly purposes, and
reassembly of disassembled code.

FNEGD, FNEGS VNEG VNEG on page A8-672

FNMACD, FNMACS VMLS VMLA, VMLS (floating-point) on page A8-636

FNMSCD, FNMSCS VNMLA VNMLA, VNMLS, VNMUL on page A8-674

FNMULD, FNMULS VNMUL VNMLA, VNMLS, VNMUL on page A8-674

FSHTOD, FSHTOS VCVT VCVT (between floating-point and fixed-point, VFP) on page A8-582

FSITOD, FSITOS VCVT VCVT, VCVTR (between floating-point and integer, VFP) on
page A8-578

FSLTOD, FSLTOS VCVT VCVT (between floating-point and fixed-point, VFP) on page A8-582

FSQRTD, FSQRTS VSQRT VSQRT on page A8-762

FSTD VSTR VSTR on page A8-786

FSTMD, FSTMS VSTM, VPUSH VSTM on page A8-784, VPUSH on page A8-696

FSTMX FSTMX FLDMX, FSTMX

FSTS VSTR VSTR on page A8-786

FSUBD, FSUBS VSUB VSUB (floating-point) on page A8-790

FTOSHD, FTOSHS VCVT VCVT (between floating-point and fixed-point, VFP) on page A8-582

FTOSI{Z}D, FTOSI{Z}S VCVT{R} VCVT, VCVTR (between floating-point and integer, VFP) on
page A8-578

FTOSL, FTOUH VCVT VCVT (between floating-point and fixed-point, VFP) on page A8-582

FTOUI{Z}D, FTOUI{Z}S VCVT{R} VCVT, VCVTR (between floating-point and integer, VFP) on
page A8-578

FTOULD, FTOULS, FUHTOD, FUHTOS VCVT VCVT (between floating-point and fixed-point, VFP) on page A8-582

FUITOD, FUITOS VCVT VCVT, VCVTR (between floating-point and integer, VFP) on
page A8-578

FULTOD, FULTOS VCVT VCVT (between floating-point and fixed-point, VFP) on page A8-582

Table A8-2 VFP instruction mnemonics (continued)

Former ARM assembler
mnemonic

UAL
equivalent

See
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-101

Instruction Details
A8.6.48 HB, HBL, HBLP, HBP

These are ThumbEE instructions. For details see HB, HBL on page A9-16, HBLP on page A9-17, and HBP
on page A9-18.

A8.6.49 ISB

Instruction Synchronization Barrier flushes the pipeline in the processor, so that all instructions following
the ISB are fetched from cache or memory, after the instruction has been completed. It ensures that the effects
of context altering operations, such as changing the ASID, or completed TLB maintenance operations, or
branch predictor maintenance operations, as well as all changes to the CP15 registers, executed before the
ISB instruction are visible to the instructions fetched after the ISB.

In addition, any branches that appear in program order after the ISB instruction are written into the branch
prediction logic with the context that is visible after the ISB instruction. This is needed to ensure correct
execution of the instruction stream.

// No additional decoding required

// No additional decoding required

Encoding T1 ARMv7
ISB<c> #<option>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 1 (1) (1) (1) (1) 1 0 (0) 0 (1) (1) (1) (1) 0 1 1 0 option

Encoding A1 ARMv7
ISB #<option>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 1 0 1 1 1 (1) (1) (1) (1) (1) (1) (1) (1) (0) (0) (0) (0) 0 1 1 0 option
A8-102 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Cross-Out

Instruction Details
Assembler syntax

ISB<c><q> {<opt>}

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM ISB instruction must be
unconditional.

<opt> Specifies an optional limitation on the ISB operation. Values are:

SY Full system ISB operation, encoded as option == '1111'. Can be omitted.

All other encodings of option are reserved. The corresponding instructions execute as full
system ISB operations, but must not be relied upon by software.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 InstructionSynchronizationBarrier();

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-103

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
option

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
option

ARM_2009_Q1
Sticky Note
This change from opt to option is for consistency with the disassembly syntax shown with the figures on the previous page.

Instruction Details
A8.6.50 IT

If Then makes up to four following instructions (the IT block) conditional. The conditions for the
instructions in the IT block can be the same, or some of them can be the inverse of others.

IT does not affect the condition code flags. Branches to any instruction in the IT block are not permitted,
apart from those performed by exception returns.

16-bit instructions in the IT block, other than CMP, CMN and TST, do not set the condition code flags. The AL
condition can be specified to get this changed behavior without conditional execution.

See also ITSTATE on page A2-17, Conditional instructions on page A4-4, and Conditional execution on
page A8-8.

if mask == ‘0000’ then SEE “Related encodings”;
if firstcond == ‘1111’ then UNPREDICTABLE;
if firstcond == ‘1110’ && BitCount(mask) != 1 then UNPREDICTABLE;
if InITBlock() then UNPREDICTABLE;

Assembler syntax

IT{x{y{z}}}<q> <firstcond>

where:

<x> The condition for the second instruction in the IT block.

<y> The condition for the third instruction in the IT block.

<z> The condition for the fourth instruction in the IT block.

<q> See Standard assembler syntax fields on page A8-7. An IT instruction must be
unconditional.

<firstcond> The condition for the first instruction in the IT block. See Table A8-1 on page A8-8 for the
range of conditions available, and the encodings.

Each of <x>, <y>, and <z> can be either:

T Then. The condition attached to the instruction is <firstcond>.

E Else. The condition attached to the instruction is the inverse of <firstcond>. The condition
code is the same as <firstcond>, except that the least significant bit is inverted. E must not
be specified if <firstcond> is AL.

Encoding T1 ARMv6T2, ARMv7
IT{x{y{z}}} <firstcond> Not permitted in IT block

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 1 firstcond mask

Related encodings See If-Then, and hints on page A6-12
A8-104 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
IT{<x>{<y>{<z>}}}

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
IT{<x>{<y>{<z>}}}<q>

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
The architecture permits exception return to an instruction in the IT block, and the transfer of the SPSR to the CPSR restores the conditions specified by the IT instruction. Any other branch to a target instruction in an IT block is not permitted, and if such a branch is made it is UNPREDICTABLE what condition is used when executing that target instruction and any subsequent instruction in the IT block.

ARM_2009_Q2
Sticky Note
This change is a clarification of the consequences of a branch to an instruction in an IT block that is not an exception return. This is not a change to the architecture.

Instruction Details
Table A8-3 shows how the values of <x>, <y>, and <z> determine the value of the mask field.

The conditions specified in an IT instruction must match those specified in the syntax of the instructions in
its IT block. When assembling to ARM code, assemblers check IT instruction syntax for validity but do not
generate assembled instructions for them. See Conditional instructions on page A4-4.

Operation

EncodingSpecificOperations();
ITSTATE.IT<7:0> = firstcond:mask;

Exceptions

None.

Table A8-3 Determination of maska field

<x> <y> <z> mask[3] mask[2] mask[1] mask[0]

Omitted Omitted Omitted 1 0 0 0

T Omitted Omitted firstcond[0] 1 0 0

E Omitted Omitted NOT firstcond[0] 1 0 0

T T Omitted firstcond[0] firstcond[0] 1 0

E T Omitted NOT firstcond[0] firstcond[0] 1 0

T E Omitted firstcond[0] NOT firstcond[0] 1 0

E E Omitted NOT firstcond[0] NOT firstcond[0] 1 0

T T T firstcond[0] firstcond[0] firstcond[0] 1

E T T NOT firstcond[0] firstcond[0] firstcond[0] 1

T E T firstcond[0] NOT firstcond[0] firstcond[0] 1

E E T NOT firstcond[0] NOT firstcond[0] firstcond[0] 1

T T E firstcond[0] firstcond[0] NOT firstcond[0] 1

E T E NOT firstcond[0] firstcond[0] NOT firstcond[0] 1

T E E firstcond[0] NOT firstcond[0] NOT firstcond[0] 1

E E E NOT firstcond[0] NOT firstcond[0] NOT firstcond[0] 1

a. Note that at least one bit is always 1 in mask.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-105

Instruction Details
A8.6.51 LDC, LDC2 (immediate)

Load Coprocessor loads memory data from a sequence of consecutive memory addresses to a coprocessor.
If no coprocessor can execute the instruction, an Undefined Instruction exception is generated.

This is a generic coprocessor instruction. Some of the fields have no functionality defined by the architecture
and are free for use by the coprocessor instruction set designer. These fields are the D bit, the CRd field, and
in the Unindexed addressing mode only, the imm8 field.

For more information about the coprocessors see Coprocessor support on page A2-68.

if Rn == ‘1111’ then SEE LDC (literal);
if P == ‘0’ && U == ‘0’ && D == ‘0’ && W == ‘0’ then UNDEFINED;
if P == ‘0’ && U == ‘0’ && D == ‘1’ && W == ‘0’ then SEE MRRC, MRRC2;
if coproc == ‘101x’ then SEE “Advanced SIMD and VFP”;
n = UInt(Rn); cp = UInt(coproc); imm32 = ZeroExtend(imm8:’00’, 32);
index = (P == ‘1’); add = (U == ‘1’); wback = (W == ‘1’);

if Rn == ‘1111’ then SEE LDC (literal);
if P == ‘0’ && U == ‘0’ && D == ‘0’ && W == ‘0’ then UNDEFINED;
if P == ‘0’ && U == ‘0’ && D == ‘1’ && W == ‘0’ then SEE MRRC, MRRC2;
n = UInt(Rn); cp = UInt(coproc); imm32 = ZeroExtend(imm8:’00’, 32);
index = (P == ‘1’); add = (U == ‘1’); wback = (W == ‘1’);

Encoding T1 / A1 ARMv6T2, ARMv7 for encoding T1

ARMv4*, ARMv5T*, ARMv6*, ARMv7 for encoding A1
LDC{L}<c> <coproc>,<CRd>,[<Rn>,#+/-<imm>]{!}

LDC{L}<c> <coproc>,<CRd>,[<Rn>],#+/-<imm>

LDC{L}<c> <coproc>,<CRd>,[<Rn>],<option>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 P U D W 1 Rn CRd coproc imm8

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 0 P U D W 1 Rn CRd coproc imm8

Encoding T2 / A2 ARMv6T2, ARMv7 for encoding T2

ARMv5T*, ARMv6*, ARMv7 for encodingA2
LDC2{L}<c> <coproc>,<CRd>,[<Rn>,#+/-<imm>]{!}

LDC2{L}<c> <coproc>,<CRd>,[<Rn>],#+/-<imm>

LDC2{L}<c> <coproc>,<CRd>,[<Rn>],<option>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 0 P U D W 1 Rn CRd coproc imm8

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 0 P U D W 1 Rn CRd coproc imm8

Advanced SIMD and VFP See Extension register load/store instructions on page A7-26
A8-106 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2008_Q4
Inserted Text

Instruction Details
Assembler syntax

where:

2 If specified, selects encoding T2 / A2. If omitted, selects encoding T1 / A1.

L If specified, selects the D == 1 form of the encoding. If omitted, selects the D == 0 form.

<c><q> See Standard assembler syntax fields on page A8-7. An ARM LDC2 instruction must be
unconditional.

<coproc> The name of the coprocessor. The standard generic coprocessor names are p0, p1, …, p15.

<CRd> The coprocessor destination register.

<Rn> The base register. The SP can be used. For PC use see LDC, LDC2 (literal) on page A8-108.

+/- Is + or omitted if the immediate offset is to be added to the base register value (add == TRUE),
or – if it is to be subtracted (add == FALSE). #0 and #-0 generate different instructions.

<imm> The immediate offset used to form the address. Values are multiples of 4 in the range
0-1020. For the offset addressing syntax, <imm> can be omitted, meaning an offset of +0.

<option> A coprocessor option. An integer in the range 0-255 enclosed in { }. Encoded in imm8.

The pre-UAL syntax LDC<c>L is equivalent to LDCL<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 if !Coproc_Accepted(cp, ThisInstr()) then
 GenerateCoprocessorException();
 else
 NullCheckIfThumbEE(n);
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];
 repeat
 Coproc_SendLoadedWord(MemA[address,4], cp, ThisInstr()); address = address + 4;
 until Coproc_DoneLoading(cp, ThisInstr());
 if wback then R[n] = offset_addr;

Exceptions

Undefined Instruction, Data Abort.

LDC{2}{L}<c><q> <coproc>,<CRd>,[<Rn>{,#+/-<imm>}] Offset. P = 1, W = 0.
LDC{2}{L}<c><q> <coproc>,<CRd>,[<Rn>,#+/-<imm>]! Pre-indexed. P = 1, W = 1.
LDC{2}{L}<c><q> <coproc>,<CRd>,[<Rn>],#+/-<imm> Post-indexed. P = 0, W = 1.
LDC{2}{L}<c><q> <coproc>,<CRd>,[<Rn>],<option> Unindexed. P = 0, W = 0, U = 1.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-107

Instruction Details
A8.6.52 LDC, LDC2 (literal)

Load Coprocessor loads memory data from a sequence of consecutive memory addresses to a coprocessor.
If no coprocessor can execute the instruction, an Undefined Instruction exception is generated.

This is a generic coprocessor instruction. The D bit and the CRd field have no functionality defined by the
architecture and are free for use by the coprocessor instruction set designer.

For more information about the coprocessors see Coprocessor support on page A2-68.

if P == ‘0’ && U == ‘0’ && D == ‘0’ && W == ‘0’ then UNDEFINED;
if P == ‘0’ && U == ‘0’ && D == ‘1’ && W == ‘0’ then SEE MRRC, MRRC2;
if coproc == ‘101x’ then SEE “Advanced SIMD and VFP”;
index = (P == ‘1’); add = (U == ‘1’); cp = UInt(coproc); imm32 = ZeroExtend(imm8:’00’, 32);
if W == ‘1’ || (P == ‘0’ && CurrentInstrSet() != InstrSet_ARM) then UNPREDICTABLE;

if P == ‘0’ && U == ‘0’ && D == ‘0’ && W == ‘0’ then UNDEFINED;
if P == ‘0’ && U == ‘0’ && D == ‘1’ && W == ‘0’ then SEE MRRC, MRRC2;
index = (P == ‘1’); add = (U == ‘1’); cp = UInt(coproc); imm32 = ZeroExtend(imm8:’00’, 32);
if W == ‘1’ || (P == ‘0’ && CurrentInstrSet() != InstrSet_ARM) then UNPREDICTABLE;

Encoding T1 / A1 ARMv6T2, ARMv7 for encoding T1

ARMv4*, ARMv5T*, ARMv6*, ARMv7 for encoding A1
LDC{L}<c> <coproc>,<CRd>,<label>

LDC{L}<c> <coproc>,<CRd>,[PC,#-0] Special case
LDC{L}<c> <coproc>,<CRd>,[PC],<option>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 P U D W 1 1 1 1 1 CRd coproc imm8

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 0 P U D W 1 1 1 1 1 CRd coproc imm8

Encoding T2 / A2 ARMv6T2, ARMv7 for encoding T2

ARMv5T*, ARMv6*, ARMv7 for encodingA2
LDC2{L}<c> <coproc>,<CRd>,<label>

LDC2{L}<c> <coproc>,<CRd>,[PC,#-0] Special case
LDC2{L}<c> <coproc>,<CRd>,[PC],<option>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 0 P U D W 1 1 1 1 1 CRd coproc imm8

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 0 P U D W 1 1 1 1 1 CRd coproc imm8

Advanced SIMD and VFP See Extension register load/store instructions on page A7-26
A8-108 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2008_Q4
Inserted Text

Instruction Details
Assembler syntax

where:

2 If specified, selects encoding T2 / A2. If omitted, selects encoding T1 / A1.

L If specified, selects the D == 1 form of the encoding. If omitted, selects the D == 0 form.

<c><q> See Standard assembler syntax fields on page A8-7. An ARM LDC2 instruction must be
unconditional.

<coproc> The name of the coprocessor. The standard generic coprocessor names are p0, p1, …, p15.

<CRd> The coprocessor destination register.

<label> The label of the literal data item that is to be loaded into <Rt>. The assembler calculates the
required value of the offset from the Align(PC,4) value of this instruction to the label.
Permitted values of the offset are multiples of 4 in the range -1020 to 1020.

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE.

If the offset is negative, imm32 is equal to minus the offset and add == FALSE.

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be
specified separately, including permitting a subtraction of 0 that cannot be specified using the normal
syntax. For more information, see Use of labels in UAL instruction syntax on page A4-5.

The unindexed form is permitted for the ARM instruction set only. In it, <option> is a coprocessor option,
written as an integer 0-255 enclosed in { } and encoded in imm8.

The pre-UAL syntax LDC<c>L is equivalent to LDCL<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 if !Coproc_Accepted(cp, ThisInstr()) then
 GenerateCoprocessorException();
 else
 NullCheckIfThumbEE(15);
 offset_addr = if add then (Align(PC,4) + imm32) else (Align(PC,4) - imm32);
 address = if index then offset_addr else Align(PC,4);
 repeat
 Coproc_SendLoadedWord(MemA[address,4], cp, ThisInstr()); address = address + 4;
 until Coproc_DoneLoading(cp, ThisInstr());

Exceptions

Undefined Instruction, Data Abort.

LDC{2}{L}<c><q> <coproc>, <CRd>, <label> Normal form with P = 1, W = 0
LDC{2}{L}<c><q> <coproc>, <CRd>, [PC,#+/-<imm>] Alternative form with P = 1, W = 0
LDC{2}{L}<c><q> <coproc>, <CRd>, [PC], <option> Unindexed form with P = 0, U = 1, W = 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-109

Instruction Details
A8.6.53 LDM / LDMIA / LDMFD

Load Multiple (Increment After) loads multiple registers from consecutive memory locations using an
address from a base register. The consecutive memory locations start at this address, and the address just
above the highest of those locations can optionally be written back to the base register. The registers loaded
can include the PC, causing a branch to a loaded address. Related system instructions are LDM (user
registers) on page B6-7 and LDM (exception return) on page B6-5.

n = UInt(Rn); registers = ‘00000000’:register_list; wback = (registers<n> == ‘0’);
if BitCount(registers) < 1 then UNPREDICTABLE;

if W == ‘1’ && Rn == ‘1101’ then SEE POP;
n = UInt(Rn); registers = P:M:’0’:register_list; wback = (W == ‘1’);
if n == 15 || BitCount(registers) < 2 || (P == ‘1’ && M == ‘1’) then UNPREDICTABLE;
if registers<15> == ‘1’ && InITBlock() && !LastInITBlock() then UNPREDICTABLE;
if wback && registers<n> == ‘1’ then UNPREDICTABLE;

if W == ‘1’ && Rn == ‘1101’ && BitCount(register_list) >= 2 then SEE POP;
n = UInt(Rn); registers = register_list; wback = (W == ‘1’);
if n == 15 || BitCount(registers) < 1 then UNPREDICTABLE;
if wback && registers<n> == ‘1’ && ArchVersion() >= 7 then UNPREDICTABLE;

Assembler syntax

LDM<c><q> <Rn>{!}, <registers>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

Encoding T1 ARMv4T, ARMv5T*, ARMv6*, ARMv7 (not in ThumbEE)
LDM<c> <Rn>!,<registers> <Rn> not included in <registers>
LDM<c> <Rn>,<registers> <Rn> included in <registers>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 1 Rn register_list

Encoding T2 ARMv6T2, ARMv7
LDM<c>.W <Rn>{!},<registers>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 0 W 1 Rn P M (0) register_list

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
LDM<c> <Rn>{!},<registers>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 0 0 0 1 0 W 1 Rn register_list
A8-110 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2008_Q4
Inserted Text
if CurrentInstrSet() == InstrSet_ThumbEE then SEE "ThumbEE instructions";

ARM_2008_Q4
Inserted Text
ThumbEE instructions See 16-bit ThumbEE instructions on page A9-6 [PDF page 1132]

Instruction Details
<Rn> The base register. SP can be used. If it is the SP and ! is specified, the instruction is treated
as described in POP on page A8-246.

! Causes the instruction to write a modified value back to <Rn>. Encoded as W = 1. If ! is
omitted, the instruction does not change <Rn> in this way. Encoded as W = 0.

<registers> Is a list of one or more registers to be loaded, separated by commas and surrounded by
{ and }. The lowest-numbered register is loaded from the lowest memory address, through
to the highest-numbered register from the highest memory address.

Encoding T2 does not support a list containing only one register. If an LDMIA instruction with
just one register <Rt> in the list is assembled to Thumb and encoding T1 is not available, it
is assembled to the equivalent LDR<c><q> <Rt>,[<Rn>]{,#4} instruction.

The SP can be in the list in ARM code, but not in Thumb code. However, ARM instructions
that include the SP in the list are deprecated.

The PC can be in the list. If it is, the instruction branches to the address loaded to the PC. In
ARMv5T and above, this is an interworking branch, see Pseudocode details of operations
on ARM core registers on page A2-12. In Thumb code, if the PC is in the list:

• the LR must not be in the list

• the instruction must be either outside any IT block, or the last instruction in an IT
block.

ARM instructions that include both the LR and the PC in the list are deprecated.

Instructions with the base register in the list and ! specified are only available in the ARM
instruction set before ARMv7, and the use of such instructions is deprecated. The value of
the base register after such an instruction is UNKNOWN.

LDMIA and LDMFD are pseudo-instructions for LDM. LDMFD refers to its use for popping data from Full
Descending stacks.

The pre-UAL syntaxes LDM<c>IA and LDM<c>FD are equivalent to LDM<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); NullCheckIfThumbEE(n);
 address = R[n];
 for i = 0 to 14
 if registers<i> == ‘1’ then
 R[i] = MemA[address,4]; address = address + 4;
 if registers<15> == ‘1’ then
 LoadWritePC(MemA[address,4]);
 if wback && registers<n> == ‘0’ then R[n] = R[n] + 4*BitCount(registers);
 if wback && registers<n> == ‘1’ then R[n] = bits(32) UNKNOWN;

Exceptions

Data Abort.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-111

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Inserted Text
 then:
 • in the Thumb instruction set, it uses encoding T1, and if ! is specified it is treated as described in POP on page A8-246 [PDF page 558]
 • in the ARM instruction set,if ! is specified and there is more than one register in the list, it is treated as described in POP on page A8-246 [PDF page 558].

Instruction Details
A8.6.54 LDMDA / LDMFA

Load Multiple Decrement After (Load Multiple Full Ascending) loads multiple registers from consecutive
memory locations using an address from a base register. The consecutive memory locations end at this
address, and the address just below the lowest of those locations can optionally be written back to the base
register. The registers loaded can include the PC, causing a branch to a loaded address.

Related system instructions are LDM (user registers) on page B6-7 and LDM (exception return) on
page B6-5.

n = UInt(Rn); registers = register_list; wback = (W == ‘1’);
if n == 15 || BitCount(registers) < 1 then UNPREDICTABLE;
if wback && registers<n> == ‘1’ && ArchVersion() >= 7 then UNPREDICTABLE;

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
LDMDA<c> <Rn>{!},<registers>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 0 0 0 0 0 W 1 Rn register_list
A8-112 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

LDMDA<c><q> <Rn>{!}, <registers>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rn> The base register. SP can be used.

! Causes the instruction to write a modified value back to <Rn>. Encoded as W = 1.

If ! is omitted, the instruction does not change <Rn> in this way. Encoded as W = 0.

<registers> Is a list of one or more registers to be loaded, separated by commas and surrounded by
{ and }. The lowest-numbered register is loaded from the lowest memory address, through
to the highest-numbered register from the highest memory address.

The SP can be in the list. However, instructions that include the SP in the list are deprecated.

The PC can be in the list. If it is, the instruction branches to the address (data) loaded to the
PC. In ARMv5T and above, this branch is an interworking branch, see Pseudocode details
of operations on ARM core registers on page A2-12.

Instructions that include both the LR and the PC in the list are deprecated.

Instructions with the base register in the list and ! specified are only available before
ARMv7, and the use of such instructions is deprecated. The value of the base register after
such an instruction is UNKNOWN.

LDMFA is a pseudo-instruction for LDMDA, referring to its use for popping data from Full Ascending stacks.

The pre-UAL syntaxes LDM<c>DA and LDM<c>FA are equivalent to LDMDA<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n] - 4*BitCount(registers) + 4;
 for i = 0 to 14
 if registers<i> == ‘1’ then
 R[i] = MemA[address,4]; address = address + 4;
 if registers<15> == ‘1’ then
 LoadWritePC(MemA[address,4]);
 if wback && registers<n> == ‘0’ then R[n] = R[n] - 4*BitCount(registers);
 if wback && registers<n> == ‘1’ then R[n] = bits(32) UNKNOWN;

Exceptions

Data Abort.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-113

Instruction Details
A8.6.55 LDMDB / LDMEA

Load Multiple Decrement Before (Load Multiple Empty Ascending) loads multiple registers from
consecutive memory locations using an address from a base register. The consecutive memory locations end
just below this address, and the address of the lowest of those locations can optionally be written back to the
base register. The registers loaded can include the PC, causing a branch to a loaded address.

Related system instructions are LDM (user registers) on page B6-7 and LDM (exception return) on
page B6-5.

n = UInt(Rn); registers = P:M:’0’:register_list; wback = (W == ‘1’);
if n == 15 || BitCount(registers) < 2 || (P == ‘1’ && M == ‘1’) then UNPREDICTABLE;
if registers<15> == ‘1’ && InITBlock() && !LastInITBlock() then UNPREDICTABLE;
if wback && registers<n> == ‘1’ then UNPREDICTABLE;

n = UInt(Rn); registers = register_list; wback = (W == ‘1’);
if n == 15 || BitCount(registers) < 1 then UNPREDICTABLE;
if wback && registers<n> == ‘1’ && ArchVersion() >= 7 then UNPREDICTABLE;

Assembler syntax

LDMDB<c><q> <Rn>{!}, <registers>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rn> The base register. The SP can be used.

! Causes the instruction to write a modified value back to <Rn>. Encoded as W = 1.

If ! is omitted, the instruction does not change <Rn> in this way. Encoded as W = 0.

<registers> Is a list of one or more registers to be loaded, separated by commas and surrounded by
{ and }. The lowest-numbered register is loaded from the lowest memory address, through
to the highest-numbered register from the highest memory address.

Encoding T1 does not support a list containing only one register. If an LDMDB instruction with
just one register <Rt> in the list is assembled to Thumb, it is assembled to the equivalent
LDR<c><q> <Rt>,[<Rn>,#-4]{!} instruction.

Encoding T1 ARMv6T2, ARMv7
LDMDB<c> <Rn>{!},<registers>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 1 0 0 W 1 Rn P M (0) register_list

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
LDMDB<c> <Rn>{!},<registers>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 0 0 1 0 0 W 1 Rn register_list
A8-114 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
The SP can be in the list in ARM code, but not in Thumb code. However, ARM instructions
that include the SP in the list are deprecated.

The PC can be in the list. If it is, the instruction branches to the address loaded to the PC. In
ARMv5T and above, this is an interworking branch, see Pseudocode details of operations
on ARM core registers on page A2-12. In Thumb code, if the PC is in the list:

• the LR must not be in the list

• the instruction must be either outside any IT block, or the last instruction in an IT
block.

ARM instructions that include both the LR and the PC in the list are deprecated.

Instructions with the base register in the list and ! specified are only available in the ARM
instruction set before ARMv7, and the use of such instructions is deprecated. The value of
the base register after such an instruction is UNKNOWN.

LDMEA is a pseudo-instruction for LDMDB, referring to its use for popping data from Empty Ascending stacks.

The pre-UAL syntaxes LDM<c>DB and LDM<c>EA are equivalent to LDMDB<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); NullCheckIfThumbEE(n);
 address = R[n] - 4*BitCount(registers);
 for i = 0 to 14
 if registers<i> == ‘1’ then
 R[i] = MemA[address,4]; address = address + 4;
 if registers<15> == ‘1’ then
 LoadWritePC(MemA[address,4]);
 if wback && registers<n> == ‘0’ then R[n] = R[n] - 4*BitCount(registers);
 if wback && registers<n> == ‘1’ then R[n] = bits(32) UNKNOWN;

Exceptions

Data Abort.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-115

Instruction Details
A8.6.56 LDMIB / LDMED

Load Multiple Increment Before loads multiple registers from consecutive memory locations using an
address from a base register. The consecutive memory locations start just above this address, and the address
of the last of those locations can optionally be written back to the base register. The registers loaded can
include the PC, causing a branch to a loaded address.

Related system instructions are LDM (user registers) on page B6-7 and LDM (exception return) on
page B6-5.

n = UInt(Rn); registers = register_list; wback = (W == ‘1’);
if n == 15 || BitCount(registers) < 1 then UNPREDICTABLE;
if wback && registers<n> == ‘1’ && ArchVersion() >= 7 then UNPREDICTABLE;

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
LDMIB<c> <Rn>{!},<registers>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 0 0 1 1 0 W 1 Rn register_list
A8-116 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

LDMIB<c><q> <Rn>{!}, <registers>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rn> The base register. The SP can be used.

! Causes the instruction to write a modified value back to <Rn>. Encoded as W = 1.

If ! is omitted, the instruction does not change <Rn> in this way. Encoded as W = 0.

<registers> Is a list of one or more registers to be loaded, separated by commas and surrounded by
{ and }. The lowest-numbered register is loaded from the lowest memory address, through
to the highest-numbered register from the highest memory address.

The SP can be in the list. However, instructions that include the SP in the list are deprecated.

The PC can be in the list. If it is, the instruction branches to the address (data) loaded to the
PC. In ARMv5T and above, this branch is an interworking branch, see Pseudocode details
of operations on ARM core registers on page A2-12.

Instructions that include both the LR and the PC in the list are deprecated.

Instructions with the base register in the list and ! specified are only available before
ARMv7, and the use of such instructions is deprecated. The value of the base register after
such an instruction is UNKNOWN.

LDMED is a pseudo-instruction for LDMIB, referring to its use for popping data from Empty Descending stacks.

The pre-UAL syntaxes LDM<c>IB and LDM<c>ED are equivalent to LDMIB<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n] + 4;
 for i = 0 to 14
 if registers<i> == ‘1’ then
 R[i] = MemA[address,4]; address = address + 4;
 if registers<15> == ‘1’ then
 LoadWritePC(MemA[address,4]);
 if wback && registers<n> == ‘0’ then R[n] = R[n] + 4*BitCount(registers);
 if wback && registers<n> == ‘1’ then R[n] = bits(32) UNKNOWN;

Exceptions

Data Abort.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-117

Instruction Details
A8.6.57 LDR (immediate, Thumb)

Load Register (immediate) calculates an address from a base register value and an immediate offset, loads
a word from memory, and writes it to a register. It can use offset, post-indexed, or pre-indexed addressing.
For information about memory accesses see Memory accesses on page A8-13.

t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm5:’00’, 32);
index = TRUE; add = TRUE; wback = FALSE;

t = UInt(Rt); n = 13; imm32 = ZeroExtend(imm8:’00’, 32);
index = TRUE; add = TRUE; wback = FALSE;

if Rn == ‘1111’ then SEE LDR (literal);
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
index = TRUE; add = TRUE; wback = FALSE;
if t == 15 && InITBlock() && !LastInITBlock() then UNPREDICTABLE;

if Rn == ‘1111’ then SEE LDR (literal);
if P == ‘1’ && U == ‘1’ && W == ‘0’ then SEE LDRT;
if Rn == ‘1101’ && P == ‘0’ && U == ‘1’ && W == ‘1’ && imm8 == ‘00000100’ then SEE POP;
if P == ‘0’ && W == ‘0’ then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
index = (P == ‘1’); add = (U == ‘1’); wback = (W == ‘1’);
if (wback && n == t) || (t == 15 && InITBlock() && !LastInITBlock()) then UNPREDICTABLE;

Encoding T1 ARMv4T, ARMv5T*, ARMv6*, ARMv7
LDR<c> <Rt>, [<Rn>{,#<imm>}]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 1 imm5 Rn Rt

Encoding T2 ARMv4T, ARMv5T*, ARMv6*, ARMv7
LDR<c> <Rt>,[SP{,#<imm>}]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 1 Rt imm8

Encoding T3 ARMv6T2, ARMv7
LDR<c>.W <Rt>,[<Rn>{,#<imm12>}]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 1 1 0 1 Rn Rt imm12

Encoding T4 ARMv6T2, ARMv7
LDR<c> <Rt>,[<Rn>,#-<imm8>]

LDR<c> <Rt>,[<Rn>],#+/-<imm8>

LDR<c> <Rt>,[<Rn>,#+/-<imm8>]!

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 1 0 1 Rn Rt 1 P U W imm8
A8-118 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rt> The destination register. The SP can be used. The PC can be used, provided the instruction
is either outside an IT block or the last instruction of an IT block. If the PC is used, the
instruction branches to the address (data) loaded to the PC. In ARMv5T and above, this
branch is an interworking branch, see Pseudocode details of operations on ARM core
registers on page A2-12.

<Rn> The base register. The SP can be used. For PC use see LDR (literal) on page A8-122.

+/- Is + or omitted if the immediate offset is to be added to the base register value (add == TRUE),
or – if it is to be subtracted (add == FALSE). #0 and #-0 generate different instructions.

<imm> The immediate offset used to form the address. For the offset addressing syntax, <imm> can
be omitted, meaning an offset of 0. Values are:

Encoding T1 multiples of 4 in the range 0-124

Encoding T2 multiples of 4 in the range 0-1020

Encoding T3 any value in the range 0-4095

Encoding T4 any value in the range 0-255.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); NullCheckIfThumbEE(n);
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];
 data = MemU[address,4];
 if wback then R[n] = offset_addr;
 if t == 15 then
 if address<1:0> == ‘00’ then LoadWritePC(data); else UNPREDICTABLE;
 elsif UnalignedSupport() || address<1:0> = ‘00’ then
 R[t] = data;
 else R[t] = bits(32) UNKNOWN; // Can only apply before ARMv7

Exceptions

Data Abort.

ThumbEE instruction

ThumbEE has additional LDR (immediate) encodings. For details see LDR (immediate) on page A9-19.

LDR<c><q> <Rt>, [<Rn> {, #+/-<imm>}] Offset: index==TRUE, wback==FALSE
LDR<c><q> <Rt>, [<Rn>, #+/-<imm>]! Pre-indexed: index==TRUE, wback==TRUE
LDR<c><q> <Rt>, [<Rn>], #+/-<imm> Post-indexed: index==FALSE, wback==TRUE
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-119

Instruction Details
A8.6.58 LDR (immediate, ARM)

Load Register (immediate) calculates an address from a base register value and an immediate offset, loads
a word from memory, and writes it to a register. It can use offset, post-indexed, or pre-indexed addressing.
For information about memory accesses see Memory accesses on page A8-13.

if Rn == ‘1111’ then SEE LDR (literal);
if P == ‘0’ && W == ‘1’ then SEE LDRT;
if Rn == ‘1101’ && P == ‘0’ && U == ‘1’ && W == ‘0’ && imm12 == ‘000000000100’ then SEE POP;
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
index = (P == ‘1’); add = (U == ‘1’); wback = (P == ‘0’) || (W == ‘1’);
if wback && n == t then UNPREDICTABLE;

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
LDR<c> <Rt>,[<Rn>{,#+/-<imm12>}]

LDR<c> <Rt>,[<Rn>],#+/-<imm12>

LDR<c> <Rt>,[<Rn>,#+/-<imm12>]!

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 0 P U 0 W 1 Rn Rt imm12
A8-120 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rt> The destination register. The SP or the PC can be used. If the PC is used, the instruction
branches to the address (data) loaded to the PC. In ARMv5T and above, this branch is an
interworking branch, see Pseudocode details of operations on ARM core registers on
page A2-12.

<Rn> The base register. The SP can be used. For PC use see LDR (literal) on page A8-122.

+/- Is + or omitted if the immediate offset is to be added to the base register value (add == TRUE),
or – if it is to be subtracted (add == FALSE). #0 and #-0 generate different instructions.

<imm> The immediate offset used to form the address. For the offset addressing syntax, <imm> can
be omitted, meaning an offset of 0. Any value in the range 0-4095 is permitted.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];
 data = MemU[address,4];
 if wback then R[n] = offset_addr;
 if t == 15 then
 if address<1:0> == ‘00’ then LoadWritePC(data); else UNPREDICTABLE;
 elsif UnalignedSupport() || address<1:0> = ‘00’ then
 R[t] = data;
 else // Can only apply before ARMv7
 R[t] = ROR(data, 8*UInt(address<1:0>));

Exceptions

Data Abort.

LDR<c><q> <Rt>, [<Rn> {, #+/-<imm>}] Offset: index==TRUE, wback==FALSE
LDR<c><q> <Rt>, [<Rn>, #+/-<imm>]! Pre-indexed: index==TRUE, wback==TRUE
LDR<c><q> <Rt>, [<Rn>], #+/-<imm> Post-indexed: index==FALSE, wback==TRUE
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-121

Instruction Details
A8.6.59 LDR (literal)

Load Register (literal) calculates an address from the PC value and an immediate offset, loads a word from
memory, and writes it to a register. For information about memory accesses see Memory accesses on
page A8-13.

t = UInt(Rt); imm32 = ZeroExtend(imm8:’00’, 32); add = TRUE;

t = UInt(Rt); imm32 = ZeroExtend(imm12, 32); add = (U == ‘1’);
if t == 15 && InITBlock() && !LastInITBlock() then UNPREDICTABLE;

t = UInt(Rt); imm32 = ZeroExtend(imm12, 32); add = (U == ‘1’);

Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rt> The destination register. The SP can be used. The PC can be used, provided the instruction
is either outside an IT block or the last instruction of an IT block. If the PC is used, the
instruction branches to the address (data) loaded to the PC. In ARMv5T and above, this
branch is an interworking branch, see Pseudocode details of operations on ARM core
registers on page A2-12.

Encoding T1 ARMv4T, ARMv5T*, ARMv6*, ARMv7
LDR<c> <Rt>,<label>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 Rt imm8

Encoding T2 ARMv6T2, ARMv7
LDR<c>.W <Rt>,<label>

LDR<c>.W <Rt>,[PC,#-0] Special case

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 U 1 0 1 1 1 1 1 Rt imm12

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
LDR<c> <Rt>,<label>

LDR<c> <Rt>,[PC,#-0] Special case

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 0 (1) U 0 (0) 1 1 1 1 1 Rt imm12

LDR<c><q> <Rt>, <label> Normal form
LDR<c><q> <Rt>, [PC, #+/-<imm>] Alternative form
A8-122 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
<label> The label of the literal data item that is to be loaded into <Rt>. The assembler calculates the
required value of the offset from the Align(PC,4) value of this instruction to the label.
Permitted values of the offset are:

Encoding T1 multiples of four in the range -1020 to 1020

Encoding T2 or A1 any value in the range -4095 to 4095.

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE.

If the offset is negative, imm32 is equal to minus the offset and add == FALSE. Negative offset
is not available in encoding T1.

Note
 In code examples in this manual, the syntax =<value> is used for the label of a memory word

whose contents are constant and equal to <value>. The actual syntax for such a label is
assembler-dependent.

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be
specified separately, including permitting a subtraction of 0 that cannot be specified using the normal
syntax. For more information, see Use of labels in UAL instruction syntax on page A4-5.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); NullCheckIfThumbEE(15);
 base = Align(PC,4);
 address = if add then (base + imm32) else (base - imm32);
 data = MemU[address,4];
 if t == 15 then
 if address<1:0> == ‘00’ then LoadWritePC(data); else UNPREDICTABLE;
 elsif UnalignedSupport() || address<1:0> = ‘00’ then
 R[t] = data;
 else // Can only apply before ARMv7
 if CurrentInstrSet() == InstrSet_ARM then
 R[t] = ROR(data, 8*UInt(address<1:0>));
 else
 R[t] = bits(32) UNKNOWN;

Exceptions

Data Abort.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-123

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Replacement Text
0

ARM_2011_Q2
Sticky Note
As indicated later in the description of <label>, and in the pseudocode for encoding T1, this encoding only supports positive offsets.

Instruction Details
A8.6.60 LDR (register)

Load Register (register) calculates an address from a base register value and an offset register value, loads
a word from memory, and writes it to a register. The offset register value can optionally be shifted. For
information about memory accesses, see Memory accesses on page A8-13.

if CurrentInstrSet() == InstrSet_ThumbEE then SEE “Modified operation in ThumbEE”;
t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; wback = FALSE;
(shift_t, shift_n) = (SRType_LSL, 0);

if Rn == ‘1111’ then SEE LDR (literal);
t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; wback = FALSE;
(shift_t, shift_n) = (SRType_LSL, UInt(imm2));
if BadReg(m) then UNPREDICTABLE;
if t == 15 && InITBlock() && !LastInITBlock() then UNPREDICTABLE;

if P == ‘0’ && W == ‘1’ then SEE LDRT;
t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = (P == ‘1’); add = (U == ‘1’); wback = (P == ‘0’) || (W == ‘1’);
(shift_t, shift_n) = DecodeImmShift(type, imm5);
if m == 15 then UNPREDICTABLE;
if wback && (n == 15 || n == t) then UNPREDICTABLE;
if ArchVersion() < 6 && wback && m == n then UNPREDICTABLE;

Encoding T1 ARMv4T, ARMv5T*, ARMv6*, ARMv7
LDR<c> <Rt>,[<Rn>,<Rm>]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 0 0 Rm Rn Rt

Encoding T2 ARMv6T2, ARMv7
LDR<c>.W <Rt>,[<Rn>,<Rm>{,LSL #<imm2>}]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 1 0 1 Rn Rt 0 0 0 0 0 0 imm2 Rm

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
LDR<c> <Rt>,[<Rn>,+/-<Rm>{, <shift>}]{!}

LDR<c> <Rt>,[<Rn>],+/-<Rm>{, <shift>}

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 P U 0 W 1 Rn Rt imm5 type 0 Rm

Modified operation in ThumbEE See LDR (register) on page A9-9
A8-124 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rt> The destination register. The SP can be used. The PC can be used, provided the instruction
is either outside an IT block or the last instruction of an IT block. If the PC is used, the
instruction branches to the address (data) loaded to the PC. In ARMv5T and above, this
branch is an interworking branch, see Pseudocode details of operations on ARM core
registers on page A2-12.

<Rn> The base register. The SP can be used. The PC can be used only in the ARM instruction set.

+/- Is + or omitted if the optionally shifted value of <Rm> is to be added to the base register value
(add == TRUE), or – if it is to be subtracted (permitted in ARM code only, add == FALSE).

<Rm> The offset that is optionally shifted and applied to the value of <Rn> to form the address.

<shift> The shift to apply to the value read from <Rm>. If present, encoding T1 is not permitted. If
absent, no shift is applied and all encodings are permitted. For encoding T2, <shift> can
only be omitted, encoded as imm2 = 0b00, or LSL #<imm> with <imm> = 1, 2, or 3, and <imm>
encoded in imm2. For encoding A1, see Shifts applied to a register on page A8-10.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); NullCheckIfThumbEE(n);
 offset = Shift(R[m], shift_t, shift_n, APSR.C);
 offset_addr = if add then (R[n] + offset) else (R[n] - offset);
 address = if index then offset_addr else R[n];
 data = MemU[address,4];
 if wback then R[n] = offset_addr;
 if t == 15 then
 if address<1:0> == ‘00’ then LoadWritePC(data); else UNPREDICTABLE;
 elsif UnalignedSupport() || address<1:0> = ‘00’ then
 R[t] = data;
 else // Can only apply before ARMv7
 if CurrentInstrSet() == InstrSet_ARM then
 R[t] = ROR(data, 8*UInt(address<1:0>));
 else
 R[t] = bits(32) UNKNOWN;

Exceptions

Data Abort.

LDR<c><q> <Rt>, [<Rn>, +/-<Rm>{, <shift>}] Offset: index==TRUE, wback==FALSE
LDR<c><q> <Rt>, [<Rn>, +/-<Rm>{, <shift>}]! Pre-indexed: index==TRUE, wback==TRUE
LDR<c><q> <Rt>, [<Rn>], +/-<Rm>{, <shift>} Post-indexed: index==FALSE, wback==TRUE
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-125

Instruction Details
A8.6.61 LDRB (immediate, Thumb)

Load Register Byte (immediate) calculates an address from a base register value and an immediate offset,
loads a byte from memory, zero-extends it to form a 32-bit word, and writes it to a register. It can use offset,
post-indexed, or pre-indexed addressing. For information about memory accesses see Memory accesses on
page A8-13.

t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm5, 32);
index = TRUE; add = TRUE; wback = FALSE;

if Rt == ‘1111’ then SEE PLD;
if Rn == ‘1111’ then SEE LDRB (literal);
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
index = TRUE; add = TRUE; wback = FALSE;
if t == 13 then UNPREDICTABLE;

if Rt == ‘1111’ && P == ‘1’ && U == ‘0’ && W == ‘0’ then SEE PLD;
if Rn == ‘1111’ then SEE LDRB (literal);
if P == ‘1’ && U == ‘1’ && W == ‘0’ then SEE LDRBT;
if P == ‘0’ && W == ‘0’ then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
index = (P == ‘1’); add = (U == ‘1’); wback = (W == ‘1’);
if BadReg(t) || (wback && n == t) then UNPREDICTABLE;

Encoding T1 ARMv4T, ARMv5T*, ARMv6*, ARMv7
LDRB<c> <Rt>,[<Rn>{,#<imm5>}]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 imm5 Rn Rt

Encoding T2 ARMv6T2, ARMv7
LDRB<c>.W <Rt>,[<Rn>{,#<imm12>}]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 1 0 0 1 Rn Rt imm12

Encoding T3 ARMv6T2, ARMv7
LDRB<c> <Rt>,[<Rn>,#-<imm8>]

LDRB<c> <Rt>,[<Rn>],#+/-<imm8>

LDRB<c> <Rt>,[<Rn>,#+/-<imm8>]!

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 0 1 Rn Rt 1 P U W imm8
A8-126 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q4 and ARM_2011_Q2
Cross-Out

ARM_2009_Q4 and ARM_2011_Q2
Replacement Text
t == 13 || (t == 15 && W == '1')

ARM_2011_Q2
Sticky Note
The original correction, made in the 2009_Q4 errata release, identified as UNPREDICTABLE some cases that are covered by earlier statements. The general rule, that pseudocode must be interpreted sequentially, means this is acceptable. However the change made in the 2011_Q2 release simplifies the pseudocode and avoids any overlap with earlier statements.

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rt> The destination register.

<Rn> The base register. The SP can be used. For PC use see LDRB (literal) on page A8-130.

+/- Is + or omitted if the immediate offset is to be added to the base register value (add == TRUE),
or – if it is to be subtracted (add == FALSE). #0 and #-0 generate different instructions.

<imm> The immediate offset used to form the address. For the offset addressing syntax, <imm> can
be omitted, meaning an offset of 0. Values are:

Encoding T1 any value in the range 0-31

Encoding T2 any value in the range 0-4095

Encoding T3 any value in the range 0-255.

The pre-UAL syntax LDR<c>B is equivalent to LDRB<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); NullCheckIfThumbEE(n);
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];
 R[t] = ZeroExtend(MemU[address,1], 32);
 if wback then R[n] = offset_addr;

Exceptions

Data Abort.

LDRB<c><q> <Rt>, [<Rn> {, #+/-<imm>}] Offset: index==TRUE, wback==FALSE
LDRB<c><q> <Rt>, [<Rn>, #+/-<imm>]! Pre-indexed: index==TRUE, wback==TRUE
LDRB<c><q> <Rt>, [<Rn>], #+/-<imm> Post-indexed: index==FALSE, wback==TRUE
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-127

Instruction Details
A8.6.62 LDRB (immediate, ARM)

Load Register Byte (immediate) calculates an address from a base register value and an immediate offset,
loads a byte from memory, zero-extends it to form a 32-bit word, and writes it to a register. It can use offset,
post-indexed, or pre-indexed addressing. For information about memory accesses see Memory accesses on
page A8-13.

if Rn == ‘1111’ then SEE LDRB (literal);
if P == ‘0’ && W == ‘1’ then SEE LDRBT;
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
index = (P == ‘1’); add = (U == ‘1’); wback = (P == ‘0’) || (W == ‘1’);
if t == 15 || (wback && n == t) then UNPREDICTABLE;

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
LDRB<c> <Rt>,[<Rn>{,#+/-<imm12>}]

LDRB<c> <Rt>,[<Rn>],#+/-<imm12>

LDRB<c> <Rt>,[<Rn>,#+/-<imm12>]!

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 0 P U 1 W 1 Rn Rt imm12
A8-128 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rt> The destination register.

<Rn> The base register. The SP can be used. For PC use see LDRB (literal) on page A8-130.

+/- Is + or omitted if the immediate offset is to be added to the base register value (add == TRUE),
or – if it is to be subtracted (add == FALSE). #0 and #-0 generate different instructions.

<imm> The immediate offset used to form the address. For the offset addressing syntax, <imm> can
be omitted, meaning an offset of 0. Any value in the range 0-4095 is permitted.

The pre-UAL syntax LDR<c>B is equivalent to LDRB<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];
 R[t] = ZeroExtend(MemU[address,1], 32);
 if wback then R[n] = offset_addr;

Exceptions

Data Abort.

LDRB<c><q> <Rt>, [<Rn> {, #+/-<imm>}] Offset: index==TRUE, wback==FALSE
LDRB<c><q> <Rt>, [<Rn>, #+/-<imm>]! Pre-indexed: index==TRUE, wback==TRUE
LDRB<c><q> <Rt>, [<Rn>], #+/-<imm> Post-indexed: index==FALSE, wback==TRUE
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-129

Instruction Details
A8.6.63 LDRB (literal)

Load Register Byte (literal) calculates an address from the PC value and an immediate offset, loads a byte
from memory, zero-extends it to form a 32-bit word, and writes it to a register. For information about
memory accesses see Memory accesses on page A8-13.

if Rt == ‘1111’ then SEE PLD;
t = UInt(Rt); imm32 = ZeroExtend(imm12, 32); add = (U == ‘1’);
if t == 13 then UNPREDICTABLE;

t = UInt(Rt); imm32 = ZeroExtend(imm12, 32); add = (U == ‘1’);
if t == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
LDRB<c> <Rt>,<label>

LDRB<c> <Rt>,[PC,#-0] Special case

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 U 0 0 1 1 1 1 1 Rt imm12

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
LDRB<c> <Rt>,<label>

LDRB<c> <Rt>,[PC,#-0] Special case

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 0 (1) U 1 (0) 1 1 1 1 1 Rt imm12
A8-130 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rt> The destination register.

<label> The label of the literal data item that is to be loaded into <Rt>. The assembler calculates the
required value of the offset from the Align(PC,4) value of this instruction to the label.
Permitted values of the offset are -4095 to 4095.

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE.

If the offset is negative, imm32 is equal to minus the offset and add == FALSE.

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be
specified separately, including permitting a subtraction of 0 that cannot be specified using the normal
syntax. For more information, see Use of labels in UAL instruction syntax on page A4-5.

The pre-UAL syntax LDR<c>B is equivalent to LDRB<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); NullCheckIfThumbEE(15);
 base = Align(PC,4);
 address = if add then (base + imm32) else (base - imm32);
 R[t] = ZeroExtend(MemU[address,1], 32);

Exceptions

Data Abort.

LDRB<c><q> <Rt>, <label> Normal form
LDRB<c><q> <Rt>, [PC, #+/-<imm>] Alternative form
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-131

Instruction Details
A8.6.64 LDRB (register)

Load Register Byte (register) calculates an address from abase register value and an offset register value,
loads a byte from memory, zero-extends it to form a 32-bit word, and writes it to a register. The offset
register value can optionally be shifted. For information about memory accesses see Memory accesses on
page A8-13.

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; wback = FALSE;
(shift_t, shift_n) = (SRType_LSL, 0);

if Rt == ‘1111’ then SEE PLD;
if Rn == ‘1111’ then SEE LDRB (literal);
t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; wback = FALSE;
(shift_t, shift_n) = (SRType_LSL, UInt(imm2));
if t == 13 || BadReg(m) then UNPREDICTABLE;

if P == ‘0’ && W == ‘1’ then SEE LDRBT;
t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = (P == ‘1’); add = (U == ‘1’); wback = (P == ‘0’) || (W == ‘1’);
(shift_t, shift_n) = DecodeImmShift(type, imm5);
if t == 15 || m == 15 then UNPREDICTABLE;
if wback && (n == 15 || n == t) then UNPREDICTABLE;
if ArchVersion() < 6 && wback && m == n then UNPREDICTABLE;

Encoding T1 ARMv4T, ARMv5T*, ARMv6*, ARMv7
LDRB<c> <Rt>,[<Rn>,<Rm>]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 0 Rm Rn Rt

Encoding T2 ARMv6T2, ARMv7
LDRB<c>.W <Rt>,[<Rn>,<Rm>{,LSL #<imm2>}]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 0 1 Rn Rt 0 0 0 0 0 0 imm2 Rm

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
LDRB<c> <Rt>,[<Rn>,+/-<Rm>{, <shift>}]{!}

LDRB<c> <Rt>,[<Rn>],+/-<Rm>{, <shift>}

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 P U 1 W 1 Rn Rt imm5 type 0 Rm
A8-132 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rt> The destination register.

<Rn> The base register. The SP can be used. The PC can be used only in the ARM instruction set.

+/- Is + or omitted if the optionally shifted value of <Rm> is to be added to the base register value
(add == TRUE), or – if it is to be subtracted (permitted in ARM code only, add == FALSE).

<Rm> Contains the offset that is optionally shifted and applied to the value of <Rn> to form the
address.

<shift> The shift to apply to the value read from <Rm>. If present, encoding T1 is not permitted. If
absent, no shift is applied and all encodings are permitted. For encoding T2, <shift> can
only be omitted, encoded as imm2 = 0b00, or LSL #<imm> with <imm> = 1, 2, or 3, and <imm>
encoded in imm2. For encoding A1, see Shifts applied to a register on page A8-10.

The pre-UAL syntax LDR<c>B is equivalent to LDRB<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); NullCheckIfThumbEE(n);
 offset = Shift(R[m], shift_t, shift_n, APSR.C);
 offset_addr = if add then (R[n] + offset) else (R[n] - offset);
 address = if index then offset_addr else R[n];
 R[t] = ZeroExtend(MemU[address,1],32);
 if wback then R[n] = offset_addr;

Exceptions

Data Abort.

LDRB<c><q> <Rt>, [<Rn>, +/-<Rm>{, <shift>}] Offset: index==TRUE, wback==FALSE
LDRB<c><q> <Rt>, [<Rn>, +/-<Rm>{, <shift>}]! Pre-indexed: index==TRUE, wback==TRUE
LDRB<c><q> <Rt>, [<Rn>], +/-<Rm>{, <shift>} Post-indexed: index==FALSE, wback==TRUE
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-133

Instruction Details
A8.6.65 LDRBT

Load Register Byte Unprivileged loads a byte from memory, zero-extends it to form a 32-bit word, and
writes it to a register. For information about memory accesses see Memory accesses on page A8-13.

The memory access is restricted as if the processor were running in User mode. (This makes no difference
if the processor is actually running in User mode.)

The Thumb instruction uses an offset addressing mode, that calculates the address used for the memory
access from a base register value and an immediate offset, and leaves the base register unchanged.

The ARM instruction uses a post-indexed addressing mode, that uses a base register value as the address for
the memory access, and calculates a new address from a base register value and an offset and writes it back
to the base register. The offset can be an immediate value or an optionally-shifted register value.

if Rn == ‘1111’ then SEE LDRB (literal);
t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;
register_form = FALSE; imm32 = ZeroExtend(imm8, 32);
if BadReg(t) then UNPREDICTABLE;

t = UInt(Rt); n = UInt(Rn); postindex = TRUE; add = (U == ‘1’);
register_form = FALSE; imm32 = ZeroExtend(imm12, 32);
if t == 15 || n == 15 || n == t then UNPREDICTABLE;

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm); postindex = TRUE; add = (U == ‘1’);
register_form = TRUE; (shift_t, shift_n) = DecodeImmShift(type, imm5);
if t == 15 || n == 15 || n == t || m == 15 then UNPREDICTABLE;
if ArchVersion() < 6 && m == n then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
LDRBT<c> <Rt>,[<Rn>,#<imm8>]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 0 1 Rn Rt 1 1 1 0 imm8

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
LDRBT<c> <Rt>,[<Rn>],#+/-<imm12>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 0 0 U 1 1 1 Rn Rt imm12

Encoding A2 ARMv4*, ARMv5T*, ARMv6*, ARMv7
LDRBT<c> <Rt>,[<Rn>],+/-<Rm>{, <shift>}

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 0 U 1 1 1 Rn Rt imm5 type 0 Rm
A8-134 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rt> The destination register.

<Rn> The base register. The SP can be used.

+/- Is + or omitted if <imm> or the optionally shifted value of <Rm> is to be added to the base
register value (add == TRUE), or – if it is to be subtracted (permitted in ARM code only,
add == FALSE).

<imm> The immediate offset applied to the value of <Rn>. Values are 0-255 for encoding T1, and
0-4095 for encoding A1. <imm> can be omitted, meaning an offset of 0.

<Rm> Contains the offset that is optionally shifted and applied to the value of <Rn> to form the
address.

<shift> The shift to apply to the value read from <Rm>. If omitted, no shift is applied. Shifts applied
to a register on page A8-10 describes the shifts and how they are encoded.

The pre-UAL syntax LDR<c>BT is equivalent to LDRBT<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); NullCheckIfThumbEE(n);
 offset = if register_form then Shift(R[m], shift_t, shift_n, APSR.C) else imm32;
 offset_addr = if add then (R[n] + offset) else (R[n] - offset);
 address = if postindex then R[n] else offset_addr;
 R[t] = ZeroExtend(MemU_unpriv[address,1],32);
 if postindex then R[n] = offset_addr;

Exceptions

Data Abort.

LDRBT<c><q> <Rt>, [<Rn> {, #<imm>}] Offset: Thumb only
LDRBT<c><q> <Rt>, [<Rn>] {, #+/-<imm>} Post-indexed: ARM only
LDRBT<c><q> <Rt>, [<Rn>], +/-<Rm> {, <shift>} Post-indexed: ARM only
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-135

Instruction Details
A8.6.66 LDRD (immediate)

Load Register Dual (immediate) calculates an address from a base register value and an immediate offset,
loads two words from memory, and writes them to two registers. It can use offset, post-indexed, or
pre-indexed addressing. For information about memory accesses see Memory accesses on page A8-13.

if P == ‘0’ && W == ‘0’ then SEE “Related encodings”;
if Rn == ‘1111’ then SEE LDRD (literal);
t = UInt(Rt); t2 = UInt(Rt2); n = UInt(Rn); imm32 = ZeroExtend(imm8:’00’, 32);
index = (P == ‘1’); add = (U == ‘1’); wback = (W == ‘1’);
if wback && (n == t || n == t2) then UNPREDICTABLE;
if BadReg(t) || BadReg(t2) || t == t2 then UNPREDICTABLE;

if Rn == ‘1111’ then SEE LDRD (literal);
if Rt<0> == ‘1’ then UNDEFINED;
t = UInt(Rt); t2 = t+1; n = UInt(Rn); imm32 = ZeroExtend(imm4H:imm4L, 32);
index = (P == ‘1’); add = (U == ‘1’); wback = (P == ‘0’) || (W == ‘1’);
if P == ‘0’ && W == ‘1’ then UNPREDICTABLE;
if wback && (n == t || n == t2) then UNPREDICTABLE;
if t2 == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
LDRD<c> <Rt>,<Rt2>,[<Rn>{,#+/-<imm>}]

LDRD<c> <Rt>,<Rt2>,[<Rn>],#+/-<imm>

LDRD<c> <Rt>,<Rt2>,[<Rn>,#+/-<imm>]!

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 P U 1 W 1 Rn Rt Rt2 imm8

Encoding A1 ARMv5TE*, ARMv6*, ARMv7
LDRD<c> <Rt>,<Rt2>,[<Rn>{,#+/-<imm8>}]

LDRD<c> <Rt>,<Rt2>,[<Rn>],#+/-<imm8>

LDRD<c> <Rt>,<Rt2>,[<Rn>,#+/-<imm8>]!

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 P U 1 W 0 Rn Rt imm4H 1 1 0 1 imm4L

Related encodings See Load/store dual, load/store exclusive, table branch on page A6-24
A8-136 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
UNPREDICTABLE

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rt> The first destination register. For an ARM instruction, <Rt> must be even-numbered and not
R14.

<Rt2> The second destination register. For an ARM instruction, <Rt2> must be <R(t+1)>.

<Rn> The base register. The SP can be used. For PC use see LDRD (literal) on page A8-138.

+/- Is + or omitted if the immediate offset is to be added to the base register value (add == TRUE),
or – if it is to be subtracted (add == FALSE). #0 and #-0 generate different instructions.

<imm> The immediate offset used to form the address. For the offset addressing syntax, <imm> can
be omitted, meaning an offset of 0. Values are:

Encoding T1 multiples of 4 in the range 0-1020

Encoding A1 any value in the range 0-255.

The pre-UAL syntax LDR<c>D is equivalent to LDRD<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); NullCheckIfThumbEE(n);
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];
 R[t] = MemA[address,4];
 R[t2] = MemA[address+4,4];
 if wback then R[n] = offset_addr;

Exceptions

Data Abort.

LDRD<c><q> <Rt>, <Rt2>, [<Rn> {, #+/-<imm>}] Offset: index==TRUE, wback==FALSE
LDRD<c><q> <Rt>, <Rt2>, [<Rn>, #+/-<imm>]! Pre-indexed: index==TRUE, wback==TRUE
LDRD<c><q> <Rt>, <Rt2>, [<Rn>], #+/-<imm> Post-indexed: index==FALSE, wback==TRUE
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-137

Instruction Details
A8.6.67 LDRD (literal)

Load Register Dual (literal) calculates an address from the PC value and an immediate offset, loads two
words from memory, and writes them to two registers. For information about memory accesses see Memory
accesses on page A8-13.

if P == ‘0’ then SEE “Related encodings”;
t = UInt(Rt); t2 = UInt(Rt2);
imm32 = ZeroExtend(imm8:’00’, 32); add = (U == ‘1’);
if BadReg(t) || BadReg(t2) || t == t2 then UNPREDICTABLE;

if Rt<0> == ‘1’ then UNDEFINED;
t = UInt(Rt); t2 = t+1; imm32 = ZeroExtend(imm4H:imm4L, 32); add = (U == ‘1’);
if t2 == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
LDRD<c> <Rt>,<Rt2>,<label>

LDRD<c> <Rt>,<Rt2>,[PC,#-0] Special case

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 P U 1 (0) 1 1 1 1 1 Rt Rt2 imm8

Encoding A1 ARMv5TE*, ARMv6*, ARMv7
LDRD<c> <Rt>,<Rt2>,<label>

LDRD<c> <Rt>,<Rt2>,[PC,#-0] Special case

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 (1) U 1 (0) 0 1 1 1 1 Rt imm4H 1 1 0 1 imm4L

Related encodings See Load/store dual, load/store exclusive, table branch on page A6-24
A8-138 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
W

ARM_2009_Q1
Inserted Text
&& W == '0'

ARM_2009_Q1
Inserted Text

if W == '1' then UNPREDICTABLE;

ARM_2009_Q1
Sticky Note
In the case when P == '0' and W == '1', the existing pseudocode results in a cross-reference loop, with this section referring to the section cross-referenced in Related encodings, and that section referring the reader back to this section. These changes break that loop.

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
UNPREDICTABLE

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rt> The first destination register. For an ARM instruction, <Rt> must be even-numbered and not
R14.

<Rt2> The second destination register. For an ARM instruction, <Rt2> must be <R(t+1)>.

<label> The label of the literal data item that is to be loaded into <Rt>. The assembler calculates the
required value of the offset from the Align(PC,4) value of this instruction to the label.
Permitted values of the offset are:

Encoding T1 multiples of 4 in the range -1020 to 1020

Encoding A1 any value in the range -255 to 255.

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE.

If the offset is negative, imm32 is equal to minus the offset and add == FALSE.

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be
specified separately, including permitting a subtraction of 0 that cannot be specified using the normal
syntax. For more information, see Use of labels in UAL instruction syntax on page A4-5.

The pre-UAL syntax LDR<c>D is equivalent to LDRD<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); NullCheckIfThumbEE(15);
 address = if add then (Align(PC,4) + imm32) else (Align(PC,4) - imm32);
 R[t] = MemA[address,4];
 R[t2] = MemA[address+4,4];

Exceptions

Data Abort.

LDRD<c><q> <Rt>, <Rt2>, <label> Normal form
LDRD<c><q> <Rt>, <Rt2>, [PC, #+/-<imm>] Alternative form
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-139

Instruction Details
A8.6.68 LDRD (register)

Load Register Dual (register) calculates an address from abase register value and a register offset, loads two
words from memory, and writes them to two registers. It can use offset, post-indexed, or pre-indexed
addressing. For information about memory accesses see Memory accesses on page A8-13.

if Rt<0> == ‘1’ then UNDEFINED;
t = UInt(Rt); t2 = t+1; n = UInt(Rn); m = UInt(Rm);
index = (P == ‘1’); add = (U == ‘1’); wback = (P == ‘0’) || (W == ‘1’);
if P == ‘0’ && W == ‘1’ then UNPREDICTABLE;
if t2 == 15 || m == 15 || m == t || m == t2 then UNPREDICTABLE;
if wback && (n == 15 || n == t || n == t2) then UNPREDICTABLE;
if ArchVersion() < 6 && wback && m == n then UNPREDICTABLE;

Encoding A1 ARMv5TE*, ARMv6*, ARMv7
LDRD<c> <Rt>,<Rt2>,[<Rn>,+/-<Rm>]{!}

LDRD<c> <Rt>,<Rt2>,[<Rn>],+/-<Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 P U 0 W 0 Rn Rt (0) (0) (0) (0) 1 1 0 1 Rm
A8-140 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
UNPREDICTABLE

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rt> The first destination register. This register must be even-numbered and not R14.

<Rt2> The second destination register. This register must be <R(t+1)>.

<Rn> The base register. The SP or the PC can be used.

+/- Is + or omitted if the value of <Rm> is to be added to the base register value (add == TRUE), or
– if it is to be subtracted (add == FALSE).

<Rm> Contains the offset that is applied to the value of <Rn> to form the address.

The pre-UAL syntax LDR<c>D is equivalent to LDRD<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + R[m]) else (R[n] - R[m]);
 address = if index then offset_addr else R[n];
 R[t] = MemA[address,4];
 R[t2] = MemA[address+4,4];
 if wback then R[n] = offset_addr;

Exceptions

Data Abort.

LDRD<c><q> <Rt>, <Rt2>, [<Rn>, +/-<Rm>] Offset: index==TRUE, wback==FALSE
LDRD<c><q> <Rt>, <Rt2>, [<Rn>, +/-<Rm>]! Pre-indexed: index==TRUE, wback==TRUE
LDRD<c><q> <Rt>, <Rt2>, [<Rn>], +/-<Rm> Post-indexed: index==FALSE, wback==TRUE
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-141

Instruction Details
A8.6.69 LDREX

Load Register Exclusive calculates an address from a base register value and an immediate offset, loads a
word from memory, writes it to a register and:

• if the address has the Shared Memory attribute, marks the physical address as exclusive access for
the executing processor in a shared monitor

• causes the executing processor to indicate an active exclusive access in the local monitor.

For more information about support for shared memory see Synchronization and semaphores on
page A3-12. For information about memory accesses see Memory accesses on page A8-13.

t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8:’00’, 32);
if BadReg(t) || n == 15 then UNPREDICTABLE;

t = UInt(Rt); n = UInt(Rn); imm32 = Zeros(32); // Zero offset
if t == 15 || n == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
LDREX<c> <Rt>,[<Rn>{,#<imm>}]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 0 1 0 1 Rn Rt (1) (1) (1) (1) imm8

Encoding A1 ARMv6*, ARMv7
LDREX<c> <Rt>,[<Rn>]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 1 1 0 0 1 Rn Rt (1) (1) (1) (1) 1 0 0 1 (1) (1) (1) (1)
A8-142 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q3
Cross-Out

ARM_2009_Q3
Replacement Text
global

Instruction Details
Assembler syntax

LDREX<c><q> <Rt>, [<Rn> {,#<imm>}]

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rt> The destination register.

<Rn> The base register. The SP can be used.

<imm> The immediate offset added to the value of <Rn> to form the address. <imm> can be omitted,
meaning an offset of 0. Values are:

Encoding T1 multiples of 4 in the range 0-1020

Encoding A1 omitted or 0.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); NullCheckIfThumbEE(n);
 address = R[n] + imm32;
 SetExclusiveMonitors(address,4);
 R[t] = MemA[address,4];

Exceptions

Data Abort.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-143

Instruction Details
A8.6.70 LDREXB

Load Register Exclusive Byte derives an address from a base register value, loads a byte from memory,
zero-extends it to form a 32-bit word, writes it to a register and:

• if the address has the Shared Memory attribute, marks the physical address as exclusive access for
the executing processor in a shared monitor

• causes the executing processor to indicate an active exclusive access in the local monitor.

For more information about support for shared memory see Synchronization and semaphores on
page A3-12. For information about memory accesses see Memory accesses on page A8-13.

t = UInt(Rt); n = UInt(Rn);
if BadReg(t) || n == 15 then UNPREDICTABLE;

t = UInt(Rt); n = UInt(Rn);
if t == 15 || n == 15 then UNPREDICTABLE;

Encoding T1 ARMv7
LDREXB<c> <Rt>, [<Rn>]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 1 0 1 Rn Rt (1) (1) (1) (1) 0 1 0 0 (1) (1) (1) (1)

Encoding A1 ARMv6K, ARMv7
LDREXB<c> <Rt>, [<Rn>]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 1 1 1 0 1 Rn Rt (1) (1) (1) (1) 1 0 0 1 (1) (1) (1) (1)
A8-144 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q3
Cross-Out

ARM_2009_Q3
Replacement Text
global

Instruction Details
Assembler syntax

LDREXB<c><q> <Rt>, [<Rn>]

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rt> The destination register.

<Rn> The base register. The SP can be used.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); NullCheckIfThumbEE(n);
 address = R[n];
 SetExclusiveMonitors(address,1);
 R[t] = ZeroExtend(MemA[address,1], 32);

Exceptions

Data Abort.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-145

Instruction Details
A8.6.71 LDREXD

Load Register Exclusive Doubleword derives an address from a base register value, loads a 64-bit
doubleword from memory, writes it to two registers and:

• if the address has the Shared Memory attribute, marks the physical address as exclusive access for
the executing processor in a shared monitor

• causes the executing processor to indicate an active exclusive access in the local monitor.

For more information about support for shared memory see Synchronization and semaphores on
page A3-12. For information about memory accesses see Memory accesses on page A8-13.

t = UInt(Rt); t2 = UInt(Rt2); n = UInt(Rn);
if BadReg(t) || BadReg(t2) || t == t2 || n == 15 then UNPREDICTABLE;

t = UInt(Rt); t2 = t+1; n = UInt(Rn);
if Rt<0> = ‘1’ || Rt == ‘1110’ || n == 15 then UNPREDICTABLE;

Encoding T1 ARMv7
LDREXD<c> <Rt>,<Rt2>,[<Rn>]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 1 0 1 Rn Rt Rt2 0 1 1 1 (1) (1) (1) (1)

Encoding A1 ARMv6K, ARMv7
LDREXD<c> <Rt>,<Rt2>,[<Rn>]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 1 1 0 1 1 Rn Rt (1) (1) (1) (1) 1 0 0 1 (1) (1) (1) (1)
A8-146 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q3
Cross-Out

ARM_2009_Q3
Replacement Text
global

Instruction Details
Assembler syntax

LDREXD<c><q> <Rt>, <Rt2>, [<Rn>]

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rt> The first destination register. For an ARM instruction, <Rt> must be even-numbered and not
R14.

<Rt2> The second destination register. For an ARM instruction, <Rt2> must be <R(t+1)>.

<Rn> The base register. The SP can be used.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); NullCheckIfThumbEE(n);
 address = R[n];
 SetExclusiveMonitors(address,8);
 value = MemA[address,8];
 // Extract words from 64-bit loaded value such that R[t] is
 // loaded from address and R[t2] from address+4.
 R[t] = if BigEndian() then value<63:32> else value<31:0>;
 R[t2] = if BigEndian() then value<31:0> else value<63:32>;

Exceptions

Data Abort.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-147

Instruction Details
A8.6.72 LDREXH

Load Register Exclusive Halfword derives an address from abase register value, loads a halfword from
memory, zero-extends it to form a 32-bit word, writes it to a register and:

• if the address has the Shared Memory attribute, marks the physical address as exclusive access for
the executing processor in a shared monitor

• causes the executing processor to indicate an active exclusive access in the local monitor.

For more information about support for shared memory see Synchronization and semaphores on
page A3-12. For information about memory accesses see Memory accesses on page A8-13.

t = UInt(Rt); n = UInt(Rn);
if BadReg(t) || n == 15 then UNPREDICTABLE;

t = UInt(Rt); n = UInt(Rn);
if t == 15 || n == 15 then UNPREDICTABLE;

Encoding T1 ARMv7
LDREXH<c> <Rt>, [<Rn>]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 1 0 1 Rn Rt (1) (1) (1) (1) 0 1 0 1 (1) (1) (1) (1)

Encoding A1 ARMv6K, ARMv7
LDREXH<c> <Rt>, [<Rn>]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 1 1 1 1 1 Rn Rt (1) (1) (1) (1) 1 0 0 1 (1) (1) (1) (1)
A8-148 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q3
Cross-Out

ARM_2009_Q3
Replacement Text
global

Instruction Details
Assembler syntax

LDREXH<c><q> <Rt>, [<Rn>]

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rt> The destination register.

<Rn> The base register. The SP can be used.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); NullCheckIfThumbEE(n);
 address = R[n];
 SetExclusiveMonitors(address,2);
 R[t] = ZeroExtend(MemA[address,2], 32);

Exceptions

Data Abort.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-149

Instruction Details
A8.6.73 LDRH (immediate, Thumb)

Load Register Halfword (immediate) calculates an address from a base register value and an immediate
offset, loads a halfword from memory, zero-extends it to form a 32-bit word, and writes it to a register. It
can use offset, post-indexed, or pre-indexed addressing. For information about memory accesses see
Memory accesses on page A8-13.

t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm5:’0’, 32);
index = TRUE; add = TRUE; wback = FALSE;

if Rt == ‘1111’ then SEE “Unallocated memory hints”;
if Rn == ‘1111’ then SEE LDRH (literal);
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
index = TRUE; add = TRUE; wback = FALSE;
if t == 13 then UNPREDICTABLE;

if Rn == ‘1111’ then SEE LDRH (literal);
if Rt == ‘1111’ && P == ‘1’ && U == ‘0’ && W == ‘0’ then SEE “Unallocated memory hints”;
if P == ‘1’ && U == ‘1’ && W == ‘0’ then SEE LDRHT;
if P == ‘0’ && W == ‘0’ then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
index = (P == ‘1’); add = (U == ‘1’); wback = (W == ‘1’);
if BadReg(t) || (wback && n == t) then UNPREDICTABLE;

Encoding T1 ARMv4T, ARMv5T*, ARMv6*, ARMv7
LDRH<c> <Rt>,[<Rn>{,#<imm>}]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 1 imm5 Rn Rt

Encoding T2 ARMv6T2, ARMv7
LDRH<c>.W <Rt>,[<Rn>{,#<imm12>}]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 1 0 1 1 Rn Rt imm12

Encoding T3 ARMv6T2, ARMv7
LDRH<c> <Rt>,[<Rn>,#-<imm8>]

LDRH<c> <Rt>,[<Rn>],#+/-<imm8>

LDRH<c> <Rt>,[<Rn>,#+/-<imm8>]!

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 1 1 Rn Rt 1 P U W imm8

Unallocated memory hints See Load halfword, memory hints on page A6-26
A8-150 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q4 and ARM_2011_Q2
Cross-Out

ARM_2009_Q4 and ARM_2011_Q2
Replacement Text
t ==13 || (t ==15 && W == '1')

ARM_2011_Q2
Sticky Note
The original correction, made in the 2009_Q4 errata release, identified as UNPREDICTABLE some cases that are covered by earlier statements. The general rule, that pseudocode must be interpreted sequentially, means this is acceptable. However the change made in the 2011_Q2 release simplifies the pseudocode and avoids any overlap with earlier statements.

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rt> The destination register.

<Rn> The base register. The SP can be used. For PC use see LDRH (literal) on page A8-154.

+/- Is + or omitted to indicate that the immediate offset is added to the base register value
(add == TRUE), or – to indicate that the offset is to be subtracted (add == FALSE). Different
instructions are generated for #0 and #-0.

<imm> The immediate offset used to form the address. For the offset addressing syntax, <imm> can
be omitted, meaning an offset of 0. Values are:

Encoding T1 multiples of 2 in the range 0-62

Encoding T2 any value in the range 0-4095

Encoding T3 any value in the range 0-255.

The pre-UAL syntax LDR<c>H is equivalent to LDRH<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); NullCheckIfThumbEE(n);
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];
 data = MemU[address,2];
 if wback then R[n] = offset_addr;
 if UnalignedSupport() || address<0> = ‘0’ then
 R[t] = ZeroExtend(data, 32);
 else // Can only apply before ARMv7
 R[t] = bits(32) UNKNOWN;

Exceptions

Data Abort.

LDRH<c><q> <Rt>, [<Rn> {, #+/-<imm>}] Offset: index==TRUE, wback==FALSE
LDRH<c><q> <Rt>, [<Rn>, #+/-<imm>]! Pre-indexed: index==TRUE, wback==TRUE
LDRH<c><q> <Rt>, [<Rn>], #+/-<imm> Post-indexed: index==FALSE, wback==TRUE
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-151

Instruction Details
A8.6.74 LDRH (immediate, ARM)

Load Register Halfword (immediate) calculates an address from a base register value and an immediate
offset, loads a halfword from memory, zero-extends it to form a 32-bit word, and writes it to a register. It
can use offset, post-indexed, or pre-indexed addressing. For information about memory accesses see
Memory accesses on page A8-13.

if Rn == ‘1111’ then SEE LDRH (literal);
if P == ‘0’ && W == ‘1’ then SEE LDRHT;
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm4H:imm4L, 32);
index = (P == ‘1’); add = (U == ‘1’); wback = (P == ‘0’) || (W == ‘1’);
if t == 15 || (wback && n == t) then UNPREDICTABLE;

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
LDRH<c> <Rt>,[<Rn>{,#+/-<imm8>}]

LDRH<c> <Rt>,[<Rn>],#+/-<imm8>

LDRH<c> <Rt>,[<Rn>,#+/-<imm8>]!

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 P U 1 W 1 Rn Rt imm4H 1 0 1 1 imm4L
A8-152 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rt> The destination register.

<Rn> The base register. The SP can be used. For PC use see LDRH (literal) on page A8-154.

+/- Is + or omitted to indicate that the immediate offset is added to the base register value
(add == TRUE), or – to indicate that the offset is to be subtracted (add == FALSE). Different
instructions are generated for #0 and #-0.

<imm> The immediate offset used to form the address. For the offset addressing syntax, <imm> can
be omitted, meaning an offset of 0. Any value in the range 0-255 is permitted.

The pre-UAL syntax LDR<c>H is equivalent to LDRH<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];
 data = MemU[address,2];
 if wback then R[n] = offset_addr;
 if UnalignedSupport() || address<0> = ‘0’ then
 R[t] = ZeroExtend(data, 32);
 else // Can only apply before ARMv7
 R[t] = bits(32) UNKNOWN;

Exceptions

Data Abort.

LDRH<c><q> <Rt>, [<Rn> {, #+/-<imm>}] Offset: index==TRUE, wback==FALSE
LDRH<c><q> <Rt>, [<Rn>, #+/-<imm>]! Pre-indexed: index==TRUE, wback==TRUE
LDRH<c><q> <Rt>, [<Rn>], #+/-<imm> Post-indexed: index==FALSE, wback==TRUE
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-153

Instruction Details
A8.6.75 LDRH (literal)

Load Register Halfword (literal) calculates an address from the PC value and an immediate offset, loads a
halfword from memory, zero-extends it to form a 32-bit word, and writes it to a register. For information
about memory accesses see Memory accesses on page A8-13.

if Rt == ‘1111’ then SEE “Unallocated memory hints”;
t = UInt(Rt); imm32 = ZeroExtend(imm12, 32); add = (U == ‘1’);
if t == 13 then UNPREDICTABLE;

t = UInt(Rt); imm32 = ZeroExtend(imm4H:imm4L, 32); add = (U == ‘1’);
if t == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
LDRH<c> <Rt>,<label>

LDRH<c> <Rt>,[PC,#-0] Special case

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 U 0 1 1 1 1 1 1 Rt imm12

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
LDRH<c> <Rt>,<label>

LDRH<c> <Rt>,[PC,#-0] Special case

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 (1) U 1 (0) 1 1 1 1 1 Rt imm4H 1 0 1 1 imm4L

Unallocated memory hints See Load halfword, memory hints on page A6-26
A8-154 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rt> The destination register.

<label> The label of the literal data item that is to be loaded into <Rt>. The assembler calculates the
required value of the offset from the Align(PC,4) value of the ADR instruction to this label.
Permitted values of the offset are:

Encoding T1 any value in the range -4095 to 4095

Encoding A1 any value in the range -255 to 255.

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE.

If the offset is negative, imm32 is equal to minus the offset and add == FALSE.

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be
specified separately, including permitting a subtraction of 0 that cannot be specified using the normal
syntax. For more information, see Use of labels in UAL instruction syntax on page A4-5.

The pre-UAL syntax LDR<c>H is equivalent to LDRH<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); NullCheckIfThumbEE(15);
 base = Align(PC,4);
 address = if add then (base + imm32) else (base - imm32);
 data = MemU[address,2];
 if UnalignedSupport() || address<0> = ‘0’ then
 R[t] = ZeroExtend(data, 32);
 else // Can only apply before ARMv7
 R[t] = bits(32) UNKNOWN;

Exceptions

Data Abort.

LDRH<c><q> <Rt>, <label> Normal form
LDRH<c><q> <Rt>, [PC, #+/-<imm>] Alternative form
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-155

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Sticky Note
The offset is from Align(PC,4) value of the issued LDRH instruction to the address of the label.

Instruction Details
A8.6.76 LDRH (register)

Load Register Halfword (register) calculates an address from a base register value and an offset register
value, loads a halfword from memory, zero-extends it to form a 32-bit word, and writes it to a register. The
offset register value can be shifted left by 0, 1, 2, or 3 bits. For information about memory accesses see
Memory accesses on page A8-13.

if CurrentInstrSet() == InstrSet_ThumbEE then SEE “Modified operation in ThumbEE”;
t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; wback = FALSE;
(shift_t, shift_n) = (SRType_LSL, 0);

if Rn == ‘1111’ then SEE LDRH (literal);
if Rt == ‘1111’ then SEE “Unallocated memory hints”;
t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; wback = FALSE;
(shift_t, shift_n) = (SRType_LSL, UInt(imm2));
if t == 13 || BadReg(m) then UNPREDICTABLE;

if P == ‘0’ && W == ‘1’ then SEE LDRHT;
t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = (P == ‘1’); add = (U == ‘1’); wback = (P == ‘0’) || (W == ‘1’);
(shift_t, shift_n) = (SRType_LSL, 0);
if t == 15 || m == 15 then UNPREDICTABLE;
if wback && (n == 15 || n == t) then UNPREDICTABLE;
if ArchVersion() < 6 && wback && m == n then UNPREDICTABLE;

Encoding T1 ARMv4T, ARMv5T*, ARMv6*, ARMv7
LDRH<c> <Rt>,[<Rn>,<Rm>]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 0 1 Rm Rn Rt

Encoding T2 ARMv6T2, ARMv7
LDRH<c>.W <Rt>,[<Rn>,<Rm>{,LSL #<imm2>}]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 1 1 Rn Rt 0 0 0 0 0 0 imm2 Rm

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
LDRH<c> <Rt>,[<Rn>,+/-<Rm>]{!}

LDRH<c> <Rt>,[<Rn>],+/-<Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 P U 0 W 1 Rn Rt (0) (0) (0) (0) 1 0 1 1 Rm

Unallocated memory hints See Load halfword, memory hints on page A6-26

Modified operation in ThumbEE See LDRH (register) on page A9-10
A8-156 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rt> The destination register.

<Rn> The base register. The SP can be used. The PC can be used only in the ARM instruction set.

+/- Is + or omitted if the optionally shifted value of <Rm> is to be added to the base register value
(add == TRUE), or – if it is to be subtracted (permitted in ARM code only, add == FALSE).

<Rm> Contains the offset that is optionally left shifted and added to the value of <Rn> to form the
address.

<imm> If present, the size of the left shift to apply to the value from <Rm>, in the range 1-3. Only
encoding T2 is permitted, and <imm> is encoded in imm2.

If absent, no shift is specified and all encodings are permitted. In encoding T2, imm2 is
encoded as 0b00.

The pre-UAL syntax LDR<c>H is equivalent to LDRH<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); NullCheckIfThumbEE(n);
 offset = Shift(R[m], shift_t, shift_n, APSR.C);
 offset_addr = if add then (R[n] + offset) else (R[n] - offset);
 address = if index then offset_addr else R[n];
 data = MemU[address,2];
 if wback then R[n] = offset_addr;
 if UnalignedSupport() || address<0> = ‘0’ then
 R[t] = ZeroExtend(data, 32);
 else // Can only apply before ARMv7
 R[t] = bits(32) UNKNOWN;

Exceptions

Data Abort.

LDRH<c><q> <Rt>, [<Rn>, <Rm>{, LSL #<imm>}] Offset: index==TRUE, wback==FALSE
LDRH<c><q> <Rt>, [<Rn>, +/-<Rm>] Offset: index==TRUE, wback==FALSE
LDRH<c><q> <Rt>, [<Rn>, +/-<Rm>]! Pre-indexed: index==TRUE, wback==TRUE
LDRH<c><q> <Rt>, [<Rn>], +/-<Rm> Post-indexed: index==FALSE, wback==TRUE
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-157

Instruction Details
A8.6.77 LDRHT

Load Register Halfword Unprivileged loads a halfword from memory, zero-extends it to form a 32-bit word,
and writes it to a register. For information about memory accesses see Memory accesses on page A8-13.

The memory access is restricted as if the processor were running in User mode. (This makes no difference
if the processor is actually running in User mode.)

The Thumb instruction uses an offset addressing mode, that calculates the address used for the memory
access from a base register value and an immediate offset, and leaves the base register unchanged.

The ARM instruction uses a post-indexed addressing mode, that uses a base register value as the address for
the memory access, and calculates a new address from a base register value and an offset and writes it back
to the base register. The offset can be an immediate value or a register value.

if Rn == ‘1111’ then SEE LDRH (literal);
t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;
register_form = FALSE; imm32 = ZeroExtend(imm8, 32);
if BadReg(t) then UNPREDICTABLE;

t = UInt(Rt); n = UInt(Rn); postindex = TRUE; add = (U == ‘1’);
register_form = FALSE; imm32 = ZeroExtend(imm4H:imm4L, 32);
if t == 15 || n == 15 || n == t then UNPREDICTABLE;

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm); postindex = TRUE; add = (U == ‘1’);
register_form = FALSE;
if t == 15 || n == 15 || n == t || m == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
LDRHT<c> <Rt>,[<Rn>,#<imm8>]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 1 1 Rn Rt 1 1 1 0 imm8

Encoding A1 ARMv6T2, ARMv7
LDRHT<c> <Rt>, [<Rn>] {, #+/-<imm8>}

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 0 U 1 1 1 Rn Rt imm4H 1 0 1 1 imm4L

Encoding A2 ARMv6T2, ARMv7
LDRHT<c> <Rt>, [<Rn>], +/-<Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 0 U 0 1 1 Rn Rt (0) (0) (0) (0) 1 0 1 1 Rm
A8-158 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rt> The destination register.

<Rn> The base register. The SP can be used.

+/- Is + or omitted if <imm> or the optionally shifted value of <Rm> is to be added to the base
register value (add == TRUE), or – if it is to be subtracted (permitted in ARM code only,
add == FALSE).

<imm> The immediate offset applied to the value of <Rn>. Any value in the range 0-255 is permitted.
<imm> can be omitted, meaning an offset of 0.

<Rm> Contains the offset that is applied to the value of <Rn> to form the address.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); NullCheckIfThumbEE(n);
 offset = if register_form then R[m] else imm32;
 offset_addr = if add then (R[n] + offset) else (R[n] - offset);
 address = if postindex then R[n] else offset_addr;
 data = MemU_unpriv[address,2];
 if postindex then R[n] = offset_addr;
 if UnalignedSupport() || address<0> = ‘0’ then
 R[t] = ZeroExtend(data, 32);
 else // Can only apply before ARMv7
 R[t] = bits(32) UNKNOWN;

Exceptions

Data Abort.

LDRHT<c><q> <Rt>, [<Rn> {, #<imm>}] Offset: Thumb only
LDRHT<c><q> <Rt>, [<Rn>] {, #+/-<imm>} Post-indexed: ARM only
LDRHT<c><q> <Rt>, [<Rn>], +/-<Rm> Post-indexed: ARM only
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-159

Instruction Details
A8.6.78 LDRSB (immediate)

Load Register Signed Byte (immediate) calculates an address from a base register value and an immediate
offset, loads a byte from memory, sign-extends it to form a 32-bit word, and writes it to a register. It can use
offset, post-indexed, or pre-indexed addressing. For information about memory accesses see Memory
accesses on page A8-13.

if Rt == ‘1111’ then SEE PLI;
if Rn == ‘1111’ then SEE LDRSB (literal);
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
index = TRUE; add = TRUE; wback = FALSE;
if t == 13 then UNPREDICTABLE;

if Rt == ‘1111’ && P == ‘1’ && U == ‘0’ && W == ‘0’ then SEE PLI;
if Rn == ‘1111’ then SEE LDRSB (literal);
if P == ‘1’ && U == ‘1’ && W == ‘0’ then SEE LDRSBT;
if P == ‘0’ && W == ‘0’ then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
index = (P == ‘1’); add = (U == ‘1’); wback = (W == ‘1’);
if BadReg(t) || (wback && n == t) then UNPREDICTABLE;

if Rn == ‘1111’ then SEE LDRSB (literal);
if P == ‘0’ && W == ‘1’ then SEE LDRSBT;
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm4H:imm4L, 32);
index = (P == ‘1’); add = (U == ‘1’); wback = (P == ‘0’) || (W == ‘1’);
if t == 15 || (wback && n == t) then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
LDRSB<c> <Rt>,[<Rn>,#<imm12>]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 1 0 0 1 Rn Rt imm12

Encoding T2 ARMv6T2, ARMv7
LDRSB<c> <Rt>,[<Rn>,#-<imm8>]

LDRSB<c> <Rt>,[<Rn>],#+/-<imm8>

LDRSB<c> <Rt>,[<Rn>,#+/-<imm8>]!

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 0 0 0 1 Rn Rt 1 P U W imm8

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
LDRSB<c> <Rt>,[<Rn>{,#+/-<imm8>}]

LDRSB<c> <Rt>,[<Rn>],#+/-<imm8>

LDRSB<c> <Rt>,[<Rn>,#+/-<imm8>]!

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 P U 1 W 1 Rn Rt imm4H 1 1 0 1 imm4L
A8-160 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q4 and ARM_2011_Q2
Cross-Out

ARM_2009_Q4 and ARM_2011_Q2
Replacement Text
t == 13 || (t == 15 && W == '1')

ARM_2011_Q2
Sticky Note
The original correction, made in the 2009_Q4 errata release, identified as UNPREDICTABLE some cases that are covered by earlier statements. The general rule, that pseudocode must be interpreted sequentially, means this is acceptable. However the change made in the 2011_Q2 release simplifies the pseudocode and avoids any overlap with earlier statements.

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rt> The destination register.

<Rn> The base register. The SP can be used. For PC use see LDRSB (literal) on page A8-162.

+/- Is + or omitted to indicate that the immediate offset is added to the base register value
(add == TRUE), or – to indicate that the offset is to be subtracted (add == FALSE). Different
instructions are generated for #0 and #-0.

<imm> The immediate offset used to form the address. For the offset addressing syntax, <imm> can
be omitted, meaning an offset of 0. Values are:

Encoding T1 any value in the range 0-4095

Encoding T2 or A1 any value in the range0-255.

The pre-UAL syntax LDR<c>SB is equivalent to LDRSB<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); NullCheckIfThumbEE(n);
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];
 R[t] = SignExtend(MemU[address,1], 32);
 if wback then R[n] = offset_addr;

Exceptions

Data Abort.

LDRSB<c><q> <Rt>, [<Rn> {, #+/-<imm>}] Offset: index==TRUE, wback==FALSE
LDRSB<c><q> <Rt>, [<Rn>, #+/-<imm>]! Pre-indexed: index==TRUE, wback==TRUE
LDRSB<c><q> <Rt>, [<Rn>], #+/-<imm> Post-indexed: index==FALSE, wback==TRUE
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-161

Instruction Details
A8.6.79 LDRSB (literal)

Load Register Signed Byte (literal) calculates an address from the PC value and an immediate offset, loads
a byte from memory, sign-extends it to form a 32-bit word, and writes it to a register. For information about
memory accesses see Memory accesses on page A8-13.

if Rt == ‘1111’ then SEE PLI;
t = UInt(Rt); imm32 = ZeroExtend(imm12, 32); add = (U == ‘1’);
if t == 13 then UNPREDICTABLE;

t = UInt(Rt); imm32 = ZeroExtend(imm4H:imm4L, 32); add = (U == ‘1’);
if t == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
LDRSB<c> <Rt>,<label>

LDRSB<c> <Rt>,[PC,#-0] Special case

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 U 0 0 1 1 1 1 1 Rt imm12

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
LDRSB<c> <Rt>,<label>

LDRSB<c> <Rt>,[PC,#-0] Special case

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 (1) U 1 (0) 1 1 1 1 1 Rt imm4H 1 1 0 1 imm4L
A8-162 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rt> The destination register.

<label> The label of the literal data item that is to be loaded into <Rt>. The assembler calculates the
required value of the offset from the Align(PC,4) value of the ADR instruction to this label.
Permitted values of the offset are:

Encoding T1 any value in the range -4095 to 4095

Encoding A1 any value in the range -255 to 255.

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE.

If the offset is negative, imm32 is equal to minus the offset and add == FALSE.

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be
specified separately, including permitting a subtraction of 0 that cannot be specified using the normal
syntax. For more information, see Use of labels in UAL instruction syntax on page A4-5.

The pre-UAL syntax LDR<c>SB is equivalent to LDRSB<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); NullCheckIfThumbEE(15);
 base = Align(PC,4);
 address = if add then (base + imm32) else (base - imm32);
 R[t] = SignExtend(MemU[address,1], 32);

Exceptions

Data Abort.

LDRSB<c><q> <Rt>, <label> Normal form
LDRSB<c><q> <Rt>, [PC, #+/-<imm>] Alternative form
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-163

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Sticky Note
The offset is from Align(PC,4) value of the issued LDRSB instruction to the address of the label.

Instruction Details
A8.6.80 LDRSB (register)

Load Register Signed Byte (register) calculates an address from a base register value and an offset register
value, loads a byte from memory, sign-extends it to form a 32-bit word, and writes it to a register. The offset
register value can be shifted left by 0, 1, 2, or 3 bits. For information about memory accesses see Memory
accesses on page A8-13.

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; wback = FALSE;
(shift_t, shift_n) = (SRType_LSL, 0);

if Rt == ‘1111’ then SEE PLI;
if Rn == ‘1111’ then SEE LDRSB (literal);
t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; wback = FALSE;
(shift_t, shift_n) = (SRType_LSL, UInt(imm2));
if t == 13 || BadReg(m) then UNPREDICTABLE;

if P == ‘0’ && W == ‘1’ then SEE LDRSBT;
t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = (P == ‘1’); add = (U == ‘1’); wback = (P == ‘0’) || (W == ‘1’);
(shift_t, shift_n) = (SRType_LSL, 0);
if t == 15 || m == 15 then UNPREDICTABLE;
if wback && (n == 15 || n == t) then UNPREDICTABLE;
if ArchVersion() < 6 && wback && m == n then UNPREDICTABLE;

Encoding T1 ARMv4T, ARMv5T*, ARMv6*, ARMv7
LDRSB<c> <Rt>,[<Rn>,<Rm>]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 1 1 Rm Rn Rt

Encoding T2 ARMv6T2, ARMv7
LDRSB<c>.W <Rt>,[<Rn>,<Rm>{,LSL #<imm2>}]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 0 0 0 1 Rn Rt 0 0 0 0 0 0 imm2 Rm

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
LDRSB<c> <Rt>,[<Rn>,+/-<Rm>]{!}

LDRSB<c> <Rt>,[<Rn>],+/-<Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 P U 0 W 1 Rn Rt (0) (0) (0) (0) 1 1 0 1 Rm
A8-164 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rt> The destination register.

<Rn> The base register. The SP can be used. The PC can be used only in the ARM instruction set.

+/- Is + or omitted if the optionally shifted value of <Rm> is to be added to the base register value
(add == TRUE), or – if it is to be subtracted (permitted in ARM code only, add == FALSE).

<Rm> Contains the offset that is optionally left shifted and added to the value of <Rn> to form the
address.

<imm> If present, the size of the left shift to apply to the value from <Rm>, in the range 1-3. Only
encoding T2 is permitted, and <imm> is encoded in imm2.

If absent, no shift is specified and all encodings are permitted. In encoding T2, imm2 is
encoded as 0b00.

The pre-UAL syntax LDR<c>SB is equivalent to LDRSB<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); NullCheckIfThumbEE(n);
 offset = Shift(R[m], shift_t, shift_n, APSR.C);
 offset_addr = if add then (R[n] + offset) else (R[n] - offset);
 address = if index then offset_addr else R[n];
 R[t] = SignExtend(MemU[address,1], 32);
 if wback then R[n] = offset_addr;

Exceptions

Data Abort.

LDRSB<c><q> <Rt>, [<Rn>, <Rm>{, LSL #<imm>}] Offset: index==TRUE, wback==FALSE
LDRSB<c><q> <Rt>, [<Rn>, +/-<Rm>] Offset: index==TRUE, wback==FALSE
LDRSB<c><q> <Rt>, [<Rn>, +/-<Rm>]! Pre-indexed: index==TRUE, wback==TRUE
LDRSB<c><q> <Rt>, [<Rn>], +/-<Rm> Post-indexed: index==FALSE, wback==TRUE
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-165

Instruction Details
A8.6.81 LDRSBT

Load Register Signed Byte Unprivileged loads a byte from memory, sign-extends it to form a 32-bit word,
and writes it to a register. For information about memory accesses see Memory accesses on page A8-13.

The memory access is restricted as if the processor were running in User mode. (This makes no difference
if the processor is actually running in User mode.)

The Thumb instruction uses an offset addressing mode, that calculates the address used for the memory
access from a base register value and an immediate offset, and leaves the base register unchanged.

The ARM instruction uses a post-indexed addressing mode, that uses a base register value as the address for
the memory access, and calculates a new address from a base register value and an offset and writes it back
to the base register. The offset can be an immediate value or a register value.

if Rn == ‘1111’ then SEE LDRSB (literal);
t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;
register_form = FALSE; imm32 = ZeroExtend(imm8, 32);
if BadReg(t) then UNPREDICTABLE;

t = UInt(Rt); n = UInt(Rn); postindex = TRUE; add = (U == ‘1’);
register_form = FALSE; imm32 = ZeroExtend(imm4H:imm4L, 32);
if t == 15 || n == 15 || n == t then UNPREDICTABLE;

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm); postindex = TRUE; add = (U == ‘1’);
register_form = TRUE;
if t == 15 || n == 15 || n == t || m == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
LDRSBT<c> <Rt>,[<Rn>,#<imm8>]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 0 0 0 1 Rn Rt 1 1 1 0 imm8

Encoding A1 ARMv6T2, ARMv7
LDRSBT<c> <Rt>, [<Rn>] {, #+/-<imm8>}

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 0 U 1 1 1 Rn Rt imm4H 1 1 0 1 imm4L

Encoding A2 ARMv6T2, ARMv7
LDRSBT<c> <Rt>, [<Rn>], +/-<Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 0 U 0 1 1 Rn Rt (0) (0) (0) (0) 1 1 0 1 Rm
A8-166 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rt> The destination register.

<Rn> The base register. The SP can be used.

+/- Is + or omitted if <imm> or the optionally shifted value of <Rm> is to be added to the base
register value (add == TRUE), or – if it is to be subtracted (permitted in ARM code only,
add == FALSE).

<imm> The immediate offset applied to the value of <Rn>. Any value in the range 0-255 is permitted.
<imm> can be omitted, meaning an offset of 0.

<Rm> Contains the offset that is applied to the value of <Rn> to form the address.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); NullCheckIfThumbEE(n);
 offset = if register_form then R[m] else imm32;
 offset_addr = if add then (R[n] + offset) else (R[n] - offset);
 address = if postindex then R[n] else offset_addr;
 R[t] = SignExtend(MemU_unpriv[address,1], 32);
 if postindex then R[n] = offset_addr;

Exceptions

Data Abort.

LDRSBT<c><q> <Rt>, [<Rn> {, #<imm>}] Offset: Thumb only
LDRSBT<c><q> <Rt>, [<Rn>] {, #+/-<imm>} Post-indexed: ARM only
LDRSBT<c><q> <Rt>, [<Rn>], +/-<Rm> Post-indexed: ARM only
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-167

Instruction Details
A8.6.82 LDRSH (immediate)

Load Register Signed Halfword (immediate) calculates an address from a base register value and an
immediate offset, loads a halfword from memory, sign-extends it to form a 32-bit word, and writes it to a
register. It can use offset, post-indexed, or pre-indexed addressing. For information about memory accesses
see Memory accesses on page A8-13.

if Rn == ‘1111’ then SEE LDRSH (literal);
if Rt == ‘1111’ then SEE “Unallocated memory hints”;
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
index = TRUE; add = TRUE; wback = FALSE;
if t == 13 then UNPREDICTABLE;

if Rn == ‘1111’ then SEE LDRSH (literal);
if Rt == ‘1111’ && P == ‘1’ && U == ‘0’ && W == ‘0’ then SEE “Unallocated memory hints”;
if P == ‘1’ && U == ‘1’ && W == ‘0’ then SEE LDRSHT;
if P == ‘0’ && W == ‘0’ then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
index = (P == ‘1’); add = (U == ‘1’); wback = (W == ‘1’);
if BadReg(t) || (wback && n == t) then UNPREDICTABLE;

if Rn == ‘1111’ then SEE LDRSH (literal);
if P == ‘0’ && W == ‘1’ then SEE LDRSHT;
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm4H:imm4L, 32);
index = (P == ‘1’); add = (U == ‘1’); wback = (P == ‘0’) || (W == ‘1’);
if t == 15 || (wback && n == t) then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
LDRSH<c> <Rt>,[<Rn>,#<imm12>]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 1 0 1 1 Rn Rt imm12

Encoding T2 ARMv6T2, ARMv7
LDRSH<c> <Rt>,[<Rn>,#-<imm8>]

LDRSH<c> <Rt>,[<Rn>],#+/-<imm8>

LDRSH<c> <Rt>,[<Rn>,#+/-<imm8>]!

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 0 0 1 1 Rn Rt 1 P U W imm8

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
LDRSH<c> <Rt>,[<Rn>{,#+/-<imm8>}]

LDRSH<c> <Rt>,[<Rn>],#+/-<imm8>

LDRSH<c> <Rt>,[<Rn>,#+/-<imm8>]!

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 P U 1 W 1 Rn Rt imm4H 1 1 1 1 imm4L

Unallocated memory hints See Load halfword, memory hints on page A6-26
A8-168 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q4 and ARM_2011_Q2
Cross-Out

ARM_2009_Q4 and ARM_2011_Q2
Replacement Text
t == 13 || (t == 15 && W == '1')

ARM_2011_Q2
Sticky Note
The original correction, made in the 2009_Q4 errata release, identified as UNPREDICTABLE some cases that are covered by earlier statements. The general rule, that pseudocode must be interpreted sequentially, means this is acceptable. However the change made in the 2011_Q2 release simplifies the pseudocode and avoids any overlap with earlier statements.

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rt> The destination register.

<Rn> The base register. The SP can be used. For PC use see LDRSH (literal) on page A8-170.

+/- Is + or omitted to indicate that the immediate offset is added to the base register value
(add == TRUE), or – to indicate that the offset is to be subtracted (add == FALSE). Different
instructions are generated for #0 and #-0.

<imm> The immediate offset used to form the address, Values are 0-4095 for encoding T1, and
0-255 for encoding T2 or A1. For the offset syntax, <imm> can be omitted, meaning an offset
of 0.

The pre-UAL syntax LDR<c>SH is equivalent to LDRSH<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); NullCheckIfThumbEE(n);
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];
 data = MemU[address,2];
 if wback then R[n] = offset_addr;
 if UnalignedSupport() || address<0> = ‘0’ then
 R[t] = SignExtend(data, 32);
 else // Can only apply before ARMv7
 R[t] = bits(32) UNKNOWN;

Exceptions

Data Abort.

LDRSH<c><q> <Rt>, [<Rn> {, #+/-<imm>}] Offset: index==TRUE, wback==FALSE
LDRSH<c><q> <Rt>, [<Rn>, #+/-<imm>]! Pre-indexed: index==TRUE, wback==TRUE
LDRSH<c><q> <Rt>, [<Rn>], #+/-<imm> Post-indexed: index==FALSE, wback==TRUE
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-169

Instruction Details
A8.6.83 LDRSH (literal)

Load Register Signed Halfword (literal) calculates an address from the PC value and an immediate offset,
loads a halfword from memory, sign-extends it to form a 32-bit word, and writes it to a register. For
information about memory accesses see Memory accesses on page A8-13.

if Rt == ‘1111’ then SEE “Unallocated memory hints”;
t = UInt(Rt); imm32 = ZeroExtend(imm12, 32); add = (U == ‘1’);
if t == 13 then UNPREDICTABLE;

t = UInt(Rt); imm32 = ZeroExtend(imm4H:imm4L, 32); add = (U == ‘1’);
if t == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
LDRSH<c> <Rt>,<label>

LDRSH<c> <Rt>,[PC,#-0] Special case

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 U 0 1 1 1 1 1 1 Rt imm12

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
LDRSH<c> <Rt>,<label>

LDRSH<c> <Rt>,[PC,#-0] Special case

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 (1) U 1 (0) 1 1 1 1 1 Rt imm4H 1 1 1 1 imm4L

Unallocated memory hints See Load halfword, memory hints on page A6-26
A8-170 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rt> The destination register.

<label> The label of the literal data item that is to be loaded into <Rt>. The assembler calculates the
required value of the offset from the Align(PC,4) value of the ADR instruction to this label.
Permitted values of the offset are:

Encoding T1 any value in the range -4095 to 4095

Encoding A1 any value in the range -255 to 255.

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE.

If the offset is negative, imm32 is equal to minus the offset and add == FALSE.

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be
specified separately, including permitting a subtraction of 0 that cannot be specified using the normal
syntax. For more information, see Use of labels in UAL instruction syntax on page A4-5.

The pre-UAL syntax LDR<c>SH is equivalent to LDRSH<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); NullCheckIfThumbEE(15);
 base = Align(PC,4);
 address = if add then (base + imm32) else (base - imm32);
 data = MemU[address,2];
 if UnalignedSupport() || address<0> = ‘0’ then
 R[t] = SignExtend(data, 32);
 else // Can only apply before ARMv7
 R[t] = bits(32) UNKNOWN;

Exceptions

Data Abort.

LDRSH<c><q> <Rt>, <label> Normal form
LDRSH<c><q> <Rt>, [PC, #+/-<imm>] Alternative form
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-171

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Sticky Note
The offset is from Align(PC,4) value of the issued LDRSH instruction to the address of the label.

Instruction Details
A8.6.84 LDRSH (register)

Load Register Signed Halfword (register) calculates an address from a base register value and an offset
register value, loads a halfword from memory, sign-extends it to form a 32-bit word, and writes it to a
register. The offset register value can be shifted left by 0, 1, 2, or 3 bits. For information about memory
accesses see Memory accesses on page A8-13.

if CurrentInstrSet() == InstrSet_ThumbEE then SEE “Modified operation in ThumbEE”;
t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; wback = FALSE;
(shift_t, shift_n) = (SRType_LSL, 0);

if Rn == ‘1111’ then SEE LDRSH (literal);
if Rt == ‘1111’ then SEE “Unallocated memory hints”;
t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; wback = FALSE;
(shift_t, shift_n) = (SRType_LSL, UInt(imm2));
if t == 13 || BadReg(m) then UNPREDICTABLE;

if P == ‘0’ && W == ‘1’ then SEE LDRSHT;
t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = (P == ‘1’); add = (U == ‘1’); wback = (P == ‘0’) || (W == ‘1’);
(shift_t, shift_n) = (SRType_LSL, 0);
if t == 15 || m == 15 then UNPREDICTABLE;
if wback && (n == 15 || n == t) then UNPREDICTABLE;
if ArchVersion() < 6 && wback && m == n then UNPREDICTABLE;

Encoding T1 ARMv4T, ARMv5T*, ARMv6*, ARMv7
LDRSH<c> <Rt>,[<Rn>,<Rm>]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 Rm Rn Rt

Encoding T2 ARMv6T2, ARMv7
LDRSH<c>.W <Rt>,[<Rn>,<Rm>{,LSL #<imm2>}]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 0 0 1 1 Rn Rt 0 0 0 0 0 0 imm2 Rm

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
LDRSH<c> <Rt>,[<Rn>,+/-<Rm>]{!}

LDRSH<c> <Rt>,[<Rn>],+/-<Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 P U 0 W 1 Rn Rt (0) (0) (0) (0) 1 1 1 1 Rm

Unallocated memory hints See Load halfword, memory hints on page A6-26

Modified operation in ThumbEE See LDRSH (register) on page A9-11
A8-172 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rt> The destination register.

<Rn> The base register. The SP can be used. The PC can be used only in the ARM instruction set.

+/- Is + or omitted if the optionally shifted value of <Rm> is to be added to the base register value
(add == TRUE), or – if it is to be subtracted (permitted in ARM code only, add == FALSE).

<Rm> Contains the offset that is optionally left shifted and added to the value of <Rn> to form the
address.

<imm> If present, the size of the left shift to apply to the value from <Rm>, in the range 1-3. Only
encoding T2 is permitted, and <imm> is encoded in imm2.

If absent, no shift is specified and all encodings are permitted. In encoding T2, imm2 is
encoded as 0b00.

The pre-UAL syntax LDR<c>SH is equivalent to LDRSH<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); NullCheckIfThumbEE(n);
 offset = Shift(R[m], shift_t, shift_n, APSR.C);
 offset_addr = if add then (R[n] + offset) else (R[n] - offset);
 address = if index then offset_addr else R[n];
 data = MemU[address,2];
 if wback then R[n] = offset_addr;
 if UnalignedSupport() || address<0> = ‘0’ then
 R[t] = SignExtend(data, 32);
 else // Can only apply before ARMv7
 R[t] = bits(32) UNKNOWN;

Exceptions

Data Abort.

LDRSH<c><q> <Rt>, [<Rn>, <Rm>{, LSL #<imm>}] Offset: index==TRUE, wback==FALSE
LDRSH<c><q> <Rt>, [<Rn>, +/-<Rm>] Offset: index==TRUE, wback==FALSE
LDRSH<c><q> <Rt>, [<Rn>, +/-<Rm>]! Pre-indexed: index==TRUE, wback==TRUE
LDRSH<c><q> <Rt>, [<Rn>], +/-<Rm> Post-indexed: index==FALSE, wback==TRUE
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-173

Instruction Details
A8.6.85 LDRSHT

Load Register Signed Halfword Unprivileged loads a halfword from memory, sign-extends it to form a
32-bit word, and writes it to a register. For information about memory accesses see Memory accesses on
page A8-13.

The memory access is restricted as if the processor were running in User mode. (This makes no difference
if the processor is actually running in User mode.)

The Thumb instruction uses an offset addressing mode, that calculates the address used for the memory
access from a base register value and an immediate offset, and leaves the base register unchanged.

The ARM instruction uses a post-indexed addressing mode, that uses a base register value as the address for
the memory access, and calculates a new address from a base register value and an offset and writes it back
to the base register. The offset can be an immediate value or a register value.

if Rn == ‘1111’ then SEE LDRSH (literal);
t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;
register_form = FALSE; imm32 = ZeroExtend(imm8, 32);
if BadReg(t) then UNPREDICTABLE;

t = UInt(Rt); n = UInt(Rn); postindex = TRUE; add = (U == ‘1’);
register_form = FALSE; imm32 = ZeroExtend(imm4H:imm4L, 32);
if t == 15 || n == 15 || n == t then UNPREDICTABLE;

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm); postindex = TRUE; add = (U == ‘1’);
register_form = TRUE;
if t == 15 || n == 15 || n == t || m == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
LDRSHT<c> <Rt>,[<Rn>,#<imm8>]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 0 0 1 1 Rn Rt 1 1 1 0 imm8

Encoding A1 ARMv6T2, ARMv7
LDRSHT<c> <Rt>, [<Rn>] {, #+/-<imm8>}

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 0 U 1 1 1 Rn Rt imm4H 1 1 1 1 imm4L

Encoding A2 ARMv6T2, ARMv7
LDRSHT<c> <Rt>, [<Rn>], +/-<Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 0 U 0 1 1 Rn Rt (0) (0) (0) (0) 1 1 1 1 Rm
A8-174 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rt> The destination register.

<Rn> The base register. The SP can be used.

+/- Is + or omitted if <imm> or the optionally shifted value of <Rm> is to be added to the base
register value (add == TRUE), or – if it is to be subtracted (permitted in ARM code only,
add == FALSE).

<imm> The immediate offset applied to the value of <Rn>. Any value in the range 0-255 is permitted.
<imm> can be omitted, meaning an offset of 0.

<Rm> Contains the offset that is applied to the value of <Rn> to form the address.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); NullCheckIfThumbEE(n);
 offset = if register_form then R[m] else imm32;
 offset_addr = if add then (R[n] + offset) else (R[n] - offset);
 address = if postindex then R[n] else offset_addr;
 data = MemU_unpriv[address,2];
 if postindex then R[n] = offset_addr;
 if UnalignedSupport() || address<0> = ‘0’ then
 R[t] = SignExtend(data, 32);
 else // Can only apply before ARMv7
 R[t] = bits(32) UNKNOWN;

Exceptions

Data Abort.

LDRSHT<c><q> <Rt>, [<Rn> {, #<imm>}] Offset: Thumb only
LDRSHT<c><q> <Rt>, [<Rn>] {, #+/-<imm>} Post-indexed: ARM only
LDRSHT<c><q> <Rt>, [<Rn>], +/-<Rm> Post-indexed: ARM only
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-175

Instruction Details
A8.6.86 LDRT

Load Register Unprivileged loads a word from memory, and writes it to a register. For information about
memory accesses see Memory accesses on page A8-13.

The memory access is restricted as if the processor were running in User mode. (This makes no difference
if the processor is actually running in User mode.)

The Thumb instruction uses an offset addressing mode, that calculates the address used for the memory
access from a base register value and an immediate offset, and leaves the base register unchanged.

The ARM instruction uses a post-indexed addressing mode, that uses a base register value as the address for
the memory access, and calculates a new address from a base register value and an offset and writes it back
to the base register. The offset can be an immediate value or an optionally-shifted register value.

if Rn == ‘1111’ then SEE LDR (literal);
t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;
register_form = FALSE; imm32 = ZeroExtend(imm8, 32);
if BadReg(t) then UNPREDICTABLE;

t = UInt(Rt); n = UInt(Rn); postindex = TRUE; add = (U == ‘1’);
register_form = FALSE; imm32 = ZeroExtend(imm12, 32);
if t == 15 || n == 15 || n == t then UNPREDICTABLE;

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm); postindex = TRUE; add = (U == ‘1’);
register_form = TRUE; (shift_t, shift_n) = DecodeImmShift(type, imm5);
if t == 15 || n == 15 || n == t || m == 15 then UNPREDICTABLE;
if ArchVersion() < 6 && m == n then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
LDRT<c> <Rt>,[<Rn>,#<imm8>]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 1 0 1 Rn Rt 1 1 1 0 imm8

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
LDRT<c> <Rt>, [<Rn>] {, #+/-<imm12>}

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 0 0 U 0 1 1 Rn Rt imm12

Encoding A2 ARMv4*, ARMv5T*, ARMv6*, ARMv7
LDRT<c> <Rt>,[<Rn>],+/-<Rm>{, <shift>}

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 0 U 0 1 1 Rn Rt imm5 type 0 Rm
A8-176 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rt> The destination register.

<Rn> The base register. The SP can be used.

+/- Is + or omitted if <imm> or the optionally shifted value of <Rm> is to be added to the base
register value (add == TRUE), or – if it is to be subtracted (permitted in ARM code only,
add == FALSE).

<imm> The immediate offset applied to the value of <Rn>. Values are 0-255 for encoding T1, and
0-4095 for encoding A1. <imm> can be omitted, meaning an offset of 0.

<Rm> Contains the offset that is optionally shifted and applied to the value of <Rn> to form the
address.

<shift> The shift to apply to the value read from <Rm>. If omitted, no shift is applied. Shifts applied
to a register on page A8-10 describes the shifts and how they are encoded.

The pre-UAL syntax LDR<c>T is equivalent to LDRT<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); NullCheckIfThumbEE(n);
 offset = if register_form then Shift(R[m], shift_t, shift_n, APSR.C) else imm32;
 offset_addr = if add then (R[n] + offset) else (R[n] - offset);
 address = if postindex then R[n] else offset_addr;
 data = MemU_unpriv[address,4];
 if postindex then R[n] = offset_addr;
 if t == 15 then // Only possible for encodings A1 and A2
 if address<1:0> == ‘00’ then LoadWritePC(data); else UNPREDICTABLE;
 elsif UnalignedSupport() || address<1:0> = ‘00’ then
 R[t] = data;
 else // Can only apply before ARMv7
 if CurrentInstrSet() == InstrSet_ARM then
 R[t] = ROR(data, 8*UInt(address<1:0>));
 else
 R[t] = bits(32) UNKNOWN;

Exceptions

Data Abort.

LDRT<c><q> <Rt>, [<Rn> {, #<imm>}] Offset: Thumb only
LDRT<c><q> <Rt>, [<Rn>] {, #+/-<imm>} Post-indexed: ARM only
LDRT<c><q> <Rt>, [<Rn>], +/-<Rm> {, <shift>} Post-indexed: ARM only
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-177

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
if

Instruction Details
A8.6.87 LEAVEX

LEAVEX causes a change from ThumbEE to Thumb state, or has no effect in Thumb state. For details see
ENTERX, LEAVEX on page A9-7.

A8.6.88 LSL (immediate)

Logical Shift Left (immediate) shifts a register value left by an immediate number of bits, shifting in zeros,
and writes the result to the destination register. It can optionally update the condition flags based on the
result.

if imm5 == ‘00000’ then SEE MOV (register);
d = UInt(Rd); m = UInt(Rm); setflags = !InITBlock();
(-, shift_n) = DecodeImmShift(‘00’, imm5);

if (imm3:imm2) == ‘00000’ then SEE MOV (register);
d = UInt(Rd); m = UInt(Rm); setflags = (S == ‘1’);
(-, shift_n) = DecodeImmShift(‘00’, imm3:imm2);
if BadReg(d) || BadReg(m) then UNPREDICTABLE;

if imm5 == ‘00000’ then SEE MOV (register);
d = UInt(Rd); m = UInt(Rm); setflags = (S == ‘1’);
(-, shift_n) = DecodeImmShift(‘00’, imm5);

Encoding T1 ARMv4T, ARMv5T*, ARMv6*, ARMv7
LSLS <Rd>,<Rm>,#<imm5> Outside IT block.
LSL<c> <Rd>,<Rm>,#<imm5> Inside IT block.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 imm5 Rm Rd

Encoding T2 ARMv6T2, ARMv7
LSL{S}<c>.W <Rd>,<Rm>,#<imm5>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 S 1 1 1 1 (0) imm3 Rd imm2 0 0 Rm

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
LSL{S}<c> <Rd>,<Rm>,#<imm5>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 1 1 0 1 S (0) (0) (0) (0) Rd imm5 0 0 0 Rm
A8-178 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2011_Q2
Inserted Text
if Rd == '1111' && S == '1' then SEE SUBS PC, LR and related instructions;

Instruction Details
Assembler syntax

LSL{S}<c><q> {<Rd>,} <Rm>, #<imm5>

where:

S If S is present, the instruction updates the flags. Otherwise, the flags are not updated.

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rm> The first operand register.

<imm5> The shift amount, in the range 1 to 31. See Shifts applied to a register on page A8-10.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 (result, carry) = Shift_C(R[m], SRType_LSL, shift_n, APSR.C);
 if d == 15 then // Can only occur for ARM encoding
 ALUWritePC(result); // setflags is always FALSE here
 else
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 // APSR.V unchanged

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-179

ARM_2009_Q2
Inserted Text
 PC can be used in ARM instructions.

ARM_2009_Q2
Inserted Text
 In ARM instructions, if S is not specified and <Rd> is the PC, the instruction is a branch to the address calculated by the operation. This is a simple branch before ARMv7, and an interworking branch from ARMv7.

Instruction Details
A8.6.89 LSL (register)

Logical Shift Left (register) shifts a register value left by a variable number of bits, shifting in zeros, and
writes the result to the destination register. The variable number of bits is read from the bottom byte of a
register. It can optionally update the condition flags based on the result.

d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == ‘1’);
if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == ‘1’);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

Encoding T1 ARMv4T, ARMv5T*, ARMv6*, ARMv7
LSLS <Rdn>,<Rm> Outside IT block.
LSL<c> <Rdn>,<Rm> Inside IT block.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 0 0 1 0 Rm Rdn

Encoding T2 ARMv6T2, ARMv7
LSL{S}<c>.W <Rd>,<Rn>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0 0 0 S Rn 1 1 1 1 Rd 0 0 0 0 Rm

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
LSL{S}<c> <Rd>,<Rn>,<Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 1 1 0 1 S (0) (0) (0) (0) Rd Rm 0 0 0 1 Rn
A8-180 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

LSL{S}<c><q> {<Rd>,} <Rn>, <Rm>

where:

S If S is present, the instruction updates the flags. Otherwise, the flags are not updated.

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The register whose bottom byte contains the amount to shift by.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 shift_n = UInt(R[m]<7:0>);
 (result, carry) = Shift_C(R[n], SRType_LSL, shift_n, APSR.C);
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 // APSR.V unchanged

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-181

Instruction Details
A8.6.90 LSR (immediate)

Logical Shift Right (immediate) shifts a register value right by an immediate number of bits, shifting in
zeros, and writes the result to the destination register. It can optionally update the condition flags based on
the result.

d = UInt(Rd); m = UInt(Rm); setflags = !InITBlock();
(-, shift_n) = DecodeImmShift(‘01’, imm5);

d = UInt(Rd); m = UInt(Rm); setflags = (S == ‘1’);
(-, shift_n) = DecodeImmShift(‘01’, imm3:imm2);
if BadReg(d) || BadReg(m) then UNPREDICTABLE;

d = UInt(Rd); m = UInt(Rm); setflags = (S == ‘1’);
(-, shift_n) = DecodeImmShift(‘01’, imm5);

Encoding T1 ARMv4T, ARMv5T*, ARMv6*, ARMv7
LSRS <Rd>,<Rm>,#<imm> Outside IT block.
LSR<c> <Rd>,<Rm>,#<imm> Inside IT block.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 imm5 Rm Rd

Encoding T2 ARMv6T2, ARMv7
LSR{S}<c>.W <Rd>,<Rm>,#<imm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 S 1 1 1 1 (0) imm3 Rd imm2 0 1 Rm

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
LSR{S}<c> <Rd>,<Rm>,#<imm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 1 1 0 1 S (0) (0) (0) (0) Rd imm5 0 1 0 Rm
A8-182 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2011_Q2
Inserted Text
if Rd == '1111' && S == '1' then SEE SUBS PC, LR and related instructions;

Instruction Details
Assembler syntax

LSR{S}<c><q> {<Rd>,} <Rm>, #<imm>

where:

S If S is present, the instruction updates the flags. Otherwise, the flags are not updated.

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rm> The first operand register.

<imm> The shift amount, in the range 1 to 32. See Shifts applied to a register on page A8-10.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 (result, carry) = Shift_C(R[m], SRType_LSR, shift_n, APSR.C);
 if d == 15 then // Can only occur for ARM encoding
 ALUWritePC(result); // setflags is always FALSE here
 else
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 // APSR.V unchanged

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-183

ARM_2009_Q2
Inserted Text
 PC can be used in ARM instructions.

ARM_2009_Q2
Inserted Text
 In ARM instructions, if S is not specified and <Rd> is the PC, the instruction is a branch to the address calculated by the operation. This is a simple branch before ARMv7, and an interworking branch from ARMv7.

Instruction Details
A8.6.91 LSR (register)

Logical Shift Right (register) shifts a register value right by a variable number of bits, shifting in zeros, and
writes the result to the destination register. The variable number of bits is read from the bottom byte of a
register. It can optionally update the condition flags based on the result.

d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == ‘1’);
if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == ‘1’);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

Encoding T1 ARMv4T, ARMv5T*, ARMv6*, ARMv7
LSRS <Rdn>,<Rm> Outside IT block.
LSR<c> <Rdn>,<Rm> Inside IT block.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 0 0 1 1 Rm Rdn

Encoding T2 ARMv6T2, ARMv7
LSR{S}<c>.W <Rd>,<Rn>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0 0 1 S Rn 1 1 1 1 Rd 0 0 0 0 Rm

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
LSR{S}<c> <Rd>,<Rn>,<Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 1 1 0 1 S (0) (0) (0) (0) Rd Rm 0 0 1 1 Rn
A8-184 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

LSR{S}<c><q> {<Rd>,} <Rn>, <Rm>

where:

S If S is present, the instruction updates the flags. Otherwise, the flags are not updated.

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The register whose bottom byte contains the amount to shift by.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 shift_n = UInt(R[m]<7:0>);
 (result, carry) = Shift_C(R[n], SRType_LSR, shift_n, APSR.C);
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 // APSR.V unchanged

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-185

Instruction Details
A8.6.92 MCR, MCR2

Move to Coprocessor from ARM core register passes the value of an ARM core register to a coprocessor.
If no coprocessor can execute the instruction, an Undefined Instruction exception is generated.

This is a generic coprocessor instruction. Some of the fields have no functionality defined by the architecture
and are free for use by the coprocessor instruction set designer. These fields are the opc1, opc2, CRn, and
CRm fields.

For more information about the coprocessors see Coprocessor support on page A2-68.

if coproc == ‘101x’ then SEE “Advanced SIMD and VFP”;
t = UInt(Rt); cp = UInt(coproc);
if t == 15 || (t == 13 && (CurrentInstrSet() != InstrSet_ARM)) then UNPREDICTABLE;

t = UInt(Rt); cp = UInt(coproc);
if t == 15 || (t == 13 && (CurrentInstrSet() != InstrSet_ARM)) then UNPREDICTABLE;

Encoding T1 / A1 ARMv6T2, ARMv7 for encoding T1

ARMv4*, ARMv5T*, ARMv6*, ARMv7 for encoding A1
MCR<c> <coproc>,<opc1>,<Rt>,<CRn>,<CRm>{,<opc2>}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 opc1 0 CRn Rt coproc opc2 1 CRm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 1 0 opc1 0 CRn Rt coproc opc2 1 CRm

Encoding T2 / A2 ARMv6T2, ARMv7 for encoding T2

ARMv5T*, ARMv6*, ARMv7 for encodingA2
MCR2<c> <coproc>,<opc1>,<Rt>,<CRn>,<CRm>{,<opc2>}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 opc1 0 CRn Rt coproc opc2 1 CRm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 opc1 0 CRn Rt coproc opc2 1 CRm

Advanced SIMD and VFP See 8, 16, and 32-bit transfer between ARM core and extension registers
on page A7-31
A8-186 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2008_Q4
Inserted Text

Instruction Details
Assembler syntax

MCR{2}<c><q> <coproc>, #<opc1>, <Rt>, <CRn>, <CRm>{, #<opc2>}

where:

2 If specified, selects encoding T2 / A2. If omitted, selects encoding T1 / A1.

<c><q> See Standard assembler syntax fields on page A8-7. An ARM MCR2 instruction must be
unconditional.

<coproc> The name of the coprocessor. The standard generic coprocessor names are p0, p1, …, p15.

<opc1> Is a coprocessor-specific opcode in the range 0 to 7.

<Rt> Is the ARM core register whose value is transferred to the coprocessor.

<CRn> Is the destination coprocessor register.

<CRm> Is an additional destination coprocessor register.

<opc2> Is a coprocessor-specific opcode in the range 0-7. If omitted, <opc2> is assumed to be 0.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 if !Coproc_Accepted(cp, ThisInstr()) then
 GenerateCoprocessorException();
 else
 Coproc_SendOneWord(R[t], cp, ThisInstr());

Exceptions

Undefined Instruction.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-187

ARM_2009_Q3
Cross-Out

ARM_2009_Q3
Replacement Text
{#}

ARM_2009_Q3
Cross-Out

ARM_2009_Q3
Replacement Text
{#}

Instruction Details
A8.6.93 MCRR, MCRR2

Move to Coprocessor from two ARM core registers passes the values of two ARM core registers to a
coprocessor. If no coprocessor can execute the instruction, an Undefined Instruction exception is generated.

This is a generic coprocessor instruction. The opc1 and CRm fields have no functionality defined by the
architecture and are free for use by the coprocessor instruction set designer.

For more information about the coprocessors see Coprocessor support on page A2-68.

if coproc == ‘101x’ then SEE “Advanced SIMD and VFP”;
t = UInt(Rt); t2 = UInt(Rt2); cp = UInt(coproc);
if t == 15 || t2 == 15 then UNPREDICTABLE;
if (t == 13 || t2 == 13) && (CurrentInstrSet() != InstrSet_ARM) then UNPREDICTABLE;

t = UInt(Rt); t2 = UInt(Rt2); cp = UInt(coproc);
if t == 15 || t2 == 15 then UNPREDICTABLE;
if (t == 13 || t2 == 13) && (CurrentInstrSet() != InstrSet_ARM) then UNPREDICTABLE;

Encoding T1 / A1 ARMv6T2, ARMv7 for encoding T1

ARMv5TE*, ARMv6*, ARMv7 for encoding A1
MCRR<c> <coproc>,<opc1>,<Rt>,<Rt2>,<CRm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 0 0 1 0 0 Rt2 Rt coproc opc1 CRm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 0 0 0 1 0 0 Rt2 Rt coproc opc1 CRm

Encoding T2 / A2 ARMv6T2, ARMv7 for encoding T2

ARMv6*, ARMv7 for encoding A2
MCRR2<c> <coproc>,<opc1>,<Rt>,<Rt2>,<CRm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 0 0 0 1 0 0 Rt2 Rt coproc opc1 CRm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 0 0 0 1 0 0 Rt2 Rt coproc opc1 CRm

Advanced SIMD and VFP See 64-bit transfers between ARM core and extension registers on
page A7-32
A8-188 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

MCRR{2}<c><q> <coproc>, #<opc1>, <Rt>, <Rt2>, <CRm>

where:

2 If specified, selects encoding T2 / A2. If omitted, selects encoding T1 / A1.

<c><q> See Standard assembler syntax fields on page A8-7. An ARM MCRR2 instruction must be
unconditional.

<coproc> The name of the coprocessor.

The standard generic coprocessor names are p0, p1, …, p15.

<opc1> Is a coprocessor-specific opcode in the range 0 to 15.

<Rt> Is the first ARM core register whose value is transferred to the coprocessor.

<Rt2> Is the second ARM core register whose value is transferred to the coprocessor.

<CRm> Is the destination coprocessor register.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 if !Coproc_Accepted(cp, ThisInstr()) then
 GenerateCoprocessorException();
 else
 Coproc_SendTwoWords(R[t], R[t2], cp, ThisInstr());

Exceptions

Undefined Instruction.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-189

ARM_2009_Q3
Cross-Out

ARM_2009_Q3
Replacement Text
{#}

Instruction Details
A8.6.94 MLA

Multiply Accumulate multiplies two register values, and adds a third register value. The least significant 32
bits of the result are written to the destination register. These 32 bits do not depend on whether the source
register values are considered to be signed values or unsigned values.

In ARM code, the condition flags can optionally be updated based on the result. Use of this option adversely
affects performance on many processor implementations.

if Ra == ‘1111’ then SEE MUL;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra); setflags = FALSE;
if BadReg(d) || BadReg(n) || BadReg(m) || a == 13 then UNPREDICTABLE;

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra); setflags = (S == ‘1’);
if d == 15 || n == 15 || m == 15 || a == 15 then UNPREDICTABLE;
if ArchVersion() < 6 && d == n then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
MLA<c> <Rd>,<Rn>,<Rm>,<Ra>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 0 0 0 0 Rn Ra Rd 0 0 0 0 Rm

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
MLA{S}<c> <Rd>,<Rn>,<Rm>,<Ra>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 0 0 0 1 S Rd Ra Rm 1 0 0 1 Rn
A8-190 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

MLA{S}<c><q> <Rd>, <Rn>, <Rm>, <Ra>

where:

S If S is present, the instruction updates the flags. Otherwise, the flags are not updated.

S can be specified only for the ARM instruction set.

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The second operand register.

<Ra> The register containing the accumulate value.

The pre-UAL syntax MLA<c>S is equivalent to MLAS<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 operand1 = SInt(R[n]); // operand1 = UInt(R[n]) produces the same final results
 operand2 = SInt(R[m]); // operand2 = UInt(R[m]) produces the same final results
 addend = SInt(R[a]); // addend = UInt(R[a]) produces the same final results
 result = operand1 * operand2 + addend;
 R[d] = result<31:0>;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 if ArchVersion() == 4 then
 APSR.C = bit UNKNOWN;
 // else APSR.C unchanged
 // APSR.V always unchanged

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-191

Instruction Details
A8.6.95 MLS

Multiply and Subtract multiplies two register values, and subtracts the product from a third register value.
The least significant 32 bits of the result are written to the destination register. These 32 bits do not depend
on whether the source register values are considered to be signed values or unsigned values.

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra);
if BadReg(d) || BadReg(n) || BadReg(m) || BadReg(a) then UNPREDICTABLE;

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra);
if d == 15 || n == 15 || m == 15 || a == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
MLS<c> <Rd>,<Rn>,<Rm>,<Ra>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 0 0 0 0 Rn Ra Rd 0 0 0 1 Rm

Encoding A1 ARMv6T2, ARMv7
MLS<c> <Rd>,<Rn>,<Rm>,<Ra>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 0 0 1 1 0 Rd Ra Rm 1 0 0 1 Rn
A8-192 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

MLS<c><q> <Rd>, <Rn>, <Rm>, <Ra>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The second operand register.

<Ra> The register containing the accumulate value.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 operand1 = SInt(R[n]); // operand1 = UInt(R[n]) produces the same final results
 operand2 = SInt(R[m]); // operand2 = UInt(R[m]) produces the same final results
 addend = SInt(R[a]); // addend = UInt(R[a]) produces the same final results
 result = addend - operand1 * operand2;
 R[d] = result<31:0>;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-193

Instruction Details
A8.6.96 MOV (immediate)

Move (immediate) writes an immediate value to the destination register. It can optionally update the
condition flags based on the value.

d = UInt(Rd); setflags = !InITBlock(); imm32 = ZeroExtend(imm8, 32); carry = APSR.C;

d = UInt(Rd); setflags = (S == ‘1’); (imm32, carry) = ThumbExpandImm_C(i:imm3:imm8, APSR.C);
if BadReg(d) then UNPREDICTABLE;

d = UInt(Rd); setflags = FALSE; imm32 = ZeroExtend(imm4:i:imm3:imm8, 32);
if BadReg(d) then UNPREDICTABLE;

if Rd == ‘1111’ && S == ‘1’ then SEE SUBS PC, LR and related instructions;
d = UInt(Rd); setflags = (S == ‘1’); (imm32, carry) = ARMExpandImm_C(imm12, APSR.C);

d = UInt(Rd); setflags = FALSE; imm32 = ZeroExtend(imm4:imm12, 32);
if d == 15 then UNPREDICTABLE;

Encoding T1 ARMv4T, ARMv5T*, ARMv6*, ARMv7
MOVS <Rd>,#<imm8> Outside IT block.
MOV<c> <Rd>,#<imm8> Inside IT block.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 0 Rd imm8

Encoding T2 ARMv6T2, ARMv7
MOV{S}<c>.W <Rd>,#<const>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 0 0 1 0 S 1 1 1 1 0 imm3 Rd imm8

Encoding T3 ARMv6T2, ARMv7
MOVW<c> <Rd>,#<imm16>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 1 0 0 1 0 0 imm4 0 imm3 Rd imm8

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
MOV{S}<c> <Rd>,#<const>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 1 1 1 0 1 S (0) (0) (0) (0) Rd imm12

Encoding A2 ARMv6T2, ARMv7
MOVW<c> <Rd>,#<imm16>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 1 1 0 0 0 0 imm4 Rd imm12
A8-194 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

S If S is present, the instruction updates the flags. Otherwise, the flags are not updated.

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<const> The immediate value to be placed in <Rd>. The range of values is 0-255 for encoding T1 and
0-65535 for encoding T3 or A2. See Modified immediate constants in Thumb instructions
on page A6-17 or Modified immediate constants in ARM instructions on page A5-9 for the
range of values for encoding T2 or A1.

When both 32-bit encodings are available for an instruction, encoding T2 or A1 is preferred
to encoding T3 or A2 (if encoding T3 or A2 is required, use the MOVW syntax).

The pre-UAL syntax MOV<c>S is equivalent to MOVS<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 result = imm32;
 if d == 15 then // Can only occur for encoding A1
 ALUWritePC(result); // setflags is always FALSE here
 else
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 // APSR.V unchanged

Exceptions

None.

MOV{S}<c><q> <Rd>, #<const> All encodings permitted
MOVW<c><q> <Rd>, #<const> Only encoding T3 or A2 permitted
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-195

ARM_2009_Q2
Inserted Text
 If S is specified and <Rd> is the PC, see SUBS PC, LR and related instructions on page B6-25 [PDF page 1583]. In ARM instructions, for encoding A1, if S is not specified and <Rd> is the PC, the instruction is a branch to the address calculated by the operation. This is a simple branch before ARMv7, and an interworking branch from ARMv7.

Instruction Details
A8.6.97 MOV (register)

Move (register) copies a value from a register to the destination register. It can optionally update the
condition flags based on the value.

d = UInt(D:Rd); m = UInt(Rm); setflags = FALSE;
if d == 15 && InITBlock() && !LastInITBlock() then UNPREDICTABLE;

d = UInt(Rd); m = UInt(Rm); setflags = TRUE;
if InITBlock() then UNPREDICTABLE;

d = UInt(Rd); m = UInt(Rm); setflags = (S == ‘1’);
if (d == 13 || BadReg(m)) && setflags then UNPREDICTABLE;
if (d == 13 && BadReg(m)) || d == 15 then UNPREDICTABLE;

if Rd == ‘1111’ && S == ‘1’ then SEE SUBS PC, LR and related instructions;
d = UInt(Rd); m = UInt(Rm); setflags = (S == ‘1’);

Assembler syntax

MOV{S}<c><q> <Rd>, <Rm>

where:

S If S is present, the instruction updates the flags. Otherwise, the flags are not updated.

Encoding T1 ARMv6*, ARMv7 if <Rd> and <Rm> both from R0-R7

ARMv4T, ARMv5T*, ARMv6*, ARMv7 otherwise
MOV<c> <Rd>,<Rm> If <Rd> is the PC, must be outside or last in IT block.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 1 1 0 D Rm Rd

Encoding T2 ARMv4T, ARMv5T*, ARMv6*, ARMv7
MOVS <Rd>,<Rm> Not permitted in IT block

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 Rm Rd

Encoding T3 ARMv6T2, ARMv7
MOV{S}<c>.W <Rd>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 S 1 1 1 1 (0) 0 0 0 Rd 0 0 0 0 Rm

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
MOV{S}<c> <Rd>,<Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 1 1 0 1 S (0) (0) (0) (0) Rd 0 0 0 0 0 0 0 0 Rm
A8-196 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
if setflags && (BadReg(d) || BadReg(m)) then UNPREDICTABLE;
if !setflags && (d == 15 || m == 15 || (d == 13 && m == 13)) then UNPREDICTABLE;

Instruction Details
<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register. This register can be the SP or PC. If this register is the PC and S is
specified, see SUBS PC, LR and related instructions on page B6-25.

If <Rd> is the PC:

• the instruction causes a branch to the address moved to the PC

• in the Thumb and ThumbEE instruction sets:

— the instruction must either be outside an IT block or the last instruction of an
IT block

— encoding T3 is not permitted.

In the Thumb and ThumbEE instruction sets, S must not be specified if <Rd> is the SP. If <Rd>
is the SP and <Rm> is the SP or PC, encoding T3 is not permitted.

<Rm> The source register. This register can be the SP or PC. In the Thumb and ThumbEE
instruction sets, S must not be specified if <Rm> is the SP or PC.

Note
 The use of the following MOV (register) instructions is deprecated:

• ones in which <Rd> is the SP or PC and <Rm> is also the SP or PC

• ones in which S is specified and <Rd> is the SP, <Rm> is the SP, or <Rm> is the PC.

See also Changing between Thumb state and ARM state on page A4-2 about the use of the MOV PC,LR
instruction.

The pre-UAL syntax MOV<c>S is equivalent to MOVS<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 result = R[m];
 if d == 15 then
 ALUWritePC(result); // setflags is always FALSE here
 else
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 // APSR.V unchanged

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-197

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
// APSR.C unchanged

ARM_2009_Q2
Inserted Text
, and encoding T3 is not permitted if <Rm> is the PC

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
T

ARM_2009_Q2
Inserted Text
. In the ARM instruction set before ARMv7 and in the Thumb instruction set the branch is a simple branch. In the ARM instruction set from ARMv7 it is an interworking branch.

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
I

ARM_2009_Q2
Inserted Text
 and S is not specified

Instruction Details
A8.6.98 MOV (shifted register)

Move (shifted register) is a pseudo-instruction for ASR, LSL, LSR, ROR, and RRX.

For details see the following sections:

• ASR (immediate) on page A8-40

• ASR (register) on page A8-42

• LSL (immediate) on page A8-178

• LSL (register) on page A8-180

• LSR (immediate) on page A8-182

• LSR (register) on page A8-184

• ROR (immediate) on page A8-278

• ROR (register) on page A8-280

• RRX on page A8-282.
A8-198 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q2
Inserted Text
For the special case of MOVS where <Rd> is the PC, see SUBS PC, LR and related instructions on page B6-25 [PDF page 1583]. Otherwise,

Instruction Details
Assembler syntax

Table A8-4 shows the equivalences between MOV (shifted register) and other instructions.

Disassembly produces the canonical form of the instruction.

Exceptions

None.

Table A8-4 MOV (shifted register) equivalences

MOV instruction Canonical form

MOV{S} <Rd>,<Rm>,ASR #<n> ASR{S} <Rd>,<Rm>,#<n>

MOV{S} <Rd>,<Rm>,LSL #<n> LSL{S} <Rd>,<Rm>,#<n>

MOV{S} <Rd>,<Rm>,LSR #<n> LSR{S} <Rd>,<Rm>,#<n>

MOV{S} <Rd>,<Rm>,ROR #<n> ROR{S} <Rd>,<Rm>,#<n>

MOV{S} <Rd>,<Rm>,ASR <Rs> ASR{S} <Rd>,<Rm>,<Rs>

MOV{S} <Rd>,<Rm>,LSL <Rs> LSL{S} <Rd>,<Rm>,<Rs>

MOV{S} <Rd>,<Rm>,LSR <Rs> LSR{S} <Rd>,<Rm>,<Rs>

MOV{S} <Rd>,<Rm>,ROR <Rs> ROR{S} <Rd>,<Rm>,<Rs>

MOV{S} <Rd>,<Rm>,RRX RRX{S} <Rd>,<Rm>
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-199

ARM_2009_Q2
Inserted Text
 In the special case that <Rd> is the PC and S is specified, see SUBS PC, LR and related instructions on page B6-25 [PDF page 1583]. Otherwise, see the section for the canonical form of the instruction.

Instruction Details
A8.6.99 MOVT

Move Top writes an immediate value to the top halfword of the destination register. It does not affect the
contents of the bottom halfword.

d = UInt(Rd); imm16 = imm4:i:imm3:imm8;
if BadReg(d) then UNPREDICTABLE;

d = UInt(Rd); imm16 = imm4:imm12;
if d == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
MOVT<c> <Rd>,#<imm16>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 1 0 1 1 0 0 imm4 0 imm3 Rd imm8

Encoding A1 ARMv6T2, ARMv7
MOVT<c> <Rd>,#<imm16>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 1 1 0 1 0 0 imm4 Rd imm12
A8-200 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

MOVT<c><q> <Rd>, #<imm16>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<imm16> The immediate value to be written to <Rd>. It must be in the range 0-65535.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 R[d]<31:16> = imm16;
 // R[d]<15:0> unchanged

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-201

Instruction Details
A8.6.100 MRC, MRC2

Move to ARM core register from Coprocessor causes a coprocessor to transfer a value to an ARM core
register or to the condition flags. If no coprocessor can execute the instruction, an Undefined Instruction
exception is generated.

This is a generic coprocessor instruction. Some of the fields have no functionality defined by the architecture
and are free for use by the coprocessor instruction set designer. These fields are the opc1, opc2, CRn, and
CRm fields.

For more information about the coprocessors see Coprocessor support on page A2-68.

if coproc == ‘101x’ then SEE “Advanced SIMD and VFP”;
t = UInt(Rt); cp = UInt(coproc);
if t == 13 && (CurrentInstrSet() != InstrSet_ARM) then UNPREDICTABLE;

t = UInt(Rt); cp = UInt(coproc);
if t == 13 && (CurrentInstrSet() != InstrSet_ARM) then UNPREDICTABLE;

Encoding T1 / A1 ARMv6T2, ARMv7 for encoding T1

ARMv4*, ARMv5T*, ARMv6*, ARMv7 for encoding A1
MRC<c> <coproc>,<opc1>,<Rt>,<CRn>,<CRm>{,<opc2>}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 opc1 1 CRn Rt coproc opc2 1 CRm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 1 0 opc1 1 CRn Rt coproc opc2 1 CRm

Encoding T2 / A2 ARMv6T2, ARMv7 for encoding T2

ARMv5T*, ARMv6*, ARMv7 for encodingA2
MRC2<c> <coproc>,<opc1>,<Rt>,<CRn>,<CRm>{,<opc2>}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 opc1 1 CRn Rt coproc opc2 1 CRm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 opc1 1 CRn Rt coproc opc2 1 CRm

Advanced SIMD and VFP See 8, 16, and 32-bit transfer between ARM core and extension registers
on page A7-31
A8-202 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2008_Q4
Inserted Text

Instruction Details
Assembler syntax

MRC{2}<c><q> <coproc>, #<opc1>, <Rt>, <CRn>, <CRm>{, #<opc2>}

where:

2 If specified, selects encoding T2 / A2. If omitted, selects encoding T1 / A1.

<c><q> See Standard assembler syntax fields on page A8-7. An ARM MRC2 instruction must be
unconditional.

<coproc> The name of the coprocessor. The standard generic coprocessor names are p0, p1, …, p15.

<opc1> Is a coprocessor-specific opcode in the range 0 to 7.

<Rt> Is the destination ARM core register. This register can be R0-R14 or APSR_nzcv. The last
form writes bits [31:28] of the transferred value to the N, Z, C and V condition flags and is
specified by setting the Rt field of the encoding to 0b1111. In pre-UAL assembler syntax,
PC was written instead of APSR_nzcv to select this form.

<CRn> Is the coprocessor register that contains the first operand.

<CRm> Is an additional source or destination coprocessor register.

<opc2> Is a coprocessor-specific opcode in the range 0 to 7. If omitted, <opc2> is assumed to be 0.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 if !Coproc_Accepted(cp, ThisInstr()) then
 GenerateCoprocessorException();
 else
 value = Coproc_GetOneWord(cp, ThisInstr());
 if t != 15 then
 R[t] = value;
 else
 APSR.N = value<31>;
 APSR.Z = value<30>;
 APSR.C = value<29>;
 APSR.V = value<28>;
 // value<27:0> are not used.

Exceptions

Undefined Instruction.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-203

ARM_2009_Q3
Cross-Out

ARM_2009_Q3
Replacement Text
{#}

ARM_2009_Q3
Cross-Out

ARM_2009_Q3
Replacement Text
{#}

Instruction Details
A8.6.101 MRRC, MRRC2

Move to two ARM core registers from Coprocessor causes a coprocessor to transfer values to two ARM
core registers. If no coprocessor can execute the instruction, an Undefined Instruction exception is
generated.

This is a generic coprocessor instruction. The opc1 and CRm fields have no functionality defined by the
architecture and are free for use by the coprocessor instruction set designer.

For more information about the coprocessors see Coprocessor support on page A2-68.

if coproc == ‘101x’ then SEE “Advanced SIMD and VFP”;
t = UInt(Rt); t2 = UInt(Rt2); cp = UInt(coproc);
if t == 15 || t2 == 15 || t == t2 then UNPREDICTABLE;
if (t == 13 || t2 == 13) && (CurrentInstrSet() != InstrSet_ARM) then UNPREDICTABLE;

t = UInt(Rt); t2 = UInt(Rt2); cp = UInt(coproc);
if t == 15 || t2 == 15 || t == t2 then UNPREDICTABLE;
if (t == 13 || t2 == 13) && (CurrentInstrSet() != InstrSet_ARM) then UNPREDICTABLE;

Encoding T1 / A1 ARMv6T2, ARMv7 for encoding T1

ARMv5TE*, ARMv6*, ARMv7 for encoding A1
MRRC<c> <coproc>,<opc>,<Rt>,<Rt2>,<CRm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 0 0 1 0 1 Rt2 Rt coproc opc1 CRm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 0 0 0 1 0 1 Rt2 Rt coproc opc1 CRm

Encoding T2 / A2 ARMv6T2, ARMv7 for encoding T2

ARMv6*, ARMv7 for encoding A2
MRRC2<c> <coproc>,<opc>,<Rt>,<Rt2>,<CRm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 0 0 0 1 0 1 Rt2 Rt coproc opc1 CRm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 0 0 0 1 0 1 Rt2 Rt coproc opc1 CRm

Advanced SIMD and VFP See 64-bit transfers between ARM core and extension registers on
page A7-32
A8-204 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

MRRC{2}<c><q> <coproc>, #<opc1>, <Rt>, <Rt2>, <CRm>

where:

2 If specified, selects encoding T2 / A2. If omitted, selects encoding T1 / A1.

<c><q> See Standard assembler syntax fields on page A8-7. An ARM MRRC2 instruction must be
unconditional.

<coproc> The name of the coprocessor. The standard generic coprocessor names are p0, p1, …, p15.

<opc1> Is a coprocessor-specific opcode in the range 0 to 15.

<Rt> Is the first destination ARM core register.

<Rt2> Is the second destination ARM core register.

<CRm> Is the coprocessor register that supplies the data to be transferred.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 if !Coproc_Accepted(cp, ThisInstr()) then
 GenerateCoprocessorException();
 else
 (R[t], R[t2]) = Coproc_GetTwoWords(cp, ThisInstr());

Exceptions

Undefined Instruction.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-205

ARM_2009_Q3
Cross-Out

ARM_2009_Q3
Replacement Text
{#}

Instruction Details
A8.6.102 MRS

Move to Register from Special Register moves the value from the APSR into a general-purpose register.

For details of system level use of this instruction, see MRS on page B6-10.

d = UInt(Rd);
if BadReg(d) then UNPREDICTABLE;

d = UInt(Rd);
if d == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
MRS<c> <Rd>,<spec_reg>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 1 1 0 (1) (1) (1) (1) 1 0 (0) 0 Rd (0) (0) (0) (0) (0) (0) (0) (0)

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
MRS<c> <Rd>,<spec_reg>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 1 0 0 0 0 (1) (1) (1) (1) Rd (0) (0) (0) (0) 0 0 0 0 (0) (0) (0) (0)
A8-206 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

MRS<c><q> <Rd>, <spec_reg>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<spec_reg> Is one of:
• APSR

• CPSR.

ARM recommends the APSR form in application level code. For more information, see The
Application Program Status Register (APSR) on page A2-14.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 R[d] = APSR;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-207

Instruction Details
A8.6.103 MSR (immediate)

Move immediate value to Special Register moves selected bits of an immediate value to the corresponding
bits in the APSR.

For details of system level use of this instruction, see MSR (immediate) on page B6-12.

if mask == ‘00’ then SEE “Related encodings”;
imm32 = ARMExpandImm(imm12); write_nzcvq = (mask<1> == ‘1’); write_g = (mask<0> == ‘1’);
if n == 15 then UNPREDICTABLE;

Assembler syntax

MSR<c><q> <spec_reg>, #<imm>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<spec_reg> Is one of:
• APSR_<bits>

• CPSR_<fields>.

ARM recommends the APSR forms in application level code. For more information,
see The Application Program Status Register (APSR) on page A2-14.

<imm> Is the immediate value to be transferred to <spec_reg>. See Modified immediate
constants in ARM instructions on page A5-9 for the range of values.

<bits> Is one of nzcvq, g, or nzcvqg.

In the A and R profiles:

• APSR_nzcvq is the same as CPSR_f

• APSR_g is the same as CPSR_s

• APSR_nzcvqg is the same as CPSR_fs.

<fields> Is a sequence of one or more of the following: s, f.

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
MSR<c> <spec_reg>,#<const>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 1 1 0 0 1 0 mask 0 0 (1) (1) (1) (1) imm12
A8-208 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Inserted Text
Related encodings See MSR (immediate), and hints on page A5-17 [PDF page 223].

Instruction Details
Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 if write_nzcvq then
 APSR.N = imm32<31>;
 APSR.Z = imm32<30>;
 APSR.C = imm32<29>;
 APSR.V = imm32<28>;
 APSR.Q = imm32<27>;
 if write_g then
 APSR.GE = imm32<19:16>;

Exceptions

None.

Usage

For details of the APSR see The Application Program Status Register (APSR) on page A2-14. Because of
the Do-Not-Modify nature of its reserved bits, the immediate form of MSR is normally only useful at the
Application level for writing to APSR_nzcvq (CPSR_f).

For the A and R profiles, MSR (immediate) on page B6-12 describes additional functionality that is available
using the reserved bits. This includes some deprecated functionality that is available in unprivileged and
privileged modes and therefore can be used at the Application level.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-209

Instruction Details
A8.6.104 MSR (register)

Move to Special Register from ARM core register moves selected bits of a general-purpose register to the
APSR.

For details of system level use of this instruction, see MSR (register) on page B6-14.

n = UInt(Rn); write_nzcvq = (mask<1> == ‘1’); write_g = (mask<0> == ‘1’);
if mask == ‘00’ then UNPREDICTABLE;
if n == 15 then UNPREDICTABLE;

n = UInt(Rn); write_nzcvq = (mask<1> == ‘1’); write_g = (mask<0> == ‘1’);
if mask == ‘00’ then UNPREDICTABLE;
if n == 15 then UNPREDICTABLE;

Assembler syntax

MSR<c><q> <spec_reg>, <Rn>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<spec_reg> Is one of:
• APSR_<bits>

• CPSR_<fields>.

ARM recommends the APSR forms in application level code. For more information, see The
Application Program Status Register (APSR) on page A2-14.

<Rn> Is the general-purpose register to be transferred to <spec_reg>.

<bits> Is one of nzcvq, g, or nzcvqg.

In the A and R profiles:

• APSR_nzcvq is the same as CPSR_f

• APSR_g is the same as CPSR_s

• APSR_nzcvqg is the same as CPSR_fs.

<fields> Is a sequence of one or more of the following: s, f.

Encoding T1 ARMv6T2, ARMv7

MSR<c> <spec_reg>,<Rn>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 0 0 Rn 1 0 (0) 0 mask 0 0 (0) (0) (0) (0) (0) (0) (0) (0)

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7

MSR<c> <spec_reg>,<Rn>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 1 0 0 1 0 mask 0 0 (1) (1) (1) (1) (0) (0) (0) (0) 0 0 0 0 Rn
A8-210 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
BadReg(n)

Instruction Details
Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 if write_nzcvq then
 APSR.N = R[n]<31>;
 APSR.Z = R[n]<30>;
 APSR.C = R[n]<29>;
 APSR.V = R[n]<28>;
 APSR.Q = R[n]<27>;
 if write_g then
 APSR.GE = R[n]<19:16>;

Exceptions

None.

Usage

For details of the APSR see The Application Program Status Register (APSR) on page A2-14. Because of
the Do-Not-Modify nature of its reserved bits, a read / modify / write sequence is normally needed when the
MSR instruction is being used at Application level and its destination is not APSR_nzcvq (CPSR_f).

For the A and R profiles, MSR (register) on page B6-14 describes additional functionality that is available
using the reserved bits. This includes some deprecated functionality that is available in unprivileged and
privileged modes and therefore can be used at the Application level.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-211

Instruction Details
A8.6.105 MUL

Multiply multiplies two register values. The least significant 32 bits of the result are written to the
destination register. These 32 bits do not depend on whether the source register values are considered to be
signed values or unsigned values.

Optionally, it can update the condition flags based on the result. In the Thumb instruction set, this option is
limited to only a few forms of the instruction. Use of this option adversely affects performance on many
processor implementations.

d = UInt(Rdm); n = UInt(Rn); m = UInt(Rdm); setflags = !InITBlock();
if ArchVersion() < 6 && d == n then UNPREDICTABLE;

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = FALSE;
if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == ‘1’);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;
if ArchVersion() < 6 && d == n then UNPREDICTABLE;

Encoding T1 ARMv4T, ARMv5T*, ARMv6*, ARMv7
MULS <Rdm>,<Rn>,<Rdm> Outside IT block.
MUL<c> <Rdm>,<Rn>,<Rdm> Inside IT block.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 1 1 0 1 Rn Rdm

Encoding T2 ARMv6T2, ARMv7
MUL<c> <Rd>,<Rn>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 0 0 0 0 Rn 1 1 1 1 Rd 0 0 0 0 Rm

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
MUL{S}<c> <Rd>,<Rn>,<Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 0 0 0 0 S Rd (0) (0) (0) (0) Rm 1 0 0 1 Rn
A8-212 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

MUL{S}<c><q> {<Rd>,} <Rn>, <Rm>

where:

S If S is present, the instruction updates the flags. Otherwise, the flags are not updated.

In the Thumb instruction set, S can be specified only if both <Rn> and <Rm> are R0-R7 and
the instruction is outside an IT block.

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The second operand register.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 operand1 = SInt(R[n]); // operand1 = UInt(R[n]) produces the same final results
 operand2 = SInt(R[m]); // operand2 = UInt(R[m]) produces the same final results
 result = operand1 * operand2;
 R[d] = result<31:0>;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 if ArchVersion() == 4 then
 APSR.C = bit UNKNOWN;
 // else APSR.C unchanged
 // APSR.V always unchanged

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-213

ARM_2009_Q1
Inserted Text

The pre-UAL syntax MUL<c>S is equivalent to MULS<c>.

ARM_2010_Q3
Cross-Out

ARM_2010_Q3
Replacement Text
IsZeroBit(result<31:0>);

Instruction Details
A8.6.106 MVN (immediate)

Bitwise NOT (immediate) writes the bitwise inverse of an immediate value to the destination register. It can
optionally update the condition flags based on the value.

d = UInt(Rd); setflags = (S == ‘1’);
(imm32, carry) = ThumbExpandImm_C(i:imm3:imm8, APSR.C);
if BadReg(d) then UNPREDICTABLE;

if Rd == ‘1111’ && S == ‘1’ then SEE SUBS PC, LR and related instructions;
d = UInt(Rd); setflags = (S == ‘1’);
(imm32, carry) = ARMExpandImm_C(imm12, APSR.C);

Encoding T1 ARMv6T2, ARMv7
MVN{S}<c> <Rd>,#<const>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 0 0 1 1 S 1 1 1 1 0 imm3 Rd imm8

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
MVN{S}<c> <Rd>,#<const>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 1 1 1 1 1 S (0) (0) (0) (0) Rd imm12
A8-214 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

MVN{S}<c><q> <Rd>, #<const>

where:

S If S is present, the instruction updates the flags. Otherwise, the flags are not updated.

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<const> The immediate value to be bitwise inverted. See Modified immediate constants in Thumb
instructions on page A6-17 or Modified immediate constants in ARM instructions on
page A5-9 for the range of values.

The pre-UAL syntax MVN<c>S is equivalent to MVNS<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 result = NOT(imm32);
 if d == 15 then // Can only occur for ARM encoding
 ALUWritePC(result); // setflags is always FALSE here
 else
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 // APSR.V unchanged

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-215

ARM_2009_Q2
Inserted Text
 If S is specified and <Rd> is the PC, see SUBS PC, LR and related instructions on page B6-25 [PDF page 1583]. In ARM instructions, if S is not specified and <Rd> is the PC, the instruction is a branch to the address calculated by the operation. This is a simple branch before ARMv7, and an interworking branch from ARMv7.

Instruction Details
A8.6.107 MVN (register)

Bitwise NOT (register) writes the bitwise inverse of a register value to the destination register. It can
optionally update the condition flags based on the result.

d = UInt(Rd); m = UInt(Rm); setflags = !InITBlock();
(shift_t, shift_n) = (SRType_LSL, 0);

d = UInt(Rd); m = UInt(Rm); setflags = (S == ‘1’);
(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);
if BadReg(d) || BadReg(m) then UNPREDICTABLE;

if Rd == ‘1111’ && S == ‘1’ then SEE SUBS PC, LR and related instructions;
d = UInt(Rd); m = UInt(Rm); setflags = (S == ‘1’);
(shift_t, shift_n) = DecodeImmShift(type, imm5);

Encoding T1 ARMv4T, ARMv5T*, ARMv6*, ARMv7
MVNS <Rd>,<Rm> Outside IT block.
MVN<c> <Rd>,<Rm> Inside IT block.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 1 1 1 1 Rm Rd

Encoding T2 ARMv6T2, ARMv7
MVN{S}<c>.W <Rd>,<Rm>{,<shift>}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 1 S 1 1 1 1 (0) imm3 Rd imm2 type Rm

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
MVN{S}<c> <Rd>,<Rm>{,<shift>}

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 1 1 1 1 S (0) (0) (0) (0) Rd imm5 type 0 Rm
A8-216 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

MVN{S}<c><q> <Rd>, <Rm> {, <shift>}

where:

S If S is present, the instruction updates the flags. Otherwise, the flags are not updated.

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rm> The register that is optionally shifted and used as the source register.

<shift> The shift to apply to the value read from <Rm>. If present, encoding T1 is not permitted. If
absent, no shift is applied and all encodings are permitted. Shifts applied to a register on
page A8-10 describes the shifts and how they are encoded.

The pre-UAL syntax MVN<c>S is equivalent to MVNS<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
 result = NOT(shifted);
 if d == 15 then // Can only occur for ARM encoding
 ALUWritePC(result); // setflags is always FALSE here
 else
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 // APSR.V unchanged

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-217

ARM_2009_Q2
Inserted Text
 PC can be used in ARM instructions.

ARM_2009_Q2
Inserted Text
 If S is specified and <Rd> is the PC, see SUBS PC, LR and related instructions on page B6-25 [PDF page 1583]. In ARM instructions, if S is not specified and <Rd> is the PC, the instruction is a branch to the address calculated by the operation. This is a simple branch before ARMv7, and an interworking branch from ARMv7.

Instruction Details
A8.6.108 MVN (register-shifted register)

Bitwise NOT (register-shifted register) writes the bitwise inverse of a register-shifted register value to the
destination register. It can optionally update the condition flags based on the result.

d = UInt(Rd); m = UInt(Rm); s = UInt(Rs);
setflags = (S == ‘1’); shift_t = DecodeRegShift(type);
if d == 15 || m == 15 || s == 15 then UNPREDICTABLE;

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7

MVN{S}<c> <Rd>,<Rm>,<type> <Rs>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 1 1 1 1 S (0) (0) (0) (0) Rd Rs 0 type 1 Rm
A8-218 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

MVN{S}<c><q> <Rd>, <Rm>, <type> <Rs>

where:

S If S is present, the instruction updates the flags. Otherwise, the flags are not updated.

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rm> The register that is shifted and used as the operand.

<type> The type of shift to apply to the value read from <Rm>. It must be one of:

ASR Arithmetic shift right, encoded as type = 0b10

LSL Logical shift left, encoded as type = 0b00

LSR Logical shift right, encoded as type = 0b01

ROR Rotate right, encoded as type = 0b11.

<Rs> The register whose bottom byte contains the amount to shift by.

The pre-UAL syntax MVN<c>S is equivalent to MVNS<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 shift_n = UInt(R[s]<7:0>);
 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
 result = NOT(shifted);
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 // APSR.V unchanged

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-219

Instruction Details
A8.6.109 NEG

Negate is a pre-UAL synonym for RSB (immediate) with an immediate value of 0. For details see RSB
(immediate) on page A8-284.
A8-220 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

NEG<c><q> <Rd>, <Rm>

This is equivalent to:

RSBS<c><q> <Rd>, <Rm>, #0

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-221

Instruction Details
A8.6.110 NOP

No Operation does nothing. This instruction can be used for code alignment purposes.

See Pre-UAL pseudo-instruction NOP on page AppxC-3 for details of NOP before the introduction of UAL
and the ARMv6K and ARMv6T2 architecture variants.

Note
 The timing effects of including a NOP instruction in code are not guaranteed. It can increase execution time,
leave it unchanged, or even reduce it. NOP instructions are therefore not suitable for timing loops.

// No additional decoding required

// No additional decoding required

// No additional decoding required

Encoding T1 ARMv6T2, ARMv7
NOP<c>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0

Encoding T2 ARMv6T2, ARMv7
NOP<c>.W

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 0 (1) (1) (1) (1) 1 0 (0) 0 (0) 0 0 0 0 0 0 0 0 0 0 0

Encoding A1 ARMv6K, ARMv6T2, ARMv7
NOP<c>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 1 1 0 0 1 0 0 0 0 0 (1) (1) (1) (1) (0) (0) (0) (0) 0 0 0 0 0 0 0 0
A8-222 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

NOP<c><q>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 // Do nothing

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-223

Instruction Details
A8.6.111 ORN (immediate)

Bitwise OR NOT (immediate) performs a bitwise (inclusive) OR of a register value and the complement of
an immediate value, and writes the result to the destination register. It can optionally update the condition
flags based on the result.

if Rn == ‘1111’ then SEE MVN (immediate);
d = UInt(Rd); n = UInt(Rn); setflags = (S == ‘1’);
(imm32, carry) = ThumbExpandImm_C(i:imm3:imm8, APSR.C);
if BadReg(d) || n == 13 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
ORN{S}<c> <Rd>,<Rn>,#<const>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 0 0 1 1 S Rn 0 imm3 Rd imm8
A8-224 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

ORN{S}<c><q> {<Rd>,} <Rn>, #<const>

where:

S If S is present, the instruction updates the flags. Otherwise, the flags are not updated.

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The register that contains the operand.

<const> The immediate value to be bitwise inverted and ORed with the value obtained from <Rn>.
See Modified immediate constants in Thumb instructions on page A6-17 for the range of
values.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 result = R[n] OR NOT(imm32);
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 // APSR.V unchanged

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-225

Instruction Details
A8.6.112 ORN (register)

Bitwise OR NOT (register) performs a bitwise (inclusive) OR of a register value and the complement of an
optionally-shifted register value, and writes the result to the destination register. It can optionally update the
condition flags based on the result.

if Rn == ‘1111’ then SEE MVN (register);
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == ‘1’);
(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);
if BadReg(d) || n == 13 || BadReg(m) then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
ORN{S}<c> <Rd>,<Rn>,<Rm>{,<shift>}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 1 S Rn (0) imm3 Rd imm2 type Rm
A8-226 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

ORN{S}<c><q> {<Rd>,} <Rn>, <Rm> {,<shift>}

where:

S If S is present, the instruction updates the flags. Otherwise, the flags are not updated.

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The register that is optionally shifted and used as the second operand.

<shift> The shift to apply to the value read from <Rm>. If omitted, no shift is applied. Shifts applied
to a register on page A8-10 describes the shifts and how they are encoded.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
 result = R[n] OR NOT(shifted);
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 // APSR.V unchanged

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-227

Instruction Details
A8.6.113 ORR (immediate)

Bitwise OR (immediate) performs a bitwise (inclusive) OR of a register value and an immediate value, and
writes the result to the destination register. It can optionally update the condition flags based on the result.

if Rn == ‘1111’ then SEE MOV (immediate);
d = UInt(Rd); n = UInt(Rn); setflags = (S == ‘1’);
(imm32, carry) = ThumbExpandImm_C(i:imm3:imm8, APSR.C);
if BadReg(d) || n == 13 then UNPREDICTABLE;

if Rd == ‘1111’ && S == ‘1’ then SEE SUBS PC, LR and related instructions;
d = UInt(Rd); n = UInt(Rn); setflags = (S == ‘1’);
(imm32, carry) = ARMExpandImm_C(imm12, APSR.C);

Encoding T1 ARMv6T2, ARMv7
ORR{S}<c> <Rd>,<Rn>,#<const>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 0 0 1 0 S Rn 0 imm3 Rd imm8

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7

ORR{S}<c> <Rd>,<Rn>,#<const>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 1 1 1 0 0 S Rn Rd imm12
A8-228 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

ORR{S}<c><q> {<Rd>,} <Rn>, #<const>

where:

S If S is present, the instruction updates the flags. Otherwise, the flags are not updated.

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The register that contains the operand.

<const> The immediate value to be bitwise ORed with the value obtained from <Rn>. See Modified
immediate constants in Thumb instructions on page A6-17 or Modified immediate constants
in ARM instructions on page A5-9 for the range of values.

The pre-UAL syntax ORR<c>S is equivalent to ORRS<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 result = R[n] OR imm32;
 if d == 15 then // Can only occur for ARM encoding
 ALUWritePC(result); // setflags is always FALSE here
 else
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 // APSR.V unchanged

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-229

ARM_2009_Q2
Inserted Text
 PC can be used in ARM instructions.

ARM_2009_Q2
Inserted Text
 If S is specified and <Rd> is the PC, see SUBS PC, LR and related instructions on page B6-25 [PDF page 1583]. In ARM instructions, if S is not specified and <Rd> is the PC, the instruction is a branch to the address calculated by the operation. This is a simple branch before ARMv7, and an interworking branch from ARMv7.

Instruction Details
A8.6.114 ORR (register)

Bitwise OR (register) performs a bitwise (inclusive) OR of a register value and an optionally-shifted register
value, and writes the result to the destination register. It can optionally update the condition flags based on
the result.

d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();
(shift_t, shift_n) = (SRType_LSL, 0);

if Rn == ‘1111’ then SEE MOV (register);
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == ‘1’);
(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);
if BadReg(d) || n == 13 || BadReg(m) then UNPREDICTABLE;

if Rd == ‘1111’ && S == ‘1’ then SEE SUBS PC, LR and related instructions;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == ‘1’);
(shift_t, shift_n) = DecodeImmShift(type, imm5);

Encoding T1 ARMv4T, ARMv5T*, ARMv6*, ARMv7
ORRS <Rdn>,<Rm> Outside IT block.
ORR<c> <Rdn>,<Rm> Inside IT block.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 1 1 0 0 Rm Rdn

Encoding T2 ARMv6T2, ARMv7
ORR{S}<c>.W <Rd>,<Rn>,<Rm>{,<shift>}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 S Rn (0) imm3 Rd imm2 type Rm

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
ORR{S}<c> <Rd>,<Rn>,<Rm>{,<shift>}

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 1 1 0 0 S Rn Rd imm5 type 0 Rm
A8-230 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

ORR{S}<c><q> {<Rd>,} <Rn>, <Rm> {,<shift>}

where:

S If S is present, the instruction updates the flags. Otherwise, the flags are not updated.

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The register that is optionally shifted and used as the second operand.

<shift> The shift to apply to the value read from <Rm>. If present, encoding T1 is not permitted. If
absent, no shift is applied and all encodings are permitted. Shifts applied to a register on
page A8-10 describes the shifts and how they are encoded.

In Thumb assembly:

• outside an IT block, if ORRS <Rd>,<Rn>,<Rd> is written with <Rd> and <Rn> both in the range R0-R7, it
is assembled using encoding T1 as though ORRS <Rd>,<Rn> had been written

• inside an IT block, if ORR<c> <Rd>,<Rn>,<Rd> is written with <Rd> and <Rn> both in the range R0-R7,
it is assembled using encoding T1 as though ORR<c> <Rd>,<Rn> had been written.

To prevent either of these happening, use the .W qualifier.

The pre-UAL syntax ORR<c>S is equivalent to ORRS<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
 result = R[n] OR shifted;
 if d == 15 then // Can only occur for ARM encoding
 ALUWritePC(result); // setflags is always FALSE here
 else
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 // APSR.V unchanged

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-231

ARM_2009_Q2
Inserted Text
 PC can be used in ARM instructions.

ARM_2009_Q2
Inserted Text
 PC can be used in ARM instructions.

ARM_2009_Q2
Inserted Text
 If S is specified and <Rd> is the PC, see SUBS PC, LR and related instructions on page B6-25 [PDF page 1583]. In ARM instructions, if S is not specified and <Rd> is the PC, the instruction is a branch to the address calculated by the operation. This is a simple branch before ARMv7, and an interworking branch from ARMv7.

Instruction Details
A8.6.115 ORR (register-shifted register)

Bitwise OR (register-shifted register) performs a bitwise (inclusive) OR of a register value and a
register-shifted register value, and writes the result to the destination register. It can optionally update the
condition flags based on the result.

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); s = UInt(Rs);
setflags = (S == ‘1’); shift_t = DecodeRegShift(type);
if d == 15 || n == 15 || m == 15 || s == 15 then UNPREDICTABLE;

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7

ORR{S}<c> <Rd>,<Rn>,<Rm>,<type> <Rs>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 1 1 0 0 S Rn Rd Rs 0 type 1 Rm
A8-232 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

ORR{S}<c><q> {<Rd>,} <Rn>, <Rm>, <type> <Rs>

where:

S If S is present, the instruction updates the flags. Otherwise, the flags are not updated.

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The register that is shifted and used as the second operand.

<type> The type of shift to apply to the value read from <Rm>. It must be one of:

ASR Arithmetic shift right, encoded as type = 0b10

LSL Logical shift left, encoded as type = 0b00

LSR Logical shift right, encoded as type = 0b01

ROR Rotate right, encoded as type = 0b11.

<Rs> The register whose bottom byte contains the amount to shift by.

The pre-UAL syntax ORR<c>S is equivalent to ORRS<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 shift_n = UInt(R[s]<7:0>);
 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
 result = R[n] OR shifted;
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 // APSR.V unchanged

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-233

Instruction Details
A8.6.116 PKH

Pack Halfword combines one halfword of its first operand with the other halfword of its shifted second
operand.

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); tbform = (tb == ‘1’);
(shift_t, shift_n) = DecodeImmShift(tb:’0’, imm3:imm2);
if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); tbform = (tb == ‘1’);
(shift_t, shift_n) = DecodeImmShift(tb:’0’, imm5);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
PKHBT<c> <Rd>,<Rn>,<Rm>{,LSL #<imm>}

PKHTB<c> <Rd>,<Rn>,<Rm>{,ASR #<imm>}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 1 1 0 0 Rn (0) imm3 Rd imm2 tb 0 Rm

Encoding A1 ARMv6*, ARMv7
PKHBT<c> <Rd>,<Rn>,<Rm>{,LSL #<imm>}

PKHTB<c> <Rd>,<Rn>,<Rm>{,ASR #<imm>}

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 0 1 0 0 0 Rn Rd imm5 tb 0 1 Rm
A8-234 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2008_Q4
Inserted Text
if S == '1' || T == '1' then UNDEFINED;

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
T

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
S

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The register that is optionally shifted and used as the second operand.

<imm> The shift to apply to the value read from <Rm>, encoded in imm3:imm2 for encoding T1 and
imm5 for encoding A1.

For PKHBT, it is one of:

omitted No shift, encoded as 0b00000

1-31 Left shift by specified number of bits, encoded as a binary number.

For PKHTB, it is one of:

omitted Instruction is a pseudo-instruction and is assembled as though
PKHBT<c><q> <Rd>,<Rm>,<Rn> had been written

1-32 Arithmetic right shift by specified number of bits. A shift by 32 bits is encoded
as 0b00000. Other shift amounts are encoded as binary numbers.

Note
 An assembler can permit <imm> = 0 to mean the same thing as omitting the shift, but this is

not standard UAL and must not be used for disassembly.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 operand2 = Shift(R[m], shift_t, shift_n, APSR.C); // APSR.C ignored
 R[d]<15:0> = if tbform then operand2<15:0> else R[n]<15:0>;
 R[d]<31:16> = if tbform then R[n]<31:16> else operand2<31:16>;

Exceptions

None.

PKHBT<c><q> {<Rd>,} <Rn>, <Rm> {, LSL #<imm>} tbform == FALSE
PKHTB<c><q> {<Rd>,} <Rn>, <Rm> {, ASR #<imm>} tbform == TRUE
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-235

Instruction Details
A8.6.117 PLD, PLDW (immediate)

Preload Data signals the memory system that data memory accesses from a specified address are likely in
the near future. The memory system can respond by taking actions that are expected to speed up the memory
accesses when they do occur, such as pre-loading the cache line containing the specified address into the
data cache. For more information, see Behavior of Preload Data (PLD, PLDW) and Preload Instruction
(PLI) with caches on page B2-7.

On an architecture variant that includes both the PLD and PLDW instructions, the PLD instruction signals that
the likely memory access is a read, and the PLDW instruction signals that it is a write.

if Rn == ‘1111’ then SEE PLD (literal);
n = UInt(Rn); imm32 = ZeroExtend(imm12, 32); add = TRUE; is_pldw = (W == ‘1’);

if Rn == ‘1111’ then SEE PLD (literal);
n = UInt(Rn); imm32 = ZeroExtend(imm8, 32); add = FALSE; is_pldw = (W == ‘1’);

if Rn == ‘1111’ then SEE PLD (literal);
n = UInt(Rn); imm32 = ZeroExtend(imm12, 32); add = (U == ‘1’); is_pldw = (R == ‘0’);

Encoding T1 ARMv6T2, ARMv7 for PLD

ARMv7 with MP Extensions for PLDW
PLD{W}<c> [<Rn>,#<imm12>]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 1 0 W 1 Rn 1 1 1 1 imm12

Encoding T2 ARMv6T2, ARMv7 for PLD

ARMv7 with MP Extensions for PLDW
PLD{W}<c> [<Rn>,#-<imm8>]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 W 1 Rn 1 1 1 1 1 1 0 0 imm8

Encoding A1 ARMv5TE*, ARMv6*, ARMv7 for PLD

ARMv7 with MP Extensions for PLDW
PLD{W} [<Rn>,#+/-<imm12>]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 1 U R 0 1 Rn (1) (1) (1) (1) imm12
A8-236 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

W If specified, selects PLDW, encoded as W = 1 in Thumb encodings and R = 0 in ARM
encodings. If omitted, selects PLD, encoded as W = 0 in Thumb encodings and R = 1 in
ARM encodings.

<c><q> See Standard assembler syntax fields on page A8-7. An ARM PLD or PLDW instruction must
be unconditional.

<Rn> The base register. The SP can be used. For PC use in the PLD instruction, see PLD (literal)
on page A8-238.

+/- Is + or omitted to indicate that the immediate offset is added to the base register value
(add == TRUE), or – to indicate that the offset is to be subtracted (add == FALSE). Different
instructions are generated for #0 and #-0.

<imm> The immediate offset used to form the address. This offset can be omitted, meaning an offset
of 0. Values are:

Encoding T1, A1 any value in the range 0-4095

Encoding T2 any value in the range 0-255.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 address = if add then (R[n] + imm32) else (R[n] - imm32);
 if is_pldw then
 Hint_PreloadDataForWrite(address);
 else
 Hint_PreloadData(address);

Exceptions

None.

PLD{W}<c><q> [<Rn> {, #+/-<imm>}]
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-237

Instruction Details
A8.6.118 PLD (literal)

Preload Data signals the memory system that data memory accesses from a specified address are likely in
the near future. The memory system can respond by taking actions that are expected to speed up the memory
accesses when they do occur, such as pre-loading the cache line containing the specified address into the
data cache. For more information, see Behavior of Preload Data (PLD, PLDW) and Preload Instruction
(PLI) with caches on page B2-7.

imm32 = ZeroExtend(imm12, 32); add = (U == ‘1’);

imm32 = ZeroExtend(imm12, 32); add = (U == ‘1’);

Encoding T1 ARMv6T2, ARMv7
PLD<c> <label>

PLD<c> [PC,#-0] Special case

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 U 0 (0) 1 1 1 1 1 1 1 1 1 imm12

Encoding A1 ARMv5TE*, ARMv6*, ARMv7
PLD <label>

PLD [PC,#-0] Special case

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 1 U (1) 0 1 1 1 1 1 (1) (1) (1) (1) imm12
A8-238 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM PLD instruction must be
unconditional.

<label> The label of the literal data item that is likely to be accessed in the near future. The
assembler calculates the required value of the offset from the Align(PC,4) value of this
instruction to the label. The offset must be in the range –4095 to 4095.

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE.

If the offset is negative, imm32 is equal to minus the offset and add == FALSE.

+/- Is + or omitted to indicate that the immediate offset is added to the Align(PC,4) value
(add == TRUE), or – to indicate that the offset is to be subtracted (add == FALSE). Different
instructions are generated for #0 and #-0.

<imm> The immediate offset used to form the address. Values are in the range 0-4095.

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be
specified separately, including permitting a subtraction of 0 that cannot be specified using the normal
syntax. For more information, see Use of labels in UAL instruction syntax on page A4-5.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 address = if add then (Align(PC,4) + imm32) else (Align(PC,4) - imm32);
 Hint_PreloadData(address);

Exceptions

None.

PLD<c><q> <label> Normal form
PLD<c><q> [PC, #+/-<imm>] Alternative form
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-239

Instruction Details
A8.6.119 PLD, PLDW (register)

Preload Data signals the memory system that data memory accesses from a specified address are likely in
the near future. The memory system can respond by taking actions that are expected to speed up the memory
accesses when they do occur, such as pre-loading the cache line containing the specified address into the
data cache. For more information, see Behavior of Preload Data (PLD, PLDW) and Preload Instruction
(PLI) with caches on page B2-7.

On an architecture variant that includes both the PLD and PLDW instructions, the PLD instruction signals that
the likely memory access is a read, and the PLDW instruction signals that it is a write.

if Rn == ‘1111’ then SEE PLD (literal);
n = UInt(Rn); m = UInt(Rm); add = TRUE; is_pldw = (W == ‘1’);
(shift_t, shift_n) = (SRType_LSL, UInt(imm2));
if BadReg(m) then UNPREDICTABLE;

n = UInt(Rn); m = UInt(Rm); add = (U == ‘1’); is_pldw = (R == ‘0’);
(shift_t, shift_n) = DecodeImmShift(type, imm5);
if m == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7 for PLD

ARMv7 with MP Extensions for PLDW
PLD{W}<c> [<Rn>,<Rm>{,LSL #<imm2>}]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 W 1 Rn 1 1 1 1 0 0 0 0 0 0 imm2 Rm

Encoding A1 ARMv5TE*, ARMv6*, ARMv7 for PLD

ARMv7 with MP Extensions for PLDW
PLD{W}<c> [<Rn>,+/-<Rm>{, <shift>}]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 1 1 U R 0 1 Rn (1) (1) (1) (1) imm5 type 0 Rm
A8-240 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2008_Q4
Inserted Text
 || (n == 15 && is_pldw)

ARM_2010_Q3
Cross-Out

ARM_2010_Q3
Sticky Note
As stated in the Assembler syntax description on the next page, an ARM PLD or PLDW instruction cannot be conditional.

Instruction Details
Assembler syntax

PLD[W]<c><q> [<Rn>, +/-<Rm> {, <shift>}]

where:

W If specified, selects PLDW, encoded as W = 1 in Thumb encodings and R = 0 in ARM
encodings. If omitted, selects PLD, encoded as W = 0 in Thumb encodings and R = 1 in
ARM encodings.

<c><q> See Standard assembler syntax fields on page A8-7. An ARM PLD or PLDW instruction must
be unconditional.

<Rn> Is the base register. The SP can be used.

+/- Is + or omitted if the optionally shifted value of <Rm> is to be added to the base register value
(add == TRUE), or – if it is to be subtracted (permitted in ARM code only, add == FALSE).

<Rm> Contains the offset that is optionally shifted and applied to the value of <Rn> to form the
address.

<shift> The shift to apply to the value read from <Rm>. If absent, no shift is applied. For encoding
T1, <shift> can only be omitted, encoded as imm2 = 0b00, or LSL #<imm> with <imm> = 1, 2,
or 3, with <imm> encoded in imm2. For encoding A1, see Shifts applied to a register on
page A8-10.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 offset = Shift(R[m], shift_t, shift_n, APSR.C);
 address = if add then (R[n] + offset) else (R[n] - offset);
 if is_pldw then
 Hint_PreloadDataForWrite(address);
 else
 Hint_PreloadData(address);

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-241

ARM_2008_Q4
Inserted Text
 The PC can be used in ARM PLD instructions, but not in Thumb PLD instructions or in any PLDW instructions.

Instruction Details
A8.6.120 PLI (immediate, literal)

Preload Instruction signals the memory system that instruction memory accesses from a specified address
are likely in the near future. The memory system can respond by taking actions that are expected to speed
up the memory accesses when they do occur, such as pre-loading the cache line containing the specified
address into the instruction cache. For more information, see Behavior of Preload Data (PLD, PLDW) and
Preload Instruction (PLI) with caches on page B2-7.

if Rn == ‘1111’ then SEE encoding T3;
n = UInt(Rn); imm32 = ZeroExtend(imm12, 32); add = TRUE;

if Rn == ‘1111’ then SEE encoding T3;
n = UInt(Rn); imm32 = ZeroExtend(imm8, 32); add = FALSE;

n = 15; imm32 = ZeroExtend(imm12, 32); add = (U == ‘1’);

n = UInt(Rn); imm32 = ZeroExtend(imm12, 32); add = (U == ‘1’);

Encoding T1 ARMv7
PLI<c> [<Rn>,#<imm12>]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 1 0 0 1 Rn 1 1 1 1 imm12

Encoding T2 ARMv7
PLI<c> [<Rn>,#-<imm8>]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 0 0 0 1 Rn 1 1 1 1 1 1 0 0 imm8

Encoding T3 ARMv7
PLI<c> <label>

PLI<c> [PC,#-0] Special case

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 U 0 0 1 1 1 1 1 1 1 1 1 imm12

Encoding A1 ARMv7
PLI [<Rn>,#+/-<imm12>]

PLI <label>

PLI [PC,#-0] Special case

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 U 1 0 1 Rn (1) (1) (1) (1) imm12
A8-242 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM PLI instruction must be
unconditional.

<Rn> Is the base register. The SP can be used.

+/- Is + or omitted to indicate that the immediate offset is added to the base register value
(add == TRUE), or – to indicate that the offset is to be subtracted (add == FALSE). Different
instructions are generated for #0 and #-0.

<imm> The immediate offset used to form the address. For the immediate form of the syntax, <imm>
can be omitted, in which case the #0 form of the instruction is assembled. Values are:

Encoding T1, T3, A1 any value in the range 0 to 4095

Encoding T2 any value in the range 0 to 255.

<label> The label of the instruction that is likely to be accessed in the near future. The assembler
calculates the required value of the offset from the Align(PC,4) value of this instruction to
the label. The offset must be in the range –4095 to 4095.

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE.

If the offset is negative, imm32 is equal to minus the offset and add == FALSE.

For the literal forms of the instruction, encoding T3 is used, or Rn is encoded as '1111' in encoding A1, to
indicate that the PC is the base register.

The alternative literal syntax permits the addition or subtraction of the offset and the immediate offset to be
specified separately, including permitting a subtraction of 0 that cannot be specified using the normal
syntax. For more information, see Use of labels in UAL instruction syntax on page A4-5.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 base = if n == 15 then Align(PC,4) else R[n];
 address = if add then (base + imm32) else (base - imm32);
 Hint_PreloadInstr(address);

Exceptions

None.

PLI<c><q> [<Rn> {, #+/-<imm>}] Immediate form
PLI<c><q> <label> Normal literal form
PLI<c><q> [PC, #+/-<imm>] Alternative literal form
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-243

Instruction Details
A8.6.121 PLI (register)

Preload Instruction signals the memory system that instruction memory accesses from a specified address
are likely in the near future. The memory system can respond by taking actions that are expected to speed
up the memory accesses when they do occur, such as pre-loading the cache line containing the specified
address into the instruction cache. For more information, see Behavior of Preload Data (PLD, PLDW) and
Preload Instruction (PLI) with caches on page B2-7.

if Rn == ‘1111’ then SEE PLI (immediate, literal);
n = UInt(Rn); m = UInt(Rm); add = TRUE;
(shift_t, shift_n) = (SRType_LSL, UInt(imm2));
if BadReg(m) then UNPREDICTABLE;

n = UInt(Rn); m = UInt(Rm); add = (U == ‘1’);
(shift_t, shift_n) = DecodeImmShift(type, imm5);
if m == 15 then UNPREDICTABLE;

Encoding T1 ARMv7
PLI<c> [<Rn>,<Rm>{,LSL #<imm2>}]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 0 0 0 1 Rn 1 1 1 1 0 0 0 0 0 0 imm2 Rm

Encoding A1 ARMv7
PLI [<Rn>,+/-<Rm>{, <shift>}]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 1 0 U 1 0 1 Rn (1) (1) (1) (1) imm5 type 0 Rm
A8-244 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

PLI<c><q> [<Rn>, +/-<Rm> {, <shift>}]

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM PLI instruction must be
unconditional.

<Rn> Is the base register. The SP can be used.

+/- Is + or omitted if the optionally shifted value of <Rm> is to be added to the base register value
(add == TRUE), or – if it is to be subtracted (permitted in ARM code only, add == FALSE).

<Rm> Contains the offset that is optionally shifted and applied to the value of <Rn> to form the
address.

<shift> The shift to apply to the value read from <Rm>. If absent, no shift is applied. For encoding
T1, <shift> can only be omitted, encoded as imm2 = 0b00, or LSL #<imm> with <imm> = 1, 2,
or 3, with <imm> encoded in imm2. For encoding A1, see Shifts applied to a register on
page A8-10.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 offset = Shift(R[m], shift_t, shift_n, APSR.C);
 address = if add then (R[n] + offset) else (R[n] - offset);
 Hint_PreloadInstr(address);

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-245

Instruction Details
A8.6.122 POP

Pop Multiple Registers loads multiple registers from the stack, loading from consecutive memory locations
starting at the address in SP, and updates SP to point just above the loaded data.

registers = P:’0000000’:register_list; if BitCount(registers) < 1 then UNPREDICTABLE;

registers = P:M:’0’:register_list;
if BitCount(registers) < 2 || (P == ‘1’ && M == ‘1’) then UNPREDICTABLE;
if registers<15> == ‘1’ && InITBlock() && !LastInITBlock() then UNPREDICTABLE;

t = UInt(Rt); registers = Zeros(16); registers<t> = ‘1’;
if t == 13 || (t == 15 && InITBlock() && !LastInITBlock()) then UNPREDICTABLE;

if BitCount(register_list) < 2 then SEE LDM / LDMIA / LDMFD;
registers = register_list;
if registers<13> == ‘1’ && ArchVersion() >= 7 then UNPREDICTABLE;

t = UInt(Rt); registers = Zeros(16); registers<t> = ‘1’;
if t == 13 then UNPREDICTABLE;

Encoding T1 ARMv4T, ARMv5T*, ARMv6*, ARMv7
POP<c> <registers>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 0 P register_list

Encoding T2 ARMv6T2, ARMv7
POP<c>.W <registers> <registers> contains more than one register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 0 1 1 1 1 0 1 P M (0) register_list

Encoding T3 ARMv6T2, ARMv7
POP<c>.W <registers> <registers> contains one register, <Rt>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 1 0 1 1 1 0 1 Rt 1 0 1 1 0 0 0 0 0 1 0 0

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
POP<c> <registers> <registers> contains more than one register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 0 0 0 1 0 1 1 1 1 0 1 register_list

Encoding A2 ARMv4*, ARMv5T*, ARMv6*, ARMv7
POP<c> <registers> <registers> contains one register, <Rt>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 0 0 1 0 0 1 1 1 0 1 Rt 0 0 0 0 0 0 0 0 0 1 0 0
A8-246 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2010_Q2
Inserted Text
 UnalignedAllowed = FALSE;

ARM_2010_Q2
Inserted Text
 UnalignedAllowed = FALSE;

ARM_2010_Q2
Inserted Text
 UnalignedAllowed = TRUE;

ARM_2010_Q2
Inserted Text
 UnalignedAllowed = TRUE;

ARM_2010_Q2
Cross-Out

ARM_2010_Q2
Replacement Text
registers = P:'0000000':register_list; UnalignedAllowed = FALSE;
if BitCount(registers) < 1 then UNPREDICTABLE;
if registers<15> == ‘1’ && InITBlock() && !LastInITBlock() then UNPREDICTABLE;

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<registers> Is a list of one or more registers to be loaded, separated by commas and surrounded by
{ and }. The lowest-numbered register is loaded from the lowest memory address, through
to the highest-numbered register from the highest memory address.

If the list contains more than one register, the instruction is assembled to encoding T1, T2,
or A1. If the list contains exactly one register, the instruction is assembled to encoding T1,
T3, or A2.

The SP can only be in the list in ARM code before ARMv7. ARM instructions that include
the SP in the list are deprecated, and the value of the SP after such an instruction is
UNKNOWN.

The PC can be in the list. If it is, the instruction branches to the address loaded to the PC. In
ARMv5T and above, this is an interworking branch, see Pseudocode details of operations
on ARM core registers on page A2-12. In Thumb code, if the PC is in the list:

• the LR must not be in the list

• the instruction must be either outside any IT block, or the last instruction in an IT
block.

ARM instructions that include both the LR and the PC in the list are deprecated.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); NullCheckIfThumbEE(13);
 address = SP;
 for i = 0 to 14
 if registers<i> == ‘1’ then
 R[i} = MemA[address,4]; address = address + 4;
 if registers<15> == ‘1’ then
 LoadWritePC(MemA[address,4]);
 if registers<13> == ‘0’ then SP = SP + 4*BitCount(registers);
 if registers<13> == ‘1’ then SP = bits(32) UNKNOWN;

Exceptions

Data Abort.

POP<c><q> <registers> Standard syntax
LDM<c><q> SP!, <registers> Equivalent LDM syntax
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-247

ARM_2010_Q2
Cross-Out

ARM_2010_Q2
Replacement Text
if UnalignedAllowed then MemU[address,4] else MemA[address,4]

ARM_2010_Q2
Cross-Out

ARM_2010_Q2
Replacement Text
 if UnalignedAllowed then
 LoadWritePC(MemU[address,4]);
 else
 LoadWritePC(MemA[address,4]);

Instruction Details
A8.6.123 PUSH

Push Multiple Registers stores multiple registers to the stack, storing to consecutive memory locations
ending just below the address in SP, and updates SP to point to the start of the stored data.

registers = ‘0’:M:’000000’:register_list;
if BitCount(registers) < 1 then UNPREDICTABLE;

registers = ‘0’:M:’0’:register_list;
if BitCount(registers) < 2 then UNPREDICTABLE;

t = UInt(Rt); registers = Zeros(16); registers<t> = ‘1’;
if BadReg(t) then UNPREDICTABLE;

if BitCount(register_list) < 2 then SEE STMDB / STMFD;
registers = register_list;

t = UInt(Rt); registers = Zeros(16); registers<t> = ‘1’;
if t == 13 then UNPREDICTABLE;

Encoding T1 ARMv4T, ARMv5T*, ARMv6*, ARMv7
PUSH<c> <registers>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 1 0 M register_list

Encoding T2 ARMv6T2, ARMv7
PUSH<c>.W <registers> <registers> contains more than one register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 0 1 0 1 1 0 1 (0) M (0) register_list

Encoding T3 ARMv6T2, ARMv7
PUSH<c>.W <registers> <registers> contains one register, <Rt>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 1 0 0 1 1 0 1 Rt 1 1 0 1 0 0 0 0 0 1 0 0

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
PUSH<c> <registers> <registers> contains more than one register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 0 0 1 0 0 1 0 1 1 0 1 register_list

Encoding A2 ARMv4*, ARMv5T*, ARMv6*, ARMv7
PUSH<c> <registers> <registers> contains one register, <Rt>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 0 1 0 0 1 0 1 1 0 1 Rt 0 0 0 0 0 0 0 0 0 1 0 0
A8-248 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
1 0

ARM_2010_Q2
Inserted Text
 UnalignedAllowed = FALSE;

ARM_2010_Q2
Inserted Text
 UnalignedAllowed = FALSE;

ARM_2010_Q2
Inserted Text
 UnalignedAllowed = FALSE;

ARM_2010_Q2
Inserted Text
 UnalignedAllowed = TRUE;

ARM_2010_Q2
Inserted Text
 UnalignedAllowed = TRUE;

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<registers> Is a list of one or more registers to be stored, separated by commas and surrounded by
{ and }. The lowest-numbered register is stored to the lowest memory address, through to
the highest-numbered register to the highest memory address.

If the list contains more than one register, the instruction is assembled to encoding T1, T2,
or A1. If the list contains exactly one register, the instruction is assembled to encoding T1,
T3, or A2.

The SP and PC can be in the list in ARM code, but not in Thumb code. However, ARM
instructions that include the SP or the PC in the list are deprecated, and if the SP is in the
list, the value the instruction stores for the SP is UNKNOWN.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); NullCheckIfThumbEE(13);
 address = SP - 4*BitCount(registers);
 for i = 0 to 14
 if registers<i> == ‘1’ then
 if i == 13 && i != LowestSetBit(registers) then // Only possible for encoding A1
 MemA[address,4] = bits(32) UNKNOWN;
 else
 MemA[address,4] = R[i];
 address = address + 4;
 if registers<15> == ‘1’ then // Only possible for encoding A1 or A2
 MemA[address,4] = PCStoreValue();
 SP = SP - 4*BitCount(registers);

Exceptions

Data Abort.

PUSH<c><q> <registers> Standard syntax
STMDB<c><q> SP!, <registers> Equivalent STM syntax
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-249

ARM_2010_Q2
Cross-Out

ARM_2010_Q2
Replacement Text
 if UnalignedAllowed then
 MemU[address,4] = R[i];
 else
 MemA[address,4] = R[i];

ARM_2010_Q2
Cross-Out

ARM_2010_Q2
Replacement Text
 if UnalignedAllowed then
 MemU[address,4] = PCStoreValue();
 else
 MemA[address,4] = PCStoreValue();

ARM_2011_Q2
Inserted Text
and is not the lowest-numbered register in the list,

ARM_2011_Q2
Sticky Note
The pseudocode correctly describes the operation of the instruction. For the ARM instruction, if SP is the lowest-numbered register in the list then the instruction stores the SP value.

Instruction Details
A8.6.124 QADD

Saturating Add adds two register values, saturates the result to the 32-bit signed integer range
–231 ≤ x ≤ 231 – 1, and writes the result to the destination register. If saturation occurs, it sets the Q flag in
the APSR.

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
QADD<c> <Rd>,<Rm>,<Rn>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 0 Rn 1 1 1 1 Rd 1 0 0 0 Rm

Encoding A1 ARMv5TE*, ARMv6*, ARMv7
QADD<c> <Rd>,<Rm>,<Rn>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 1 0 0 0 0 Rn Rd (0) (0) (0) (0) 0 1 0 1 Rm
A8-250 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

QADD<c><q> {<Rd>,} <Rm>, <Rn>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rm> The first operand register.

<Rn> The second operand register.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 (R[d], sat) = SignedSatQ(SInt(R[m]) + SInt(R[n]), 32);
 if sat then
 APSR.Q = ‘1’;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-251

Instruction Details
A8.6.125 QADD16

Saturating Add 16 performs two 16-bit integer additions, saturates the results to the 16-bit signed integer
range –215 ≤ x ≤ 215 – 1, and writes the results to the destination register.

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
QADD16<c> <Rd>,<Rn>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 1 Rn 1 1 1 1 Rd 0 0 0 1 Rm

Encoding A1 ARMv6*, ARMv7
QADD16<c> <Rd>,<Rn>,<Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 0 0 0 1 0 Rn Rd (1) (1) (1) (1) 0 0 0 1 Rm
A8-252 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

QADD16<c><q> {<Rd>,} <Rn>, <Rm>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The second operand register.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 sum1 = SInt(R[n]<15:0>) + SInt(R[m]<15:0>);
 sum2 = SInt(R[n]<31:16>) + SInt(R[m]<31:16>);
 R[d]<15:0> = SignedSat(sum1, 16);
 R[d]<31:16> = SignedSat(sum2, 16);

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-253

Instruction Details
A8.6.126 QADD8

Saturating Add 8 performs four 8-bit integer additions, saturates the results to the 8-bit signed integer range
–27 ≤ x ≤ 27 – 1, and writes the results to the destination register.

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
QADD8<c> <Rd>,<Rn>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 0 Rn 1 1 1 1 Rd 0 0 0 1 Rm

Encoding A1 ARMv6*, ARMv7
QADD8<c> <Rd>,<Rn>,<Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 0 0 0 1 0 Rn Rd (1) (1) (1) (1) 1 0 0 1 Rm
A8-254 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

QADD8<c><q> {<Rd>,} <Rn>, <Rm>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The second operand register.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 sum1 = SInt(R[n]<7:0>) + SInt(R[m]<7:0>);
 sum2 = SInt(R[n]<15:8>) + SInt(R[m]<15:8>);
 sum3 = SInt(R[n]<23:16>) + SInt(R[m]<23:16>);
 sum4 = SInt(R[n]<31:24>) + SInt(R[m]<31:24>);
 R[d]<7:0> = SignedSat(sum1, 8);
 R[d]<15:8> = SignedSat(sum2, 8);
 R[d]<23:16> = SignedSat(sum3, 8);
 R[d]<31:24> = SignedSat(sum4, 8);

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-255

Instruction Details
A8.6.127 QASX

Saturating Add and Subtract with Exchange exchanges the two halfwords of the second operand, performs
one 16-bit integer addition and one 16-bit subtraction, saturates the results to the 16-bit signed integer range
–215 ≤ x ≤ 215 – 1, and writes the results to the destination register.

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
QASX<c> <Rd>,<Rn>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 1 0 Rn 1 1 1 1 Rd 0 0 0 1 Rm

Encoding A1 ARMv6*, ARMv7
QASX<c> <Rd>,<Rn>,<Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 0 0 0 1 0 Rn Rd (1) (1) (1) (1) 0 0 1 1 Rm
A8-256 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

QASX<c><q> {<Rd>,} <Rn>, <Rm>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The second operand register.

The pre-UAL syntax QADDSUBX<c> is equivalent to QASX<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 diff = SInt(R[n]<15:0>) - SInt(R[m]<31:16>);
 sum = SInt(R[n]<31:16>) + SInt(R[m]<15:0>);
 R[d]<15:0> = SignedSat(diff, 16);
 R[d]<31:16> = SignedSat(sum, 16);

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-257

Instruction Details
A8.6.128 QDADD

Saturating Double and Add adds a doubled register value to another register value, and writes the result to
the destination register. Both the doubling and the addition have their results saturated to the 32-bit signed
integer range –231 ≤ x ≤ 231 – 1. If saturation occurs in either operation, it sets the Q flag in the APSR.

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
QDADD<c> <Rd>,<Rm>,<Rn>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 0 Rn 1 1 1 1 Rd 1 0 0 1 Rm

Encoding A1 ARMv5TE*, ARMv6*, ARMv7
QDADD<c> <Rd>,<Rm>,<Rn>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 1 0 1 0 0 Rn Rd (0) (0) (0) (0) 0 1 0 1 Rm
A8-258 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

QDADD<c><q> {<Rd>,} <Rm>, <Rn>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rm> The first operand register.

<Rn> The second operand register.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 (doubled, sat1) = SignedSatQ(2 * SInt(R[n]), 32);
 (R[d], sat2) = SignedSatQ(SInt(R[m]) + SInt(doubled), 32);
 if sat1 || sat2 then
 APSR.Q = ‘1’;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-259

Instruction Details
A8.6.129 QDSUB

Saturating Double and Subtract subtracts a doubled register value from another register value, and writes
the result to the destination register. Both the doubling and the subtraction have their results saturated to the
32-bit signed integer range –231 ≤ x ≤ 231 – 1. If saturation occurs in either operation, it sets the Q flag in
the APSR.

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
QDSUB<c> <Rd>,<Rm>,<Rn>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 0 Rn 1 1 1 1 Rd 1 0 1 1 Rm

Encoding A1 ARMv5TE*, ARMv6*, ARMv7
QDSUB<c> <Rd>,<Rm>,<Rn>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 1 0 1 1 0 Rn Rd (0) (0) (0) (0) 0 1 0 1 Rm
A8-260 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

QDSUB<c><q> {<Rd>,} <Rm>, <Rn>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rm> The first operand register.

<Rn> The second operand register.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 (doubled, sat1) = SignedSatQ(2 * SInt(R[n]), 32);
 (R[d], sat2) = SignedSatQ(SInt(R[m]) - SInt(doubled), 32);
 if sat1 || sat2 then
 APSR.Q = ‘1’;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-261

Instruction Details
A8.6.130 QSAX

Saturating Subtract and Add with Exchange exchanges the two halfwords of the second operand, performs
one 16-bit integer subtraction and one 16-bit addition, saturates the results to the 16-bit signed integer range
–215 ≤ x ≤ 215 – 1, and writes the results to the destination register.

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
QSAX<c> <Rd>,<Rn>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 1 1 0 Rn 1 1 1 1 Rd 0 0 0 1 Rm

Encoding A1 ARMv6*, ARMv7
QSAX<c> <Rd>,<Rn>,<Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 0 0 0 1 0 Rn Rd (1) (1) (1) (1) 0 1 0 1 Rm
A8-262 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

QSAX<c><q> {<Rd>,} <Rn>, <Rm>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The second operand register.

The pre-UAL syntax QSUBADDX<c> is equivalent to QSAX<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 diff = SInt(R[n]<15:0>) - SInt(R[m]<31:16>);
 sum = SInt(R[n]<31:16>) + SInt(R[m]<15:0>);
 R[d]<15:0> = SignedSat(diff, 16);
 R[d]<31:16> = SignedSat(sum, 16);

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-263

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
 sum = SInt(R[n]<15:0>) + SInt(R[m]<31:16>);
 diff = SInt(R[n]<31:16>) - SInt(R[m]<15:0>);
 R[d]<15:0> = SignedSat(sum, 16);
 R[d]<31:16> = SignedSat(diff, 16);

Instruction Details
A8.6.131 QSUB

Saturating Subtract subtracts one register value from another register value, saturates the result to the 32-bit
signed integer range –231 ≤ x ≤ 231 – 1, and writes the result to the destination register. If saturation occurs,
it sets the Q flag in the APSR.

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
QSUB<c> <Rd>,<Rm>,<Rn>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 0 Rn 1 1 1 1 Rd 1 0 1 0 Rm

Encoding A1 ARMv5TE*, ARMv6*, ARMv7
QSUB<c> <Rd>,<Rm>,<Rn>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 1 0 0 1 0 Rn Rd (0) (0) (0) (0) 0 1 0 1 Rm
A8-264 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

QSUB<c><q> {<Rd>,} <Rm>, <Rn>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rm> The first operand register.

<Rn> The second operand register.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 (R[d], sat) = SignedSatQ(SInt(R[m]) - SInt(R[n]), 32);
 if sat then
 APSR.Q = ‘1’;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-265

Instruction Details
A8.6.132 QSUB16

Saturating Subtract 16 performs two 16-bit integer subtractions, saturates the results to the 16-bit signed
integer range –215 ≤ x ≤ 215 – 1, and writes the results to the destination register.

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
QSUB16<c> <Rd>,<Rn>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 1 0 1 Rn 1 1 1 1 Rd 0 0 0 1 Rm

Encoding A1 ARMv6*, ARMv7
QSUB16<c> <Rd>,<Rn>,<Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 0 0 0 1 0 Rn Rd (1) (1) (1) (1) 0 1 1 1 Rm
A8-266 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

QSUB16<c><q> {<Rd>,} <Rn>, <Rm>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The second operand register.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 diff1 = SInt(R[n]<15:0>) - SInt(R[m]<15:0>);
 diff2 = SInt(R[n]<31:16>) - SInt(R[m]<31:16>);
 R[d]<15:0> = SignedSat(diff1, 16);
 R[d]<31:16> = SignedSat(diff2, 16);

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-267

Instruction Details
A8.6.133 QSUB8

Saturating Subtract 8 performs four 8-bit integer subtractions, saturates the results to the 8-bit signed integer
range –27 ≤ x ≤ 27 – 1, and writes the results to the destination register.

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
QSUB8<c> <Rd>,<Rn>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 1 0 0 Rn 1 1 1 1 Rd 0 0 0 1 Rm

Encoding A1 ARMv6*, ARMv7
QSUB8<c> <Rd>,<Rn>,<Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 0 0 0 1 0 Rn Rd (1) (1) (1) (1) 1 1 1 1 Rm
A8-268 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

QSUB8<c><q> {<Rd>,} <Rn>, <Rm>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The second operand register.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 diff1 = SInt(R[n]<7:0>) - SInt(R[m]<7:0>);
 diff2 = SInt(R[n]<15:8>) - SInt(R[m]<15:8>);
 diff3 = SInt(R[n]<23:16>) - SInt(R[m]<23:16>);
 diff4 = SInt(R[n]<31:24>) - SInt(R[m]<31:24>);
 R[d]<7:0> = SignedSat(diff1, 8);
 R[d]<15:8> = SignedSat(diff2, 8);
 R[d]<23:16> = SignedSat(diff3, 8);
 R[d]<31:24> = SignedSat(diff4, 8);

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-269

Instruction Details
A8.6.134 RBIT

Reverse Bits reverses the bit order in a 32-bit register.

if !Consistent(Rm) then UNPREDICTABLE;
d = UInt(Rd); m = UInt(Rm);
if BadReg(d) || BadReg(m) then UNPREDICTABLE;

d = UInt(Rd); m = UInt(Rm);
if d == 15 || m == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
RBIT<c> <Rd>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 1 Rm 1 1 1 1 Rd 1 0 1 0 Rm

Encoding A1 ARMv6T2, ARMv7
RBIT<c> <Rd>,<Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 0 1 1 1 1 (1) (1) (1) (1) Rd (1) (1) (1) (1) 0 0 1 1 Rm
A8-270 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

RBIT<c><q> <Rd>, <Rm>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rm> The register that contains the operand. In encoding T1, its number must be encoded twice.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 bits(32) result;
 for i = 0 to 31 do
 result<31-i> = R[m]<i>;
 R[d] = result;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-271

Instruction Details
A8.6.135 REV

Byte-Reverse Word reverses the byte order in a 32-bit register.

d = UInt(Rd); m = UInt(Rm);

if !Consistent(Rm) then UNPREDICTABLE;
d = UInt(Rd); m = UInt(Rm);
if BadReg(d) || BadReg(m) then UNPREDICTABLE;

d = UInt(Rd); m = UInt(Rm);
if d == 15 || m == 15 then UNPREDICTABLE;

Encoding T1 ARMv6*, ARMv7
REV<c> <Rd>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 0 1 0 0 0 Rm Rd

Encoding T2 ARMv6T2, ARMv7
REV<c>.W <Rd>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 1 Rm 1 1 1 1 Rd 1 0 0 0 Rm

Encoding A1 ARMv6*, ARMv7
REV<c> <Rd>,<Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 0 1 0 1 1 (1) (1) (1) (1) Rd (1) (1) (1) (1) 0 0 1 1 Rm
A8-272 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

REV<c><q> <Rd>, <Rm>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rm> The register that contains the operand. Its number must be encoded twice in encoding T2.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 bits(32) result;
 result<31:24> = R[m]<7:0>;
 result<23:16> = R[m]<15:8>;
 result<15:8> = R[m]<23:16>;
 result<7:0> = R[m]<31:24>;
 R[d] = result;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-273

Instruction Details
A8.6.136 REV16

Byte-Reverse Packed Halfword reverses the byte order in each16-bit halfword of a 32-bit register.

d = UInt(Rd); m = UInt(Rm);

if !Consistent(Rm) then UNPREDICTABLE;
d = UInt(Rd); m = UInt(Rm);
if BadReg(d) || BadReg(m) then UNPREDICTABLE;

d = UInt(Rd); m = UInt(Rm);
if d == 15 || m == 15 then UNPREDICTABLE;

Encoding T1 ARMv6*, ARMv7
REV16<c> <Rd>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 0 1 0 0 1 Rm Rd

Encoding T2 ARMv6T2, ARMv7
REV16<c>.W <Rd>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 1 Rm 1 1 1 1 Rd 1 0 0 1 Rm

Encoding A1 ARMv6*, ARMv7
REV16<c> <Rd>,<Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 0 1 0 1 1 (1) (1) (1) (1) Rd (1) (1) (1) (1) 1 0 1 1 Rm
A8-274 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

REV16<c><q> <Rd>, <Rm>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rm> The register that contains the operand. Its number must be encoded twice in encoding T2.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 bits(32) result;
 result<31:24> = R[m]<23:16>;
 result<23:16> = R[m]<31:24>;
 result<15:8> = R[m]<7:0>;
 result<7:0> = R[m]<15:8>;
 R[d] = result;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-275

Instruction Details
A8.6.137 REVSH

Byte-Reverse Signed Halfword reverses the byte order in the lower 16-bit halfword of a 32-bit register, and
sign-extends the result to 32 bits.

d = UInt(Rd); m = UInt(Rm);

if !Consistent(Rm) then UNPREDICTABLE;
d = UInt(Rd); m = UInt(Rm);
if BadReg(d) || BadReg(m) then UNPREDICTABLE;

d = UInt(Rd); m = UInt(Rm);
if d == 15 || m == 15 then UNPREDICTABLE;

Encoding T1 ARMv6*, ARMv7
REVSH<c> <Rd>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 0 1 0 1 1 Rm Rd

Encoding T2 ARMv6T2, ARMv7
REVSH<c>.W <Rd>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 1 Rm 1 1 1 1 Rd 1 0 1 1 Rm

Encoding A1 ARMv6*, ARMv7
REVSH<c> <Rd>,<Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 0 1 1 1 1 (1) (1) (1) (1) Rd (1) (1) (1) (1) 1 0 1 1 Rm
A8-276 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

REVSH<c><q> <Rd>, <Rm>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rm> The register that contains the operand. Its number must be encoded twice in encoding T2.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 bits(32) result;
 result<31:8> = SignExtend(R[m]<7:0>, 24);
 result<7:0> = R[m]<15:8>;
 R[d] = result;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-277

Instruction Details
A8.6.138 RFE

Return From Exception is a system instruction. For details see RFE on page B6-16.

A8.6.139 ROR (immediate)

Rotate Right (immediate) provides the value of the contents of a register rotated by a constant value. The
bits that are rotated off the right end are inserted into the vacated bit positions on the left. It can optionally
update the condition flags based on the result.

if (imm3:imm2) == ‘00000’ then SEE RRX;
d = UInt(Rd); m = UInt(Rm); setflags = (S == ‘1’);
(-, shift_n) = DecodeImmShift(‘11’, imm3:imm2);
if BadReg(d) || BadReg(m) then UNPREDICTABLE;

if imm5 == ‘00000’ then SEE RRX;
d = UInt(Rd); m = UInt(Rm); setflags = (S == ‘1’);
(-, shift_n) = DecodeImmShift(‘11’, imm5);

Encoding T1 ARMv6T2, ARMv7
ROR{S}<c> <Rd>,<Rm>,#<imm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 S 1 1 1 1 (0) imm3 Rd imm2 1 1 Rm

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
ROR{S}<c> <Rd>,<Rm>,#<imm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 1 1 0 1 S (0) (0) (0) (0) Rd imm5 1 1 0 Rm
A8-278 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2011_Q2
Inserted Text
if Rd == '1111' && S == '1' then SEE SUBS PC, LR and related instructions;

Instruction Details
Assembler syntax

ROR{S}<c><q> {<Rd>,} <Rm>, #<imm>

where:

S If S is present, the instruction updates the flags. Otherwise, the flags are not updated.

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rm> The first operand register.

<imm> The shift amount, in the range 1 to 31. See Shifts applied to a register on page A8-10.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 (result, carry) = Shift_C(R[m], SRType_ROR, shift_n, APSR.C);
 if d == 15 then // Can only occur for ARM encoding
 ALUWritePC(result); // setflags is always FALSE here
 else
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 // APSR.V unchanged

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-279

ARM_2009_Q2
Inserted Text
 PC can be used in ARM instructions.

ARM_2009_Q2
Inserted Text
 In ARM instructions, if S is not specified and <Rd> is the PC, the instruction is a branch to the address calculated by the operation. This is a simple branch before ARMv7, and an interworking branch from ARMv7.

Instruction Details
A8.6.140 ROR (register)

Rotate Right (register) provides the value of the contents of a register rotated by a variable number of bits.
The bits that are rotated off the right end are inserted into the vacated bit positions on the left. The variable
number of bits is read from the bottom byte of a register. It can optionally update the condition flags based
on the result.

d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == ‘1’);
if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == ‘1’);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

Encoding T1 ARMv4T, ARMv5T*, ARMv6*, ARMv7
RORS <Rdn>,<Rm> Outside IT block.
ROR<c> <Rdn>,<Rm> Inside IT block.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 0 1 1 1 Rm Rdn

Encoding T2 ARMv6T2, ARMv7
ROR{S}<c>.W <Rd>,<Rn>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0 1 1 S Rn 1 1 1 1 Rd 0 0 0 0 Rm

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
ROR{S}<c> <Rd>,<Rn>,<Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 1 1 0 1 S (0) (0) (0) (0) Rd Rm 0 1 1 1 Rn
A8-280 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

ROR{S}<c><q> {<Rd>,} <Rn>, <Rm>

where:

S If S is present, the instruction updates the flags. Otherwise, the flags are not updated.

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The register whose bottom byte contains the amount to rotate by.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 shift_n = UInt(R[m]<7:0>);
 (result, carry) = Shift_C(R[n], SRType_ROR, shift_n, APSR.C);
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 // APSR.V unchanged

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-281

Instruction Details
A8.6.141 RRX

Rotate Right with Extend provides the value of the contentsof a register shifted right by one place, with the
carry flag shifted into bit [31].

RRX can optionally update the condition flags based on the result. In that case, bit [0] is shifted into the carry
flag.

d = UInt(Rd); m = UInt(Rm); setflags = (S == ‘1’);
if BadReg(d) || BadReg(m) then UNPREDICTABLE;

d = UInt(Rd); m = UInt(Rm); setflags = (S == ‘1’);

Encoding T1 ARMv6T2, ARMv7
RRX{S}<c> <Rd>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 S 1 1 1 1 (0) 0 0 0 Rd 0 0 1 1 Rm

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
RRX{S}<c> <Rd>,<Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 1 1 0 1 S (0) (0) (0) (0) Rd 0 0 0 0 0 1 1 0 Rm
A8-282 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2011_Q2
Inserted Text
if Rd == '1111' && S == '1' then SEE SUBS PC, LR and related instructions;

Instruction Details
Assembler syntax

RRX{S}<c><q> {<Rd>,} <Rm>

where:

S If S is present, the instruction updates the flags. Otherwise, the flags are not updated.

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rm> The register that contains the operand.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 (result, carry) = Shift_C(R[m], SRType_RRX, 1, APSR.C);
 if d == 15 then // Can only occur for ARM encoding
 ALUWritePC(result); // setflags is always FALSE here
 else
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 // APSR.V unchanged

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-283

ARM_2009_Q2
Inserted Text
 PC can be used in ARM instructions.

ARM_2009_Q2
Inserted Text
 In ARM instructions, if S is not specified and <Rd> is the PC, the instruction is a branch to the address calculated by the operation. This is a simple branch before ARMv7, and an interworking branch from ARMv7.

Instruction Details
A8.6.142 RSB (immediate)

Reverse Subtract (immediate) subtracts a register value from an immediate value, and writes the result to
the destination register. It can optionally update the condition flags based on the result.

d = UInt(Rd); n = UInt(Rn); setflags = !InITBlock(); imm32 = Zeros(32); // immediate = #0

d = UInt(Rd); n = UInt(Rn); setflags = (S == ‘1’); imm32 = ThumbExpandImm(i:imm3:imm8);
if BadReg(d) || BadReg(n) then UNPREDICTABLE;

if Rd == ‘1111’ && S == ‘1’ then SEE SUBS PC, LR and related instructions;
d = UInt(Rd); n = UInt(Rn); setflags = (S == ‘1’); imm32 = ARMExpandImm(imm12);

Encoding T1 ARMv4T, ARMv5T*, ARMv6*, ARMv7
RSBS <Rd>,<Rn>,#0 Outside IT block.
RSB<c> <Rd>,<Rn>,#0 Inside IT block.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 1 0 0 1 Rn Rd

Encoding T2 ARMv6T2, ARMv7
RSB{S}<c>.W <Rd>,<Rn>,#<const>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 1 1 1 0 S Rn 0 imm3 Rd imm8

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
RSB{S}<c> <Rd>,<Rn>,#<const>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 1 0 0 1 1 S Rn Rd imm12
A8-284 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

RSB{S}<c><q> {<Rd>,} <Rn>, #<const>

where:

S If S is present, the instruction updates the flags. Otherwise, the flags are not updated.

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<const> The immediate value to be added to the value obtained from <Rn>. The only permitted value
for encoding T1 is 0. See Modified immediate constants in Thumb instructions on
page A6-17 or Modified immediate constants in ARM instructions on page A5-9 for the
range of values for encoding T2 or A1.

The pre-UAL syntax RSB<c>S is equivalent to RSBS<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 (result, carry, overflow) = AddWithCarry(NOT(R[n]), imm32, ‘1’);
 if d == 15 then // Can only occur for ARM encoding
 ALUWritePC(result); // setflags is always FALSE here
 else
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 APSR.V = overflow;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-285

ARM_2009_Q2
Inserted Text
 PC can be used in ARM instructions.

ARM_2009_Q2
Inserted Text
 If S is specified and <Rd> is the PC, see SUBS PC, LR and related instructions on page B6-25 [PDF page 1583]. In ARM instructions, if S is not specified and <Rd> is the PC, the instruction is a branch to the address calculated by the operation. This is a simple branch before ARMv7, and an interworking branch from ARMv7.

Instruction Details
A8.6.143 RSB (register)

Reverse Subtract (register) subtracts a register value from an optionally-shifted register value, and writes the
result to the destination register. It can optionally update the condition flags based on the result.

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == ‘1’);
(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);
if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

if Rd == ‘1111’ && S == ‘1’ then SEE SUBS PC, LR and related instructions;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == ‘1’);
(shift_t, shift_n) = DecodeImmShift(type, imm5);

Encoding T1 ARMv6T2, ARMv7
RSB{S}<c> <Rd>,<Rn>,<Rm>{,<shift>}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 1 1 1 0 S Rn (0) imm3 Rd imm2 type Rm

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
RSB{S}<c> <Rd>,<Rn>,<Rm>{,<shift>}

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 0 0 1 1 S Rn Rd imm5 type 0 Rm
A8-286 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

RSB{S}<c><q> {<Rd>,} <Rn>, <Rm> {,<shift>}

where:

S If S is present, the instruction updates the flags. Otherwise, the flags are not updated.

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The register that is optionally shifted and used as the second operand.

<shift> The shift to apply to the value read from <Rm>. If omitted, no shift is applied. Shifts applied
to a register on page A8-10 describes the shifts and how they are encoded.

The pre-UAL syntax RSB<c>S is equivalent to RSBS<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 shifted = Shift(R[m], shift_t, shift_n, APSR.C);
 (result, carry, overflow) = AddWithCarry(NOT(R[n]), shifted, ‘1’);
 if d == 15 then // Can only occur for ARM encoding
 ALUWritePC(result); // setflags is always FALSE here
 else
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 APSR.V = overflow;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-287

ARM_2009_Q2
Inserted Text
 PC can be used in ARM instructions.

ARM_2009_Q2
Inserted Text
 PC can be used in ARM instructions.

ARM_2009_Q2
Inserted Text
 If S is specified and <Rd> is the PC, see SUBS PC, LR and related instructions on page B6-25 [PDF page 1583]. In ARM instructions, if S is not specified and <Rd> is the PC, the instruction is a branch to the address calculated by the operation. This is a simple branch before ARMv7, and an interworking branch from ARMv7.

Instruction Details
A8.6.144 RSB (register-shifted register)

Reverse Subtract (register-shifted register) subtracts a register value from a register-shifted register value,
and writes the result to the destination register. It can optionally update the condition flags based on the
result.

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); s = UInt(Rs);
setflags = (S == ‘1’); shift_t = DecodeRegShift(type);
if d == 15 || n == 15 || m == 15 || s == 15 then UNPREDICTABLE;

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7

RSB{S}<c> <Rd>,<Rn>,<Rm>,<type> <Rs>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 0 0 1 1 S Rn Rd Rs 0 type 1 Rm
A8-288 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

RSB{S}<c><q> {<Rd>,} <Rn>, <Rm>, <type> <Rs>

where:

S If S is present, the instruction updates the flags. Otherwise, the flags are not updated.

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The register that is shifted and used as the second operand.

<type> The type of shift to apply to the value read from <Rm>. It must be one of:

ASR Arithmetic shift right, encoded as type = 0b10

LSL Logical shift left, encoded as type = 0b00

LSR Logical shift right, encoded as type = 0b01

ROR Rotate right, encoded as type = 0b11.

<Rs> The register whose bottom byte contains the amount to shift by.

The pre-UAL syntax RSB<c>S is equivalent to RSBS<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 shift_n = UInt(R[s]<7:0>);
 shifted = Shift(R[m], shift_t, shift_n, APSR.C);
 (result, carry, overflow) = AddWithCarry(NOT(R[n]), shifted, ‘1’);
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 APSR.V = overflow;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-289

Instruction Details
A8.6.145 RSC (immediate)

Reverse Subtract with Carry (immediate) subtracts a register value and the value of NOT (Carry flag) from
an immediate value, and writes the result to the destination register. It can optionally update the condition
flags based on the result.

if Rd == ‘1111’ && S == ‘1’ then SEE SUBS PC, LR and related instructions;
d = UInt(Rd); n = UInt(Rn); setflags = (S == ‘1’); imm32 = ARMExpandImm(imm12);

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
RSC{S}<c> <Rd>,<Rn>,#<const>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 1 0 1 1 1 S Rn Rd imm12
A8-290 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

RSC{S}<c><q> {<Rd>,} <Rn>, #<const>

where:

S If S is present, the instruction updates the flags. Otherwise, the flags are not updated.

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<const> The immediate value that the value obtained from <Rn> is to be subtracted from. See
Modified immediate constants in ARM instructions on page A5-9 for the range of values.

The pre-UAL syntax RSC<c>S is equivalent to RSCS<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 (result, carry, overflow) = AddWithCarry(NOT(R[n]), imm32, APSR.C);
 if d == 15 then
 ALUWritePC(result); // setflags is always FALSE here
 else
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 APSR.V = overflow;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-291

ARM_2009_Q2
Inserted Text
 PC can be used.

ARM_2009_Q2
Inserted Text
 If S is specified and <Rd> is the PC, see SUBS PC, LR and related instructions on page B6-25 [PDF page 1583]. In ARM instructions, if S is not specified and <Rd> is the PC, the instruction is a branch to the address calculated by the operation. This is a simple branch before ARMv7, and an interworking branch from ARMv7.

Instruction Details
A8.6.146 RSC (register)

Reverse Subtract with Carry (register) subtracts a register value and the value of NOT (Carry flag) from an
optionally-shifted register value, and writes the result to the destination register. It can optionally update the
condition flags based on the result.

if Rd == ‘1111’ && S == ‘1’ then SEE SUBS PC, LR and related instructions;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == ‘1’);
(shift_t, shift_n) = DecodeImmShift(type, imm5);

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
RSC{S}<c> <Rd>,<Rn>,<Rm>{,<shift>}

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 0 1 1 1 S Rn Rd imm5 type 0 Rm
A8-292 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

RSC{S}<c><q> {<Rd>,} <Rn>, <Rm> {,<shift>}

where:

S If S is present, the instruction updates the flags. Otherwise, the flags are not updated.

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The register that is optionally shifted and used as the second operand.

<shift> The shift to apply to the value read from <Rm>. If omitted, no shift is applied. Shifts applied
to a register on page A8-10 describes the shifts and how they are encoded.

The pre-UAL syntax RSC<c>S is equivalent to RSCS<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 shifted = Shift(R[m], shift_t, shift_n, APSR.C);
 (result, carry, overflow) = AddWithCarry(NOT(R[n]), shifted, APSR.C);
 if d == 15 then
 ALUWritePC(result); // setflags is always FALSE here
 else
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 APSR.V = overflow;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-293

ARM_2009_Q2
Inserted Text
 PC can be used.

ARM_2009_Q2
Inserted Text
 PC can be used.

ARM_2009_Q2
Inserted Text
 If S is specified and <Rd> is the PC, see SUBS PC, LR and related instructions on page B6-25 [PDF page 1583]. In ARM instructions, if S is not specified and <Rd> is the PC, the instruction is a branch to the address calculated by the operation. This is a simple branch before ARMv7, and an interworking branch from ARMv7.

Instruction Details
A8.6.147 RSC (register-shifted register)

Reverse Subtract (register-shifted register) subtracts a register value and the value of NOT (Carry flag) from
a register-shifted register value, and writes the result to the destination register. It can optionally update the
condition flags based on the result.

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); s = UInt(Rs);
setflags = (S == ‘1’); shift_t = DecodeRegShift(type);
if d == 15 || n == 15 || m == 15 || s == 15 then UNPREDICTABLE;

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7

RSC{S}<c> <Rd>,<Rn>,<Rm>,<type> <Rs>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 0 1 1 1 S Rn Rd Rs 0 type 1 Rm
A8-294 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

RSC{S}<c><q> {<Rd>,} <Rn>, <Rm>, <type> <Rs>

where:

S If S is present, the instruction updates the flags. Otherwise, the flags are not updated.

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The register that is shifted and used as the second operand.

<type> The type of shift to apply to the value read from <Rm>. It must be one of:

ASR Arithmetic shift right, encoded as type = 0b10

LSL Logical shift left, encoded as type = 0b00

LSR Logical shift right, encoded as type = 0b01

ROR Rotate right, encoded as type = 0b11.

<Rs> The register whose bottom byte contains the amount to shift by.

The pre-UAL syntax RSC<c>S is equivalent to RSCS<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 shift_n = UInt(R[s]<7:0>);
 shifted = Shift(R[m], shift_t, shift_n, APSR.C);
 (result, carry, overflow) = AddWithCarry(NOT(R[n]), shifted, APSR.C);
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 APSR.V = overflow;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-295

Instruction Details
A8.6.148 SADD16

Signed Add 16 performs two 16-bit signed integer additions, and writes the results to the destination register.
It sets the APSR.GE bits according to the results of the additions.

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
SADD16<c> <Rd>,<Rn>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 1 Rn 1 1 1 1 Rd 0 0 0 0 Rm

Encoding A1 ARMv6*, ARMv7
SADD16<c> <Rd>,<Rn>,<Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 0 0 0 0 1 Rn Rd (1) (1) (1) (1) 0 0 0 1 Rm
A8-296 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

SADD16<c><q> {<Rd>,} <Rn>, <Rm>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The second operand register.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 sum1 = SInt(R[n]<15:0>) + SInt(R[m]<15:0>);
 sum2 = SInt(R[n]<31:16>) + SInt(R[m]<31:16>);
 R[d]<15:0> = sum1<15:0>;
 R[d]<31:16> = sum2<15:0>;
 APSR.GE<1:0> = if sum1 >= 0 then ‘11’ else ‘00’;
 APSR.GE<3:2> = if sum2 >= 0 then ‘11’ else ‘00’;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-297

Instruction Details
A8.6.149 SADD8

Signed Add 8 performs four 8-bit signed integer additions, and writes the results to the destination register.
It sets the APSR.GE bits according to the results of the additions.

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
SADD8<c> <Rd>,<Rn>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 0 Rn 1 1 1 1 Rd 0 0 0 0 Rm

Encoding A1 ARMv6*, ARMv7
SADD8<c> <Rd>,<Rn>,<Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 0 0 0 0 1 Rn Rd (1) (1) (1) (1) 1 0 0 1 Rm
A8-298 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

SADD8<c><q> {<Rd>,} <Rn>, <Rm>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The second operand register.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 sum1 = SInt(R[n]<7:0>) + SInt(R[m]<7:0>);
 sum2 = SInt(R[n]<15:8>) + SInt(R[m]<15:8>);
 sum3 = SInt(R[n]<23:16>) + SInt(R[m]<23:16>);
 sum4 = SInt(R[n]<31:24>) + SInt(R[m]<31:24>);
 R[d]<7:0> = sum1<7:0>;
 R[d]<15:8> = sum2<7:0>;
 R[d]<23:16> = sum3<7:0>;
 R[d]<31:24> = sum4<7:0>;
 APSR.GE<0> = if sum1 >= 0 then ‘1’ else ‘0’;
 APSR.GE<1> = if sum2 >= 0 then ‘1’ else ‘0’;
 APSR.GE<2> = if sum3 >= 0 then ‘1’ else ‘0’;
 APSR.GE<3> = if sum4 >= 0 then ‘1’ else ‘0’;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-299

Instruction Details
A8.6.150 SASX

Signed Add and Subtract with Exchange exchanges the two halfwords of the second operand, performs one
16-bit integer addition and one 16-bit subtraction, and writes the results to the destination register. It sets the
APSR.GE bits according to the results.

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
SASX<c> <Rd>,<Rn>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 1 0 Rn 1 1 1 1 Rd 0 0 0 0 Rm

Encoding A1 ARMv6*, ARMv7
SASX<c> <Rd>,<Rn>,<Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 0 0 0 0 1 Rn Rd (1) (1) (1) (1) 0 0 1 1 Rm
A8-300 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

SASX<c><q> {<Rd>,} <Rn>, <Rm>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The second operand register.

The pre-UAL syntax SADDSUBX<c> is equivalent to SASX<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 diff = SInt(R[n]<15:0>) - SInt(R[m]<31:16>);
 sum = SInt(R[n]<31:16>) + SInt(R[m]<15:0>);
 R[d]<15:0> = diff<15:0>;
 R[d]<31:16> = sum<15:0>;
 APSR.GE<1:0> = if diff >= 0 then ‘11’ else ‘00’;
 APSR.GE<3:2> = if sum >= 0 then ‘11’ else ‘00’;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-301

Instruction Details
A8.6.151 SBC (immediate)

Subtract with Carry (immediate) subtracts an immediate value and the value of NOT (Carry flag) from a
register value, and writes the result to the destination register. It can optionally update the condition flags
based on the result.

d = UInt(Rd); n = UInt(Rn); setflags = (S == ‘1’); imm32 = ThumbExpandImm(i:imm3:imm8);
if BadReg(d) || BadReg(n) then UNPREDICTABLE;

if Rd == ‘1111’ && S == ‘1’ then SEE SUBS PC, LR and related instructions;
d = UInt(Rd); n = UInt(Rn); setflags = (S == ‘1’); imm32 = ARMExpandImm(imm12);

Encoding T1 ARMv6T2, ARMv7
SBC{S}<c> <Rd>,<Rn>,#<const>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 1 0 1 1 S Rn 0 imm3 Rd imm8

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
SBC{S}<c> <Rd>,<Rn>,#<const>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 1 0 1 1 0 S Rn Rd imm12
A8-302 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

SBC{S}<c><q> {<Rd>,} <Rn>, #<const>

where:

S If S is present, the instruction updates the flags. Otherwise, the flags are not updated.

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<const> The immediate value to be subtracted from the value obtained from <Rn>. See Modified
immediate constants in Thumb instructions on page A6-17 or Modified immediate constants
in ARM instructions on page A5-9 for the range of values.

The pre-UAL syntax SBC<c>S is equivalent to SBCS<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 (result, carry, overflow) = AddWithCarry(R[n], NOT(imm32), APSR.C);
 if d == 15 then // Can only occur for ARM encoding
 ALUWritePC(result); // setflags is always FALSE here
 else
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 APSR.V = overflow;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-303

ARM_2009_Q2
Inserted Text
 PC can be used in ARM instructions.

ARM_2009_Q2
Inserted Text
 If S is specified and <Rd> is the PC, see SUBS PC, LR and related instructions on page B6-25 [PDF page 1583]. In ARM instructions, if S is not specified and <Rd> is the PC, the instruction is a branch to the address calculated by the operation. This is a simple branch before ARMv7, and an interworking branch from ARMv7.

Instruction Details
A8.6.152 SBC (register)

Subtract with Carry (register) subtracts an optionally-shifted register value and the value of NOT (Carry
flag) from a register value, and writes the result to the destination register. It can optionally update the
condition flags based on the result.

d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();
(shift_t, shift_n) = (SRType_LSL, 0);

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == ‘1’);
(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);
if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

if Rd == ‘1111’ && S == ‘1’ then SEE SUBS PC, LR and related instructions;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == ‘1’);
(shift_t, shift_n) = DecodeImmShift(type, imm5);

Encoding T1 ARMv4T, ARMv5T*, ARMv6*, ARMv7
SBCS <Rdn>,<Rm> Outside IT block.
SBC<c> <Rdn>,<Rm> Inside IT block.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 0 1 1 0 Rm Rdn

Encoding T2 ARMv6T2, ARMv7
SBC{S}<c>.W <Rd>,<Rn>,<Rm>{,<shift>}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 1 0 1 1 S Rn (0) imm3 Rd imm2 type Rm

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
SBC{S}<c> <Rd>,<Rn>,<Rm>{,<shift>}

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 0 1 1 0 S Rn Rd imm5 type 0 Rm
A8-304 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

SBC{S}<c><q> {<Rd>,} <Rn>, <Rm> {,<shift>}

where:

S If S is present, the instruction updates the flags. Otherwise, the flags are not updated.

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The register that is optionally shifted and used as the second operand.

<shift> The shift to apply to the value read from <Rm>. If present, encoding T1 is not permitted. If
absent, no shift is applied and all encodings are permitted. Shifts applied to a register on
page A8-10 describes the shifts and how they are encoded.

The pre-UAL syntax SBC<c>S is equivalent to SBCS<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 shifted = Shift(R[m], shift_t, shift_n, APSR.C);
 (result, carry, overflow) = AddWithCarry(R[n], NOT(shifted), APSR.C);
 if d == 15 then // Can only occur for ARM encoding
 ALUWritePC(result); // setflags is always FALSE here
 else
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 APSR.V = overflow;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-305

ARM_2009_Q2
Inserted Text
 PC can be used in ARM instructions.

ARM_2009_Q2
Inserted Text
 PC can be used in ARM instructions.

ARM_2009_Q2
Inserted Text
 If S is specified and <Rd> is the PC, see SUBS PC, LR and related instructions on page B6-25 [PDF page 1583]. In ARM instructions, if S is not specified and <Rd> is the PC, the instruction is a branch to the address calculated by the operation. This is a simple branch before ARMv7, and an interworking branch from ARMv7.

Instruction Details
A8.6.153 SBC (register-shifted register)

Subtract with Carry (register-shifted register) subtracts a register-shifted register value and the value of
NOT (Carry flag) from a register value, and writes the result to the destination register. It can optionally
update the condition flags based on the result.

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); s = UInt(Rs);
setflags = (S == ‘1’); shift_t = DecodeRegShift(type);
if d == 15 || n == 15 || m == 15 || s == 15 then UNPREDICTABLE;

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
SBC{S}<c> <Rd>,<Rn>,<Rm>,<type> <Rs>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 0 1 1 0 S Rn Rd Rs 0 type 1 Rm
A8-306 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

SBC{S}<c><q> {<Rd>,} <Rn>, <Rm>, <type> <Rs>

where:

S If S is present, the instruction updates the flags. Otherwise, the flags are not updated.

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The register that is shifted and used as the second operand.

<type> The type of shift to apply to the value read from <Rm>. It must be one of:

ASR Arithmetic shift right, encoded as type = 0b10

LSL Logical shift left, encoded as type = 0b00

LSR Logical shift right, encoded as type = 0b01

ROR Rotate right, encoded as type = 0b11.

<Rs> The register whose bottom byte contains the amount to shift by.

The pre-UAL syntax SBC<c>S is equivalent to SBCS<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 shift_n = UInt(R[s]<7:0>);
 shifted = Shift(R[m], shift_t, shift_n, APSR.C);
 (result, carry, overflow) = AddWithCarry(R[n], NOT(shifted), APSR.C);
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 APSR.V = overflow;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-307

Instruction Details
A8.6.154 SBFX

Signed Bit Field Extract extracts any number of adjacent bits at any position from a register, sign-extends
them to 32 bits, and writes the result to the destination register.

d = UInt(Rd); n = UInt(Rn);
lsbit = UInt(imm3:imm2); widthminus1 = UInt(widthm1);
if BadReg(d) || BadReg(n) then UNPREDICTABLE;

d = UInt(Rd); n = UInt(Rn);
lsbit = UInt(lsb); widthminus1 = UInt(widthm1);
if d == 15 || n == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
SBFX<c> <Rd>,<Rn>,#<lsb>,#<width>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 (0) 1 1 0 1 0 0 Rn 0 imm3 Rd imm2 (0) widthm1

Encoding A1 ARMv6T2, ARMv7
SBFX<c> <Rd>,<Rn>,#<lsb>,#<width>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 1 1 0 1 widthm1 Rd 1sb 1 0 1 Rn
A8-308 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

SBFX<c><q> <Rd>, <Rn>, #<lsb>, #<width>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<lsb> is the bit number of the least significant bit in the bitfield, in the range 0-31. This determines
the required value of lsbit.

<width> is the width of the bitfield, in the range 1 to 32-<lsb>. The required value of widthminus1 is
<width>-1.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 msbit = lsbit + widthminus1;
 if msbit <= 31 then
 R[d] = SignExtend(R[n]<msbit:lsbit>, 32);
 else
 UNPREDICTABLE;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-309

Instruction Details
A8.6.155 SDIV

Signed Divide divides a 32-bit signed integer register value by a 32-bit signed integer register value, and
writes the result to the destination register. The condition code flags are not affected.

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

Encoding T1 ARMv7-R
SDIV<c> <Rd>,<Rn>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 1 0 0 1 Rn (1) (1) (1) (1) Rd 1 1 1 1 Rm
A8-310 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

SDIV<c><q> {<Rd>,} <Rn>, <Rm>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The register that contains the dividend.

<Rm> The register that contains the divisor.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 if SInt(R[m]) == 0 then
 if IntegerZeroDivideTrappingEnabled() then
 GenerateIntegerZeroDivide();
 else
 result = 0;
 else
 result = RoundTowardsZero(SInt(R[n]) / SInt(R[m]));
 R[d] = result<31:0>;

Exceptions

Undefined Instruction.

Overflow

If the signed integer division 0x80000000 / 0xFFFFFFFF is performed, the pseudocode produces the
intermediate integer result +231, that overflows the 32-bit signed integer range. No indication of this
overflow case is produced, and the 32-bit result written to R[d] must be the bottom 32 bits of the binary
representation of +231. So the result of the division is 0x80000000.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-311

Instruction Details
A8.6.156 SEL

Select Bytes selects each byte of its result from either its first operand or its second operand, according to
the values of the GE flags.

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
SEL<c> <Rd>,<Rn>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 1 0 Rn 1 1 1 1 Rd 1 0 0 0 Rm

Encoding A1 ARMv6*, ARMv7
SEL<c> <Rd>,<Rn>,<Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 0 1 0 0 0 Rn Rd (1) (1) (1) (1) 1 0 1 1 Rm
A8-312 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

SEL<c><q> {<Rd>,} <Rn>, <Rm>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The second operand register.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 R[d]<7:0> = if APSR.GE<0> == ‘1’ then R[n]<7:0> else R[m]<7:0>;
 R[d]<15:8> = if APSR.GE<1> == ‘1’ then R[n]<15:8> else R[m]<15:8>;
 R[d]<23:16> = if APSR.GE<2> == ‘1’ then R[n]<23:16> else R[m]<23:16>;
 R[d]<31:24> = if APSR.GE<3> == ‘1’ then R[n]<31:24> else R[m]<31:24>;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-313

Instruction Details
A8.6.157 SETEND

Set Endianness writes a new value to ENDIANSTATE.

set_bigend = (E == ‘1’);
if InITBlock() then UNPREDICTABLE;

set_bigend = (E == ‘1’);

Encoding T1 ARMv6*, ARMv7
SETEND <endian_specifier> Not permitted in IT block

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 1 1 0 0 1 0 (1) E (0) (0) (0)

Encoding A1 ARMv6*, ARMv7
SETEND <endian_specifier> Cannot be conditional

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 1 0 0 0 0 (0) (0) (0) 1 (0) (0) (0) (0) (0) (0) E (0) 0 0 0 0 (0) (0) (0) (0)
A8-314 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

SETEND<q> <endian_specifier>

where:

<q> See Standard assembler syntax fields on page A8-7. A SETEND instruction must be
unconditional.

<endian_specifier>

Is one of:

BE Sets the E bit in the instruction. This sets ENDIANSTATE.

LE Clears the E bit in the instruction. This clears ENDIANSTATE.

Operation

EncodingSpecificOperations();
ENDIANSTATE = if set_bigend then ‘1’ else ‘0’;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-315

Instruction Details
A8.6.158 SEV

Send Event is a hint instruction. It causes an event to be signaled to all processors in the multiprocessor
system.

// No additional decoding required

// No additional decoding required

// No additional decoding required

Encoding T1 ARMv7 (executes as NOP in ARMv6T2)
SEV<c>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 1 0 1 0 0 0 0 0 0

Encoding T2 ARMv7 (executes as NOP in ARMv6T2)
SEV<c>.W

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 0 (1) (1) (1) (1) 1 0 (0) 0 (0) 0 0 0 0 0 0 0 0 1 0 0

Encoding A1 ARMv6K, ARMv7 (executes as NOP in ARMv6T2)
SEV<c>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 1 1 0 0 1 0 0 0 0 0 (1) (1) (1) (1) (0) (0) (0) (0) 0 0 0 0 0 1 0 0
A8-316 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

SEV<c><q>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 SendEvent();

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-317

Instruction Details
A8.6.159 SHADD16

Signed Halving Add 16 performs two signed 16-bit integer additions, halves the results, and writes the
results to the destination register.

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
SHADD16<c> <Rd>,<Rn>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 1 Rn 1 1 1 1 Rd 0 0 1 0 Rm

Encoding A1 ARMv6*, ARMv7
SHADD16<c> <Rd>,<Rn>,<Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 0 0 0 1 1 Rn Rd (1) (1) (1) (1) 0 0 0 1 Rm
A8-318 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

SHADD16<c><q> {<Rd>,} <Rn>, <Rm>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The second operand register.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 sum1 = SInt(R[n]<15:0>) + SInt(R[m]<15:0>);
 sum2 = SInt(R[n]<31:16>) + SInt(R[m]<31:16>);
 R[d]<15:0> = sum1<16:1>;
 R[d]<31:16> = sum2<16:1>;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-319

Instruction Details
A8.6.160 SHADD8

Signed Halving Add 8 performs four signed 8-bit integer additions, halves the results, and writes the results
to the destination register.

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
SHADD8<c> <Rd>,<Rn>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 0 Rn 1 1 1 1 Rd 0 0 1 0 Rm

Encoding A1 ARMv6*, ARMv7
SHADD8<c> <Rd>,<Rn>,<Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 0 0 0 1 1 Rn Rd (1) (1) (1) (1) 1 0 0 1 Rm
A8-320 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

SHADD8<c><q> {<Rd>,} <Rn>, <Rm>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The second operand register.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 sum1 = SInt(R[n]<7:0>) + SInt(R[m]<7:0>);
 sum2 = SInt(R[n]<15:8>) + SInt(R[m]<15:8>);
 sum3 = SInt(R[n]<23:16>) + SInt(R[m]<23:16>);
 sum4 = SInt(R[n]<31:24>) + SInt(R[m]<31:24>);
 R[d]<7:0> = sum1<8:1>;
 R[d]<15:8> = sum2<8:1>;
 R[d]<23:16> = sum3<8:1>;
 R[d]<31:24> = sum4<8:1>;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-321

Instruction Details
A8.6.161 SHASX

Signed Halving Add and Subtract with Exchange exchanges the two halfwords of the second operand,
performs one signed 16-bit integer addition and one signed 16-bit subtraction, halves the results, and writes
the results to the destination register.

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
SHASX<c> <Rd>,<Rn>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 1 0 Rn 1 1 1 1 Rd 0 0 1 0 Rm

Encoding A1 ARMv6*, ARMv7
SHASX<c> <Rd>,<Rn>,<Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 0 0 0 1 1 Rn Rd (1) (1) (1) (1) 0 0 1 1 Rm
A8-322 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

SHASX<c><q> {<Rd>,} <Rn>, <Rm>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The second operand register.

The pre-UAL syntax SHADDSUBX<c> is equivalent to SHASX<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 diff = SInt(R[n]<15:0>) - SInt(R[m]<31:16>);
 sum = SInt(R[n]<31:16>) + SInt(R[m]<15:0>);
 R[d]<15:0> = diff<16:1>;
 R[d]<31:16> = sum<16:1>;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-323

Instruction Details
A8.6.162 SHSAX

Signed Halving Subtract and Add with Exchange exchanges the two halfwords of the second operand,
performs one signed 16-bit integer subtraction and one signed 16-bit addition, halves the results, and writes
the results to the destination register.

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
SHSAX<c> <Rd>,<Rn>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 1 1 0 Rn 1 1 1 1 Rd 0 0 1 0 Rm

Encoding A1 ARMv6*, ARMv7
SHSAX<c> <Rd>,<Rn>,<Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 0 0 0 1 1 Rn Rd (1) (1) (1) (1) 0 1 0 1 Rm
A8-324 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

SHSAX<c><q> {<Rd>,} <Rn>, <Rm>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The second operand register.

The pre-UAL syntax SHSUBADDX<c> is equivalent to SHSAX<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 sum = SInt(R[n]<15:0>) + SInt(R[m]<31:16>);
 diff = SInt(R[n]<31:16>) - SInt(R[m]<15:0>);
 R[d]<15:0> = sum<16:1>;
 R[d]<31:16> = diff<16:1>;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-325

Instruction Details
A8.6.163 SHSUB16

Signed Halving Subtract 16 performs two signed 16-bit integer subtractions, halves the results, and writes
the results to the destination register.

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
SHSUB16<c> <Rd>,<Rn>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 1 0 1 Rn 1 1 1 1 Rd 0 0 1 0 Rm

Encoding A1 ARMv6*, ARMv7
SHSUB16<c> <Rd>,<Rn>,<Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 0 0 0 1 1 Rn Rd (1) (1) (1) (1) 0 1 1 1 Rm
A8-326 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

SHSUB16<c><q> {<Rd>,} <Rn>, <Rm>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The second operand register.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 diff1 = SInt(R[n]<15:0>) - SInt(R[m]<15:0>);
 diff2 = SInt(R[n]<31:16>) - SInt(R[m]<31:16>);
 R[d]<15:0> = diff1<16:1>;
 R[d]<31:16> = diff2<16:1>;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-327

Instruction Details
A8.6.164 SHSUB8

Signed Halving Subtract 8 performs four signed 8-bit integer subtractions, halves the results, and writes the
results to the destination register.

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
SHSUB8<c> <Rd>,<Rn>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 1 0 0 Rn 1 1 1 1 Rd 0 0 1 0 Rm

Encoding A1 ARMv6*, ARMv7
SHSUB8<c> <Rd>,<Rn>,<Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 0 0 0 1 1 Rn Rd (1) (1) (1) (1) 1 1 1 1 Rm
A8-328 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

SHSUB8<c><q> {<Rd>,} <Rn>, <Rm>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The second operand register.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 diff1 = SInt(R[n]<7:0>) - SInt(R[m]<7:0>);
 diff2 = SInt(R[n]<15:8>) - SInt(R[m]<15:8>);
 diff3 = SInt(R[n]<23:16>) - SInt(R[m]<23:16>);
 diff4 = SInt(R[n]<31:24>) - SInt(R[m]<31:24>);
 R[d]<7:0> = diff1<8:1>;
 R[d]<15:8> = diff2<8:1>;
 R[d]<23:16> = diff3<8:1>;
 R[d]<31:24> = diff4<8:1>;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-329

Instruction Details
A8.6.165 SMC (previously SMI)

Secure Monitor Call is a system instruction. For details see SMC (previously SMI) on page B6-18.

A8.6.166 SMLABB, SMLABT, SMLATB, SMLATT

Signed Multiply Accumulate (halfwords) performs a signed multiply-accumulate operation. The multiply
acts on two signed 16-bit quantities, taken from either the bottom or the top half of their respective source
registers. The other halves of these source registers are ignored. The 32-bit product is added to a 32-bit
accumulate value and the result is written to the destination register.

If overflow occurs during the addition of the accumulate value, the instruction sets the Q flag in the APSR.
It is not possible for overflow to occur during the multiplication.

if Ra == ‘1111’ then SEE SMULBB, SMULBT, SMULTB, SMULTT;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra);
n_high = (N == ‘1’); m_high = (M == ‘1’);
if BadReg(d) || BadReg(n) || BadReg(m) || a == 13 then UNPREDICTABLE;

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra);
n_high = (N == ‘1’); m_high = (M == ‘1’);
if d == 15 || n == 15 || m == 15 || a == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
SMLA<x><y><c> <Rd>,<Rn>,<Rm>,<Ra>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 0 0 0 1 Rn Ra Rd 0 0 N M Rm

Encoding A1 ARMv5TE*, ARMv6*, ARMv7
SMLA<x><y><c> <Rd>,<Rn>,<Rm>,<Ra>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 1 0 0 0 0 Rd Ra Rm 1 M N 0 Rn
A8-330 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

SMLA<x><y><c><q> <Rd>, <Rn>, <Rm>, <Ra>

where:

<x> Specifies which half of the source register <Rn> is used as the first multiply operand. If <x>
is B, then the bottom half (bits [15:0]) of <Rn> is used. If <x> is T, then the top half
(bits [31:16]) of <Rn> is used.

<y> Specifies which half of the source register <Rm> is used as the second multiply operand. If
<y> is B, then the bottom half (bits [15:0]) of <Rm> is used. If <y> is T, then the top half
(bits [31:16]) of <Rm> is used.

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The source register whose bottom or top half (selected by <x>) is the first multiply operand.

<Rm> The source register whose bottom or top half (selected by <y>) is the second multiply
operand.

<Ra> The register that contains the accumulate value.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 operand1 = if n_high then R[n]<31:16> else R[n]<15:0>;
 operand2 = if m_high then R[m]<31:16> else R[m]<15:0>;
 result = SInt(operand1) * SInt(operand2) + SInt(R[a]);
 R[d] = result<31:0>;
 if result != SInt(result<31:0>) then // Signed overflow
 APSR.Q = ‘1’;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-331

Instruction Details
A8.6.167 SMLAD

Signed Multiply Accumulate Dual performs two signed 16 x 16-bit multiplications. It adds the products to
a 32-bit accumulate operand.

Optionally, you can exchange the halfwords of the second operand before performing the arithmetic. This
produces top × bottom and bottom × top multiplication.

This instruction sets the Q flag if the accumulate operation overflows. Overflow cannot occur during the
multiplications.

if Ra == ‘1111’ then SEE SMUAD;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra);
m_swap = (M == ‘1’);
if BadReg(d) || BadReg(n) || BadReg(m) || a == 13 then UNPREDICTABLE;

if Ra == ‘1111’ then SEE SMUAD;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra);
m_swap = (M == ‘1’);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
SMLAD{X}<c> <Rd>,<Rn>,<Rm>,<Ra>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 0 0 1 0 Rn Ra Rd 0 0 0 M Rm

Encoding A1 ARMv6*, ARMv7
SMLAD{X}<c> <Rd>,<Rn>,<Rm>,<Ra>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 1 0 0 0 0 Rd Ra Rm 0 0 M 1 Rn
A8-332 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

SMLAD{X}<c><q> <Rd>, <Rn>, <Rm>, <Ra>

where:

X If X is present (encoded as M == 1), the multiplications are bottom × top and top × bottom.

If the X is omitted (encoded as M == 0), the multiplications are bottom × bottom and
top × top.

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The second operand register.

<Ra> The register that contains the accumulate value.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 operand2 = if m_swap then ROR(R[m],16) else R[m];
 product1 = SInt(R[n]<15:0>) * SInt(operand2<15:0>);
 product2 = SInt(R[n]<31:16>) * SInt(operand2<31:16>);
 result = product1 + product2 + SInt(R[a]);
 R[d] = result<31:0>;
 if result != SInt(result<31:0>) then // Signed overflow
 APSR.Q = ‘1’;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-333

Instruction Details
A8.6.168 SMLAL

Signed Multiply Accumulate Long multiplies two signed 32-bit values to produce a 64-bit value, and
accumulates this with a 64-bit value.

In ARM code, the condition flags can optionally be updated based on the result. Use of this option adversely
affects performance on many processor implementations.

dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); setflags = FALSE;
if BadReg(dLo) || BadReg(dHi) || BadReg(n) || BadReg(m) then UNPREDICTABLE;
if dHi == dLo then UNPREDICTABLE;

dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); setflags = (S == ‘1’);
if dLo == 15 || dHi == 15 || n == 15 || m == 15 then UNPREDICTABLE;
if dHi == dLo then UNPREDICTABLE;
if ArchVersion() < 6 && (dHi == n || dLo == n) then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
SMLAL<c> <RdLo>,<RdHi>,<Rn>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 1 1 0 0 Rn RdLo RdHi 0 0 0 0 Rm

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
SMLAL{S}<c> <RdLo>,<RdHi>,<Rn>,<Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 0 1 1 1 S RdHi RdLo Rm 1 0 0 1 Rn
A8-334 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

SMLAL{S}<c><q> <RdLo>, <RdHi>, <Rn>, <Rm>

where:

S If S is present, the instruction updates the flags. Otherwise, the flags are not updated.

S can be specified only for the ARM instruction set.

<c><q> See Standard assembler syntax fields on page A8-7.

<RdLo> Supplies the lower 32 bits of the accumulate value, and is the destination register for the
lower 32 bits of the result.

<RdHi> Supplies the upper 32 bits of the accumulate value, and is the destination register for the
upper 32 bits of the result.

<Rn> The first operand register.

<Rm> The second operand register.

The pre-UAL syntax SMLAL<c>S is equivalent to SMLALS<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 result = SInt(R[n]) * SInt(R[m]) + SInt(R[dHi]:R[dLo]);
 R[dHi] = result<63:32>;
 R[dLo] = result<31:0>;
 if setflags then
 APSR.N = result<63>;
 APSR.Z = IsZeroBit(result<63:0>);
 if ArchVersion() == 4 then
 APSR.C = bit UNKNOWN;
 APSR.V = bit UNKNOWN;
 // else APSR.C, APSR.V unchanged

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-335

Instruction Details
A8.6.169 SMLALBB, SMLALBT, SMLALTB, SMLALTT

Signed Multiply Accumulate Long (halfwords) multiplies two signed 16-bit values to produce a 32-bit
value, and accumulates this with a 64-bit value. The multiply acts on two signed 16-bit quantities, taken
from either the bottom or the top half of their respective source registers. The other halves of these source
registers are ignored. The 32-bit product is sign-extended and accumulated with a 64-bit accumulate value.

Overflow is possible during this instruction, but only as a result of the 64-bit addition. This overflow is not
detected if it occurs. Instead, the result wraps around modulo 264.

dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm);
n_high = (N == ‘1’); m_high = (M == ‘1’);
if BadReg(dLo) || BadReg(dHi) || BadReg(n) || BadReg(m) then UNPREDICTABLE;
if dHi == dLo then UNPREDICTABLE;

dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm);
n_high = (N == ‘1’); m_high = (M == ‘1’);
if dLo == 15 || dHi == 15 || n == 15 || m == 15 then UNPREDICTABLE;
if dHi == dLo then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
SMLAL<x><y><c> <RdLo>,<RdHi>,<Rn>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 1 1 0 0 Rn RdLo RdHi 1 0 N M Rm

Encoding A1 ARMv5TE*, ARMv6*, ARMv7
SMLAL<x><y><c> <RdLo>,<RdHi>,<Rn>,<Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 1 0 1 0 0 RdHi RdLo Rm 1 M N 0 Rn
A8-336 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

SMLAL<x><y><c><q> <RdLo>, <RdHi>, <Rn>, <Rm>

where:

<x> Specifies which half of the source register <Rn> is used as the first multiply operand. If <x>
is B, then the bottom half (bits [15:0]) of <Rn> is used. If <x> is T, then the top half
(bits [31:16]) of <Rn> is used.

<y> Specifies which half of the source register <Rm> is used as the second multiply operand. If
<y> is B, then the bottom half (bits [15:0]) of <Rm> is used. If <y> is T, then the top half
(bits [31:16]) of <Rm> is used.

<c><q> See Standard assembler syntax fields on page A8-7.

<RdLo> Supplies the lower 32 bits of the accumulate value, and is the destination register for the
lower 32 bits of the result.

<RdHi> Supplies the upper 32 bits of the accumulate value, and is the destination register for the
upper 32 bits of the result.

<Rn> The source register whose bottom or top half (selected by <x>) is the first multiply operand.

<Rm> The source register whose bottom or top half (selected by <y>) is the second multiply
operand.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 operand1 = if n_high then R[n]<31:16> else R[n]<15:0>;
 operand2 = if m_high then R[m]<31:16> else R[m]<15:0>;
 result = SInt(operand1) * SInt(operand2) + SInt(R[dHi]:R[dLo]);
 R[dHi] = result<63:32>;
 R[dLo] = result<31:0>;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-337

Instruction Details
A8.6.170 SMLALD

Signed Multiply Accumulate Long Dual performs two signed 16 × 16-bit multiplications. It adds the
products to a 64-bit accumulate operand.

Optionally, you can exchange the halfwords of the second operand before performing the arithmetic. This
produces top × bottom and bottom × top multiplication.

Overflow is possible during this instruction, but only as a result of the 64-bit addition. This overflow is not
detected if it occurs. Instead, the result wraps around modulo 264.

dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); m_swap = (M == ‘1’);
if BadReg(dLo) || BadReg(dHi) || BadReg(n) || BadReg(m) then UNPREDICTABLE;
if dHi == dLo then UNPREDICTABLE;

dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); m_swap = (M == ‘1’);
if dLo == 15 || dHi == 15 || n == 15 || m == 15 then UNPREDICTABLE;
if dHi == dLo then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
SMLALD{X}<c> <RdLo>,<RdHi>,<Rn>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 1 1 0 0 Rn RdLo RdHi 1 1 0 M Rm

Encoding A1 ARMv6*, ARMv7
SMLALD{X}<c> <RdLo>,<RdHi>,<Rn>,<Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 1 0 1 0 0 RdHi RdLo Rm 0 0 M 1 Rn
A8-338 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

SMLALD{X}<c><q> <RdLo>, <RdHi>, <Rn>, <Rm>

where:

X If X is present, the multiplications are bottom × top and top × bottom.

If the X is omitted, the multiplications are bottom × bottom and top × top.

<c><q> See Standard assembler syntax fields on page A8-7.

<RdLo> Supplies the lower 32 bits of the accumulate value, and is the destination register for the
lower 32 bits of the result.

<RdHi> Supplies the upper 32 bits of the accumulate value, and is the destination register for the
upper 32 bits of the result.

<Rn> The first operand register.

<Rm> The second operand register.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 operand2 = if m_swap then ROR(R[m],16) else R[m];
 product1 = SInt(R[n]<15:0>) * SInt(operand2<15:0>);
 product2 = SInt(R[n]<31:16>) * SInt(operand2<31:16>);
 result = product1 + product2 + SInt(R[dHi]:R[dLo]);
 R[dHi] = result<63:32>;
 R[dLo] = result<31:0>;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-339

Instruction Details
A8.6.171 SMLAWB, SMLAWT

Signed Multiply Accumulate (word by halfword) performs a signed multiply-accumulate operation. The
multiply acts on a signed 32-bit quantity and a signed 16-bit quantity. The signed 16-bit quantity is taken
from either the bottom or the top half of its source register. The other half of the second source register is
ignored. The top 32 bits of the 48-bit product are added to a 32-bit accumulate value and the result is written
to the destination register. The bottom 16 bits of the 48-bit product are ignored.

If overflow occurs during the addition of the accumulate value, the instruction sets the Q flag in the APSR.
No overflow can occur during the multiplication.

if Ra == ‘1111’ then SEE SMULWB, SMULWT;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra); m_high = (M == ‘1’);
if BadReg(d) || BadReg(n) || BadReg(m) || a == 13 then UNPREDICTABLE;

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra); m_high = (M == ‘1’);
if d == 15 || n == 15 || m == 15 || a == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
SMLAW<y><c> <Rd>,<Rn>,<Rm>,<Ra>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 0 0 1 1 Rn Ra Rd 0 0 0 M Rm

Encoding A1 ARMv5TE*, ARMv6*, ARMv7
SMLAW<y><c> <Rd>,<Rn>,<Rm>,<Ra>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 1 0 0 1 0 Rd Ra Rm 1 M 0 0 Rn
A8-340 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

SMLAW<y><c><q> <Rd>, <Rn>, <Rm>, <Ra>

where:

<y> Specifies which half of the source register <Rm> is used as the second multiply operand. If
<y> is B, then the bottom half (bits [15:0]) of <Rm> is used. If <y> is T, then the top half
(bits [31:16]) of <Rm> is used.

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The source register whose bottom or top half (selected by <y>) is the second multiply
operand.

<Ra> The register that contains the accumulate value.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 operand2 = if m_high then R[m]<31:16> else R[m]<15:0>;
 result = SInt(R[n]) * SInt(operand2) + (SInt(R[a]) << 16);
 R[d] = result<47:16>;
 if (result >> 16) != SInt(R[d]) then // Signed overflow
 APSR.Q = ‘1’;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-341

Instruction Details
A8.6.172 SMLSD

Signed Multiply Subtract Dual performs two signed 16 × 16-bit multiplications. It adds the difference of the
products to a 32-bit accumulate operand.

Optionally, you can exchange the halfwords of the second operand before performing the arithmetic. This
produces top × bottom and bottom × top multiplication.

This instruction sets the Q flag if the accumulate operation overflows. Overflow cannot occur during the
multiplications or subtraction.

if Ra == ‘1111’ then SEE SMUSD;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra); m_swap = (M == ‘1’);
if BadReg(d) || BadReg(n) || BadReg(m) || a == 13 then UNPREDICTABLE;

if Ra == ‘1111’ then SEE SMUSD;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra); m_swap = (M == ‘1’);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
SMLSD{X}<c> <Rd>,<Rn>,<Rm>,<Ra>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 0 1 0 0 Rn Ra Rd 0 0 0 M Rm

Encoding A1 ARMv6*, ARMv7
SMLSD{X}<c> <Rd>,<Rn>,<Rm>,<Ra>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 1 0 0 0 0 Rd Ra Rm 0 1 M 1 Rn
A8-342 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

SMLSD{X}<c><q> <Rd>, <Rn>, <Rm>, <Ra>

where:

X If X is present, the multiplications are bottom × top and top × bottom.

If the X is omitted, the multiplications are bottom × bottom and top × top.

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The second operand register.

<Ra> The register that contains the accumulate value.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 operand2 = if m_swap then ROR(R[m],16) else R[m];
 product1 = SInt(R[n]<15:0>) * SInt(operand2<15:0>);
 product2 = SInt(R[n]<31:16>) * SInt(operand2<31:16>);
 result = product1 - product2 + SInt(R[a]);
 R[d] = result<31:0>;
 if result != SInt(result<31:0>) then // Signed overflow
 APSR.Q = ‘1’;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-343

Instruction Details
A8.6.173 SMLSLD

Signed Multiply Subtract Long Dual performs two signed 16 × 16-bit multiplications. It adds the difference
of the products to a 64-bit accumulate operand.

Optionally, you can exchange the halfwords of the second operand before performing the arithmetic. This
produces top × bottom and bottom × top multiplication.

Overflow is possible during this instruction, but only as a result of the 64-bit addition. This overflow is not
detected if it occurs. Instead, the result wraps around modulo 264.

dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); m_swap = (M == ‘1’);
if BadReg(dLo) || BadReg(dHi) || BadReg(n) || BadReg(m) then UNPREDICTABLE;
if dHi == dLo then UNPREDICTABLE;

dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); m_swap = (M == ‘1’);
if dLo == 15 || dHi == 15 || n == 15 || m == 15 then UNPREDICTABLE;
if dHi == dLo then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
SMLSLD{X}<c> <RdLo>,<RdHi>,<Rn>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 1 1 0 1 Rn RdLo RdHi 1 1 0 M Rm

Encoding A1 ARMv6*, ARMv7
SMLSLD{X}<c> <RdLo>,<RdHi>,<Rn>,<Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 1 0 1 0 0 RdHi RdLo Rm 0 1 M 1 Rn
A8-344 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

SMLSLD{X}<c><q> <RdLo>, <RdHi>, <Rn>, <Rm>

where:

X If X is present, the multiplications are bottom × top and top × bottom.

If the X is omitted, the multiplications are bottom × bottom and top × top.

<c><q> See Standard assembler syntax fields on page A8-7.

<RdLo> Supplies the lower 32 bits of the accumulate value, and is the destination register for the
lower 32 bits of the result.

<RdHi> Supplies the upper 32 bits of the accumulate value, and is the destination register for the
upper 32 bits of the result.

<Rn> The first operand register.

<Rm> The second operand register.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 operand2 = if m_swap then ROR(R[m],16) else R[m];
 product1 = SInt(R[n]<15:0>) * SInt(operand2<15:0>);
 product2 = SInt(R[n]<31:16>) * SInt(operand2<31:16>);
 result = product1 - product2 + SInt(R[dHi]:R[dLo]);
 R[dHi] = result<63:32>;
 R[dLo] = result<31:0>;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-345

Instruction Details
A8.6.174 SMMLA

Signed Most Significant Word Multiply Accumulate multiplies two signed 32-bit values, extracts the most
significant 32 bits of the result, and adds an accumulate value.

Optionally, you can specify that the result is rounded instead of being truncated. In this case, the constant
0x80000000 is added to the product before the high word is extracted.

if Ra == ‘1111’ then SEE SMMUL;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra); round = (R == ‘1’);
if BadReg(d) || BadReg(n) || BadReg(m) || a == 13 then UNPREDICTABLE;

if Ra == ‘1111’ then SEE SMMUL;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra); round = (R == ‘1’);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
SMMLA{R}<c> <Rd>,<Rn>,<Rm>,<Ra>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 0 1 0 1 Rn Ra Rd 0 0 0 R Rm

Encoding A1 ARMv6*, ARMv7
SMMLA{R}<c> <Rd>,<Rn>,<Rm>,<Ra>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 1 0 1 0 1 Rd Ra Rm 0 0 R 1 Rn
A8-346 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

SMMLA{R}<c><q> <Rd>, <Rn>, <Rm>, <Ra>

where:

R If R is present, the multiplication is rounded.

If the R is omitted, the multiplication is truncated.

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The register that contains the first multiply operand.

<Rm> The register that contains the second multiply operand.

<Ra> The register that contains the accumulate value.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 result = (SInt(R[a]) << 32) + SInt(R[n]) * SInt(R[m]);
 if round then result = result + 0x80000000;
 R[d] = result<63:32>;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-347

Instruction Details
A8.6.175 SMMLS

Signed Most Significant Word Multiply Subtract multiplies two signed 32-bit values, extracts the most
significant 32 bits of the result, and subtracts it from an accumulate value.

Optionally, you can specify that the result is rounded instead of being truncated. In this case, the constant
0x80000000 is added to the product before the high word is extracted.

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra); round = (R == ‘1’);
if BadReg(d) || BadReg(n) || BadReg(m) || BadReg(a) then UNPREDICTABLE;

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra); round = (R == ‘1’);
if d == 15 || n == 15 || m == 15 || a == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
SMMLS{R}<c> <Rd>,<Rn>,<Rm>,<Ra>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 0 1 1 0 Rn Ra Rd 0 0 0 R Rm

Encoding A1 ARMv6*, ARMv7
SMMLS{R}<c> <Rd>,<Rn>,<Rm>,<Ra>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 1 0 1 0 1 Rd Ra Rm 1 1 R 1 Rn
A8-348 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
subtracts the result from a 32-bit accumulate value that is shifted left by 32 bits, and extracts the most significant 32 bits of the result of that subtraction

ARM_2009_Q2
Inserted Text
of the instruction

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
the result of the subtraction

Instruction Details
Assembler syntax

SMMLS{R}<c><q> <Rd>, <Rn>, <Rm>, <Ra>

where:

R If R is present, the multiplication is rounded.

If the R is omitted, the multiplication is truncated.

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The register that contains the first multiply operand.

<Rm> The register that contains the second multiply operand.

<Ra> The register that contains the accumulate value.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 result = (SInt(R[a]) << 32) - SInt(R[n]) * SInt(R[m]);
 if round then result = result + 0x80000000;
 R[d] = result<63:32>;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-349

Instruction Details
A8.6.176 SMMUL

Signed Most Significant Word Multiply multiplies two signed 32-bit values, extracts the most significant
32 bits of the result, and writes those bits to the destination register.

Optionally, you can specify that the result is rounded instead of being truncated. In this case, the constant
0x80000000 is added to the product before the high word is extracted.

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); round = (R == ‘1’);
if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); round = (R == ‘1’);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
SMMUL{R}<c> <Rd>,<Rn>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 0 1 0 1 Rn 1 1 1 1 Rd 0 0 0 R Rm

Encoding A1 ARMv6*, ARMv7
SMMUL{R}<c> <Rd>,<Rn>,<Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 1 0 1 0 1 Rd 1 1 1 1 Rm 0 0 R 1 Rn
A8-350 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

SMMUL{R}<c><q> {<Rd>,} <Rn>, <Rm>

where:

R If R is present, the multiplication is rounded.

If the R is omitted, the multiplication is truncated.

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The second operand register.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 result = SInt(R[n]) * SInt(R[m]);
 if round then result = result + 0x80000000;
 R[d] = result<63:32>;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-351

Instruction Details
A8.6.177 SMUAD

Signed Dual Multiply Add performs two signed 16 × 16-bit multiplications. It adds the products together,
and writes the result to the destination register.

Optionally, you can exchange the halfwords of the second operand before performing the arithmetic. This
produces top × bottom and bottom × top multiplication.

This instruction sets the Q flag if the addition overflows. The multiplications cannot overflow.

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); m_swap = (M == ‘1’);
if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); m_swap = (M == ‘1’);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
SMUAD{X}<c> <Rd>,<Rn>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 0 0 1 0 Rn 1 1 1 1 Rd 0 0 0 M Rm

Encoding A1 ARMv6*, ARMv7
SMUAD{X}<c> <Rd>,<Rn>,<Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 1 0 0 0 0 Rd 1 1 1 1 Rm 0 0 M 1 Rn
A8-352 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

SMUAD{x}<c><q> {<Rd>,} <Rn>, <Rm>

where:

X If X is present, the multiplications are bottom × top and top × bottom.

If the X is omitted, the multiplications are bottom × bottom and top × top.

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The second operand register.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 operand2 = if m_swap then ROR(R[m],16) else R[m];
 product1 = SInt(R[n]<15:0>) * SInt(operand2<15:0>);
 product2 = SInt(R[n]<31:16>) * SInt(operand2<31:16>);
 result = product1 + product2;
 R[d] = result<31:0>;
 if result != SInt(result<31:0>) then // Signed overflow
 APSR.Q = ‘1’;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-353

Instruction Details
A8.6.178 SMULBB, SMULBT, SMULTB, SMULTT

Signed Multiply (halfwords) multiplies two signed 16-bit quantities, taken from either the bottom or the top
half of their respective source registers. The other halves of these source registers are ignored. The 32-bit
product is written to the destination register. No overflow is possible during this instruction.

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
n_high = (N == ‘1’); m_high = (M == ‘1’);
if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
n_high = (N == ‘1’); m_high = (M == ‘1’);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
SMUL<x><y><c> <Rd>,<Rn>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 0 0 0 1 Rn 1 1 1 1 Rd 0 0 N M Rm

Encoding A1 ARMv5TE*, ARMv6*, ARMv7
SMUL<x><y><c> <Rd>,<Rn>,<Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 1 0 1 1 0 Rd SBZ Rm 1 M N 0 Rn
A8-354 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
(0)(0)(0)(0)

Instruction Details
Assembler syntax

SMUL<x><y><c><q> {<Rd>,} <Rn>, <Rm>

where:

<x> Specifies which half of the source register <Rn> is used as the first multiply operand. If <x>
is B, then the bottom half (bits [15:0]) of <Rn> is used. If <x> is T, then the top half
(bits [31:16]) of <Rn> is used.

<y> Specifies which half of the source register <Rm> is used as the second multiply operand. If
<y> is B, then the bottom half (bits [15:0]) of <Rm> is used. If <y> is T, then the top half
(bits [31:16]) of <Rm> is used.

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The source register whose bottom or top half (selected by <x>) is the first multiply operand.

<Rm> The source register whose bottom or top half (selected by <y>) is the second multiply
operand.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 operand1 = if n_high then R[n]<31:16> else R[n]<15:0>;
 operand2 = if m_high then R[m]<31:16> else R[m]<15:0>;
 result = SInt(operand1) * SInt(operand2);
 R[d] = result<31:0>;
 // Signed overflow cannot occur

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-355

Instruction Details
A8.6.179 SMULL

Signed Multiply Long multiplies two 32-bit signed values to produce a 64-bit result.

In ARM code, the condition flags can optionally be updated based on the result. Use of this option adversely
affects performance on many processor implementations.

dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); setflags = FALSE;
if BadReg(dLo) || BadReg(dHi) || BadReg(n) || BadReg(m) then UNPREDICTABLE;
if dHi == dLo then UNPREDICTABLE;

dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); setflags = (S == ‘1’);
if dLo == 15 || dHi == 15 || n == 15 || m == 15 then UNPREDICTABLE;
if dHi == dLo then UNPREDICTABLE;
if ArchVersion() < 6 && (dHi == n || dLo == n) then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
SMULL<c> <RdLo>,<RdHi>,<Rn>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 1 0 0 0 Rn RdLo RdHi 0 0 0 0 Rm

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
SMULL{S}<c> <RdLo>,<RdHi>,<Rn>,<Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 0 1 1 0 S RdHi RdLo Rm 1 0 0 1 Rn
A8-356 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

SMULL{S}<c><q> <RdLo>, <RdHi>, <Rn>, <Rm>

where:

S If S is present, the instruction updates the flags. Otherwise, the flags are not updated.

S can be specified only for the ARM instruction set.

<c><q> See Standard assembler syntax fields on page A8-7.

<RdLo> Stores the lower 32 bits of the result.

<RdHi> Stores the upper 32 bits of the result.

<Rn> The first operand register.

<Rm> The second operand register.

The pre-UAL syntax SMULL<c>S is equivalent to SMULLS<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 result = SInt(R[n]) * SInt(R[m]);
 R[dHi] = result<63:32>;
 R[dLo] = result<31:0>;
 if setflags then
 APSR.N = result<63>;
 APSR.Z = IsZeroBit(result<63:0>);
 if ArchVersion() == 4 then
 APSR.C = bit UNKNOWN;
 APSR.V = bit UNKNOWN;
 // else APSR.C, APSR.V unchanged

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-357

Instruction Details
A8.6.180 SMULWB, SMULWT

Signed Multiply (word by halfword) multiplies a signed 32-bit quantity and a signed 16-bit quantity. The
signed 16-bit quantity is taken from either the bottom or the top half of its source register. The other half of
the second source register is ignored. The top 32 bits of the 48-bit product are written to the destination
register. The bottom 16 bits of the 48-bit product are ignored. No overflow is possible during this instruction.

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); m_high = (M == ‘1’);
if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); m_high = (M == ‘1’);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
SMULW<y><c> <Rd>,<Rn>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 0 0 1 1 Rn 1 1 1 1 Rd 0 0 0 M Rm

Encoding A1 ARMv5TE*, ARMv6*, ARMv7
SMULW<y><c> <Rd>,<Rn>,<Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 1 0 0 1 0 Rd SBZ Rm 1 M 1 0 Rn
A8-358 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
(0)(0)(0)(0)

Instruction Details
Assembler syntax

SMULW<y><c><q> {<Rd>,} <Rn>, <Rm>

where:

<y> Specifies which half of the source register <Rm> is used as the second multiply operand. If
<y> is B, then the bottom half (bits [15:0]) of <Rm> is used. If <y> is T, then the top half
(bits [31:16]) of <Rm> is used.

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The source register whose bottom or top half (selected by <y>) is the second multiply
operand.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 operand2 = if m_high then R[m]<31:16> else R[m]<15:0>;
 product = SInt(R[n]) * SInt(operand2);
 R[d] = product<47:16>;
 // Signed overflow cannot occur

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-359

Instruction Details
A8.6.181 SMUSD

Signed Dual Multiply Subtract performs two signed 16 × 16-bit multiplications. It subtracts one of the
products from the other, and writes the result to the destination register.

Optionally, you can exchange the halfwords of the second operand before performing the arithmetic. This
produces top × bottom and bottom × top multiplication.

Overflow cannot occur.

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); m_swap = (M == ‘1’);
if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); m_swap = (M == ‘1’);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
SMUSD{X}<c> <Rd>,<Rn>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 0 1 0 0 Rn 1 1 1 1 Rd 0 0 0 M Rm

Encoding A1 ARMv6*, ARMv7
SMUSD{X}<c> <Rd>,<Rn>,<Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 1 0 0 0 0 Rd 1 1 1 1 Rm 0 1 M 1 Rn
A8-360 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

SMUSD{X}<c><q> {<Rd>,} <Rn>, <Rm>

where:

X If X is present, the multiplications are bottom × top and top × bottom.

If the X is omitted, the multiplications are bottom × bottom and top × top.

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The second operand register.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 operand2 = if m_swap then ROR(R[m],16) else R[m];
 product1 = SInt(R[n]<15:0>) * SInt(operand2<15:0>);
 product2 = SInt(R[n]<31:16>) * SInt(operand2<31:16>);
 result = product1 - product2;
 R[d] = result<31:0>;
 // Signed overflow cannot occur

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-361

Instruction Details
A8.6.182 SRS

Store Return State is a system instruction. For details see SRS on page B6-20.

A8.6.183 SSAT

Signed Saturate saturates an optionally-shifted signed value to a selectable signed range.

The Q flag is set if the operation saturates.

if sh == ‘1’ && (imm3:imm2) == ‘00000’ then SEE SSAT16;
d = UInt(Rd); n = UInt(Rn); saturate_to = UInt(sat_imm)+1;
(shift_t, shift_n) = DecodeImmShift(sh:’0’, imm3:imm2);
if BadReg(d) || BadReg(n) then UNPREDICTABLE;

d = UInt(Rd); n = UInt(Rn); saturate_to = UInt(sat_imm)+1;
(shift_t, shift_n) = DecodeImmShift(sh:’0’, imm5);
if d == 15 || n == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
SSAT<c> <Rd>,#<imm>,<Rn>{,<shift>}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 (0) 1 1 0 0 sh 0 Rn 0 imm3 Rd imm2 (0) sat_imm

Encoding A1 ARMv6*, ARMv7
SSAT<c> <Rd>,#<imm>,<Rn>{,<shift>}

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 0 1 0 1 sat_imm Rd imm5 sh 0 1 Rn
A8-362 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

SSAT<c><q> <Rd>, #<imm>, <Rn> {,<shift>}

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<imm> The bit position for saturation, in the range 1 to 32.

<Rn> The register that contains the value to be saturated.

<shift> The optional shift, encoded in the sh bit and five bits in imm3:imm2 for encoding T1 and
imm5 for encoding A1. It must be one of:

omitted No shift. Encoded as sh = 0, five bits = 0b00000

LSL #<n> Left shift by <n> bits, with <n> in the range 1-31.

Encoded as sh = 0, five bits = <n>.

ASR #<n> Arithmetic right shift by <n> bits, with <n> in the range 1-31.

Encoded as sh = 1, five bits = <n>.

ASR #32 Arithmetic right shift by 32 bits, permitted only for encoding A1.

Encoded as sh = 1, imm5 = 0b00000.

Note
 An assembler can permit ASR #0 or LSL #0 to mean the same thing as omitting the shift, but

this is not standard UAL and must not be used for disassembly.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 operand = Shift(R[n], shift_t, shift_n, APSR.C); // APSR.C ignored
 (result, sat) = SignedSatQ(SInt(operand), saturate_to);
 R[d] = SignExtend(result, 32);
 if sat then
 APSR.Q = ‘1’;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-363

ARM_2011_Q2
Inserted Text
The sat_imm field of the instruction encodes this bit position, as <imm>-1.

ARM_2011_Q2
Sticky Note
The inserted text specifies how this value is encoded.

Instruction Details
A8.6.184 SSAT16

Signed Saturate 16 saturates two signed 16-bit values to a selected signed range.

The Q flag is set if the operation saturates.

d = UInt(Rd); n = UInt(Rn); saturate_to = UInt(sat_imm)+1;
if BadReg(d) || BadReg(n) then UNPREDICTABLE;

d = UInt(Rd); n = UInt(Rn); saturate_to = UInt(sat_imm)+1;
if d == 15 || n == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
SSAT16<c> <Rd>,#<imm>,<Rn>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 (0) 1 1 0 0 1 0 Rn 0 0 0 0 Rd 0 0 (0) (0) sat_imm

Encoding A1 ARMv6*, ARMv7
SSAT16<c> <Rd>,#<imm>,<Rn>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 0 1 0 1 0 sat_imm Rd (1) (1) (1) (1) 0 0 1 1 Rn
A8-364 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

SSAT16<c><q> <Rd>, #<imm>, <Rn>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<imm> The bit position for saturation, in the range 1 to 16.

<Rn> The register that contains the values to be saturated.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 (result1, sat1) = SignedSatQ(SInt(R[n]<15:0>), saturate_to);
 (result2, sat2) = SignedSatQ(SInt(R[n]<31:16>), saturate_to);
 R[d]<15:0> = SignExtend(result1, 16);
 R[d]<31:16> = SignExtend(result2, 16);
 if sat1 || sat2 then
 APSR.Q = ‘1’;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-365

ARM_2011_Q2
Inserted Text
 The sat_imm field of the instruction encodes this bit position, as <imm>-1.

ARM_2011_Q2
Sticky Note
The inserted text specifies how this value is encoded.

Instruction Details
A8.6.185 SSAX

Signed Subtract and Add with Exchange exchanges the two halfwords of the second operand, performs one
16-bit integer subtraction and one 16-bit addition, and writes the results to the destination register. It sets the
APSR.GE bits according to the results.

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
SSAX<c> <Rd>,<Rn>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 1 1 0 Rn 1 1 1 1 Rd 0 0 0 0 Rm

Encoding A1 ARMv6*, ARMv7
SSAX<c> <Rd>,<Rn>,<Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 0 0 0 0 1 Rn Rd (1) (1) (1) (1) 0 1 0 1 Rm
A8-366 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

SSAX<c><q> {<Rd>,} <Rn>, <Rm>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The second operand register.

The pre-UAL syntax SSUBADDX<c> is equivalent to SSAX<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 sum = SInt(R[n]<15:0>) + SInt(R[m]<31:16>);
 diff = SInt(R[n]<31:16>) - SInt(R[m]<15:0>);
 R[d]<15:0> = sum<15:0>;
 R[d]<31:16> = diff<15:0>;
 APSR.GE<1:0> = if sum >= 0 then ‘11’ else ‘00’;
 APSR.GE<3:2> = if diff >= 0 then ‘11’ else ‘00’;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-367

Instruction Details
A8.6.186 SSUB16

Signed Subtract 16 performs two 16-bit signed integer subtractions, and writes the results to the destination
register. It sets the APSR.GE bits according to the results of the subtractions.

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
SSUB16<c> <Rd>,<Rn>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 1 0 1 Rn 1 1 1 1 Rd 0 0 0 0 Rm

Encoding A1 ARMv6*, ARMv7
SSUB16<c> <Rd>,<Rn>,<Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 0 0 0 0 1 Rn Rd (1) (1) (1) (1) 0 1 1 1 Rm
A8-368 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

SSUB16<c><q> {<Rd>,} <Rn>, <Rm>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The second operand register.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 diff1 = SInt(R[n]<15:0>) - SInt(R[m]<15:0>);
 diff2 = SInt(R[n]<31:16>) - SInt(R[m]<31:16>);
 R[d]<15:0> = diff1<15:0>;
 R[d]<31:16> = diff2<15:0>;
 APSR.GE<1:0> = if diff1 >= 0 then ‘11’ else ‘00’;
 APSR.GE<3:2> = if diff2 >= 0 then ‘11’ else ‘00’;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-369

Instruction Details
A8.6.187 SSUB8

Signed Subtract 8 performs four 8-bit signed integer subtractions, and writes the results to the destination
register. It sets the APSR.GE bits according to the results of the subtractions.

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
SSUB8<c> <Rd>,<Rn>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 1 0 0 Rn 1 1 1 1 Rd 0 0 0 0 Rm

Encoding A1 ARMv6*, ARMv7
SSUB8<c> <Rd>,<Rn>,<Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 0 0 0 0 1 Rn Rd (1) (1) (1) (1) 1 1 1 1 Rm
A8-370 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

SSUB8<c><q> {<Rd>,} <Rn>, <Rm>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The second operand register.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 diff1 = SInt(R[n]<7:0>) - SInt(R[m]<7:0>);
 diff2 = SInt(R[n]<15:8>) - SInt(R[m]<15:8>);
 diff3 = SInt(R[n]<23:16>) - SInt(R[m]<23:16>);
 diff4 = SInt(R[n]<31:24>) - SInt(R[m]<31:24>);
 R[d]<7:0> = diff1<7:0>;
 R[d]<15:8> = diff2<7:0>;
 R[d]<23:16> = diff3<7:0>;
 R[d]<31:24> = diff4<7:0>;
 APSR.GE<0> = if diff1 >= 0 then ‘1’ else ‘0’;
 APSR.GE<1> = if diff2 >= 0 then ‘1’ else ‘0’;
 APSR.GE<2> = if diff3 >= 0 then ‘1’ else ‘0’;
 APSR.GE<3> = if diff4 >= 0 then ‘1’ else ‘0’;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-371

Instruction Details
A8.6.188 STC, STC2

Store Coprocessor stores data from a coprocessor to a sequence of consecutive memory addresses. If no
coprocessor can execute the instruction, an Undefined Instruction exception is generated.

This is a generic coprocessor instruction. Some of the fields have no functionality defined by the architecture
and are free for use by the coprocessor instruction set designer. These fields are the D bit, the CRd field, and
in the Unindexed addressing mode only, the imm8 field.

For more information about the coprocessors see Coprocessor support on page A2-68.

if P == ‘0’ && U == ‘0’ && D == ‘0’ && W == ‘0’ then UNDEFINED;
if P == ‘0’ && U == ‘0’ && D == ‘1’ && W == ‘0’ then SEE MCRR, MCRR2;
if coproc == ‘101x’ then SEE “Advanced SIMD and VFP”;
n = UInt(Rn); cp = UInt(coproc); imm32 = ZeroExtend(imm8:’00’, 32);
index = (P == ‘1’); add = (U == ‘1’); wback = (W == ‘1’);
if n == 15 && (wback || CurrentInstrSet() != InstrSet_ARM) then UNPREDICTABLE;

if P == ‘0’ && U == ‘0’ && D == ‘0’ && W == ‘0’ then UNDEFINED;
if P == ‘0’ && U == ‘0’ && D == ‘1’ && W == ‘0’ then SEE MCRR, MCRR2;
n = UInt(Rn); cp = UInt(coproc); imm32 = ZeroExtend(imm8:’00’, 32);
index = (P == ‘1’); add = (U == ‘1’); wback = (W == ‘1’);
if n == 15 && (wback || CurrentInstrSet() != InstrSet_ARM) then UNPREDICTABLE;

Encoding T1 / A1 ARMv6T2, ARMv7 for encoding T1

ARMv4*, ARMv5T*, ARMv6*, ARMv7 for encoding A1
STC{L}<c> <coproc>,<CRd>,[<Rn>,#+/-<imm>]{!}

STC{L}<c> <coproc>,<CRd>,[<Rn>],#+/-<imm>

STC{L}<c> <coproc>,<CRd>,[<Rn>],<option>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 P U D W 0 Rn CRd coproc imm8

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 0 P U D W 0 Rn CRd coproc imm8

Encoding T2 / A2 ARMv6T2, ARMv7 for encoding T2

ARMv5T*, ARMv6*, ARMv7 for encodingA2
STC2{L}<c> <coproc>,<CRd>,[<Rn>,#+/-<imm>]{!}

STC2{L}<c> <coproc>,<CRd>,[<Rn>],#+/-<imm>

STC2{L}<c> <coproc>,<CRd>,[<Rn>],<option>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 0 P U D W 0 Rn CRd coproc imm8

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 0 P U D W 0 Rn CRd coproc imm8

Advanced SIMD and VFP See Extension register load/store instructions on page A7-26
A8-372 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2008_Q4
Inserted Text

Instruction Details
Assembler syntax

where:

2 If specified, selects encoding T2 / A2. If omitted, selects encoding T1 / A1.

L If specified, selects the D == 1 form of the encoding. If omitted, selects the D == 0 form.

<c><q> See Standard assembler syntax fields on page A8-7. An ARM STC2 instruction must be
unconditional.

<coproc> The name of the coprocessor. The standard generic coprocessor names are p0, p1, …, p15.

<CRd> The coprocessor source register.

<Rn> The base register. The SP can be used. In the ARM instruction set, for offset and unindexed
addressing only, the PC can be used. However, use of the PC is deprecated.

+/- Is + or omitted if the immediate offset is to be added to the base register value (add == TRUE),
or – if it is to be subtracted (add == FALSE). #0 and #-0 generate different instructions.

<imm> The immediate offset used to form the address. Values are multiples of 4 in the range
0-1020. For the offset addressing syntax, <imm> can be omitted, meaning an offset of +0.

<option> A coprocessor option. An integer in the range 0-255 enclosed in { }. Encoded in imm8.

The pre-UAL syntax STC<c>L is equivalent to STCL<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 if !Coproc_Accepted(cp, ThisInstr()) then
 GenerateCoprocessorException();
 else
 NullCheckIfThumbEE(n);
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];
 repeat
 MemA[address,4] = Coproc_GetWordToStore(cp, ThisInstr()); address = address + 4;
 until Coproc_DoneStoring(cp, ThisInstr());
 if wback then R[n] = offset_addr;

Exceptions

Undefined Instruction, Data Abort.

STC{2}{L}<c><q> <coproc>,<CRd>,[<Rn>{,#+/-<imm>}] Offset. P = 1, W = 0.
STC{2}{L}<c><q> <coproc>,<CRd>,[<Rn>,#+/-<imm>]! Pre-indexed. P = 1, W = 1.
STC{2}{L}<c><q> <coproc>,<CRd>,[<Rn>],#+/-<imm> Post-indexed. P = 0, W = 1.
STC{2}{L}<c><q> <coproc>,<CRd>,[<Rn>],<option> Unindexed. P = 0, W = 0, U = 1.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-373

Instruction Details
A8.6.189 STM / STMIA / STMEA

Store Multiple Increment After (Store Multiple Empty Ascending) stores multiple registers to consecutive
memory locations using an address from a base register. The consecutive memory locations start at this
address, and the address just above the last of those locations can optionally be written back to the base
register.

For details of related system instructions see STM (user registers) on page B6-22.

n = UInt(Rn); registers = ‘00000000’:register_list; wback = TRUE;
if BitCount(registers) < 1 then UNPREDICTABLE;

n = UInt(Rn); registers = ‘0’:M:’0’:register_list; wback = (W == ‘1’);
if n == 15 || BitCount(registers) < 2 then UNPREDICTABLE;
if wback && registers<n> == ‘1’ then UNPREDICTABLE;

n = UInt(Rn); registers = register_list; wback = (W == ‘1’);
if n == 15 || BitCount(registers) < 1 then UNPREDICTABLE;

Assembler syntax

STM<c><q> <Rn>{!}, <registers>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rn> The base register. The SP can be used.

! Causes the instruction to write a modified value back to <Rn>. Encoded as W = 1.

If ! is omitted, the instruction does not change <Rn> in this way. Encoded as W = 0.

Encoding T1 ARMv4T, ARMv5T*, ARMv6*, ARMv7 (not in ThumbEE)
STM<c> <Rn>!,<registers>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 0 Rn register_list

Encoding T2 ARMv6T2, ARMv7
STM<c>.W <Rn>{!},<registers>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 0 W 0 Rn (0) M (0) register_list

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
STM<c> <Rn>{!},<registers>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 0 0 0 1 0 W 0 Rn register_list
A8-374 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2008_Q4
Inserted Text
if CurrentInstrSet() == InstrSet_ThumbEE then SEE "ThumbEE instructions";

ARM_2008_Q4
Inserted Text
ThumbEE instructions See 16-bit ThumbEE instructions on page A9-6 [PDF page 1132]

Instruction Details
<registers> Is a list of one or more registers to be stored, separated by commas and surrounded by
{ and }. The lowest-numbered register is stored to the lowest memory address, through to
the highest-numbered register to the highest memory address.

Encoding T2 does not support a list containing only one register. If an STM instruction with
just one register <Rt> in the list is assembled to Thumb and encoding T1 is not available, it
is assembled to the equivalent STR<c><q> <Rt>,[<Rn>]{,#4} instruction.

The SP and PC can be in the list in ARM code, but not in Thumb code. However, ARM
instructions that include the SP or the PC in the list are deprecated.

Encoding T2 is not available for instructions with the base register in the list and ! specified,
and the use of such instructions is deprecated. If the base register is not the lowest-numbered
register in the list, such an instruction stores an UNKNOWN value for the base register.

STMEA and STMIA are pseudo-instructions for STM. STMEA refers to its use for pushing data onto Empty
Ascending stacks.

The pre-UAL syntaxes STM<c>IA and STM<c>EA are equivalent to STM<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); NullCheckIfThumbEE(n);
 address = R[n];
 for i = 0 to 14
 if registers<i> == ‘1’ then
 if i == n && wback && i != LowestSetBit(registers) then
 MemA[address,4] = bits(32) UNKNOWN; // Only possible for encodings T1 and A1
 else
 MemA[address,4] = R[i];
 address = address + 4;
 if registers<15> == ‘1’ then // Only possible for encoding A1
 MemA[address,4] = PCStoreValue();
 if wback then R[n] = R[n] + 4*BitCount(registers);

Exceptions

Data Abort.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-375

Instruction Details
A8.6.190 STMDA / STMED

Store Multiple Decrement After (Store Multiple Empty Descending) stores multiple registers to consecutive
memory locations using an address from a base register. The consecutive memory locations end at this
address, and the address just below the lowest of those locations can optionally be written back to the base
register.

For details of related system instructions see STM (user registers) on page B6-22.

n = UInt(Rn); registers = register_list; wback = (W == ‘1’);
if n == 15 || BitCount(registers) < 1 then UNPREDICTABLE;

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
STMDA<c> <Rn>{!},<registers>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 0 0 0 0 0 W 0 Rn register_list
A8-376 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

STMDA<c><q> <Rn>{!}, <registers>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rn> The base register. The SP can be used.

! Causes the instruction to write a modified value back to <Rn>. Encoded as W = 1.

If ! is omitted, the instruction does not change <Rn> in this way. Encoded as W = 0.

<registers> Is a list of one or more registers to be stored, separated by commas and surrounded by
{ and }. The lowest-numbered register is stored to the lowest memory address, through to
the highest-numbered register to the highest memory address.

The SP and PC can be in the list. However, instructions that include the SP or the PC in the
list are deprecated.

The use of instructions with the base register in the list and ! specified is deprecated. If the
base register is not the lowest-numbered register in the list, such an instruction stores an
UNKNOWN value for the base register.

STMED is s pseudo-instruction for STMDA, referring to its use for pushing data onto Empty Descending stacks.

The pre-UAL syntaxes STM<c>DA and STM<c>ED are equivalent to STMDA<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n] - 4*BitCount(registers) + 4;
 for i = 0 to 14
 if registers<i> == ‘1’ then
 if i == n && wback && i != LowestSetBit(registers) then
 MemA[address,4] = bits(32) UNKNOWN;
 else
 MemA[address,4] = R[i];
 address = address + 4;
 if registers<15> == ‘1’ then
 MemA[address,4] = PCStoreValue();
 if wback then R[n] = R[n] - 4*BitCount(registers);

Exceptions

Data Abort.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-377

Instruction Details
A8.6.191 STMDB / STMFD

Store Multiple Decrement Before (Store Multiple Full Descending) stores multiple registers to consecutive
memory locations using an address from a base register. The consecutive memory locations end just below
this address, and the address of the first of those locations can optionally be written back to the base register.

For details of related system instructions see STM (user registers) on page B6-22.

if W == ‘1’ && Rn == ‘1101’ then SEE PUSH;
n = UInt(Rn); registers = ‘0’:M:’0’:register_list; wback = (W == ‘1’);
if n == 15 || BitCount(registers) < 2 then UNPREDICTABLE;
if wback && registers<n> == ‘1’ then UNPREDICTABLE;

if W == ‘1’ && Rn == ‘1101’ && BitCount(register_list) >= 2 then SEE PUSH;
n = UInt(Rn); registers = register_list; wback = (W == ‘1’);
if n == 15 || BitCount(registers) < 1 then UNPREDICTABLE;

Assembler syntax

STMDB<c><q> <Rn>{!}, <registers>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rn> The base register. The SP can be used. If it is the SP and ! is specified, it is treated as
described in PUSH on page A8-248.

! Causes the instruction to write a modified value back to <Rn>. Encoded as W = 1.

If ! is omitted, the instruction does not change <Rn> in this way. Encoded as W = 0.

<registers> Is a list of one or more registers to be stored, separated by commas and surrounded by
{ and }. The lowest-numbered register is stored to the lowest memory address, through to
the highest-numbered register to the highest memory address.

Encoding T1 does not support a list containing only one register. If an STMDB instruction with
just one register <Rt> in the list is assembled to Thumb, it is assembled to the equivalent
STR<c><q> <Rt>,[<Rn>,#-4]{!} instruction.

Encoding T1 ARMv6T2, ARMv7
STMDB<c> <Rn>{!},<registers>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 1 0 0 W 0 Rn (0) M (0) register_list

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
STMDB<c> <Rn>{!},<registers>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 0 0 1 0 0 W 0 Rn register_list
A8-378 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Replacement Text
 then:
 • in the Thumb instruction set, if ! is specified it is treated as described in PUSH on page A8-248 [PDF page 560]
 • in the ARM instruction set, if ! is specified and there is more than one register in the list, it is treated as described in PUSH on page A8-248 [PDF page 560].

Instruction Details
The SP and PC can be in the list in ARM code, but not in Thumb code. However, ARM
instructions that include the SP or the PC in the list are deprecated.

Instructions with the base register in the list and ! specified are only available in the ARM
instruction set, and the use of such instructions is deprecated. If the base register is not the
lowest-numbered register in the list, such an instruction stores an UNKNOWN value for the
base register.

STMFD is a pseudo-instruction for STMDB, referring to its use for pushing data onto Full Descending stacks.

The pre-UAL syntaxes STM<c>DB and STM<c>FD are equivalent to STMDB<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); NullCheckIfThumbEE(n);
 address = R[n] - 4*BitCount(registers);
 for i = 0 to 14
 if registers<i> == ‘1’ then
 if i == n && wback && i != LowestSetBit(registers) then
 MemA[address,4] = bits(32) UNKNOWN; // Only possible for encoding A1
 else
 MemA[address,4] = R[i];
 address = address + 4;
 if registers<15> == ‘1’ then // Only possible for encoding A1
 MemA[address,4] = PCStoreValue();
 if wback then R[n] = R[n] - 4*BitCount(registers);

Exceptions

Data Abort.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-379

Instruction Details
A8.6.192 STMIB / STMFA

Store Multiple Increment Before (Store Multiple Full Ascending) stores multiple registers to consecutive
memory locations using an address from a base register. The consecutive memory locations start just above
this address, and the address of the last of those locations can optionally be written back to the base register.

For details of related system instructions see STM (user registers) on page B6-22.

n = UInt(Rn); registers = register_list; wback = (W == ‘1’);
if n == 15 || BitCount(registers) < 1 then UNPREDICTABLE;

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
STMIB<c> <Rn>{!},<registers>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 0 0 1 1 0 W 0 Rn register_list
A8-380 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

STMIB<c><q> <Rn>{!}, <registers>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rn> The base register. The SP can be used.

! Causes the instruction to write a modified value back to <Rn>. Encoded as W = 1.

If ! is omitted, the instruction does not change <Rn> in this way. Encoded as W = 0.

<registers> Is a list of one or more registers to be stored, separated by commas and surrounded by
{ and }. The lowest-numbered register is stored to the lowest memory address, through to
the highest-numbered register to the highest memory address.

The SP and PC can be in the list. However, instructions that include the SP or the PC in the
list are deprecated.

The use of instructions with the base register in the list and ! specified is deprecated. If the
base register is not the lowest-numbered register in the list, such an instruction stores an
UNKNOWN value for the base register.

STMFA is a pseudo-instruction for STMIB, referring to its use for pushing data onto Full Ascending stacks.

The pre-UAL syntax STM<c>IB and STM<c>FA are equivalent to STMIB<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n] + 4;
 for i = 0 to 14
 if registers<i> == ‘1’ then
 if i == n && wback && i != LowestSetBit(registers) then
 MemA[address,4] = bits(32) UNKNOWN;
 else
 MemA[address,4] = R[i];
 address = address + 4;
 if registers<15> == ‘1’ then
 MemA[address,4] = PCStoreValue();
 if wback then R[n] = R[n] + 4*BitCount(registers);

Exceptions

Data Abort.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-381

Instruction Details
A8.6.193 STR (immediate, Thumb)

Store Register (immediate) calculates an address from a base register value and an immediate offset, and
stores a word from a register to memory. It can use offset, post-indexed, or pre-indexed addressing. For
information about memory accesses see Memory accesses on page A8-13.

t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm5:’00’, 32);
index = TRUE; add = TRUE; wback = FALSE;

t = UInt(Rt); n = 13; imm32 = ZeroExtend(imm8:’00’, 32);
index = TRUE; add = TRUE; wback = FALSE;

if Rn == ‘1111’ then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
index = TRUE; add = TRUE; wback = FALSE;
if t == 15 then UNPREDICTABLE;

if P == ‘1’ && U == ‘1’ && W == ‘0’ then SEE STRT;
if Rn == ‘1101’ && P == ‘1’ && U == ‘0’ && W == ‘1’ && imm8 == ‘00000100’ then SEE PUSH;
if Rn == ‘1111’ || (P == ‘0’ && W == ‘0’) then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
index = (P == ‘1’); add = (U == ‘1’); wback = (W == ‘1’);
if t == 15 || (wback && n == t) then UNPREDICTABLE;

Encoding T1 ARMv4T, ARMv5T*, ARMv6*, ARMv7
STR<c> <Rt>, [<Rn>{,#<imm>}]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 imm5 Rn Rt

Encoding T2 ARMv4T, ARMv5T*, ARMv6*, ARMv7
STR<c> <Rt>,[SP,#<imm>]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 0 Rt imm8

Encoding T3 ARMv6T2, ARMv7
STR<c>.W <Rt>,[<Rn>,#<imm12>]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 1 1 0 0 Rn Rt imm12

Encoding T4 ARMv6T2, ARMv7
STR<c> <Rt>,[<Rn>,#-<imm8>]

STR<c> <Rt>,[<Rn>],#+/-<imm8>

STR<c> <Rt>,[<Rn>,#+/-<imm8>]!

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 1 0 0 Rn Rt 1 P U W imm8
A8-382 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rt> The source register. The SP can be used.

<Rn> The base register. The SP can be used.

+/- Is + or omitted if the immediate offset is to be added to the base register value (add == TRUE),
or – if it is to be subtracted (add == FALSE). #0 and #-0 generate different instructions.

<imm> The immediate offset used to form the address. Values are:

Encoding T1 multiples of 4 in the range 0-124

Encoding T2 multiples of 4 in the range 0-1020

Encoding T3 any value in the range 0-4095

Encoding T4 any value in the range 0-255.

For the offset addressing syntax, <imm> can be omitted, meaning an offset of 0.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); NullCheckIfThumbEE(n);
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];
 if UnalignedSupport() || address<1:0> == ‘00’ then
 MemU[address,4] = R[t];
 else // Can only occur before ARMv7
 MemU[address,4] = bits(32) UNKNOWN;
 if wback then R[n] = offset_addr;

Exceptions

Data Abort.

ThumbEE instruction

ThumbEE has an additional STR (immediate) encoding. For details see STR (immediate) on page A9-21.

STR<c><q> <Rt>, [<Rn> {, #+/-<imm>}] Offset: index==TRUE, wback==FALSE
STR<c><q> <Rt>, [<Rn>, #+/-<imm>]! Pre-indexed: index==TRUE, wback==TRUE
STR<c><q> <Rt>, [<Rn>], #+/-<imm> Post-indexed: index==FALSE, wback==TRUE
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-383

Instruction Details
A8.6.194 STR (immediate, ARM)

Store Register (immediate) calculates an address from a base register value and an immediate offset, and
stores a word from a register to memory. It can use offset, post-indexed, or pre-indexed addressing. For
information about memory accesses see Memory accesses on page A8-13.

if P == ‘0’ && W == ‘1’ then SEE STRT;
if Rn == ‘1101’ && P == ‘1’ && U == ‘0’ && W == ‘1’ && imm12 == ‘000000000100’ then SEE PUSH;
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
index = (P == ‘1’); add = (U == ‘1’); wback = (P == ‘0’) || (W == ‘1’);
if wback && (n == 15 || n == t) then UNPREDICTABLE;

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
STR<c> <Rt>,[<Rn>{,#+/-<imm12>}]

STR<c> <Rt>,[<Rn>],#+/-<imm12>

STR<c> <Rt>,[<Rn>,#+/-<imm12>]!

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 0 P U 0 W 0 Rn Rt imm12
A8-384 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rt> The source register. The SP or the PC can be used. However, use of the PC is deprecated.

<Rn> The base register. The SP can be used. For offset addressing only, the PC can be used.
However, use of the PC is deprecated.

+/- Is + or omitted if the immediate offset is to be added to the base register value (add == TRUE),
or – if it is to be subtracted (add == FALSE). #0 and #-0 generate different instructions.

<imm> The immediate offset used to form the address. Any value in the range 0-4095 is permitted.
For the offset addressing syntax, <imm> can be omitted, meaning an offset of 0.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];
 MemU[address,4] = if t == 15 then PCStoreValue() else R[t];
 if wback then R[n] = offset_addr;

Exceptions

Data Abort.

STR<c><q> <Rt>, [<Rn> {, #+/-<imm>}] Offset: index==TRUE, wback==FALSE
STR<c><q> <Rt>, [<Rn>, #+/-<imm>]! Pre-indexed: index==TRUE, wback==TRUE
STR<c><q> <Rt>, [<Rn>], #+/-<imm> Post-indexed: index==FALSE, wback==TRUE
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-385

Instruction Details
A8.6.195 STR (register)

Store Register (register) calculates an address from a base register value and an offset register value, stores
a word from a register to memory. The offset register value can optionally be shifted. For information about
memory accesses see Memory accesses on page A8-13.

if CurrentInstrSet() == InstrSet_ThumbEE then SEE “Modified operation in ThumbEE”;
t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; wback = FALSE;
(shift_t, shift_n) = (SRType_LSL, 0);

if Rn == ‘1111’ then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; wback = FALSE;
(shift_t, shift_n) = (SRType_LSL, UInt(imm2));
if t == 15 || BadReg(m) then UNPREDICTABLE;

if P == ‘0’ && W == ‘1’ then SEE STRT;
t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = (P == ‘1’); add = (U == ‘1’); wback = (P == ‘0’) || (W == ‘1’);
(shift_t, shift_n) = DecodeImmShift(type, imm5);
if m == 15 then UNPREDICTABLE;
if wback && (n == 15 || n == t) then UNPREDICTABLE;
if ArchVersion() < 6 && wback && m == n then UNPREDICTABLE;

Encoding T1 ARMv4T, ARMv5T*, ARMv6*, ARMv7
STR<c> <Rt>,[<Rn>,<Rm>]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 0 0 Rm Rn Rt

Encoding T2 ARMv6T2, ARMv7
STR<c>.W <Rt>,[<Rn>,<Rm>{,LSL #<imm2>}]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 1 0 0 Rn Rt 0 0 0 0 0 0 imm2 Rm

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
STR<c> <Rt>,[<Rn>,+/-<Rm>{, <shift>}]{!}

STR<c> <Rt>,[<Rn>],+/-<Rm>{, <shift>}

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 P U 0 W 0 Rn Rt imm5 type 0 Rm

Modified operation in ThumbEE See STR (register) on page A9-12
A8-386 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rt> The source register. The SP can be used. In the ARM instruction set, the PC can be used.
However, use of the PC is deprecated.

<Rn> The base register. The SP can be used. In the ARM instruction set, for offset addressing only,
the PC can be used. However, use of the PC is deprecated.

+/- Is + or omitted if the optionally shifted value of <Rm> is to be added to the base register value
(add == TRUE), or – if it is to be subtracted (permitted in ARM code only, add == FALSE).

<Rm> Contains the offset that is optionally shifted and added to the value of <Rn> to form the
address.

<shift> The shift to apply to the value read from <Rm>. If present, encoding T1 is not permitted. If
absent, no shift is applied and all encodings are permitted. For encoding T2, <shift> can
only be omitted, encoded as imm2 = 0b00, or LSL #<imm> with <imm> = 1, 2, or 3, and <imm>
encoded in imm2. For encoding A1, see Shifts applied to a register on page A8-10.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); NullCheckIfThumbEE(n);
 offset = Shift(R[m], shift_t, shift_n, APSR.C);
 offset_addr = if add then (R[n] + offset) else (R[n] - offset);
 address = if index then offset_addr else R[n];
 if t == 15 then // Only possible for encoding A1
 data = PCStoreValue();
 else
 data = R[t];
 if UnalignedSupport() || address<1:0> == ‘00’ || CurrentInstrSet() == InstrSet_ARM then
 MemU[address,4] = data;
 else // Can only occur before ARMv7
 MemU[address,4] = bits(32) UNKNOWN;
 if wback then R[n] = offset_addr;

Exceptions

Data Abort.

STR<c><q> <Rt>, [<Rn>, <Rm>{, <shift>}] Offset: index==TRUE, wback==FALSE
STR<c><q> <Rt>, [<Rn>, <Rm>{, <shift>}]! Pre-indexed: index==TRUE, wback==TRUE
STR<c><q> <Rt>, [<Rn>], <Rm>{, <shift>} Post-indexed: index==FALSE, wback==TRUE
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-387

Instruction Details
A8.6.196 STRB (immediate, Thumb)

Store Register Byte (immediate) calculates an address from a base register value and an immediate offset,
and stores a byte from a register to memory. It can use offset, post-indexed, or pre-indexed addressing. For
information about memory accesses see Memory accesses on page A8-13.

t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm5, 32);
index = TRUE; add = TRUE; wback = FALSE;

if Rn == ‘1111’ then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
index = TRUE; add = TRUE; wback = FALSE;
if BadReg(t) then UNPREDICTABLE;

if P == ‘1’ && U == ‘1’ && W == ‘0’ then SEE STRBT;
if Rn == ‘1111’ || (P == ‘0’ && W == ‘0’) then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
index = (P == ‘1’); add = (U == ‘1’); wback = (W == ‘1’);
if BadReg(t) || (wback && n == t) then UNPREDICTABLE;

Encoding T1 ARMv4T, ARMv5T*, ARMv6*, ARMv7
STRB<c> <Rt>,[<Rn>,#<imm5>]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0 imm5 Rn Rt

Encoding T2 ARMv6T2, ARMv7
STRB<c>.W <Rt>,[<Rn>,#<imm12>]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 1 0 0 0 Rn Rt imm12

Encoding T3 ARMv6T2, ARMv7
STRB<c> <Rt>,[<Rn>,#-<imm8>]

STRB<c> <Rt>,[<Rn>],#+/-<imm8>

STRB<c> <Rt>,[<Rn>,#+/-<imm8>]!

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 0 0 Rn Rt 1 P U W imm8
A8-388 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rt> The source register.

<Rn> The base register. The SP can be used.

+/- Is + or omitted if the immediate offset is to be added to the base register value (add == TRUE),
or – if it is to be subtracted (add == FALSE). #0 and #-0 generate different instructions.

<imm> The immediate offset used to form the address. Values are:

Encoding T1 any value in the range 0-31

Encoding T2 any value in the range 0-4095

Encoding T3 any value in the range 0-255.

For the offset addressing syntax, <imm> can be omitted, meaning an offset of 0.

The pre-UAL syntax STR<c>B is equivalent to STRB<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); NullCheckIfThumbEE(n);
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];
 MemU[address,1] = R[t]<7:0>;
 if wback then R[n] = offset_addr;

Exceptions

Data Abort.

STRB<c><q> <Rt>, [<Rn> {, #+/-<imm>}] Offset: index==TRUE, wback==FALSE
STRB<c><q> <Rt>, [<Rn>, #+/-<imm>]! Pre-indexed: index==TRUE, wback==TRUE
STRB<c><q> <Rt>, [<Rn>], #+/-<imm> Post-indexed: index==FALSE, wback==TRUE
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-389

Instruction Details
A8.6.197 STRB (immediate, ARM)

Store Register Byte (immediate) calculates an address from a base register value and an immediate offset,
and stores a byte from a register to memory. It can use offset, post-indexed, or pre-indexed addressing. For
information about memory accesses see Memory accesses on page A8-13.

if P == ‘0’ && W == ‘1’ then SEE STRBT;
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
index = (P == ‘1’); add = (U == ‘1’); wback = (P == ‘0’) || (W == ‘1’);
if t == 15 then UNPREDICTABLE;
if wback && (n == 15 || n == t) then UNPREDICTABLE;

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
STRB<c> <Rt>,[<Rn>{,#+/-<imm12>}]

STRB<c> <Rt>,[<Rn>],#+/-<imm12>

STRB<c> <Rt>,[<Rn>,#+/-<imm12>]!

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 0 P U 1 W 0 Rn Rt imm12
A8-390 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rt> The source register.

<Rn> The base register. The SP can be used. For offset addressing only, the PC can be used.
However, use of the PC is deprecated.

+/- Is + or omitted if the immediate offset is to be added to the base register value (add == TRUE),
or – if it is to be subtracted (add == FALSE). #0 and #-0 generate different instructions.

<imm> The immediate offset used to form the address. Values are 0-4095. For the offset addressing
syntax, <imm> can be omitted, meaning an offset of 0.

The pre-UAL syntax STR<c>B is equivalent to STRB<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];
 MemU[address,1] = R[t]<7:0>;
 if wback then R[n] = offset_addr;

Exceptions

Data Abort.

STRB<c><q> <Rt>, [<Rn> {, #+/-<imm>}] Offset: index==TRUE, wback==FALSE
STRB<c><q> <Rt>, [<Rn>, #+/-<imm>]! Pre-indexed: index==TRUE, wback==TRUE
STRB<c><q> <Rt>, [<Rn>], #+/-<imm> Post-indexed: index==FALSE, wback==TRUE
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-391

Instruction Details
A8.6.198 STRB (register)

Store Register Byte (register) calculates an address from a base register value and an offset register value,
and stores a byte from a register to memory. The offset register value can optionally be shifted. For
information about memory accesses see Memory accesses on page A8-13.

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; wback = FALSE;
(shift_t, shift_n) = (SRType_LSL, 0);

if Rn == ‘1111’ then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; wback = FALSE;
(shift_t, shift_n) = (SRType_LSL, UInt(imm2));
if BadReg(t) || BadReg(m) then UNPREDICTABLE;

if P == ‘0’ && W == ‘1’ then SEE STRBT;
t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = (P == ‘1’); add = (U == ‘1’); wback = (P == ‘0’) || (W == ‘1’);
(shift_t, shift_n) = DecodeImmShift(type, imm5);
if t == 15 || m == 15 then UNPREDICTABLE;
if wback && (n == 15 || n == t) then UNPREDICTABLE;
if ArchVersion() < 6 && wback && m == n then UNPREDICTABLE;

Encoding T1 ARMv4T, ARMv5T*, ARMv6*, ARMv7
STRB<c> <Rt>,[<Rn>,<Rm>]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 1 0 Rm Rn Rt

Encoding T2 ARMv6T2, ARMv7
STRB<c>.W <Rt>,[<Rn>,<Rm>{,LSL #<imm2>}]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 0 0 Rn Rt 0 0 0 0 0 0 imm2 Rm

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
STRB<c> <Rt>,[<Rn>,+/-<Rm>{, <shift>}]{!}

STRB<c> <Rt>,[<Rn>],+/-<Rm>{, <shift>}

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 P U 1 W 0 Rn Rt imm5 type 0 Rm
A8-392 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rt> The source register.

<Rn> The base register. The SP can be used. In the ARM instruction set, for offset addressing only,
the PC can be used. However, use of the PC is deprecated.

+/- Is + or omitted if the optionally shifted value of <Rm> is to be added to the base register value
(add == TRUE), or – if it is to be subtracted (permitted in ARM code only, add == FALSE).

<Rm> Contains the offset that is optionally shifted and added to the value of <Rn> to form the
address.

<shift> The shift to apply to the value read from <Rm>. If present, encoding T1 is not permitted. If
absent, no shift is applied and all encodings are permitted. For encoding T2, <shift> can
only be omitted, encoded as imm2 = 0b00, or LSL #<imm> with <imm> = 1, 2, or 3, and <imm>
encoded in imm2. For encoding A1, see Shifts applied to a register on page A8-10.

The pre-UAL syntax STR<c>B is equivalent to STRB<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); NullCheckIfThumbEE(n);
 offset = Shift(R[m], shift_t, shift_n, APSR.C);
 offset_addr = if add then (R[n] + offset) else (R[n] - offset);
 address = if index then offset_addr else R[n];
 MemU[address,1] = R[t]<7:0>;
 if wback then R[n] = offset_addr;

Exceptions

Data Abort.

STRB<c><q> <Rt>, [<Rn>, <Rm>{, <shift>}] Offset: index==TRUE, wback==FALSE
STRB<c><q> <Rt>, [<Rn>, <Rm>{, <shift>}]! Pre-indexed: index==TRUE, wback==TRUE
STRB<c><q> <Rt>, [<Rn>], <Rm>{, <shift>} Post-indexed: index==FALSE, wback==TRUE
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-393

Instruction Details
A8.6.199 STRBT

Store Register Byte Unprivileged and stores a byte from a register to memory. For information about
memory accesses see Memory accesses on page A8-13.

The memory access is restricted as if the processor were running in User mode. (This makes no difference
if the processor is actually running in User mode.)

The Thumb instruction uses an offset addressing mode, that calculates the address used for the memory
access from a base register value and an immediate offset, and leaves the base register unchanged.

The ARM instruction uses a post-indexed addressing mode, that uses a base register value as the address for
the memory access, and calculates a new address from a base register value and an offset and writes it back
to the base register. The offset can be an immediate value or an optionally-shifted register value.

if Rn == ‘1111’ then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;
register_form = FALSE; imm32 = ZeroExtend(imm8, 32);
if BadReg(t) then UNPREDICTABLE;

t = UInt(Rt); n = UInt(Rn); postindex = TRUE; add = (U == ‘1’);
register_form = FALSE; imm32 = ZeroExtend(imm12, 32);
if t == 15 || n == 15 || n == t then UNPREDICTABLE;

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm); postindex = TRUE; add = (U == ‘1’);
register_form = TRUE; (shift_t, shift_n) = DecodeImmShift(type, imm5);
if t == 15 || n == 15 || n == t || m == 15 then UNPREDICTABLE;
if ArchVersion() < 6 && m == n then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
STRBT<c> <Rt>,[<Rn>,#<imm8>]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 0 0 Rn Rt 1 1 1 0 imm8

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
STRBT<c> <Rt>,[<Rn>],#+/-<imm12>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 0 0 U 1 1 0 Rn Rt imm12

Encoding A2 ARMv4*, ARMv5T*, ARMv6*, ARMv7
STRBT<c> <Rt>,[<Rn>],+/-<Rm>{, <shift>}

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 0 U 1 1 0 Rn Rt imm5 type 0 Rm
A8-394 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2008_Q4
Cross-Out

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rt> The source register.

<Rn> The base register. The SP can be used.

+/- Is + or omitted if <imm> or the optionally shifted value of <Rm> is to be added to the base
register value (add == TRUE), or – if it is to be subtracted (permitted in ARM code only,
add == FALSE).

<imm> The immediate offset applied to the value of <Rn>. Values are 0-255 for encoding T1, and
0-4095 for encoding A1. <imm> can be omitted, meaning an offset of 0.

<Rm> Contains the offset that is optionally shifted and added to the value of <Rn> to form the
address.

<shift> The shift to apply to the value read from <Rm>. If omitted, no shift is applied. Shifts applied
to a register on page A8-10 describes the shifts and how they are encoded.

The pre-UAL syntax STR<c>BT is equivalent to STRBT<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); NullCheckIfThumbEE(n);
 offset = if register_form then Shift(R[m], shift_t, shift_n, APSR.C) else imm32;
 offset_addr = if add then (R[n] + offset) else (R[n] - offset);
 address = if postindex then R[n] else offset_addr;
 MemU_unpriv[address,1] = R[t]<7:0>;
 if postindex then R[n] = offset_addr;

Exceptions

Data Abort.

STRBT<c><q> <Rt>, [<Rn> {, #<imm>}] Offset: Thumb only
STRBT<c><q> <Rt>, [<Rn>] {, #<imm>} Post-indexed: ARM only
STRBT<c><q> <Rt>, [<Rn>], +/-<Rm> {, <shift>} Post-indexed: ARM only
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-395

Instruction Details
A8.6.200 STRD (immediate)

Store Register Dual (immediate) calculates an address from a base register value and an immediate offset,
and stores two words from two registers to memory. It can use offset, post-indexed, or pre-indexed
addressing. For information about memory accesses see Memory accesses on page A8-13.

if P == ‘0’ && W == ‘0’ then SEE “Related encodings”;
t = UInt(Rt); t2 = UInt(Rt2); n = UInt(Rn); imm32 = ZeroExtend(imm8:’00’, 32);
index = (P == ‘1’); add = (U == ‘1’); wback = (W == ‘1’);
if wback && (n == t || n == t2) then UNPREDICTABLE;
if n == 15 || BadReg(t) || BadReg(t2) then UNPREDICTABLE;

if Rt<0> == ‘1’ then UNDEFINED;
t = UInt(Rt); t2 = t+1; n = UInt(Rn); imm32 = ZeroExtend(imm4H:imm4L, 32);
index = (P == ‘1’); add = (U == ‘1’); wback = (P == ‘0’) || (W == ‘1’);
if P == ‘0’ && W == ‘1’ then UNPREDICTABLE;
if wback && (n == 15 || n == t || n == t2) then UNPREDICTABLE;
if t2 == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
STRD<c> <Rt>,<Rt2>,[<Rn>{,#+/-<imm>}]

STRD<c> <Rt>,<Rt2>,[<Rn>],#+/-<imm>

STRD<c> <Rt>,<Rt2>,[<Rn>,#+/-<imm>]!

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 P U 1 W 0 Rn Rt Rt2 imm8

Encoding A1 ARMv5TE*, ARMv6*, ARMv7
STRD<c> <Rt>,<Rt2>,[<Rn>{,#+/-<imm8>}]

STRD<c> <Rt>,<Rt2>,[<Rn>],#+/-<imm8>

STRD<c> <Rt>,<Rt2>,[<Rn>,#+/-<imm8>]!

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 P U 1 W 0 Rn Rt imm4H 1 1 1 1 imm4L

Related encodings See Load/store dual, load/store exclusive, table branch on page A6-24
A8-396 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
UNPREDICTABLE

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rt> The first source register. For an ARM instruction, <Rt> must be even-numbered and not R14.

<Rt2> The second source register. For an ARM instruction, <Rt2> must be <R(t+1)>.

<Rn> The base register. The SP can be used. In the ARM instruction set, for offset addressing only,
the PC can be used. However, use of the PC is deprecated.

+/- Is + or omitted if the immediate offset is to be added to the base register value (add == TRUE),
or – if it is to be subtracted (add == FALSE). #0 and #-0 generate different instructions.

<imm> The immediate offset used to form the address. Values are multiples of 4 in the range 0-1020
for encoding T1, and any value in the range 0-255 for encoding A1. For the offset addressing
syntax, <imm> can be omitted, meaning an offset of 0.

The pre-UAL syntax STR<c>D is equivalent to STRD<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); NullCheckIfThumbEE(n);
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];
 MemA[address,4] = R[t];
 MemA[address+4,4] = R[t2];
 if wback then R[n] = offset_addr;

Exceptions

Data Abort.

STRD<c><q> <Rt>, <Rt2>, [<Rn> {, #+/-<imm>}] Offset: index==TRUE, wback==FALSE
STRD<c><q> <Rt>, <Rt2>, [<Rn>, #+/-<imm>]! Pre-indexed: index==TRUE, wback==TRUE
STRD<c><q> <Rt>, <Rt2>, [<Rn>], #+/-<imm> Post-indexed: index==FALSE, wback==TRUE
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-397

Instruction Details
A8.6.201 STRD (register)

Store Register Dual (register) calculates an address from a base register value and a register offset, and stores
two words from two registers to memory. It can use offset, post-indexed, or pre-indexed addressing. For
information about memory accesses see Memory accesses on page A8-13.

if Rt<0> == ‘1’ then UNDEFINED;
t = UInt(Rt); t2 = t+1; n = UInt(Rn); m = UInt(Rm);
index = (P == ‘1’); add = (U == ‘1’); wback = (P == ‘0’) || (W == ‘1’);
if P == ‘0’ && W == ‘1’ then UNPREDICTABLE;
if t2 == 15 || m == 15 then UNPREDICTABLE;
if wback && (n == 15 || n == t || n == t2) then UNPREDICTABLE;
if ArchVersion() < 6 && wback && m == n then UNPREDICTABLE;

Encoding A1 ARMv5TE*, ARMv6*, ARMv7
STRD<c> <Rt>,<Rt2>,[<Rn>,+/-<Rm>]{!}

STRD<c> <Rt>,<Rt2>,[<Rn>],+/-<Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 P U 0 W 0 Rn Rt (0) (0) (0) (0) 1 1 1 1 Rm
A8-398 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
UNPREDICTABLE

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rt> The first source register. This register must be even-numbered and not R14.

<Rt2> The second source register. This register must be <R(t+1)>.

<Rn> The base register. The SP can be used. For offset addressing only, the PC can be used.
However, use of the PC is deprecated.

+/- Is + or omitted if the immediate offset is to be added to the base register value (add == TRUE),
or – if it is to be subtracted (add == FALSE).

<Rm> Contains the offset that is added to the value of <Rn> to form the address.

The pre-UAL syntax STR<c>D is equivalent to STRD<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + R[m]) else (R[n] - R[m]);
 address = if index then offset_addr else R[n];
 MemA[address,4] = R[t];
 MemA[address+4,4] = R[t2];
 if wback then R[n] = offset_addr;

Exceptions

Data Abort.

STRD<c><q> <Rt>, <Rt2>, [<Rn>, +/-<Rm>] Offset: index==TRUE, wback==FALSE
STRD<c><q> <Rt>, <Rt2>, [<Rn>, +/-<Rm>]! Pre-indexed: index==TRUE, wback==TRUE
STRD<c><q> <Rt>, <Rt2>, [<Rn>], +/-<Rm> Post-indexed: index==FALSE, wback==TRUE
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-399

Instruction Details
A8.6.202 STREX

Store Register Exclusive calculates an address from a base register value and an immediate offset, and stores
a word from a register to memory if the executing processor has exclusive access to the memory addressed.

For more information about support for shared memory see Synchronization and semaphores on
page A3-12. For information about memory accesses see Memory accesses on page A8-13.

d = UInt(Rd); t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8:’00’, 32);
if BadReg(d) || BadReg(t) || n == 15 then UNPREDICTABLE;
if d == n || d == t then UNPREDICTABLE;

d = UInt(Rd); t = UInt(Rt); n = UInt(Rn); imm32 = Zeros(32); // Zero offset
if d == 15 || t == 15 || n == 15 then UNPREDICTABLE;
if d == n || d == t then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
STREX<c> <Rd>,<Rt>,[<Rn>{,#<imm>}]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 0 1 0 0 Rn Rt Rd imm8

Encoding A1 ARMv6*, ARMv7
STREX<c> <Rd>,<Rt>,[<Rn>]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 1 1 0 0 0 Rn Rd (1) (1) (1) (1) 1 0 0 1 Rt
A8-400 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

STREX<c><q> <Rd>, <Rt>, [<Rn> {,#<imm>}]

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register for the returned status value. The value returned is:

0 if the operation updates memory

1 if the operation fails to update memory.

<Rt> The source register.

<Rn> The base register. The SP can be used.

<imm> The immediate offset added to the value of <Rn> to form the address. Values are multiples of
4 in the range 0-1020 for encoding T1, and 0 for encoding A1. <imm> can be omitted,
meaning an offset of 0.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); NullCheckIfThumbEE(n);
 address = R[n] + imm32;
 if ExclusiveMonitorsPass(address,4) then
 MemA[address,4] = R[t];
 R[d] = 0;
 else
 R[d] = 1;

Exceptions

Data Abort.

Aborts and alignment

If a synchronous Data Abort exception is generated by the execution of this instruction:

• memory is not updated

• <Rd> is not updated.

If ExclusiveMonitorsPass() returns FALSE and the memory address would generate a synchronous Data
Abort exception if accessed, it is IMPLEMENTATION DEFINED whether the exception is generated.

If SCTLR.A and SCTLR.U are both 0, a non word-aligned memory address causes UNPREDICTABLE
behavior. Otherwise, a non word-aligned memory address causes a Data Abort exception with type
Alignment fault to be generated according to the following rules:

• if ExclusiveMonitorsPass() returns TRUE, the exception is generated

• otherwise, it is IMPLEMENTATION DEFINED whether the exception is generated.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-401

Instruction Details
A8.6.203 STREXB

Store Register Exclusive Byte derives an address from a base register value, and stores a byte from a register
to memory if the executing processor has exclusive access to the memory addressed.

For more information about support for shared memory see Synchronization and semaphores on
page A3-12. For information about memory accesses see Memory accesses on page A8-13.

d = UInt(Rd); t = UInt(Rt); n = UInt(Rn);
if BadReg(d) || BadReg(t) || n == 15 then UNPREDICTABLE;
if d == n || d == t then UNPREDICTABLE;

d = UInt(Rd); t = UInt(Rt); n = UInt(Rn);
if d == 15 || t == 15 || n == 15 then UNPREDICTABLE;
if d == n || d == t then UNPREDICTABLE;

Encoding T1 ARMv7
STREXB<c> <Rd>,<Rt>,[<Rn>]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 1 0 0 Rn Rt (1) (1) (1) (1) 0 1 0 0 Rd

Encoding A1 ARMv6K, ARMv7
STREXB<c> <Rd>,<Rt>,[<Rn>]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 1 1 1 0 0 Rn Rd (1) (1) (1) (1) 1 0 0 1 Rt
A8-402 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

STREXB<c><q> <Rd>, <Rt>, [<Rn>]

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register for the returned status value. The value returned is:

0 if the operation updates memory

1 if the operation fails to update memory.

<Rt> The source register.

<Rn> The base register. The SP can be used.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); NullCheckIfThumbEE(n);
 address = R[n];
 if ExclusiveMonitorsPass(address,1) then
 MemA[address,1] = R[t];
 R[d] = 0;
 else
 R[d] = 1;

Exceptions

Data Abort.

Aborts

If a synchronous Data Abort exception is generated by the execution of this instruction:

• memory is not updated

• <Rd> is not updated.

If ExclusiveMonitorsPass() returns FALSE and the memory address would generate a synchronous Data
Abort exception if accessed, it is IMPLEMENTATION DEFINED whether the exception is generated.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-403

Instruction Details
A8.6.204 STREXD

Store Register Exclusive Doubleword derives an address from a base register value, and stores a 64-bit
doubleword from two registers to memory if the executing processor has exclusive access to the memory
addressed.

For more information about support for shared memory see Synchronization and semaphores on
page A3-12. For information about memory accesses see Memory accesses on page A8-13.

d = UInt(Rd); t = UInt(Rt); t2 = UInt(Rt2); n = UInt(Rn);
if BadReg(d) || BadReg(t) || BadReg(t2) || n == 15 then UNPREDICTABLE;
if d == n || d == t || d == t2 then UNPREDICTABLE;

d = UInt(Rd); t = UInt(Rt); t2 = t+1; n = UInt(Rn);
if d == 15 || Rt<0> = ‘1’ || Rt == ‘1110’ || n == 15 then UNPREDICTABLE;
if d == n || d == t || d == t2 then UNPREDICTABLE;

Encoding T1 ARMv7
STREXD<c> <Rd>,<Rt>,<Rt2>,[<Rn>]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 1 0 0 Rn Rt Rt2 0 1 1 1 Rd

Encoding A1 ARMv6K, ARMv7
STREXD<c> <Rd>,<Rt>,<Rt2>,[<Rn>]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 1 1 0 1 0 Rn Rd (1) (1) (1) (1) 1 0 0 1 Rt
A8-404 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

STREXD<c><q> <Rd>, <Rt>, <Rt2>, [<Rn>]

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register for the returned status value. The value returned is:

0 if the operation updates memory

1 if the operation fails to update memory.

<Rt> The first source register.

<Rt2> The second source register.

<Rn> The base register. The SP can be used.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); NullCheckIfThumbEE(n);
 address = R[n];
 // Create doubleword to store such that R[t] will be stored at address and R[t2] at address+4.
 value = if BigEndian() then R[t]:R[t2] else R[t2]:R[t];
 if ExclusiveMonitorsPass(address,8) then
 MemA[address,8] = value; R[d] = 0;
 else
 R[d] = 1;

Exceptions

Data Abort.

Aborts and alignment

If a synchronous Data Abort exception is generated by the execution of this instruction:

• memory is not updated

• <Rd> is not updated.

If ExclusiveMonitorsPass() returns FALSE and the memory address would generate a synchronous Data
Abort exception if accessed, it is IMPLEMENTATION DEFINED whether the exception is generated.

If SCTLR.A and SCTLR.U are both 0, a non doubleword-aligned memory address causes UNPREDICTABLE
behavior. Otherwise, a non doubleword-aligned memory address causes a Data Abort exception with type
Alignment fault to be generated according to the following rules:

• if ExclusiveMonitorsPass() returns TRUE, the exception is generated

• otherwise, it is IMPLEMENTATION DEFINED whether the exception is generated.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-405

Instruction Details
A8.6.205 STREXH

Store Register Exclusive Halfword derives an address from a base register value, and stores a halfword from
a register to memory if the executing processor has exclusive access to the memory addressed.

For more information about support for shared memory see Synchronization and semaphores on
page A3-12. For information about memory accesses see Memory accesses on page A8-13.

d = UInt(Rd); t = UInt(Rt); n = UInt(Rn);
if BadReg(d) || BadReg(t) || n == 15 then UNPREDICTABLE;
if d == n || d == t then UNPREDICTABLE;

d = UInt(Rd); t = UInt(Rt); n = UInt(Rn);
if d == 15 || t == 15 || n == 15 then UNPREDICTABLE;
if d == n || d == t then UNPREDICTABLE;

Encoding T1 ARMv7
STREXH<c> <Rd>,<Rt>,[<Rn>]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 1 0 0 Rn Rt (1) (1) (1) (1) 0 1 0 1 Rd

Encoding A1 ARMv6K, ARMv7
STREXH<c> <Rd>,<Rt>,[<Rn>]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 1 1 1 1 0 Rn Rd (1) (1) (1) (1) 1 0 0 1 Rt
A8-406 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

STREXH<c><q> <Rd>, <Rt>, [<Rn>]

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register for the returned status value. The value returned is:

0 if the operation updates memory

1 if the operation fails to update memory.

<Rt> The source register.

<Rn> The base register. The SP can be used.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); NullCheckIfThumbEE(n);
 address = R[n];
 if ExclusiveMonitorsPass(address,2) then
 MemA[address,2] = R[t];
 R[d] = 0;
 else
 R[d] = 1;

Exceptions

Data Abort.

Aborts and alignment

If a synchronous Data Abort exception is generated by the execution of this instruction:

• memory is not updated

• <Rd> is not updated.

If ExclusiveMonitorsPass() returns FALSE and the memory address would generate a synchronous Data
Abort exception if accessed, it is IMPLEMENTATION DEFINED whether the exception is generated.

If SCTLR.A and SCTLR.U are both 0, a non halfword-aligned memory address causes UNPREDICTABLE
behavior. Otherwise, a non halfword-aligned memory address causes a Data Abort exception with type
Alignment fault to be generated according to the following rules:

• if ExclusiveMonitorsPass() returns TRUE, the exception is generated

• otherwise, it is IMPLEMENTATION DEFINED whether the exception is generated.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-407

Instruction Details
A8.6.206 STRH (immediate, Thumb)

Store Register Halfword (immediate) calculates an address from a base register value and an immediate
offset, and stores a halfword from a register to memory. It can use offset, post-indexed, or pre-indexed
addressing. For information about memory accesses see Memory accesses on page A8-13.

t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm5:’0’, 32);
index = TRUE; add = TRUE; wback = FALSE;

if Rn == ‘1111’ then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
index = TRUE; add = TRUE; wback = FALSE;
if BadReg(t) then UNPREDICTABLE;

if P == ‘1’ && U == ‘1’ && W == ‘0’ then SEE STRHT;
if Rn == ‘1111’ || (P == ‘0’ && W == ‘0’) then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
index = (P == ‘1’); add = (U == ‘1’); wback = (W == ‘1’);
if BadReg(t) || (wback && n == t) then UNPREDICTABLE;

Encoding T1 ARMv4T, ARMv5T*, ARMv6*, ARMv7
STRH<c> <Rt>,[<Rn>{,#<imm>}]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 0 imm5 Rn Rt

Encoding T2 ARMv6T2, ARMv7
STRH<c>.W <Rt>,[<Rn>{,#<imm12>}]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 1 0 1 0 Rn Rt imm12

Encoding T3 ARMv6T2, ARMv7
STRH<c> <Rt>,[<Rn>,#-<imm8>]

STRH<c> <Rt>,[<Rn>],#+/-<imm8>

STRH<c> <Rt>,[<Rn>,#+/-<imm8>]!

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 1 0 Rn Rt 1 P U W imm8
A8-408 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rt> The source register.

<Rn> The base register. The SP can be used.

+/- Is + or omitted if the immediate offset is to be added to the base register value (add == TRUE),
or – if it is to be subtracted (add == FALSE). #0 and #-0 generate different instructions.

<imm> The immediate offset used to form the address. Values are:

Encoding T1 multiples of 2 in the range 0-62

Encoding T2 any value in the range 0-4095

Encoding T3 any value in the range 0-255.

For the offset addressing syntax, <imm> can be omitted, meaning an offset of 0.

The pre-UAL syntax STR<c>H is equivalent to STRH<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); NullCheckIfThumbEE(n);
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];
 if UnalignedSupport() || address<0> == ‘0’ then
 MemU[address,2] = R[t]<15:0>;
 else // Can only occur before ARMv7
 MemU[address,2] = bits(16) UNKNOWN;
 if wback then R[n] = offset_addr;

Exceptions

Data Abort.

STRH<c><q> <Rt>, [<Rn> {, #+/-<imm>}] Offset: index==TRUE, wback==FALSE
STRH<c><q> <Rt>, [<Rn>, #+/-<imm>]! Pre-indexed: index==TRUE, wback==TRUE
STRH<c><q> <Rt>, [<Rn>], #+/-<imm> Post-indexed: index==FALSE, wback==TRUE
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-409

Instruction Details
A8.6.207 STRH (immediate, ARM)

Store Register Halfword (immediate) calculates an address from a base register value and an immediate
offset, and stores a halfword from a register to memory. It can use offset, post-indexed, or pre-indexed
addressing. For information about memory accesses see Memory accesses on page A8-13.

if P == ‘0’ && W == ‘1’ then SEE STRHT;
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm4H:imm4L, 32);
index = (P == ‘1’); add = (U == ‘1’); wback = (P == ‘0’) || (W == ‘1’);
if t == 15 then UNPREDICTABLE;
if wback && (n == 15 || n == t) then UNPREDICTABLE;

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
STRH<c> <Rt>,[<Rn>{,#+/-<imm8>}]

STRH<c> <Rt>,[<Rn>],#+/-<imm8>

STRH<c> <Rt>,[<Rn>,#+/-<imm8>]!

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 P U 1 W 0 Rn Rt imm4H 1 0 1 1 imm4L
A8-410 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rt> The source register.

<Rn> The base register. The SP can be used. For offset addressing only, the PC can be used.
However, use of the PC is deprecated.

+/- Is + or omitted if the immediate offset is to be added to the base register value (add == TRUE),
or – if it is to be subtracted (add == FALSE). #0 and #-0 generate different instructions.

<imm> The immediate offset used to form the address. Values are 0-255. For the offset addressing
syntax, <imm> can be omitted, meaning an offset of 0.

The pre-UAL syntax STR<c>H is equivalent to STRH<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];
 if UnalignedSupport() || address<0> == ‘0’ then
 MemU[address,2] = R[t]<15:0>;
 else // Can only occur before ARMv7
 MemU[address,2] = bits(16) UNKNOWN;
 if wback then R[n] = offset_addr;

Exceptions

Data Abort.

STRH<c><q> <Rt>, [<Rn> {, #+/-<imm>}] Offset: index==TRUE, wback==FALSE
STRH<c><q> <Rt>, [<Rn>, #+/-<imm>]! Pre-indexed: index==TRUE, wback==TRUE
STRH<c><q> <Rt>, [<Rn>], #+/-<imm> Post-indexed: index==FALSE, wback==TRUE
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-411

Instruction Details
A8.6.208 STRH (register)

Store Register Halfword (register) calculates an address from a base register value and an offset register
value, and stores a halfword from a register to memory. The offset register value can be shifted left by 0, 1,
2, or 3 bits. For information about memory accesses see Memory accesses on page A8-13.

if CurrentInstrSet() == InstrSet_ThumbEE then SEE “Modified operation in ThumbEE”;
t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; wback = FALSE;
(shift_t, shift_n) = (SRType_LSL, 0);

if Rn == ‘1111’ then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; wback = FALSE;
(shift_t, shift_n) = (SRType_LSL, UInt(imm2));
if BadReg(t) || BadReg(m) then UNPREDICTABLE;

if P == ‘0’ && W == ‘1’ then SEE STRHT;
t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = (P == ‘1’); add = (U == ‘1’); wback = (P == ‘0’) || (W == ‘1’);
(shift_t, shift_n) = (SRType_LSL, 0);
if t == 15 || m == 15 then UNPREDICTABLE;
if wback && (n == 15 || n == t) then UNPREDICTABLE;
if ArchVersion() < 6 && wback && m == n then UNPREDICTABLE;

Encoding T1 ARMv4T, ARMv5T*, ARMv6*, ARMv7
STRH<c> <Rt>,[<Rn>,<Rm>]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 0 1 Rm Rn Rt

Encoding T2 ARMv6T2, ARMv7
STRH<c>.W <Rt>,[<Rn>,<Rm>{,LSL #<imm2>}]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 1 0 Rn Rt 0 0 0 0 0 0 imm2 Rm

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
STRH<c> <Rt>,[<Rn>,+/-<Rm>]{!}

STRH<c> <Rt>,[<Rn>],+/-<Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 P U 0 W 0 Rn Rt (0) (0) (0) (0) 1 0 1 1 Rm

Modified operation in ThumbEE See STRH (register) on page A9-13
A8-412 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rt> The source register.

<Rn> The base register. The SP can be used. In the ARM instruction set, for offset addressing only,
the PC can be used. However, use of the PC is deprecated.

+/- Is + or omitted if the optionally shifted value of <Rm> is to be added to the base register value
(add == TRUE), or – if it is to be subtracted (permitted in ARM code only, add == FALSE).

<Rm> Contains the offset that is optionally left shifted and added to the value of <Rn> to form the
address.

<imm> If present, the size of the left shift to apply to the value from <Rm>, in the range 1-3. Only
encoding T2 is permitted, and <imm> is encoded in imm2.

If absent, no shift is specified and all encodings are permitted. In encoding T2, imm2 is
encoded as 0b00.

The pre-UAL syntax STR<c>H is equivalent to STRH<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); NullCheckIfThumbEE(n);
 offset = Shift(R[m], shift_t, shift_n, APSR.C);
 offset_addr = if add then (R[n] + offset) else (R[n] - offset);
 address = if index then offset_addr else R[n];
 if UnalignedSupport() || address<0> == ‘0’ then
 MemU[address,2] = R[t]<15:0>;
 else // Can only occur before ARMv7
 MemU[address,2] = bits(16) UNKNOWN;
 if wback then R[n] = offset_addr;

Exceptions

Data Abort.

STRH<c><q> <Rt>, [<Rn>, +/-<Rm>{, LSL #<imm>}] Offset: index==TRUE, wback==FALSE
STRH<c><q> <Rt>, [<Rn>, +/-<Rm>]! Pre-indexed: index==TRUE, wback==TRUE
STRH<c><q> <Rt>, [<Rn>], +/-<Rm> Post-indexed: index==FALSE, wback==TRUE
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-413

Instruction Details
A8.6.209 STRHT

Store Register Halfword Unprivileged and stores a halfword from a register to memory. For information
about memory accesses see Memory accesses on page A8-13.

The memory access is restricted as if the processor were running in User mode. (This makes no difference
if the processor is actually running in User mode.)

The Thumb instruction uses an offset addressing mode, that calculates the address used for the memory
access from a base register value and an immediate offset, and leaves the base register unchanged.

The ARM instruction uses a post-indexed addressing mode, that uses a base register value as the address for
the memory access, and calculates a new address from a base register value and an offset and writes it back
to the base register. The offset can be an immediate value or a register value.

if Rn == ‘1111’ then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;
register_form = FALSE; imm32 = ZeroExtend(imm8, 32);
if BadReg(t) then UNPREDICTABLE;

t = UInt(Rt); n = UInt(Rn); postindex = TRUE; add = (U == ‘1’);
register_form = FALSE; imm32 = ZeroExtend(imm4H:imm4L, 32);
if t == 15 || n == 15 || n == t then UNPREDICTABLE;

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm); postindex = TRUE; add = (U == ‘1’);
register_form = TRUE;
if t == 15 || n == 15 || n == t || m == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
STRHT<c> <Rt>,[<Rn>,#<imm8>]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 1 0 Rn Rt 1 1 1 0 imm8

Encoding A1 ARMv6T2, ARMv7
STRHT<c> <Rt>, [<Rn>] {, #+/-<imm8>}

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 0 U 1 1 0 Rn Rt imm4H 1 0 1 1 imm4L

Encoding A2 ARMv6T2, ARMv7
STRHT<c> <Rt>, [<Rn>], +/-<Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 0 U 0 1 0 Rn Rt (0) (0) (0) (0) 1 0 1 1 Rm
A8-414 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2008_Q4
Cross-Out

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rt> The source register.

<Rn> The base register. The SP can be used.

+/- Is + or omitted if <imm> or the optionally shifted value of <Rm> is to be added to the base
register value (add == TRUE), or – if it is to be subtracted (permitted in ARM code only,
add == FALSE).

<imm> The immediate offset applied to the value of <Rn>. Any value in the range 0-255 is permitted.
<imm> can be omitted, meaning an offset of 0.

<Rm> Contains the offset that is applied to the value of <Rn> to form the address.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); NullCheckIfThumbEE(n);
 offset = if register_form then R[m] else imm32;
 offset_addr = if add then (R[n] + offset) else (R[n] - offset);
 address = if postindex then R[n] else offset_addr;
 if UnalignedSupport() || address<0> == ‘0’ then
 MemU_unpriv[address,2] = R[t]<15:0>;
 else // Can only occur before ARMv7
 MemU_unpriv[address,2] = bits(16) UNKNOWN;
 if postindex then R[n] = offset_addr;

Exceptions

Data Abort.

STRHT<c><q> <Rt>, [<Rn> {, #<imm>}] Offset: Thumb only
STRHT<c><q> <Rt>, [<Rn>] {, #+/-<imm>} Post-indexed: ARM only
STRHT<c><q> <Rt>, [<Rn>], +/-<Rm> Post-indexed: ARM only
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-415

Instruction Details
A8.6.210 STRT

Store Register Unprivileged and stores a word from a register to memory. For information about memory
accesses see Memory accesses on page A8-13.

The memory access is restricted as if the processor were running in User mode. (This makes no difference
if the processor is actually running in User mode.)

The Thumb instruction uses an offset addressing mode, that calculates the address used for the memory
access from a base register value and an immediate offset, and leaves the base register unchanged.

The ARM instruction uses a post-indexed addressing mode, that uses a base register value as the address for
the memory access, and calculates a new address from a base register value and an offset and writes it back
to the base register. The offset can be an immediate value or an optionally-shifted register value.

if Rn == ‘1111’ then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;
register_form = FALSE; imm32 = ZeroExtend(imm8, 32);
if BadReg(t) then UNPREDICTABLE;

t = UInt(Rt); n = UInt(Rn); postindex = TRUE; add = (U == ‘1’);
register_form = FALSE; imm32 = ZeroExtend(imm12, 32);
if n == 15 || n == t then UNPREDICTABLE;

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm); postindex = TRUE; add = (U == ‘1’);
register_form = TRUE; (shift_t, shift_n) = DecodeImmShift(type, imm5);
if n == 15 || n == t || m == 15 then UNPREDICTABLE;
if ArchVersion() < 6 && m == n then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
STRT<c> <Rt>,[<Rn>,#<imm8>]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 1 0 0 Rn Rt 1 1 1 0 imm8

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
STRT<c> <Rt>, [<Rn>] {, +/-<imm12>}

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 0 0 U 0 1 0 Rn Rt imm12

Encoding A2 ARMv4*, ARMv5T*, ARMv6*, ARMv7
STRT<c> <Rt>,[<Rn>],+/-<Rm>{, <shift>}

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 0 U 0 1 0 Rn Rt imm5 type 0 Rm
A8-416 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2008_Q4
Cross-Out

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rt> The source register. In the ARM instruction set, the PC can be used. However, use of the PC
is deprecated.

<Rn> The base register. The SP can be used.

+/- Is + or omitted if <imm> or the optionally shifted value of <Rm> is to be added to the base
register value (add == TRUE), or – if it is to be subtracted (permitted in ARM code only,
add == FALSE).

<imm> The immediate offset applied to the value of <Rn>. Values are 0-255 for encoding T1, and
0-4095 for encoding A1. <imm> can be omitted, meaning an offset of 0.

<Rm> Contains the offset that is optionally shifted and added to the value of <Rn> to form the
address.

<shift> The shift to apply to the value read from <Rm>. If omitted, no shift is applied. Shifts applied
to a register on page A8-10 describes the shifts and how they are encoded.

The pre-UAL syntax STR<c>T is equivalent to STRT<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); NullCheckIfThumbEE(n);
 offset = if register_form then Shift(R[m], shift_t, shift_n, APSR.C) else imm32;
 offset_addr = if add then (R[n] + offset) else (R[n] - offset);
 address = if postindex then R[n] else offset_addr;
 if t == 15 then // Only possible for encodings A1 and A2
 data = PCStoreValue();
 else
 data = R[t];
 if UnalignedSupport() || address<1:0> == ‘00’ || CurrentInstrSet() == InstrSet_ARM then
 MemU_unpriv[address,4] = data;
 else // Can only occur before ARMv7
 MemU_unpriv[address,4] = bits(32) UNKNOWN;
 if postindex then R[n] = offset_addr;

Exceptions

Data Abort.

STRT<c><q> <Rt>, [<Rn> {, #<imm>}] Offset: Thumb only
STRT<c><q> <Rt>, [<Rn>] {, #+/-<imm>} Post-indexed: ARM only
STRT<c><q> <Rt>, [<Rn>], +/-<Rm> {, <shift>} Post-indexed: ARM only
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-417

Instruction Details
A8.6.211 SUB (immediate, Thumb)

This instruction subtracts an immediate value from a register value, and writes the result to the destination
register. It can optionally update the condition flags based on the result.

d = UInt(Rd); n = UInt(Rn); setflags = !InITBlock(); imm32 = ZeroExtend(imm3, 32);

d = UInt(Rdn); n = UInt(Rdn); setflags = !InITBlock(); imm32 = ZeroExtend(imm8, 32);

if Rd == ‘1111’ && setflags then SEE CMP (immediate);
if Rn == ‘1101’ then SEE SUB (SP minus immediate);
d = UInt(Rd); n = UInt(Rn); setflags = (S == ‘1’); imm32 = ThumbExpandImm(i:imm3:imm8);
if BadReg(d) || n == 15 then UNPREDICTABLE;

if Rn == ‘1111’ then SEE ADR;
if Rn == ‘1101’ then SEE SUB (SP minus immediate);
d = UInt(Rd); n = UInt(Rn); setflags = FALSE; imm32 = ZeroExtend(i:imm3:imm8, 32);
if BadReg(d) then UNPREDICTABLE;

Encoding T1 ARMv4T, ARMv5T*, ARMv6*, ARMv7
SUBS <Rd>,<Rn>,#<imm3> Outside IT block.
SUB<c> <Rd>,<Rn>,#<imm3> Inside IT block.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 1 1 imm3 Rn Rd

Encoding T2 ARMv4T, ARMv5T*, ARMv6*, ARMv7
SUBS <Rdn>,#<imm8> Outside IT block.
SUB<c> <Rdn>,#<imm8> Inside IT block.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 Rdn imm8

Encoding T3 ARMv6T2, ARMv7
SUB{S}<c>.W <Rd>,<Rn>,#<const>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 1 1 0 1 S Rn 0 imm3 Rd imm8

Encoding T4 ARMv6T2, ARMv7
SUBW<c> <Rd>,<Rn>,#<imm12>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 1 0 1 0 1 0 Rn 0 imm3 Rd imm8
A8-418 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
S == ‘1’

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
d == 13 || (d == 15 && S == '0')

Instruction Details
Assembler syntax

where:

S If S is present, the instruction updates the flags. Otherwise, the flags are not updated.

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register. If the SP is specified for <Rn>, see SUB (SP minus immediate) on
page A8-426. If the PC is specified for <Rn>, see ADR on page A8-32.

<const> The immediate value to be subtracted from the value obtained from <Rn>. The range of
values is 0-7 for encoding T1, 0-255 for encoding T2 and 0-4095 for encoding T4. See
Modified immediate constants in Thumb instructions on page A6-17 for the range of values
for encoding T3.

When multiple encodings of the same length are available for an instruction, encoding T3
is preferred to encoding T4 (if encoding T4 is required, use the SUBW syntax). Encoding T1
is preferred to encoding T2 if <Rd> is specified and encoding T2 is preferred to encoding T1
if <Rd> is omitted.

The pre-UAL syntax SUB<c>S is equivalent to SUBS<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 (result, carry, overflow) = AddWithCarry(R[n], NOT(imm32), ‘1’);
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 APSR.V = overflow;

Exceptions

None.

SUB{S}<c><q> {<Rd>,} <Rn>, #<const> All encodings permitted
SUBW<c><q> {<Rd>,} <Rn>, #<const> Only encoding T4 permitted
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-419

ARM_2009_Q2
Inserted Text
 If S is specified and <Rd> is the PC, see SUBS PC, LR and related instructions on page B6-25 [PDF page 1583].

Instruction Details
A8.6.212 SUB (immediate, ARM)

This instruction subtracts an immediate value from a register value, and writes the result to the destination
register. It can optionally update the condition flags based on the result.

if Rn == ‘1111’ && S == ‘0’ then SEE ADR;
if Rn == ‘1101’ then SEE SUB (SP minus immediate);
if Rd == ‘1111’ && S == ‘1’ then SEE SUBS PC, LR and related instructions;
d = UInt(Rd); n = UInt(Rn); setflags = (S == ‘1’); imm32 = ARMExpandImm(imm12);

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
SUB{S}<c> <Rd>,<Rn>,#<const>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 1 0 0 1 0 S Rn Rd imm12
A8-420 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

S If S is present, the instruction updates the flags. Otherwise, the flags are not updated.

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register. If the SP is specified for <Rn>, see SUB (SP minus immediate) on
page A8-426. If the PC is specified for <Rn>, see ADR on page A8-32.

<const> The immediate value to be subtracted from the value obtained from <Rn>. See Modified
immediate constants in ARM instructions on page A5-9 for the range of values.

The pre-UAL syntax SUB<c>S is equivalent to SUBS<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 (result, carry, overflow) = AddWithCarry(R[n], NOT(imm32), ‘1’);
 if d == 15 then
 ALUWritePC(result); // setflags is always FALSE here
 else
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 APSR.V = overflow;

Exceptions

None.

SUB{S}<c><q> {<Rd>,} <Rn>, #<const>
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-421

ARM_2009_Q2
Inserted Text
 If S is specified and <Rd> is the PC, see SUBS PC, LR and related instructions on page B6-25 [PDF page 1583]. If S is not specified and <Rd> is the PC, the instruction is a branch to the address calculated by the operation. This is a simple branch before ARMv7, and an interworking branch from ARMv7.

Instruction Details
A8.6.213 SUB (register)

This instruction subtracts an optionally-shifted register value from a register value, and writes the result to
the destination register. It can optionally update the condition flags based on the result.

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = !InITBlock();
(shift_t, shift_n) = (SRType_LSL, 0);

if Rd == ‘1111’ && S == ‘1’ then SEE CMP (register);
if Rn == ‘1101’ then SEE SUB (SP minus register);
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == ‘1’);
(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);
if BadReg(d) || n == 15 || BadReg(m) then UNPREDICTABLE;

if Rd == ‘1111’ && S == ‘1’ then SEE SUBS PC, LR and related instructions;
if Rn == ‘1101’ then SEE SUB (SP minus register);
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == ‘1’);
(shift_t, shift_n) = DecodeImmShift(type, imm5);

Encoding T1 ARMv4T, ARMv5T*, ARMv6*, ARMv7
SUBS <Rd>,<Rn>,<Rm> Outside IT block.
SUB<c> <Rd>,<Rn>,<Rm> Inside IT block.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 0 1 Rm Rn Rd

Encoding T2 ARMv6T2, ARMv7
SUB{S}<c>.W <Rd>,<Rn>,<Rm>{,<shift>}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 1 1 0 1 S Rn (0) imm3 Rd imm2 type Rm

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
SUB{S}<c> <Rd>,<Rn>,<Rm>{,<shift>}

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 0 0 1 0 S Rn Rd imm5 type 0 Rm
A8-422 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
d == 13 || (d == 15 && S == '0')

Instruction Details
Assembler syntax

SUB{S}<c><q> {<Rd>,} <Rn>, <Rm> {,<shift>}

where:

S If S is present, the instruction updates the flags. Otherwise, the flags are not updated.

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register. If the SP is specified for <Rn>, see SUB (SP minus register) on
page A8-428.

<Rm> The register that is optionally shifted and used as the second operand.

<shift> The shift to apply to the value read from <Rm>. If present, encoding T1 is not permitted. If
absent, no shift is applied and all encodings are permitted. Shifts applied to a register on
page A8-10 describes the shifts and how they are encoded.

The pre-UAL syntax SUB<c>S is equivalent to SUBS<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 shifted = Shift(R[m], shift_t, shift_n, APSR.C);
 (result, carry, overflow) = AddWithCarry(R[n], NOT(shifted), ‘1’);
 if d == 15 then // Can only occur for ARM encoding
 ALUWritePC(result); // setflags is always FALSE here
 else
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 APSR.V = overflow;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-423

ARM_2009_Q2
Inserted Text
 PC can be used in ARM instructions.

ARM_2009_Q2
Inserted Text
 PC can be used in ARM instructions.

ARM_2009_Q2
Inserted Text
 If S is specified and <Rd> is the PC, see SUBS PC, LR and related instructions on page B6-25 [PDF page 1583]. In ARM instructions, if S is not specified and <Rd> is the PC, the instruction is a branch to the address calculated by the operation. This is a simple branch before ARMv7, and an interworking branch from ARMv7.

Instruction Details
A8.6.214 SUB (register-shifted register)

This instruction subtracts a register-shifted register value from a register value, and writes the result to the
destination register. It can optionally update the condition flags based on the result.

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); s = UInt(Rs);
setflags = (S == ‘1’); shift_t = DecodeRegShift(type);
if d == 15 || n == 15 || m == 15 || s == 15 then UNPREDICTABLE;

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
SUB{S}<c> <Rd>,<Rn>,<Rm>,<type> <Rs>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 0 0 1 0 S Rn Rd Rs 0 type 1 Rm
A8-424 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

SUB{S}<c><q> {<Rd>,} <Rn>, <Rm>, <type> <Rs>

where:

S If S is present, the instruction updates the flags. Otherwise, the flags are not updated.

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The register that is shifted and used as the second operand.

<type> The type of shift to apply to the value read from <Rm>. It must be one of:

ASR Arithmetic shift right, encoded as type = 0b10

LSL Logical shift left, encoded as type = 0b00

LSR Logical shift right, encoded as type = 0b01

ROR Rotate right, encoded as type = 0b11.

<Rs> The register whose bottom byte contains the amount to shift by.

The pre-UAL syntax SUB<c>S is equivalent to SUBS<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 shift_n = UInt(R[s]<7:0>);
 shifted = Shift(R[m], shift_t, shift_n, APSR.C);
 (result, carry, overflow) = AddWithCarry(R[n], NOT(shifted), ‘1’);
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 APSR.V = overflow;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-425

Instruction Details
A8.6.215 SUB (SP minus immediate)

This instruction subtracts an immediate value from the SP value, and writes the result to the destination
register.

d = 13; setflags = FALSE; imm32 = ZeroExtend(imm7:’00’, 32);

if Rd == ‘1111’ && S == ‘1’ then SEE CMP (immediate);
d = UInt(Rd); setflags = (S == ‘1’); imm32 = ThumbExpandImm(i:imm3:imm8);
if d == 15 then UNPREDICTABLE;

d = UInt(Rd); setflags = FALSE; imm32 = ZeroExtend(i:imm3:imm8, 32);
if d == 15 then UNPREDICTABLE;

if Rd == ‘1111’ && S == ‘1’ then SEE SUBS PC, LR and related instructions;
d = UInt(Rd); setflags = (S == ‘1’); imm32 = ARMExpandImm(imm12);

Encoding T1 ARMv4T, ARMv5T*, ARMv6*, ARMv7
SUB<c> SP,SP,#<imm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 0 0 0 1 imm7

Encoding T2 ARMv6T2, ARMv7
SUB{S}<c>.W <Rd>,SP,#<const>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 1 1 0 1 S 1 1 0 1 0 imm3 Rd imm8

Encoding T3 ARMv6T2, ARMv7
SUBW<c> <Rd>,SP,#<imm12>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 1 0 1 0 1 0 1 1 0 1 0 imm3 Rd imm8

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
SUB{S}<c> <Rd>,SP,#<const>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 1 0 0 1 0 S 1 1 0 1 Rd imm12
A8-426 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q4
Inserted Text
&& S == '0'

Instruction Details
Assembler syntax

where:

S If S is present, the instruction updates the flags. Otherwise, the flags are not updated.

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register. If omitted, <Rd> is SP.

<const> The immediate value to be subtracted from the value obtained from SP. Values are multiples
of 4 in the range 0-508 for encoding T1 and any value in the range 0-4095 for encoding T3.
See Modified immediate constants in Thumb instructions on page A6-17 or Modified
immediate constants in ARM instructions on page A5-9 for the range of values for
encodings T2 and A1.

When both 32-bit encodings are available for an instruction, encoding T2 is preferred to
encoding T3 (if encoding T3 is required, use the SUBW syntax).

The pre-UAL syntax SUB<c>S is equivalent to SUBS<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 (result, carry, overflow) = AddWithCarry(SP, NOT(imm32), ‘1’);
 if d == 15 then // Can only occur for ARM encoding
 ALUWritePC(result); // setflags is always FALSE here
 else
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 APSR.V = overflow;

Exceptions

None.

SUB{S}<c><q> {<Rd>,} SP, #<const> All encodings permitted
SUBW<c><q> {<Rd>,} SP, #<const> Only encoding T3 permitted
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-427

ARM_2009_Q2
Inserted Text
 If S is specified and <Rd> is the PC, see SUBS PC, LR and related instructions on page B6-25 [PDF page 1583]. In ARM instructions, if S is not specified and <Rd> is the PC, the instruction is a branch to the address calculated by the operation. This is a simple branch before ARMv7, and an interworking branch from ARMv7.

Instruction Details
A8.6.216 SUB (SP minus register)

This instruction subtracts an optionally-shifted register value from the SP value, and writes the result to the
destination register.

d = UInt(Rd); m = UInt(Rm); setflags = (S == ‘1’);
(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);
if d == 13 && (shift_t != SRType_LSL || shift_n > 3) then UNPREDICTABLE;
if d == 15 || BadReg(m) then UNPREDICTABLE;

if Rd == ‘1111’ && S == ‘1’ then SEE SUBS PC, LR and related instructions;
d = UInt(Rd); m = UInt(Rm); setflags = (S == ‘1’);
(shift_t, shift_n) = DecodeImmShift(type, imm5);

Encoding T1 ARMv6T2, ARMv7
SUB{S}<c> <Rd>,SP,<Rm>{,<shift>}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 1 1 0 1 S 1 1 0 1 (0) imm3 Rd imm2 type Rm

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
SUB{S}<c> <Rd>,SP,<Rm>{,<shift>}

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 0 0 1 0 S 1 1 0 1 Rd imm5 type 0 Rm
A8-428 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

SUB{S}<c><q> {<Rd>,} SP, <Rm> {,<shift>}

where:

S If S is present, the instruction updates the flags. Otherwise, the flags are not updated.

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register. If omitted, <Rd> is SP.

<Rm> The register that is optionally shifted and used as the second operand.

<shift> The shift to apply to the value read from <Rm>. If omitted, no shift is applied. Shifts applied
to a register on page A8-10 describes the shifts and how they are encoded.

In the Thumb instruction set, if <Rd> is SP or omitted, <shift> is only permitted to be
omitted, LSL #1, LSL #2, or LSL #3.

The pre-UAL syntax SUB<c>S is equivalent to SUBS<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 shifted = Shift(R[m], shift_t, shift_n, APSR.C);
 (result, carry, overflow) = AddWithCarry(SP, NOT(shifted), ‘1’);
 if d == 15 then // Can only occur for ARM encoding
 ALUWritePC(result); // setflags is always FALSE here
 else
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 APSR.V = overflow;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-429

ARM_2009_Q2
Inserted Text
 PC can be used in ARM instructions.

ARM_2009_Q2
Inserted Text
 If S is specified and <Rd> is the PC, see SUBS PC, LR and related instructions on page B6-25 [PDF page 1583]. In ARM instructions, if S is not specified and <Rd> is the PC, the instruction is a branch to the address calculated by the operation. This is a simple branch before ARMv7, and an interworking branch from ARMv7.

Instruction Details
A8.6.217 SUBS PC, LR and related instructions

These instructions are for system level use only. See SUBS PC, LR and related instructions on page B6-25.

A8.6.218 SVC (previously SWI)

Supervisor Call, previously called a Software Interrupt. For more information, see Exceptions on
page B1-30, and in particular Supervisor Call (SVC) exception on page B1-52.

You can use this instruction as a call to an operating system to provide a service.

imm32 = ZeroExtend(imm8, 32);
// imm32 is for assembly/disassembly, and is ignored by hardware. SVC handlers in some
// systems interpret imm8 in software, for example to determine the required service.

imm32 = ZeroExtend(imm24, 32);
// imm32 is for assembly/disassembly, and is ignored by hardware. SVC handlers in some
// systems interpret imm24 in software, for example to determine the required service.

Encoding T1 ARMv4T, ARMv5T*, ARMv6*, ARMv7
SVC<c> #<imm8>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 1 1 1 1 imm8

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
SVC<c> #<imm24>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 1 1 imm24
A8-430 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

SVC<c><q> #<imm>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<imm> Specifies an immediate constant, 8-bit in Thumb code, or 24-bit in ARM code.

The pre-UAL syntax SWI<c> is equivalent to SVC<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 CallSupervisor();

Exceptions

Supervisor Call.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-431

ARM_2009_Q3
Cross-Out

ARM_2009_Q3
Replacement Text
{#}

Instruction Details
A8.6.219 SWP, SWPB

SWP (Swap) swaps a word between registers and memory. SWP loads a word from the memory address given
by the value of register <Rn>. The value of register <Rt2> is then stored to the memory address given by the
value of <Rn>, and the original loaded value is written to register <Rt>. If the same register is specified for
<Rt> and <Rt2>, this instruction swaps the value of the register and the value at the memory address.

SWPB (Swap Byte) swaps a byte between registers and memory. SWPB loads a byte from the memory address
given by the value of register <Rn>. The value of the least significant byte of register <Rt2> is stored to the
memory address given by <Rn>, the original loaded value is zero-extended to a 32-bit word, and the word is
written to register <Rt>. If the same register is specified for <Rt> and <Rt2>, this instruction swaps the value
of the least significant byte of the register and the byte value at the memory address, and clears the most
significant three bytes of the register.

For both instructions, the memory system ensures that no other memory access can occur to the memory
location between the load access and the store access.

Note
 • The SWP and SWPB instructions rely on the properties of the system beyond the processor to ensure that

no stores from other observers can occur between the load access and the store access, and this might
not be implemented for all regions of memory on some system implementations. In all cases, SWP and
SWPB do ensure that no stores from the processor that executed the SWP or SWPB instruction can occur
between the load access and the store access of the SWP or SWPB.

• The use of SWP is deprecated, and new code should use LDREX/STREX in preference to using SWP.

• The use of SWPB is deprecated, and new code should use LDREXB/STREXB in preference to using SWPB.

t = UInt(Rt); t2 = UInt(Rt2); n = UInt(Rn); size = if B == ‘1’ then 1 else 4;
if t == 15 || t2 == 15 || n == 15 || n == t || n == t2 then UNPREDICTABLE;

Encoding A1 ARMv4*, ARMv5T*, ARMv6* (deprecated), ARMv7 (deprecated)
SWP{B}<c> <Rt>,<Rt2>,[<Rn>]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 1 0 B 0 0 Rn Rt (0) (0) (0) (0) 1 0 0 1 Rt2
A8-432 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

SWP{B}<c><q> <Rt>, <Rt2>, [<Rn>]

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rt> The destination register.

<Rt2> Contains the value that is stored to memory.

<Rn> Contains the memory address to load from.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 // The MemA[] accesses in the next two statements are locked together, that is, the memory
 // system must ensure that no other access to the same location can occur between them.
 data = MemA[R[n], size];
 MemA[R[n], size] = R[t2]<8*size-1:0>;
 if size == 1 then // SWPB
 R[t] = ZeroExtend(data, 32);
 else // SWP
 // Rotation in the following will always be by zero in ARMv7, due to alignment checks,
 // but can be nonzero in legacy configurations.
 R[t] = ROR(data, 8*UInt(address<1:0>));

Exceptions

Data Abort.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-433

ARM_2009_Q2
Inserted Text

The pre-UAL syntax SWP<c>B is equivalent to SWPB<c>.

Instruction Details
A8.6.220 SXTAB

Signed Extend and Add Byte extracts an 8-bit value from a register, sign-extends it to 32 bits, adds the result
to the value in another register, and writes the final result to the destination register. You can specify a
rotation by 0, 8, 16, or 24 bits before extracting the 8-bit value.

if Rn == ‘1111’ then SEE SXTB;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); rotation = UInt(rotate:’000’);
if BadReg(d) || n == 13 || BadReg(m) then UNPREDICTABLE;

if Rn == ‘1111’ then SEE SXTB;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); rotation = UInt(rotate:’000’);
if d == 15 || m == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
SXTAB<c> <Rd>,<Rn>,<Rm>{,<rotation>}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0 1 0 0 Rn 1 1 1 1 Rd 1 (0) rotate Rm

Encoding A1 ARMv6*, ARMv7
SXTAB<c> <Rd>,<Rn>,<Rm>{,<rotation>}

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 0 1 0 1 0 Rn Rd rotate (0) (0) 0 1 1 1 Rm
A8-434 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

SXTAB<c><q> {<Rd>,} <Rn>, <Rm> {, <rotation>}

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The second operand register.

<rotation> This can be any one of:

omitted encoded as rotate = ’00’

ROR #8 encoded as rotate = ’01’

ROR #16 encoded as rotate = ’10’

ROR #24 encoded as rotate = ’11’.

Note
 An assembler can permit ROR #0 to mean the same thing as omitting the rotation, possibly

with restrictions on the permitted encodings, but this is not standard UAL and must not be
used for disassembly.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 rotated = ROR(R[m], rotation);
 R[d] = R[n] + SignExtend(rotated<7:0>, 32);

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-435

Instruction Details
A8.6.221 SXTAB16

Signed Extend and Add Byte 16 extracts two 8-bit values from a register, sign-extends them to 16 bits each,
adds the results to two 16-bit values from another register, and writes the final results to the destination
register. You can specify a rotation by 0, 8, 16, or 24 bits before extracting the 8-bit values.

if Rn == ‘1111’ then SEE SXTB16;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); rotation = UInt(rotate:’000’);
if BadReg(d) || n == 13 || BadReg(m) then UNPREDICTABLE;

if Rn == ‘1111’ then SEE SXTB16;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); rotation = UInt(rotate:’000’);
if d == 15 || m == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
SXTAB16<c> <Rd>,<Rn>,<Rm>{,<rotation>}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0 0 1 0 Rn 1 1 1 1 Rd 1 (0) rotate Rm

Encoding A1 ARMv6*, ARMv7
SXTAB16<c> <Rd>,<Rn>,<Rm>{,<rotation>}

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 0 1 0 0 0 Rn Rd rotate (0) (0) 0 1 1 1 Rm
A8-436 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

SXTAB16<c><q> {<Rd>,} <Rn>, <Rm> {, <rotation>}

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The second operand register.

<rotation> This can be any one of:

omitted encoded as rotate = ’00’

ROR #8 encoded as rotate = ’01’

ROR #16 encoded as rotate = ’10’

ROR #24 encoded as rotate = ’11’.

Note
 An assembler can permit ROR #0 to mean the same thing as omitting the rotation, possibly

with restrictions on the permitted encodings, but this is not standard UAL and must not be
used for disassembly.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 rotated = ROR(R[m], rotation);
 R[d]<15:0> = R[n]<15:0> + SignExtend(rotated<7:0>, 16);
 R[d]<31:16> = R[n]<31:16> + SignExtend(rotated<23:16>, 16);

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-437

Instruction Details
A8.6.222 SXTAH

Signed Extend and Add Halfword extracts a 16-bit value from a register, sign-extends it to 32 bits, adds the
result to a value from another register, and writes the final result to the destination register. You can specify
a rotation by 0, 8, 16, or 24 bits before extracting the 16-bit value.

if Rn == ‘1111’ then SEE SXTH;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); rotation = UInt(rotate:’000’);
if BadReg(d) || n == 13 || BadReg(m) then UNPREDICTABLE;

if Rn == ‘1111’ then SEE SXTH;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); rotation = UInt(rotate:’000’);
if d == 15 || m == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
SXTAH<c> <Rd>,<Rn>,<Rm>{,<rotation>}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0 0 0 0 Rn 1 1 1 1 Rd 1 (0) rotate Rm

Encoding A1 ARMv6*, ARMv7
SXTAH<c> <Rd>,<Rn>,<Rm>{,<rotation>}

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 0 1 0 1 1 Rn Rd rotate (0) (0) 0 1 1 1 Rm
A8-438 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

SXTAH<c><q> {<Rd>,} <Rn>, <Rm> {, <rotation>}

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The second operand register.

<rotation> This can be any one of:

omitted encoded as rotate = ’00’

ROR #8 encoded as rotate = ’01’

ROR #16 encoded as rotate = ’10’

ROR #24 encoded as rotate = ’11’.

Note
 An assembler can permit ROR #0 to mean the same thing as omitting the rotation, possibly

with restrictions on the permitted encodings, but this is not standard UAL and must not be
used for disassembly.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 rotated = ROR(R[m], rotation);
 R[d] = R[n] + SignExtend(rotated<15:0>, 32);

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-439

Instruction Details
A8.6.223 SXTB

Signed Extend Byte extracts an 8-bit value from a register, sign-extends it to 32 bits, and writes the result to
the destination register. You can specify a rotation by 0, 8, 16, or 24 bits before extracting the 8-bit value.

d = UInt(Rd); m = UInt(Rm); rotation = 0;

d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:’000’);
if BadReg(d) || BadReg(m) then UNPREDICTABLE;

d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:’000’);
if d == 15 || m == 15 then UNPREDICTABLE;

Encoding T1 ARMv6*, ARMv7
SXTB<c> <Rd>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 0 1 0 0 1 Rm Rd

Encoding T2 ARMv6T2, ARMv7
SXTB<c>.W <Rd>,<Rm>{,<rotation>}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0 1 0 0 1 1 1 1 1 1 1 1 Rd 1 (0) rotate Rm

Encoding A1 ARMv6*, ARMv7
SXTB<c> <Rd>,<Rm>{,<rotation>}

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 0 1 0 1 0 1 1 1 1 Rd rotate (0) (0) 0 1 1 1 Rm
A8-440 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

SXTB<c><q> {<Rd>,} <Rm> {, <rotation>}

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rm> The register that contains the operand.

<rotation> This can be any one of:

omitted any encoding, with rotate = ’00’ in encoding T2 or A1

ROR #8 encoding T2 or A1, rotate = ’01’

ROR #16 encoding T2 or A1, rotate = ’10’

ROR #24 encoding T2 or A1, rotate = ’11’.

Note
 An assembler can permit ROR #0 to mean the same thing as omitting the rotation, possibly

with restrictions on the permitted encodings, but this is not standard UAL and must not be
used for disassembly.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 rotated = ROR(R[m], rotation);
 R[d] = SignExtend(rotated<7:0>, 32);

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-441

Instruction Details
A8.6.224 SXTB16

Signed Extend Byte 16 extracts two 8-bit values from a register, sign-extends them to 16 bits each, and
writes the results to the destination register. You can specify a rotation by 0, 8, 16, or 24 bits before
extracting the 8-bit values.

d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:’000’);
if BadReg(d) || BadReg(m) then UNPREDICTABLE;

d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:’000’);
if d == 15 || m == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
SXTB16<c> <Rd>,<Rm>{,<rotation>}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0 0 1 0 1 1 1 1 1 1 1 1 Rd 1 (0) rotate Rm

Encoding A1 ARMv6*, ARMv7
SXTB16<c> <Rd>,<Rm>{,<rotation>}

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 0 1 0 0 0 1 1 1 1 Rd rotate (0) (0) 0 1 1 1 Rm
A8-442 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

SXTB16<c><q> {<Rd>,} <Rm> {, <rotation>}

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rm> The register that contains the operand.

<rotation> This can be any one of:

omitted encoded as rotate = ’00’

ROR #8 encoded as rotate = ’01’

ROR #16 encoded as rotate = ’10’

ROR #24 encoded as rotate = ’11’.

Note
 An assembler can permit ROR #0 to mean the same thing as omitting the rotation, possibly

with restrictions on the permitted encodings, but this is not standard UAL and must not be
used for disassembly.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 rotated = ROR(R[m], rotation);
 R[d]<15:0> = SignExtend(rotated<7:0>, 16);
 R[d]<31:16> = SignExtend(rotated<23:16>, 16);

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-443

Instruction Details
A8.6.225 SXTH

Signed Extend Halfword extracts a 16-bit value from a register, sign-extends it to 32 bits, and writes the
result to the destination register. You can specify a rotation by 0, 8, 16, or 24 bits before extracting the 16-bit
value.

d = UInt(Rd); m = UInt(Rm); rotation = 0;

d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:’000’);
if BadReg(d) || BadReg(m) then UNPREDICTABLE;

d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:’000’);
if d == 15 || m == 15 then UNPREDICTABLE;

Encoding T1 ARMv6*, ARMv7
SXTH<c> <Rd>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 0 1 0 0 0 Rm Rd

Encoding T2 ARMv6T2, ARMv7
SXTH<c>.W <Rd>,<Rm>{,<rotation>}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0 0 0 0 1 1 1 1 1 1 1 1 Rd 1 (0) rotate Rm

Encoding A1 ARMv6*, ARMv7
SXTH<c> <Rd>,<Rm>{,<rotation>}

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 0 1 0 1 1 1 1 1 1 Rd rotate (0) (0) 0 1 1 1 Rm
A8-444 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

SXTH<c><q> {<Rd>,} <Rm> {, <rotation>}

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rm> The register that contains the operand.

<rotation> This can be any one of:

omitted any encoding, with rotate = '00' in encoding T2 or A1

ROR #8 encoding T2 or A1, rotate = ’01’

ROR #16 encoding T2 or A1, rotate = ’10’

ROR #24 encoding T2 or A1, rotate = ’11’.

Note
 An assembler can permit ROR #0 to mean the same thing as omitting the rotation, possibly

with restrictions on the permitted encodings, but this is not standard UAL and must not be
used for disassembly.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 rotated = ROR(R[m], rotation);
 R[d] = SignExtend(rotated<15:0>, 32);

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-445

Instruction Details
A8.6.226 TBB, TBH

Table Branch Byte causes a PC-relative forward branch using a table of single byte offsets. A base register
provides a pointer to the table, and a second register supplies an index into the table. The branch length is
twice the value of the byte returned from the table.

Table Branch Halfword causes a PC-relative forward branch using a table of single halfword offsets. A base
register provides a pointer to the table, and a second register supplies an index into the table. The branch
length is twice the value of the halfword returned from the table.

n = UInt(Rn); m = UInt(Rm); is_tbh = (H == ‘1’);
if n == 13 || BadReg(m) then UNPREDICTABLE;
if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
TBB<c> [<Rn>,<Rm>] Outside or last in IT block
TBH<c> [<Rn>,<Rm>,LSL #1] Outside or last in IT block

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 1 0 1 Rn (1) (1) (1) (1) (0) (0) (0) (0) 0 0 0 H Rm
A8-446 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

TBB<c><q> [<Rn>, <Rm>]

TBH<c><q> [<Rn>, <Rm>, LSL #1]

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rn> The base register. This contains the address of the table of branch lengths. The PC can be
used. If it is, the table immediately follows this instruction.

<Rm> The index register.

For TBB, this contains an integer pointing to a single byte in the table. The offset in the table
is the value of the index.

For TBH, this contains an integer pointing to a halfword in the table. The offset in the table is
twice the value of the index.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); NullCheckIfThumbEE(n);
 if is_tbh then
 halfwords = UInt(MemU[R[n]+LSL(R[m],1), 2]);
 else
 halfwords = UInt(MemU[R[n]+R[m], 1]);
 BranchWritePC(PC + 2*halfwords);

Exceptions

Data Abort.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-447

Instruction Details
A8.6.227 TEQ (immediate)

Test Equivalence (immediate) performs a bitwise exclusive OR operation on a register value and an
immediate value. It updates the condition flags based on the result, and discards the result.

n = UInt(Rn);
(imm32, carry) = ThumbExpandImm_C(i:imm3:imm8, APSR.C);
if BadReg(n) then UNPREDICTABLE;

n = UInt(Rn);
(imm32, carry) = ARMExpandImm_C(imm12, APSR.C);

Encoding T1 ARMv6T2, ARMv7
TEQ<c> <Rn>,#<const>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 0 1 0 0 1 Rn 0 imm3 1 1 1 1 imm8

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
TEQ<c> <Rn>,#<const>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 1 1 0 0 1 1 Rn (0) (0) (0) (0) imm12
A8-448 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

TEQ<c><q> <Rn>, #<const>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rn> The operand register.

<const> The immediate value to be tested against the value obtained from <Rn>. See Modified
immediate constants in Thumb instructions on page A6-17 or Modified immediate constants
in ARM instructions on page A5-9 for the range of values.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 result = R[n] EOR imm32;
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 // APSR.V unchanged

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-449

ARM_2009_Q2
Inserted Text
 PC can be used in ARM instructions.

Instruction Details
A8.6.228 TEQ (register)

Test Equivalence (register) performs a bitwise exclusive OR operation on a register value and an
optionally-shifted register value. It updates the condition flags based on the result, and discards the result.

n = UInt(Rn); m = UInt(Rm);
(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);
if BadReg(n) || BadReg(m) then UNPREDICTABLE;

n = UInt(Rn); m = UInt(Rm);
(shift_t, shift_n) = DecodeImmShift(type, imm5);

Encoding T1 ARMv6T2, ARMv7
TEQ<c> <Rn>,<Rm>{,<shift>}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 1 0 0 1 Rn (0) imm3 1 1 1 1 imm2 type Rm

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
TEQ<c> <Rn>,<Rm>{,<shift>}

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 1 0 0 1 1 Rn (0) (0) (0) (0) imm5 type 0 Rm
A8-450 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

TEQ<c><q> <Rn>, <Rm> {,<shift>}

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rn> The first operand register.

<Rm> The register that is optionally shifted and used as the second operand.

<shift> The shift to apply to the value read from <Rm>. If omitted, no shift is applied. Shifts applied
to a register on page A8-10 describes the shifts and how they are encoded.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
 result = R[n] EOR shifted;
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 // APSR.V unchanged

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-451

ARM_2009_Q2
Inserted Text
 PC can be used in ARM instructions.

ARM_2009_Q2
Inserted Text
 PC can be used in ARM instructions.

Instruction Details
A8.6.229 TEQ (register-shifted register)

Test Equivalence (register-shifted register) performs a bitwise exclusive OR operation on a register value
and a register-shifted register value. It updates the condition flags based on the result, and discards the result.

n = UInt(Rn); m = UInt(Rm); s = UInt(Rs);
shift_t = DecodeRegShift(type);
if n == 15 || m == 15 || s == 15 then UNPREDICTABLE;

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
TEQ<c> <Rn>,<Rm>,<type> <Rs>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 1 0 0 1 1 Rn (0) (0) (0) (0) Rs 0 type 1 Rm
A8-452 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

TEQ<c><q> <Rn>, <Rm>, <type> <Rs>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rn> The first operand register.

<Rm> The register that is shifted and used as the second operand.

<type> The type of shift to apply to the value read from <Rm>. It must be one of:

ASR Arithmetic shift right, encoded as type = 0b10

LSL Logical shift left, encoded as type = 0b00

LSR Logical shift right, encoded as type = 0b01

ROR Rotate right, encoded as type = 0b11.

<Rs> The register whose bottom byte contains the amount to shift by.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 shift_n = UInt(R[s]<7:0>);
 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
 result = R[n] EOR shifted;
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 // APSR.V unchanged

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-453

Instruction Details
A8.6.230 TST (immediate)

Test (immediate) performs a bitwise AND operation on a register value and an immediate value. It updates
the condition flags based on the result, and discards the result.

n = UInt(Rn);
(imm32, carry) = ThumbExpandImm_C(i:imm3:imm8, APSR.C);
if BadReg(n) then UNPREDICTABLE;

n = UInt(Rn);
(imm32, carry) = ARMExpandImm_C(imm12, APSR.C);

Encoding T1 ARMv6T2, ARMv7
TST<c> <Rn>,#<const>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 0 0 0 0 1 Rn 0 imm3 1 1 1 1 imm8

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
TST<c> <Rn>,#<const>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 1 1 0 0 0 1 Rn (0) (0) (0) (0) imm12
A8-454 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

TST<c><q> <Rn>, #<const>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rn> The operand register.

<const> The immediate value to be tested against the value obtained from <Rn>. See Modified
immediate constants in Thumb instructions on page A6-17 or Modified immediate constants
in ARM instructions on page A5-9 for the range of values.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 result = R[n] AND imm32;
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 // APSR.V unchanged

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-455

ARM_2009_Q2
Inserted Text
 PC can be used in ARM instructions.

Instruction Details
A8.6.231 TST (register)

Test (register) performs a bitwise AND operation on a register value and an optionally-shifted register value.
It updates the condition flags based on the result, and discards the result.

n = UInt(Rdn); m = UInt(Rm);
(shift_t, shift_n) = (SRType_LSL, 0);

n = UInt(Rn); m = UInt(Rm);
(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);
if BadReg(n) || BadReg(m) then UNPREDICTABLE;

n = UInt(Rn); m = UInt(Rm);
(shift_t, shift_n) = DecodeImmShift(type, imm5);

Encoding T1 ARMv4T, ARMv5T*, ARMv6*, ARMv7
TST<c> <Rn>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 1 0 0 0 Rm Rn

Encoding T2 ARMv6T2, ARMv7
TST<c>.W <Rn>,<Rm>{,<shift>}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 0 0 1 Rn (0) imm3 1 1 1 1 imm2 type Rm

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
TST<c> <Rn>,<Rm>{,<shift>}

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 1 0 0 0 1 Rn (0) (0) (0) (0) imm5 type 0 Rm
A8-456 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q2
Cross-Out

Instruction Details
Assembler syntax

TST<c><q> <Rn>, <Rm> {,<shift>}

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rn> The first operand register.

<Rm> The register that is optionally shifted and used as the second operand.

<shift> The shift to apply to the value read from <Rm>. If present, encoding T1 is not permitted. If
absent, no shift is applied and all encodings are permitted. Shifts applied to a register on
page A8-10 describes the shifts and how they are encoded.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
 result = R[n] AND shifted;
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 // APSR.V unchanged

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-457

ARM_2009_Q2
Inserted Text
 PC can be used in ARM instructions.

ARM_2009_Q2
Inserted Text
 PC can be used in ARM instructions.

Instruction Details
A8.6.232 TST (register-shifted register)

Test (register-shifted register) performs a bitwise AND operation on a register value and a register-shifted
register value. It updates the condition flags based on the result, and discards the result.

n = UInt(Rn); m = UInt(Rm); s = UInt(Rs);
shift_t = DecodeRegShift(type);
if n == 15 || m == 15 || s == 15 then UNPREDICTABLE;

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
TST<c> <Rn>,<Rm>,<type> <Rs>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 1 0 0 0 1 Rn (0) (0) (0) (0) Rs 0 type 1 Rm
A8-458 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

TST<c><q> <Rn>, <Rm>, <type> <Rs>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rn> The first operand register.

<Rm> The register that is shifted and used as the second operand.

<type> The type of shift to apply to the value read from <Rm>. It must be one of:

ASR Arithmetic shift right, encoded as type = 0b10

LSL Logical shift left, encoded as type = 0b00

LSR Logical shift right, encoded as type = 0b01

ROR Rotate right, encoded as type = 0b11.

<Rs> The register whose bottom byte contains the amount to shift by.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 shift_n = UInt(R[s]<7:0>);
 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
 result = R[n] AND shifted;
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 // APSR.V unchanged

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-459

Instruction Details
A8.6.233 UADD16

Unsigned Add 16 performs two 16-bit unsigned integer additions, and writes the results to the destination
register. It sets the APSR.GE bits according to the results of the additions.

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
UADD16<c> <Rd>,<Rn>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 1 Rn 1 1 1 1 Rd 0 1 0 0 Rm

Encoding A1 ARMv6*, ARMv7
UADD16<c> <Rd>,<Rn>,<Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 0 0 1 0 1 Rn Rd (1) (1) (1) (1) 0 0 0 1 Rm
A8-460 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

UADD16<c><q> {<Rd>,} <Rn>, <Rm>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The second operand register.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 sum1 = UInt(R[n]<15:0>) + UInt(R[m]<15:0>);
 sum2 = UInt(R[n]<31:16>) + UInt(R[m]<31:16>);
 R[d]<15:0> = sum1<15:0>;
 R[d]<31:16> = sum2<15:0>;
 APSR.GE<1:0> = if sum1 >= 0x10000 then ‘11’ else ‘00’;
 APSR.GE<3:2> = if sum2 >= 0x10000 then ‘11’ else ‘00’;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-461

Instruction Details
A8.6.234 UADD8

Unsigned Add 8 performs four unsigned 8-bit integer additions, and writes the results to the destination
register. It sets the APSR.GE bits according to the results of the additions.

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
UADD8<c> <Rd>,<Rn>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 0 Rn 1 1 1 1 Rd 0 1 0 0 Rm

Encoding A1 ARMv6*, ARMv7
UADD8<c> <Rd>,<Rn>,<Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 0 0 1 0 1 Rn Rd (1) (1) (1) (1) 1 0 0 1 Rm
A8-462 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

UADD8<c><q> {<Rd>,} <Rn>, <Rm>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The second operand register.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 sum1 = UInt(R[n]<7:0>) + UInt(R[m]<7:0>);
 sum2 = UInt(R[n]<15:8>) + UInt(R[m]<15:8>);
 sum3 = UInt(R[n]<23:16>) + UInt(R[m]<23:16>);
 sum4 = UInt(R[n]<31:24>) + UInt(R[m]<31:24>);
 R[d]<7:0> = sum1<7:0>;
 R[d]<15:8> = sum2<7:0>;
 R[d]<23:16> = sum3<7:0>;
 R[d]<31:24> = sum4<7:0>;
 APSR.GE<0> = if sum1 >= 0x100 then ‘1’ else ‘0’;
 APSR.GE<1> = if sum2 >= 0x100 then ‘1’ else ‘0’;
 APSR.GE<2> = if sum3 >= 0x100 then ‘1’ else ‘0’;
 APSR.GE<3> = if sum4 >= 0x100 then ‘1’ else ‘0’;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-463

Instruction Details
A8.6.235 UASX

Unsigned Add and Subtract with Exchange exchanges the two halfwords of the second operand, performs
one unsigned 16-bit integer addition and one unsigned 16-bit subtraction, and writes the results to the
destination register. It sets the APSR.GE bits according to the results.

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
UASX<c> <Rd>,<Rn>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 1 0 Rn 1 1 1 1 Rd 0 1 0 0 Rm

Encoding A1 ARMv6*, ARMv7
UASX<c> <Rd>,<Rn>,<Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 0 0 1 0 1 Rn Rd (1) (1) (1) (1) 0 0 1 1 Rm
A8-464 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

UASX<c><q> {<Rd>,} <Rn>, <Rm>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The second operand register.

The pre-UAL syntax UADDSUBX<c> is equivalent to UASX<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 diff = UInt(R[n]<15:0>) - UInt(R[m]<31:16>);
 sum = UInt(R[n]<31:16>) + UInt(R[m]<15:0>);
 R[d]<15:0> = diff<15:0>;
 R[d]<31:16> = sum<15:0>;
 APSR.GE<1:0> = if diff >= 0 then ‘11’ else ‘00’;
 APSR.GE<3:2> = if sum >= 0x10000 then ‘11’ else ‘00’;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-465

Instruction Details
A8.6.236 UBFX

Unsigned Bit Field Extract extracts any number of adjacent bits at any position from a register, zero-extends
them to 32 bits, and writes the result to the destination register.

d = UInt(Rd); n = UInt(Rn);
lsbit = UInt(imm3:imm2); widthminus1 = UInt(widthm1);
if BadReg(d) || BadReg(n) then UNPREDICTABLE;

d = UInt(Rd); n = UInt(Rn);
lsbit = UInt(lsb); widthminus1 = UInt(widthm1);
if d == 15 || n == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
UBFX<c> <Rd>,<Rn>,#<lsb>,#<width>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 (0) 1 1 1 1 0 0 Rn 0 imm3 Rd imm2 (0) widthm1

Encoding A1 ARMv6T2, ARMv7
UBFX<c> <Rd>,<Rn>,#<lsb>,#<width>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 1 1 1 1 widthm1 Rd 1sb 1 0 1 Rn
A8-466 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

UBFX<c><q> <Rd>, <Rn>, #<lsb>, #<width>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<lsb> is the bit number of the least significant bit in the bitfield, in the range 0-31. This determines
the required value of lsbit.

<width> is the width of the bitfield, in the range 1 to 32-<lsb>. The required value of widthminus1 is
<width>-1.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 msbit = lsbit + widthminus1;
 if msbit <= 31 then
 R[d] = ZeroExtend(R[n]<msbit:lsbit>, 32);
 else
 UNPREDICTABLE;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-467

Instruction Details
A8.6.237 UDIV

Unsigned Divide divides a 32-bit unsigned integer register value by a 32-bit unsigned integer register value,
and writes the result to the destination register. The condition code flags are not affected.

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

Encoding T1 ARMv7-R
UDIV<c> <Rd>,<Rn>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 1 0 1 1 Rn (1) (1) (1) (1) Rd 1 1 1 1 Rm
A8-468 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

UDIV<c><q> {<Rd>,} <Rn>, <Rm>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The register that contains the dividend.

<Rm> The register that contains the divisor.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 if UInt(R[m]) == 0 then
 if IntegerZeroDivideTrappingEnabled() then
 GenerateIntegerZeroDivide();
 else
 result = 0;
 else
 result = RoundTowardsZero(UInt(R[n]) / UInt(R[m]));
 R[d] = result<31:0>;

Exceptions

Undefined Instruction.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-469

Instruction Details
A8.6.238 UHADD16

Unsigned Halving Add 16 performs two unsigned 16-bit integer additions, halves the results, and writes the
results to the destination register.

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
UHADD16<c> <Rd>,<Rn>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 1 Rn 1 1 1 1 Rd 0 1 1 0 Rm

Encoding A1 ARMv6*, ARMv7
UHADD16<c> <Rd>,<Rn>,<Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 0 0 1 1 1 Rn Rd (1) (1) (1) (1) 0 0 0 1 Rm
A8-470 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

UHADD16<c><q> {<Rd>,} <Rn>, <Rm>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The second operand register.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 sum1 = UInt(R[n]<15:0>) + UInt(R[m]<15:0>);
 sum2 = UInt(R[n]<31:16>) + UInt(R[m]<31:16>);
 R[d]<15:0> = sum1<16:1>;
 R[d]<31:16> = sum2<16:1>;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-471

Instruction Details
A8.6.239 UHADD8

Unsigned Halving Add 8 performs four unsigned 8-bit integer additions, halves the results, and writes the
results to the destination register.

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
UHADD8<c> <Rd>,<Rn>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 0 Rn 1 1 1 1 Rd 0 1 1 0 Rm

Encoding A1 ARMv6*, ARMv7
UHADD8<c> <Rd>,<Rn>,<Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 0 0 1 1 1 Rn Rd (1) (1) (1) (1) 1 0 0 1 Rm
A8-472 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

UHADD8<c><q> {<Rd>,} <Rn>, <Rm>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The second operand register.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 sum1 = UInt(R[n]<7:0>) + UInt(R[m]<7:0>);
 sum2 = UInt(R[n]<15:8>) + UInt(R[m]<15:8>);
 sum3 = UInt(R[n]<23:16>) + UInt(R[m]<23:16>);
 sum4 = UInt(R[n]<31:24>) + UInt(R[m]<31:24>);
 R[d]<7:0> = sum1<8:1>;
 R[d]<15:8> = sum2<8:1>;
 R[d]<23:16> = sum3<8:1>;
 R[d]<31:24> = sum4<8:1>;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-473

Instruction Details
A8.6.240 UHASX

Unsigned Halving Add and Subtract with Exchange exchanges the two halfwords of the second operand,
performs one unsigned 16-bit integer addition and one unsigned 16-bit subtraction, halves the results, and
writes the results to the destination register.

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
UHASX<c> <Rd>,<Rn>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 1 0 Rn 1 1 1 1 Rd 0 1 1 0 Rm

Encoding A1 ARMv6*, ARMv7
UHASX<c> <Rd>,<Rn>,<Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 0 0 1 1 1 Rn Rd (1) (1) (1) (1) 0 0 1 1 Rm
A8-474 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

UHASX<c><q> {<Rd>,} <Rn>, <Rm>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The second operand register.

The pre-UAL syntax UHADDSUBX<c> is equivalent to UHASX<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 diff = UInt(R[n]<15:0>) - UInt(R[m]<31:16>);
 sum = UInt(R[n]<31:16>) + UInt(R[m]<15:0>);
 R[d]<15:0> = diff<16:1>;
 R[d]<31:16> = sum<16:1>;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-475

Instruction Details
A8.6.241 UHSAX

Unsigned Halving Subtract and Add with Exchange exchanges the two halfwords of the second operand,
performs one unsigned 16-bit integer subtraction and one unsigned 16-bit addition, halves the results, and
writes the results to the destination register.

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
UHSAX<c> <Rd>,<Rn>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 1 1 0 Rn 1 1 1 1 Rd 0 1 1 0 Rm

Encoding A1 ARMv6*, ARMv7
UHSAX<c> <Rd>,<Rn>,<Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 0 0 1 1 1 Rn Rd (1) (1) (1) (1) 0 1 0 1 Rm
A8-476 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

UHSAX<c><q> {<Rd>,} <Rn>, <Rm>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The second operand register.

The pre-UAL syntax UHSUBADDX<c> is equivalent to UHSAX<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 sum = UInt(R[n]<15:0>) + UInt(R[m]<31:16>);
 diff = UInt(R[n]<31:16>) - UInt(R[m]<15:0>);
 R[d]<15:0> = sum<16:1>;
 R[d]<31:16> = diff<16:1>;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-477

Instruction Details
A8.6.242 UHSUB16

Unsigned Halving Subtract 16 performs two unsigned 16-bit integer subtractions, halves the results, and
writes the results to the destination register.

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
UHSUB16<c> <Rd>,<Rn>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 1 0 1 Rn 1 1 1 1 Rd 0 1 1 0 Rm

Encoding A1 ARMv6*, ARMv7
UHSUB16<c> <Rd>,<Rn>,<Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 0 0 1 1 1 Rn Rd (1) (1) (1) (1) 0 1 1 1 Rm
A8-478 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

UHSUB16<c><q> {<Rd>,} <Rn>, <Rm>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The second operand register.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 diff1 = UInt(R[n]<15:0>) - UInt(R[m]<15:0>);
 diff2 = UInt(R[n]<31:16>) - UInt(R[m]<31:16>);
 R[d]<15:0> = diff1<16:1>;
 R[d]<31:16> = diff2<16:1>;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-479

Instruction Details
A8.6.243 UHSUB8

Unsigned Halving Subtract 8 performs four unsigned 8-bit integer subtractions, halves the results, and
writes the results to the destination register.

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
UHSUB8<c> <Rd>,<Rn>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 1 0 0 Rn 1 1 1 1 Rd 0 1 1 0 Rm

Encoding A1 ARMv6*, ARMv7
UHSUB8<c> <Rd>,<Rn>,<Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 0 0 1 1 1 Rn Rd (1) (1) (1) (1) 1 1 1 1 Rm
A8-480 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

UHSUB8<c><q> {<Rd>,} <Rn>, <Rm>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The second operand register.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 diff1 = UInt(R[n]<7:0>) - UInt(R[m]<7:0>);
 diff2 = UInt(R[n]<15:8>) - UInt(R[m]<15:8>);
 diff3 = UInt(R[n]<23:16>) - UInt(R[m]<23:16>);
 diff4 = UInt(R[n]<31:24>) - UInt(R[m]<31:24>);
 R[d]<7:0> = diff1<8:1>;
 R[d]<15:8> = diff2<8:1>;
 R[d]<23:16> = diff3<8:1>;
 R[d]<31:24> = diff4<8:1>;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-481

Instruction Details
A8.6.244 UMAAL

Unsigned Multiply Accumulate Accumulate Long multiplies two unsigned 32-bit values to produce a 64-bit
value, adds two unsigned 32-bit values, and writes the 64-bit result to two registers.

dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm);
if BadReg(dLo) || BadReg(dHi) || BadReg(n) || BadReg(m) then UNPREDICTABLE;
if dHi == dLo then UNPREDICTABLE;

dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm);
if dLo == 15 || dHi == 15 || n == 15 || m == 15 then UNPREDICTABLE;
if dHi == dLo then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
UMAAL<c> <RdLo>,<RdHi>,<Rn>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 1 1 1 0 Rn RdLo RdHi 0 1 1 0 Rm

Encoding A1 ARMv6*, ARMv7
UMAAL<c> <RdLo>,<RdHi>,<Rn>,<Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 0 0 1 0 0 RdHi RdLo Rm 1 0 0 1 Rn
A8-482 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

UMAAL<c><q> <RdLo>, <RdHi>, <Rn>, <Rm>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<RdLo> Supplies one of the 32 bit values to be added, and is the destination register for the lower
32 bits of the result.

<RdHi> Supplies the other of the 32 bit values to be added, and is the destination register for the
upper 32 bits of the result.

<Rn> The register that contains the first multiply operand.

<Rm> The register that contains the second multiply operand.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 result = UInt(R[n]) * UInt(R[m]) + UInt(R[dHi]) + UInt(R[dLo]);
 R[dHi] = result<63:32>;
 R[dLo] = result<31:0>;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-483

Instruction Details
A8.6.245 UMLAL

Unsigned Multiply Accumulate Long multiplies two unsigned32-bit values to produce a 64-bit value, and
accumulates this with a 64-bit value.

In ARM code, the condition flags can optionally be updated based on the result. Use of this option adversely
affects performance on many processor implementations.

dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); setflags = FALSE;
if BadReg(dLo) || BadReg(dHi) || BadReg(n) || BadReg(m) then UNPREDICTABLE;
if dHi == dLo then UNPREDICTABLE;

dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); setflags = (S == ‘1’);
if dLo == 15 || dHi == 15 || n == 15 || m == 15 then UNPREDICTABLE;
if dHi == dLo then UNPREDICTABLE;
if ArchVersion() < 6 && (dHi == n || dLo == n) then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
UMLAL<c> <RdLo>,<RdHi>,<Rn>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 1 1 1 0 Rn RdLo RdHi 0 0 0 0 Rm

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
UMLAL{S}<c> <RdLo>,<RdHi>,<Rn>,<Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 0 1 0 1 S RdHi RdLo Rm 1 0 0 1 Rn
A8-484 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

UMLAL{S}<c><q> <RdLo>, <RdHi>, <Rn>, <Rm>

where:

S If S is present, the instruction updates the flags. Otherwise, the flags are not updated.

S can be specified only for the ARM instruction set.

<c><q> See Standard assembler syntax fields on page A8-7.

<RdLo> Supplies the lower 32 bits of the accumulate value, and is the destination register for the
lower 32 bits of the result.

<RdHi> Supplies the upper 32 bits of the accumulate value, and is the destination register for the
upper 32 bits of the result.

<Rn> The first operand register.

<Rm> The second operand register.

The pre-UAL syntax UMLAL<c>S is equivalent to UMLALS<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 result = UInt(R[n]) * UInt(R[m]) + UInt(R[dHi]:R[dLo]);
 R[dHi] = result<63:32>;
 R[dLo] = result<31:0>;
 if setflags then
 APSR.N = result<63>;
 APSR.Z = IsZeroBit(result<63:0>);
 if ArchVersion() == 4 then
 APSR.C = bit UNKNOWN;
 APSR.V = bit UNKNOWN;
 // else APSR.C, APSR.V unchanged

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-485

Instruction Details
A8.6.246 UMULL

Unsigned Multiply Long multiplies two 32-bit unsigned values to produce a 64-bit result.

In ARM code, the condition flags can optionally be updated based on the result. Use of this option adversely
affects performance on many processor implementations.

dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); setflags = FALSE;
if BadReg(dLo) || BadReg(dHi) || BadReg(n) || BadReg(m) then UNPREDICTABLE;
if dHi == dLo then UNPREDICTABLE;

dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); setflags = (S == ‘1’);
if dLo == 15 || dHi == 15 || n == 15 || m == 15 then UNPREDICTABLE;
if dHi == dLo then UNPREDICTABLE;
if ArchVersion() < 6 && (dHi == n || dLo == n) then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
UMULL<c> <RdLo>,<RdHi>,<Rn>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 1 0 1 0 Rn RdLo RdHi 0 0 0 0 Rm

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
UMULL{S}<c> <RdLo>,<RdHi>,<Rn>,<Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 0 1 0 0 S RdHi RdLo Rm 1 0 0 1 Rn
A8-486 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

UMULL{S}<c><q> <RdLo>, <RdHi>, <Rn>, <Rm>

where:

S If S is present, the instruction updates the flags. Otherwise, the flags are not updated.

S can be specified only for the ARM instruction set.

<c><q> See Standard assembler syntax fields on page A8-7.

<RdLo> Stores the lower 32 bits of the result.

<RdHi> Stores the upper 32 bits of the result.

<Rn> The first operand register.

<Rm> The second operand register.

The pre-UAL syntax UMULL<c>S is equivalent to UMULLS<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 result = UInt(R[n]) * UInt(R[m]);
 R[dHi] = result<63:32>;
 R[dLo] = result<31:0>;
 if setflags then
 APSR.N = result<63>;
 APSR.Z = IsZeroBit(result<63:0>);
 if ArchVersion() == 4 then
 APSR.C = bit UNKNOWN;
 APSR.V = bit UNKNOWN;
 // else APSR.C, APSR.V unchanged

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-487

Instruction Details
A8.6.247 UQADD16

Unsigned Saturating Add 16 performs two unsigned 16-bit integer additions, saturates the results to the
16-bit unsigned integer range 0 ≤ x ≤ 216 – 1, and writes the results to the destination register.

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
UQADD16<c> <Rd>,<Rn>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 1 Rn 1 1 1 1 Rd 0 1 0 1 Rm

Encoding A1 ARMv6*, ARMv7
UQADD16<c> <Rd>,<Rn>,<Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 0 0 1 1 0 Rn Rd (1) (1) (1) (1) 0 0 0 1 Rm
A8-488 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

UQADD16<c><q> {<Rd>,} <Rn>, <Rm>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The second operand register.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 sum1 = UInt(R[n]<15:0>) + UInt(R[m]<15:0>);
 sum2 = UInt(R[n]<31:16>) + UInt(R[m]<31:16>);
 R[d]<15:0> = UnsignedSat(sum1, 16);
 R[d]<31:16> = UnsignedSat(sum2, 16);

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-489

Instruction Details
A8.6.248 UQADD8

Unsigned Saturating Add 8 performs four unsigned 8-bit integer additions, saturates the results to the 8-bit
unsigned integer range 0 ≤ x ≤ 28 – 1, and writes the results to the destination register.

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
UQADD8<c> <Rd>,<Rn>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 0 Rn 1 1 1 1 Rd 0 1 0 1 Rm

Encoding A1 ARMv6*, ARMv7
UQADD8<c> <Rd>,<Rn>,<Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 0 0 1 1 0 Rn Rd (1) (1) (1) (1) 1 0 0 1 Rm
A8-490 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

UQADD8<c><q> {<Rd>,} <Rn>, <Rm>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The second operand register.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 sum1 = UInt(R[n]<7:0>) + UInt(R[m]<7:0>);
 sum2 = UInt(R[n]<15:8>) + UInt(R[m]<15:8>);
 sum3 = UInt(R[n]<23:16>) + UInt(R[m]<23:16>);
 sum4 = UInt(R[n]<31:24>) + UInt(R[m]<31:24>);
 R[d]<7:0> = UnsignedSat(sum1, 8);
 R[d]<15:8> = UnsignedSat(sum2, 8);
 R[d]<23:16> = UnsignedSat(sum3, 8);
 R[d]<31:24> = UnsignedSat(sum4, 8);

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-491

Instruction Details
A8.6.249 UQASX

Unsigned Saturating Add and Subtract with Exchange exchanges the two halfwords of the second operand,
performs one unsigned 16-bit integer addition and one unsigned 16-bit subtraction, saturates the results to
the 16-bit unsigned integer range 0 ≤ x ≤ 216 – 1, and writes the results to the destination register.

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
UQASX<c> <Rd>,<Rn>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 1 0 Rn 1 1 1 1 Rd 0 1 0 1 Rm

Encoding A1 ARMv6*, ARMv7
UQASX<c> <Rd>,<Rn>,<Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 0 0 1 1 0 Rn Rd (1) (1) (1) (1) 0 0 1 1 Rm
A8-492 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

UQASX<c><q> {<Rd>,} <Rn>, <Rm>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The second operand register.

The pre-UAL syntax UQADDSUBX<c> is equivalent to UQASX<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 diff = UInt(R[n]<15:0>) - UInt(R[m]<31:16>);
 sum = UInt(R[n]<31:16>) + UInt(R[m]<15:0>);
 R[d]<15:0> = UnsignedSat(diff, 16);
 R[d]<31:16> = UnsignedSat(sum, 16);

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-493

Instruction Details
A8.6.250 UQSAX

Unsigned Saturating Subtract and Add with Exchange exchanges the two halfwords of the second operand,
performs one unsigned 16-bit integer subtraction and one unsigned 16-bit addition, saturates the results to
the 16-bit unsigned integer range 0 ≤ x ≤ 216 – 1, and writes the results to the destination register.

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
UQSAX<c> <Rd>,<Rn>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 1 1 0 Rn 1 1 1 1 Rd 0 1 0 1 Rm

Encoding A1 ARMv6*, ARMv7
UQSAX<c> <Rd>,<Rn>,<Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 0 0 1 1 0 Rn Rd (1) (1) (1) (1) 0 1 0 1 Rm
A8-494 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

UQSAX<c><q> {<Rd>,} <Rn>, <Rm>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The second operand register.

The pre-UAL syntax UQSUBADDX<c> is equivalent to UQSAX<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 sum = UInt(R[n]<15:0>) + UInt(R[m]<31:16>);
 diff = UInt(R[n]<31:16>) - UInt(R[m]<15:0>);
 R[d]<15:0> = UnsignedSat(sum, 16);
 R[d]<31:16> = UnsignedSat(diff, 16);

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-495

Instruction Details
A8.6.251 UQSUB16

Unsigned Saturating Subtract 16 performs two unsigned 16-bit integer subtractions, saturates the results to
the 16-bit unsigned integer range 0 ≤ x ≤ 216 – 1, and writes the results to the destination register.

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
UQSUB16<c> <Rd>,<Rn>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 1 0 1 Rn 1 1 1 1 Rd 0 1 0 1 Rm

Encoding A1 ARMv6*, ARMv7
UQSUB16<c> <Rd>,<Rn>,<Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 0 0 1 1 0 Rn Rd (1) (1) (1) (1) 0 1 1 1 Rm
A8-496 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

UQSUB16<c><q> {<Rd>,} <Rn>, <Rm>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The second operand register.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 diff1 = UInt(R[n]<15:0>) - UInt(R[m]<15:0>);
 diff2 = UInt(R[n]<31:16>) - UInt(R[m]<31:16>);
 R[d]<15:0> = UnsignedSat(diff1, 16);
 R[d]<31:16> = UnsignedSat(diff2, 16);

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-497

Instruction Details
A8.6.252 UQSUB8

Unsigned Saturating Subtract 8 performs four unsigned 8-bit integer subtractions, saturates the results to the
8-bit unsigned integer range 0 ≤ x ≤ 28 – 1, and writes the results to the destination register.

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
UQSUB8<c> <Rd>,<Rn>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 1 0 0 Rn 1 1 1 1 Rd 0 1 0 1 Rm

Encoding A1 ARMv6*, ARMv7
UQSUB8<c> <Rd>,<Rn>,<Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 0 0 1 1 0 Rn Rd (1) (1) (1) (1) 1 1 1 1 Rm
A8-498 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

UQSUB8<c><q> {<Rd>,} <Rn>, <Rm>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The second operand register.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 diff1 = UInt(R[n]<7:0>) - UInt(R[m]<7:0>);
 diff2 = UInt(R[n]<15:8>) - UInt(R[m]<15:8>);
 diff3 = UInt(R[n]<23:16>) - UInt(R[m]<23:16>);
 diff4 = UInt(R[n]<31:24>) - UInt(R[m]<31:24>);
 R[d]<7:0> = UnsignedSat(diff1, 8);
 R[d]<15:8> = UnsignedSat(diff2, 8);
 R[d]<23:16> = UnsignedSat(diff3, 8);
 R[d]<31:24> = UnsignedSat(diff4, 8);

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-499

Instruction Details
A8.6.253 USAD8

Unsigned Sum of Absolute Differences performs four unsigned 8-bit subtractions, and adds the absolute
values of the differences together.

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
USAD8<c> <Rd>,<Rn>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 0 1 1 1 Rn 1 1 1 1 Rd 0 0 0 0 Rm

Encoding A1 ARMv6*, ARMv7
USAD8<c> <Rd>,<Rn>,<Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 1 1 0 0 0 Rd 1 1 1 1 Rm 0 0 0 1 Rn
A8-500 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

USAD8<c><q> {<Rd>,} <Rn>, <Rm>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The second operand register.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 absdiff1 = Abs(UInt(R[n]<7:0>) - UInt(R[m]<7:0>));
 absdiff2 = Abs(UInt(R[n]<15:8>) - UInt(R[m]<15:8>));
 absdiff3 = Abs(UInt(R[n]<23:16>) - UInt(R[m]<23:16>));
 absdiff4 = Abs(UInt(R[n]<31:24>) - UInt(R[m]<31:24>));
 result = absdiff1 + absdiff2 + absdiff3 + absdiff4;
 R[d] = result<31:0>;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-501

Instruction Details
A8.6.254 USADA8

Unsigned Sum of Absolute Differences and Accumulate performs four unsigned 8-bit subtractions, and
adds the absolute values of the differences to a 32-bit accumulate operand.

if Ra == ‘1111’ then SEE USAD8;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a == UInt(Ra);
if BadReg(d) || BadReg(n) || BadReg(m) || BadReg(a) then UNPREDICTABLE;

if Ra == ‘1111’ then SEE USAD8;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a == UInt(Ra);
if d == 15 || n == 15 || m == 15 || a == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
USADA8<c> <Rd>,<Rn>,<Rm>,<Ra>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 0 1 1 1 Rn Ra Rd 0 0 0 0 Rm

Encoding A1 ARMv6*, ARMv7
USADA8<c> <Rd>,<Rn>,<Rm>,<Ra>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 1 1 0 0 0 Rd Ra Rm 0 0 0 1 Rn
A8-502 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
a == 13

ARM_2009_Q4
Sticky Note
In both encodings, the Ra == 15 case corresponds to the USAD8 instruction, as indicated by the first line of the pseudocode.

Instruction Details
Assembler syntax

USADA8<c><q> <Rd>, <Rn>, <Rm>, <Ra>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The second operand register.

<Ra> The register that contains the accumulation value.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 absdiff1 = Abs(UInt(R[n]<7:0>) - UInt(R[m]<7:0>));
 absdiff2 = Abs(UInt(R[n]<15:8>) - UInt(R[m]<15:8>));
 absdiff3 = Abs(UInt(R[n]<23:16>) - UInt(R[m]<23:16>));
 absdiff4 = Abs(UInt(R[n]<31:24>) - UInt(R[m]<31:24>));
 result = UInt(R[a]) + absdiff1 + absdiff2 + absdiff3 + absdiff4;
 R[d] = result<31:0>;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-503

Instruction Details
A8.6.255 USAT

Unsigned Saturate saturates an optionally-shifted signed value to a selected unsigned range.

The Q flag is set if the operation saturates.

if sh == ‘1’ && (imm3:imm2) == ‘00000’ then SEE USAT16;
d = UInt(Rd); n = UInt(Rn); saturate_to = UInt(sat_imm);
(shift_t, shift_n) = DecodeImmShift(sh:’0’, imm3:imm2);
if BadReg(d) || BadReg(n) then UNPREDICTABLE;

d = UInt(Rd); n = UInt(Rn); saturate_to = UInt(sat_imm);
(shift_t, shift_n) = DecodeImmShift(sh:’0’, imm5);
if d == 15 || n == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
USAT<c> <Rd>,#<imm5>,<Rn>{,<shift>}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 (0) 1 1 1 0 sh 0 Rn 0 imm3 Rd imm2 (0) sat_imm

Encoding A1 ARMv6*, ARMv7
USAT<c> <Rd>,#<imm5>,<Rn>{,<shift>}

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 0 1 1 1 sat_imm Rd imm5 sh 0 1 Rn
A8-504 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

USAT<c><q> <Rd>, #<imm>, <Rn> {,<shift>}

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<imm> The bit position for saturation, in the range 0 to 31.

<Rn> The register that contains the value to be saturated.

<shift> The optional shift, encoded in the sh bit and five bits in imm3:imm2 for encoding T1 and
imm5 for encoding A1. It must be one of:

omitted No shift. Encoded as sh = 0, five bits = 0b00000

LSL #<n> Left shift by <n> bits, with <n> in the range 1-31.

Encoded as sh = 0, five bits = <n>.

ASR #<n> Arithmetic right shift by <n> bits, with <n> in the range 1-31.

Encoded as sh = 1, five bits = <n>.

ASR #32 Arithmetic right shift by 32 bits, permitted only for encoding A1.

Encoded as sh = 1, imm5 = 0b00000.

Note
 An assembler can permit ASR #0 or LSL #0 to mean the same thing as omitting the shift, but

this is not standard UAL and must not be used for disassembly.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 operand = Shift(R[n], shift_t, shift_n, APSR.C); // APSR.C ignored
 (result, sat) = UnsignedSatQ(SInt(operand), saturate_to);
 R[d] = ZeroExtend(result, 32);
 if sat then
 APSR.Q = ‘1’;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-505

ARM_2011_Q2
Inserted Text
, encoded in the sat_imm field of the instruction.

ARM_2011_Q2
Sticky Note
The inserted text specifies how this value is encoded.

Instruction Details
A8.6.256 USAT16

Unsigned Saturate 16 saturates two signed 16-bit values to a selected unsigned range.

The Q flag is set if the operation saturates.

d = UInt(Rd); n = UInt(Rn); saturate_to = UInt(sat_imm);
if BadReg(d) || BadReg(n) then UNPREDICTABLE;

d = UInt(Rd); n = UInt(Rn); saturate_to = UInt(sat_imm);
if d == 15 || n == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
USAT16<c> <Rd>,#<imm4>,<Rn>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 (0) 1 1 1 0 1 0 Rn 0 0 0 0 Rd 0 0 (0) (0) sat_imm

Encoding A1 ARMv6*, ARMv7
USAT16<c> <Rd>,#<imm4>,<Rn>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 0 1 1 1 0 sat_imm Rd (1) (1) (1) (1) 0 0 1 1 Rn
A8-506 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

USAT16<c><q> <Rd>, #<imm>, <Rn>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<imm> The bit position for saturation, in the range 0 to 15.

<Rn> The register that contains the values to be saturated.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 (result1, sat1) = UnsignedSatQ(SInt(R[n]<15:0>), saturate_to);
 (result2, sat2) = UnsignedSatQ(SInt(R[n]<31:16>), saturate_to);
 R[d]<15:0> = ZeroExtend(result1, 16);
 R[d]<31:16> = ZeroExtend(result2, 16);
 if sat1 || sat2 then
 APSR.Q = ‘1’;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-507

ARM_2011_Q2
Inserted Text
, encoded in the sat_imm field of the instruction.

ARM_2011_Q2
Sticky Note
The inserted text specifies how this value is encoded.

Instruction Details
A8.6.257 USAX

Unsigned Subtract and Add with Exchange exchanges the two halfwords of the second operand, performs
one unsigned 16-bit integer subtraction and one unsigned 16-bit addition, and writes the results to the
destination register. It sets the APSR.GE bits according to the results.

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
USAX<c> <Rd>,<Rn>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 1 1 0 Rn 1 1 1 1 Rd 0 1 0 0 Rm

Encoding A1 ARMv6*, ARMv7
USAX<c> <Rd>,<Rn>,<Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 0 0 1 0 1 Rn Rd (1) (1) (1) (1) 0 1 0 1 Rm
A8-508 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

USAX<c><q> {<Rd>,} <Rn>, <Rm>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The second operand register.

The pre-UAL syntax USUBADDX<c> is equivalent to USAX<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 sum = UInt(R[n]<15:0>) + UInt(R[m]<31:16>);
 diff = UInt(R[n]<31:16>) - UInt(R[m]<15:0>);
 R[d]<15:0> = sum<15:0>;
 R[d]<31:16> = diff<15:0>;
 APSR.GE<1:0> = if sum >= 0x10000 then ‘11’ else ‘00’;
 APSR.GE<3:2> = if diff >= 0 then ‘11’ else ‘00’;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-509

Instruction Details
A8.6.258 USUB16

Unsigned Subtract 16 performs two 16-bit unsigned integer subtractions, and writes the results to the
destination register. It sets the APSR.GE bits according to the results of the subtractions.

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
USUB16<c> <Rd>,<Rn>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 1 0 1 Rn 1 1 1 1 Rd 0 1 0 0 Rm

Encoding A1 ARMv6*, ARMv7
USUB16<c> <Rd>,<Rn>,<Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 0 0 1 0 1 Rn Rd (1) (1) (1) (1) 0 1 1 1 Rm
A8-510 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

USUB16<c><q> {<Rd>,} <Rn>, <Rm>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The second operand register.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 diff1 = UInt(R[n]<15:0>) - UInt(R[m]<15:0>);
 diff2 = UInt(R[n]<31:16>) - UInt(R[m]<31:16>);
 R[d]<15:0> = diff1<15:0>;
 R[d]<31:16> = diff2<15:0>;
 APSR.GE<1:0> = if diff1 >= 0 then ‘11’ else ‘00’;
 APSR.GE<3:2> = if diff2 >= 0 then ‘11’ else ‘00’;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-511

Instruction Details
A8.6.259 USUB8

Unsigned Subtract 8 performs four 8-bit unsigned integer subtractions, and writes the results to the
destination register. It sets the APSR.GE bits according to the results of the subtractions.

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
USUB8<c> <Rd>,<Rn>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 1 0 0 Rn 1 1 1 1 Rd 0 1 0 0 Rm

Encoding A1 ARMv6*, ARMv7
USUB8<c> <Rd>,<Rn>,<Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 0 0 1 0 1 Rn Rd (1) (1) (1) (1) 1 1 1 1 Rm
A8-512 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

USUB8<c><q> {<Rd>,} <Rn>, <Rm>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The second operand register.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 diff1 = UInt(R[n]<7:0>) - UInt(R[m]<7:0>);
 diff2 = UInt(R[n]<15:8>) - UInt(R[m]<15:8>);
 diff3 = UInt(R[n]<23:16>) - UInt(R[m]<23:16>);
 diff4 = UInt(R[n]<31:24>) - UInt(R[m]<31:24>);
 R[d]<7:0> = diff1<7:0>;
 R[d]<15:8> = diff2<7:0>;
 R[d]<23:16> = diff3<7:0>;
 R[d]<31:24> = diff4<7:0>;
 APSR.GE<0> = if diff1 >= 0 then ‘1’ else ‘0’;
 APSR.GE<1> = if diff2 >= 0 then ‘1’ else ‘0’;
 APSR.GE<2> = if diff3 >= 0 then ‘1’ else ‘0’;
 APSR.GE<3> = if diff4 >= 0 then ‘1’ else ‘0’;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-513

Instruction Details
A8.6.260 UXTAB

Unsigned Extend and Add Byte extracts an 8-bit value from a register, zero-extends it to 32 bits, adds the
result to the value in another register, and writes the final result to the destination register. You can specify
a rotation by 0, 8, 16, or 24 bits before extracting the 8-bit value.

if Rn == ‘1111’ then SEE UXTB;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); rotation = UInt(rotate:’000’);
if BadReg(d) || n == 13 || BadReg(m) then UNPREDICTABLE;

if Rn == ‘1111’ then SEE UXTB;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); rotation = UInt(rotate:’000’);
if d == 15 || m == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
UXTAB<c> <Rd>,<Rn>,<Rm>{,<rotation>}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0 1 0 1 Rn 1 1 1 1 Rd 1 (0) rotate Rm

Encoding A1 ARMv6*, ARMv7
UXTAB<c> <Rd>,<Rn>,<Rm>{,<rotation>}

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 0 1 1 1 0 Rn Rd rotate (0) (0) 0 1 1 1 Rm
A8-514 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

UXTAB<c><q> {<Rd>,} <Rn>, <Rm> {, <rotation>}

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The second operand register.

<rotation> This can be any one of:

omitted encoded as rotate = ’00’

ROR #8 encoded as rotate = ’01’

ROR #16 encoded as rotate = ’10’

ROR #24 encoded as rotate = ’11’.

Note
 An assembler can permit ROR #0 to mean the same thing as omitting the rotation, possibly

with restrictions on the permitted encodings, but this is not standard UAL and must not be
used for disassembly.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 rotated = ROR(R[m], rotation);
 R[d] = R[n] + ZeroExtend(rotated<7:0>, 32);

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-515

Instruction Details
A8.6.261 UXTAB16

Unsigned Extend and Add Byte 16 extracts two 8-bit values from a register, zero-extends them to 16 bits
each, adds the results to two 16-bit values from another register, and writes the final results to the destination
register. You can specify a rotation by 0, 8, 16, or 24 bits before extracting the 8-bit values.

if Rn == ‘1111’ then SEE UXTB16;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); rotation = UInt(rotate:’000’);
if BadReg(d) || n == 13 || BadReg(m) then UNPREDICTABLE;

if Rn == ‘1111’ then SEE UXTB16;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); rotation = UInt(rotate:’000’);
if d == 15 || m == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
UXTAB16<c> <Rd>,<Rn>,<Rm>{,<rotation>}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0 0 1 1 Rn 1 1 1 1 Rd 1 (0) rotate Rm

Encoding A1 ARMv6*, ARMv7
UXTAB16<c> <Rd>,<Rn>,<Rm>{,<rotation>}

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 0 1 1 0 0 Rn Rd rotate (0) (0) 0 1 1 1 Rm
A8-516 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

UXTAB16<c><q> {<Rd>,} <Rn>, <Rm> {, <rotation>}

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The second operand register.

<rotation> This can be any one of:

omitted encoded as rotate = ’00’

ROR #8 encoded as rotate = ’01’

ROR #16 encoded as rotate = ’10’

ROR #24 encoded as rotate = ’11’.

Note
 An assembler can permit ROR #0 to mean the same thing as omitting the rotation, possibly

with restrictions on the permitted encodings, but this is not standard UAL and must not be
used for disassembly.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 rotated = ROR(R[m], rotation);
 R[d]<15:0> = R[n]<15:0> + ZeroExtend(rotated<7:0>, 16);
 R[d]<31:16> = R[n]<31:16> + ZeroExtend(rotated<23:16>, 16);

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-517

Instruction Details
A8.6.262 UXTAH

Unsigned Extend and Add Halfword extracts a 16-bit value from a register, zero-extends it to 32 bits, adds
the result to a value from another register, and writes the final result to the destination register. You can
specify a rotation by 0, 8, 16, or 24 bits before extracting the 16-bit value.

if Rn == ‘1111’ then SEE UXTH;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); rotation = UInt(rotate:’000’);
if BadReg(d) || n == 13 || BadReg(m) then UNPREDICTABLE;

if Rn == ‘1111’ then SEE UXTH;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); rotation = UInt(rotate:’000’);
if d == 15 || m == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
UXTAH<c> <Rd>,<Rn>,<Rm>{,<rotation>}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0 0 0 1 Rn 1 1 1 1 Rd 1 (0) rotate Rm

Encoding A1 ARMv6*, ARMv7
UXTAH<c> <Rd>,<Rn>,<Rm>{,<rotation>}

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 0 1 1 1 1 Rn Rd rotate (0) (0) 0 1 1 1 Rm
A8-518 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

UXTAH<c><q> {<Rd>,} <Rn>, <Rm> {, <rotation>}

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The second operand register.

<rotation> This can be any one of:

omitted encoded as rotate = ’00’

ROR #8 encoded as rotate = ’01’

ROR #16 encoded as rotate = ’10’

ROR #24 encoded as rotate = ’11’.

Note
 An assembler can permit ROR #0 to mean the same thing as omitting the rotation, possibly

with restrictions on the permitted encodings, but this is not standard UAL and must not be
used for disassembly.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 rotated = ROR(R[m], rotation);
 R[d] = R[n] + ZeroExtend(rotated<15:0>, 32);

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-519

Instruction Details
A8.6.263 UXTB

Unsigned Extend Byte extracts an 8-bit value from a register, zero-extends it to 32 bits, and writes the result
to the destination register. You can specify a rotation by 0, 8, 16, or 24 bits before extracting the 8-bit value.

d = UInt(Rd); m = UInt(Rm); rotation = 0;

d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:’000’);
if BadReg(d) || BadReg(m) then UNPREDICTABLE;

d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:’000’);
if d == 15 || m == 15 then UNPREDICTABLE;

Encoding T1 ARMv6*, ARMv7
UXTB<c> <Rd>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 0 1 0 1 1 Rm Rd

Encoding T2 ARMv6T2, ARMv7
UXTB<c>.W <Rd>,<Rm>{,<rotation>}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 Rd 1 (0) rotate Rm

Encoding A1 ARMv6*, ARMv7
UXTB<c> <Rd>,<Rm>{,<rotation>}

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 0 1 1 1 0 1 1 1 1 Rd rotate (0) (0) 0 1 1 1 Rm
A8-520 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

UXTB<c><q> {<Rd>,} <Rm> {, <rotation>}

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rm> The second operand register.

<rotation> This can be any one of:

omitted any encoding, with rotate = ’00’ in encoding T2 or A1

ROR #8 encoding T2 or A1, rotate = ’01’

ROR #16 encoding T2 or A1, rotate = ’10’

ROR #24 encoding T2 or A1, rotate = ’11’.

Note
 An assembler can permit ROR #0 to mean the same thing as omitting the rotation, possibly

with restrictions on the permitted encodings, but this is not standard UAL and must not be
used for disassembly.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 rotated = ROR(R[m], rotation);
 R[d] = ZeroExtend(rotated<7:0>, 32);

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-521

Instruction Details
A8.6.264 UXTB16

Unsigned Extend Byte 16 extracts two 8-bit values from a register, zero-extends them to 16 bits each, and
writes the results to the destination register. You can specify a rotation by 0, 8, 16, or 24 bits before
extracting the 8-bit values.

d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:’000’);
if BadReg(d) || BadReg(m) then UNPREDICTABLE;

d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:’000’);
if d == 15 || m == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
UXTB16<c> <Rd>,<Rm>{,<rotation>}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0 0 1 1 1 1 1 1 1 1 1 1 Rd 1 (0) rotate Rm

Encoding A1 ARMv6*, ARMv7
UXTB16<c> <Rd>,<Rm>{,<rotation>}

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 0 1 1 0 0 1 1 1 1 Rd rotate (0) (0) 0 1 1 1 Rm
A8-522 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

UXTB16<c><q> {<Rd>,} <Rm> {, <rotation>}

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rm> The second operand register.

<rotation> This can be any one of:

omitted encoded as rotate = ’00’

ROR #8 encoded as rotate = ’01’

ROR #16 encoded as rotate = ’10’

ROR #24 encoded as rotate = ’11’.

Note
 An assembler can permit ROR #0 to mean the same thing as omitting the rotation, possibly

with restrictions on the permitted encodings, but this is not standard UAL and must not be
used for disassembly.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 rotated = ROR(R[m], rotation);
 R[d]<15:0> = ZeroExtend(rotated<7:0>, 16);
 R[d]<31:16> = ZeroExtend(rotated<23:16>, 16);

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-523

Instruction Details
A8.6.265 UXTH

Unsigned Extend Halfword extracts a 16-bit value from a register, zero-extends it to 32 bits, and writes the
result to the destination register. You can specify a rotation by 0, 8, 16, or 24 bits before extracting the 16-bit
value.

d = UInt(Rd); m = UInt(Rm); rotation = 0;

d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:’000’);
if BadReg(d) || BadReg(m) then UNPREDICTABLE;

d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:’000’);
if d == 15 || m == 15 then UNPREDICTABLE;

Encoding T1 ARMv6*, ARMv7
UXTH<c> <Rd>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 0 1 0 1 0 Rm Rd

Encoding T2 ARMv6T2, ARMv7
UXTH<c>.W <Rd>,<Rm>{,<rotation>}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 Rd 1 (0) rotate Rm

Encoding A1 ARMv6*, ARMv7
UXTH<c> <Rd>,<Rm>{,<rotation>}

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 0 1 1 1 1 1 1 1 1 Rd rotate (0) (0) 0 1 1 1 Rm
A8-524 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

UXTH<c><q> {<Rd>,} <Rm> {, <rotation>}

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rm> The second operand register.

<rotation> This can be any one of:

omitted any encoding, with rotate = ’00’ in encoding T2 or A1

ROR #8 encoding T2 or A1, rotate = ’01’

ROR #16 encoding T2 or A1, rotate = ’10’

ROR #24 encoding T2 or A1, rotate = ’11’.

Note
 An assembler can permit ROR #0 to mean the same thing as omitting the rotation, possibly

with restrictions on the permitted encodings, but this is not standard UAL and must not be
used for disassembly.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 rotated = ROR(R[m], rotation);
 R[d] = ZeroExtend(rotated<15:0>, 32);

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-525

Instruction Details
A8.6.266 VABA, VABAL

Vector Absolute Difference and Accumulate {Long} subtracts the elements of one vector from the
corresponding elements of another vector, and accumulates the absolute values of the results into the
elements of the destination vector.

Operand and result elements are either all integers of the same length, or optionally the results can be double
the length of the operands.

if size == ‘11’ then UNDEFINED;
if Q == ‘1’ && (Vd<0> == ‘1’ || Vn<0> == ‘1’ || Vm<0> == ‘1’) then UNDEFINED;
unsigned = (U == ‘1’); long_destination = FALSE;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == ‘0’ then 1 else 2;

if size == ‘11’ then SEE “Related encodings”;
if Vd<0> == ‘1’ then UNDEFINED;
unsigned = (U == ‘1’); long_destination = TRUE;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = 1;

Encoding T1 / A1 Advanced SIMD

VABA<c>.<dt> <Qd>, <Qn>, <Qm>

VABA<c>.<dt> <Dd>, <Dn>, <Dm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 0 D size Vn Vd 0 1 1 1 N Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U 0 D size Vn Vd 0 1 1 1 N Q M 1 Vm

Encoding T2 / A2 Advanced SIMD

VABAL<c>.<dt> <Qd>, <Dn>, <Dm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 1 D size Vn Vd 0 1 0 1 N 0 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U 1 D size Vn Vd 0 1 0 1 N 0 M 0 Vm

Related encodings See Advanced SIMD data-processing instructions on page A7-10
A8-526 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VABA or VABAL
instruction must be unconditional.

<dt> The data type for the elements of the operands. It must be one of:

S8 encoded as size = 0b00, U = 0

S16 encoded as size = 0b01, U = 0

S32 encoded as size = 0b10, U = 0

U8 encoded as size = 0b00, U = 1

U16 encoded as size = 0b01, U = 1

U32 encoded as size = 0b10, U = 1.

<Qd>, <Qn>, <Qm> The destination vector and the operand vectors, for a quadword operation.

<Dd>, <Dn>, <Dm> The destination vector and the operand vectors, for a doubleword operation.

<Qd>, <Dn>, <Dm> The destination vector and the operand vectors, for a long operation.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[D[n+r],e,esize];
 op2 = Elem[D[m+r],e,esize];
 absdiff = Abs(Int(op1,unsigned) - Int(op2,unsigned));
 if long_destination then
 Elem[Q[d>>1],e,2*esize] = Elem[Q[d>>1],e,2*esize] + absdiff;
 else
 Elem[D[d+r],e,esize] = Elem[D[d+r],e,esize] + absdiff;

Exceptions

Undefined Instruction.

VABA<c><q>.<dt> <Qd>, <Qn>, <Qm> Encoding T1 / A1, Q = 1

VABA<c><q>.<dt> <Dd>, <Dn>, <Dm> Encoding T1 / A1, Q = 0

VABAL<c><q>.<dt> <Qd>, <Dn>, <Dm> Encoding T2 / A2
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-527

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Replacement Text
if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[Din[n+r],e,esize];
 op2 = Elem[Din[m+r],e,esize];
 absdiff = Abs(Int(op1,unsigned) - Int(op2,unsigned));
 if long_destination then
 Elem[Q[d>>1],e,2*esize] = Elem[Qin[d>>1],e,2*esize] + absdiff;
 else
 Elem[D[d+r],e,esize] = Elem[Din[d+r],e,esize] + absdiff;

ARM_2011_Q2
Sticky Note
The replacement pseudocode removes a read-after-write error.

The insertion in the section Pseudocode details of Advanced SIMD and VFP extension registers on page A2-23 [PDF page 55] defines the Din[] and Qin[] functions.

Instruction Details
A8.6.267 VABD, VABDL (integer)

Vector Absolute Difference {Long} (integer) subtracts the elements of one vector from the corresponding
elements of another vector, and places the absolute values of the results in the elements of the destination
vector.

Operand and result elements are either all integers of the same length, or optionally the results can be double
the length of the operands.

if size == ‘11’ then UNDEFINED;
if Q == ‘1’ && (Vd<0> == ‘1’ || Vn<0> == ‘1’ || Vm<0> == ‘1’) then UNDEFINED;
unsigned = (U == ‘1’); long_destination = FALSE;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == ‘0’ then 1 else 2;

if size == ‘11’ then SEE “Related encodings”;
if Vd<0> == ‘1’ then UNDEFINED;
unsigned = (U == ‘1’); long_destination = TRUE;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = 1;

Encoding T1 / A1 Advanced SIMD

VABD<c>.<dt> <Qd>, <Qn>, <Qm>

VABD<c>.<dt> <Dd>, <Dn>, <Dm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 0 D size Vn Vd 0 1 1 1 N Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U 0 D size Vn Vd 0 1 1 1 N Q M 0 Vm

Encoding T2 / A2 Advanced SIMD

VABDL<c>.<dt> <Qd>, <Dn>, <Dm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 1 D size Vn Vd 0 1 1 1 N 0 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U 1 D size Vn Vd 0 1 1 1 N 0 M 0 Vm

Related encodings See Advanced SIMD data-processing instructions on page A7-10
A8-528 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VABD or VABDL
instruction must be unconditional.

<dt> The data type for the elements of the operands. It must be one of:

S8 encoded as size = 0b00, U = 0

S16 encoded as size = 0b01, U = 0

S32 encoded as size = 0b10, U = 0

U8 encoded as size = 0b00, U = 1

U16 encoded as size = 0b01, U = 1

U32 encoded as size = 0b10, U = 1.

<Qd>, <Qn>, <Qm> The destination vector and the operand vectors, for a quadword operation.

<Dd>, <Dn>, <Dm> The destination vector and the operand vectors, for a doubleword operation.

<Qd>, <Dn>, <Dm> The destination vector and the operand vectors, for a long operation.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[D[n+r],e,esize];
 op2 = Elem[D[m+r],e,esize];
 absdiff = Abs(Int(op1,unsigned) - Int(op2,unsigned));
 if long_destination then
 Elem[Q[d>>1],e,2*esize] = absdiff<2*esize-1:0>;
 else
 Elem[D[d+r],e,esize] = absdiff<esize-1:0>;

Exceptions

Undefined Instruction.

VABD<c><q>.<dt> <Qd>, <Qn>, <Qm> Encoding T1 / A1, Q = 1

VABD<c><q>.<dt> <Dd>, <Dn>, <Dm> Encoding T1 / A1, Q = 0

VABDL<c><q>.<dt> <Qd>, <Dn>, <Dm> Encoding T2 / A2
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-529

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Replacement Text
if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[Din[n+r],e,esize];
 op2 = Elem[Din[m+r],e,esize];
 absdiff = Abs(Int(op1,unsigned) - Int(op2,unsigned));
 if long_destination then
 Elem[Q[d>>1],e,2*esize] = absdiff<2*esize-1:0>;
 else
 Elem[D[d+r],e,esize] = absdiff<esize-1:0>;

ARM_2011_Q2
Sticky Note
The replacement pseudocode removes a read-after-write error.

The insertion in the section Pseudocode details of Advanced SIMD and VFP extension registers on page A2-23 [PDF page 55] defines the Din[] function.

Instruction Details
A8.6.268 VABD (floating-point)

Vector Absolute Difference (floating-point) subtracts the elements of one vector from the corresponding
elements of another vector, and places the absolute values of the results in the elements of the destination
vector.

Operand and result elements are all single-precision floating-point numbers.

if Q == ‘1’ && (Vd<0> == ‘1’ || Vn<0> == ‘1’ || Vm<0> == ‘1’) then UNDEFINED;
if sz == ‘1’ then UNDEFINED;
esize = 32; elements = 2;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == ‘0’ then 1 else 2;

Encoding T1 / A1 Advanced SIMD (UNDEFINED in integer-only variant)

VABD<c>.F32 <Qd>, <Qn>, <Qm>

VABD<c>.F32 <Dd>, <Dn>, <Dm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 0 D 1 sz Vn Vd 1 1 0 1 N Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 0 D 1 sz Vn Vd 1 1 0 1 N Q M 0 Vm
A8-530 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VABD instruction must
be unconditional.

<Qd>, <Qn>, <Qm> The destination vector and the operand vectors, for a quadword operation.

<Dd>, <Dn>, <Dm> The destination vector and the operand vectors, for a doubleword operation.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[D[n+r],e,esize]; op2 = Elem[D[m+r],e,esize];
 Elem[D[d+r],e,esize] = FPAbs(FPSub(op1,op2,FALSE));

Exceptions

Undefined Instruction.

Floating-point exceptions: Input Denormal, Invalid Operation, Overflow, Underflow, and Inexact.

VABD<c><q>.F32 <Qd>, <Qn>, <Qm> Encoded as Q = 1, sz = 0

VABD<c><q>.F32 <Dd>, <Dn>, <Dm> Encoded as Q = 0, sz = 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-531

Instruction Details
A8.6.269 VABS

Vector Absolute takes the absolute value of each element in a vector, and places the results in a second
vector. The floating-point version only clears the sign bit.

if size == ‘11’ || (F == ‘1’ && size != ‘10’) then UNDEFINED;
if Q == ‘1’ && (Vd<0> == ‘1’ || Vm<0> == ‘1’) then UNDEFINED;
advsimd = TRUE; floating_point = (F == ‘1’);
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == ‘0’ then 1 else 2;

if FPSCR.LEN != ‘000’ || FPSCR.STRIDE != ‘00’ then SEE “VFP vectors”;
advsimd = FALSE; dp_operation = (sz == ‘1’);
d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Encoding T1 / A1 Advanced SIMD (F = 1 UNDEFINED in integer-only variants)
VABS<c>.<dt> <Qd>, <Qm>

VABS<c>.<dt> <Dd>, <Dm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 1 Vd 0 F 1 1 0 Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size 0 1 Vd 0 F 1 1 0 Q M 0 Vm

Encoding T2 / A2 VFPv2, VFPv3 (sz = 1 UNDEFINED in single-precision only variants)
VABS<c>.F64 <Dd>, <Dm>

VABS<c>.F32 <Sd>, <Sm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 1 1 0 0 0 0 Vd 1 0 1 sz 1 1 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 1 0 1 D 1 1 0 0 0 0 Vd 1 0 1 sz 1 1 M 0 Vm

VFP vectors Encoding T2 / A2 can operate on VFP vectors under control of the FPSCR.LEN and
FPSCR.STRIDE bits. For details see Appendix F VFP Vector Operation Support.
A8-532 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM Advanced SIMD VABS
instruction must be unconditional.

<dt> The data type for the elements of the vectors. It must be one of:

S8 encoding T1 / A1, size = 0b00, F = 0

S16 encoding T1 / A1, size = 0b01, F = 0

S32 encoding T1 / A1, size = 0b10, F = 0

F32 encoding T1 / A1, size = 0b10, F = 1

F64 encoding T2 / A2, sz = 1.

<Qd>, <Qm> The destination vector and the operand vector, for a quadword operation.

<Dd>, <Dm> The destination vector and the operand vector, for a doubleword operation.

<Sd>, <Sm> The destination vector and the operand vector, for a singleword operation.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDOrVFPEnabled(TRUE, advsimd);
 if advsimd then // Advanced SIMD instruction
 for r = 0 to regs-1
 for e = 0 to elements-1
 if floating_point then
 Elem[D[d+r],e,esize] = FPAbs(Elem[D[m+r],e,esize]);
 else
 result = Abs(SInt(Elem[D[m+r],e,esize]));
 Elem[D[d+r],e,esize] = result<esize-1:0>;
 else // VFP instruction
 if dp_operation then
 D[d] = FPAbs(D[m]);
 else
 S[d] = FPAbs(S[m]);

Exceptions

Undefined Instruction.

VABS<c><q>.<dt> <Qd>, <Qm> <dt> != F64

VABS<c><q>.<dt> <Dd>, <Dm>

VABS<c><q>.F32 <Sd>, <Sm> VFP only. Encoding T2/A2, sz = 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-533

Instruction Details
A8.6.270 VACGE, VACGT, VACLE,VACLT

VACGE (Vector Absolute Compare Greater Than or Equal) and VACGT (Vector Absolute Compare Greater
Than) take the absolute value of each element in a vector, and compare it with the absolute value of the
corresponding element of a second vector. If the condition is true, the corresponding element in the
destination vector is set to all ones. Otherwise, it is set to all zeros.

VACLE (Vector Absolute Compare Less Than or Equal) is a pseudo-instruction, equivalent to a VACGE
instruction with the operands reversed. Disassembly produces the VACGE instruction.

VACLT (Vector Absolute Compare Less Than) is a pseudo-instruction, equivalent to a VACGT instruction with
the operands reversed. Disassembly produces the VACGT instruction.

The operands and result can be quadword or doubleword vectors. They must all be the same size.

The operand vector elements must be 32-bit floating-point numbers.

The result vector elements are 32-bit bitfields.

if Q == ‘1’ && (Vd<0> == ‘1’ || Vn<0> == ‘1’ || Vm<0> == ‘1’) then UNDEFINED;
if sz == ‘1’ then UNDEFINED;
or_equal = (op == ‘0’); esize = 32; elements = 2;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == ‘0’ then 1 else 2;

Encoding T1 / A1 Advanced SIMD (UNDEFINED in integer-only variant)
V<op><c>.F32 <Qd>, <Qn>, <Qm>

V<op><c>.F32 <Dd>, <Dn>, <Dm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 0 D op sz Vn Vd 1 1 1 0 N Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 0 D op sz Vn Vd 1 1 1 0 N Q M 1 Vm
A8-534 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<op> The operation. <op> must be one of:

ACGE Absolute Compare Greater than or Equal, encoded as op = 0

ACGT Absolute Compare Greater Than, encoded as op = 1.

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VACGE, VACGT, VACLE,
or VACLT instruction must be unconditional.

<Qd>, <Qn>, <Qm> The destination vector and the operand vectors, for a quadword operation.

<Dd>, <Dn>, <Dm> The destination vector and the operand vectors, for a doubleword operation.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = FPAbs(Elem[D[n+r],e,esize]); op2 = FPAbs(Elem[D[m+r],e,esize]);
 if or_equal then
 test_passed = FPCompareGE(op1, op2, FALSE);
 else
 test_passed = FPCompareGT(op1, op2, FALSE);
 Elem[D[d+r],e,esize] = if test_passed then Ones(esize) else Zeros(esize);

Exceptions

Undefined Instruction.

Floating-point exceptions: Input Denormal and Invalid Operation.

V<op><c><q>.F32 {<Qd>,} <Qn>, <Qm> Encoded as Q = 1
V<op><c><q>.F32 {<Dd>,} <Dn>, <Dm> Encoded as Q = 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-535

Instruction Details
A8.6.271 VADD (integer)

Vector Add adds corresponding elements in two vectors, and places the results in the destination vector.

if Q == ‘1’ && (Vd<0> == ‘1’ || Vn<0> == ‘1’ || Vm<0> == ‘1’) then UNDEFINED;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == ‘0’ then 1 else 2;

Encoding T1 / A1 Advanced SIMD
VADD<c>.<dt> <Qd>, <Qn>, <Qm>

VADD<c>.<dt> <Dd>, <Dn>, <Dm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 0 D size Vn Vd 1 0 0 0 N Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 D size Vn Vd 1 0 0 0 N Q M 0 Vm
A8-536 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM Advanced SIMD VADD
instruction must be unconditional.

<dt> The data type for the elements of the vectors. It must be one of:

I8 size = 0b00

I16 size = 0b01

I32 size = 0b10

I64 size = 0b11.

<Qd>, <Qn>, <Qm> The destination vector and the operand vectors, for a quadword operation.

<Dd>, <Dn>, <Dm> The destination vector and the operand vectors, for a doubleword operation.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 Elem[D[d+r],e,esize] = Elem[D[n+r],e,esize] + Elem[D[m+r],e,esize];

Exceptions

Undefined Instruction.

VADD<c><q>.<dt> {<Qd>,} <Qn>, <Qm>

VADD<c><q>.<dt> {<Dd>,} <Dn>, <Dm>
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-537

Instruction Details
A8.6.272 VADD (floating-point)

Vector Add adds corresponding elements in two vectors, and places the results in the destination vector.

if Q == ‘1’ && (Vd<0> == ‘1’ || Vn<0> == ‘1’ || Vm<0> == ‘1’) then UNDEFINED;
if sz == ‘1’ then UNDEFINED;
advsimd = TRUE; esize = 32; elements = 2;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == ‘0’ then 1 else 2;

if FPSCR.LEN != ‘000’ || FPSCR.STRIDE != ‘00’ then SEE “VFP vectors”;
advsimd = FALSE; dp_operation = (sz == ‘1’);
d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
n = if dp_operation then UInt(N:Vn) else UInt(Vn:N);
m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Encoding T1 / A1 Advanced SIMD (UNDEFINED in integer-only variant)
VADD<c>.F32 <Qd>, <Qn>, <Qm>

VADD<c>.F32 <Dd>, <Dn>, <Dm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 0 D 0 sz Vn Vd 1 1 0 1 N Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 D 0 sz Vn Vd 1 1 0 1 N Q M 0 Vm

Encoding T2 / A2 VFPv2, VFPv3 (sz = 1 UNDEFINED in single-precision only variants)
VADD<c>.F64 <Dd>, <Dn>, <Dm>

VADD<c>.F32 <Sd>, <Sn>, <Sm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 0 D 1 1 Vn Vd 1 0 1 sz N 0 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 1 0 0 D 1 1 Vn Vd 1 0 1 sz N 0 M 0 Vm

VFP vectors Encoding T2 / A2 can operate on VFP vectors under control of the FPSCR.LEN and
FPSCR.STRIDE bits. For details see Appendix F VFP Vector Operation Support.
A8-538 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM Advanced SIMD VADD
instruction must be unconditional.

<Qd>, <Qn>, <Qm> The destination vector and the operand vectors, for a quadword operation.

<Dd>, <Dn>, <Dm> The destination vector and the operand vectors, for a doubleword operation.

<Sd>, <Sn>, <Sm> The destination vector and the operand vectors, for a singleword operation.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDOrVFPEnabled(TRUE, advsimd);
 if advsimd then // Advanced SIMD instruction
 for r = 0 to regs-1
 for e = 0 to elements-1
 Elem[D[d+r],e,esize] = FPAdd(Elem[D[n+r],e,esize], Elem[D[m+r],e,esize], FALSE);
 else // VFP instruction
 if dp_operation then
 D[d] = FPAdd(D[n], D[m], TRUE);
 else
 S[d] = FPAdd(S[n], S[m], TRUE);

Exceptions

Undefined Instruction.

Floating-point exceptions: Input Denormal, Invalid Operation, Overflow, Underflow, and Inexact.

VADD<c><q>.F32 {<Qd>,} <Qn>, <Qm> Encoding T1 / A1, Q = 1, sz = 0
VADD<c><q>.F32 {<Dd>,} <Dn>, <Dm> Encoding T1 / A1, Q = 0, sz = 0
VADD<c><q>.F64 {<Dd>,} <Dn>, <Dm> Encoding T2 / A2, sz = 1
VADD<c><q>.F32 {<Sd>,} <Sn>, <Sm> Encoding T2 / A2, sz = 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-539

Instruction Details
A8.6.273 VADDHN

Vector Add and Narrow, returning High Half adds corresponding elements in two quadword vectors, and
places the most significant half of each result in a doubleword vector. The results are truncated. (For rounded
results, see VRADDHN on page A8-726).

The operand elements can be 16-bit, 32-bit, or 64-bit integers. There is no distinction between signed and
unsigned integers.

if size == ‘11’ then SEE “Related encodings”;
if Vn<0> == ‘1’ || Vm<0> == ‘1’ then UNDEFINED;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

Encoding T1 / A1 Advanced SIMD
VADDHN<c>.<dt> <Dd>, <Qn>, <Qm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 1 D size Vn Vd 0 1 0 0 N 0 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 1 D size Vn Vd 0 1 0 0 N 0 M 0 Vm

Related encodings See Advanced SIMD data-processing instructions on page A7-10
A8-540 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VADDHN instruction
must be unconditional.

<dt> The data type for the elements of the operands. It must be one of:

I16 size = 0b00

I32 size = 0b01

I64 size = 0b10.

<Dd>, <Qn>, <Qm> The destination vector, the first operand vector, and the second operand vector.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for e = 0 to elements-1
 result = Elem[Q[n>>1],e,2*esize] + Elem[Q[m>>1],e,2*esize];
 Elem[D[d],e,esize] = result<2*esize-1:esize>;

Exceptions

Undefined Instruction.

VADDHN<c><q>.<dt> <Dd>, <Qn>, <Qm>
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-541

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Replacement Text
if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for e = 0 to elements-1
 result = Elem[Qin[n>>1],e,2*esize] + Elem[Qin[m>>1],e,2*esize];
 Elem[D[d],e,esize] = result<2*esize-1:esize>;

ARM_2011_Q2
Sticky Note
The replacement pseudocode removes a read-after-write error.

The insertion in the section Pseudocode details of Advanced SIMD and VFP extension registers on page A2-23 [PDF page 55] defines the Qin[] function.

Instruction Details
A8.6.274 VADDL, VADDW

VADDL (Vector Add Long) adds corresponding elements in two doubleword vectors, and places the results in
a quadword vector. Before adding, it sign-extends or zero-extends the elements of both operands.

VADDW (Vector Add Wide) adds corresponding elements in one quadword and one doubleword vector, and
places the results in a quadword vector. Before adding, it sign-extends or zero-extends the elements of the
doubleword operand.

if size == ‘11’ then SEE “Related encodings”;
if Vd<0> == ‘1’ || (op == ‘1’ && Vn<0> == ‘1’) then UNDEFINED;
esize = 8 << UInt(size); elements = 64 DIV esize; is_vaddw == (op == ‘1’);
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

Encoding T1 / A1 Advanced SIMD
VADDL<c>.<dt> <Qd>, <Dn>, <Dm>

VADDW<c>.<dt> <Qd>, <Qn>, <Dm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 1 D size Vn Vd 0 0 0 op N 0 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U 1 D size Vn Vd 0 0 0 op N 0 M 0 Vm

Related encodings See Advanced SIMD data-processing instructions on page A7-10
A8-542 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q4
Inserted Text
unsigned = (U == ‘1’);

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VADDL or VADDW instruction
must be unconditional.

<dt> The data type for the elements of the second operand vector. It must be one of:

S8 encoded as size = 0b00, U = 0

S16 encoded as size = 0b01, U = 0

S32 encoded as size = 0b10, U = 0

U8 encoded as size = 0b00, U = 1

U16 encoded as size = 0b01, U = 1

U32 encoded as size = 0b10, U = 1.

<Qd> The destination register. If this register is omitted in a VADDW instruction, it is the same
register as <Qn>.

<Qn>, <Dm> The first and second operand registers for a VADDW instruction.

<Dn>, <Dm> The first and second operand registers for a VADDL instruction.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for e = 0 to elements-1
 if is_vaddw then
 op1 = Int(Elem[Q[n>>1],e,2*esize], unsigned);
 else
 op1 = Int(Elem[D[n],e,esize], unsigned);
 result = op1 + Int(Elem[D[m],e,esize],unsigned);
 Elem[Q[d>>1],e,2*esize] = result<2*esize-1:0>;

Exceptions

Undefined Instruction.

VADDL<c><q>.<dt> <Qd>, <Dn>, <Dm> Encoded as op = 0
VADDW<c><q>.<dt> {<Qd>,} <Qn>, <Dm> Encoded as op = 1
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-543

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Replacement Text
if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for e = 0 to elements-1
 if is_vaddw then
 op1 = Int(Elem[Qin[n>>1],e,2*esize], unsigned);
 else
 op1 = Int(Elem[Din[n],e,esize], unsigned);
 result = op1 + Int(Elem[Din[m],e,esize],unsigned);
 Elem[Q[d>>1],e,2*esize] = result<2*esize-1:0>;

ARM_2011_Q2
Sticky Note
The replacement pseudocode removes a read-after-write error.

The insertion in the section Pseudocode details of Advanced SIMD and VFP extension registers on page A2-23 [PDF page 55] defines the Din[] and Qin[] functions.

Instruction Details
A8.6.275 VAND (immediate)

This is a pseudo-instruction, equivalent to a VBIC (immediate) instruction with the immediate value bitwise
inverted. For details see VBIC (immediate) on page A8-546.

A8.6.276 VAND (register)

This instruction performs a bitwise AND operation between two registers, and places the result in the
destination register.

if Q == ‘1’ && (Vd<0> == ‘1’ || Vn<0> == ‘1’ || Vm<0> == ‘1’) then UNDEFINED;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == ‘0’ then 1 else 2;

Encoding T1 / A1 Advanced SIMD
VAND<c> <Qd>, <Qn>, <Qm>

VAND<c> <Dd>, <Dn>, <Dm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 0 D 0 0 Vn Vd 0 0 0 1 N Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 D 0 0 Vn Vd 0 0 0 1 N Q M 1 Vm
A8-544 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VAND instruction must
be unconditional.

<dt> An optional data type. It is ignored by assemblers, and does not affect the encoding.

<Qd>, <Qn>, <Qm> The destination vector and the operand vectors, for a quadword operation.

<Dd>, <Dn>, <Dm> The destination vector and the operand vectors, for a doubleword operation.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 D[d+r] = D[n+r] AND D[m+r];

Exceptions

Undefined Instruction.

VAND<c><q>{.<dt>} {<Qd>,} <Qn>, <Qm> Encoded as Q = 1
VAND<c><q>{.<dt>} {<Dd>,} <Dn>, <Dm> Encoded as Q = 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-545

Instruction Details
A8.6.277 VBIC (immediate)

Vector Bitwise Bit Clear (immediate) performs a bitwise AND between a register value and the complement
of an immediate value, and returns the result into the destination vector. For the range of constants available,
see One register and a modified immediate value on page A7-21.

if cmode<0> == ‘0’ || cmode<3:2> == ‘11’ then SEE “Related encodings”;
if Q == ‘1’ && Vd<0> == ‘1’ then UNDEFINED;
imm64 = AdvSIMDExpandImm(‘1’, cmode, i:imm3:imm4);
d = UInt(D:Vd); regs = if Q == ‘0’ then 1 else 2;

Encoding T1 / A1 Advanced SIMD
VBIC<c>.<dt> <Qd>, #<imm>

VBIC<c>.<dt> <Dd>, #<imm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 i 1 1 1 1 1 D 0 0 0 imm3 Vd cmode 0 Q 1 1 imm4

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 i 1 D 0 0 0 imm3 Vd cmode 0 Q 1 1 imm4

Related encodings See One register and a modified immediate value on page A7-21
A8-546 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VBIC instruction must be
unconditional.

<dt> The data type used for <imm>. It can be either I16 or I32.

I8, I64, and F32 are also permitted, but the resulting syntax is a pseudo-instruction.

<Qd> The destination vector for a quadword operation.

<Dd> The destination vector for a doubleword operation.

<imm> A constant of the type specified by <dt>. This constant is replicated enough times to fill the
destination register. For example, VBIC.I32 D0,#10 ANDs the complement of
0x0000000A0000000A with D0, and puts the result into D0.

For details of the range of constants available and the encoding of <dt> and <imm>, see One register and a
modified immediate value on page A7-21.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 D[d+r] = D[d+r] AND NOT(imm64);

Exceptions

Undefined Instruction.

Pseudo-instructions

VAND can be used with a range of constants that are the bitwise inverse of the available constants for VBIC.
This is assembled as the equivalent VBIC instruction. Disassembly produces the VBIC form.

One register and a modified immediate value on page A7-21 describes pseudo-instructions with a
combination of <dt> and <imm> that is not supported by hardware, but that generates the same destination
register value as a different combination that is supported by hardware.

VBIC<c><q>.<dt> {<Qd>,} <Qd>, #<imm> Encoded as Q = 1
VBIC<c><q>.<dt> {<Dd>,} <Dd>, #<imm>> Encoded as Q = 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-547

Instruction Details
A8.6.278 VBIC (register)

Vector Bitwise Bit Clear (register) performs a bitwise AND between a register value and the complement
of a register value, and places the result in the destination register.

if Q == ‘1’ && (Vd<0> == ‘1’ || Vn<0> == ‘1’ || Vm<0> == ‘1’) then UNDEFINED;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == ‘0’ then 1 else 2;

Encoding T1 / A1 Advanced SIMD
VBIC<c> <Qd>, <Qn>, <Qm>

VBIC<c> <Dd>, <Dn>, <Dm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 0 D 0 1 Vn Vd 0 0 0 1 N Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 D 0 1 Vn Vd 0 0 0 1 N Q M 1 Vm
A8-548 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VBIC instruction must
be unconditional.

<dt> An optional data type. It is ignored by assemblers, and does not affect the encoding.

<Qd>, <Qn>, <Qm> The destination vector and the operand vectors, for a quadword operation.

<Dd>, <Dn>, <Dm> The destination vector and the operand vectors, for a doubleword operation.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 D[d+r] = D[n+r] AND NOT(D[m+r]);

Exceptions

Undefined Instruction.

VBIC<c><q>{.<dt>} {<Qd>,} <Qn>, <Qm> Encoded as Q = 1
VBIC<c><q>{.<dt>} {<Dd>,} <Dn>, <Dm> Encoded as Q = 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-549

Instruction Details
A8.6.279 VBIF, VBIT, VBSL

VBIF (Vector Bitwise Insert if False), VBIT (Vector Bitwise Insert if True), and VBSL (Vector Bitwise Select)
perform bitwise selection under the control of a mask, and place the results in the destination register. The
registers can be either quadword or doubleword, and must all be the same size.

if Q == ‘1’ && (Vd<0> == ‘1’ || Vn<0> == ‘1’ || Vm<0> == ‘1’) then UNDEFINED;
if op == ‘00’ then SEE VEOR;
if op == ‘01’ then operation = VBitOps_VBSL;
if op == ‘10’ then operation = VBitOps_VBIT;
if op == ‘11’ then operation = VBitOps_VBIF;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == ‘0’ then 1 else 2;

Encoding T1 / A1 Advanced SIMD
V<op><c> <Qd>, <Qn>, <Qm>

V<op><c> <Dd>, <Dn>, <Dm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 0 D op Vn Vd 0 0 0 1 N Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 0 D op Vn Vd 0 0 0 1 N Q M 1 Vm
A8-550 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<op> The operation. It must be one of:

BIF Bitwise Insert if False, encoded as op = 0b11. Inserts each bit from Vn
into Vd if the corresponding bit of Vm is 0, otherwise leaves the Vd bit
unchanged.

BIT Bitwise Insert if True, encoded as op = 0b10. Inserts each bit from Vn
into Vd if the corresponding bit of Vm is 1, otherwise leaves the Vd bit
unchanged.

BSL Bitwise Select, encoded as op = 0b01. Selects each bit from Vn into Vd
if the corresponding bit of Vd is 1, otherwise selects the bit from Vm.

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VBIF, VBIT, or VBSL
instruction must be unconditional.

<dt> An optional data type. It is ignored by assemblers, and does not affect the encoding.

<Qd>, <Qn>, <Qm> The destination vector and the operand vectors, for a quadword operation.

<Dd>, <Dn>, <Dm> The destination vector and the operand vectors, for a doubleword operation.

Operation

enumeration VBitOps {VBitOps_VBIF, VBitOps_VBIT, VBitOps_VBSL};

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 case operation of
 when VBitOps_VBIF D[d+r] = (D[d+r] AND D[m+r]) OR (D[n+r] AND NOT(D[m+r]);
 when VBitOps_VBIT D[d+r] = (D[n+r] AND D[m+r]) OR (D[d+r] AND NOT(D[m+r]);
 when VBitOps_VBSL D[d+r] = (D[n+r] AND D[d+r]) OR (D[m+r] AND NOT(D[d+r]);

Exceptions

Undefined Instruction.

V<op><c><q>{.<dt>} {<Qd>,} <Qn>, <Qm> Encoded as Q = 1
V<op><c><q>{.<dt>} {<Dd>,} <Dn>, <Dm> Encoded as Q = 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-551

Instruction Details
A8.6.280 VCEQ (register)

VCEQ (Vector Compare Equal) takes each element in a vector, and compares it with the corresponding
element of a second vector. If they are equal, the corresponding element in the destination vector is set to all
ones. Otherwise, it is set to all zeros.

The operand vector elements can be any one of:

• 8-bit, 16-bit, or 32-bit integers. There is no distinction between signed and unsigned integers.

• 32-bit floating-point numbers.

The result vector elements are bitfields the same size as the operand vector elements.

if Q == ‘1’ && (Vd<0> == ‘1’ || Vn<0> == ‘1’ || Vm<0> == ‘1’) then UNDEFINED;
if size == ‘11’ then UNDEFINED;
int_operation = TRUE; esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == ‘0’ then 1 else 2;

if Q == ‘1’ && (Vd<0> == ‘1’ || Vn<0> == ‘1’ || Vm<0> == ‘1’) then UNDEFINED;
if sz == ‘1’ then UNDEFINED;
int_operation = FALSE; esize = 32; elements = 2;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == ‘0’ then 1 else 2;

Encoding T1 / A1 Advanced SIMD
VCEQ<c>.<dt> <Qd>, <Qn>, <Qm> <dt> an integer type
VCEQ<c>.<dt> <Dd>, <Dn>, <Dm> <dt> an integer type

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 0 D size Vn Vd 1 0 0 0 N Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 0 D size Vn Vd 1 0 0 0 N Q M 1 Vm

Encoding T2 / A2 Advanced SIMD (UNDEFINED in integer-only variant)
VCEQ<c>.F32 <Qd>, <Qn>, <Qm>

VCEQ<c>.F32 <Dd>, <Dn>, <Dm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 0 D 0 sz Vn Vd 1 1 1 0 N Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 D 0 sz Vn Vd 1 1 1 0 N Q M 0 Vm
A8-552 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VCEQ instruction must
be unconditional.

<dt> The data types for the elements of the operands. It must be one of:

I8 encoding T1 / A1, size = 0b00

I16 encoding T1 / A1, size = 0b01

I32 encoding T1 / A1, size = 0b10

F32 encoding T2 / A2, sz = 0.

<Qd>, <Qn>, <Qm> The destination vector and the operand vectors, for a quadword operation.

<Dd>, <Dn>, <Dm> The destination vector and the operand vectors, for a doubleword operation.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[D[n+r],e,esize]; op2 = Elem[D[m+r],e,esize];
 if int_operation then
 test_passed = (op1 == op2);
 else
 test_passed = FPCompareEQ(op1, op2, FALSE);
 Elem[D[d+r],e,esize] = if test_passed then Ones(esize) else Zeros(esize);

Exceptions

Undefined Instruction.

Floating-point exceptions: Input Denormal and Invalid Operation.

VCEQ<c><q>.<dt> {<Qd>,} <Qn>, <Qm> Encoded as Q = 1
VCEQ<c><q>.<dt> {<Dd>,} <Dn>, <Dm> Encoded as Q = 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-553

Instruction Details
A8.6.281 VCEQ (immediate #0)

VCEQ #0 (Vector Compare Equal to zero) takes each element in a vector, and compares it with zero. If it is
equal to zero, the corresponding element in the destination vector is set to all ones. Otherwise, it is set to all
zeros.

The operand vector elements can be any one of:

• 8-bit, 16-bit, or 32-bit integers. There is no distinction between signed and unsigned integers.

• 32-bit floating-point numbers.

The result vector elements are bitfields the same size as the operand vector elements.

if size == ‘11’ || (F == ‘1’ && size != ‘10’) then UNDEFINED;
if Q == ‘1’ && (Vd<0> == ‘1’ || Vm<0> == ‘1’) then UNDEFINED;
floating_point = (F == ‘1’);
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == ‘0’ then 1 else 2;

Encoding T1 / A1 Advanced SIMD (F = 1 UNDEFINED in integer-only variants)
VCEQ<c>.<dt> <Qd>, <Qm>, #0

VCEQ<c>.<dt> <Dd>, <Dm>, #0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 1 Vd 0 F 0 1 0 Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size 0 1 Vd 0 F 0 1 0 Q M 0 Vm
A8-554 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VCEQ instruction must be
unconditional.

<dt> The data types for the elements of the operands. It must be one of:

I8 encoded as size = 0b00, F = 0

I16 encoded as size = 0b01, F = 0

I32 encoded as size = 0b10, F = 0

F32 encoded as size = 0b10, F = 1.

<Qd>, <Qm> The destination vector and the operand vector, for a quadword operation.

<Dd>, <Dm> The destination vector and the operand vector, for a doubleword operation.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 if floating_point then
 test_passed = FPCompareEQ(Elem[D[m+r],e,esize], FPZero(‘0’,esize), FALSE);
 else
 test_passed = (Elem[D[m+r],e,esize] == Zeros(esize));
 Elem[D[d+r],e,esize] = if test_passed then Ones(esize) else Zeros(esize);

Exceptions

Undefined Instruction.

Floating-point exceptions: Input Denormal and Invalid Operation.

VCEQ<c><q>.<dt> {<Qd>,} <Qm>, #0 Encoded as Q = 1
VCEQ<c><q>.<dt> {<Dd>,} <Dm>, #0 Encoded as Q = 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-555

Instruction Details
A8.6.282 VCGE (register)

VCGE (Vector Compare Greater Than or Equal) takes each element in a vector, and compares it with the
corresponding element of a second vector. If the first is greater than or equal to the second, the
corresponding element in the destination vector is set to all ones. Otherwise, it is set to all zeros.

The operand vector elements can be any one of:

• 8-bit, 16-bit, or 32-bit signed integers

• 8-bit, 16-bit, or 32-bit unsigned integers

• 32-bit floating-point numbers.

The result vector elements are bitfields the same size as the operand vector elements.

if Q == ‘1’ && (Vd<0> == ‘1’ || Vn<0> == ‘1’ || Vm<0> == ‘1’) then UNDEFINED;
if size == ‘11’ then UNDEFINED;
type = if U == ‘1’ then VCGEtype_unsigned else VCGEtype_signed;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == ‘0’ then 1 else 2;

if Q == ‘1’ && (Vd<0> == ‘1’ || Vn<0> == ‘1’ || Vm<0> == ‘1’) then UNDEFINED;
if sz == ‘1’ then UNDEFINED;
type = VCGEtype_fp; esize = 32; elements = 2;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == ‘0’ then 1 else 2;

Encoding T1 / A1 Advanced SIMD
VCGE<c>.<dt> <Qd>, <Qn>, <Qm> <dt> an integer type
VCGE<c>.<dt> <Dd>, <Dn>, <Dm> <dt> an integer type

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 0 D size Vn Vd 0 0 1 1 N Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U 0 D size Vn Vd 0 0 1 1 N Q M 1 Vm

Encoding T2 / A2 Advanced SIMD (UNDEFINED in integer-only variant)
VCGE<c>.F32 <Qd>, <Qn>, <Qm>

VCGE<c>.F32 <Dd>, <Dn>, <Dm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 0 D 0 sz Vn Vd 1 1 1 0 N Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 0 D 0 sz Vn Vd 1 1 1 0 N Q M 0 Vm
A8-556 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VCGE instruction must
be unconditional.

<dt> The data types for the elements of the operands. It must be one of:

S8 encoding T1 / A1, size = 0b00, U = 0

S16 encoding T1 / A1, size = 0b01, U = 0

S32 encoding T1 / A1, size = 0b10, U = 0

U8 encoding T1 / A1, size = 0b00, U = 1

U16 encoding T1 / A1, size = 0b01, U = 1

U32 encoding T1 / A1, size = 0b10, U = 1

F32 encoding T2 / A2, sz = 0.

<Qd>, <Qn>, <Qm> The destination vector and the operand vectors, for a quadword operation.

<Dd>, <Dn>, <Dm> The destination vector and the operand vectors, for a doubleword operation.

Operation

enumeration VCGEtype {VCGEtype_signed, VCGEtype_unsigned, VCGEtype_fp};

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[D[n+r],e,esize]; op2 = Elem[D[m+r],e,esize];
 case type of
 when VCGEtype_signed test_passed = (SInt(op1) >= SInt(op2));
 when VCGEtype_unsigned test_passed = (UInt(op1) >= UInt(op2));
 when VCGEtype_fp test_passed = FPCompareGE(op1, op2, FALSE);
 Elem[D[d+r],e,esize] = if test_passed then Ones(esize) else Zeros(esize);

Exceptions

Undefined Instruction.

Floating-point exceptions: Input Denormal and Invalid Operation.

VCGE<c><q>.<dt> {<Qd>,} <Qn>, <Qm> Encoded as Q = 1
VCGE<c><q>.<dt> {<Dd>,} <Dn>, <Dm> Encoded as Q = 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-557

Instruction Details
A8.6.283 VCGE (immediate #0)

VCGE #0 (Vector Compare Greater Than or Equal to Zero) take each element in a vector, and compares it with
zero. If it is greater than or equal to zero, the corresponding element in the destination vector is set to all
ones. Otherwise, it is set to all zeros.

The operand vector elements can be any one of:

• 8-bit, 16-bit, or 32-bit signed integers

• 32-bit floating-point numbers.

The result vector elements are bitfields the same size as the operand vector elements.

if size == ‘11’ || (F == ‘1’ && size != ‘10’) then UNDEFINED;
if Q == ‘1’ && (Vd<0> == ‘1’ || Vm<0> == ‘1’) then UNDEFINED;
floating_point = (F == ‘1’);
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == ‘0’ then 1 else 2;

Encoding T1 / A1 Advanced SIMD (F = 1 UNDEFINED in integer-only variants)
VCGE<c>.<dt> <Qd>, <Qm>, #0

VCGE<c>.<dt> <Dd>, <Dm>, #0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 1 Vd 0 F 0 0 1 Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size 0 1 Vd 0 F 0 0 1 Q M 0 Vm
A8-558 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VCGE instruction must be
unconditional.

<dt> The data types for the elements of the operands. It must be one of:

S8 encoded as size = 0b00, F = 0

S16 encoded as size = 0b01, F = 0

S32 encoded as size = 0b10, F = 0

F32 encoded as size = 0b10, F = 1.

<Qd>, <Qm> The destination vector and the operand vector, for a quadword operation.

<Dd>, <Dm> The destination vector and the operand vector, for a doubleword operation.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 if floating_point then
 test_passed = FPCompareGE(Elem[D[m+r],e,esize], FPZero(‘0’,esize), FALSE);
 else
 test_passed = (SInt(Elem[D[m+r],e,esize]) >= 0);
 Elem[D[d+r],e,esize] = if test_passed then Ones(esize) else Zeros(esize);

Exceptions

Undefined Instruction.

Floating-point exceptions: Input Denormal and Invalid Operation.

VCGE<c><q>.<dt> {<Qd>,} <Qm>, #0 Encoded as Q = 1
VCGE<c><q>.<dt> {<Dd>,} <Dm>, #0 Encoded as Q = 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-559

Instruction Details
A8.6.284 VCGT (register)

VCGT (Vector Compare Greater Than) takes each element in a vector, and compares it with the corresponding
element of a second vector. If the first is greater than the second, the corresponding element in the
destination vector is set to all ones. Otherwise, it is set to all zeros.

The operand vector elements can be any one of:

• 8-bit, 16-bit, or 32-bit signed integers

• 8-bit, 16-bit, or 32-bit unsigned integers

• 32-bit floating-point numbers.

The result vector elements are bitfields the same size as the operand vector elements.

if Q == ‘1’ && (Vd<0> == ‘1’ || Vn<0> == ‘1’ || Vm<0> == ‘1’) then UNDEFINED;
if size == ‘11’ then UNDEFINED;
type = if U == ‘1’ then VCGTtype_unsigned else VCGTtype_signed;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == ‘0’ then 1 else 2;

if Q == ‘1’ && (Vd<0> == ‘1’ || Vn<0> == ‘1’ || Vm<0> == ‘1’) then UNDEFINED;
if sz == ‘1’ then UNDEFINED;
type = VCGTtype_fp; esize = 32; elements = 2;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == ‘0’ then 1 else 2;

Encoding T1 / A1 Advanced SIMD
VCGT<c>.<dt> <Qd>, <Qn>, <Qm> <dt> an integer type
VCGT<c>.<dt> <Dd>, <Dn>, <Dm> <dt> an integer type

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 0 D size Vn Vd 0 0 1 1 N Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U 0 D size Vn Vd 0 0 1 1 N Q M 0 Vm

Encoding T2 / A2 Advanced SIMD (UNDEFINED in integer-only variant)
VCGT<c>.F32 <Qd>, <Qn>, <Qm>

VCGT<c>.F32 <Dd>, <Dn>, <Dm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 0 D 1 sz Vn Vd 1 1 1 0 N Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 0 D 1 sz Vn Vd 1 1 1 0 N Q M 0 Vm
A8-560 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VCGT instruction must
be unconditional.

<dt> The data types for the elements of the operands. It must be one of:

S8 encoding T1 / A1, size = 0b00, U = 0

S16 encoding T1 / A1, size = 0b01, U = 0

S32 encoding T1 / A1, size = 0b10, U = 0

U8 encoding T1 / A1, size = 0b00, U = 1

U16 encoding T1 / A1, size = 0b01, U = 1

U32 encoding T1 / A1, size = 0b10, U = 1

F32 encoding T2 / A2, sz = 0.

<Qd>, <Qn>, <Qm> The destination vector and the operand vectors, for a quadword operation.

<Dd>, <Dn>, <Dm> The destination vector and the operand vectors, for a doubleword operation.

Operation

enumeration VCGTtype {VCGTtype_signed, VCGTtype_unsigned, VCGTtype_fp};

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[D[n+r],e,esize]; op2 = Elem[D[m+r],e,esize];
 case type of
 when VCGTtype_signed test_passed = (SInt(op1) > SInt(op2));
 when VCGTtype_unsigned test_passed = (UInt(op1) > UInt(op2));
 when VCGTtype_fp test_passed = FPCompareGT(op1, op2, FALSE);
 Elem[D[d+r],e,esize] = if test_passed then Ones(esize) else Zeros(esize);

Exceptions

Undefined Instruction.

Floating-point exceptions: Input Denormal and Invalid Operation.

VCGT<c><q>.<dt> {<Qd>,} <Qn>, <Qm> Encoded as Q = 1
VCGT<c><q>.<dt> {<Dd>,} <Dn>, <Dm> Encoded as Q = 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-561

Instruction Details
A8.6.285 VCGT (immediate #0)

VCGT #0 (Vector Compare Greater Than Zero) take each element in a vector, and compares it with zero. If it
is greater than zero, the corresponding element in the destination vector is set to all ones. Otherwise, it is set
to all zeros.

The operand vector elements can be any one of:

• 8-bit, 16-bit, or 32-bit signed integers

• 32-bit floating-point numbers.

The result vector elements are bitfields the same size as the operand vector elements.

if size == ‘11’ || (F == ‘1’ && size != ‘10’) then UNDEFINED;
if Q == ‘1’ && (Vd<0> == ‘1’ || Vm<0> == ‘1’) then UNDEFINED;
floating_point = (F == ‘1’);
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == ‘0’ then 1 else 2;

Encoding T1 / A1 Advanced SIMD (F = 1 UNDEFINED in integer-only variants)
VCGT<c>.<dt> <Qd>, <Qm>, #0

VCGT<c>.<dt> <Dd>, <Dm>, #0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 1 Vd 0 F 0 0 0 Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size 0 1 Vd 0 F 0 0 0 Q M 0 Vm
A8-562 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VCGT instruction must be
unconditional.

<dt> The data types for the elements of the operands. It must be one of:

S8 encoded as size = 0b00, F = 0

S16 encoded as size = 0b01, F = 0

S32 encoded as size = 0b10, F = 0

F32 encoded as size = 0b10, F = 1.

<Qd>, <Qm> The destination vector and the operand vector, for a quadword operation.

<Dd>, <Dm> The destination vector and the operand vector, for a doubleword operation.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 if floating_point then
 test_passed = FPCompareGT(Elem[D[m+r],e,esize], FPZero(‘0’,esize), FALSE);
 else
 test_passed = (SInt(Elem[D[m+r],e,esize]) > 0);
 Elem[D[d+r],e,esize] = if test_passed then Ones(esize) else Zeros(esize);

Exceptions

Undefined Instruction.

Floating-point exceptions: Input Denormal and Invalid Operation.

VCGT<c><q>.<dt> {<Qd>,} <Qm>, #0 Encoded as Q = 1
VCGT<c><q>.<dt> {<Dd>,} <Dm>, #0 Encoded as Q = 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-563

Instruction Details
A8.6.286 VCLE (register)

VCLE is a pseudo-instruction, equivalent to a VCGE instruction with the operands reversed. For details see
VCGE (register) on page A8-556.

A8.6.287 VCLE (immediate #0)

VCLE #0 (Vector Compare Less Than or Equal to Zero) take each element in a vector, and compares it with
zero. If it is less than or equal to zero, the corresponding element in the destination vector is set to all ones.
Otherwise, it is set to all zeros.

The operand vector elements can be any one of:

• 8-bit, 16-bit, or 32-bit signed integers

• 32-bit floating-point numbers.

The result vector elements are bitfields the same size as the operand vector elements.

if size == ‘11’ || (F == ‘1’ && size != ‘10’) then UNDEFINED;
if Q == ‘1’ && (Vd<0> == ‘1’ || Vm<0> == ‘1’) then UNDEFINED;
floating_point = (F == ‘1’);
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == ‘0’ then 1 else 2;

Encoding T1 / A1 Advanced SIMD (F = 1 UNDEFINED in integer-only variants)
VCLE<c>.<dt> <Qd>, <Qm>, #0

VCLE<c>.<dt> <Dd>, <Dm>, #0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 1 Vd 0 F 0 1 1 Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size 0 1 Vd 0 F 0 1 1 Q M 0 Vm
A8-564 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VCLE instruction must
be unconditional.

<dt> The data types for the elements of the operands. It must be one of:

S8 encoded as size = 0b00, F = 0

S16 encoded as size = 0b01, F = 0

S32 encoded as size = 0b10, F = 0

F32 encoded as size = 0b10, F = 1.

<Qd>, <Qm> The destination vector and the operand vector, for a quadword operation.

<Dd>, <Dm> The destination vector and the operand vector, for a doubleword operation.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 if floating_point then
 test_passed = FPCompareGE(FPZero(‘0’,esize), Elem[D[m+r],e,esize], FALSE);
 else
 test_passed = (SInt(Elem[D[m+r],e,esize]) <= 0);
 Elem[D[d+r],e,esize] = if test_passed then Ones(esize) else Zeros(esize);

Exceptions

Undefined Instruction.

Floating-point exceptions: Input Denormal and Invalid Operation.

VCLE<c><q>.<dt> {<Qd>,} <Qm>, #0 Encoded as Q = 1
VCLE<c><q>.<dt> {<Dd>,} <Dm>, #0 Encoded as Q = 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-565

Instruction Details
A8.6.288 VCLS

Vector Count Leading Sign Bits counts the number of consecutive bits following the topmost bit, that are
the same as the topmost bit, in each element in a vector, and places the results in a second vector. The count
does not include the topmost bit itself.

The operand vector elements can be any one of 8-bit, 16-bit, or 32-bit signed integers.

The result vector elements are the same data type as the operand vector elements.

if size == ‘11’ then UNDEFINED;
if Q == ‘1’ && (Vd<0> == ‘1’ || Vm<0> == ‘1’) then UNDEFINED;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == ‘0’ then 1 else 2;

Encoding T1 / A1 Advanced SIMD
VCLS<c>.<dt> <Qd>, <Qm>

VCLS<c>.<dt> <Dd>, <Dm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 0 Vd 0 1 0 0 0 Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size 0 0 Vd 0 1 0 0 0 Q M 0 Vm
A8-566 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VCLS instruction must be
unconditional.

<dt> The data size for the elements of the operands. It must be one of:

S8 encoded as size = 0b00

S16 encoded as size = 0b01

S32 encoded as size = 0b10.

<Qd>, <Qm> The destination vector and the operand vector, for a quadword operation.

<Dd>, <Dm> The destination vector and the operand vector, for a doubleword operation.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 Elem[D[d+r],e,esize] = CountLeadingSignBits(Elem[D[m+r],e,esize]);

Exceptions

Undefined Instruction.

VCLS<c><q>.<dt> <Qd>, <Qm> Encoded as Q = 1
VCLS<c><q>.<dt> <Dd>, <Dm> Encoded as Q = 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-567

Instruction Details
A8.6.289 VCLT (register)

VCLT is a pseudo-instruction, equivalent to a VCGT instruction with the operands reversed. For details see
VCGT (register) on page A8-560.

A8.6.290 VCLT (immediate #0)

VCLT #0 (Vector Compare Less Than Zero) take each element in a vector, and compares it with zero. If it is
less than zero, the corresponding element in the destination vector is set to all ones. Otherwise, it is set to
all zeros.

The operand vector elements can be any one of:

• 8-bit, 16-bit, or 32-bit signed integers

• 32-bit floating-point numbers.

The result vector elements are bitfields the same size as the operand vector elements.

if size == ‘11’ || (F == ‘1’ && size != ‘10’) then UNDEFINED;
if Q == ‘1’ && (Vd<0> == ‘1’ || Vm<0> == ‘1’) then UNDEFINED;
floating_point = (F == ‘1’);
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == ‘0’ then 1 else 2;

Encoding T1 / A1 Advanced SIMD (F = 1 UNDEFINED in integer-only variants)
VCLT<c>.<dt> <Qd>, <Qm>, #0

VCLT<c>.<dt> <Dd>, <Dm>, #0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 1 Vd 0 F 1 0 0 Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size 0 1 Vd 0 F 1 0 0 Q M 0 Vm
A8-568 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VCLT instruction must
be unconditional.

<dt> The data types for the elements of the operands. It must be one of:

S8 encoded as size = 0b00, F = 0

S16 encoded as size = 0b01, F = 0

S32 encoded as size = 0b10, F = 0

F32 encoded as size = 0b10, F = 1.

<Qd>, <Qm> The destination vector and the operand vector, for a quadword operation.

<Dd>, <Dm> The destination vector and the operand vector, for a doubleword operation.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 if floating_point then
 test_passed = FPCompareGT(FPZero(‘0’,esize), Elem[D[m+r],e,esize], FALSE);
 else
 test_passed = (SInt(Elem[D[m+r],e,esize]) < 0);
 Elem[D[d+r],e,esize] = if test_passed then Ones(esize) else Zeros(esize);

Exceptions

Undefined Instruction.

Floating-point exceptions: Input Denormal and Invalid Operation.

VCLT<c><q>.<dt> {<Qd>,} <Qm>, #0 Encoded as Q = 1
VCLT<c><q>.<dt> {<Dd>,} <Dm>, #0 Encoded as Q = 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-569

Instruction Details
A8.6.291 VCLZ

Vector Count Leading Zeros counts the number of consecutive zeros, starting from the most significant bit,
in each element in a vector, and places the results in a second vector.

The operand vector elements can be any one of 8-bit, 16-bit, or 32-bit integers. There is no distinction
between signed and unsigned integers.

The result vector elements are the same data type as the operand vector elements.

if size == ‘11’ then UNDEFINED;
if Q == ‘1’ && (Vd<0> == ‘1’ || Vm<0> == ‘1’) then UNDEFINED;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == ‘0’ then 1 else 2;

Encoding T1 / A1 Advanced SIMD
VCLZ<c>.<dt> <Qd>, <Qm>

VCLZ<c>.<dt> <Dd>, <Dm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 0 Vd 0 1 0 0 1 Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size 0 0 Vd 0 1 0 0 1 Q M 0 Vm
A8-570 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VCLZ instruction must be
unconditional.

<dt> The data size for the elements of the operands. It must be one of:

I8 encoded as size = 0b00

I16 encoded as size = 0b01

I32 encoded as size = 0b10.

<Qd>, <Qm> The destination vector and the operand vector, for a quadword operation.

<Dd>, <Dm> The destination vector and the operand vector, for a doubleword operation.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 Elem[D[d+r],e,esize] = CountLeadingZeroBits(Elem[D[m+r],e,esize]);

Exceptions

Undefined Instruction.

VCLZ<c><q>.<dt> <Qd>, <Qm> Encoded as Q = 1
VCLZ<c><q>.<dt> <Dd>, <Dm> Encoded as Q = 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-571

Instruction Details
A8.6.292 VCMP, VCMPE

This instruction compares two floating-point registers, or one floating-point register and zero. It writes the
result to the FPSCR flags. These are normally transferred to the ARM flags by a subsequent VMRS instruction.

It can optionally raise an Invalid Operation exception if either operand is any type of NaN. It always raises
an Invalid Operation exception if either operand is a signaling NaN.

dp_operation = (sz == ‘1’); quiet_nan_exc = (E == ‘1’); with_zero = FALSE;
d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

dp_operation = (sz == ‘1’); quiet_nan_exc = (E == ‘1’); with_zero = TRUE;
d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);

Encoding T1 / A1 VFPv2, VFPv3 (sz = 1 UNDEFINED in single-precision only variants)
VCMP{E}<c>.F64 <Dd>, <Dm>

VCMP{E}<c>.F32 <Sd>, <Sm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 1 1 0 1 0 0 Vd 1 0 1 sz E 1 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 1 0 1 D 1 1 0 1 0 0 Vd 1 0 1 sz E 1 M 0 Vm

Encoding T2 / A2 VFPv2, VFPv3 (sz = 1 UNDEFINED in single-precision only variants)
VCMP{E}<c>.F64 <Dd>, #0.0

VCMP{E}<c>.F32 <Sd>, #0.0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 1 1 0 1 0 1 Vd 1 0 1 sz E 1 (0) 0 (0) (0) (0) (0)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 1 0 1 D 1 1 0 1 0 1 Vd 1 0 1 sz E 1 (0) 0 (0) (0) (0) (0)
A8-572 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

E If present, any NaN operand causes an Invalid Operation exception. Encoded as E = 1.

Otherwise, only a signaling NaN causes the exception. Encoded as E = 0.

<c><q> See Standard assembler syntax fields on page A8-7.

<Dd>, <Dm> The operand vectors, for a doubleword operation.

<Sd>, <Sm> The operand vectors, for a singleword operation.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 if dp_operation then
 op2 = if with_zero then FPZero(‘0’,64) else D[m];
 (FPSCR.N, FPSCR.Z, FPSCR.C, FPSCR.V) = FPCompare(D[d], op2, quiet_nan_exc, TRUE);
 else
 op2 = if with_zero then FPZero(‘0’,32) else S[m];
 (FPSCR.N, FPSCR.Z, FPSCR.C, FPSCR.V) = FPCompare(S[d], op2, quiet_nan_exc, TRUE);

Exceptions

Undefined Instruction.

Floating-point exceptions: Invalid Operation, Input Denormal.

NaNs

The IEEE 754 standard specifies that the result of a comparison is precisely one of <, ==, > or unordered. If
either or both of the operands are NaNs, they are unordered, and all three of (Operand1 < Operand2),
(Operand1 == Operand2) and (Operand1 > Operand2) are false. This results in the FPSCR flags being set
as N=0, Z=0, C=1 and V=1.

VCMPE raises an Invalid Operation exception if either operand is any type of NaN, and is suitable for testing
for <, <=, >, >=, and other predicates that raise an exception when the operands are unordered.

VCMP{E}<c><q>.F64 <Dd>, <Dm> Encoding T1 / A1, sz = 1
VCMP{E}<c><q>.F32 <Sd>, <Sm> Encoding T1 / A1, sz = 0
VCMP{E}<c><q>.F64 <Dd>, #0.0 Encoding T2 / A2, sz = 1
VCMP{E}<c><q>.F32 <Sd>, #0.0 Encoding T2 / A2, sz = 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-573

Instruction Details
A8.6.293 VCNT

This instruction counts the number of bits that are one in each element in a vector, and places the results in
a second vector.

The operand vector elements must be 8-bit bitfields.

The result vector elements are 8-bit integers.

if size != ‘00’ then UNDEFINED;
if Q == ‘1’ && (Vd<0> == ‘1’ || Vm<0> == ‘1’) then UNDEFINED;
esize = 8; elements = 8;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == ‘0’ then 1 else 2;

Encoding T1 / A1 Advanced SIMD
VCNT<c>.8 <Qd>, <Qm>

VCNT<c>.8 <Dd>, <Dm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 0 Vd 0 1 0 1 0 Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size 0 0 Vd 0 1 0 1 0 Q M 0 Vm
A8-574 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VCNT instruction must
be unconditional.

<Qd>, <Qm> The destination vector and the operand vector, for a quadword operation.

<Dd>, <Dm> The destination vector and the operand vector, for a doubleword operation.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 Elem[D[d+r],e,esize] = BitCount(Elem[D[m+r],e,esize]);

Exceptions

Undefined Instruction.

VCNT<c><q>.8 <Qd>, <Qm> Encoded as Q = 1
VCNT<c><q>.8 <Dd>, <Dm> Encoded as Q = 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-575

Instruction Details
A8.6.294 VCVT (between floating-point and integer, Advanced SIMD)

This instruction converts each element in a vector from floating-point to integer, or from integer to
floating-point, and places the results in a second vector.

The vector elements must be 32-bit floating-point numbers, or 32-bit integers. Signed and unsigned integers
are distinct.

The floating-point to integer operation uses the Round towards Zero rounding mode. The integer to
floating-point operation uses the Round to Nearest rounding mode.

if Q == ‘1’ && (Vd<0> == ‘1’ || Vm<0> == ‘1’) then UNDEFINED;
if size != ‘10’ then UNDEFINED;
to_integer = (op<1> == ‘1’); unsigned = (op<0> == ‘1’); esize = 32; elements = 2;
if to_integer then
 round_zero = TRUE; // Variable name indicates purpose of FPToFixed() argument
else
 round_nearest = TRUE; // Variable name indicates purpose of FixedToFP() argument
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == ‘0’ then 1 else 2;

Encoding T1 / A1 Advanced SIMD (UNDEFINED in integer-only variant)

VCVT<c>.<Td>.<Tm> <Qd>, <Qm>

VCVT<c>.<Td>.<Tm> <Dd>, <Dm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 1 1 Vd 0 1 1 op Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size 1 1 Vd 0 1 1 op Q M 0 Vm
A8-576 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM Advanced SIMD VCVT
instruction must be unconditional.

.<Td>.<Tm> The data types for the elements of the vectors. They must be one of:

.S32.F32 encoded as op = 0b10, size = 0b10

.U32.F32 encoded as op = 0b11, size = 0b10

.F32.S32 encoded as op = 0b00, size = 0b10

.F32.U32 encoded as op = 0b01, size = 0b10.

<Qd>, <Qm> The destination vector and the operand vector, for a quadword operation.

<Dd>, <Dm> The destination vector and the operand vector, for a doubleword operation.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 op = Elem[D[m+r],e,esize];
 if to_integer then
 result = FPToFixed(op, esize, 0, unsigned, round_zero, FALSE);
 else
 result = FixedToFP(op, esize, 0, unsigned, round_nearest, FALSE);
 Elem[D[d+r],e,esize] = result;

Exceptions

Undefined Instruction.

Floating-point exceptions: Input Denormal, Invalid Operation, and Inexact.

VCVT<c><q>.<Td>.<Tm> <Qd>, <Qm> Encoded as Q = 1
VCVT<c><q>.<Td>.<Tm> <Dd>, <Dm> Encoded as Q = 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-577

Instruction Details
A8.6.295 VCVT, VCVTR (between floating-point and integer, VFP)

These instructions convert a value in a register from floating-point to a 32-bit integer, or from a 32-bit integer
to floating-point, and place the result in a second register.

The floating-point to integer operation normally uses the Round towards Zero rounding mode, but can
optionally use the rounding mode specified by the FPSCR. The integer to floating-point operation uses the
rounding mode specified by the FPSCR.

VCVT (between floating-point and fixed-point, VFP) on page A8-582 describes conversions between
floating-point and 16-bit integers.

if opc2 != ‘000’ && opc2 != ‘10x’ then SEE “Related encodings”;
to_integer = (opc2<2> == ‘1’); dp_operation = (sz == 1);
if to_integer then
 unsigned = (opc2<0> == ‘0’); round_zero = (op == ‘1’);
 d = UInt(Vd:D); m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);
else
 unsigned = (op == ‘0’); round_fpscr = FALSE; // FALSE selects FPSCR rounding
 m = UInt(Vm:M); d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);

Encoding T1 / A1 VFPv2, VFPv3 (sz = 1 UNDEFINED in single-precision only variants)

VCVT{R}<c>.S32.F64 <Sd>, <Dm>

VCVT{R}<c>.S32.F32 <Sd>, <Sm>

VCVT{R}<c>.U32.F64 <Sd>, <Dm>

VCVT{R}<c>.U32.F32 <Sd>, <Sm>

VCVT<c>.F64.<Tm> <Dd>, <Sm>

VCVT<c>.F32.<Tm> <Sd>, <Sm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 1 1 1 opc2 Vd 1 0 1 sz op 1 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 1 0 1 D 1 1 1 opc2 Vd 1 0 1 sz op 1 M 0 Vm

Related encodings See VFP data-processing instructions on page A7-24
A8-578 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

R If R is specified, the operation uses the rounding mode specified by the FPSCR. Encoded as
op = 0.

If R is omitted. the operation uses the Round towards Zero rounding mode. For syntaxes in
which R is optional, op is encoded as 1 if R is omitted.

<c><q> See Standard assembler syntax fields on page A8-7.

<Tm> The data type for the operand. It must be one of:

S32 encoded as op = 1

U32 encoded as op = 0.

<Sd>, <Dm> The destination register and the operand register, for a double-precision operand.

<Dd>, <Sm> The destination register and the operand register, for a double-precision result.

<Sd>, <Sm> The destination register and the operand register, for a single-precision operand or result.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 if to_integer then
 if dp_operation then
 S[d] = FPToFixed(D[m], 32, 0, unsigned, round_zero, TRUE);
 else
 S[d] = FPToFixed(S[m], 32, 0, unsigned, round_zero, TRUE);
 else
 if dp_operation then
 D[d] = FixedToFP(S[m], 64, 0, unsigned, round_fpscr, TRUE);
 else
 S[d] = FixedToFP(S[m], 32, 0, unsigned, round_fpscr, TRUE);

Exceptions

Undefined Instruction.

Floating-point exceptions: Input Denormal, Invalid Operation, and Inexact.

VCVT{R}<c><q>.S32.F64 <Sd>, <Dm> opc2 = ’101’, sz = 1

VCVT{R}<c><q>.S32.F32 <Sd>, <Sm> opc2 = ’101’, sz = 0

VCVT{R}<c><q>.U32.F64 <Sd>, <Dm> opc2 = ’100’, sz = 1

VCVT{R}<c><q>.U32.F32 <Sd>, <Sm> opc2 = ’100’, sz = 0

VCVT<c><q>.F64.<Tm> <Dd>, <Sm> opc2 = ’000’, sz = 1

VCVT<c><q>.F32.<Tm> <Sd>, <Sm> opc2 = ’000’, sz = 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-579

Instruction Details
A8.6.296 VCVT (between floating-point and fixed-point, Advanced SIMD)

This instruction converts each element in a vector from floating-point to fixed-point, or from fixed-point to
floating-point, and places the results in a second vector.

The vector elements must be 32-bit floating-point numbers, or 32-bit integers. Signed and unsigned integers
are distinct.

The floating-point to fixed-point operation uses the Round towards Zero rounding mode. The fixed-point to
floating-point operation uses the Round to Nearest rounding mode.

if imm6 == ‘000xxx’ then SEE “Related encodings”;
if imm6 == ‘0xxxxx’ then UNDEFINED;
if Q == ‘1’ && (Vd<0> == ‘1’ || Vm<0> == ‘1’) then UNDEFINED;
to_fixed = (op == ‘1’); unsigned = (U == ‘1’);
if to_fixed then
 round_zero = TRUE; // Variable name indicates purpose of FPToFixed() argument
else
 round_nearest = TRUE; // Variable name indicates purpose of FixedToFP() argument
esize = 32; frac_bits = 64 - UInt(imm6);
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == ‘0’ then 1 else 2;

Encoding T1 / A1 Advanced SIMD (UNDEFINED in integer-only variant)

VCVT<c>.<Td>.<Tm> <Qd>, <Qm>, #<fbits>

VCVT<c>.<Td>.<Tm> <Dd>, <Dm>, #<fbits>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 1 D imm6 Vd 1 1 1 op 0 Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U 1 D imm6 Vd 1 1 1 op 0 Q M 1 Vm

Related encodings See One register and a modified immediate value on page A7-21
A8-580 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM Advanced SIMD VCVT
instruction must be unconditional.

.<Td>.<Tm> The data types for the elements of the vectors. They must be one of:

.S32.F32 encoded as op = 1, U = 0

.U32.F32 encoded as op = 1, U = 1

.F32.S32 encoded as op = 0, U = 0

.F32.U32 encoded as op = 0, U = 1.

<Qd>, <Qm> The destination vector and the operand vector, for a quadword operation.

<Dd>, <Dm> The destination vector and the operand vector, for a doubleword operation.

<fbits> The number of fraction bits in the fixed point number, in the range 1 to 32:

• (64 - <fbits>) is encoded in imm6.

An assembler can permit an <fbits> value of 0. This is encoded as floating-point to integer
or integer to floating-point instruction, see VCVT (between floating-point and integer,
Advanced SIMD) on page A8-576.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 op = Elem[D[m+r],e,esize];
 if to_fixed then
 result = FPToFixed(op, esize, frac_bits, unsigned, round_zero, FALSE);
 else
 result = FixedToFP(op, esize, frac_bits, unsigned, round_nearest, FALSE);
 Elem[D[d+r],e,esize] = result;

Exceptions

Undefined Instruction.

Floating-point exceptions: Input Denormal, Invalid Operation, and Inexact.

VCVT<c><q>.<Td>.<Tm> <Qd>, <Qm>, #<fbits> Encoded as Q = 1

VCVT<c><q>.<Td>.<Tm> <Dd>, <Dm>, #<fbits> Encoded as Q = 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-581

Instruction Details
A8.6.297 VCVT (between floating-point and fixed-point, VFP)

This instruction converts a value in a register from floating-point to fixed-point, or from fixed-point to
floating-point, and places the result in a second register. You can specify the fixed-point value as either
signed or unsigned.

The floating-point value can be single-precision or double-precision.

The fixed-point value can be 16-bit or 32-bit. Conversions from fixed-point values take their operand from
the low-order bits of the source register and ignore any remaining bits. Signed conversions to fixed-point
values sign-extend the result value to the destination register width. Unsigned conversions to fixed-point
values zero-extend the result value to the destination register width.

The floating-point to fixed-point operation uses the Round towards Zero rounding mode. The fixed-point to
floating-point operation uses the Round to Nearest rounding mode.

to_fixed = (op == ‘1’); dp_operation = (sf == ‘1’); unsigned = (U == ‘1’);
size = if sx == ‘0’ then 16 else 32;
frac_bits = size - UInt(imm4:i);
if to_fixed then
 round_zero = TRUE;
else
 round_nearest = TRUE;
d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
if frac_bits < 0 then UNPREDICTABLE;

Encoding T1 / A1 VFPv3 (sf = 1 UNDEFINED in single-precision only variants)

VCVT<c>.<Td>.F64 <Dd>, <Dd>, #<fbits>

VCVT<c>.<Td>.F32 <Sd>, <Sd>, #<fbits>

VCVT<c>.F64.<Td> <Dd>, <Dd>, #<fbits>

VCVT<c>.F32.<Td> <Sd>, <Sd>, #<fbits>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 1 1 1 op 1 U Vd 1 0 1 sf sx 1 i 0 imm4

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 1 0 1 D 1 1 1 op 1 U Vd 1 0 1 sf sx 1 i 0 imm4
A8-582 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2010_Q2
Cross-Out

ARM_2010_Q2
Sticky Note
This instruction uses a single register, that acts as the operand and the destination register.

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Td> The data type for the fixed-point number. It must be one of:

S16 encoded as U = 0, sx = 0

U16 encoded as U = 1, sx = 0

S32 encoded as U = 0, sx = 1

U32 encoded as U = 1, sx = 1.

<Dd> The destination and operand register, for a double-precision operand.

<Sd> The destination and operand register, for a single-precision operand.

<fbits> The number of fraction bits in the fixed-point number:

• If <Td> is S16 or U16, <fbits> must be in the range 0-16. (16 - <fbits>) is encoded in
[imm4,i]

• I f <Td> is S32 or U32, <fbits> must be in the range 1-32. (32 - <fbits>) is encoded in
[imm4,i].

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 if to_fixed then
 if dp_operation then
 result = FPToFixed(D[d], size, frac_bits, unsigned, round_zero, TRUE);
 D[d] = if unsigned then ZeroExtend(result, 64) else SignExtend(result, 64);
 else
 result = FPToFixed(S[m], size, frac_bits, unsigned, round_zero, TRUE);
 S[d] = if unsigned then ZeroExtend(result, 32) else SignExtend(result, 32);
 else
 if dp_operation then
 D[d] = FixedToFP(D[d]<size-1:0>, 64, frac_bits, unsigned, round_nearest, TRUE);
 else
 S[d] = FixedToFP(S[d]<size-1:0>, 32, frac_bits, unsigned, round_nearest, TRUE);

Exceptions

Undefined Instruction.

Floating-point exceptions: Input Denormal, Invalid Operation, and Inexact.

VCVT<c><q>.<Td>.F64 <Dd>, <Dd>,#<fbits> op = 1, sf = 1

VCVT<c><q>.<Td>.F32 <Sd>, <Sd>, #<fbits> op = 1, sf = 0

VCVT<c><q>.F64.<Td> <Dd>, <Dd>, #<fbits> op = 0, sf = 1

VCVT<c><q>.F32.<Td> <Sd>, <Sd>, #<fbits> op = 0, sf = 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-583

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
d

Instruction Details
A8.6.298 VCVT (between double-precision and single-precision)

This instruction does one of the following:

• converts the value in a double-precision register to single-precision and writes the result to a
single-precision register

• converts the value in a single-precision register to double-precision and writes the result to a
double-precision register.

double_to_single = (sz == ‘1’);
d = if double_to_single then UInt(Vd:D) else UInt(D:Vd);
m = if double_to_single then UInt(M:Vm) else UInt(Vm:M);

Encoding T1 / A1 VFPv2, VFPv3 (UNDEFINED in single-precision only variants)

VCVT<c>.F64.F32 <Dd>, <Sm>

VCVT<c>.F32.F64 <Sd>, <Dm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 1 1 0 1 1 1 Vd 1 0 1 sz 1 1 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 1 0 1 D 1 1 0 1 1 1 Vd 1 0 1 sz 1 1 M 0 Vm
A8-584 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Dd>, <Sm> The destination register and the operand register, for a single-precision operand.

<Sd>, <Dm> The destination register and the operand register, for a double-precision operand.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 if double_to_single then
 S[d] = FPDoubleToSingle(D[m], TRUE);
 else
 D[d] = FPSingleToDouble(S[m], TRUE);

Exceptions

Undefined Instruction.

Floating-point exceptions: Invalid Operation, Input Denormal, Overflow, Underflow, and Inexact.

VCVT<c><q>.F64.F32 <Dd>, <Sm> Encoded as sz = 0

VCVT<c><q>.F32.F64 <Sd>, <Dm> Encoded as sz = 1
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-585

Instruction Details
A8.6.299 VCVT (between half-precision and single-precision, Advanced SIMD)

This instruction converts each element in a vector from single-precision to half-precision floating-point or
from half-precision to single-precision, and places the results in a second vector.

The vector elements must be 32-bit floating-point numbers, or 16-bit floating-point numbers.

half_to_single = (op == ‘1’);
if size != ‘01’ then UNDEFINED;
if half_to_single && Vd<0> == ‘1’ then UNDEFINED;
if !half_to_single && Vm<0> == ‘1’ then UNDEFINED;
esize = 16; elements = 4;
m = UInt(M:Vm); d = UInt(D:Vd);

Encoding T1 / A1 Advanced SIMD with half-precision extensions (UNDEFINED in integer-only variant)

VCVT<c>.F32.F16 <Qd>, <Dm>

VCVT<c>.F16.F32 <Dd>, <Qm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 1 0 Vd 0 1 1 op 0 0 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size 1 0 Vd 0 1 1 op 0 0 M 0 Vm
A8-586 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Qd>, <Dm> The destination vector and the operand vector for a half-precision to single-precision
operation.

<Dd>, <Qm> The destination vector and the operand vectors for a single-precision to half-precision
operation.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for e = 0 to elements-1
 if half_to_single then
 Elem[Q[d>>1],e,2*esize] = FPHalfToSingle(Elem[D[m],e,esize], FALSE);
 else
 Elem[D[d],e,esize] = FPSingleToHalf(Elem[Q[m>>1],e,2*esize], FALSE);

Exceptions

Undefined Instruction.

Floating-point exceptions: Invalid Operation, Input Denormal, Overflow, Underflow, and Inexact.

VCVT<c><q>.F32.F16 <Qd>, <Dm> Encoded as op = 1

VCVT<c><q>.F16.F32 <Dd>, <Qm> Encoded as op = 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-587

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Replacement Text
if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for e = 0 to elements-1
 if half_to_single then
 Elem[Q[d>>1],e,2*esize] = FPHalfToSingle(Elem[Din[m],e,esize], FALSE);
 else
 Elem[D[d],e,esize] = FPSingleToHalf(Elem[Qin[m>>1],e,2*esize], FALSE);

ARM_2011_Q2
Sticky Note
The replacement pseudocode removes a read-after-write error.

The insertion in the section Pseudocode details of Advanced SIMD and VFP extension registers on page A2-23 [PDF page 55] defines the Din[] and Qin[] functions.

Instruction Details
A8.6.300 VCVTB, VCVTT (between half-precision and single-precision, VFP)

This instruction does one of the following:

• converts the half-precision value in the top or bottom half of a single-precision register to
single-precision and writes the result to a single-precision register

• converts the value in a single-precision register to half-precision and writes the result into the top or
bottom half of a single-precision register, preserving the other half of the target register.

half_to_single = (op == ‘0’);
lowbit = if T == ‘1’ then 16 else 0;
m = UInt(Vm:M); d = UInt(Vd:D);

Encoding T1 / A1 VFPv3 half-precision extensions

VCVT<y><c>.F32.F16 <Sd>, <Sm>

VCVT<y><c>.F16.F32 <Sd>, <Sm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 1 1 0 0 1 op Vd 1 0 1 0 T 1 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 1 0 1 D 1 1 0 0 1 op Vd 1 0 1 0 T 1 M 0 Vm
A8-588 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
(0)

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
(0)

ARM_2009_Q4
Sticky Note
Using the decode information given in VFP data-processing instructions on page A7-24 [PDF page 304], Table A7-17 on page A7-25 [PDF page 305] refers you to this instruction description, regardless of the value of bit<8>. However, the encoding with bit<8>==1 is UNPREDICTABLE.

Instruction Details
Assembler syntax

where:

<y> Specifies which half of the operand register <Sm> or destination register <Sd> is used for the
operand or destination. If <y> is B, then the T bit is encoded as 0 and the bottom half (bits
[15:0]) of <Sm> or <Sd> is used. If <y> is T, then the T bit is encoded as 1 and the top half (bits
[31:16]) of <Sm> or <Sd> is used

<c><q> See Standard assembler syntax fields on page A8-7.

<Sd> The destination register.

<Sm> The operand register.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 if half_to_single then
 S[d] = FPHalfToSingle(S[m]<lowbit+15:lowbit>, TRUE);
 else
 S[d]<lowbit+15:lowbit> = FPSingleToHalf(S[m], TRUE);

Exceptions

Undefined Instruction.

Floating-point exceptions: Invalid Operation, Input Denormal, Overflow, Underflow, and Inexact.

VCVT<y><c><q>.F32.F16 <Sd>, <Sm> Encoded as op = 0

VCVT<y><c><q>.F16.F32 <Sd>, <Sm> Encoded as op = 1
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-589

Instruction Details
A8.6.301 VDIV

This instruction divides one floating-point value by another floating-point value and writes the result to a
third floating-point register.

if FPSCR.LEN != ‘000’ || FPSCR.STRIDE != ‘00’ then SEE “VFP vectors”;
dp_operation = (sz == ‘1’);
d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
n = if dp_operation then UInt(N:Vn) else UInt(Vn:N);
m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Encoding T1 / A1 VFPv2, VFPv3 (sz = 1 UNDEFINED in single-precision only variants)

VDIV<c>.F64 <Dd>, <Dn>, <Dm>

VDIV<c>.F32 <Sd>, <Sn>, <Sm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 0 0 Vn Vd 1 0 1 sz N 0 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 1 0 1 D 0 0 Vn Vd 1 0 1 sz N 0 M 0 Vm

VFP vectors This instruction can operate on VFP vectors under control of the FPSCR.LEN and
FPSCR.STRIDE bits. For details see Appendix F VFP Vector Operation Support.
A8-590 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Dd>, <Dn>, <Dm> The destination register and the operand registers, for a double-precision operation.

<Sd>, <Sn>, <Sm> The destination register and the operand registers, for a single-precision operation.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 if dp_operation then
 D[d] = FPDiv(D[n], D[m], TRUE);
 else
 S[d] = FPDiv(S[n], S[m], TRUE);

Exceptions

Undefined Instruction.

Floating-point exceptions: Invalid Operation, Division by Zero, Overflow, Underflow, Inexact, Input
Denormal.

VDIV<c><q>.F64 {<Dd>,} <Dn>, <Dm> Encoded as sz = 1

VDIV<c><q>.F32 {<Sd>,} <Sn>, <Sm> Encoded as sz = 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-591

Instruction Details
A8.6.302 VDUP (scalar)

Vector Duplicate duplicates a scalar into every element of the destination vector.

The scalar, and the destination vector elements, can be any one of 8-bit, 16-bit, or 32-bit bitfields. There is
no distinction between data types.

For more information about scalars see Advanced SIMD scalars on page A7-9.

if imm4 == ‘x000’ then UNDEFINED;
if Q == ‘1’ && Vd<0> == ‘1’ then UNDEFINED;
case imm4 of
 when ‘xxx1’ esize = 8; elements = 8; index = UInt(imm4<3:1>);
 when ‘xx10’ esize = 16; elements = 4; index = UInt(imm4<3:2>);
 when ‘x100’ esize = 32; elements = 2; index = UInt(imm4<3>);
d = UInt(D:Vd); regs = if U == ‘0’ then 1 else 2;

Encoding T1 / A1 Advanced SIMD

VDUP<c>.<size> <Qd>, <Dm[x]>

VDUP<c>.<size> <Dd>, <Dm[x]>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 imm4 Vd 1 1 0 0 0 Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 imm4 Vd 1 1 0 0 0 Q M 0 Vm
A8-592 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2008_Q4
Inserted Text
 m = UInt(M:Vm);

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
Q

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VDUP instruction must be
unconditional.

<size> The data size. It must be one of:

8 Encoded as imm4<0> = '1'. imm4<3:1> encodes the index [x] of the scalar.

16 Encoded as imm4<1:0> = '10'. imm4<3:2> encodes the index [x] of the scalar.

32 Encoded as imm4<2:0> = '100'. imm4<3> encodes the index [x] of the scalar.

<Qd> The destination vector for a quadword operation.

<Dd> The destination vector for a doubleword operation.

<Dm[x]> The scalar. For details of how [x] is encoded, see the description of <size>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 scalar = Elem[D[m],index,esize];
 for r = 0 to regs-1
 for e = 0 to elements-1
 Elem[D[d+r],e,esize] = scalar;

Exceptions

Undefined Instruction.

VDUP<c><q>.<size> <Qd>, <Dm[x]> Encoded as Q = 1

VDUP<c><q>.<size> <Dd>, <Dm[x]> Encoded as Q = 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-593

Instruction Details
A8.6.303 VDUP (ARM core register)

This instruction duplicates an element from an ARM core register into every element of the destination
vector.

The destination vector elements can be 8-bit, 16-bit, or 32-bit bitfields. The source element is the least
significant 8, 16, or 32 bits of the ARM core register. There is no distinction between data types.

if Q == ‘1’ && Vd<0> == ‘1’ then UNDEFINED;
d = UInt(D:Vd); t = UInt(Rt); regs = if Q == ‘0’ then 1 else 2;
case b:e of
 when ‘00’ esize = 32; elements = 2;
 when ‘01’ esize = 16; elements = 4;
 when ‘10’ esize = 8; elements = 8;
 when ‘11’ UNDEFINED;
if t == 15 || (CurrentInstrSet() != InstrSet_ARM && t == 13) then UNPREDICTABLE;

Encoding T1 / A1 Advanced SIMD

VDUP<c>.<size> <Qd>, <Rt>

VDUP<c>.<size> <Dd>, <Rt>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 b Q 0 Vd Rt 1 0 1 1 D 0 e 1 (0) (0) (0) (0)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 1 0 1 b Q 0 Vd Rt 1 0 1 1 D 0 e 1 (0) (0) (0) (0)
A8-594 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VDUP instruction must be
unconditional.

<size> The data size for the elements of the destination vector. It must be one of:

8 encoded as [b,e] = 0b10

16 encoded as [b,e] = 0b01

32 encoded as [b,e] = 0b00.

<Qd> The destination vector for a quadword operation.

<Dd> The destination vector for a doubleword operation.

<Rt> The ARM source register.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 scalar = R[t]<esize-1:0>;
 for r = 0 to regs-1
 for e = 0 to elements-1
 Elem[D[d+r],e,esize] = scalar;

Exceptions

Undefined Instruction.

VDUP<c><q>.<size> <Qd>, <Rt> Encoded as Q = 1

VDUP<c><q>.<size> <Dd>, <Rt> Encoded as Q = 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-595

ARM_2009_Q2
Cross-Out

Instruction Details
A8.6.304 VEOR

Vector Bitwise Exclusive OR performs a bitwise Exclusive OR operation between two registers, and places
the result in the destination register. The operand and result registers can be quadword or doubleword. They
must all be the same size.

if Q == ‘1’ && (Vd<0> == ‘1’ || Vn<0> == ‘1’ || Vm<0> == ‘1’) then UNDEFINED;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == ‘0’ then 1 else 2;

Encoding T1 / A1 Advanced SIMD

VEOR<c> <Qd>, <Qn>, <Qm>

VEOR<c> <Dd>, <Dn>, <Dm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 0 D 0 0 Vn Vd 0 0 0 1 N Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 0 D 0 0 Vn Vd 0 0 0 1 N Q M 1 Vm
A8-596 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VEOR instruction must
be unconditional.

<dt> An optional data type. It is ignored by assemblers, and does not affect the encoding.

<Qd>, <Qn>, <Qm> The destination vector and the operand vectors, for a quadword operation.

<Dd>, <Dn>, <Dm> The destination vector and the operand vectors, for a doubleword operation.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 D[d+r] = D[n+r] EOR D[m+r];

Exceptions

Undefined Instruction.

VEOR<c><q>{.<dt>} {<Qd>,} <Qn>, <Qm> Encoded as Q = 1

VEOR<c><q>{.<dt>} {<Dd>,} <Dn>, <Dm> Encoded as Q = 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-597

Instruction Details
A8.6.305 VEXT

Vector Extract extracts elements from the bottom end of the second operand vector and the top end of the
first, concatenates them and places the result in the destination vector. See Figure A8-1 for an example.

The elements of the vectors are treated as being 8-bit bitfields. There is no distinction between data types.

Figure A8-1 Operation of doubleword VEXT for imm = 3

if Q == ‘1’ && (Vd<0> == ‘1’ || Vn<0> == ‘1’ || Vm<0> == ‘1’) then UNDEFINED;
if Q == ‘0’ && imm4<3> == ‘1’ then UNDEFINED;
quadword_operation = (Q == ‘1’); position = 8 * UInt(imm4);
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

Encoding T1 / A1 Advanced SIMD

VEXT<c>.8 <Qd>, <Qn>, <Qm>, #<imm>

VEXT<c>.8 <Dd>, <Dn>, <Dm>, #<imm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 1 D 1 1 Vn Vd imm4 N Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 1 D 1 1 Vn Vd imm4 N Q M 0 Vm

��

���,

�����	�
�����	�

A8-598 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VEXT instruction must
be unconditional.

<size> Size of the operation. The value can be:

• 8, 16, or 32 for doubleword operations

• 8, 16, 32, or 64 for quadword operations.

If the value is 16, 32, or 64, the syntax is a pseudo-instruction for a VEXT instruction
specifying the equivalent number of bytes. The following examples show how an
assembler treats values greater than 8:

VEXT.16 D0,D1,#x is treated as VEXT.8 D0,D1,#(x*2)

VEXT.32 D0,D1,#x is treated as VEXT.8 D0,D1,#(x*4)

VEXT.64 Q0,Q1,#x is treated as VEXT.8 Q0,Q1,#(x*8).

<Qd>, <Qn>, <Qm> The destination vector and the operand vectors, for a quadword operation.

<Dd>, <Dn>, <Dm> The destination vector and the operand vectors, for a doubleword operation.

<imm> The location of the extracted result in the concatenation of the operands, as a
number of bytes from the least significant end, in the range 0-7 for a doubleword
operation or 0-15 for a quadword operation.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 if quadword_operation then
 Q[d] = (Q[m]:Q[n])<position+127:position>;
 else
 D[d] = (D[m]:D[n])<position+63:position>;

Exceptions

Undefined Instruction.

VEXT<c><q>.<size> {<Qd>,} <Qn>, <Qm>, #<imm> Encoded as Q = 1

VEXT<c><q>.<size> {<Dd>,} <Dn>, <Dm>, #<imm> Encoded as Q = 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-599

ARM_2009_Q3
Cross-Out

ARM_2009_Q3
Replacement Text
Q[d>>1] = (Q[m>>1]:Q[n>>1])<position+127:position>;

Instruction Details
A8.6.306 VHADD, VHSUB

Vector Halving Add adds corresponding elements in two vectors of integers, shifts each result right one bit,
and places the final results in the destination vector. The results of the halving operations are truncated (for
rounded results see VRHADD on page A8-734).

Vector Halving Subtract subtracts the elements of the second operand from the corresponding elements of
the first operand, shifts each result right one bit, and places the final results in the destination vector. The
results of the halving operations are truncated (there is no rounding version).

The operand and result elements are all the same type, and can be any one of:

• 8-bit, 16-bit, or 32-bit signed integers

• 8-bit, 16-bit, or 32-bit unsigned integers.

if Q == ‘1’ && (Vd<0> == ‘1’ || Vn<0> == ‘1’ || Vm<0> == ‘1’) then UNDEFINED;
if size == ‘11’ then UNDEFINED;
add = (op == ‘0’); unsigned = (U == ‘1’);
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == ‘0’ then 1 else 2;

Encoding T1 / A1 Advanced SIMD

VH<op><c> <Qd>, <Qn>, <Qm>

VH<op><c> <Dd>, <Dn>, <Dm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 0 D size Vn Vd 0 0 op 0 N Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U 0 D size Vn Vd 0 0 op 0 N Q M 0 Vm
A8-600 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<op> Must be one of:

ADD encoded as op = 0

SUB encoded as op = 1.

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VHADD or VHSUB
instruction must be unconditional.

<dt> The data type for the elements of the vectors. It must be one of:

S8 encoded as size = 0b00, U = 0

S16 encoded as size = 0b01, U = 0

S32 encoded as size = 0b10, U = 0

U8 encoded as size = 0b00, U = 1

U16 encoded as size = 0b01, U = 1

U32 encoded as size = 0b10, U = 1.

<Qd>, <Qn>, <Qm> The destination vector and the operand vectors, for a quadword operation.

<Dd>, <Dn>, <Dm> The destination vector and the operand vectors, for a doubleword operation.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Int(Elem[D[n+r],e,esize], unsigned);
 op2 = Int(Elem[D[m+r],e,esize], unsigned);
 result = if add then op1+op2 else op1-op2;
 Elem[D[d+r],e,esize] = result<esize:1>;

Exceptions

Undefined Instruction.

VH<op><c><q>.<dt> {<Qd>,} <Qn>, <Qm> Encoded as Q = 1

VH<op><c><q>.<dt> {<Dd>,} <Dn>, <Dm> Encoded as Q = 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-601

Instruction Details
A8.6.307 VLD1 (multiple single elements)

This instruction loads elements from memory into one, two, three, or four registers, without de-interleaving.
Every element of each register is loaded. For details of the addressing mode see Advanced SIMD addressing
mode on page A7-30.

case type of
 when ‘0111’
 regs = 1; if align<1> == ‘1’ then UNDEFINED;
 when ‘1010’
 regs = 2; if align == ‘11’ then UNDEFINED;
 when ‘0110’
 regs = 3; if align<1> == ‘1’ then UNDEFINED;
 when ‘0010’
 regs = 4;
 otherwise
 SEE “Related encodings”;
alignment = if align == ‘00’ then 1 else 4 << UInt(align);
ebytes = 1 << UInt(size); esize = 8 * ebytes; elements = 8 DIV ebytes;
d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if d+regs > 32 then UNPREDICTABLE;

Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VLD1 instruction must be
unconditional.

<size> The data size. It must be one of:

8 encoded as size = 0b00

16 encoded as size = 0b01

Encoding T1 / A1 Advanced SIMD

VLD1<c>.<size> <list>, [<Rn>{@<align>}]{!}

VLD1<c>.<size> <list>, [<Rn>{@<align>}], <Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 0 D 1 0 Rn Vd type size align Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 0 D 1 0 Rn Vd type size align Rm

Related encodings See Advanced SIMD element or structure load/store instructions on page A7-27

VLD1<c><q>.<size> <list>,[<Rn>{@<align>}] Rm = ’1111’

VLD1<c><q>.<size> <list>, [<Rn>{@<align>}]! Rm = ’1101’

VLD1<c><q>.<size> <list>, [<Rn>{@<align>}], <Rm> Rm = other values
A8-602 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q1
Inserted Text

if n == 15 then UNPREDICTABLE;

Instruction Details
32 encoded as size = 0b10

64 encoded as size = 0b11.

<list> The list of registers to load. It must be one of:

{<Dd>} encoded as D:Vd = <Dd>, type = 0b0111

{<Dd>, <Dd+1>} encoded as D:Vd = <Dd>, type = 0b1010

{<Dd>, <Dd+1>, <Dd+2>} encoded as D:Vd = <Dd>, type = 0b0110

{<Dd>, <Dd+1>, <Dd+2>, <Dd+3>}
encoded as D:Vd = <Dd>, type = 0b0010.

<Rn> Contains the base address for the access.

<align> The alignment. It can be one of:

64 8-byte alignment, encoded as align = 0b01.

128 16-byte alignment, available only if <list> contains two or four registers,
encoded as align = 0b10.

256 32-byte alignment, available only if <list> contains four registers, encoded as
align = 0b11.

omitted Standard alignment, see Unaligned data access on page A3-5. Encoded as align
= 0b00.

! If present, specifies writeback.

<Rm> Contains an address offset applied after the access.

For more information about <Rn>, !, and <Rm>, see Advanced SIMD addressing mode on page A7-30.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled(); NullCheckIfThumbEE(n);
 address = R[n]; if (address MOD alignment) != 0 then GenerateAlignmentException();
 if wback then R[n] = R[n] + (if register_index then R[m] else 8*regs);
 for r = 0 to regs-1
 for e = 0 to elements-1
 Elem[D[d+r],e,esize] = MemU[address,ebytes];
 address = address + ebytes;

Exceptions

Undefined Instruction, Data Abort.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-603

ARM_2011_Q2
Sticky Note
This pseudocode is functionally correct. However, it does not imply that any doubleword access is 64-bit single-copy atomic.

Instruction Details
A8.6.308 VLD1 (single element to one lane)

This instruction loads one element from memory into one element of a register. Elements of the register that
are not loaded are unchanged. For details of the addressing mode see Advanced SIMD addressing mode on
page A7-30.

if size == ‘11’ then SEE VLD1 (single element to all lanes);
case size of
 when ‘00’
 if index_align<0> != ‘0’ then UNDEFINED;
 ebytes = 1; esize = 8; index = UInt(index_align<3:1>); alignment = 1;
 when ‘01’
 if index_align<1> != ‘0’ then UNDEFINED;
 ebytes = 2; esize = 16; index = UInt(index_align<3:2>);
 alignment = if index_align<0> == ‘0’ then 1 else 2;
 when ‘10’
 if index_align<2> != ‘0’ then UNDEFINED;
 if index_align<1:0> != ‘00’ && index_align<1:0> != ‘11’ then UNDEFINED;
 ebytes = 4; esize = 32; index = UInt(index_align<3>);
 alignment = if index_align<1:0> == ‘00’ then 1 else 4;
d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);

Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VLD1 instruction must be
unconditional.

<size> The data size. It must be one of:

8 encoded as size = 0b00

16 encoded as size = 0b01

32 encoded as size = 0b10.

Encoding T1 / A1 Advanced SIMD

VLD1<c>.<size> <list>, [<Rn>{@<align>}]{!}

VLD1<c>.<size> <list>, [<Rn>{@<align>}], <Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 1 D 1 0 Rn Vd size 0 0 index_align Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 1 D 1 0 Rn Vd size 0 0 index_align Rm

VLD1<c><q>.<size> <list>, [<Rn>{@<align>}] Rm = ’1111’

VLD1<c><q>.<size> <list>, [<Rn>{@<align>}]! Rm = ’1101’

VLD1<c><q>.<size> <list>, [<Rn>{@<align>}], <Rm> Rm = other values
A8-604 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q1
Inserted Text

if n == 15 then UNPREDICTABLE;

Instruction Details
<list> The register containing the element to load. It must be {<Dd[x]>}. The register <Dd> is
encoded in D:Vd.

<Rn> Contains the base address for the access.

<align> The alignment. It can be one of:

16 2-byte alignment, available only if <size> is 16

32 4-byte alignment, available only if <size> is 32

omitted Standard alignment, see Unaligned data access on page A3-5.

! If present, specifies writeback.

<Rm> Contains an address offset applied after the access.

For more information about <Rn>, !, and <Rm>, see Advanced SIMD addressing mode on page A7-30.

Table A8-5 shows the encoding of index and alignment for the different <size> values.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled(); NullCheckIfThumbEE(n);
 address = R[n]; if (address MOD alignment) != 0 then GenerateAlignmentException();
 if wback then R[n] = R[n] + (if register_index then R[m] else ebytes);
 Elem[D[d],index,esize] = MemU[address,ebytes];

Exceptions

Undefined Instruction, Data Abort.

Table A8-5 Encoding of index and alignment

<size> == 8 <size> == 16 <size> == 32

Index index_align[3:1] = x index_align[3:2] = x index_align[3] = x

<align> omitted index_align[0] = 0 index_align[1:0] = ’00’ index_align[2:0] = ’000’

<align> == 16 - index_align[1:0] = ’01’ -

<align> == 32 - - index_align[2:0] = ’011’
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-605

Instruction Details
A8.6.309 VLD1 (single element to all lanes)

This instruction loads one element from memory into every element of one or two vectors. For details of the
addressing mode see Advanced SIMD addressing mode on page A7-30.

if size == ‘11’ || (size == ‘00’ && a == ‘1’) then UNDEFINED;
ebytes = 1 << UInt(size); elements = 8 DIV ebytes; regs = if T == ‘0’ then 1 else 2;
alignment = if a == ‘0’ then 1 else ebytes;
d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if d+regs > 32 then UNPREDICTABLE;

Encoding T1 / A1 Advanced SIMD

VLD1<c>.<size> <list>, [<Rn>{@<align>}]{!}

VLD1<c>.<size> <list>, [<Rn>{@<align>}], <Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 1 D 1 0 Rn Vd 1 1 0 0 size T a Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 1 D 1 0 Rn Vd 1 1 0 0 size T a Rm
A8-606 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q1
Inserted Text

if n == 15 then UNPREDICTABLE;

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VLD1 instruction must be
unconditional.

<size> The data size. It must be one of:

8 encoded as size = 0b00

16 encoded as size = 0b01

32 encoded as size = 0b10.

<list> The list of registers to load. It must be one of:

{<Dd[]>} encoded as D:Vd = <Dd>, T = 0

{<Dd[]>, <Dd+1[]>} encoded as D:Vd = <Dd>, T = 1.

<Rn> Contains the base address for the access.

<align> The alignment. It can be one of:

16 2-byte alignment, available only if <size> is 16, encoded as a = 1.

32 4-byte alignment, available only if <size> is 32, encoded as a = 1.

omitted Standard alignment, see Unaligned data access on page A3-5. Encoded as a = 0.

! If present, specifies writeback.

<Rm> Contains an address offset applied after the access.

For more information about <Rn>, !, and <Rm>, see Advanced SIMD addressing mode on page A7-30.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled(); NullCheckIfThumbEE(n);
 address = R[n]; if (address MOD alignment) != 0 then GenerateAlignmentException();
 if wback then R[n] = R[n] + (if register_index then R[m] else ebytes);
 replicated_element = Replicate(MemU[address,ebytes], elements);
 for r = 0 to regs-1
 D[d+r] = replicated_element;

Exceptions

Undefined Instruction, Data Abort.

VLD1<c><q>.<size> <list>, [<Rn>{@<align>}] Rm = ’1111’

VLD1<c><q>.<size> <list>, [<Rn>{@<align>}]! Rm = ’1101’

VLD1<c><q>.<size> <list>, [<Rn>{@<align>}], <Rm> Rm = other values
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-607

Instruction Details
A8.6.310 VLD2 (multiple 2-element structures)

This instruction loads multiple 2-element structures from memory into two or four registers, with
de-interleaving. For more information, see Element and structure load/store instructions on page A4-27.
Every element of each register is loaded. For details of the addressing mode see Advanced SIMD addressing
mode on page A7-30.

if size == ‘11’ then UNDEFINED;
case type of
 when ‘1000’
 regs = 1; inc = 1; if align == ‘11’ then UNDEFINED;
 when ‘1001’
 regs = 1; inc = 2; if align == ‘11’ then UNDEFINED;
 when ‘0011’
 regs = 2; inc = 2;
 otherwise
 SEE “Related encodings”;
alignment = if align == ‘00’ then 1 else 4 << UInt(align);
ebytes = 1 << UInt(size); esize = 8 * ebytes; elements = 8 DIV ebytes;
d = UInt(D:Vd); d2 = d + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if d2+regs > 32 then UNPREDICTABLE;

Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VLD2 instruction must be
unconditional.

<size> The data size. It must be one of:

8 encoded as size = 0b00

16 encoded as size = 0b01

Encoding T1 / A1 Advanced SIMD

VLD2<c>.<size> <list>, [<Rn>{@<align>}]{!}

VLD2<c>.<size> <list>, [<Rn>{@<align>}], <Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 0 D 1 0 Rn Vd type size align Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 0 D 1 0 Rn Vd type size align Rm

Related encodings See Advanced SIMD element or structure load/store instructions on page A7-27

VLD2<c><q>.<size> <list>, [<Rn>{@<align>}] Rm = ’1111’

VLD2<c><q>.<size> <list>, [<Rn>{@<align>}]! Rm = ’1101’

VLD2<c><q>.<size> <list>, [<Rn>{@<align>}], <Rm> Rm = other values
A8-608 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q1
Inserted Text

if n == 15 then UNPREDICTABLE;

Instruction Details
32 encoded as size = 0b10.

<list> The list of registers to load. It must be one of:

{<Dd>, <Dd+1>} encoded as D:Vd = <Dd>, type = 0b1000

{<Dd>, <Dd+2>} encoded as D:Vd = <Dd>, type = 0b1001

{<Dd>, <Dd+1>, <Dd+2>, <Dd+3>}

encoded as D:Vd = <Dd>, type = 0b0011.

<Rn> Contains the base address for the access.

<align> The alignment. It can be one of:

64 8-byte alignment, encoded as align = 0b01.

128 16-byte alignment, encoded as align = 0b10.

256 32-byte alignment, available only if <list> contains four registers. Encoded as
align = 0b11

omitted Standard alignment, see Unaligned data access on page A3-5. Encoded as
align = 0b00.

! If present, specifies writeback.

<Rm> Contains an address offset applied after the access.

For more information about <Rn>, !, and <Rm>, see Advanced SIMD addressing mode on page A7-30.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled(); NullCheckIfThumbEE(n);
 address = R[n]; if (address MOD alignment) != 0 then GenerateAlignmentException();
 if wback then R[n] = R[n] + (if register_index then R[m] else 16*regs);
 for r = 0 to regs-1
 for e = 0 to elements-1
 Elem[D[d+r],e,esize] = MemU[address,ebytes];
 Elem[D[d2+r],e,esize] = MemU[address+ebytes,ebytes];
 address = address + 2*ebytes;

Exceptions

Undefined Instruction, Data Abort.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-609

Instruction Details
A8.6.311 VLD2 (single 2-element structure to one lane)

This instruction loads one 2-element structure from memory into corresponding elements of two registers.
Elements of the registers that are not loaded are unchanged. For details of the addressing mode see Advanced
SIMD addressing mode on page A7-30.

if size == ‘11’ then SEE VLD2 (single 2-element structure to all lanes);
case size of
 when ‘00’
 ebytes = 1; esize = 8; index = UInt(index_align<3:1>); inc = 1;
 alignment = if index_align<0> == ‘0’ then 1 else 2;
 when ‘01’
 ebytes = 2; esize = 16; index = UInt(index_align<3:2>);
 inc = if index_align<1> == ‘0’ then 1 else 2;
 alignment = if index_align<0> == ‘0’ then 1 else 4;
 when ‘10’
 if index_align<1> != ‘0’ then UNDEFINED;
 ebytes = 4; esize = 32; index = UInt(index_align<3>);
 inc = if index_align<2> == ‘0’ then 1 else 2;
 alignment = if index_align<0> == ‘0’ then 1 else 8;
d = UInt(D:Vd); d2 = d + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if d2 > 31 then UNPREDICTABLE;

Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VLD2 instruction must be
unconditional.

<size> The data size. It must be one of:

8 encoded as size = 0b00

16 encoded as size = 0b01

32 encoded as size = 0b10.

Encoding T1 / A1 Advanced SIMD

VLD2<c>.<size> <list>, [<Rn>{@<align>}]{!}

VLD2<c>.<size> <list>, [<Rn>{@<align>}], <Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 1 D 1 0 Rn Vd size 0 1 index_align Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 1 D 1 0 Rn Vd size 0 1 index_align Rm

VLD2<c><q>.<size> <list>, [<Rn>{@<align>}] Rm = ’1111’

VLD2<c><q>.<size> <list>, [<Rn>{@<align>}]! Rm = ’1101’

VLD2<c><q>.<size> <list>, [<Rn>{@<align>}], <Rm> Rm = other values
A8-610 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q1
Inserted Text

if n == 15 then UNPREDICTABLE;

Instruction Details
<list> The registers containing the structure. Encoded with D:Vd = <Dd>. It must be one of:

{<Dd[x]>, <Dd+1[x]>} Single-spaced registers, see Table A8-6.

{<Dd[x]>, <Dd+2[x]>} Double-spaced registers, see Table A8-6.

This is not available if <size> == 8.

<Rn> Contains the base address for the access.

<align> The alignment. It can be one of:

16 2-byte alignment, available only if <size> is 8

32 4-byte alignment, available only if <size> is 16

64 8-byte alignment, available only if <size> is 32

omitted Standard alignment, see Unaligned data access on page A3-5.

! If present, specifies writeback.

<Rm> Contains an address offset applied after the access.

For more information about <Rn>, !, and <Rm> see Advanced SIMD addressing mode on page A7-30.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled(); NullCheckIfThumbEE(n);
 address = R[n]; if (address MOD alignment) != 0 then GenerateAlignmentException();
 if wback then R[n] = R[n] + (if register_index then R[m] else 2*ebytes);
 Elem[D[d],index,esize] = MemU[address,ebytes];
 Elem[D[d2],index,esize] = MemU[address+ebytes,ebytes];

Exceptions

Undefined Instruction, Data Abort.

Table A8-6 Encoding of index, alignment, and register spacing

<size> == 8 <size> == 16 <size> == 32

Index index_align[3:1] = x index_align[3:2] = x index_align[3] = x

Single-spacing - index_align[1] = 0 index_align[2] = 0

Double-spacing - index_align[1] = 1 index_align[2] = 1

<align> omitted index_align[0] = 0 index_align[0] = 0 index_align[1:0] = ’00’

<align> == 16 index_align[0] = 1 - -

<align> == 32 - index_align[0] = 1 -

<align> == 64 - - index_align[1:0] = ’01’
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-611

Instruction Details
A8.6.312 VLD2 (single 2-element structure to all lanes)

This instruction loads one 2-element structure from memory into all lanes of two registers. For details of the
addressing mode see Advanced SIMD addressing mode on page A7-30.

if size == ‘11’ then UNDEFINED;
ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
alignment = if a == ‘0’ then 1 else 2*ebytes;
inc = if T == ‘0’ then 1 else 2;
d = UInt(D:Vd); d2 = d + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if d2 > 31 then UNPREDICTABLE;

Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VLD2 instruction must be
unconditional.

<size> The data size. It must be one of:

8 encoded as size = 0b00

16 encoded as size = 0b01

32 encoded as size = 0b10.

<list> The registers containing the structure. It must be one of:

{<Dd[]>, <Dd+1[]>} single-spaced register transfer, encoded as D:Vd = <Dd>, T = 0

{<Dd[]>, <Dd+2[]>} double-spaced register transfer, encoded as D:Vd = <Dd>, T = 1.

<Rn> Contains the base address for the access.

<align> The alignment. It can be one of:

16 2-byte alignment, available only if <size> is 8, encoded as a = 1

32 4-byte alignment, available only if <size> is 16, encoded as a = 1

Encoding T1 / A1 Advanced SIMD

VLD2<c>.<size> <list>, [<Rn>{@<align>}]{!}

VLD2<c>.<size> <list>, [<Rn>{@<align>}], <Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 1 D 1 0 Rn Vd 1 1 0 1 size T a Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 1 D 1 0 Rn Vd 1 1 0 1 size T a Rm

VLD2<c><q>.<size> <list>, [<Rn>{@<align>}] Rm = ’1111’

VLD2<c><q>.<size> <list>, [<Rn>{@<align>}]! Rm = ’1101’

VLD2<c><q>.<size> <list>, [<Rn>{@<align>}], <Rm> Rm = other values
A8-612 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q1
Inserted Text

if n == 15 then UNPREDICTABLE;

Instruction Details
64 8-byte alignment, available only if <size> is 32, encoded as a = 1

omitted Standard alignment, see Unaligned data access on page A3-5. Encoded as a = 0.

! If present, specifies writeback.

<Rm> Contains an address offset applied after the access.

For more information about <Rn>, !, and <Rm>, see Advanced SIMD addressing mode on page A7-30.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled(); NullCheckIfThumbEE(n);
 address = R[n]; if (address MOD alignment) != 0 then GenerateAlignmentException();
 if wback then R[n] = R[n] + (if register_index then R[m] else 2*ebytes);
 D[d] = Replicate(MemU[address,ebytes], elements);
 D[d2] = Replicate(MemU[address+ebytes,ebytes], elements);

Exceptions

Undefined Instruction, Data Abort.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-613

Instruction Details
A8.6.313 VLD3 (multiple 3-element structures)

This instruction loads multiple 3-element structures from memory into three registers, with de-interleaving.
For more information, see Element and structure load/store instructions on page A4-27. Every element of
each register is loaded. For details of the addressing mode see Advanced SIMD addressing mode on
page A7-30.

if size == ‘11’ || align<1> == ‘1’ then UNDEFINED;
case type of
 when ‘0100’
 inc = 1;
 when ‘0101’
 inc = 2;
 otherwise
 SEE “Related encodings”;
alignment = if align<0> == ‘0’ then 1 else 8;
ebytes = 1 << UInt(size); esize = 8 * ebytes; elements = 8 DIV ebytes;
d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if d3 > 31 then UNPREDICTABLE;

Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VLD3 instruction must be
unconditional.

<size> The data size. It must be one of:

8 encoded as size = 0b00

16 encoded as size = 0b01

32 encoded as size = 0b10.

Encoding T1 / A1 Advanced SIMD

VLD3<c>.<size> <list>, [<Rn>{@<align>}]{!}

VLD3<c>.<size> <list>, [<Rn>{@<align>}], <Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 0 D 1 0 Rn Vd type size align Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 0 D 1 0 Rn Vd type size align Rm

Related encodings See Advanced SIMD element or structure load/store instructions on page A7-27

VLD3<c><q>.<size> <list>, [<Rn>{@<align>}] Rm = ’1111’

VLD3<c><q>.<size> <list>, [<Rn>{@<align>}]! Rm = ’1101’

VLD3<c><q>.<size> <list>, [<Rn>{@<align>}], <Rm> Rm = other values
A8-614 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q1
Inserted Text

if n == 15 then UNPREDICTABLE;

Instruction Details
<list> The list of registers to load. It must be one of:

{<Dd>, <Dd+1>, <Dd+2>}

encoded as D:Vd = <Dd>, type = 0b0100

{<Dd>, <Dd+2>, <Dd+4>}

encoded as D:Vd = <Dd>, type = 0b0101.

<Rn> Contains the base address for the access.

<align> The alignment. It can be:

64 8-byte alignment, encoded as align = 0b01.

omitted Standard alignment, see Unaligned data access on page A3-5. Encoded as
align = 0b00.

! If present, specifies writeback.

<Rm> Contains an address offset applied after the access.

For more information about <Rn>, !, and <Rm>, see Advanced SIMD addressing mode on page A7-30.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled(); NullCheckIfThumbEE(n);
 address = R[n]; if (address MOD alignment) != 0 then GenerateAlignmentException();
 if wback then R[n] = R[n] + (if register_index then R[m] else 24);
 for e = 0 to elements-1
 Elem[D[d],e,esize] = MemU[address,ebytes];
 Elem[D[d2],e,esize] = MemU[address+ebytes,ebytes];
 Elem[D[d3],e,esize] = MemU[address+2*ebytes,ebytes];
 address = address + 3*ebytes;

Exceptions

Undefined Instruction, Data Abort.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-615

Instruction Details
A8.6.314 VLD3 (single 3-element structure to one lane)

This instruction loads one 3-element structure from memory into corresponding elements of three registers.
Elements of the registers that are not loaded are unchanged. For details of the addressing mode see Advanced
SIMD addressing mode on page A7-30.

if size == ‘11’ then SEE VLD3 (single 3-element structure to all lanes);
case size of
 when ‘00’
 if index_align<0> != ‘0’ then UNDEFINED;
 ebytes = 1; esize = 8; index = UInt(index_align<3:1>); inc = 1;
 when ‘01’
 if index_align<0> != ‘0’ then UNDEFINED;
 ebytes = 2; esize = 16; index = UInt(index_align<3:2>);
 inc = if index_align<1> == ‘0’ then 1 else 2;
 when ‘10’
 if index_align<1:0> != ‘00’ then UNDEFINED;
 ebytes = 4; esize = 32; index = UInt(index_align<3>);
 inc = if index_align<2> == ‘0’ then 1 else 2;
d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if d3 > 31 then UNPREDICTABLE;

Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VLD3 instruction must be
unconditional.

<size> The data size. It must be one of:

8 encoded as size = 0b00

16 encoded as size = 0b01

32 encoded as size = 0b10.

Encoding T1 / A1 Advanced SIMD

VLD3<c>.<size> <list>, [<Rn>]{!}

VLD3<c>.<size> <list>, [<Rn>], <Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 1 D 1 0 Rn Vd size 1 0 index_align Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 1 D 1 0 Rn Vd size 1 0 index_align Rm

VLD3<c><q>.<size> <list>, [<Rn>] Rm = ’1111’

VLD3<c><q>.<size> <list>, [<Rn>]! Rm = ’1101’

VLD3<c><q>.<size> <list>, [<Rn>], <Rm> Rm = other values
A8-616 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q1
Inserted Text

if n == 15 then UNPREDICTABLE;

Instruction Details
<list> The registers containing the structure. Encoded with D:Vd = <Dd>. It must be one of:

{<Dd[x]>, <Dd+1[x]>, <Dd+2[x]>}

Single-spaced registers, see Table A8-7.

{<Dd[x]>, <Dd+2[x]>, <Dd+4[x]>}

Double-spaced registers, see Table A8-7. This is not available if <size> == 8.

<Rn> Contains the base address for the access.

! If present, specifies writeback.

<Rm> Contains an address offset applied after the access.

For more information about <Rn>, !, and <Rm>, see Advanced SIMD addressing mode on page A7-30.

Alignment

Standard alignment rules apply, see Unaligned data access on page A3-5.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled(); NullCheckIfThumbEE(n);
 address = R[n];
 if wback then R[n] = R[n] + (if register_index then R[m] else 3*ebytes);
 Elem[D[d],index,esize] = MemU[address,ebytes];
 Elem[D[d2],index,esize] = MemU[address+ebytes,ebytes];
 Elem[D[d3],index,esize] = MemU[address+2*ebytes,ebytes];

Exceptions

Undefined Instruction, Data Abort.

Table A8-7 Encoding of index and register spacing

<size> == 8 <size> == 16 <size> == 32

Index index_align[3:1] = x index_align[3:2] = x index_align[3] = x

Single-spacing index_align[0] = 0 index_align[1:0] = '00' index_align[2:0] = '000'

Double-spacing - index_align[1:0] = '10' index_align[2:0] = '100'
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-617

Instruction Details
A8.6.315 VLD3 (single 3-element structure to all lanes)

This instruction loads one 3-element structure from memory into all lanes of three registers. For details of
the addressing mode see Advanced SIMD addressing mode on page A7-30.

if size == ‘11’ || a == ‘1’ then UNDEFINED;
ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
inc = if T == ‘0’ then 1 else 2;
d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if d3 > 31 then UNPREDICTABLE;

Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VLD3 instruction must be
unconditional.

<size> The data size. It must be one of:

8 encoded as size = 0b00

16 encoded as size = 0b01

32 encoded as size = 0b10.

<list> The registers containing the structures. It must be one of:

{<Dd[]>, <Dd+1[]>, <Dd+2[]>}

Single-spaced register transfer, encoded as D:Vd = <Dd>, T = 0.

{<Dd[]>, <Dd+2[]>, <Dd+4[]>}

Double-spaced register transfer, encoded as D:Vd = <Dd>, T = 1.

<Rn> Contains the base address for the access.

! If present, specifies writeback.

Encoding T1 / A1 Advanced SIMD

VLD3<c>.<size> <list>, [<Rn>]{!}

VLD3<c>.<size> <list>, [<Rn>], <Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 1 D 1 0 Rn Vd 1 1 1 0 size T a Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 1 D 1 0 Rn Vd 1 1 1 0 size T a Rm

VLD3<c><q>.<size> <list>, [<Rn>] Rm = ’1111’

VLD3<c><q>.<size> <list>, [<Rn>]! Rm = ’1101’

VLD3<c><q>.<size> <list>, [<Rn>], <Rm> Rm = other values
A8-618 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q1
Inserted Text

if n == 15 then UNPREDICTABLE;

Instruction Details
<Rm> Contains an address offset applied after the access.

For more information about <Rn>, !, and <Rm>, see Advanced SIMD addressing mode on page A7-30.

Alignment

Standard alignment rules apply, see Unaligned data access on page A3-5.

The a bit must be encoded as 0.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled(); NullCheckIfThumbEE(n);
 address = R[n];
 if wback then R[n] = R[n] + (if register_index then R[m] else 3*ebytes);
 D[d] = Replicate(MemU[address,ebytes], elements);
 D[d2] = Replicate(MemU[address+ebytes,ebytes], elements);
 D[d3] = Replicate(MemU[address+2*ebytes,ebytes], elements);

Exceptions

Undefined Instruction, Data Abort.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-619

Instruction Details
A8.6.316 VLD4 (multiple 4-element structures)

This instruction loads multiple 4-element structures from memory into four registers, with de-interleaving.
For more information, see Element and structure load/store instructions on page A4-27. Every element of
each register is loaded. For details of the addressing mode see Advanced SIMD addressing mode on
page A7-30.

if size == ‘11’ then UNDEFINED;
case type of
 when ‘0000’
 inc = 1;
 when ‘0001’
 inc = 2;
 otherwise
 SEE “Related encodings”;
alignment = if align == ‘00’ then 1 else 4 << UInt(align);
ebytes = 1 << UInt(size); esize = 8 * ebytes; elements = 8 DIV ebytes;
d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; d4 = d3 + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if d4 > 31 then UNPREDICTABLE;

Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VLD4 instruction must be
unconditional.

<size> The data size. It must be one of:

8 encoded as size = 0b00

16 encoded as size = 0b01

32 encoded as size = 0b10.

Encoding T1 / A1 Advanced SIMD

VLD4<c>.<size> <list>, [<Rn>{@<align>}]{!}

VLD4<c>.<size> <list>, [<Rn>{@<align>}], <Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 0 D 1 0 Rn Vd type size align Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 0 D 1 0 Rn Vd type size align Rm

Related encodings See Advanced SIMD element or structure load/store instructions on page A7-27

VLD4<c><q>.<size> <list>, [<Rn>{@<align>}] Rm = ’1111’

VLD4<c><q>.<size> <list>, [<Rn>{@<align>}]! Rm = ’1101’

VLD4<c><q>.<size> <list>, [<Rn>{@<align>}], <Rm> Rm = other values
A8-620 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q1
Inserted Text

if n == 15 then UNPREDICTABLE;

Instruction Details
<list> The list of registers to load. It must be one of:

{<Dd>, <Dd+1>, <Dd+2>, <Dd+3>}

encoded as D:Vd = <Dd>, type = 0b0000

{<Dd>, <Dd+2>, <Dd+4>, <Dd+6>}

encoded as D:Vd = <Dd>, type = 0b0001.

<Rn> Contains the base address for the access.

<align> The alignment. It can be one of:

64 8-byte alignment, encoded as align = 0b01.

128 16-byte alignment, encoded as align = 0b10.

256 32-byte alignment, encoded as align = 0b11.

omitted Standard alignment, see Unaligned data access on page A3-5. Encoded as
align = 0b00.

! If present, specifies writeback.

<Rm> Contains an address offset applied after the access.

For more information about <Rn>, !, and <Rm>, see Advanced SIMD addressing mode on page A7-30.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled(); NullCheckIfThumbEE(n);
 address = R[n]; if (address MOD alignment) != 0 then GenerateAlignmentException();
 if wback then R[n] = R[n] + (if register_index then R[m] else 32);
 for e = 0 to elements-1
 Elem[D[d],e,esize] = MemU[address,ebytes];
 Elem[D[d2],e,esize] = MemU[address+ebytes,ebytes];
 Elem[D[d3],e,esize] = MemU[address+2*ebytes,ebytes];
 Elem[D[d4],e,esize] = MemU[address+3*ebytes,ebytes];
 address = address + 4*ebytes;

Exceptions

Undefined Instruction, Data Abort.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-621

Instruction Details
A8.6.317 VLD4 (single 4-element structure to one lane)

This instruction loads one 4-element structure from memory into corresponding elements of four registers.
Elements of the registers that are not loaded are unchanged. For details of the addressing mode see Advanced
SIMD addressing mode on page A7-30.

if size == ‘11’ then SEE VLD4 (single 4-element structure to all lanes);
case size of
 when ‘00’
 ebytes = 1; esize = 8; index = UInt(index_align<3:1>); inc = 1;
 alignment = if index_align<0> == ‘0’ then 1 else 4;
 when ‘01’
 ebytes = 2; esize = 16; index = UInt(index_align<3:2>);
 inc = if index_align<1> == ‘0’ then 1 else 2;
 alignment = if index_align<0> == ‘0’ then 1 else 8;
 when ‘10’
 if index_align<1:0> == ‘11’ then UNDEFINED;
 ebytes = 4; esize = 32; index = UInt(index_align<3>);
 inc = if index_align<2> == ‘0’ then 1 else 2;
 alignment = if index_align<1:0> == ‘00’ then 1 else 4 << UInt(index_align<1:0>);
d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; d4 = d3 + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if d4 > 31 then UNPREDICTABLE;

Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VLD4 instruction must be
unconditional.

<size> The data size. It must be one of:

8 encoded as size = 0b00

16 encoded as size = 0b01

32 encoded as size = 0b10.

Encoding T1 / A1 Advanced SIMD

VLD4<c>.<size> <list>, [<Rn>{@<align>}]{!}

VLD4<c>.<size> <list>, [<Rn>{@<align>}], <Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 1 D 1 0 Rn Vd size 1 1 index_align Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 1 D 1 0 Rn Vd size 1 1 index_align Rm

VLD4<c><q>.<size> <list>, [<Rn>{@<align>}] Rm = ’1111’

VLD4<c><q>.<size> <list>, [<Rn>{@<align>}]! Rm = ’1101’

VLD4<c><q>.<size> <list>, [<Rn>{@<align>}], <Rm> Rm = other values
A8-622 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q1
Inserted Text

if n == 15 then UNPREDICTABLE;

Instruction Details
<list> The registers containing the structure. Encoded with D:Vd = <Dd>. It must be one of:

{<Dd[x]>, <Dd+1[x]>, <Dd+2[x]>, <Dd+3[x]>} single-spaced registers, see Table A8-8.

{<Dd[x]>, <Dd+2[x]>, <Dd+4[x]>, <Dd+6[x]>} double-spaced registers, see Table A8-8.

Not available if <size> == 8.

<Rn> The base address for the access.

<align> The alignment. It can be:

32 4-byte alignment, available only if <size> is 8.

64 8-byte alignment, available only if <size> is 16 or 32.

128 16-byte alignment, available only if <size> is 32.

omitted Standard alignment, see Unaligned data access on page A3-5.

! If present, specifies writeback.

<Rm> Contains an address offset applied after the access.

For more information about <Rn>, !, and <Rm> see Advanced SIMD addressing mode on page A7-30.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled(); NullCheckIfThumbEE(n);
 address = R[n]; if (address MOD alignment) != 0 then GenerateAlignmentException();
 if wback then R[n] = R[n] + (if register_index then R[m] else 4*ebytes);
 Elem[D[d],index,esize] = MemU[address,ebytes];
 Elem[D[d2],index,esize] = MemU[address+ebytes,ebytes];
 Elem[D[d3],index,esize] = MemU[address+2*ebytes,ebytes];
 Elem[D[d4],index,esize] = MemU[address+3*ebytes,ebytes];

Exceptions

Undefined Instruction, Data Abort.

Table A8-8 Encoding of index, alignment, and register spacing

<size> == 8 <size> == 16 <size> == 32

Index index_align[3:1] = x index_align[3:2] = x index_align[3] = x

Single-spacing - index_align[1] = 0 index_align[2] = 0

Double-spacing - index_align[1] = 1 index_align[2] = 1

<align> omitted index_align[0] = 0 index_align[0] = 0 index_align[1:0] = ’00’

<align> == 32 index_align[0] = 1 - -

<align> == 64 - index_align[0] = 1 index_align[1:0] = ’01’

<align> == 128 - - index_align[1:0] = ’10’
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-623

Instruction Details
A8.6.318 VLD4 (single 4-element structure to all lanes)

This instruction loads one 4-element structure from memory into all lanes of four registers. For details of
the addressing mode see Advanced SIMD addressing mode on page A7-30.

if size == ‘11’ && a == ‘0’ then UNDEFINED;
if size == ‘11’ then
 ebytes = 4; elements = 2; alignment = 16;
else
 ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
 if size == ‘10’ then
 alignment = if a == ‘0’ then 1 else 8;
 else
 alignment = if a == ‘0’ then 1 else 4*ebytes;
inc = if T == ‘0’ then 1 else 2;
d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; d4 = d3 + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if d4 > 31 then UNPREDICTABLE;

Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VLD4 instruction must be
unconditional.

<size> The data size. It must be one of:

8 encoded as size = 0b00

16 encoded as size = 0b01

32 encoded as size = 0b10 (or 0b11 for 16-byte alignment).

<list> The registers containing the structures. It must be one of:

{<Dd[]>, <Dd+1[]>, <Dd+2[]>, <Dd+3[]>}

single-spaced registers, encoded as D:Vd = <Dd>, T = 0

Encoding T1 / A1 Advanced SIMD

VLD4<c>.<size> <list>, [<Rn>{ @<align>}]{!}

VLD4<c>.<size> <list>, [<Rn>{ @<align>}], <Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 1 D 1 0 Rn Vd 1 1 1 1 size T a Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 1 D 1 0 Rn Vd 1 1 1 1 size T a Rm

VLD4<c><q>.<size> <list>, [<Rn>{ @<align>}] Rm = ’1111’

VLD4<c><q>.<size> <list>, [<Rn>{ @<align>}]! Rm = ’1101’

VLD4<c><q>.<size> <list>, [<Rn>{ @<align>}], <Rm> Rm = other values
A8-624 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q1
Inserted Text

if n == 15 then UNPREDICTABLE;

Instruction Details
{<Dd[]>, <Dd+2[]>, <Dd+4[]>, <Dd+6[]>}

double-spaced register transfer, encoded as D:Vd = <Dd>, T = 1.

<Rn> The base address for the access.

<align> The alignment. It can be one of:

32 4-byte alignment, available only if <size> is 8, encoded as a = 1.

64 8-byte alignment, available only if <size> is 16 or 32, encoded as a = 1.

128 16-byte alignment, available only if <size> is 32, encoded as a = 1, size = 0b11.

omitted Standard alignment, see Unaligned data access on page A3-5. Encoded as a = 0.

! If present, specifies writeback.

<Rm> Contains an address offset applied after the access.

For more information about <Rn>, !, and <Rm>, see Advanced SIMD addressing mode on page A7-30.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled(); NullCheckIfThumbEE(n);
 address = R[n]; if (address MOD alignment) != 0 then GenerateAlignmentException();
 if wback then R[n] = R[n] + (if register_index then R[m] else 4*ebytes);
 D[d] = Replicate(MemU[address,ebytes], elements);
 D[d2] = Replicate(MemU[address+ebytes,ebytes], elements);
 D[d3] = Replicate(MemU[address+2*ebytes,ebytes], elements);
 D[d4] = Replicate(MemU[address+3*ebytes,ebytes], elements);

Exceptions

Undefined Instruction, Data Abort.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-625

Instruction Details
A8.6.319 VLDM

Vector Load Multiple loads multiple extension registers from consecutive memory locations using an
address from an ARM core register.

if P == ‘0’ && U == ‘0’ && W == ‘0’ then SEE “Related encodings”;
if P == ‘0’ && U == ‘1’ && W == ‘1’ && Rn == ‘1101’ then SEE VPOP;
if P == ‘1’ && W == ‘0’ then SEE VLDR;
if P == U && W == ‘1’ then UNDEFINED;
// Remaining combinations are PUW = 010 (IA without !), 011 (IA with !), 101 (DB with !)
single_regs = FALSE; add = (U == ‘1’); wback = (W == ‘1’);
d = UInt(D:Vd); n = UInt(Rn); imm32 = ZeroExtend(imm8:’00’, 32);
regs = UInt(imm8) DIV 2; // If UInt(imm8) is odd, see “FLDMX”.
if n == 15 && (wback || CurrentInstrSet() != InstrSet_ARM) then UNPREDICTABLE;
if regs == 0 || regs > 16 || (d+regs) > 32 then UNPREDICTABLE;

if P == ‘0’ && U == ‘0’ && W == ‘0’ then SEE “Related encodings”;
if P == ‘0’ && U == ‘1’ && W == ‘1’ && Rn == ‘1101’ then SEE VPOP;
if P == ‘1’ && W == ‘0’ then SEE VLDR;
if P == U && W == ‘1’ then UNDEFINED;
// Remaining combinations are PUW = 010 (IA without !), 011 (IA with !), 101 (DB with !)
single_regs = TRUE; add = (U == ‘1’); wback = (W == ‘1’); d = UInt(Vd:D); n = UInt(Rn);
imm32 = ZeroExtend(imm8:’00’, 32); regs = UInt(imm8);
if n == 15 && (wback || CurrentInstrSet() != InstrSet_ARM) then UNPREDICTABLE;
if regs == 0 || (d+regs) > 32 then UNPREDICTABLE;

Encoding T1 / A1 VFPv2, VFPv3, Advanced SIMD
VLDM{mode}<c> <Rn>{!}, <list> <list> is consecutive 64-bit registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 P U D W 1 Rn Vd 1 0 1 1 imm8

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 0 P U D W 1 Rn Vd 1 0 1 1 imm8

Encoding T2 / A2 VFPv2, VFPv3
VLDM{mode}<c> <Rn>{!}, <list> <list> is consecutive 32-bit registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 P U D W 1 Rn Vd 1 0 1 0 imm8

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 0 P U D W 1 Rn Vd 1 0 1 0 imm8

Related encodings See 64-bit transfers between ARM core and extension registers on page A7-32

FLDMX Encoding T1/A1 behaves as described by the pseudocode if imm8 is odd.
However, there is no UAL syntax for such encodings and their use is deprecated.
For more information, see FLDMX, FSTMX on page A8-101.
A8-626 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

VLDM{<mode>}<c><q>{.<size>} <Rn>{!}, <list>

where:

<mode> The addressing mode:

IA Increment After. The consecutive addresses start at the address specified in <Rn>.
This is the default and can be omitted. Encoded as P = 0, U = 1.

DB Decrement Before. The consecutive addresses end just before the address
specified in <Rn>. Encoded as P = 1, U = 0.

<c><q> See Standard assembler syntax fields on page A8-7.

<size> An optional data size specifier. If present, it must be equal to the size in bits, 32 or 64, of the
registers in <list>.

<Rn> The base register. The SP can be used. In the ARM instruction set, if ! is not specified the
PC can be used.

! Causes the instruction to write a modified value back to <Rn>. This is required if
<mode> == DB, and is optional if <mode> == IA. Encoded as W = 1.

If ! is omitted, the instruction does not change <Rn> in this way. Encoded as W = 0.

<list> The extension registers to be loaded, as a list of consecutively numbered doubleword
(encoding T1 / A1) or singleword (encoding T2 / A2) registers, separated by commas and
surrounded by brackets. It is encoded in the instruction by setting D and Vd to specify the
first register in the list, and imm8 to twice the number of registers in the list (encoding
T1 / A1) or the number of registers in the list (encoding T2 / A2). <list> must contain at
least one register. If it contains doubleword registers it must not contain more than 16
registers.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE); NullCheckIfThumbEE(n);
 address = if add then R[n] else R[n]-imm32;
 if wback then R[n] = if add then R[n}+imm32 else R[n]-imm32;
 for r = 0 to regs-1
 if single_regs then
 S[d+r] = MemA[address,4]; address = address+4;
 else
 word1 = MemA[address,4]; word2 = MemA[address+4,4]; address = address+8;
 // Combine the word-aligned words in the correct order for current endianness.
 D[d+r] = if BigEndian() then word1:word2 else word2:word1;

Exceptions

Undefined Instruction, Data Abort.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-627

Instruction Details
A8.6.320 VLDR

This instruction loads a single extension register from memory, using an address from an ARM core register,
with an optional offset.

single_reg = FALSE; add = (U == ‘1’); imm32 = ZeroExtend(imm8:’00’, 32);
d = UInt(D:Vd); n = UInt(Rn);

single_reg = TRUE; add = (U == ‘1’); imm32 = ZeroExtend(imm8:’00’, 32);
d = UInt(Vd:D); n = UInt(Rn);

Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7.

.32, .64 Optional data size specifiers.

Encoding T1 / A1 VFPv2, VFPv3, Advanced SIMD

VLDR<c> <Dd>, [<Rn>{, #+/-<imm>}]

VLDR<c> <Dd>, <label>

VLDR<c> <Dd>, [PC,#-0] Special case

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 1 U D 0 1 Rn Vd 1 0 1 1 imm8

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 0 1 U D 0 1 Rn Vd 1 0 1 1 imm8

Encoding T2 / A2 VFPv2, VFPv3

VLDR<c> <Sd>, [<Rn>{, #+/-<imm>}]

VLDR<c> <Sd>, <label>

VLDR<c> <Sd>, [PC,#-0] Special case

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 1 U D 0 1 Rn Vd 1 0 1 0 imm8

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 0 1 U D 0 1 Rn Vd 1 0 1 0 imm8

VLDR<c><q>{.64} <Dd>, [<Rn> {, #+/-<imm>}] Encoding T1 / A1, immediate form

VLDR<c><q>{.64} <Dd>, <label> Encoding T1 / A1, normal literal form

VLDR<c><q>{.64} <Dd>, [PC, #+/-<imm>] Encoding T1 / A1, alternative literal form

VLDR<c><q>{.32} <Sd>, [<Rn> {, #+/-<imm>}] Encoding T2 / A2, immediate form

VLDR<c><q>{.32} <Sd>, <label> Encoding T2 / A2, normal literal form

VLDR<c><q>{.32} <Sd>, [PC, #+/-<imm>] Encoding T2 / A2, alternative literal form
A8-628 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
<Dd> The destination register for a doubleword load.

<Sd> The destination register for a singleword load.

<Rn> The base register. The SP can be used.

+/- Is + or omitted if the immediate offset is to be added to the base register value (add == TRUE),
or – if it is to be subtracted (add == FALSE). #0 and #-0 generate different instructions.

<imm> The immediate offset used to form the address. For the immediate forms of the syntax, <imm>
can be omitted, in which case the #0 form of the instruction is assembled. Permitted values
are multiples of 4 in the range 0 to 1020.

<label> The label of the literal data item to be loaded. The assembler calculates the required value
of the offset from the Align(PC,4) value of this instruction to the label. Permitted values are
multiples of 4 in the range -1020 to 1020.

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE.

If the offset is negative, imm32 is equal to minus the offset and add == FALSE.

For the literal forms of the instruction, the base register is encoded as '1111' to indicate that the PC is the
base register.

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be
specified separately, including permitting a subtraction of 0 that cannot be specified using the normal
syntax. For more information, see Use of labels in UAL instruction syntax on page A4-5.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE); NullCheckIfThumbEE(n);
 base = if n == 15 then Align(PC,4) else R[n];
 address = if add then (base + imm32) else (base - imm32);
 if single_reg then
 S[d] = MemA[address,4];
 else
 word1 = MemA[address,4]; word2 = MemA[address+4,4];
 // Combine the word-aligned words in the correct order for current endianness.
 D[d] = if BigEndian() then word1:word2 else word2:word1;

Exceptions

Undefined Instruction, Data Abort.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-629

Instruction Details
A8.6.321 VMAX, VMIN (integer)

Vector Maximum compares corresponding elements in two vectors, and copies the larger of each pair into
the corresponding element in the destination vector.

Vector Minimum compares corresponding elements in two vectors, and copies the smaller of each pair into
the corresponding element in the destination vector.

The operand vector elements can be any one of:

• 8-bit, 16-bit, or 32-bit signed integers

• 8-bit, 16-bit, or 32-bit unsigned integers.

The result vector elements are the same size as the operand vector elements.

if Q == ‘1’ && (Vd<0> == ‘1’ || Vn<0> == ‘1’ || Vm<0> == ‘1’) then UNDEFINED;
if size == ‘11’ then UNDEFINED;
maximum = (op == ‘0’); unsigned = (U == ‘1’);
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == ‘0’ then 1 else 2;

Encoding T1 / A1 Advanced SIMD
V<op><c>.<dt> <Qd>, <Qn>, <Qm>

V<op><c>.<dt> <Dd>, <Dn>, <Dm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 0 D size Vn Vd 0 1 1 0 N Q M op Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U 0 D size Vn Vd 0 1 1 0 N Q M op Vm
A8-630 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<op> Must be one of:

MAX encoded as op = 0

MIN encoded as op = 1.

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VMAX or VMIN
instruction must be unconditional.

<dt> The data types for the elements of the vectors. It must be one of:

S8 size = 0b00, U = 0

S16 size = 0b01, U = 0

S32 size = 0b10, U = 0

U8 size = 0b00, U = 1

U16 size = 0b01, U = 1

U32 size = 0b10, U = 1.

<Qd>, <Qn>, <Qm> The destination vector and the operand vectors, for a quadword operation.

<Dd>, <Dn>, <Dm> The destination vector and the operand vectors, for a doubleword operation.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Int(Elem[D[n+r],e,esize], unsigned);
 op2 = Int(Elem[D[m+r],e,esize], unsigned);
 result = if maximum then Max(op1,op2) else Min(op1,op2);
 Elem[D[d+r],e,esize] = result<esize-1:0>;

Exceptions

Undefined Instruction.

V<op><c><q>.<dt> {<Qd>,} <Qn>, <Qm> Encoded as Q = 1
V<op><c><q>.<dt> {<Dd>,} <Dn>, <Dm> Encoded as Q = 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-631

Instruction Details
A8.6.322 VMAX, VMIN (floating-point)

Vector Maximum compares corresponding elements in two vectors, and copies the larger of each pair into
the corresponding element in the destination vector.

Vector Minimum compares corresponding elements in two vectors, and copies the smaller of each pair into
the corresponding element in the destination vector.

The operand vector elements are 32-bit floating-point numbers.

if Q == ‘1’ && (Vd<0> == ‘1’ || Vn<0> == ‘1’ || Vm<0> == ‘1’) then UNDEFINED;
if sz == ‘1’ then UNDEFINED;
maximum = (op == ‘0’); esize = 32; elements = 2;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == ‘0’ then 1 else 2;

Encoding T1 / A1 Advanced SIMD (UNDEFINED in integer-only variant)
V<op><c>.F32 <Qd>, <Qn>, <Qm>

V<op><c>.F32 <Dd>, <Dn>, <Dm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 0 D op sz Vn Vd 1 1 1 1 N Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 D op sz Vn Vd 1 1 1 1 N Q M 0 Vm
A8-632 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<op> Must be one of:

MAX encoded as op = 0

MIN encoded as op = 1.

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VMAX or VMIN
instruction must be unconditional.

<Qd>, <Qn>, <Qm> The destination vector and the operand vectors, for a quadword operation.

<Dd>, <Dn>, <Dm> The destination vector and the operand vectors, for a doubleword operation.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[D[n+r],e,esize]; op2 = Elem[D[m+r],e,esize];
 Elem[D[d+r],e,esize] = if maximum then FPMax(op1,op2,FALSE) else FPMin(op1,op2,FALSE);

Exceptions

Undefined Instruction.

Floating-point maximum and minimum
• max(+0.0, –0.0) = +0.0

• min(+0.0, –0.0) = –0.0

• If any input is a NaN, the corresponding result element is the default NaN.

V<op><c><q>.F32 {<Qd>,} <Qn>, <Qm> Encoded as Q = 1
V<op><c><q>.F32 {<Dd>,} <Dn>, <Dm> Encoded as Q = 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-633

ARM_2010_Q2
Inserted Text

Floating-point exceptions: Invalid Operation, Input Denormal.

Instruction Details
A8.6.323 VMLA, VMLAL, VMLS, VMLSL (integer)

Vector Multiply Accumulate and Vector Multiply Subtract multiply corresponding elements in two vectors,
and either add the products to, or subtract them from, the corresponding elements of the destination vector.
Vector Multiply Accumulate Long and Vector Multiply Subtract Long do the same thing, but with
destination vector elements that are twice as long as the elements that are multiplied.

if size == ‘11’ then UNDEFINED;
if Q == ‘1’ && (Vd<0> == ‘1’ || Vn<0> == ‘1’ || Vm<0> == ‘1’) then UNDEFINED;
add = (op == ‘0’); long_destination = FALSE;
unsigned = FALSE; // “Don’t care” value: TRUE produces same functionality
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == ‘0’ then 1 else 2;

if size == ‘11’ then SEE “Related encodings”;
if Vd<0> == ‘1’ then UNDEFINED;
add = (op == ‘0’); long_destination = TRUE; unsigned = (U == ‘1’);
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = 1;

Encoding T1 / A1 Advanced SIMD
V<op><c>.<dt> <Qd>, <Qn>, <Qm>

V<op><c>.<dt> <Dd>, <Dn>, <Dm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 op 1 1 1 1 0 D size Vn Vd 1 0 0 1 N Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 op 0 D size Vn Vd 1 0 0 1 N Q M 0 Vm

Encoding T2 / A2 Advanced SIMD
V<op>L<c>.<dt> <Qd>, <Dn>, <Dm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 1 D size Vn Vd 1 0 op 0 N 0 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U 1 D size Vn Vd 1 0 op 0 N 0 M 0 Vm

Related encodings See Advanced SIMD data-processing instructions on page A7-10
A8-634 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<op> Must be either MLA (op = 0) or MLS (op = 1).

<c><q> See Standard assembler syntax fields on page A8-7. An ARM Advanced SIMD
VMLA, VMLAL, VMLS, or VMLSL instruction must be unconditional.

<type> The data type for the elements of the operands. It must be one of:

S Optional in encoding T1 / A1. U = 0 in encoding T2 / A2.

U Optional in encoding T1 / A1. U = 1 in encoding T2 / A2.

I Available only in encoding T1 / A1.

<size> The data size for the elements of the operands. It must be one of:

8 encoded as size = 0b00

16 encoded as size = 0b01

32 encoded as size = 0b10.

<Qd>, <Qn>, <Qm> The destination vector and the operand vectors, for a quadword operation.

<Dd>, <Dn>, <Dm> The destination vector and the operand vectors, for a doubleword operation.

<Qd>, <Dn>, <Dm> The destination vector and the operand vectors, for a long operation.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 product = Int(Elem[D[n+r],e,esize],unsigned) * Int(Elem[D[m+r],e,esize],unsigned);
 addend = if add then product else -product;
 if long_destination then
 Elem[Q[d>>1],e,2*esize] = Elem[Q[d>>1],e,2*esize] + addend;
 else
 Elem[D[d+r],e,esize] = Elem[D[d+r],e,esize] + addend;

Exceptions

Undefined Instruction.

V<op><c><q>.<type><size> <Qd>, <Qn>, <Qm> Encoding T1 / A1, Q = 1
V<op><c><q>.<type><size> <Dd>, <Dn>, <Dm> Encoding T1 / A1, Q = 0
V<op>L<c><q>.<type><size> <Qd>, <Dn>, <Dm> Encoding T2 / A2
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-635

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Replacement Text
if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 product = Int(Elem[Din[n+r],e,esize],unsigned) * Int(Elem[Din[m+r],e,esize],unsigned);
 addend = if add then product else -product;
 if long_destination then
 Elem[Q[d>>1],e,2*esize] = Elem[Qin[d>>1],e,2*esize] + addend;
 else
 Elem[D[d+r],e,esize] = Elem[Din[d+r],e,esize] + addend;

ARM_2011_Q2
Sticky Note
The replacement pseudocode removes a read-after-write error.

The insertion in the section Pseudocode details of Advanced SIMD and VFP extension registers on page A2-23 [PDF page 55] defines the Din[] and Qin[] functions.

Instruction Details
A8.6.324 VMLA, VMLS (floating-point)

Vector Multiply Accumulate multiplies corresponding elements in two vectors, and accumulates the results
into the elements of the destination vector.

Vector Multiply Subtract multiplies corresponding elements in two vectors, subtracts the products from
corresponding elements of the destination vector, and places the results in the destination vector.

if Q == ‘1’ && (Vd<0> == ‘1’ || Vn<0> == ‘1’ || Vm<0> == ‘1’) then UNDEFINED;
if sz == ‘1’ then UNDEFINED;
advsimd = TRUE; add = (op == ‘0’); esize = 32; elements = 2;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == ‘0’ then 1 else 2;

if FPSCR.LEN != ‘000’ || FPSCR.STRIDE != ‘00’ then SEE “VFP vectors”;
advsimd = FALSE; dp_operation = (sz == ‘1’); add = (op == ‘0’);
d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
n = if dp_operation then UInt(N:Vn) else UInt(Vn:N);
m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Encoding T1 / A1 Advanced SIMD (UNDEFINED in integer-only variant)
V<op><c>.F32 <Qd>, <Qn>, <Qm>

V<op><c>.F32 <Dd>, <Dn>, <Dm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 0 D op sz Vn Vd 1 1 0 1 N Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 D op sz Vn Vd 1 1 0 1 N Q M 1 Vm

Encoding T2 / A2 VFPv2, VFPv3 (sz = 1 UNDEFINED in single-precision only variants)
V<op><c>.F64 <Dd>, <Dn>, <Dm>

V<op><c>.F32 <Sd>, <Sn>, <Sm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 0 D 0 0 Vn Vd 1 0 1 sz N op M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 1 0 0 D 0 0 Vn Vd 1 0 1 sz N op M 0 Vm

VFP vectors Encoding T2 / A2 can operate on VFP vectors under control of the FPSCR.LEN and
FPSCR.STRIDE bits. For details see Appendix F VFP Vector Operation Support.
A8-636 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<op> Must be either MLA (op = 0) or MLS (op = 1).

<c><q> See Standard assembler syntax fields on page A8-7. An ARM Advanced SIMD VMLA
or VMLS instruction must be unconditional.

<Qd>, <Qn>, <Qm> The destination vector and the operand vectors, for a quadword operation.

<Dd>, <Dn>, <Dm> The destination vector and the operand vectors, for a doubleword operation.

<Sd>, <Sn>, <Sm> The destination vector and the operand vectors, for a singleword operation.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDOrVFPEnabled(TRUE, advsimd);
 if advsimd then // Advanced SIMD instruction
 for r = 0 to regs-1
 for e = 0 to elements-1
 product = FPMul(Elem[D[n+r],e,esize], Elem[D[m+r],e,esize], FALSE);
 addend = if add then product else FPNeg(product);
 Elem[D[d+r],e,esize] = FPAdd(Elem[D[d+r],e,esize], addend, FALSE);
 else // VFP instruction
 if dp_operation then
 addend = if add then FPMul(D[n], D[m], TRUE) else FPNeg(FPMul(D[n], D[m], TRUE));
 D[d] = FPAdd(D[d], addend, TRUE);
 else
 addend = if add then FPMul(S[n], S[m], TRUE) else FPNeg(FPMul(S[n], S[m], TRUE));
 S[d] = FPAdd(S[d], addend, TRUE);

Exceptions

Undefined Instruction.

Floating-point exceptions: Input Denormal, Invalid Operation, Overflow, Underflow, and Inexact.

V<op><c><q>.F32 <Qd>, <Qn>, <Qm> Encoding T1 / A1, Q = 1, sz = 0
V<op><c><q>.F32 <Dd>, <Dn>, <Dm> Encoding T1 / A1, Q = 0, sz = 0
V<op><c><q>.F64 <Dd>, <Dn>, <Dm> Encoding T2 / A2, sz = 1
V<op><c><q>.F32 <Sd>, <Sn>, <Sm> Encoding T2 / A2, sz = 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-637

Instruction Details
A8.6.325 VMLA, VMLAL, VMLS, VMLSL (by scalar)

Vector Multiply Accumulate and Vector Multiply Subtract multiply elements of a vector by a scalar, and
either add the products to, or subtract them from, corresponding elements of the destination vector. Vector
Multiply Accumulate Long and Vector Multiply Subtract Long do the same thing, but with destination
vector elements that are twice as long as the elements that are multiplied.

For more information about scalars see Advanced SIMD scalars on page A7-9.

if size == ‘11’ then SEE “Related encodings”;
if size == ‘00’ || (F == ‘1’ && size == ‘01’) then UNDEFINED;
if Q == ‘1’ && (Vd<0> == ‘1’ || Vn<0> == ‘1’) then UNDEFINED;
unsigned = FALSE; // “Don’t care” value: TRUE produces same functionality
add = (op == ‘0’); floating_point = (F == ‘1’); long_destination = FALSE;
d = UInt(D:Vd); n = UInt(N:Vn); regs = if Q == ‘0’ then 1 else 2;
if size == ‘01’ then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
if size == ‘10’ then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

if size == ‘11’ then SEE “Related encodings”;
if size == ‘00’ || Vd<0> == ‘1’ then UNDEFINED;
unsigned = (U == ‘1’); add = (op == ‘0’); floating_point = FALSE; long_destination = TRUE;
d = UInt(D:Vd); n = UInt(N:Vn); regs = 1;
if size == ‘01’ then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
if size == ‘10’ then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

Encoding T1 / A1 Advanced SIMD (F = 1 UNDEFINED in integer-only variants)
V<op><c>.<dt> <Qd>, <Qn>, <Dm[x]>

V<op><c>.<dt> <Dd>, <Dn>, <Dm[x]>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 Q 1 1 1 1 1 D size Vn Vd 0 op 0 F N 1 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 Q 1 D size Vn Vd 0 op 0 F N 1 M 0 Vm

Encoding T2 / A2 Advanced SIMD
V<op>L<c>.<dt> <Qd>, <Dn>, <Dm[x]>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 1 D size Vn Vd 0 op 1 0 N 1 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U 1 D size Vn Vd 0 op 1 0 N 1 M 0 Vm

Related encodings See Advanced SIMD data-processing instructions on page A7-10
A8-638 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<op> Must be either MLA (encoded as op = 0) or MLS (encoded as op = 1).

<c><q> See Standard assembler syntax fields on page A8-7. An ARM Advanced SIMD VMLA, VMLAL,
VMLS, or VMLSL instruction must be unconditional.

<type> The data type for the elements of the operands. It must be one of:

S encoding T2 / A2, U = ’0’.

U encoding T2 / A2, U = ’1’.

I encoding T1 / A1, F = ’0’.

F encoding T1 / A1, F = ’1’. <size> must be 32.

<size> The operand element data size. It can be 16 (size = ’01’) or 32 (size = ’10’).

<Qd>, <Qn> The accumulate vector, and the operand vector, for a quadword operation.

<Dd>, <Dn> The accumulate vector, and the operand vector, for a doubleword operation.

<Qd>, <Dn> The accumulate vector, and the operand vector, for a long operation.

<Dm[x]> The scalar. Dm is restricted to D0-D7 if <size> is 16, or D0-D15 otherwise.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 op2 = Elem[D[m],index,esize]; op2val = Int(op2, unsigned);
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[D[n+r],e,esize]; op1val = Int(op1, unsigned);
 if floating_point then
 fp_addend = if add then FPMul(op1,op2,FALSE) else FPNeg(FPMul(op1,op2,FALSE));
 Elem[D[d+r],e,esize] = FPAdd(Elem[D[d+r],e,esize], fp_addend, FALSE);
 else
 addend = if add then op1val*op2val else -op1val*op2val;
 if long_destination then
 Elem[Q[d>>1],e,2*esize] = Elem[Q[d>>1],e,2*esize] + addend;
 else
 Elem[D[d+r],e,esize] = Elem[D[d+r],e,esize] + addend;

Exceptions

Undefined Instruction. Floating-point exceptions: Input Denormal, Invalid Operation, Overflow,
Underflow, and Inexact.

V<op><c><q>.<type><size> <Qd>, <Qn>, <Dm[x]> Encoding T1 / A1, Q = 1
V<op><c><q>.<type><size> <Dd>, <Dn>, <Dm[x]> Encoding T1 / A1, Q = 0
V<op>L<c><q>.<type><size> <Qd>, <Dn>, <Dm[x]> Encoding T2 / A2
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-639

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Replacement Text
if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 op2 = Elem[Din[m],index,esize]; op2val = Int(op2, unsigned);
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[Din[n+r],e,esize]; op1val = Int(op1, unsigned);
 if floating_point then
 fp_addend = if add then FPMul(op1,op2,FALSE) else FPNeg(FPMul(op1,op2,FALSE));
 Elem[D[d+r],e,esize] = FPAdd(Elem[Din[d+r],e,esize], fp_addend, FALSE);
 else
 addend = if add then op1val*op2val else -op1val*op2val;
 if long_destination then
 Elem[Q[d>>1],e,2*esize] = Elem[Qin[d>>1],e,2*esize] + addend;
 else
 Elem[D[d+r],e,esize] = Elem[Din[d+r],e,esize] + addend;

ARM_2011_Q2
Sticky Note
The replacement pseudocode removes a read-after-write error.

The insertion in the section Pseudocode details of Advanced SIMD and VFP extension registers on page A2-23 [PDF page 55] defines the Din[] and Qin[] functions.

Instruction Details
A8.6.326 VMOV (immediate)

This instruction places an immediate constant into every element of the destination register.

if op == ‘0’ && cmode<0> == ‘1’ && cmode<3:2> != ‘11’ then SEE VORR (immediate);
if op == ‘1’ && cmode != ‘1110’ then SEE “Related encodings”;
if Q == ‘1’ && Vd<0> == ‘1’ then UNDEFINED;
single_register = FALSE; advsimd = TRUE; imm64 = AdvSIMDExpandImm(op, cmode, i:imm3:imm4);
d = UInt(D:Vd); regs = if Q == ‘0’ then 1 else 2;

if FPSCR.LEN != ‘000’ || FPSCR.STRIDE != ‘00’ then SEE “VFP vectors”;
single_register = (sz == ‘0’); advsimd = FALSE;
if single_register then
 d = UInt(Vd:D); imm32 = VFPExpandImm(imm4H:imm4L, 32);
else
 d = UInt(D:Vd); imm64 = VFPExpandImm(imm4H:imm4L, 64); regs = 1;

Encoding T1 / A1 Advanced SIMD
VMOV<c>.<dt> <Qd>, #<imm>

VMOV<c>.<dt> <Dd>, #<imm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 i 1 1 1 1 1 D 0 0 0 imm3 Vd cmode 0 Q op 1 imm4

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 i 1 D 0 0 0 imm3 Vd cmode 0 Q op 1 imm4

Encoding T2 / A2 VFPv3 (sz = 1 UNDEFINED in single-precision only variants)
VMOV<c>.F64 <Dd>, #<imm>

VMOV<c>.F32 <Sd>, #<imm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 1 1 imm4H Vd 1 0 1 sz (0) 0 (0) 0 imm4L

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 1 0 1 D 1 1 imm4H Vd 1 0 1 sz (0) 0 (0) 0 imm4L

Related encodings See One register and a modified immediate value on page A7-21

VFP vectors Encoding T2 / A2 can operate on VFP vectors under control of the FPSCR.LEN
and FPSCR.STRIDE bits. For details see Appendix F VFP Vector Operation
Support.
A8-640 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM Advanced SIMD VMOV
(immediate) instruction must be unconditional.

<dt> The data type. It must be one of I8, I16, I32, I64, or F32.

<Qd> The destination register for a quadword operation.

<Dd> The destination register for a doubleword operation.

<Sd> The destination register for a singleword operation.

<imm> A constant of the type specified by <dt>. This constant is replicated enough times to fill the
destination register. For example, VMOV.I32 D0,#10 writes 0x0000000A0000000A to D0.

For the range of constants available, and the encoding of <dt> and <imm>, see:

• One register and a modified immediate value on page A7-21 for encoding T1 / A1

• VFP data-processing instructions on page A7-24 for encoding T2 / A2.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDOrVFPEnabled(TRUE, advsimd);
 if single_register then
 S[d] = imm32;
 else
 for r = 0 to regs-1
 D[d+r] = imm64;

Exceptions

Undefined Instruction.

Pseudo-instructions

One register and a modified immediate value on page A7-21 describes pseudo-instructions with a
combination of <dt> and <imm> that is not supported by hardware, but that generates the same destination
register value as a different combination that is supported by hardware.

VMOV<c><q>.<dt> <Qd>, #<imm> Encoding T1 / A1, Q = 1

VMOV<c><q>.<dt> <Dd>, #<imm> Encoding T1 / A1, Q = 0
VMOV<c>.F64 <Dd>, #<imm> Encoding T2 / A2, sz = 1
VMOV<c>.F32 <Sd>, #<imm> Encoding T2 / A2, sz = 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-641

ARM_2009_Q1
Inserted Text
<q>

ARM_2009_Q1
Inserted Text
<q>

Instruction Details
A8.6.327 VMOV (register)

This instruction copies the contents of one register to another.

if !Consistent(M) || !Consistent(Vm) then SEE VORR (register);
if Q == ‘1’ && (Vd<0> == ‘1’ || Vm<0> == ‘1’) then UNDEFINED;
single_register = FALSE; advsimd = TRUE;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == ‘0’ then 1 else 2;

if FPSCR.LEN != ‘000’ || FPSCR.STRIDE != ‘00’ then SEE “VFP vectors”;
single_register = (sz == ‘0’); advsimd = FALSE;
if single_register then
 d = UInt(Vd:D); m = UInt(Vm:M);
else
 d = UInt(D:Vd); m = UInt(M:Vm); regs = 1;

Encoding T1 / A1 Advanced SIMD
VMOV<c> <Qd>, <Qm>

VMOV<c> <Dd>, <Dm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 0 D 1 0 Vm Vd 0 0 0 1 M Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 D 1 0 Vm Vd 0 0 0 1 M Q M 1 Vm

Encoding T2 / A2 VFPv2, VFPv3 (sz = 1 UNDEFINED in single-precision only variants)
VMOV<c>.F64 <Dd>, <Dm>

VMOV<c>.F32 <Sd>, <Sm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 1 1 0 0 0 0 Vd 1 0 1 sz 0 1 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 1 0 1 D 1 1 0 0 0 0 Vd 1 0 1 sz 0 1 M 0 Vm

VFP vectors Encoding T2 / A2 can operate on VFP vectors under control of the FPSCR.LEN and
FPSCR.STRIDE bits. For details see Appendix F VFP Vector Operation Support.
A8-642 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM Advanced SIMD VMOV
(register) instruction must be unconditional.

<dt> An optional data type. <dt> must not be F64, but it is otherwise ignored.

<Qd>, <Qm> The destination register and the source register, for a quadword operation.

<Dd>, <Dm> The destination register and the source register, for a doubleword operation.

<Sd>, <Sm> The destination register and the source register, for a singleword operation.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDOrVFPEnabled(TRUE, advsimd);
 if single_register then
 S[d] = S[m];
 else
 for r = 0 to regs-1
 D[d+r] = D[m+r];

Exceptions

Undefined Instruction.

VMOV<c><q>{.<dt>} <Qd>, <Qm> Encoding T1 / A1, Q = 1

VMOV<c><q>{.<dt>} <Dd>, <Dm> Encoding T1 / A1, Q = 0

VMOV<c><q>.F64 <Dd>, <Dm> Encoding T2 / A2, sz = 1

VMOV<c><q>.F32 <Sd>, <Sm> Encoding T2 / A2, sz = 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-643

Instruction Details
A8.6.328 VMOV (ARM core register to scalar)

This instruction copies a byte, halfword, or word from an ARM core register into an Advanced SIMD scalar.

On a VFP-only system, this instruction transfers one word to the upper or lower half of a double-precision
floating-point register from an ARM core register. This is an identical operation to the Advanced SIMD
single word transfer.

For more information about scalars see Advanced SIMD scalars on page A7-9.

case opc1:opc2 of
 when ‘1xxx’ advsimd = TRUE; esize = 8; index = UInt(opc1<0>:opc2);
 when ‘0xx1’ advsimd = TRUE; esize = 16; index = UInt(opc1<0>:opc2<1>);
 when ‘0x00’ advsimd = FALSE; esize = 32; index = UInt(opc1<0>);
 when ‘0x10’ UNDEFINED;
d = UInt(D:Vd); t = UInt(Rt);
if t == 15 || (CurrentInstrSet() != InstrSet_ARM && t == 13) then UNPREDICTABLE;

Encoding T1 / A1 VFPv2, VFPv3, Advanced SIMD if opc1 == ’0x’ && opc2 == '00'

Advanced SIMD otherwise

VMOV<c>.<size> <Dd[x]>, <Rt>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 0 opc1 0 Vd Rt 1 0 1 1 D opc2 1 (0) (0) (0) (0)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 1 0 0 opc1 0 Vd Rt 1 0 1 1 D opc2 1 (0) (0) (0) (0)
A8-644 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
for word version (opc1:opc2 == '0x00')

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<size> The data size. It must be one of:

8 Encoded as opc1<1> = 1. [x] is encoded in opc1<0>, opc2.

16 Encoded as opc1<1>, opc2<0> = 0b01. [x] is encoded in opc1<0>, opc2<1>.

32 Encoded as opc1<1>, opc2 = 0b000. [x] is encoded in opc1<0>.

omitted equivalent to 32.

<Dd[x]> The scalar. The register <Dd> is encoded in D:Vd. For details of how [x] is encoded, see the
description of <size>.

<Rt> The source ARM core register.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDOrVFPEnabled(TRUE, advsimd);
 Elem[D[d+r],index,esize] = R[t]<esize-1:0>;

Exceptions

Undefined Instruction.

VMOV<c>{.<size>} <Dd[x]>, <Rt>
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-645

ARM_2008_Q4
Cross-Out

ARM_2009_Q1
Inserted Text
<q>

Instruction Details
A8.6.329 VMOV (scalar to ARM core register)

This instruction copies a byte, halfword, or word from an Advanced SIMD scalar to an ARM core register.
Bytes and halfwords can be either zero-extended or sign-extended.

On a VFP-only system, this instruction transfers one word from the upper or lower half of a double-precision
floating-point register to an ARM core register. This is an identical operation to the Advanced SIMD single
word transfer.

For more information about scalars see Advanced SIMD scalars on page A7-9.

case U:opc1:opc2 of
 when ‘x1xxx’ advsimd = TRUE; esize = 8; index = UInt(opc1<0>:opc2);
 when ‘x0xx1’ advsimd = TRUE; esize = 16; index = UInt(opc1<0>:opc2<1>);
 when ‘00x00’ advsimd = FALSE; esize = 32; index = UInt(opc1<0>);
 when ‘10x00’ UNDEFINED;
 when ‘x0x10’ UNDEFINED;
t = UInt(Rt); n = UInt(N:Vn); unsigned = (U == ‘1’);
if t == 15 || (CurrentInstrSet() != InstrSet_ARM && t == 13) then UNPREDICTABLE;

Encoding T1 / A1 VFPv2, VFPv3, Advanced SIMD if opc1 == ’0x’ && opc2 == '00'

Advanced SIMD otherwise

VMOV<c>.<dt> <Rt>, <Dn[x]>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 U opc1 1 Vn Rt 1 0 1 1 N opc2 1 (0) (0) (0) (0)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 1 0 U opc1 1 Vn Rt 1 0 1 1 N opc2 1 (0) (0) (0) (0)
A8-646 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
for word version (U:opc1:opc2 == '00x00')

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<dt> The data type. It must be one of:

S8 Encoded as opc1<2:1> = ’01’. [x] is encoded in opc1<0>, opc2.

S16 Encoded as opc1<2:1>, opc2<0> = ’001’. [x] is encoded in opc1<0>, opc2<1>.

U8 Encoded as opc1<2:1> = ’11’. [x] is encoded in opc1<0>, opc2.

U16 Encoded as opc1<2:1>, opc2<0> = ’101.’ [x] is encoded in opc1<0>, opc2<1>.

32 Encoded as opc1<2:1>, opc2<1:0> = ’0000’. [x] is encoded in opc1<0>.

omitted equivalent to 32.

<Dm[x]> The scalar. For details of how [x] is encoded see the description of <dt>.

<Rt> The destination ARM core register.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDOrVFPEnabled(TRUE, advsimd);
 if unsigned then
 R[t] = ZeroExtend(Elem[D[n+r],index,esize]);
 else
 R[t] = SignExtend(Elem[D[n+r],index,esize]);

Exceptions

Undefined Instruction.

VMOV<c>{.<dt>} <Rt>, <Dn[x]>
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-647

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
U = 0, opc1<1> = 1

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
U = 0, opc1<1> = 0, opc2<0> = 1

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
U = 1, opc1<1> = 1

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
U = 1, opc1<1> = 0, opc2<0> = 1.

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
U = 0, opc1<1> = 0, opc2 = '00'

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Cross-Out

ARM_2009_Q1
Inserted Text
<q>

Instruction Details
A8.6.330 VMOV (between ARM core register and single-precision register)

This instruction transfers the contents of a single-precision VFP register to an ARM core register, or the
contents of an ARM core register to a single-precision VFP register.

to_arm_register = (op == ‘1’); t = UInt(Rt); n = UInt(Vn:N);
if t == 15 || (CurrentInstrSet() != InstrSet_ARM && t == 13) then UNPREDICTABLE;

Encoding T1 / A1 VFPv2, VFPv3

VMOV<c> <Sn>, <Rt>

VMOV<c> <Rt>, <Sn>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 0 0 0 op Vn Rt 1 0 1 0 N (0) (0) 1 (0) (0) (0) (0)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 1 0 0 0 0 op Vn Rt 1 0 1 0 N (0) (0) 1 (0) (0) (0) (0)
A8-648 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Sn> The single-precision VFP register.

<Rt> The ARM core register.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 if to_arm_register then
 R[t] = S[n];
 else
 S[n] = R[t];

Exceptions

Undefined Instruction.

VMOV<c><q> <Sn>, <Rt> Encoded as op = 0

VMOV<c><q> <Rt>, <Sn> Encoded as op = 1
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-649

Instruction Details
A8.6.331 VMOV (between two ARM core registers and two single-precision registers)

This instruction transfers the contents of two consecutively numbered single-precision VFP registers to two
ARM core registers, or the contents of two ARM core registers to a pair of single-precision VFP registers.
The ARM core registers do not have to be contiguous.

to_arm_registers = (op == ‘1’); t = UInt(Rt); t2 = UInt(Rt2); m = UInt(Vm:M);
if t == 15 || t2 == 15 || m == 31 then UNPREDICTABLE;
if CurrentInstrSet() != InstrSet_ARM && (t == 13 || t2 == 13) then UNPREDICTABLE;
if to_arm_registers && t == t2 then UNPREDICTABLE;

Encoding T1 / A1 VFPv2, VFPv3

VMOV<c> <Sm>, <Sm1>, <Rt>, <Rt2>

VMOV<c> <Rt>, <Rt2>, <Sm>, <Sm1>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 0 0 1 0 op Rt2 Rt 1 0 1 0 0 0 M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 0 0 0 1 0 op Rt2 Rt 1 0 1 0 0 0 M 1 Vm
A8-650 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Sm> The first single-precision VFP register.

<Sm1> The second single-precision VFP register. This is the next single-precision VFP register
after <Sm>.

<Rt> The ARM core register that <Sm> is transferred to or from.

<Rt2> The ARM core register that <Sm1> is transferred to or from.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 if to_arm_registers then
 R[t] = S[m];
 R[t2] = S[m+1];
 else
 S[m] = R[t];
 S[m+1] = R[t2];

Exceptions

Undefined Instruction.

VMOV<c><q> <Sm>, <Sm1>, <Rt>, <Rt2> Encoded as op = 0

VMOV<c><q> <Rt>, <Rt2>, <Sm>, <Sm1> Encoded as op = 1
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-651

Instruction Details
A8.6.332 VMOV (between two ARM core registers and a doubleword extension register)

This instruction copies two words from two ARM core registers into a doubleword extension register, or
from a doubleword extension register to two ARM core registers.

to_arm_registers = (op == ‘1’); t = UInt(Rd); t2 = UInt(Rt2); m = UInt(M:Vm);
if t == 15 || t2 == 15 then UNPREDICTABLE;
if CurrentInstrSet() != InstrSet_ARM && (t == 13 || t2 == 13) then UNPREDICTABLE;
if to_arm_registers && t == t2 then UNPREDICTABLE;

Encoding T1 / A1 VFPv2, VFPv3, Advanced SIMD

VMOV<c> <Dm>, <Rt>, <Rt2>

VMOV<c> <Rt>, <Rt2>, <Dm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 0 0 1 0 op Rt2 Rt 1 0 1 1 0 0 M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 0 0 0 1 0 op Rt2 Rt 1 0 1 1 0 0 M 1 Vm
A8-652 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
Rt

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Dm> The doubleword extension register.

<Rt>, <Rt2> The two ARM core registers.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 if to_arm_registers then
 R[t] = D[m]<31:0>;
 R[t2] = D[m]<63:32>;
 else
 D[m]<31:0> = R[t];
 D[m]<63:32> = R[t2];

Exceptions

Undefined Instruction.

VMOV<c><q> <Dm>, <Rt>, <Rt2> Encoded as op = 0

VMOV<c><q> <Rt>, <Rt2>, <Dm> Encoded as op = 1
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-653

Instruction Details
A8.6.333 VMOVL

Vector Move Long takes each element in a doubleword vector, sign or zero-extends them to twice their
original length, and places the results in a quadword vector.

if imm3 == ‘000’ then SEE “Related encodings”;
if imm3 != ‘001’ && imm3 != ‘010’ && imm3 != ‘100’ then SEE VSHLL;
if Vd<0> == ‘1’ then UNDEFINED;
esize = 8 * UInt(imm3);
unsigned = (U == ‘1’); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm);

Encoding T1 / A1 Advanced SIMD
VMOVL<c>.<dt> <Qd>, <Dm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 1 D imm3 0 0 0 Vd 1 0 1 0 0 0 M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U 1 D imm3 0 0 0 Vd 1 0 1 0 0 0 M 1 Vm

Related encodings See One register and a modified immediate value on page A7-21
A8-654 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VMOVL instruction must be
unconditional.

<dt> The data type for the elements of the operand. It must be one of:

S8 encoded as U = 0, imm3 = ’001’

S16 encoded as U = 0, imm3 = ’010’

S32 encoded as U = 0, imm3 = ’100’

U8 encoded as U = 1, imm3 = ’001’

U16 encoded as U = 1, imm3 = ’010’

U32 encoded as U = 1, imm3 = ’100’.

<Qd>, <Dm> The destination vector and the operand vector.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for e = 0 to elements-1
 result = Int(Elem[D[m],e,esize], unsigned);
 Elem[Q[d>>1],e,2*esize] = result<2*esize-1:0>;

Exceptions

Undefined Instruction.

VMOVL<c><q>.dt> <Qd>, <Dm>
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-655

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Replacement Text
if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for e = 0 to elements-1
 result = Int(Elem[Din[m],e,esize], unsigned);
 Elem[Q[d>>1],e,2*esize] = result<2*esize-1:0>;

ARM_2011_Q2
Sticky Note
The replacement pseudocode removes a read-after-write error.

The insertion in the section Pseudocode details of Advanced SIMD and VFP extension registers on page A2-23 [PDF page 55] defines the Din[] function.

Instruction Details
A8.6.334 VMOVN

Vector Move and Narrow copies the least significant half of each element of a quadword vector into the
corresponding elements of a doubleword vector.

The operand vector elements can be any one of 16-bit, 32-bit, or 64-bit integers. There is no distinction
between signed and unsigned integers.

if size == ‘11’ then UNDEFINED;
if Vm<0> == ‘1’ then UNDEFINED;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm);

Encoding T1 / A1 Advanced SIMD
VMOVN<c>.<dt> <Dd>, <Qm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 1 0 Vd 0 0 1 0 0 0 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size 1 0 Vd 0 0 1 0 0 0 M 0 Vm
A8-656 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VMOVN instruction must be
unconditional.

<dt> The data type for the elements of the operand. It must be one of:

I16 encoded as size = 0b00

I32 encoded as size = 0b01

I64 encoded as size = 0b10.

<Dd>, <Qm> The destination vector and the operand vector.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for e = 0 to elements-1
 Elem[D[d],e,esize] = Elem[Q[m>>1],e,2*esize]<esize-1:0>;

Exceptions

Undefined Instruction.

VMOVN<c><q>.<dt> <Dd>, <Qm>
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-657

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Replacement Text
if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for e = 0 to elements-1
 Elem[D[d],e,esize] = Elem[Qin[m>>1],e,2*esize]<esize-1:0>;

ARM_2011_Q2
Sticky Note
The replacement pseudocode removes a read-after-write error.

The insertion in the section Pseudocode details of Advanced SIMD and VFP extension registers on page A2-23 [PDF page 55] defines the Qin[] function.

Instruction Details
A8.6.335 VMRS

Move to ARM core register from Advanced SIMD and VFP extension System Register moves the value of
the FPSCR to a general-purpose register.

For details of system level use of this instruction, see VMRS on page B6-27.

t = UInt(Rt);
if t == 13 && CurrentInstrSet() != InstrSet_ARM then UNPREDICTABLE;

Encoding T1 / A1 VFPv2, VFPv3, Advanced SIMD
VMRS<c> <Rt>, FPSCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 1 1 1 0 0 0 1 Rt 1 0 1 0 0 (0) (0) 1 (0) (0) (0) (0)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 1 0 1 1 1 1 0 0 0 1 Rt 1 0 1 0 0 (0) (0) 1 (0) (0) (0) (0)
A8-658 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2010_Q2
Cross-Out

ARM_2010_Q2
Replacement Text
(0)

ARM_2010_Q2
Cross-Out

ARM_2010_Q2
Replacement Text
(0)

Instruction Details
Assembler syntax

VMRS<c><q> <Rt>, FPSCR

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rt> The destination ARM core register. This register can be R0-R14 or APSR_nzcv.
APSR_nzcv is encoded as Rt = ’1111’, and the instruction transfers the FPSCR N, Z, C, and
V flags to the APSR N, Z, C, and V flags.

The pre-UAL instruction FMSTAT is equivalent to VMRS APSR_nzcv, FPSCR.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 SerializeVFP(); VFPExcBarrier();
 if t != 15 then
 R[t] = FPSCR;
 else
 APSR.N = FPSCR.N;
 APSR.Z = FPSCR.Z;
 APSR.C = FPSCR.C;
 APSR.V = FPSCR.V;

Exceptions

Undefined Instruction.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-659

Instruction Details
A8.6.336 VMSR

Move to Advanced SIMD and VFP extension System Register from ARM core register moves the value of
a general-purpose register to the FPSCR.

For details of system level use of this instruction, see VMSR on page B6-29.

t = UInt(Rt);
if t == 15 || (t == 13 && CurrentInstrSet() != InstrSet_ARM) then UNPREDICTABLE;

Encoding T1 / A1 VFPv2, VFPv3, Advanced SIMD

VMSR<c> FPSCR, <Rt>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 1 1 0 0 0 0 1 Rt 1 0 1 0 0 (0) (0) 1 (0) (0) (0) (0)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 1 0 1 1 1 0 0 0 0 1 Rt 1 0 1 0 0 (0) (0) 1 (0) (0) (0) (0)
A8-660 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2010_Q2
Cross-Out

ARM_2010_Q2
Replacement Text
(0)

ARM_2010_Q2
Cross-Out

ARM_2010_Q2
Replacement Text
(0)

Instruction Details
Assembler syntax

VMSR<c><q> FPSCR, <Rt>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rt> The general-purpose register to be transferred to the FPSCR.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 SerializeVFP(); VFPExcBarrier();
 FPSCR = R[t];

Exceptions

Undefined Instruction.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-661

Instruction Details
A8.6.337 VMUL, VMULL (integer and polynomial)

Vector Multiply multiplies corresponding elements in two vectors. Vector Multiply Long does the same
thing, but with destination vector elements that are twice as long as the elements that are multiplied.

For information about multiplying polynomials see Polynomial arithmetic over {0,1} on page A2-67.

if size == ‘11’ || (op == ‘1’ && size != ‘00’) then UNDEFINED;
if Q == ‘1’ && (Vd<0> == ‘1’ || Vn<0> == ‘1’ || Vm<0> == ‘1’) then UNDEFINED;
polynomial = (op == ‘1’); long_destination = FALSE;
unsigned = FALSE; // “Don’t care” value: TRUE produces same functionality
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == ‘0’ then 1 else 2;

if size == ‘11’ then SEE “Related encodings”;
if op == ‘1’ && (U != ‘0’ || size != ‘00’) then UNDEFINED;
if Vd<0> == ‘1’ then UNDEFINED;
polynomial = (op == ‘1’); long_destination = TRUE; unsigned = (U == ‘1’);
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = 1;

Encoding T1 / A1 Advanced SIMD
VMUL<c>.<dt> <Qd>, <Qn>, <Qm>

VMUL<c>.<dt> <Dd>, <Dn>, <Dm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 op 1 1 1 1 0 D size Vn Vd 1 0 0 1 N Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 op 0 D size Vn Vd 1 0 0 1 N Q M 1 Vm

Encoding T2 / A2 Advanced SIMD
VMULL<c>.<dt> <Qd>, <Dn>, <Dm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 1 D size Vn Vd 1 1 op 0 N 0 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U 1 D size Vn Vd 1 1 op 0 N 0 M 0 Vm

Related encodings See Advanced SIMD data-processing instructions on page A7-10
A8-662 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM Advanced SIMD VMUL
or VMULL instruction must be unconditional.

<type> The data type for the elements of the operands. It must be one of:

S op = 0 in both encodings. U = 0 in encoding T2 / A2

U op = 0 in both encodings. U = 1 in encoding T2 / A2

I op = 0 in encoding T1 / A1, not available in encoding T2 / A2

P op = 1 in both encodings. U= 0 in encoding T2 / A2.

When <type> is P, <size> must be 8.

<size> The data size for the elements of the operands. It must be one of:

8 encoded as size = 0b00

16 encoded as size = 0b01

32 encoded as size = 0b10.

<Qd>, <Qn>, <Qm> The destination vector and the operand vectors, for a quadword operation.

<Dd>, <Dn>, <Dm> The destination vector and the operand vectors, for a doubleword operation.

<Qd>, <Dn>, <Dm> The destination vector and the operand vectors, for a long operation.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[D[n+r],e,esize]; op1val = Int(op1, unsigned);
 op2 = Elem[D[m+r],e,esize]; op2val = Int(op2, unsigned);
 if polynomial then
 product = PolynomialMult(op1,op2);
 else
 product = (op1val*op2val)<2*esize-1:0>;
 if long_destination then
 Elem[Q[d>>1],e,2*esize] = product;
 else
 Elem[D[d+r],e,esize] = product<esize-1:0>;

Exceptions

Undefined Instruction.

VMUL<c><q>.<type><size> {<Qd>,} <Qn>, <Qm> Encoding T1 / A1. Q = 1

VMUL<c><q>.<type><size> {<Dd>,} <Dn>, <Dm> Encoding T1 / A1. Q = 0
VMULL<c><q>.<type><size> <Qd>, <Dn>, <Dm> Encoding T2 / A2
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-663

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Replacement Text
if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[Din[n+r],e,esize]; op1val = Int(op1, unsigned);
 op2 = Elem[Din[m+r],e,esize]; op2val = Int(op2, unsigned);
 if polynomial then
 product = PolynomialMult(op1,op2);
 else
 product = (op1val*op2val)<2*esize-1:0>;
 if long_destination then
 Elem[Q[d>>1],e,2*esize] = product;
 else
 Elem[D[d+r],e,esize] = product<esize-1:0>;

ARM_2011_Q2
Sticky Note
The replacement pseudocode removes a read-after-write error.

The insertion in the section Pseudocode details of Advanced SIMD and VFP extension registers on page A2-23 [PDF page 55] defines the Din[] function.

Instruction Details
A8.6.338 VMUL (floating-point)

Vector Multiply multiplies corresponding elements in two vectors, and places the results in the destination
vector. Vector Multiply Long does the same thing, but with destination vector elements that are twice as long
as the elements that are multiplied.

if Q == ‘1’ && (Vd<0> == ‘1’ || Vn<0> == ‘1’ || Vm<0> == ‘1’) then UNDEFINED;
if sz == ‘1’ then UNDEFINED;
advsimd = TRUE; esize = 32; elements = 2;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == ‘0’ then 1 else 2;

if FPSCR.LEN != ‘000’ || FPSCR.STRIDE != ‘00’ then SEE “VFP vectors”;
advsimd = FALSE; dp_operation = (sz == ‘1’);
d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
n = if dp_operation then UInt(N:Vn) else UInt(Vn:N);
m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Encoding T1 / A1 Advanced SIMD (UNDEFINED in integer-only variant)
VMUL<c>.F32 <Qd>, <Qn>, <Qm>

VMUL<c>.F32 <Dd>, <Dn>, <Dm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 0 D 0 sz Vn Vd 1 1 0 1 N Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 0 D 0 sz Vn Vd 1 1 0 1 N Q M 1 Vm

Encoding T2 / A2 VFPv2, VFPv3 (sz = 1 UNDEFINED in single-precision only variants)
VMUL<c>.F64 <Dd>, <Dn>, <Dm>

VMUL<c>.F32 <Sd>, <Sn>, <Sm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 0 D 1 0 Vn Vd 1 0 1 sz N 0 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 1 0 0 D 1 0 Vn Vd 1 0 1 sz N 0 M 0 Vm

VFP vectors Encoding T2 / A2 can operate on VFP vectors under control of the FPSCR.LEN and
FPSCR.STRIDE bits. For details see Appendix F VFP Vector Operation Support.
A8-664 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q4
Cross-Out
There is no Vector Multiply Long (VMLL) floating-point instruction.

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM Advanced SIMD VMUL
instruction must be unconditional.

<Qd>, <Qn>, <Qm> The destination vector and the operand vectors, for a quadword operation.

<Dd>, <Dn>, <Dm> The destination vector and the operand vectors, for a doubleword operation.

<Sd>, <Sn>, <Sm> The destination vector and the operand vectors, for a singleword operation.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDOrVFPEnabled(TRUE, advsimd);
 if advsimd then // Advanced SIMD instruction
 for r = 0 to regs-1
 for e = 0 to elements-1
 Elem[D[d+r],e,esize] = FPMul(Elem[D[n+r],e,esize], Elem[D[m+r],e,esize], FALSE);
 else // VFP instruction
 if dp_operation then
 D[d] = FPMul(D[n], D[m], TRUE);
 else
 S[d] = FPMul(S[n], S[m], TRUE);

Exceptions

Undefined Instruction.

Floating-point exceptions: Input Denormal, Invalid Operation, Overflow, Underflow, and Inexact.

VMUL<c><q>.F32 {<Qd>,} <Qn>, <Qm> Encoding T1 / A1, Q = 1, sz = 0
VMUL<c><q>.F32 {<Dd>,} <Dn>, <Dm> Encoding T1 / A1, Q = 0, sz = 0
VMUL<c><q>.F64 {<Dd>,} <Dn>, <Dm> Encoding T2 / A2, sz = 1
VMUL<c><q>.F32 {<Sd>,} <Sn>, <Sm> Encoding T2 / A2, sz = 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-665

Instruction Details
A8.6.339 VMUL, VMULL (by scalar)

Vector Multiply multiplies each element in a vector by a scalar, and places the results in a second vector.
Vector Multiply Long does the same thing, but with destination vector elements that are twice as long as the
elements that are multiplied.

For more information about scalars see Advanced SIMD scalars on page A7-9.

if size == ‘11’ then SEE “Related encodings”;
if size == ‘00’ || (F == ‘1’ && size == ‘01’) then UNDEFINED;
if Q == ‘1’ && (Vd<0> == ‘1’ || Vn<0> == ‘1’) then UNDEFINED;
unsigned = FALSE; // “Don’t care” value: TRUE produces same functionality
floating_point = (F == ‘1’); long_destination = FALSE;
d = UInt(D:Vd); n = UInt(N:Vn); regs = if Q == ‘0’ then 1 else 2;
if size == ‘01’ then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
if size == ‘10’ then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

if size == ‘11’ then SEE “Related encodings”;
if size == ‘00’ || Vd<0> == ‘1’ then UNDEFINED;
unsigned = (U == ‘1’); long_destination = TRUE; floating_point = FALSE;
d = UInt(D:Vd); n = UInt(N:Vn); regs = 1;
if size == ‘01’ then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
if size == ‘10’ then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

Encoding T1 / A1 Advanced SIMD (F = 1 UNDEFINED in integer-only variants)
VMUL<c>.<dt> <Qd>, <Qn>, <Dm[x]>

VMUL<c>.<dt> <Dd>, <Dn>, <Dm[x]>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 Q 1 1 1 1 1 D size Vn Vd 1 0 0 F N 1 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 Q 1 D size Vn Vd 1 0 0 F N 1 M 0 Vm

Encoding T2 / A2 Advanced SIMD
VMULL<c>.<dt> <Qd>, <Dn>, <Dm[x]>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 1 D size Vn Vd 1 0 1 0 N 1 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U 1 D size Vn Vd 1 0 1 0 N 1 M 0 Vm

Related encodings See Advanced SIMD data-processing instructions on page A7-10
A8-666 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM Advanced SIMD VMUL or
VMULL instruction must be unconditional.

<dt> The data type for the scalar, and the elements of the operand vector. It must be one of:

I16 encoding T1 / A1, size = 0b01, F = 0

I32 encoding T1 / A1, size = 0b10, F = 0

F32 encoding T1 / A1, size = 0b10, F = 1

S16 encoding T2 / A2, size = 0b01, U = 0

S32 encoding T2 / A2, size = 0b10, U = 0

U16 encoding T2 / A2, size = 0b01, U = 1

U32 encoding T2 / A2, size = 0b10, U = 1.

<Qd>, <Qn> The destination vector, and the operand vector, for a quadword operation.

<Dd>, <Dn> The destination vector, and the operand vector, for a doubleword operation.

<Qd>, <Dn> The destination vector, and the operand vector, for a long operation.

<Dm[x]> The scalar. Dm is restricted to D0-D7 if <dt> is I16, S16, or U16, or D0-D15 otherwise.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 op2 = Elem[D[m],index,esize]; op2val = Int(op2, unsigned);
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[D[n+r],e,esize]; op1val = Int(op1, unsigned);
 if floating_point then
 Elem[D[d+r],e,esize] = FPMul(op1, op2, FALSE);
 else
 if long_destination then
 Elem[Q[d>>1],e,2*esize] = (op1val*op2val)<2*esize-1:0>;
 else
 Elem[D[d+r],e,esize] = (op1val*op2val)<esize-1:0>;

Exceptions

Undefined Instruction.

Floating-point exceptions: Input Denormal, Invalid Operation, Overflow, Underflow, and Inexact.

VMUL<c><q>.<dt> {<Qd>,} <Qn>, <Dm[x]> Encoding T1 / A1, Q = 1
VMUL<c><q>.<dt> {<Dd>,} <Dn>, <Dm[x]> Encoding T1 / A1, Q = 0

VMULL<c><q>.<dt> <Qd>, <Dn>, <Dm[x]> Encoding T2 / A2
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-667

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Replacement Text
if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 op2 = Elem[Din[m],index,esize]; op2val = Int(op2, unsigned);
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[Din[n+r],e,esize]; op1val = Int(op1, unsigned);
 if floating_point then
 Elem[D[d+r],e,esize] = FPMul(op1, op2, FALSE);
 else
 if long_destination then
 Elem[Q[d>>1],e,2*esize] = (op1val*op2val)<2*esize-1:0>;
 else
 Elem[D[d+r],e,esize] = (op1val*op2val)<esize-1:0>;

ARM_2011_Q2
Sticky Note
The replacement pseudocode removes a read-after-write error.

The insertion in the section Pseudocode details of Advanced SIMD and VFP extension registers on page A2-23 [PDF page 55] defines the Din[] function.

Instruction Details
A8.6.340 VMVN (immediate)

Vector Bitwise NOT (immediate) places the bitwise inverse of an immediate integer constant into every
element of the destination register. For the range of constants available, see One register and a modified
immediate value on page A7-21.

if (cmode<0> == ‘1’ && cmode<3:2> != ‘11’) || cmode<3:1> == ‘111’ then SEE “Related encodings”;
if Q == ‘1’ && Vd<0> == ‘1’ then UNDEFINED;
imm64 = AdvSIMDExpandImm(‘1’, cmode, i:imm3:imm4);
d = UInt(D:Vd); regs = if Q == ‘0’ then 1 else 2;

Encoding T1 / A1 Advanced SIMD
VMVN<c>.<dt> <Qd>, #<imm>

VMVN<c>.<dt> <Dd>, #<imm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 i 1 1 1 1 1 D 0 0 0 imm3 Vd cmode 0 Q 1 1 imm4

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 i 1 D 0 0 0 imm3 Vd cmode 0 Q 1 1 imm4

Related encodings See One register and a modified immediate value on page A7-21
A8-668 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VMVN instruction must be
unconditional.

<dt> The data type. It must be either I16 or I32.

<Qd> The destination register for a quadword operation.

<Dd> The destination register for a doubleword operation.

<imm> A constant of the specified type.

See One register and a modified immediate value on page A7-21 for the range of constants available, and
the encoding of <dt> and <imm>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 D[d+r] = NOT(imm64);

Exceptions

Undefined Instruction.

Pseudo-instructions

One register and a modified immediate value on page A7-21 describes pseudo-instructions with a
combination of <dt> and <imm> that is not supported by hardware, but that generates the same destination
register value as a different combination that is supported by hardware.

VMVN<c><q>.dt> <Qd>, #<imm> Encoding T1 / A1, Q = 1

VMVN<c><q>.dt> <Dd>, #<imm> Encoding T1 / A1, Q = 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-669

Instruction Details
A8.6.341 VMVN (register)

Vector Bitwise NOT (register) takes a value from a register, inverts the value of each bit, and places the result
in the destination register. The registers can be either doubleword or quadword.

if size != ‘00’ then UNDEFINED;
if Q == ‘1’ && (Vd<0> == ‘1’ || Vm<0> == ‘1’) then UNDEFINED;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == ‘0’ then 1 else 2;

Encoding T1 / A1 Advanced SIMD
VMVN<c> <Qd>, <Qm>

VMVN<c> <Dd>, <Dm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 0 Vd 0 1 0 1 1 Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size 0 0 Vd 0 1 0 1 1 Q M 0 Vm
A8-670 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VMVN instruction must be
unconditional.

<dt> An optional data type. It is ignored by assemblers, and does not affect the encoding.

<Qd>, <Qm> The destination vector and the operand vector, for a quadword operation.

<Dd>, <Dm> The destination vector and the operand vector, for a doubleword operation.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 D[d+r] = NOT(D[m+r]);

Exceptions

Undefined Instruction.

VMVN<c><q>{.<dt>} <Qd>, <Qm>

VMVN<c><q>{.<dt>} <Dd>, <Dm>
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-671

Instruction Details
A8.6.342 VNEG

Vector Negate negates each element in a vector, and places the results in a second vector. The floating-point
version only inverts the sign bit.

if size == ‘11’ || (F == ‘1’ && size != ‘10’) then UNDEFINED;
if Q == ‘1’ && (Vd<0> == ‘1’ || Vm<0> == ‘1’) then UNDEFINED;
advsimd = TRUE; floating_point = (F == ‘1’);
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == ‘0’ then 1 else 2;

if FPSCR.LEN != ‘000’ || FPSCR.STRIDE != ‘00’ then SEE “VFP vectors”;
advsimd = FALSE; dp_operation = (sz == ‘1’);
d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Encoding T1 / A1 Advanced SIMD (F = 1 UNDEFINED in integer-only variants)
VNEG<c>.<dt> <Qd>, <Qm>

VNEG<c>.<dt> <Dd>, <Dm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 1 Vd 0 F 1 1 1 Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size 0 1 Vd 0 F 1 1 1 Q M 0 Vm

Encoding T2 / A2 VFPv2, VFPv3 (sz = 1 UNDEFINED in single-precision only variants)
VNEG<c>.F64 <Dd>, <Dm>

VNEG<c>.F32 <Sd>, <Sm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 1 1 0 0 0 1 Vd 1 0 1 sz 0 1 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 1 0 1 D 1 1 0 0 0 1 Vd 1 0 1 sz 0 1 M 0 Vm

VFP vectors Encoding T2 / A2 can operate on VFP vectors under control of the FPSCR.LEN and
FPSCR.STRIDE bits. For details see Appendix F VFP Vector Operation Support.
A8-672 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM Advanced SIMD VNEG
instruction must be unconditional.

<dt> The data type for the elements of the vectors. It must be one of:

S8 encoding T1 / A1, size = 0b00, F = 0

S16 encoding T1 / A1, size = 0b01, F = 0

S32 encoding T1 / A1, size = 0b10, F = 0

F32 encoding T1 / A1, size = 0b10, F = 1

F64 encoding T2 / A2, sz = 1.

<Qd>, <Qm> The destination vector and the operand vector, for a quadword operation.

<Dd>, <Dm> The destination vector and the operand vector, for a doubleword operation.

<Sd>, <Sm> The destination vector and the operand vector, for a singleword operation.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDOrVFPEnabled(TRUE, advsimd);
 if advsimd then // Advanced SIMD instruction
 for r = 0 to regs-1
 for e = 0 to elements-1
 if floating_point then
 Elem[D[d+r],e,esize] = FPNeg(Elem[D[m+r],e,esize]);
 else
 result = -SInt(Elem[D[m+r],e,esize]);
 Elem[D[d+r],e,esize] = result<esize-1:0>;
 else // VFP instruction
 if dp_operation then
 D[d] = FPNeg(D[m]);
 else
 S[d] = FPNeg(S[m]);

Exceptions

Undefined Instruction.

VNEG<c><q>.<dt> <Qd>, <Qm> <dt> != F64

VNEG<c><q>.<dt> <Dd>, <Dm>

VNEG<c><q>.F32 <Sd>, <Sm> VFP only, encoding T2/A2, sz = 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-673

Instruction Details
A8.6.343 VNMLA, VNMLS, VNMUL

VNMLA multiplies together two floating-point register values, adds the negation of the floating-point value in
the destination register to the negation of the product, and writes the result back to the destination register.

VNMLS multiplies together two floating-point register values, adds the negation of the floating-point value in
the destination register to the product, and writes the result back to the destination register.

VNMUL multiplies together two floating-point register values, and writes the negation of the result to the
destination register.

if FPSCR.LEN != ‘000’ || FPSCR.STRIDE != ‘00’ then SEE “VFP vectors”;
type = if op == ‘1’ then VFPNegMul_VNMLA else VFPNegMul_VNMLS;
dp_operation = (sz == ‘1’);
d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
n = if dp_operation then UInt(N:Vn) else UInt(Vn:N);
m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

if FPSCR.LEN != ‘000’ || FPSCR.STRIDE != ‘00’ then SEE “VFP vectors”;
type = VFPNegMul_VNMUL;
dp_operation = (sz == ‘1’);
d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
n = if dp_operation then UInt(N:Vn) else UInt(Vn:N);
m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Encoding T1 / A1 VFPv2, VFPv3 (sz = 1 UNDEFINED in single-precision only variants)
VNMLA<c>.F64 <Dd>, <Dn>, <Dm>

VNMLA<c>.F32 <Sd>, <Sn>, <Sm>

VNMLS<c>.F64 <Dd>, <Dn>, <Dm>

VNMLS<c>.F32 <Sd>, <Sn>, <Sm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 0 D 0 1 Vn Vd 1 0 1 sz N op M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 1 0 0 D 0 1 Vn Vd 1 0 1 sz N op M 0 Vm

Encoding T2 / A2 VFPv2, VFPv3 (sz = 1 UNDEFINED in single-precision only variants)
VNMUL<c>.F64 <Dd>, <Dn>, <Dm>

VNMUL<c>.F32 <Sd>, <Sn>, <Sm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 0 D 1 0 Vn Vd 1 0 1 sz N 1 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 1 0 0 D 1 0 Vn Vd 1 0 1 sz N 1 M 0 Vm

VFP vectors These instructions can operate on VFP vectors under control of the FPSCR.LEN and
FPSCR.STRIDE bits. For details see Appendix F VFP Vector Operation Support.
A8-674 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<op> Must be one of:

MLA op = 1

MLS op = 0.

<Dd>, <Dn>, <Dm> The destination register and the operand registers, for a double-precision operation.

<Sd>, <Sn>, <Sm> The destination register and the operand registers, for a single-precision operation.

Operation

enumeration VFPNegMul {VFPNegMul_VNMLA, VFPNegMul_VNMLS, VFPNegMul_VNMUL};

if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 if dp_operation then
 product = FPMul(D[n], D[m], TRUE);
 case type of
 when VFPNegMul_VNMLA D[d] = FPAdd(FPNeg(D[d]), FPNeg(product), TRUE);
 when VFPNegMul_VNMLS D[d] = FPAdd(FPNeg(D[d]), product, TRUE);
 when VFPNegMul_VNMUL D[d] = FPNeg(product);
 else
 product = FPMul(S[n], S[m], TRUE);
 case type of
 when VFPNegMul_VNMLA S[d] = FPAdd(FPNeg(S[d]), FPNeg(product), TRUE);
 when VFPNegMul_VNMLS S[d] = FPAdd(FPNeg(S[d]), product, TRUE);
 when VFPNegMul_VNMUL S[d] = FPNeg(product);

Exceptions

Undefined Instruction.

Floating-point exceptions: Invalid Operation, Overflow, Underflow, Inexact, Input Denormal.

VN<op><c><q>.F64 <Dd>, <Dn>, <Dm> Encoding T1 / A1 with sz = 1
VN<op><c><q>.F32 <Sd>, <Sn>, <Sm> Encoding T1 / A1 with sz = 0
VNMUL<c><q>.F64 {<Dd>,} <Dn>, <Dm> Encoding T2 / A2 with sz = 1
VNMUL<c><q>.F32 {<Sd>,} <Sn>, <Sm> Encoding T2 / A2 with sz = 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-675

Instruction Details
A8.6.344 VORN (immediate)

VORN (immediate) is a pseudo-instruction, equivalent to a VORR (immediate) instruction with the immediate
value bitwise inverted. For details see VORR (immediate) on page A8-678.

A8.6.345 VORN (register)

This instruction performs a bitwise OR NOT operation between two registers, and places the result in the
destination register. The operand and result registers can be quadword or doubleword. They must all be the
same size.

if Q == ‘1’ && (Vd<0> == ‘1’ || Vn<0> == ‘1’ || Vm<0> == ‘1’) then UNDEFINED;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == ‘0’ then 1 else 2;

Encoding T1 / A1 Advanced SIMD
VORN<c> <Qd>, <Qn>, <Qm>

VORN<c> <Dd>, <Dn>, <Dm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 0 D 1 1 Vn Vd 0 0 0 1 N Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 D 1 1 Vn Vd 0 0 0 1 N Q M 1 Vm
A8-676 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VORN instruction must
be unconditional.

<dt> An optional data type. It is ignored by assemblers, and does not affect the encoding.

<Qd>, <Qn>, <Qm> The destination vector and the operand vectors, for a quadword operation.

<Dd>, <Dn>, <Dm> The destination vector and the operand vectors, for a doubleword operation.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 D[d+r] = D[n+r] OR NOT(D[m+r]);

Exceptions

Undefined Instruction.

VORN<c><q>{.<dt>} {<Qd>,} <Qn>, <Qm> Encoded as Q = 1
VORN<c><q>{.<dt>} {<Dd>,} <Dn>, <Dm> Encoded as Q = 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-677

Instruction Details
A8.6.346 VORR (immediate)

This instruction takes the contents of the destination vector, performs a bitwise OR with an immediate
constant, and returns the result into the destination vector. For the range of constants available, see One
register and a modified immediate value on page A7-21.

if cmode<0> == ‘0’ || cmode<3:2> == ‘11’ then SEE VMOV (immediate);
if Q == ‘1’ && Vd<0> == ‘1’ then UNDEFINED;
imm64 = AdvSIMDExpandImm(‘0’, cmode, i:imm3:imm4);
d = UInt(D:Vd); regs = if Q == ‘0’ then 1 else 2;

Encoding T1 / A1 Advanced SIMD
VORR<c>.<dt> <Qd>, #<imm>

VORR<c>.<dt> <Dd>, #<imm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 i 1 1 1 1 1 D 0 0 0 imm3 Vd cmode 0 Q 0 1 imm4

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 i 1 D 0 0 0 imm3 Vd cmode 0 Q 0 1 imm4
A8-678 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VORR instruction must be
unconditional.

<dt> The data type used for <imm>. It can be either I16 or I32.

I8, I64, and F32 are also permitted, but the resulting syntax is a pseudo-instruction.

<Qd> The destination vector for a quadword operation.

<Dd> The destination vector for a doubleword operation.

<imm> A constant of the type specified by <dt>. This constant is replicated enough times to fill the
destination register. For example, VORR.I32 D0,#10 ORs 0x0000000A0000000A into D0.

For details of the range of constants available, and the encoding of <dt> and <imm>, see One register and a
modified immediate value on page A7-21.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 D[d+r] = D[d+r] OR imm64;

Exceptions

Undefined Instruction.

Pseudo-instructions

VORN can be used, with a range of constants that are the bitwise inverse of the available constants for VORR.
This is assembled as the equivalent VORR instruction. Disassembly produces the VORR form.

One register and a modified immediate value on page A7-21 describes pseudo-instructions with a
combination of <dt> and <imm> that is not supported by hardware, but that generates the same destination
register value as a different combination that is supported by hardware.

VORR<c><q>.<dt> {<Qd>,} <Qd>, #<imm> Encoded as Q = 1
VORR<c><q>.<dt> {<Dd>,} <Dd>, #<imm>> Encoded as Q = 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-679

Instruction Details
A8.6.347 VORR (register)

This instruction performs a bitwise OR operation between two registers, and places the result in the
destination register. The operand and result registers can be quadword or doubleword. They must all be the
same size.

if N == M && Vn == Vm then SEE VMOV (register);
if Q == ‘1’ && (Vd<0> == ‘1’ || Vn<0> == ‘1’ || Vm<0> == ‘1’) then UNDEFINED;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == ‘0’ then 1 else 2;

Encoding T1 / A1 Advanced SIMD
VORR<c> <Qd>, <Qn>, <Qm>

VORR<c> <Dd>, <Dn>, <Dm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 0 D 1 0 Vn Vd 0 0 0 1 N Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 D 1 0 Vn Vd 0 0 0 1 N Q M 1 Vm
A8-680 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VORR instruction must
be unconditional.

<dt> An optional data type. It is ignored by assemblers, and does not affect the encoding.

<Qd>, <Qn>, <Qm> The destination vector and the operand vectors, for a quadword operation.

<Dd>, <Dn>, <Dm> The destination vector and the operand vectors, for a doubleword operation.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 D[d+r] = D[n+r] OR D[m+r];

Exceptions

Undefined Instruction.

VORR<c><q>{.<dt>} {<Qd>,} <Qn>, <Qm> Encoded as Q = 1
VORR<c><q>{.<dt>} {<Dd>,} <Dn>, <Dm> Encoded as Q = 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-681

Instruction Details
A8.6.348 VPADAL

Vector Pairwise Add and Accumulate Long adds adjacent pairs of elements of a vector, and accumulates the
absolute values of the results into the elements of the destination vector.

The vectors can be doubleword or quadword. The operand elements can be 8-bit, 16-bit, or 32-bit integers.
The result elements are twice the length of the operand elements.

Figure A8-2 shows an example of the operation of VPADAL.

if size == ‘11’ then UNDEFINED;
if Q == ‘1’ && (Vd<0> == ‘1’ || Vm<0> == ‘1’) then UNDEFINED;
unsigned = (op == ‘1’);
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == ‘0’ then 1 else 2;

Figure A8-2 Operation of doubleword VPADAL for data type S16

Encoding T1 / A1 Advanced SIMD

VPADAL<c>.<dt> <Qd>, <Qm>

VPADAL<c>.<dt> <Dd>, <Dm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 0 Vd 0 1 1 0 op Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size 0 0 Vd 0 1 1 0 op Q M 0 Vm

��

�,

H H
A8-682 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q2
Cross-Out

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VPADAL instruction must be
unconditional.

<dt> The data type for the elements of the vectors. It must be one of:

S8 encoded as size = 0b00, op = 0

S16 encoded as size = 0b01, op = 0

S32 encoded as size = 0b10, op = 0

U8 encoded as size = 0b00, op = 1

U16 encoded as size = 0b01, op = 1

U32 encoded as size = 0b10, op = 1.

<Qd>, <Qm> The destination vector and the operand vector, for a quadword operation.

<Dd>, <Dm> The destination vector and the operand vector, for a doubleword operation.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 h = elements/2;

 for r = 0 to regs-1
 for e = 0 to h-1
 op1 = Elem[D[m+r],2*e,esize]; op2 = Elem[D[m+r],2*e+1,esize];
 result = Int(op1, unsigned) + Int(op2, unsigned);
 Elem[D[d+r],e,2*esize] = Elem[D[d+r],e,2*esize] + result;

Exceptions

Undefined Instruction.

VPADAL<c><q>.<dt> <Qd>, <Qm> Encoded as Q = 1

VPADAL<c><q>.<dt> <Dd>, <Dm> Encoded as Q = 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-683

Instruction Details
A8.6.349 VPADD (integer)

Vector Pairwise Add (integer) adds adjacent pairs of elements of two vectors, and places the results in the
destination vector.

The operands and result are doubleword vectors.

The operand and result elements must all be the same type, and can be 8-bit, 16-bit, or 32-bit integers. There
is no distinction between signed and unsigned integers.

Figure A8-3 shows an example of the operation of VPADD.

if size == ‘11’ || Q == ‘1’ then UNDEFINED;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

Figure A8-3 Operation of VPADD for data type I16

Encoding T1 / A1 Advanced SIMD

VPADD<c>.<dt> <Dd>, <Dn>, <Dm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 0 D size Vn Vd 1 0 1 1 N Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 D size Vn Vd 1 0 1 1 N Q M 1 Vm

��

���,

H H HH
A8-684 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VPADD instruction
must be unconditional.

<dt> The data type for the elements of the vectors. It must be one of:

I8 encoding T1 / A1, size = 0b00

I16 encoding T1 / A1, size = 0b01

I32 encoding T1 / A1, size = 0b10.

<Dd>, <Dn>, <Dm> The destination vector, the first operand vector, and the second operand vector.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 bits(64) dest;
 h = elements/2;

 for e = 0 to h-1
 Elem[dest,e,esize] = Elem[D[n],2*e,esize] + Elem[D[n],2*e+1,esize];
 Elem[dest,e+h,esize] = Elem[D[m],2*e,esize] + Elem[D[m],2*e+1,esize];

 D[d] = dest;

Exceptions

Undefined Instruction.

VPADD<c><q>.<dt> {<Dd>,} <Dn>, <Dm> Encoded as Q = 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-685

Instruction Details
A8.6.350 VPADD (floating-point)

Vector Pairwise Add (floating-point) adds adjacent pairs of elements of two vectors, and places the results
in the destination vector.

The operands and result are doubleword vectors.

The operand and result elements are 32-bit floating-point numbers.

Figure A8-3 on page A8-684 shows an example of the operation of VPADD.

if sz == ‘1’ || Q == ‘1’ then UNDEFINED;
esize = 32; elements = 2;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

Encoding T1 / A1 Advanced SIMD (UNDEFINED in integer-only variant)

VPADD<c>.F32 <Dd>, <Dn>, <Dm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 0 D 0 sz Vn Vd 1 1 0 1 N Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 0 D 0 sz Vn Vd 1 1 0 1 N Q M 0 Vm
A8-686 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VPADD instruction
must be unconditional.

<Dd>, <Dn>, <Dm> The destination vector, the first operand vector, and the second operand vector.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 bits(64) dest;
 h = elements/2;

 for e = 0 to h-1
 Elem[dest,e,esize] = FPAdd(Elem[D[n],2*e,esize], Elem[D[n],2*e+1,esize], FALSE);
 Elem[dest,e+h,esize] = FPAdd(Elem[D[m],2*e,esize], Elem[D[m],2*e+1,esize], FALSE);

 D[d] = dest;

Exceptions

Undefined Instruction.

Floating-point exceptions: Input Denormal, Invalid Operation, Overflow, Underflow, and Inexact.

VPADD<c><q>.F32 {<Dd>,} <Dn>, <Dm> Encoded as Q = 0, sz = 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-687

Instruction Details
A8.6.351 VPADDL

Vector Pairwise Add Long adds adjacent pairs of elements of two vectors, and places the results in the
destination vector.

The vectors can be doubleword or quadword. The operand elements can be 8-bit, 16-bit, or 32-bit integers.
The result elements are twice the length of the operand elements.

Figure A8-4 shows an example of the operation of VPADDL.

if size == ‘11’ then UNDEFINED;
if Q == ‘1’ && (Vd<0> == ‘1’ || Vm<0> == ‘1’) then UNDEFINED;
unsigned = (op == ‘1’);
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == ‘0’ then 1 else 2;

Figure A8-4 Operation of doubleword VPADDL for data type S16

Encoding T1 / A1 Advanced SIMD

VPADDL<c>.<dt> <Qd>, <Qm>

VPADDL<c>.<dt> <Dd>, <Dm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 0 Vd 0 0 1 0 op Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size 0 0 Vd 0 0 1 0 op Q M 0 Vm

��

�,

H H
A8-688 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VPADDL instruction must be
unconditional.

<dt> The data type for the elements of the vectors. It must be one of:

S8 encoded as size = 0b00, op = 0

S16 encoded as size = 0b01, op = 0

S32 encoded as size = 0b10, op = 0

U8 encoded as size = 0b00, op = 1

U16 encoded as size = 0b01, op = 1

U32 encoded as size = 0b10, op = 1.

<Qd>, <Qm> The destination vector and the operand vector, for a quadword operation.

<Dd>, <Dm> The destination vector and the operand vector, for a doubleword operation.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 h = elements/2;

 for r = 0 to regs-1
 for e = 0 to h-1
 op1 = Elem[D[m+r],2*e,esize]; op2 = Elem[D[m+r],2*e+1,esize];
 result = Int(op1, unsigned) + Int(op2, unsigned);
 Elem[D[d+r],e,2*esize] = result<2*esize-1:0>;

Exceptions

Undefined Instruction.

VPADDL<c><q>.<dt> <Qd>, <Qm> Encoded as Q = 1

VPADDL<c><q>.<dt> <Dd>, <Dm> Encoded as Q = 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-689

Instruction Details
A8.6.352 VPMAX, VPMIN (integer)

Vector Pairwise Maximum compares adjacent pairs of elements in two doubleword vectors, and copies the
larger of each pair into the corresponding element in the destination doubleword vector.

Vector Pairwise Minimum compares adjacent pairs of elements in two doubleword vectors, and copies the
smaller of each pair into the corresponding element in the destination doubleword vector.

Figure A8-5 shows an example of the operation of VPMAX.

if size == ‘11’ || Q == ‘1’ then UNDEFINED;
maximum = (op == ‘0’); unsigned = (U == ‘1’);
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

Figure A8-5 Operation of VPMAX for data type S16 or U16

Encoding T1 / A1 Advanced SIMD

VP<op><c>.<dt> <Dd>, <Dn>, <Dm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 0 D size Vn Vd 1 0 1 0 N Q M op Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U 0 D size Vn Vd 1 0 1 0 N Q M op Vm

��

���,

,�+ ,�+ ,�+,�+
A8-690 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<op> Must be one of:

MAX encoded as op = 0

MIN encoded as op = 1.

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VPMAX or VPMIN
instruction must be unconditional.

<dt> The data type for the elements of the vectors. It must be one of:

S8 encoding T1 / A1, size = 0b00, U = 0

S16 encoding T1 / A1, size = 0b01, U = 0

S32 encoding T1 / A1, size = 0b10, U = 0

U8 encoding T1 / A1, size = 0b00, U = 1

U16 encoding T1 / A1, size = 0b01, U = 1

U32 encoding T1 / A1, size = 0b10, U = 1.

<Dd>, <Dn>, <Dm> The destination vector and the operand vectors.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 bits(64) dest;
 h = elements/2;

 for e = 0 to h-1
 op1 = Int(Elem[D[n],2*e,esize], unsigned);
 op2 = Int(Elem[D[n],2*e+1,esize], unsigned);
 result = if maximum then Max(op1,op2) else Min(op1,op2);
 Elem[dest,e,esize] = result<esize-1:0>;
 op1 = Int(Elem[D[m],2*e,esize], unsigned);
 op2 = Int(Elem[D[m],2*e+1,esize], unsigned);
 result = if maximum then Max(op1,op2) else Min(op1,op2);
 Elem[dest,e+h,esize] = result<esize-1:0>;

 D[d] = dest;

Exceptions

Undefined Instruction.

VP<op><c><q>.<dt> {<Dd>,} <Dn>, <Dm> Encoded as Q = 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-691

Instruction Details
A8.6.353 VPMAX, VPMIN (floating-point)

Vector Pairwise Maximum compares adjacent pairs of elements in two doubleword vectors, and copies the
larger of each pair into the corresponding element in the destination doubleword vector.

Vector Pairwise Minimum compares adjacent pairs of elements in two doubleword vectors, and copies the
smaller of each pair into the corresponding element in the destination doubleword vector.

Figure A8-5 on page A8-690 shows an example of the operation of VPMAX.

if sz == ‘1’ || Q == ‘1’ then UNDEFINED;
maximum = (op == ‘0’); esize = 32; elements = 2;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

Encoding T1 / A1 Advanced SIMD (UNDEFINED in integer-only variant)

VP<op><c>.F32 <Dd>, <Dn>, <Dm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 0 D op sz Vn Vd 1 1 1 1 N Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 0 D op sz Vn Vd 1 1 1 1 N Q M 0 Vm
A8-692 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<op> Must be one of:

MAX encoded as op = 0

MIN encoded as op = 1.

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VPMAX or VPMIN
instruction must be unconditional.

<Dd>, <Dn>, <Dm> The destination vector and the operand vectors.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 bits(64) dest;
 h = elements/2;

 for e = 0 to h-1
 op1 = Elem[D[n],2*e,esize]; op2 = Elem[D[n],2*e+1,esize];
 Elem[dest,e,esize] = if maximum then FPMax(op1,op2,FALSE) else FPMin(op1,op2,FALSE);
 op1 = Elem[D[m],2*e,esize]; op2 = Elem[D[m],2*e+1,esize];
 Elem[dest,e+h,esize] = if maximum then FPMax(op1,op2,FALSE) else FPMin(op1,op2,FALSE);

 D[d] = dest;

Exceptions

Undefined Instruction.

VP<op><c><q>.F32 {<Dd>,} <Dn>, <Dm> Encoded as Q = 0, sz = 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-693

ARM_2010_Q2
Inserted Text

Floating-point exceptions: Invalid Operation, Input Denormal.

Instruction Details
A8.6.354 VPOP

Vector Pop loads multiple consecutive extension registers from the stack.

single_regs = FALSE; d = UInt(D:Vd); imm32 = ZeroExtend(imm8:’00’, 32);
regs = UInt(imm8) DIV 2; // If UInt(imm8) is odd, see “FLDMX”.
if regs == 0 || regs > 16 || (d+regs) > 32 then UNPREDICTABLE;

single_regs = TRUE; d = UInt(Vd:D);
imm32 = ZeroExtend(imm8:’00’, 32); regs = UInt(imm8);
if regs == 0 || regs > 16 || (d+regs) > 32 then UNPREDICTABLE;

Encoding T1 / A1 VFPv2, VFPv3, Advanced SIMD
VPOP <list> <list> is consecutive 64-bit registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 0 1 D 1 1 1 1 0 1 Vd 1 0 1 1 imm8

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 0 0 1 D 1 1 1 1 0 1 Vd 1 0 1 1 imm8

Encoding T2 / A2 VFPv2, VFPv3
VPOP <list> <list> is consecutive 32-bit registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 0 1 D 1 1 1 1 0 1 Vd 1 0 1 0 imm8

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 0 0 1 D 1 1 1 1 0 1 Vd 1 0 1 0 imm8

FLDMX Encoding T1/A1 behaves as described by the pseudocode if imm8 is odd.
However, there is no UAL syntax for such encodings and their use is deprecated.
For more information, see FLDMX, FSTMX on page A8-101.
A8-694 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2011_Q2
Cross-Out

Instruction Details
Assembler syntax

VPOP<c><q>{.<size>} <list>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<size> An optional data size specifier. If present, it must be equal to the size in bits, 32 or 64, of the
registers in <list>.

<list> The extension registers to be loaded, as a list of consecutively numbered doubleword
(encoding T1 / A1) or singleword (encoding T2 / A2) registers, separated by commas and
surrounded by brackets. It is encoded in the instruction by setting D and Vd to specify the
first register in the list, and imm8 to twice the number of registers in the list (encoding
T1 / A1) or the number of registers in the list (encoding T2 / A2). <list> must contain at
least one register, and not more than sixteen.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE); NullCheckIfThumbEE(13);
 address = SP;
 SP = SP + imm32;
 if single_regs then
 for r = 0 to regs-1
 S[d+r] = MemA[address,4]; address = address+4;
 else
 for r = 0 to regs-1
 word1 = MemA[address,4]; word2 = MemA[address+4,4]; address = address+8;
 // Combine the word-aligned words in the correct order for current endianness.
 D[d+r] = if BigEndian() then word1:word2 else word2:word1;

Exceptions

Undefined Instruction, Data Abort.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-695

Instruction Details
A8.6.355 VPUSH

Vector Push stores multiple consecutive extension registers to the stack.

single_regs = FALSE; d = UInt(D:Vd); imm32 = ZeroExtend(imm8:’00’, 32);
regs = UInt(imm8) DIV 2; // If UInt(imm8) is odd, see “FSTMX”.
if regs == 0 || regs > 16 || (d+regs) > 32 then UNPREDICTABLE;

single_regs = TRUE; d = UInt(Vd:D);
imm32 = ZeroExtend(imm8:’00’, 32); regs = UInt(imm8);
if regs == 0 || regs > 16 || (d+regs) > 32 then UNPREDICTABLE;

Encoding T1 / A1 VFPv2, VFPv3, Advanced SIMD
VPUSH<c> <list> <list> is consecutive 64-bit registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 1 0 D 1 0 1 1 0 1 Vd 1 0 1 1 imm8

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 0 1 0 D 1 0 1 1 0 1 Vd 1 0 1 1 imm8

Encoding T2 / A2 VFPv2, VFPv3
VPUSH<c> <list> <list> is consecutive 32-bit registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 1 0 D 1 0 1 1 0 1 Vd 1 0 1 0 imm8

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 0 1 0 D 1 0 1 1 0 1 Vd 1 0 1 0 imm8

FSTMX Encoding T1/A1 behaves as described by the pseudocode if imm8 is odd.
However, there is no UAL syntax for such encodings and their use is deprecated.
For more information, see FLDMX, FSTMX on page A8-101.
A8-696 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2011_Q2
Cross-Out

Instruction Details
Assembler syntax

VPUSH<c><q>{.<size>} <list>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<size> An optional data size specifier. If present, it must be equal to the size in bits, 32 or 64, of the
registers in <list>.

<list> The extension registers to be stored, as a list of consecutively numbered doubleword
(encoding T1 / A1) or singleword (encoding T2 / A2) registers, separated by commas and
surrounded by brackets. It is encoded in the instruction by setting D and Vd to specify the
first register in the list, and imm8 to twice the number of registers in the list (encoding
T1 / A1), or the number of registers in the list (encoding T2 / A2). <list> must contain at
least one register, and not more than sixteen.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE); NullCheckIfThumbEE(13);
 address = SP - imm32;
 SP = SP - imm32;
 if single_regs then
 for r = 0 to regs-1
 MemA[address,4] = S[d+r]; address = address+4;
 else
 for r = 0 to regs-1
 // Store as two word-aligned words in the correct order for current endianness.
 MemA[address,4] = if BigEndian() then D[d+r]<63:32> else D[d+r]<31:0>;
 MemA[address+4,4] = if BigEndian() then D[d+r]<31:0> else D[d+r]<63:32>;
 address = address+8;

Exceptions

Undefined Instruction, Data Abort.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-697

Instruction Details
A8.6.356 VQABS

Vector Saturating Absolute takes the absolute value of each element in a vector, and places the results in the
destination vector.

If any of the results overflow, they are saturated. The cumulative saturation flag, QC, is set if saturation
occurs. For details see Pseudocode details of saturation on page A2-9.

if size == ‘11’ then UNDEFINED;
if Q == ‘1’ && (Vd<0> == ‘1’ || Vm<0> == ‘1’) then UNDEFINED;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == ‘0’ then 1 else 2;

Encoding T1 / A1 Advanced SIMD

VQABS<c>.<dt> <Qd>,<Qm>

VQABS<c>.<dt> <Dd>,<Dm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 0 Vd 0 1 1 1 0 Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size 0 0 Vd 0 1 1 1 0 Q M 0 Vm
A8-698 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VQABS instruction must be
unconditional.

<dt> The data type for the elements of the vectors. It must be one of:

S8 encoded as size = 0b00

S16 encoded as size = 0b01

S32 encoded as size = 0b10.

<Qd>, <Qm> The destination vector and the operand vector, for a quadword operation.

<Dd>, <Dm> The destination vector and the operand vector, for a doubleword operation.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 result = Abs(SInt(Elem[D[m+r],e,esize]));
 (Elem[D[d+r],e,esize], sat) = SignedSatQ(result, esize);
 if sat then FPSCR.QC = ‘1’;

Exceptions

Undefined Instruction.

VQABS<c><q>.<dt> <Qd>, <Qm> Encoded as Q = 1

VQABS<c><q>.<dt> <Dd>, <Dm> Encoded as Q = 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-699

Instruction Details
A8.6.357 VQADD

Vector Saturating Add adds the values of corresponding elements of two vectors, and places the results in
the destination vector.

If any of the results overflow, they are saturated. The cumulative saturation flag, QC, is set if saturation
occurs. For details see Pseudocode details of saturation on page A2-9.

if Q == ‘1’ && (Vd<0> == ‘1’ || Vn<0> == ‘1’ || Vm<0> == ‘1’) then UNDEFINED;
unsigned = (U == ‘1’);
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == ‘0’ then 1 else 2;

Encoding T1 / A1 Advanced SIMD

VQADD<c>.<dt> <Qd>,<Qn>,<Qm>

VQADD<c>.<dt> <Dd>,<Dn>,<Dm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 0 D size Vn Vd 0 0 0 0 N Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U 0 D size Vn Vd 0 0 0 0 N Q M 1 Vm
A8-700 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VQADD instruction
must be unconditional.

<type> The data type for the elements of the vectors. It must be one of:

S signed, encoded as U = 0

U unsigned, encoded as U = 1.

<size> The data size for the elements of the vectors. It must be one of:

8 encoded as size = 0b00

16 encoded as size = 0b01

32 encoded as size = 0b10

64 encoded as size = 0b11.

<Qd>, <Qn>, <Qm> The destination vector and the operand vectors, for a quadword operation.

<Dd>, <Dn>, <Dm> The destination vector and the operand vectors, for a doubleword operation.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 sum = Int(Elem[D[n+r],e,esize], unsigned) + Int(Elem[D[m+r],e,esize], unsigned);
 (Elem[D[d+r],e,esize], sat) = SatQ(sum, esize, unsigned);
 if sat then FPSCR.QC = ‘1’;

Exceptions

Undefined Instruction.

VQADD<c><q>.<type><size> {<Qd>,} <Qn>, <Qm> Encoded as Q = 1

VQADD<c><q>.<type><size> {<Dd>,} <Dn>, <Dm> Encoded as Q = 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-701

Instruction Details
A8.6.358 VQDMLAL, VQDMLSL

Vector Saturating Doubling Multiply Accumulate Long multiplies corresponding elements in two
doubleword vectors, doubles the products, and accumulates the results into the elements of a quadword
vector.

Vector Saturating Doubling Multiply Subtract Long multiplies corresponding elements in two doubleword
vectors, subtracts double the products from corresponding elements of a quadword vector, and places the
results in the same quadword vector.

In both instructions, the second operand can be a scalar instead of a vector. For more information about
scalars see Advanced SIMD scalars on page A7-9.

If any of the results overflow, they are saturated. The cumulative saturation flag, QC, is set if saturation
occurs. For details see Pseudocode details of saturation on page A2-9.

if size == ‘11’ then SEE “Related encodings”;
if size == ‘00’ || Vd<0> == ‘1’ then UNDEFINED;
add = (op == ‘0’);
scalar_form = FALSE; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
esize = 8 << UInt(size); elements = 64 DIV esize;

if size == ‘11’ then SEE “Related encodings”;
if size == ‘00’ || Vd<0> == ‘1’ then UNDEFINED;
add = (op == ‘0’);
scalar_form = TRUE; d = UInt(D:Vd); n = UInt(N:Vn);
if size == ‘01’ then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
if size == ‘10’ then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

Encoding T1 / A1 Advanced SIMD

VQD<op><c>.<dt> <Qd>,<Dn>,<Dm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 1 D size Vn Vd 1 0 op 1 N 0 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 1 D size Vn Vd 1 0 op 1 N 0 M 0 Vm

Encoding T2 / A2 Advanced SIMD

VQD<op><c>.<dt> <Qd>,<Dn>,<Dm[x]>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 1 D size Vn Vd 0 op 1 1 N 1 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 1 D size Vn Vd 0 op 1 1 N 1 M 0 Vm

Related encodings See Advanced SIMD data-processing instructions on page A7-10
A8-702 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<op> Must be one of:

MLAL encoded as op = 0

MLSL encoded as op = 1.

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VQDMLAL or VQDMLSL instruction
must be unconditional.

<dt> The data type for the elements of the operands. It must be one of:

S16 encoded as size = 0b01

S32 encoded as size = 0b10.

<Qd>, <Dn> The destination vector and the first operand vector.

<Dm> The second operand vector, for an all vector operation.

<Dm[x]> The scalar for a scalar operation. If <dt> is S16, Dm is restricted to D0-D7. If <dt> is S32, Dm is
restricted to D0-D15.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 if scalar_form then op2 = SInt(Elem[D[m],index,esize]);
 for e = 0 to elements-1
 if !scalar_form then op2 = SInt(Elem[D[m],e,esize]);
 op1 = SInt(Elem[D[n],e,esize]);
 // The following only saturates if both op1 and op2 equal -(2^(esize-1))
 (product, sat1) = SignedSatQ(2*op1*op2, 2*esize);
 if add then
 result = SInt(Elem[Q[d>>1],e,2*esize]) + SInt(product);
 else
 result = SInt(Elem[Q[d>>1],e,2*esize]) - SInt(product);
 (Elem[Q[d>>1],e,2*esize], sat2) = SignedSatQ(result, 2*esize);
 if sat1 || sat2 then FPSCR.QC = ‘1’;

Exceptions

Undefined Instruction.

VQD<op><c><q>.<dt> <Qd>, <Dn>, <Dm>

VQD<op><c><q>.<dt> <Qd>, <Dn>, <Dm[x]>
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-703

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Replacement Text
if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 if scalar_form then op2 = SInt(Elem[Din[m],index,esize]);
 for e = 0 to elements-1
 if !scalar_form then op2 = SInt(Elem[Din[m],e,esize]);
 op1 = SInt(Elem[Din[n],e,esize]);
 // The following only saturates if both op1 and op2 equal -(2^(esize-1))
 (product, sat1) = SignedSatQ(2*op1*op2, 2*esize);
 if add then
 result = SInt(Elem[Qin[d>>1],e,2*esize]) + SInt(product);
 else
 result = SInt(Elem[Qin[d>>1],e,2*esize]) - SInt(product);
 (Elem[Q[d>>1],e,2*esize], sat2) = SignedSatQ(result, 2*esize);
 if sat1 || sat2 then FPSCR.QC = '1';

ARM_2011_Q2
Sticky Note
The replacement pseudocode removes a read-after-write error.

The insertion in the section Pseudocode details of Advanced SIMD and VFP extension registers on page A2-23 [PDF page 55] defines the Din[] and Qin[] functions.

Instruction Details
A8.6.359 VQDMULH

Vector Saturating Doubling Multiply Returning High Half multiplies corresponding elements in two
vectors, doubles the results, and places the most significant half of the final results in the destination vector.
The results are truncated (for rounded results see VQRDMULH on page A8-712).

The second operand can be a scalar instead of a vector. For more information about scalars see Advanced
SIMD scalars on page A7-9.

If any of the results overflow, they are saturated. The cumulative saturation flag, QC, is set if saturation
occurs. For details see Pseudocode details of saturation on page A2-9.

if Q == ‘1’ && (Vd<0> == ‘1’ || Vn<0> == ‘1’ || Vm<0> == ‘1’) then UNDEFINED;
if size == ‘00’ || size == ‘11’ then UNDEFINED;
scalar_form = FALSE; esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == ‘0’ then 1 else 2;

if Q == ‘1’ && (Vd<0> == ‘1’ || Vn<0> == ‘1’) then UNDEFINED;
if size == ‘00’ || size == ‘11’ then UNDEFINED;
scalar_form = TRUE; d = UInt(D:Vd); n = UInt(N:Vn); regs = if Q == ‘0’ then 1 else 2;
if size == ‘01’ then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
if size == ‘10’ then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

Encoding T1 / A1 Advanced SIMD

VQDMULH<c>.<dt> <Qd>,<Qn>,<Qm>

VQDMULH<c>.<dt> <Dd>,<Dn>,<Dm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 0 D size Vn Vd 1 0 1 1 N Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 D size Vn Vd 1 0 1 1 N Q M 0 Vm

Encoding T2 / A2 Advanced SIMD

VQDMULH<c>.<dt> <Qd>,<Qn>,<Dm[x]>

VQDMULH<c>.<dt> <Dd>,<Dn>,<Dm[x]>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 Q 1 1 1 1 1 D size Vn Vd 1 1 0 0 N 1 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 Q 1 D size Vn Vd 1 1 0 0 N 1 M 0 Vm

Related encodings See Advanced SIMD data-processing instructions on page A7-10
A8-704 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Inserted Text
if size == '11' then SEE "Related encodings";
if size == '00' then UNDEFINED;

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VQDMULH instruction
must be unconditional.

<dt> The data type for the elements of the operands. It must be one of:

S16 encoded as size = 0b01

S32 encoded as size = 0b10.

<Qd>, <Qn> The destination vector and the first operand vector, for a quadword operation.

<Dd>, <Dn> The destination vector and the first operand vector, for a doubleword operation.

<Qm> The second operand vector, for a quadword all vector operation.

<Dm> The second operand vector, for a doubleword all vector operation.

<Dm[x]> The scalar for either a quadword or a doubleword scalar operation. If <dt> is S16, Dm
is restricted to D0-D7. If <dt> is S32, Dm is restricted to D0-D15.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 if scalar_form then op2 = SInt(Elem[D[m],index,esize]);
 for r = 0 to regs-1
 for e = 0 to elements-1
 if !scalar_form then op2 = SInt(Elem[D[m+r],e,esize]);
 op1 = SInt(Elem[D[n+r],e,esize]);
 // The following only saturates if both op1 and op2 equal -(2^(esize-1))
 (result, sat) = SignedSatQ((2*op1*op2) >> esize, esize);
 Elem[D[d+r],e,esize] = result;
 if sat then FPSCR.QC = ‘1’;

Exceptions

Undefined Instruction.

VQDMULH<c><q>.<dt> {<Qd>,} <Qn>, <Qm> Encoding T1 / A1, Q = 1

VQDMULH<c><q>.<dt> {<Dd>,} <Dn>, <Dm> Encoding T1 / A1, Q = 0

VQDMULH<c><q>.<dt> {<Qd>,} <Qn>, <Dm[x]> Encoding T2 / A2, U = 1

VQDMULH<c><q>.<dt> {<Dd>,} <Dn>, <Dm[x]> Encoding T2 / A2, U = 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-705

ARM_2010_Q2
Cross-Out

ARM_2010_Q2
Inserted Text
Q

ARM_2010_Q2
Cross-Out

ARM_2010_Q2
Inserted Text
Q

Instruction Details
A8.6.360 VQDMULL

Vector Saturating Doubling Multiply Long multiplies corresponding elements in two doubleword vectors,
doubles the products, and places the results in a quadword vector.

The second operand can be a scalar instead of a vector. For more information about scalars see Advanced
SIMD scalars on page A7-9.

If any of the results overflow, they are saturated. The cumulative saturation flag, QC, is set if saturation
occurs. For details see Pseudocode details of saturation on page A2-9.

if size == ‘11’ then SEE “Related encodings”;
if size == ‘00’ || Vd<0> == ‘1’ then UNDEFINED;
scalar_form = FALSE; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
esize = 8 << UInt(size); elements = 64 DIV esize;

if size == ‘11’ then SEE “Related encodings”;
if size == ‘00’ || Vd<0> == ‘1’ then UNDEFINED;
scalar_form = TRUE; d = UInt(D:Vd); n = UInt(N:Vn);
if size == ‘01’ then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
if size == ‘10’ then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

Encoding T1 / A1 Advanced SIMD

VQDMULL<c>.<dt> <Qd>,<Dn>,<Dm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 1 D size Vn Vd 1 1 0 1 N 0 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 1 D size Vn Vd 1 1 0 1 N 0 M 0 Vm

Encoding T2 / A2 Advanced SIMD

VQDMULL<c>.<dt> <Qd>,<Dn>,<Dm[x]>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 1 D size Vn Vd 1 0 1 1 N 1 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 1 D size Vn Vd 1 0 1 1 N 1 M 0 Vm

Related encodings See Advanced SIMD data-processing instructions on page A7-10
A8-706 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VQDMULL instruction must be
unconditional.

<dt> The data type for the elements of the operands. It must be one of:

S16 encoded as size = 0b01

S32 encoded as size = 0b10.

<Qd>, <Dn> The destination vector and the first operand vector.

<Dm> The second operand vector, for an all vector operation.

<Dm[x]> The scalar for a scalar operation. If <dt> is S16, Dm is restricted to D0-D7. If <dt> is S32, Dm is
restricted to D0-D15.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 if scalar_form then op2 = SInt(Elem[D[m],index,esize]);
 for e = 0 to elements-1
 if !scalar_form then op2 = SInt(Elem[D[m],e,esize]);
 op1 = SInt(Elem[D[n],e,esize]);
 // The following only saturates if both op1 and op2 equal -(2^(esize-1))
 (product, sat) = SignedSatQ(2*op1*op2, 2*esize);
 Elem[Q[d>>1],e,2*esize] = product;
 if sat then FPSCR.QC = ‘1’;

Exceptions

Undefined Instruction.

VQDMULL<c><q>.<dt> <Qd>, <Dn>, <Dm>

VQDMULL<c><q>.<dt> <Qd>, <Dn>, <Dm[x]>
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-707

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Replacement Text
if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 if scalar_form then op2 = SInt(Elem[Din[m],index,esize]);
 for e = 0 to elements-1
 if !scalar_form then op2 = SInt(Elem[Din[m],e,esize]);
 op1 = SInt(Elem[Din[n],e,esize]);
 // The following only saturates if both op1 and op2 equal -(2^(esize-1))
 (product, sat) = SignedSatQ(2*op1*op2, 2*esize);
 Elem[Q[d>>1],e,2*esize] = product;
 if sat then FPSCR.QC = '1';

ARM_2011_Q2
Sticky Note
The replacement pseudocode removes a read-after-write error.

The insertion in the section Pseudocode details of Advanced SIMD and VFP extension registers on page A2-23 [PDF page 55] defines the Din[] function.

Instruction Details
A8.6.361 VQMOVN, VQMOVUN

Vector Saturating Move and Narrow copies each element of the operand vector to the corresponding element
of the destination vector.

The operand is a quadword vector. The elements can be any one of:

• 16-bit, 32-bit, or 64-bit signed integers

• 16-bit, 32-bit, or 64-bit unsigned integers.

The result is a doubleword vector. The elements are half the length of the operand vector elements. If the
operand is unsigned, the results are unsigned. If the operand is signed, the results can be signed or unsigned.

If any of the results overflow, they are saturated. The cumulative saturation flag, QC, is set if saturation
occurs. For details see Pseudocode details of saturation on page A2-9.

if op == ‘00’ then SEE VMOVN;
if size == ‘11’ || Vm<0> == ‘1’ then UNDEFINED;
source_unsigned = (op == ‘11’); dest_unsigned = (op<0> == ‘1’);
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm);

Encoding T1 / A1 Advanced SIMD

VQMOV{U}N<c>.<type><size> <Dd>, <Qm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 1 0 Vd 0 0 1 0 op M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size 1 0 Vd 0 0 1 0 op M 0 Vm
A8-708 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

U If present, specifies that the operation produces unsigned results, even though the operands
are signed. Encoded as op = 0b01.

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VQMOVN or VQMOVUN instruction
must be unconditional.

<type> The data type for the elements of the operand. It must be one of:

S encoded as:

• op = 0b10 for VQMOVN

• op = 0b01 for VQMOVUN.

U encoded as op = 0b11. Not available for VQMOVUN.

<size> The data size for the elements of the operand. It must be one of:

16 encoded as size = 0b00

32 encoded as size = 0b01

64 encoded as size = 0b10.

<Dd>, <Qm> The destination vector and the operand vector.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for e = 0 to elements-1
 operand = Int(Elem[Q[m>>1],e,2*esize], src_unsigned);
 (Elem[D[d],e,esize], sat) = SatQ(operand, esize, dest_unsigned);
 if sat then FPSCR.QC = ‘1’;

Exceptions

Undefined Instruction.

VQMOV{U}N<c><q>.<type><size> <Dd>, <Qm>
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-709

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Replacement Text
if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for e = 0 to elements-1
 operand = Int(Elem[Qin[m>>1],e,2*esize], src_unsigned);
 (Elem[D[d],e,esize], sat) = SatQ(operand, esize, dest_unsigned);
 if sat then FPSCR.QC = '1';

ARM_2011_Q2
Sticky Note
The replacement pseudocode removes a read-after-write error.

The insertion in the section Pseudocode details of Advanced SIMD and VFP extension registers on page A2-23 [PDF page 55] defines the Qin[] function.

Instruction Details
A8.6.362 VQNEG

Vector Saturating Negate negates each element in a vector, and places the results in the destination vector.

If any of the results overflow, they are saturated. The cumulative saturation flag, QC, is set if saturation
occurs. For details see Pseudocode details of saturation on page A2-9.

if size == ‘11’ then UNDEFINED;
if Q == ‘1’ && (Vd<0> == ‘1’ || Vm<0> == ‘1’) then UNDEFINED;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == ‘0’ then 1 else 2;

Encoding T1 / A1 Advanced SIMD

VQNEG<c>.<dt> <Qd>,<Qm>

VQNEG<c>.<dt> <Dd>,<Dm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 0 Vd 0 1 1 1 1 Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size 0 0 Vd 0 1 1 1 1 Q M 0 Vm
A8-710 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VQNEG instruction must be
unconditional.

<dt> The data type for the elements of the vectors. It must be one of:

S8 encoded as size = 0b00

S16 encoded as size = 0b01

S32 encoded as size = 0b10.

<Qd>, <Qm> The destination vector and the operand vector, for a quadword operation.

<Dd>, <Dm> The destination vector and the operand vector, for a doubleword operation.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 result = -SInt(Elem[D[m+r],e,esize]);
 (Elem[D[d+r],e,esize], sat) = SignedSatQ(result, esize);
 if sat then FPSCR.QC = ‘1’;

Exceptions

Undefined Instruction.

VQNEG<c><q>.<dt> <Qd>, <Qm> Encoded as Q = 1

VQNEG<c><q>.<dt> <Dd>, <Dm> Encoded as Q = 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-711

Instruction Details
A8.6.363 VQRDMULH

Vector Saturating Rounding Doubling Multiply Returning High Half multiplies corresponding elements in
two vectors, doubles the results, and places the most significant half of the final results in the destination
vector. The results are rounded (for truncated results see VQDMULH on page A8-704).

The second operand can be a scalar instead of a vector. For more information about scalars see Advanced
SIMD scalars on page A7-9.

If any of the results overflow, they are saturated. The cumulative saturation flag, QC, is set if saturation
occurs. For details see Pseudocode details of saturation on page A2-9.

if Q == ‘1’ && (Vd<0> == ‘1’ || Vn<0> == ‘1’ || Vm<0> == ‘1’) then UNDEFINED;
if size == ‘00’ || size == ‘11’ then UNDEFINED;
scalar_form = FALSE; esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == ‘0’ then 1 else 2;

if Q == ‘1’ && (Vd<0> == ‘1’ || Vn<0> == ‘1’) then UNDEFINED;
if size == ‘00’ || size == ‘11’ then UNDEFINED;
scalar_form = TRUE; d = UInt(D:Vd); n = UInt(N:Vn); regs = if Q == ‘0’ then 1 else 2;
if size == ‘01’ then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
if size == ‘10’ then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

Encoding T1 / A1 Advanced SIMD

VQRDMULH<c>.<dt> <Qd>,<Qn>,<Qm>

VQRDMULH<c>.<dt> <Dd>,<Dn>,<Dm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 0 D size Vn Vd 1 0 1 1 N Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 0 D size Vn Vd 1 0 1 1 N Q M 0 Vm

Encoding T2 / A2 Advanced SIMD

VQRDMULH<c>.<dt> <Qd>,<Qn>,<Dm[x]>

VQRDMULH<c>.<dt> <Dd>,<Dn>,<Dm[x]>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 Q 1 1 1 1 1 D size Vn Vd 1 1 0 1 N 1 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 Q 1 D size Vn Vd 1 1 0 1 N 1 M 0 Vm

Related encodings See Advanced SIMD data-processing instructions on page A7-10
A8-712 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2008_Q4
Inserted Text
if size == '11' then SEE "Related encodings";
if size == '00' then UNDEFINED;

ARM_2008_Q4
Cross-Out

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VQRDMULH instruction
must be unconditional.

<dt> The data type for the elements of the operands. It must be one of:

S16 encoded as size = 0b01

S32 encoded as size = 0b10.

<Qd>, <Qn> The destination vector and the first operand vector, for a quadword operation.

<Dd>, <Dn> The destination vector and the first operand vector, for a doubleword operation.

<Qm> The second operand vector, for a quadword all vector operation.

<Dm> The second operand vector, for a doubleword all vector operation.

<Dm[x]> The scalar for either a quadword or a doubleword scalar operation. If <dt> is S16, Dm
is restricted to D0-D7. If <dt> is S32, Dm is restricted to D0-D15.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 round_const = 1 << (esize-1);
 if scalar_form then op2 = SInt(Elem[D[m],index,esize]);
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = SInt(Elem[D[n+r],e,esize]);
 if !scalar_form then op2 = SInt(Elem[D[m+r],e,esize]);
 (result, sat) = SignedSatQ((2*op1*op2 + round_const) >> esize, esize);
 Elem[D[d+r],e,esize] = result;
 if sat then FPSCR.QC = ‘1’;

Exceptions

Undefined Instruction.

VQRDMULH<c><q>.<dt> {<Qd>,} <Qn>, <Qm> Encoding T1 / A1, Q = 1

VQRDMULH<c><q>.<dt> {<Dd>,} <Dn>, <Dm> Encoding T1 / A1, Q = 0

VQRDMULH<c><q>.<dt> {<Qd>,} <Qn>, <Dm[x]> Encoding T2 / A2, Q = 1

VQRDMULH<c><q>.<dt> {<Dd>,} <Dn>, <Dm[x]> Encoding T2 / A2, Q = 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-713

Instruction Details
A8.6.364 VQRSHL

Vector Saturating Rounding Shift Left takes each element in a vector, shifts them by a value from the least
significant byte of the corresponding element of a second vector, and places the results in the destination
vector. If the shift value is positive, the operation is a left shift. Otherwise, it is a right shift.

For truncated results see VQSHL (register) on page A8-718.

The first operand and result elements are the same data type, and can be any one of:

• 8-bit, 16-bit, 32-bit, or 64-bit signed integers

• 8-bit, 16-bit, 32-bit, or 64-bit unsigned integers.

The second operand is a signed integer of the same size.

If any of the results overflow, they are saturated. The cumulative saturation flag, QC, is set if saturation
occurs. For details see Pseudocode details of saturation on page A2-9.

if Q == ‘1’ && (Vd<0> == ‘1’ || Vm<0> == ‘1’ || Vn<0> == ‘1’) then UNDEFINED;
unsigned = (U == ‘1’);
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm); n = UInt(N:Vn); regs = if Q == ‘0’ then 1 else 2;

Encoding T1 / A1 Advanced SIMD

VQRSHL<c>.<type><size> <Qd>,<Qm>,<Qn>

VQRSHL<c>.<type><size> <Dd>,<Dm>,<Dn>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 0 D size Vn Vd 0 1 0 1 N Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U 0 D size Vn Vd 0 1 0 1 N Q M 1 Vm
A8-714 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VQRSHL instruction
must be unconditional.

<type> The data type for the elements of the vectors. It must be one of:

S signed, encoded as U = 0

U unsigned, encoded as U = 1.

<size> The data size for the elements of the vectors. It must be one of:

8 encoded as size = 0b00

16 encoded as size = 0b01

32 encoded as size = 0b10

64 encoded as size = 0b11.

<Qd>, <Qm>, <Qn> The destination vector and the operand vectors, for a quadword operation.

<Dd>, <Dm>, <Dn> The destination vector and the operand vectors, for a doubleword operation.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 shift = SInt(Elem[D[n+r],e,esize]<7:0>);
 round_const = 1 << (-1-shift); // 0 for left shift, 2^(n-1) for right shift
 operand = Int(Elem[D[m+r],e,esize], unsigned);
 (result, sat) = SatQ((operand + round_const) << shift, esize, unsigned);
 Elem[D[d+r],e,esize] = result;
 if sat then FPSCR.QC = ‘1’;

Exceptions

Undefined Instruction.

VQRSHL<c><q>.<type><size> {<Qd>,} <Qm>, <Qn> Encoded as Q = 1

VQRSHL<c><q>.<type><size> {<Dd>,} <Dm>, <Dn> Encoded as Q = 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-715

Instruction Details
A8.6.365 VQRSHRN, VQRSHRUN

Vector Saturating Rounding Shift Right, Narrow takes each element in a quadword vector of integers, right
shifts them by an immediate value, and places the rounded results in a doubleword vector.

For truncated results, see VQSHRN, VQSHRUN on page A8-722.

The operand elements must all be the same size, and can be any one of:

• 16-bit, 32-bit, or 64-bit signed integers

• 16-bit, 32-bit, or 64-bit unsigned integers.

The result elements are half the width of the operand elements. If the operand elements are signed, the
results can be either signed or unsigned. If the operand elements are unsigned, the result elements must also
be unsigned.

If any of the results overflow, they are saturated. The cumulative saturation flag, QC, is set if saturation
occurs. For details see Pseudocode details of saturation on page A2-9.

if imm6 == ‘000xxx’ then SEE “Related encodings”;
if U == ‘0’ && op == ‘0’ then SEE VRSHRN;
if Vm<0> == ‘1’ then UNDEFINED;
case imm6 of
 when ‘001xxx’ esize = 8; elements = 8; shift_amount = 16 - UInt(imm6);
 when ‘01xxxx’ esize = 16; elements = 4; shift_amount = 32 - UInt(imm6);
 when ‘1xxxxx’ esize = 32; elements = 2; shift_amount = 64 - UInt(imm6);
src_unsigned = (U == ‘1’ && op == ‘1’); dest_unsigned = (U == ‘1’);
d = UInt(D:Vd); m = UInt(M:Vm);

Encoding T1 / A1 Advanced SIMD

VQRSHR{U}N<c>.<type><size> <Dd>,<Qm>,#<imm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 1 D imm6 Vd 1 0 0 op 0 1 M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U 1 D imm6 Vd 1 0 0 op 0 1 M 1 Vm

Related encodings See One register and a modified immediate value on page A7-21
A8-716 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

U If present, specifies that the results are unsigned, although the operands are signed.

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VQRSHRN or VQRSHRUN
instruction must be unconditional.

<type> The data type for the elements of the vectors. It must be one of:

S encoded as:

U = 0, op = 1, if U is absent

U = 1, op = 0, if U is present

U encoded as U = 1, op = 1. Not available for VQRSHRUN.

<size> The data size for the elements of the vectors. It must be one of:

16 Encoded as L = ’0’, imm6<5:3> = ’001’. (8– <imm>) is encoded in imm6<2:0>.

32 Encoded as L = ’0’, imm6<5:4> = ’01’. (16 – <imm>) is encoded in imm6<3:0>.

64 Encoded as L = ’0’, imm6<5> = ’1’. (32 – <imm>) is encoded in imm6<4:0>.

<Dd>, <Qm> The destination vector and the operand vector.

<imm> The immediate value, in the range 1 to <size>/2. See the description of <size> for how <imm>
is encoded.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 round_const = 1 << (shift_amount - 1);
 for e = 0 to elements-1
 operand = Int(Elem[Q[m>>1],e,2*esize], src_unsigned);
 (result, sat) = SatQ((operand + round_const) >> shift_amount, esize, dest_unsigned);
 Elem[D[d],e,esize] = result;
 if sat then FPSCR.QC = ‘1’;

Exceptions

Undefined Instruction.

Pseudo-instructions

VQRSHR{U}N<c><q>.<type><size> <Dd>, <Qm>, #<imm>

VQRSHRN.I<size> <Dd>, <Qm>, #0 is a synonym for VQMOVN.I<size> <Dd>, <Qm>

VQRSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for VQMOVUN.I<size> <Dd>, <Qm>
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-717

ARM_2010_Q2
Cross-Out

ARM_2010_Q2
Cross-Out

ARM_2010_Q2
Cross-Out

ARM_2010_Q2
Sticky Note
The decode table, Table A7-12 on page A7-17 [PDF page 297], shows L as bit 7, of the lower half word for the Thumb encoding. The encoding diagrams in this section correctly show this bit as 0.

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Replacement Text
if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 round_const = 1 << (shift_amount - 1);
 for e = 0 to elements-1
 operand = Int(Elem[Qin[m>>1],e,2*esize], src_unsigned);
 (result, sat) = SatQ((operand + round_const) >> shift_amount, esize, dest_unsigned);
 Elem[D[d],e,esize] = result;
 if sat then FPSCR.QC = '1';

ARM_2011_Q2
Sticky Note
The replacement pseudocode removes a read-after-write error.

The insertion in the section Pseudocode details of Advanced SIMD and VFP extension registers on page A2-23 [PDF page 55] defines the Qin[] function.

Instruction Details
A8.6.366 VQSHL (register)

Vector Saturating Shift Left (register) takes each element in a vector, shifts them by a value from the least
significant byte of the corresponding element of a second vector, and places the results in the destination
vector. If the shift value is positive, the operation is a left shift. Otherwise, it is a right shift.

The results are truncated. For rounded results, see VQRSHL on page A8-714.

The first operand and result elements are the same data type, and can be any one of:

• 8-bit, 16-bit, 32-bit, or 64-bit signed integers

• 8-bit, 16-bit, 32-bit, or 64-bit unsigned integers.

The second operand is a signed integer of the same size.

If any of the results overflow, they are saturated. The cumulative saturation flag, QC, is set if saturation
occurs. For details see Pseudocode details of saturation on page A2-9.

if Q == ‘1’ && (Vd<0> == ‘1’ || Vm<0> == ‘1’ || Vn<0> == ‘1’) then UNDEFINED;
unsigned = (U == ‘1’);
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm); n = UInt(N:Vn); regs = if Q == ‘0’ then 1 else 2;

Encoding T1 / A1 Advanced SIMD

VQSHL<c>.<type><size> <Qd>,<Qm>,<Qn>

VQSHL<c>.<type><size> <Dd>,<Dm>,<Dn>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 0 D size Vn Vd 0 1 0 0 N Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U 0 D size Vn Vd 0 1 0 0 N Q M 1 Vm
A8-718 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VQSHL instruction
must be unconditional.

<type> The data type for the elements of the vectors. It must be one of:

S signed, encoded as U = 0

U unsigned, encoded as U = 1.

<size> The data size for the elements of the vectors. It must be one of:

8 encoded as size = 0b00

16 encoded as size = 0b01

32 encoded as size = 0b10

64 encoded as size = 0b11.

<Qd>, <Qm>, <Qn> The destination vector and the operand vectors, for a quadword operation.

<Dd>, <Dm>, <Dn> The destination vector and the operand vectors, for a doubleword operation.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 shift = SInt(Elem[D[n+r],e,esize]<7:0>);
 operand = Int(Elem[D[m+r],e,esize], unsigned);
 (result,sat) = SatQ(operand << shift, esize, unsigned);
 Elem[D[d+r],e,esize] = result;
 if sat then FPSCR.QC = ‘1’;

Exceptions

Undefined Instruction.

VQSHL<c><q>.<type><size> {<Qd>,} <Qm>, <Qn> Encoded as Q = 1

VQSHL<c><q>.<type><size> {<Dd>,} <Dm>, <Dn> Encoded as Q = 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-719

Instruction Details
A8.6.367 VQSHL, VQSHLU (immediate)

Vector Saturating Shift Left (immediate) takes each element in a vector of integers, left shifts them by an
immediate value, and places the results in a second vector.

The operand elements must all be the same size, and can be any one of:

• 8-bit, 16-bit, 32-bit, or 64-bit signed integers

• 8-bit, 16-bit, 32-bit, or 64-bit unsigned integers.

The result elements are the same size as the operand elements. If the operand elements are signed, the results
can be either signed or unsigned. If the operand elements are unsigned, the result elements must also be
unsigned.

If any of the results overflow, they are saturated. The cumulative saturation flag, QC, is set if saturation
occurs. For details see Pseudocode details of saturation on page A2-9.

if L:imm6 == ‘0000xxx’ then SEE “Related encodings”;
if U == ‘0’ && op == ‘0’ then UNDEFINED;
if Q == ‘1’ && (Vd<0> == ‘1’ || Vm<0> == ‘1’) then UNDEFINED;
case L:imm6 of
 when ‘0001xxx’ esize = 8; elements = 8; shift_amount = UInt(imm6) - 8;
 when ‘001xxxx’ esize = 16; elements = 4; shift_amount = UInt(imm6) - 16;
 when ‘01xxxxx’ esize = 32; elements = 2; shift_amount = UInt(imm6) - 32;
 when ‘1xxxxxx’ esize = 64; elements = 1; shift_amount = UInt(imm6);
src_unsigned = (U == ‘1’ && op == ‘1’); dest_unsigned = (U == ‘1’);
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == ‘0’ then 1 else 2;

Encoding T1 / A1 Advanced SIMD

VQSHL{U}<c>.<type><size> <Qd>,<Qm>,#<imm>

VQSHL{U}<c>.<type><size> <Dd>,<Dm>,#<imm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 1 D imm6 Vd 0 1 1 op L Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U 1 D imm6 Vd 0 1 1 op L Q M 1 Vm

Related encodings See One register and a modified immediate value on page A7-21
A8-720 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

U If present, specifies that the results are unsigned, although the operands are signed.

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VQSHL or VQSHLU instruction
must be unconditional.

<type> The data type for the elements of the vectors. It must be one of:

S encoded as:

U = 0, op = 1, if U is absent

U = 1, op = 0, if U is present

U encoded as U = 1, op = 1. Not available for VQSHLU.

<size> The data size for the elements of the vectors. It must be one of:

8 Encoded as L = ’0’, imm6<5:3> = ’001’. <imm> is encoded in imm6<2:0>.

16 Encoded as L = ’0’, imm6<5:4> = ’01’. <imm> is encoded in imm6<3:0>.

32 Encoded as L = ’0’, imm6<5> = ’1’. <imm> is encoded in imm6<4:0>.

64 Encoded as L = ’1’. <imm> is encoded in imm6<5:0>.

<Qd>, <Qm> The destination vector, and the operand vector, for a quadword operation.

<Dd>, <Dm> The destination vector, and the operand vector, for a doubleword operation.

<imm> The immediate value, in the range 0 to <size>-1. See the description of <size> for how <imm>
is encoded.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 operand = Int(Elem[D[m+r],e,esize], src_unsigned);
 (result, sat) = SatQ(operand << shift_amount, esize, dest_unsigned);
 Elem[D[d+r],e,esize] = result;
 if sat then FPSCR.QC = ‘1’;

Exceptions

Undefined Instruction.

VQSHL{U}<c><q>.<type><size> {<Qd>,} <Qm>, #<imm> Encoded as Q = 1

VQSHL{U}<c><q>.<type><size> {<Dd>,} <Dm>, #<imm> Encoded as Q = 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-721

Instruction Details
A8.6.368 VQSHRN, VQSHRUN

Vector Saturating Shift Right, Narrow takes each element in a quadword vector of integers, right shifts them
by an immediate value, and places the truncated results in a doubleword vector.

For rounded results, see VQRSHRN, VQRSHRUN on page A8-716.

The operand elements must all be the same size, and can be any one of:

• 16-bit, 32-bit, or 64-bit signed integers

• 16-bit, 32-bit, or 64-bit unsigned integers.

The result elements are half the width of the operand elements. If the operand elements are signed, the
results can be either signed or unsigned. If the operand elements are unsigned, the result elements must also
be unsigned.

If any of the results overflow, they are saturated. The cumulative saturation flag, QC, is set if saturation
occurs. For details see Pseudocode details of saturation on page A2-9.

if imm6 == ‘000xxx’ then SEE “Related encodings”;
if U == ‘0’ && op == ‘0’ then SEE VSHRN;
if Vm<0> == ‘1’ then UNDEFINED;
case imm6 of
 when ‘001xxx’ esize = 8; elements = 8; shift_amount = 16 - UInt(imm6);
 when ‘01xxxx’ esize = 16; elements = 4; shift_amount = 32 - UInt(imm6);
 when ‘1xxxxx’ esize = 32; elements = 2; shift_amount = 64 - UInt(imm6);
src_unsigned = (U == ‘1’ && op == ‘1’); dest_unsigned = (U == ‘1’);
d = UInt(D:Vd); m = UInt(M:Vm);

Encoding T1 / A1 Advanced SIMD

VQSHR{U}N<c>.<type><size> <Dd>,<Qm>,#<imm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 1 D imm6 Vd 1 0 0 op 0 0 M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U 1 D imm6 Vd 1 0 0 op 0 0 M 1 Vm

Related encodings See One register and a modified immediate value on page A7-21
A8-722 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

U If present, specifies that the results are unsigned, although the operands are signed.

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VQSHRN or VQSHRUN instruction
must be unconditional.

<type> The data type for the elements of the vectors. It must be one of:

S encoded as:

U = 0, op = 1, if U is absent

U = 1, op = 0, if U is present

U encoded as U = 1, op = 1. Not available for VQSHRUN.

<size> The data size for the elements of the vectors. It must be one of:

16 Encoded as imm6<5:3> = ’001’. (8 – <imm>) is encoded in imm6<2:0>.

32 Encoded as imm6<5:4> = ’01’. (16 – <imm>) is encoded in imm6<3:0>.

64 Encoded as imm6<5> = ’1’. (32 – <imm>) is encoded in imm6<4:0>.

<Dd>, <Qm> The destination vector, and the operand vector.

<imm> The immediate value, in the range 1 to <size>/2. See the description of <size> for how <imm>
is encoded.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for e = 0 to elements-1
 operand = Int(Elem[Q[m>>1],e,2*esize], src_unsigned);
 (result, sat) = SatQ(operand >> shift_amount, esize, dest_unsigned);
 Elem[D[d],e,esize] = result;
 if sat then FPSCR.QC = ‘1’;

Exceptions

Undefined Instruction.

Pseudo-instructions

VQSHR{U}N<c><q>.<type><size> <Dd>, <Qm>, #<imm>

VQSHRN.I<size> <Dd>, <Qm>, #0 is a synonym for VQMOVN.I<size> <Dd>, <Qm>

VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for VQMOVUN.I<size> <Dd>, <Qm>
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-723

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Replacement Text
if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for e = 0 to elements-1
 operand = Int(Elem[Qin[m>>1],e,2*esize], src_unsigned);
 (result, sat) = SatQ(operand >> shift_amount, esize, dest_unsigned);
 Elem[D[d],e,esize] = result;
 if sat then FPSCR.QC = '1';

ARM_2011_Q2
Sticky Note
The replacement pseudocode removes a read-after-write error.

The insertion in the section Pseudocode details of Advanced SIMD and VFP extension registers on page A2-23 [PDF page 55] defines the Qin[] function.

Instruction Details
A8.6.369 VQSUB

Vector Saturating Subtract subtracts the elements of the second operand vector from the corresponding
elements of the first operand vector, and places the results in the destination vector. Signed and unsigned
operations are distinct.

The operand and result elements must all be the same type, and can be any one of:

• 8-bit, 16-bit, 32-bit, or 64-bit signed integers

• 8-bit, 16-bit, 32-bit, or 64-bit unsigned integers.

If any of the results overflow, they are saturated. The cumulative saturation flag, QC, is set if saturation
occurs. For details see Pseudocode details of saturation on page A2-9.

if Q == ‘1’ && (Vd<0> == ‘1’ || Vn<0> == ‘1’ || Vm<0> == ‘1’) then UNDEFINED;
unsigned = (U == ‘1’);
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == ‘0’ then 1 else 2;

Encoding T1 / A1 Advanced SIMD

VQSUB<c>.<type><size> <Qd>, <Qn>, <Qm>

VQSUB<c>.<type><size> <Dd>, <Dn>, <Dm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 0 D size Vn Vd 0 0 1 0 N Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U 0 D size Vn Vd 0 0 1 0 N Q M 1 Vm
A8-724 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VQSUB instruction
must be unconditional.

<type> The data type for the elements of the vectors. It must be one of:

S signed, encoded as U = 0

U unsigned, encoded as U = 1.

<size> The data size for the elements of the vectors. It must be one of:

8 encoded as size = 0b00

16 encoded as size = 0b01

32 encoded as size = 0b10

64 encoded as size = 0b11.

<Qd>, <Qn>, <Qm> The destination vector and the operand vectors, for a quadword operation.

<Dd>, <Dn>, <Dm> The destination vector and the operand vectors, for a doubleword operation.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 diff = Int(Elem[D[n+r],e,esize], unsigned) - Int(Elem[D[m+r],e,esize], unsigned);
 (Elem[D[d+r],e,esize], sat) = SatQ(diff, esize, unsigned);
 if sat then FPSCR.QC = ‘1’;

Exceptions

Undefined Instruction.

VQSUB<c><q>.<type><size> {<Qd>,} <Qn>, <Qm> Encoded as Q = 1

VQSUB<c><q>.<type><size> {<Dd>,} <Dn>, <Dm> Encoded as Q = 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-725

Instruction Details
A8.6.370 VRADDHN

Vector Rounding Add and Narrow, returning High Half adds corresponding elements in two quadword
vectors, and places the most significant half of each result in a doubleword vector. The results are rounded.
(For truncated results, see VADDHN on page A8-540.)

The operand elements can be 16-bit, 32-bit, or 64-bit integers. There is no distinction between signed and
unsigned integers.

if size == ‘11’ then SEE “Related encodings”;
if Vn<0> == ‘1’ || Vm<0> == ‘1’ then UNDEFINED;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

Encoding T1 / A1 Advanced SIMD
VRADDHN<c>.<dt> <Dd>, <Qn>, <Qm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D size Vn Vd 0 1 0 0 N 0 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D size Vn Vd 0 1 0 0 N 0 M 0 Vm

Related encodings See Advanced SIMD data-processing instructions on page A7-10
A8-726 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VRADDHN instruction
must be unconditional.

<dt> The data type for the elements of the operands. It must be one of:

I16 size = 0b00

I32 size = 0b01

I64 size = 0b10.

<Dd>, <Qn>, <Qm> The destination vector and the operand vectors.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 round_const = 1 << (esize-1);
 for e = 0 to elements-1
 result = Elem[Q[n>>1],e,2*esize] + Elem[Q[m>>1],e,2*esize] + round_const;
 Elem[D[d],e,esize] = result<2*esize-1:esize>;

Exceptions

Undefined Instruction.

VRADDHN<c><q>.<dt> <Dd>, <Qn>, <Qm>
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-727

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Replacement Text
if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 round_const = 1 << (esize-1);
 for e = 0 to elements-1
 result = Elem[Qin[n>>1],e,2*esize] + Elem[Qin[m>>1],e,2*esize] + round_const;
 Elem[D[d],e,esize] = result<2*esize-1:esize>;

ARM_2011_Q2
Sticky Note
The replacement pseudocode removes a read-after-write error.

The insertion in the section Pseudocode details of Advanced SIMD and VFP extension registers on page A2-23 [PDF page 55] defines the Qin[] function.

Instruction Details
A8.6.371 VRECPE

Vector Reciprocal Estimate finds an approximate reciprocal of each element in the operand vector, and
places the results in the destination vector.

The operand and result elements are the same type, and can be 32-bit floating-point numbers, or 32-bit
unsigned integers.

For details of the operation performed by this instruction see Reciprocal estimate and step on page A2-58.

if Q == ‘1’ && (Vd<0> == ‘1’ || Vm<0> == ‘1’) then UNDEFINED;
if size != ‘10’ then UNDEFINED;
floating_point = (F == ‘1’); esize = 32; elements = 2;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == ‘0’ then 1 else 2;

Encoding T1 / A1 Advanced SIMD (F = 1 UNDEFINED in integer-only variants)

VRECPE<c>.<dt> <Qd>, <Qm>

VRECPE<c>.<dt> <Dd>, <Dm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 1 1 Vd 0 1 0 F 0 Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size 1 1 Vd 0 1 0 F 0 Q M 0 Vm
A8-728 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VRECPE instruction must be
unconditional.

<dt> The data types for the elements of the vectors. It must be one of:

U32 encoded as F = 0, size = 0b10

F32 encoded as F = 1, size = 0b10.

<Qd>, <Qm> The destination vector and the operand vector, for a quadword operation.

<Dd>, <Dm> The destination vector and the operand vector, for a doubleword operation.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 if floating_point then
 Elem[D[d+r],e,esize] = FPRecipEstimate(Elem[D[m+r],e,esize]);
 else
 Elem[D[d+r],e,esize] = UnsignedRecipEstimate(Elem[D[m+r],e,esize]);

Exceptions

Undefined Instruction.

Floating-point exceptions: Input Denormal, Invalid Operation, Underflow, and Division by Zero.

Newton-Raphson iteration

For details of the operation performed and how it can be used in a Newton-Raphson iteration to calculate
the reciprocal of a number, see Reciprocal estimate and step on page A2-58.

VRECPE<c><q>.<dt> <Qd>, <Qm> Encoded as Q = 1

VRECPE<c><q>.<dt> <Dd>, <Dm> Encoded as Q = 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-729

Instruction Details
A8.6.372 VRECPS

Vector Reciprocal Step multiplies the elements of one vector by the corresponding elements of another
vector, subtracts each of the products from 2.0, and places the results into the elements of the destination
vector.

The operand and result elements are 32-bit floating-point numbers.

For details of the operation performed by this instruction see Reciprocal estimate and step on page A2-58.

if Q == ‘1’ && (Vd<0> == ‘1’ || Vn<0> == ‘1’ || Vm<0> == ‘1’) then UNDEFINED;
if sz == ‘1’ then UNDEFINED;
esize = 32; elements = 2;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == ‘0’ then 1 else 2;

Encoding T1 / A1 Advanced SIMD (UNDEFINED in integer-only variant)

VRECPS<c>.F32 <Qd>, <Qn>, <Qm>

VRECPS<c>.F32 <Dd>, <Dn>, <Dm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 0 D 0 sz Vn Vd 1 1 1 1 N Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 D 0 sz Vn Vd 1 1 1 1 N Q M 1 Vm
A8-730 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VRECPS instruction
must be unconditional.

<Qd>, <Qn>, <Qm> The destination vector and the operand vectors for a quadword operation.

<Dd>, <Dn>, <Dm> The destination vector and the operand vectors for a doubleword operation.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 Elem[D[d+r],e,esize] = FPRecipStep(Elem[D[n+r],e,esize], Elem[D[m+r],e,esize]);

Exceptions

Undefined Instruction.

Floating-point exceptions: Input Denormal, Invalid Operation, Overflow, Underflow, and Inexact.

Newton-Raphson iteration

For details of the operation performed and how it can be used in a Newton-Raphson iteration to calculate
the reciprocal of a number, see Reciprocal estimate and step on page A2-58.

VRECPS<c><q>.F32 {<Qd>,} <Qn>, <Qm> Encoded as Q = 1

VRECPS<c><q>.F32 {<Dd>,} <Dn>, <Dm> Encoded as Q = 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-731

Instruction Details
A8.6.373 VREV16, VREV32, VREV64

VREV16 (Vector Reverse in halfwords) reverses the order of 8-bit elements in each halfword of the vector, and
places the result in the corresponding destination vector.

VREV32 (Vector Reverse in words) reverses the order of 8-bit or 16-bit elements in each word of the vector,
and places the result in the corresponding destination vector.

VREV64 (Vector Reverse in doublewords) reverses the order of 8-bit, 16-bit, or 32-bit elements in each
doubleword of the vector, and places the result in the corresponding destination vector.

There is no distinction between data types, other than size.

if UInt(op)+UInt(size) >= 3 then UNDEFINED;
if Q == ‘1’ && (Vd<0> == ‘1’ || Vm<0> == ‘1’) then UNDEFINED;
esize = 8 << UInt(size); elements = 64 DIV esize;
groupsize = (1 << (3-UInt(op)-UInt(size)); // elements per reversing group: 2, 4 or 8
reverse_mask = (groupsize-1)<esize-1:0>; // EORing mask used for index calculations
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == ‘0’ then 1 else 2;

Figure A8-6 shows two examples of the operation of VREV.

Figure A8-6 Examples of operation

Encoding T1 / A1 Advanced SIMD

VREV<n><c>.<size> <Qd>, <Qm>

VREV<n><c>.<size> <Dd>, <Dm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 0 Vd 0 0 0 op Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size 0 0 Vd 0 0 0 op Q M 0 Vm

��

�,

�7:������6�I$��8���

��

�,

�7:����
6���$-��8���
A8-732 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<n> The size of the regions in which the vector elements are reversed. It must be one of:

16 encoded as op = 0b10

32 encoded as op = 0b01

64 encoded as op = 0b00.

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VREV instruction must be
unconditional.

<size> The size of the vector elements. It must be one of:

8 encoded as size = 0b00

16 encoded as size = 0b01

32 encoded as size = 0b10.

<size> must specify a smaller size than <n>.

<Qd>, <Qm> The destination vector and the operand vector, for a quadword operation.

<Dd>, <Dm> The destination vector and the operand vector, for a doubleword operation.

If op + size >= 3, the instruction is reserved.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 bits(64) dest;

 for r = 0 to regs-1
 for e = 0 to elements-1
 // Calculate destination element index by bitwise EOR on source element index:
 e_bits = e<esize-1:0>; d_bits = e_bits EOR reverse_mask; d = UInt(d_bits);
 Elem[dest,d,esize] = Elem[D[m+r],e,esize];
 D[d+r] = dest;

Exceptions

Undefined Instruction.

VREV<n><c><q>.<size> <Qd>, <Qm> Encoded as Q = 1

VREV<n><c><q>.<size> <Dd>, <Dm> Encoded as Q = 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-733

Instruction Details
A8.6.374 VRHADD

Vector Rounding Halving Add adds corresponding elements in two vectors of integers, shifts each result
right one bit, and places the final results in the destination vector.

The operand and result elements are all the same type, and can be any one of:

• 8-bit, 16-bit, or 32-bit signed integers

• 8-bit, 16-bit, or 32-bit unsigned integers.

The results of the halving operations are rounded (for truncated results see VHADD, VHSUB on
page A8-600).

if Q == ‘1’ && (Vd<0> == ‘1’ || Vn<0> == ‘1’ || Vm<0> == ‘1’) then UNDEFINED;
if size == ‘11’ then UNDEFINED;
unsigned = (U == ‘1’);
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == ‘0’ then 1 else 2;

Encoding T1 / A1 Advanced SIMD

VRHADD<c> <Qd>, <Qn>, <Qm>

VRHADD<c> <Dd>, <Dn>, <Dm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 0 D size Vn Vd 0 0 0 1 N Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U 0 D size Vn Vd 0 0 0 1 N Q M 0 Vm
A8-734 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VRHADD instruction
must be unconditional.

<dt> The data type for the elements of the vectors. It must be one of:

S8 encoded as size = 0b00, U = 0

S16 encoded as size = 0b01, U = 0

S32 encoded as size = 0b10, U = 0

U8 encoded as size = 0b00, U = 1

U16 encoded as size = 0b01, U = 1

U32 encoded as size = 0b10, U = 1.

<Qd>, <Qn>, <Qm> The destination vector and the operand vectors, for a quadword operation.

<Dd>, <Dn>, <Dm> The destination vector and the operand vectors, for a doubleword operation.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Int(Elem[D[n+r],e,esize], unsigned);
 op2 = Int(Elem[D[m+r],e,esize], unsigned);
 result = op1 + op2 + 1;
 Elem[D[d+r],e,esize] = result<esize:1>;

Exceptions

Undefined Instruction.

VRHADD<c><q>.<dt> {<Qd>,} <Qn>, <Qm> Encoded as Q = 1

VRHADD<c><q>.<dt> {<Dd>,} <Dn>, <Dm> Encoded as Q = 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-735

Instruction Details
A8.6.375 VRSHL

Vector Rounding Shift Left takes each element in a vector, shifts them by a value from the least significant
byte of the corresponding element of a second vector, and places the results in the destination vector. If the
shift value is positive, the operation is a left shift. If the shift value is negative, it is a rounding right shift.
(For a truncating shift, see VSHL (register) on page A8-752).

The first operand and result elements are the same data type, and can be any one of:

• 8-bit, 16-bit, 32-bit, or 64-bit signed integers

• 8-bit, 16-bit, 32-bit, or 64-bit unsigned integers.

The second operand is always a signed integer of the same size.

if Q == ‘1’ && (Vd<0> == ‘1’ || Vm<0> == ‘1’ || Vn<0> == ‘1’) then UNDEFINED;
unsigned = (U == ‘1’);
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm); n = UInt(N:Vn); regs = if Q == ‘0’ then 1 else 2;

Encoding T1 / A1 Advanced SIMD

VRSHL<c>.<type><size> <Qd>, <Qm>, <Qn>

VRSHL<c>.<type><size> <Dd>, <Dm>, <Dn>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 0 D size Vn Vd 0 1 0 1 N Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U 0 D size Vn Vd 0 1 0 1 N Q M 0 Vm
A8-736 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VRSHL instruction
must be unconditional.

<type> The data type for the elements of the vectors. It must be one of:

S signed, encoded as U = 0

U unsigned, encoded as U = 1.

<size> The data size for the elements of the vectors. It must be one of:

8 encoded as size = 0b00

16 encoded as size = 0b01

32 encoded as size = 0b10

64 encoded as size = 0b11.

<Qd>, <Qm>, <Qn> The destination vector and the operand vectors, for a quadword operation.

<Dd>, <Dm>, <Dn> The destination vector and the operand vectors, for a doubleword operation.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 shift = SInt(Elem[D[n+r],e,esize]<7:0>);
 round_const = 1 << (-shift-1); // 0 for left shift, 2^(n-1) for right shift
 result = (Int(Elem[D[m+r],e,esize], unsigned) + round_const) << shift;
 Elem[D[d+r],e,esize] = result<esize-1:0>;

Exceptions

Undefined Instruction.

VRSHL<c><q>.<type><size> {<Qd>,} <Qm>, <Qn> Encoded as Q = 1

VRSHL<c><q>.<type><size> {<Dd>,} <Dm>, <Dn> Encoded as Q = 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-737

Instruction Details
A8.6.376 VRSHR

Vector Rounding Shift Right takes each element in a vector, right shifts them by an immediate value, and
places the rounded results in the destination vector. For truncated results, see VSHR on page A8-756.

The operand and result elements must be the same size, and can be any one of:

• 8-bit, 16-bit, 32-bit, or 64-bit signed integers.

• 8-bit, 16-bit, 32-bit, or 64-bit unsigned integers.

if L:imm6 == ‘0000xxx’ then SEE “Related encodings”;
if Q == ‘1’ && (Vd<0> == ‘1’ || Vm<0> == ‘1’) then UNDEFINED;
case L:imm6 of
 when ‘0001xxx’ esize = 8; elements = 8; shift_amount = 16 - UInt(imm6);
 when ‘001xxxx’ esize = 16; elements = 4; shift_amount = 32 - UInt(imm6);
 when ‘01xxxxx’ esize = 32; elements = 2; shift_amount = 64 - UInt(imm6);
 when ‘1xxxxxx’ esize = 64; elements = 1; shift_amount = 64 - UInt(imm6);
unsigned = (U == ‘1’); d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == ‘0’ then 1 else 2;

Encoding T1 / A1 Advanced SIMD

VRSHR<c>.<type><size> <Qd>, <Qm>, #<imm>

VRSHR<c>.<type><size> <Dd>, <Dm>, #<imm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 1 D imm6 Vd 0 0 1 0 L Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U 1 D imm6 Vd 0 0 1 0 L Q M 1 Vm

Related encodings See One register and a modified immediate value on page A7-21
A8-738 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VRSHR instruction must be
unconditional.

<type> The data type for the elements of the vectors. It must be one of:

S signed, encoded as U = 0

U unsigned, encoded as U = 1.

<size> The data size for the elements of the vectors. It must be one of:

8 Encoded as L = ’0’, imm6<5:3> = ’001’. (8– <imm>) is encoded in imm6<2:0>.

16 Encoded as L = ’0’, imm6<5:4> = ’01’. (16 – <imm>) is encoded in imm6<3:0>.

32 Encoded as L = ’0’, imm6<5> = ’1’. (32 – <imm>) is encoded in imm6<4:0>.

64 Encoded as L = ’1’. (64 – <imm>) is encoded in imm6<5:0>.

<Qd>, <Qm> The destination vector, and the operand vector, for a quadword operation.

<Dd>, <Dm> The destination vector, and the operand vector, for a doubleword operation.

<imm> The immediate value, in the range 1 to <size>. See the description of <size> for how <imm>
is encoded.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 round_const = 1 << (shift_amount - 1);
 for r = 0 to regs-1
 for e = 0 to elements-1
 result = (Int(Elem[D[m+r],e,esize], unsigned) + round_const) >> shift_amount;
 Elem[D[d+r],e,esize] = result<esize-1:0>;

Exceptions

Undefined Instruction.

Pseudo-instructions

For details see VMOV (register) on page A8-642.

VRSHR<c><q>.<type><size> {<Qd>,} <Qm>, #<imm> Encoded as Q = 1

VRSHR<c><q>.<type><size> {<Dd>,} <Dm>, #<imm> Encoded as Q = 0

VRSHR.<type><size> <Qd>, <Qm>, #0 is a synonym for VMOV <Qd>, <Qm>

VRSHR.<type><size> <Dd>, <Dm>, #0 is a synonym for VMOV <Dd>, <Dm>
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-739

Instruction Details
A8.6.377 VRSHRN

Vector Rounding Shift Right and Narrow takes each element in a vector, right shifts them by an immediate
value, and places the rounded results in the destination vector. For truncated results, see VSHRN on
page A8-758.

The operand elements can be 16-bit, 32-bit, or 64-bit integers. There is no distinction between signed and
unsigned integers. The destination elements are half the size of the source elements.

if imm6 == ‘000xxx’ then SEE “Related encodings”;
if Vm<0> == ‘1’ then UNDEFINED;
case imm6 of
 when ‘001xxx’ then esize = 8; elements = 8; shift_amount = 16 - UInt(imm6);
 when ‘01xxxx’ then esize = 16; elements = 4; shift_amount = 32 - UInt(imm6);
 when ‘1xxxxx’ then esize = 32; elements = 2; shift_amount = 64 - UInt(imm6);
d = UInt(D:Vd); m = UInt(M:Vm);

Encoding T1 / A1 Advanced SIMD

VRSHRN<c>.I<size> <Dd>, <Qm>, #<imm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 1 D imm6 Vd 1 0 0 0 0 1 M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 1 D imm6 Vd 1 0 0 0 0 1 M 1 Vm

Related encodings See One register and a modified immediate value on page A7-21
A8-740 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VRSHRN instruction must be
unconditional.

<size> The data size for the elements of the vectors. It must be one of:

16 Encoded as imm6<5:3> = ’001’. (8 – <imm>) is encoded in imm6<2:0>.

32 Encoded as imm6<5:4> = ’01’. (16 – <imm>) is encoded in imm6<3:0>.

64 Encoded as imm6<5> = ’1’. (32 – <imm>) is encoded in imm6<4:0>.

<Dd>, <Qm> The destination vector, and the operand vector.

<imm> The immediate value, in the range 1 to <size>/2. See the description of <size> for how <imm>
is encoded.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 round_const = 1 << (shift_amount-1);
 for e = 0 to elements-1
 result = LSR(Elem[Q[m>>1],e,2*esize] + round_const, shift_amount);
 Elem[D[d],e,esize] = result<esize-1:0>;

Exceptions

Undefined Instruction.

Pseudo-instructions

For details see VMOVN on page A8-656.

VRSHRN<c><q>.I<size> <Dd>, <Qm>, #<imm>

VRSHRN.I<size> <Dd>, <Qm>, #0 is a synonym for VMOVN.I<size> <Dd>, <Qm>
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-741

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Replacement Text
if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 round_const = 1 << (shift_amount-1);
 for e = 0 to elements-1
 result = LSR(Elem[Qin[m>>1],e,2*esize] + round_const, shift_amount);
 Elem[D[d],e,esize] = result<esize-1:0>;

ARM_2011_Q2
Sticky Note
The replacement pseudocode removes a read-after-write error.

The insertion in the section Pseudocode details of Advanced SIMD and VFP extension registers on page A2-23 [PDF page 55] defines the Qin[] function.

Instruction Details
A8.6.378 VRSQRTE

Vector Reciprocal Square Root Estimate finds an approximate reciprocal square root of each element in a
vector, and places the results in a second vector.

The operand and result elements are the same type, and can be 32-bit floating-point numbers, or 32-bit
unsigned integers.

For details of the operation performed by this instruction see Reciprocal square root on page A2-61.

if Q == ‘1’ && (Vd<0> == ‘1’ || Vm<0> == ‘1’) then UNDEFINED;
if size != ‘10’ then UNDEFINED;
floating_point = (F == ‘1’); esize = 32; elements = 2;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == ‘0’ then 1 else 2;

Encoding T1 / A1 Advanced SIMD (F = 1 UNDEFINED in integer-only variants)

VRSQRTE<c>.<dt> <Qd>, <Qm>

VRSQRTE<c>.<dt> <Dd>, <Dm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 1 1 Vd 0 1 0 F 1 Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size 1 1 Vd 0 1 0 F 1 Q M 0 Vm
A8-742 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VRSQRTE instruction must be
unconditional.

<dt> The data types for the elements of the vectors. It must be one of:

U32 encoded as F = 0, size = 0b10

F32 encoded as F = 1, size = 0b10.

<Qd>, <Qm> The destination vector and the operand vector, for a quadword operation.

<Dd>, <Dm> The destination vector and the operand vector, for a doubleword operation.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 if floating_point then
 Elem[D[d+r],e,esize] = FPRSqrtEstimate(Elem[D[m+r],e,esize]);
 else
 Elem[D[d+r],e,esize] = UnsignedRSqrtEstimate(Elem[D[m+r],e,esize]);

Exceptions

Undefined Instruction.

Floating-point exceptions: Input Denormal, Invalid Operation, and Division by Zero.

Newton-Raphson iteration

For details of the operation performed and how it can be used in a Newton-Raphson iteration to calculate
the reciprocal of the square root of a number, see Reciprocal square root on page A2-61.

VRSQRTE<c><q>.<dt> <Qd>, <Qm> Encoded as Q = 1

VRSQRTE<c><q>.<dt> <Dd>, <Dm> Encoded as Q = 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-743

Instruction Details
A8.6.379 VRSQRTS

Vector Reciprocal Square Root Step multiplies the elements of one vector by the corresponding elements of
another vector, subtracts each of the products from 3.0, divides these results by 2.0, and places the results
into the elements of the destination vector.

The operand and result elements are 32-bit floating-point numbers.

For details of the operation performed by this instruction see Reciprocal square root on page A2-61.

if Q == ‘1’ && (Vd<0> == ‘1’ || Vn<0> == ‘1’ || Vm<0> == ‘1’) then UNDEFINED;
if sz == ‘1’ then UNDEFINED;
esize = 32; elements = 2;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == ‘0’ then 1 else 2;

Encoding T1 / A1 Advanced SIMD (UNDEFINED in integer-only variant)

VRSQRTS<c>.F32 <Qd>, <Qn>, <Qm>

VRSQRTS<c>.F32 <Dd>, <Dn>, <Dm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 0 D 1 sz Vn Vd 1 1 1 1 N Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 D 1 sz Vn Vd 1 1 1 1 N Q M 1 Vm
A8-744 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VRSQRTS instruction
must be unconditional.

<Qd>, <Qn>, <Qm> The destination vector and the operand vectors for a quadword operation.

<Dd>, <Dn>, <Dm> The destination vector and the operand vectors for a doubleword operation.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 Elem[D[d+r],e,esize] = FPRSqrtStep(Elem[D[n+r],e,esize], Elem[D[m+r],e,esize]);

Exceptions

Undefined Instruction.

Floating-point exceptions: Input Denormal, Invalid Operation, Overflow, Underflow, and Inexact.

Newton-Raphson iteration

For details of the operation performed and how it can be used in a Newton-Raphson iteration to calculate
the reciprocal of the square root of a number, see Reciprocal square root on page A2-61.

VRSQRTS<c><q>.F32 {<Qd>,} <Qn>, <Qm> Encoded as Q = 1, sz = 0

VRSQRTS<c><q>.F32 {<Dd>,} <Dn>, <Dm> Encoded as Q = 0, sz = 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-745

Instruction Details
A8.6.380 VRSRA

Vector Rounding Shift Right and Accumulate takes each element in a vector, right shifts them by an
immediate value, and accumulates the rounded results into the destination vector. (For truncated results, see
VSRA on page A8-764.)

The operand and result elements must all be the same type, and can be any one of:

• 8-bit, 16-bit, 32-bit, or 64-bit signed integers.

• 8-bit, 16-bit, 32-bit, or 64-bit unsigned integers.

if L:imm6 == ‘0000xxx’ then SEE “Related encodings”;
if Q == ‘1’ && (Vd<0> == ‘1’ || Vm<0> == ‘1’) then UNDEFINED;
case L:imm6 of
 when ‘0001xxx’ esize = 8; elements = 8; shift_amount = 16 - UInt(imm6);
 when ‘001xxxx’ esize = 16; elements = 4; shift_amount = 32 - UInt(imm6);
 when ‘01xxxxx’ esize = 32; elements = 2; shift_amount = 64 - UInt(imm6);
 when ‘1xxxxxx’ esize = 64; elements = 1; shift_amount = 64 - UInt(imm6);
unsigned = (U == ‘1’); d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == ‘0’ then 1 else 2;

Encoding T1 / A1 Advanced SIMD

VRSRA<c>.<type><size> <Qd>, <Qm>, #<imm>

VRSRA<c>.<type><size> <Dd>, <Dm>, #<imm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 1 D imm6 Vd 0 0 1 1 L Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U 1 D imm6 Vd 0 0 1 1 L Q M 1 Vm

Related encodings See One register and a modified immediate value on page A7-21
A8-746 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VRSRA instruction must be
unconditional.

<type> The data type for the elements of the vectors. It must be one of:

S signed, encoded as U = 0

U unsigned, encoded as U = 1.

<size> The data size for the elements of the vectors. It must be one of:

8 Encoded as L = ’0’, imm6<5:3> = ’001’. (8– <imm>) is encoded in imm6<2:0>.

16 Encoded as L = ’0’, imm6<5:4> = ’01’. (16 – <imm>) is encoded in imm6<3:0>.

32 Encoded as L = ’0’, imm6<5> = ’1’. (32 – <imm>) is encoded in imm6<4:0>.

64 Encoded as L = ’1’. (64 – <imm>) is encoded in imm6<5:0>.

<Qd>, <Qm> The destination vector, and the operand vector, for a quadword operation.

<Dd>, <Dm> The destination vector, and the operand vector, for a doubleword operation.

<imm> The immediate value, in the range 1 to <size>. See the description of <size> for how <imm>
is encoded.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 round_const = 1 << (shift_amount - 1);
 for r = 0 to regs-1
 for e = 0 to elements-1
 result = (Int(Elem[D[m+r],e,esize], unsigned) + round_const) >> shift_amount;
 Elem[D[d+r],e,esize] = Elem[D[d+r],e,esize] + result;

Exceptions

Undefined Instruction.

VRSRA<c><q>.<type><size> {<Qd>,} <Qm>, #<imm> Encoded as Q = 1

VRSRA<c><q>.<type><size> {<Dd>,} <Dm>, #<imm> Encoded as Q = 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-747

Instruction Details
A8.6.381 VRSUBHN

Vector Rounding Subtract and Narrow, returning High Half subtracts the elements of one quadword vector
from the corresponding elements of another quadword vector takes the most significant half of each result,
and places the final results in a doubleword vector. The results are rounded. (For truncated results, see
VSUBHN on page A8-792.)

The operand elements can be 16-bit, 32-bit, or 64-bit integers. There is no distinction between signed and
unsigned integers.

if size == ‘11’ then SEE “Related encodings”;
if Vn<0> == ‘1’ || Vm<0> == ‘1’ then UNDEFINED;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

Encoding T1 / A1 Advanced SIMD
VRSUBHN<c>.<dt> <Dd>, <Qn>, <Qm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D size Vn Vd 0 1 1 0 N 0 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D size Vn Vd 0 1 1 0 N 0 M 0 Vm

Related encodings See Advanced SIMD data-processing instructions on page A7-10
A8-748 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VRSUBHN instruction
must be unconditional.

<dt> The data type for the elements of the operands. It must be one of:

I16 size = 0b00

I32 size = 0b01

I64 size = 0b10.

<Dd>, <Qn>, <Qm> The destination vector and the operand vectors.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 round_const = 1 << (esize-1);
 for e = 0 to elements-1
 result = Elem[Q[n>>1],e,2*esize] - Elem[Q[m>>1],e,2*esize] + round_const;
 Elem[D[d],e,esize] = result<2*esize-1:esize>;

Exceptions

Undefined Instruction.

VRSUBHN<c><q>.<dt> <Dd>, <Qn>, <Qm>
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-749

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Replacement Text
if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 round_const = 1 << (esize-1);
 for e = 0 to elements-1
 result = Elem[Qin[n>>1],e,2*esize] - Elem[Qin[m>>1],e,2*esize] + round_const;
 Elem[D[d],e,esize] = result<2*esize-1:esize>;

ARM_2011_Q2
Sticky Note
The replacement pseudocode removes a read-after-write error.

The insertion in the section Pseudocode details of Advanced SIMD and VFP extension registers on page A2-23 [PDF page 55] defines the Qin[] function.

Instruction Details
A8.6.382 VSHL (immediate)

Vector Shift Left (immediate) takes each element in a vector of integers, left shifts them by an immediate
value, and places the results in the destination vector.

Bits shifted out of the left of each element are lost.

The elements must all be the same size, and can be 8-bit, 16-bit, 32-bit, or 64-bit integers. There is no
distinction between signed and unsigned integers.

if L:imm6 == ‘0000xxx’ then SEE “Related encodings”;
if Q == ‘1’ && (Vd<0> == ‘1’ || Vm<0> == ‘1’) then UNDEFINED;
case L:imm6 of
 when ‘0001xxx’ esize = 8; elements = 8; shift_amount = UInt(imm6) - 8;
 when ‘001xxxx’ esize = 16; elements = 4; shift_amount = UInt(imm6) - 16;
 when ‘01xxxxx’ esize = 32; elements = 2; shift_amount = UInt(imm6) - 32;
 when ‘1xxxxxx’ esize = 64; elements = 1; shift_amount = UInt(imm6);
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == ‘0’ then 1 else 2;

Encoding T1 / A1 Advanced SIMD

VSHL<c>.I<size> <Qd>, <Qm>, #<imm>

VSHL<c>.I<size> <Dd>, <Dm>, #<imm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 1 D imm6 Vd 0 1 0 1 L Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 1 D imm6 Vd 0 1 0 1 L Q M 1 Vm

Related encodings See One register and a modified immediate value on page A7-21
A8-750 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VSHL instruction must be
unconditional.

<size> The data size for the elements of the vectors. It must be one of:

8 Encoded as L = ’0’, imm6<5:3> = ’001’. <imm> is encoded in imm6<2:0>.

16 Encoded as L = ’0’, imm6<5:4> = ’01’. <imm> is encoded in imm6<3:0>.

32 Encoded as L = ’0’, imm6<5> = ’1’. <imm> is encoded in imm6<4:0>.

64 Encoded as L = ’1’. <imm> is encoded in imm6<5:0>.

<Qd>, <Qm> The destination vector, and the operand vector, for a quadword operation.

<Dd>, <Dm> The destination vector, and the operand vector, for a doubleword operation.

<imm> The immediate value, in the range 0 to <size>-1. See the description of <size> for how <imm>
is encoded.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 Elem[D[d+r],e,esize] = LSL(Elem[D[m+r],e,esize], shift_amount);

Exceptions

Undefined Instruction.

VSHL<c><q>.I<size> {<Qd>,} <Qm>, #<imm> Encoded as Q = 1

VSHL<c><q>.I<size> {<Dd>,} <Dm>, #<imm> Encoded as Q = 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-751

Instruction Details
A8.6.383 VSHL (register)

Vector Shift Left (register) takes each element in a vector, shifts them by a value from the least significant
byte of the corresponding element of a second vector, and places the results in the destination vector. If the
shift value is positive, the operation is a left shift. If the shift value is negative, it is a truncating right shift.
(For a rounding shift, see VRSHL on page A8-736).

The first operand and result elements are the same data type, and can be any one of:

• 8-bit, 16-bit, 32-bit, or 64-bit signed integers

• 8-bit, 16-bit, 32-bit, or 64-bit unsigned integers.

The second operand is always a signed integer of the same size.

if Q == ‘1’ && (Vd<0> == ‘1’ || Vm<0> == ‘1’ || Vn<0> == ‘1’) then UNDEFINED;
unsigned = (U == ‘1’);
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm); n = UInt(N:Vn); regs = if Q == ‘0’ then 1 else 2;

Encoding T1 / A1 Advanced SIMD

VSHL<c>.I<size> <Qd>, <Qm>, <Qn>

VSHL<c>.I<size> <Dd>, <Dm>, <Dn>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 0 D size Vn Vd 0 1 0 0 N Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U 0 D size Vn Vd 0 1 0 0 N Q M 0 Vm
A8-752 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2010_Q2
Cross-Out

ARM_2010_Q2
Replacement Text
<type>

ARM_2010_Q2
Cross-Out

ARM_2010_Q2
Replacement Text
<type>

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VSHL instruction must
be unconditional.

<type> The data type for the elements of the vectors. It must be one of:

S signed, encoded as U = 0

U unsigned, encoded as U = 1.

<size> The data size for the elements of the vectors. It must be one of:

8 encoded as size = 0b00

16 encoded as size = 0b01

32 encoded as size = 0b10

64 encoded as size = 0b11.

<Qd>, <Qm>, <Qn> The destination vector and the operand vectors, for a quadword operation.

<Dd>, <Dm>, <Dn> The destination vector and the operand vectors, for a doubleword operation.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 shift = SInt(Elem[D[n+r],e,esize]<7:0>);
 result = Int(Elem[D[m+r],e,esize], unsigned) << shift;
 Elem[D[d+r],e,esize] = result<esize-1:0>;

Exceptions

Undefined Instruction.

VSHL<c><q>.<type><size> {<Qd>,} <Qm>, <Qn> Encoded as Q = 1

VSHL<c><q>.<type><size> {<Dd>,} <Dm>, <Dn> Encoded as Q = 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-753

Instruction Details
A8.6.384 VSHLL

Vector Shift Left Long takes each element in a doubleword vector, left shifts them by an immediate value,
and places the results in a quadword vector.

The operand elements can be:

• 8-bit, 16-bit, or 32-bit signed integers

• 8-bit, 16-bit, or 32-bit unsigned integers

• 8-bit, 16-bit, or 32-bit untyped integers (maximum shift only).

The result elements are twice the length of the operand elements.

if imm6 == ‘000xxx’ then SEE “Related encodings”;
if Vd<0> == ‘1’ then UNDEFINED;
case imm6 of
 when ‘001xxx’ esize = 8; elements = 8; shift_amount = UInt(imm6) - 8;
 when ‘01xxxx’ esize = 16; elements = 4; shift_amount = UInt(imm6) - 16;
 when ‘1xxxxx’ esize = 32; elements = 2; shift_amount = UInt(imm6) - 32;
if shift_amount == 0 then SEE VMOVL;
unsigned = (U == ‘1’); d = UInt(D:Vd); m = UInt(M:Vm);

if size == ‘11’ || Vd<0> == ‘1’ then UNDEFINED;
esize = 8 << UInt(size); shift_amount = esize;
unsigned = FALSE; // Or TRUE without change of functionality
d = UInt(D:Vd); m = UInt(M:Vm);

Encoding T1 / A1 Advanced SIMD

VSHLL<c>.<type><size> <Qd>, <Dm>, #<imm> (0 < <imm> < <size>)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 1 D imm6 Vd 1 0 1 0 0 0 M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U 1 D imm6 Vd 1 0 1 0 0 0 M 1 Vm

Encoding T2 / A2 Advanced SIMD

VSHLL<c>.<type><size> <Qd>, <Dm>, #<imm> (<imm> == <size>)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 1 0 Vd 0 0 1 1 0 0 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size 1 0 Vd 0 0 1 1 0 0 M 0 Vm

Related encodings See One register and a modified immediate value on page A7-21
A8-754 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VSHLL instruction must be
unconditional.

<type> The data type for the elements of the operand. It must be one of:

S encoded as U = 0 in encoding T1 / A1

U encoded as U = 1 in encoding T1 / A1

I available only in encoding T2 / A2.

<size> The data size for the elements of the operand. It must be one of:

8 encoded as imm6<5:3> = ’001’ or size = ’00’

16 encoded as imm6<5:4> = ’01’ or size = ’01’

32 encoded as imm6<5> = ’1’ or size = ’10’.

<Qd>, <Dm> The destination vector and the operand vector.

<imm> The immediate value. <imm> must lie in the range 1 to <size>:

• if <size> = <imm>, encoding is T2 / A2

• if <size> = 8, <imm> is encoded in imm6<2:0>

• if <size> = 16, <imm> is encoded in imm6<3:0>

• if <size> = 32, <imm> is encoded in imm6<4:0>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for e = 0 to elements-1
 result = Int(Elem[D[m],e,esize], unsigned) << shift_amount;
 Elem[Q[d>>1],e,2*esize] = result<2*esize-1:0>;

Exceptions

Undefined Instruction.

VSHLL<c><q>.<type><size> <Qd>, <Dm>, #<imm>
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-755

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Replacement Text
if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for e = 0 to elements-1
 result = Int(Elem[Din[m],e,esize], unsigned) << shift_amount;
 Elem[Q[d>>1],e,2*esize] = result<2*esize-1:0>;

ARM_2011_Q2
Sticky Note
The replacement pseudocode removes a read-after-write error.

The insertion in the section Pseudocode details of Advanced SIMD and VFP extension registers on page A2-23 [PDF page 55] defines the Din[] function.

Instruction Details
A8.6.385 VSHR

Vector Shift Right takes each element in a vector, right shifts them by an immediate value, and places the
truncated results in the destination vector. For rounded results, see VRSHR on page A8-738.

The operand and result elements must be the same size, and can be any one of:

• 8-bit, 16-bit, 32-bit, or 64-bit signed integers.

• 8-bit, 16-bit, 32-bit, or 64-bit unsigned integers.

if L:imm6 == ‘0000xxx’ then SEE “Related encodings”;
if Q == ‘1’ && (Vd<0> == ‘1’ || Vm<0> == ‘1’) then UNDEFINED;
case L:imm6 of
 when ‘0001xxx’ esize = 8; elements = 8; shift_amount = 16 - UInt(imm6);
 when ‘001xxxx’ esize = 16; elements = 4; shift_amount = 32 - UInt(imm6);
 when ‘01xxxxx’ esize = 32; elements = 2; shift_amount = 64 - UInt(imm6);
 when ‘1xxxxxx’ esize = 64; elements = 1; shift_amount = 64 - UInt(imm6);
unsigned = (U == ‘1’); d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == ‘0’ then 1 else 2;

Encoding T1 / A1 Advanced SIMD

VSHR<c>.<type><size> <Qd>, <Qm>, #<imm>

VSHR<c>.<type><size> <Dd>, <Dm>, #<imm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 1 D imm6 Vd 0 0 0 0 L Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U 1 D imm6 Vd 0 0 0 0 L Q M 1 Vm

Related encodings See One register and a modified immediate value on page A7-21
A8-756 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VSHR instruction must be
unconditional.

<type> The data type for the elements of the vectors. It must be one of:

S signed, encoded as U = 0

U unsigned, encoded as U = 1.

<size> The data size for the elements of the vectors. It must be one of:

8 Encoded as L = ’0’, imm6<5:3> = ’001’. (8– <imm>) is encoded in imm6<2:0>.

16 Encoded as L = ’0’, imm6<5:4> = ’01’. (16 – <imm>) is encoded in imm6<3:0>.

32 Encoded as L = ’0’, imm6<5> = ’1’. (32 – <imm>) is encoded in imm6<4:0>.

64 Encoded as L = ’1’. (64 – <imm>) is encoded in imm6<5:0>.

<Qd>, <Qm> The destination vector, and the operand vector, for a quadword operation.

<Dd>, <Dm> The destination vector, and the operand vector, for a doubleword operation.

<imm> The immediate value, in the range 1 to <size>. See the description of <size> for how <imm>
is encoded.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 result = Int(Elem[D[m+r],e,esize], unsigned) >> shift_amount;
 Elem[D[d+r],e,esize] = result<esize-1:0>;

Exceptions

Undefined Instruction.

Pseudo-instructions

VSHR<c><q>.<type><size> {<Qd>,} <Qm>, #<imm> Encoded as Q = 1

VSHR<c><q>.<type><size> {<Dd>,} <Dm>, #<imm> Encoded as Q = 0

VSHR.<type><size> <Qd>, <Qm>, #0 is a synonym for VMOV <Qd>, <Qm>

VSHR.<type><size> <Dd>, <Dm>, #0 is a synonym for VMOV <Dd>, <Dm>
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-757

Instruction Details
A8.6.386 VSHRN

Vector Shift Right Narrow takes each element in a vector, right shifts them by an immediate value, and
places the truncated results in the destination vector. For rounded results, see VRSHRN on page A8-740.

The operand elements can be 16-bit, 32-bit, or 64-bit integers. There is no distinction between signed and
unsigned integers. The destination elements are half the size of the source elements.

if imm6 == ‘000xxx’ then SEE “Related encodings”;
if Vm<0> == ‘1’ then UNDEFINED;
case imm6 of
 when ‘001xxx’ esize = 8; elements = 8; shift_amount = 16 - UInt(imm6);
 when ‘01xxxx’ esize = 16; elements = 4; shift_amount = 32 - UInt(imm6);
 when ‘1xxxxx’ esize = 32; elements = 2; shift_amount = 64 - UInt(imm6);
d = UInt(D:Vd); m = UInt(M:Vm);

Encoding T1 / A1 Advanced SIMD

VSHRN<c>.I<size> <Dd>, <Qm>, #<imm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 1 D imm6 Vd 1 0 0 0 0 0 M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 1 D imm6 Vd 1 0 0 0 0 0 M 1 Vm

Related encodings See One register and a modified immediate value on page A7-21
A8-758 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VSHRN instruction must be
unconditional.

<size> The data size for the elements of the vectors. It must be one of:

16 Encoded as imm6<5:3> = ’001’. (8 – <imm>) is encoded in imm6<2:0>.

32 Encoded as imm6<5:4> = ’01’. (16 – <imm>) is encoded in imm6<3:0>.

64 Encoded as imm6<5> = ’1’. (32 – <imm>) is encoded in imm6<4:0>.

<Dd>, <Qm> The destination vector, and the operand vector.

<imm> The immediate value, in the range 1 to <size>/2. See the description of <size> for how <imm>
is encoded.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for e = 0 to elements-1
 result = LSR(Elem[Q[m>>1],e,2*esize], shift_amount);
 Elem[D[d],e,esize] = result<esize-1:0>;

Exceptions

Undefined Instruction.

Pseudo-instructions

For details see VMOVN on page A8-656.

VSHRN<c><q>.I<size> <Dd>, <Qm>, #<imm>

VSHRN.I<size> <Dd>, <Qm>, #0 is a synonym for VMOVN.I<size> <Dd>, <Qm>
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-759

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Replacement Text
if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for e = 0 to elements-1
 result = LSR(Elem[Qin[m>>1],e,2*esize], shift_amount);
 Elem[D[d],e,esize] = result<esize-1:0>;

ARM_2011_Q2
Sticky Note
The replacement pseudocode removes a read-after-write error.

The insertion in the section Pseudocode details of Advanced SIMD and VFP extension registers on page A2-23 [PDF page 55] defines the Qin[] function.

Instruction Details
A8.6.387 VSLI

Vector Shift Left and Insert takes each element in the operand vector, left shifts them by an immediate value,
and inserts the results in the destination vector. Bits shifted out of the left of each element are lost.

The elements must all be the same size, and can be 8-bit, 16-bit, 32-bit, or 64-bit. There is no distinction
between data types.

if L:imm6 == ‘0000xxx’ then SEE “Related encodings”;
if Q == ‘1’ && (Vd<0> == ‘1’ || Vm<0> == ‘1’) then UNDEFINED;
case L:imm6 of
 when ‘0001xxx’ esize = 8; elements = 8; shift_amount = UInt(imm6) - 8;
 when ‘001xxxx’ esize = 16; elements = 4; shift_amount = UInt(imm6) - 16;
 when ‘01xxxxx’ esize = 32; elements = 2; shift_amount = UInt(imm6) - 32;
 when ‘1xxxxxx’ esize = 64; elements = 1; shift_amount = UInt(imm6);
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == ‘0’ then 1 else 2;

Encoding T1 / A1 Advanced SIMD

VSLI<c>.<size> <Qd>, <Qm>, #<imm>

VSLI<c>.<size> <Dd>, <Dm>, #<imm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D imm6 Vd 0 1 0 1 L Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D imm6 Vd 0 1 0 1 L Q M 1 Vm

Related encodings See One register and a modified immediate value on page A7-21
A8-760 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VSLI instruction must be
unconditional.

<size> The data size for the elements of the vectors. It must be one of:

8 Encoded as L = ’0’, imm6<5:3> = ’001’. <imm> is encoded in imm6<2:0>.

16 Encoded as L = ’0’, imm6<5:4> = ’01’. <imm> is encoded in imm6<3:0>.

32 Encoded as L = ’0’, imm6<5> = ’1’. <imm> is encoded in imm6<4:0>.

64 Encoded as L = ’1’. <imm> is encoded in imm6<5:0>.

<Qd>, <Qm> The destination vector, and the operand vector, for a quadword operation.

<Dd>, <Dm> The destination vector, and the operand vector, for a doubleword operation.

<imm> The immediate value, in the range 0 to <size>-1. See the description of <size> for how <imm>
is encoded.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 mask = LSL(Ones(esize), shift_amount);
 for r = 0 to regs-1
 for e = 0 to elements-1
 shifted_op = LSL(Elem[D[m+r],e,esize], shift_amount);
 Elem[D[d+r],e,esize] = (Elem[D[d+r],e,esize] AND NOT(mask)) OR shifted_op;

Exceptions

Undefined Instruction.

VSLI<c><q>.<size> {<Qd>,} <Qm>, #<imm> Encoded as Q = 1

VSLI<c><q>.<size> {<Dd>,} <Dm>, #<imm> Encoded as Q = 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-761

Instruction Details
A8.6.388 VSQRT

This instruction calculates the square root of the value in a floating-point register and writes the result to
another floating-point register.

if FPSCR.LEN != ‘000’ || FPSCR.STRIDE != ‘00’ then SEE “VFP vectors”;
dp_operation = (sz == ‘1’);
d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Encoding T1 / A1 VFPv2, VFPv3 (sz = 1 UNDEFINED in single-precision only variants)
VSQRT<c>.F64 <Dd>, <Dm>

VSQRT<c>.F32 <Sd>, <Sm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 1 1 0 0 0 1 Vd 1 0 1 sz 1 1 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 1 0 1 D 1 1 0 0 0 1 Vd 1 0 1 sz 1 1 M 0 Vm

VFP vectors This instruction can operate on VFP vectors under control of the FPSCR.LEN and
FPSCR.STRIDE bits. For details see Appendix F VFP Vector Operation Support.
A8-762 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Dd>, <Dm> The destination vector and the operand vector, for a double-precision operation.

<Sd>, <Sm> The destination vector and the operand vector, for a single-precision operation.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 if dp_operation then
 D[d] = FPSqrt(D[m]);
 else
 S[d] = FPSqrt(S[m]);

Exceptions

Undefined Instruction.

Floating-point exceptions: Invalid Operation, Inexact, Input Denormal.

VSQRT<c><q>.F64 <Dd>, <Dm> Encoded as sz = 1
VSQRT<c><q>.F32 <Sd>, <Sm> Encoded as sz = 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-763

Instruction Details
A8.6.389 VSRA

Vector Shift Right and Accumulate takes each element in a vector, right shifts them by an immediate value,
and accumulates the truncated results into the destination vector. (For rounded results, see VRSRA on
page A8-746.)

The operand and result elements must all be the same type, and can be any one of:

• 8-bit, 16-bit, 32-bit, or 64-bit signed integers.

• 8-bit, 16-bit, 32-bit, or 64-bit unsigned integers.

if L:imm6 == ‘0000xxx’ then SEE “Related encodings”;
if Q == ‘1’ && (Vd<0> == ‘1’ || Vm<0> == ‘1’) then UNDEFINED;
case L:imm6 of
 when ‘0001xxx’ esize = 8; elements = 8; shift_amount = 16 - UInt(imm6);
 when ‘001xxxx’ esize = 16; elements = 4; shift_amount = 32 - UInt(imm6);
 when ‘01xxxxx’ esize = 32; elements = 2; shift_amount = 64 - UInt(imm6);
 when ‘1xxxxxx’ esize = 64; elements = 1; shift_amount = 64 - UInt(imm6);
unsigned = (U == ‘1’); d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == ‘0’ then 1 else 2;

Encoding T1 / A1 Advanced SIMD

VSRA<c>.<type><size> <Qd>, <Qm>, #<imm>

VSRA<c>.<type><size> <Dd>, <Dm>, #<imm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 1 D imm6 Vd 0 0 0 1 L Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U 1 D imm6 Vd 0 0 0 1 L Q M 1 Vm

Related encodings See One register and a modified immediate value on page A7-21
A8-764 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VSRA instruction must be
unconditional.

<type> The data type for the elements of the vectors. It must be one of:

S signed, encoded as U = 0

U unsigned, encoded as U = 1.

<size> The data size for the elements of the vectors. It must be one of:

8 Encoded as L = ’0’, imm6<5:3> = ’001’. (8– <imm>) is encoded in imm6<2:0>.

16 Encoded as L = ’0’, imm6<5:4> = ’01’. (16 – <imm>) is encoded in imm6<3:0>.

32 Encoded as L = ’0’, imm6<5> = ’1’. (32 – <imm>) is encoded in imm6<4:0>.

64 Encoded as L = ’1’. (64 – <imm>) is encoded in imm6<5:0>.

<Qd>, <Qm> The destination vector, and the operand vector, for a quadword operation.

<Dd>, <Dm> The destination vector, and the operand vector, for a doubleword operation.

<imm> The immediate value, in the range 1 to <size>. See the description of <size> for how <imm>
is encoded.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 result = Int(Elem[D[m+r],e,esize], unsigned) >> shift_amount;
 Elem[D[d+r],e,esize] = Elem[D[d+r],e,esize] + result;

Exceptions

Undefined Instruction.

VSRA<c><q>.<type><size> {<Qd>,} <Qm>, #<imm> Encoded as Q = 1

VSRA<c><q>.<type><size> {<Dd>,} <Dm>, #<imm> Encoded as Q = 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-765

Instruction Details
A8.6.390 VSRI

Vector Shift Right and Insert takes each element in the operand vector, right shifts them by an immediate
value, and inserts the results in the destination vector. Bits shifted out of the right of each element are lost.

The elements must all be the same size, and can be 8-bit, 16-bit, 32-bit, or 64-bit. There is no distinction
between data types.

if L:imm6 == ‘0000xxx’ then SEE “Related encodings”;
if Q == ‘1’ && (Vd<0> == ‘1’ || Vm<0> == ‘1’) then UNDEFINED;
case L:imm6 of
 when ‘0001xxx’ esize = 8; elements = 8; shift_amount = 16 - UInt(imm6);
 when ‘001xxxx’ esize = 16; elements = 4; shift_amount = 32 - UInt(imm6);
 when ‘01xxxxx’ esize = 32; elements = 2; shift_amount = 64 - UInt(imm6);
 when ‘1xxxxxx’ esize = 64; elements = 1; shift_amount = 64 - UInt(imm6);
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == ‘0’ then 1 else 2;

Encoding T1 / A1 Advanced SIMD

VSRI<c>.<size> <Qd>, <Qm>, #<imm>

VSRI<c>.<size> <Dd>, <Dm>, #<imm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D imm6 Vd 0 1 0 0 L Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D imm6 Vd 0 1 0 0 L Q M 1 Vm

Related encodings See One register and a modified immediate value on page A7-21
A8-766 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VSRI instruction must be
unconditional.

<size> The data size for the elements of the vectors. It must be one of:

8 Encoded as L = ’0’, imm6<5:3> = ’001’. (8– <imm>) is encoded in imm6<2:0>.

16 Encoded as L = ’0’, imm6<5:4> = ’01’. (16 – <imm>) is encoded in imm6<3:0>.

32 Encoded as L = ’0’, imm6<5> = ’1’. (32 – <imm>) is encoded in imm6<4:0>.

64 Encoded as L = ’1’. (64 – <imm>) is encoded in imm6<5:0>.

<Qd>, <Qm> The destination vector, and the operand vector, for a quadword operation.

<Dd>, <Dm> The destination vector, and the operand vector, for a doubleword operation.

<imm> The immediate value, in the range 1 to <size>. See the description of <size> for how <imm>
is encoded.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 mask = LSR(Ones(esize), shift_amount);
 for r = 0 to regs-1
 for e = 0 to elements-1
 shifted_op = LSR(Elem[D[m+r],e,esize], shift_amount);
 Elem[D[d+r],e,esize] = (Elem[D[d+r],e,esize] AND NOT(mask)) OR shifted_op;

Exceptions

Undefined Instruction.

VSRI<c><q>.<size> {<Qd>,} <Qm>, #<imm> Encoded as Q = 1

VSRI<c><q>.<size> {<Dd>,} <Dm>, #<imm> Encoded as Q = 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-767

Instruction Details
A8.6.391 VST1 (multiple single elements)

Vector Store (multiple single elements) stores elements to memory from one, two, three, or four registers,
without interleaving. Every element of each register is stored. For details of the addressing mode see
Advanced SIMD addressing mode on page A7-30.

case type of
 when ‘0111’
 regs = 1; if align<1> == ‘1’ then UNDEFINED;
 when ‘1010’
 regs = 2; if align == ‘11’ then UNDEFINED;
 when ‘0110’
 regs = 3; if align<1> == ‘1’ then UNDEFINED;
 when ‘0010’
 regs = 4;
 otherwise
 SEE “Related encodings”;
alignment = if align == ‘00’ then 1 else 4 << UInt(align);
ebytes = 1 << UInt(size); esize = 8 * ebytes; elements = 8 DIV ebytes;
d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if d+regs > 32 then UNPREDICTABLE;

Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VST1 instruction must be
unconditional.

<size> The data size. It must be one of:

8 encoded as size = 0b00

16 encoded as size = 0b01

Encoding T1 / A1 Advanced SIMD

VST1<c>.<size> <list>, [<Rn>{@<align>}]{!}

VST1<c>.<size> <list>, [<Rn>{@<align>}], <Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 0 D 0 0 Rn Vd type size align Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 0 D 0 0 Rn Vd type size align Rm

Related encodings See Advanced SIMD element or structure load/store instructions on page A7-27

VST1<c><q>.<size> <list>, [<Rn>{@<align>}] Rm = ’1111’

VST1<c><q>.<size> <list>, [<Rn>{@<align>}]! Rm = ’1101’

VST1<c><q>.<size> <list>, [<Rn>{@<align>}], <Rm> Rm = other values
A8-768 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q1
Inserted Text

if n == 15 then UNPREDICTABLE;

Instruction Details
32 encoded as size = 0b10

64 encoded as size = 0b11.

<list> The list of registers to store. It must be one of:

{<Dd>} encoded as D:Vd = <Dd>, type = 0b0111

{<Dd>, <Dd+1>} encoded as D:Vd = <Dd>, type = 0b1010

{<Dd>, <Dd+1>, <Dd+2>}
encoded as D:Vd = <Dd>, type = 0b0110

{<Dd>, <Dd+1>, <Dd+2>, <Dd+3>}

encoded as D:Vd = <Dd>, type = 0b0010.

<Rn> Contains the base address for the access.

<align> The alignment. It can be one of:

64 8-byte alignment, encoded as align = 0b01.

128 16-byte alignment, available only if <list> contains two or four registers,
encoded as align = 0b10.

256 32-byte alignment, available only if <list> contains four registers, encoded as
align = 0b11.

omitted Standard alignment, see Unaligned data access on page A3-5. Encoded as align
= 0b00.

! If present, specifies writeback.

<Rm> Contains an address offset applied after the access.

For more information about <Rn>, !, and <Rm>, see Advanced SIMD addressing mode on page A7-30.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled(); NullCheckIfThumbEE(n);
 address = R[n]; if (address MOD alignment) != 0 then GenerateAlignmentException();
 if wback then R[n] = R[n] + (if register_index then R[m] else 8*regs);
 for r = 0 to regs-1
 for e = 0 to elements-1
 MemU[address,ebytes] = Elem[D[d+r],e,esize];
 address = address + ebytes;

Exceptions

Undefined Instruction, Data Abort.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-769

ARM_2011_Q2
Sticky Note
This pseudocode is functionally correct. However, it does not imply that any doubleword access is 64-bit single-copy atomic.

Instruction Details
A8.6.392 VST1 (single element from one lane)

This instruction stores one element to memory from one element of a register. For details of the addressing
mode see Advanced SIMD addressing mode on page A7-30.

if size == ‘11’ then UNDEFINED;
case size of
 when ‘00’
 if index_align<0> != ‘0’ then UNDEFINED;
 ebytes = 1; esize = 8; index = UInt(index_align<3:1>); alignment = 1;
 when ‘01’
 if index_align<1> != ‘0’ then UNDEFINED;
 ebytes = 2; esize = 16; index = UInt(index_align<3:2>);
 alignment = if index_align<0> == ‘0’ then 1 else 2;
 when ‘10’
 if index_align<2> != ‘0’ then UNDEFINED;
 if index_align<1:0> != ‘00’ && index_align<1:0> != ‘11’ then UNDEFINED;
 ebytes = 4; esize = 32; index = UInt(index_align<3>);
 alignment = if index_align<1:0> == ‘00’ then 1 else 4;
d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);

Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VST1 instruction must be
unconditional.

<size> The data size. It must be one of:

8 encoded as size = 0b00

16 encoded as size = 0b01

32 encoded as size = 0b10.

Encoding T1 / A1 Advanced SIMD

VST1<c>.<size> <list>, [<Rn>{@<align>}]{!}

VST1<c>.<size> <list>, [<Rn>{@<align>}], <Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 1 D 0 0 Rn Vd size 0 0 index_align Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 1 D 0 0 Rn Vd size 0 0 index_align Rm

VST1<c><q>.<size> <list>, [<Rn>{@<align>}] Rm = ’1111’

VST1<c><q>.<size> <list>, [<Rn>{@<align>}]! Rm = ’1101’

VST1<c><q>.<size> <list>, [<Rn>{@<align>}], <Rm> Rm = other values
A8-770 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q1
Inserted Text

if n == 15 then UNPREDICTABLE;

Instruction Details
<list> The register containing the element to store. It must be {<Dd[x]>}. The register Dd is encoded
in D:Vd

<Rn> Contains the base address for the access.

<align> The alignment. It can be one of:

16 2-byte alignment, available only if <size> is 16

32 4-byte alignment, available only if <size> is 32

omitted Standard alignment, see Unaligned data access on page A3-5.

! If present, specifies writeback.

<Rm> Contains an address offset applied after the access.

For more information about <Rn>, !, and <Rm>, see Advanced SIMD addressing mode on page A7-30.

Table A8-9 shows the encoding of index and alignment for different <size> values.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled(); NullCheckIfThumbEE(n);
 address = R[n]; if (address MOD alignment) != 0 then GenerateAlignmentException();
 if wback then R[n] = R[n] + (if register_index then R[m] else ebytes);
 MemU[address,ebytes] = Elem[D[d],index,esize];

Exceptions

Undefined Instruction, Data Abort.

Table A8-9 Encoding of index and alignment

<size> == 8 <size> == 16 <size> == 32

Index index_align[3:1] = x index_align[3:2] = x index_align[3] = x

<align> omitted index_align[0] = 0 index_align[1:0] = ’00’ index_align[2:0] = ’000’

<align> == 16 - index_align[1:0] = ’01’ -

<align> == 32 - - index_align[2:0] = ’011’
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-771

Instruction Details
A8.6.393 VST2 (multiple 2-element structures)

This instruction stores multiple 2-element structures from two or four registers to memory, with
interleaving. For more information, see Element and structure load/store instructions on page A4-27. Every
element of each register is saved. For details of the addressing mode see Advanced SIMD addressing mode
on page A7-30.

if size == ‘11’ then UNDEFINED;
case type of
 when ‘1000’
 regs = 1; inc = 1; if align == ‘11’ then UNDEFINED;
 when ‘1001’
 regs = 1; inc = 2; if align == ‘11’ then UNDEFINED;
 when ‘0011’
 regs = 2; inc = 2;
 otherwise
 SEE “Related encodings”;
alignment = if align == ‘00’ then 1 else 4 << UInt(align);
ebytes = 1 << UInt(size); esize = 8 * ebytes; elements = 8 DIV ebytes;
d = UInt(D:Vd); d2 = d + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if d2+regs > 32 then UNPREDICTABLE;

Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VST2 instruction must be
unconditional.

<size> The data size. It must be one of:

8 encoded as size = 0b00

16 encoded as size = 0b01

Encoding T1 / A1 Advanced SIMD

VST2<c>.<size> <list>, [<Rn>{@<align>}]{!}

VST2<c>.<size> <list>, [<Rn>{@<align>}], <Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 0 D 0 0 Rn Vd type size align Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 0 D 0 0 Rn Vd type size align Rm

Related encodings See Advanced SIMD element or structure load/store instructions on page A7-27

VST2<c><q>.<size> <list>, [<Rn>{@<align>}] Rm = ’1111’

VST2<c><q>.<size> <list>, [<Rn>{@<align>}]! Rm = ’1101’

VST2<c><q>.<size> <list>, [<Rn>{@<align>}], <Rm> Rm = other values
A8-772 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q1
Inserted Text

if n == 15 then UNPREDICTABLE;

Instruction Details
32 encoded as size = 0b10.

<list> The list of registers to store. It must be one of:

{<Dd>, <Dd+1>} encoded as D:Vd = <Dd>, type = 0b1000

{<Dd>, <Dd+2>} encoded as D:Vd = <Dd>, type = 0b1001

{<Dd>, <Dd+1>, <Dd+2>, <Dd+3>}

encoded as D:Vd = <Dd>, type = 0b0011.

<Rn> Contains the base address for the access.

<align> The alignment. It can be one of:

64 8-byte alignment, encoded as align = 0b01.

128 16-byte alignment, encoded as align = 0b10.

256 32-byte alignment, available only if <list> contains four registers, encoded as
align = 0b11

omitted Standard alignment, see Unaligned data access on page A3-5. Encoded as align
= 0b00.

! If present, specifies writeback.

<Rm> Contains an address offset applied after the access.

For more information about <Rn>, !, and <Rm>, see Advanced SIMD addressing mode on page A7-30.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled(); NullCheckIfThumbEE(n);
 address = R[n]; if (address MOD alignment) != 0 then GenerateAlignmentException();
 if wback then R[n] = R[n] + (if register_index then R[m] else 16*regs);
 for r = 0 to regs-1
 for e = 0 to elements-1
 MemU[address,ebytes] = Elem[D[d+r],e,esize];
 MemU[address+ebytes,ebytes] = Elem[D[d2+r],e,esize];
 address = address + 2*ebytes;

Exceptions

Undefined Instruction, Data Abort.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-773

Instruction Details
A8.6.394 VST2 (single 2-element structure from one lane)

This instruction stores one 2-element structure to memory from corresponding elements of two registers.
For details of the addressing mode see Advanced SIMD addressing mode on page A7-30.

if size == ‘11’ then UNDEFINED;
case size of
 when ‘00’
 ebytes = 1; esize = 8; index = UInt(index_align<3:1>); inc = 1;
 alignment = if index_align<0> == ‘0’ then 1 else 2;
 when ‘01’
 ebytes = 2; esize = 16; index = UInt(index_align<3:2>);
 inc = if index_align<1> == ‘0’ then 1 else 2;
 alignment = if index_align<0> == ‘0’ then 1 else 4;
 when ‘10’
 if index_align<1> != ‘0’ then UNDEFINED;
 ebytes = 4; esize = 32; index = UInt(index_align<3>);
 inc = if index_align<2> == ‘0’ then 1 else 2;
 alignment = if index_align<0> == ‘0’ then 1 else 8;
d = UInt(D:Vd); d2 = d + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if d2 > 31 then UNPREDICTABLE;

Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VST2 instruction must be
unconditional.

<size> The data size. It must be one of:

8 encoded as size = 0b00

16 encoded as size = 0b01

32 encoded as size = 0b10.

Encoding T1 / A1 Advanced SIMD

VST2<c>.<size> <list>, [<Rn>{@<align>}]{!}

VST2<c>.<size> <list>, [<Rn>{@<align>}], <Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 1 D 0 0 Rn Vd size 0 1 index_align Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 1 D 0 0 Rn Vd size 0 1 index_align Rm

VST2<c><q>.<size> <list>, [<Rn>{@<align>}] Rm = ’1111’

VST2<c><q>.<size> <list>, [<Rn>{@<align>}]! Rm = ’1101’

VST2<c><q>.<size> <list>, [<Rn>{@<align>}], <Rm> Rm = other values
A8-774 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q1
Inserted Text

if n == 15 then UNPREDICTABLE;

Instruction Details
<list> The registers containing the structure. Encoded with D:Vd = <Dd>. It must be one of:

{<Dd[x]>, <Dd+1[x]>} Single-spaced registers, see Table A8-10.

{<Dd[x]>, <Dd+2[x]>} Double-spaced registers, see Table A8-10.

This is not available if <size> == 8.

<Rn> Contains the base address for the access.

<align> The alignment. It can be one of:

16 2-byte alignment, available only if <size> is 8

32 4-byte alignment, available only if <size> is 16

64 8-byte alignment, available only if <size> is 32

omitted Standard alignment, see Unaligned data access on page A3-5.

! If present, specifies writeback.

<Rm> Contains an address offset applied after the access.

For more information about <Rn>, !, and <Rm>, see Advanced SIMD addressing mode on page A7-30.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled(); NullCheckIfThumbEE(n);
 address = R[n]; if (address MOD alignment) != 0 then GenerateAlignmentException();
 if wback then R[n] = R[n] + (if register_index then R[m] else 2*ebytes);
 MemU[address,ebytes] = Elem[D[d],index,esize];
 MemU[address+ebytes,ebytes] = Elem[D[d2],index,esize];

Exceptions

Undefined Instruction, Data Abort.

Table A8-10 Encoding of index, alignment, and register spacing

<size> == 8 <size> == 16 <size> == 32

Index index_align[3:1] = x index_align[3:2] = x index_align[3] = x

Single-spacing - index_align[1] = 0 index_align[2] = 0

Double-spacing - index_align[1] = 1 index_align[2] = 1

<align> omitted index_align[0] = 0 index_align[0] = 0 index_align[1:0] = ’00’

<align> == 16 index_align[0] = 1 - -

<align> == 32 - index_align[0] = 1 -

<align> == 64 - - index_align[1:0] = ’01’
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-775

Instruction Details
A8.6.395 VST3 (multiple 3-element structures)

This instruction stores multiple 3-element structures to memory from three registers, with interleaving. For
more information, see Element and structure load/store instructions on page A4-27. Every element of each
register is saved. For details of the addressing mode see Advanced SIMD addressing mode on page A7-30.

if size == ‘11’ || align<1> == ‘1’ then UNDEFINED;
case type of
 when ‘0100’
 inc = 1;
 when ‘0101’
 inc = 2;
 otherwise
 SEE “Related encodings”;
alignment = if align<0> == ‘0’ then 1 else 8;
ebytes = 1 << UInt(size); esize = 8 * ebytes; elements = 8 DIV ebytes;
d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if d3 > 31 then UNPREDICTABLE;

Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VST3 instruction must be
unconditional.

<size> The data size. It must be one of:

8 encoded as size = 0b00

16 encoded as size = 0b01

32 encoded as size = 0b10.

Encoding T1 / A1 Advanced SIMD

VST3<c>.<size> <list>, [<Rn>{@<align>}]{!}

VST3<c>.<size> <list>, [<Rn>{@<align>}], <Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 0 D 0 0 Rn Vd type size align Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 0 D 0 0 Rn Vd type size align Rm

Related encodings See Advanced SIMD element or structure load/store instructions on page A7-27

VST3<c><q>.<size> <list>, [<Rn>{@<align>}] Rm = ’1111’

VST3<c><q>.<size> <list>, [<Rn>{@<align>}]! Rm = ’1101’

VST3<c><q>.<size> <list>, [<Rn>{@<align>}], <Rm> Rm = other values
A8-776 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q1
Inserted Text

if n == 15 then UNPREDICTABLE;

Instruction Details
<list> The list of registers to store. It must be one of:

{<Dd>, <Dd+1>, <Dd+2>}

encoded as D:Vd = <Dd>, type = 0b0100

{<Dd>, <Dd+2>, <Dd+4>}

encoded as D:Vd = <Dd>, type = 0b0101.

<Rn> Contains the base address for the access.

<align> The alignment. It can be:

64 8-byte alignment, encoded as align = 0b01.

omitted Standard alignment, see Unaligned data access on page A3-5. Encoded as
align = 0b00.

! If present, specifies writeback.

<Rm> Contains an address offset applied after the access.

For more information about <Rn>, !, and <Rm>, see Advanced SIMD addressing mode on page A7-30.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled(); NullCheckIfThumbEE(n);
 address = R[n]; if (address MOD alignment) != 0 then GenerateAlignmentException();
 if wback then R[n] = R[n] + (if register_index then R[m] else 24);
 for e = 0 to elements-1
 MemU[address,ebytes] = Elem[D[d],e,esize];
 MemU[address+ebytes,ebytes] = Elem[D[d2],e,esize];
 MemU[address+2*ebytes,ebytes] = Elem[D[d3],e,esize];
 address = address + 3*ebytes;

Exceptions

Undefined Instruction, Data Abort.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-777

Instruction Details
A8.6.396 VST3 (single 3-element structure from one lane)

This instruction stores one 3-element structure to memory from corresponding elements of three registers.
For details of the addressing mode see Advanced SIMD addressing mode on page A7-30.

if size == ‘11’ then UNDEFINED;
case size of
 when ‘00’
 if index_align<0> != ‘0’ then UNDEFINED;
 ebytes = 1; esize = 8; index = UInt(index_align<3:1>); inc = 1;
 when ‘01’
 if index_align<0> != ‘0’ then UNDEFINED;
 ebytes = 2; esize = 16; index = UInt(index_align<3:2>);
 inc = if index_align<1> == ‘0’ then 1 else 2;
 when ‘10’
 if index_align<1:0> != ‘00’ then UNDEFINED;
 ebytes = 4; esize = 32; index = UInt(index_align<3>);
 inc = if index_align<2> == ‘0’ then 1 else 2;
d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if d3 > 31 then UNPREDICTABLE;

Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VST3 instruction must be
unconditional.

<size> The data size. It must be one of:

8 encoded as size = 0b00

16 encoded as size = 0b01

32 encoded as size = 0b10.

Encoding T1 / A1 Advanced SIMD

VST3<c>.<size> <list>, [<Rn>]{!}

VST3<c>.<size> <list>, [<Rn>], <Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 1 D 0 0 Rn Vd size 1 0 index_align Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 1 D 0 0 Rn Vd size 1 0 index_align Rm

VST3<c><q>.<size> <list>, [<Rn>] Rm = ’1111’

VST3<c><q>.<size> <list>, [<Rn>]! Rm = ’1101’

VST3<c><q>.<size> <list>, [<Rn>], <Rm> Rm = other values
A8-778 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q1
Inserted Text

if n == 15 then UNPREDICTABLE;

Instruction Details
<list> The registers containing the structure. Encoded with D:Vd = <Dd>. It must be one of:

{<Dd[x]>, <Dd+1[x]>, <Dd+2[x]>}

Single-spaced registers, see Table A8-11.

{<Dd[x]>, <Dd+2[x]>, <Dd+4[x]>}

Double-spaced registers, see Table A8-11. This is not available if <size> == 8.

<Rn> Contains the base address for the access.

! If present, specifies writeback.

<Rm> Contains an address offset applied after the access.

For more information about <Rn>, !, and <Rm>, see Advanced SIMD addressing mode on page A7-30.

Alignment

Standard alignment rules apply, see Unaligned data access on page A3-5.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled(); NullCheckIfThumbEE(n);
 address = R[n];
 if wback then R[n] = R[n] + (if register_index then R[m] else 3*ebytes);
 MemU[address,ebytes] = Elem[D[d],index,esize];
 MemU[address+ebytes,ebytes] = Elem[D[d2],index,esize];
 MemU[address+2*ebytes,ebytes] = Elem[D[d3],index,esize];

Exceptions

Undefined Instruction, Data Abort.

Table A8-11 Encoding of index and register spacing

<size> == 8 <size> == 16 <size> == 32

Index index_align[3:1] = x index_align[3:2] = x index_align[3] = x

Single-spacing index_align[0] = 0 index_align[1:0] = ’00’ index_align[2:0] = ’000’

Double-spacing - index_align[1:0] = ’10’ index_align[2:0] = ’100’
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-779

Instruction Details
A8.6.397 VST4 (multiple 4-element structures)

This instruction stores multiple 4-element structures to memory from four registers, with interleaving. For
more information, see Element and structure load/store instructions on page A4-27. Every element of each
register is saved. For details of the addressing mode see Advanced SIMD addressing mode on page A7-30.

if size == ‘11’ then UNDEFINED;
case type of
 when ‘0000’
 inc = 1;
 when ‘0001’
 inc = 2;
 otherwise
 SEE “Related encodings”;
alignment = if align == ‘00’ then 1 else 4 << UInt(align);
ebytes = 1 << UInt(size); esize = 8 * ebytes; elements = 8 DIV ebytes;
d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; d4 = d3 + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if d4 > 31 then UNPREDICTABLE;

Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VST4 instruction must be
unconditional.

<size> The data size. It must be one of:

8 encoded as size = 0b00

16 encoded as size = 0b01

32 encoded as size = 0b10.

Encoding T1 / A1 Advanced SIMD

VST4<c>.<size> <list>, [<Rn>{@<align>}]{!}

VST4<c>.<size> <list>, [<Rn>{@<align>}], <Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 0 D 0 0 Rn Vd type size align Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 0 D 0 0 Rn Vd type size align Rm

Related encodings See Advanced SIMD element or structure load/store instructions on page A7-27

VST4<c><q>.<size> <list>, [<Rn>{@<align>}] Rm = ’1111’

VST4<c><q>.<size> <list>, [<Rn>{@<align>}]! Rm = ’1101’

VST4<c><q>.<size> <list>, [<Rn>{@<align>}], <Rm> Rm = other values
A8-780 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q1
Inserted Text

if n == 15 then UNPREDICTABLE;

Instruction Details
<list> The list of registers to store. It must be one of:

{<Dd>, <Dd+1>, <Dd+2>, <Dd+3>}

encoded as D:Vd = <Dd>, type = 0b0000

{<Dd>, <Dd+2>, <Dd+4>, <Dd+6>}

encoded as D:Vd = <Dd>, type = 0b0001.

<Rn> Contains the base address for the access.

<align> The alignment. It can be one of:

64 8-byte alignment, encoded as align = 0b01.

128 16-byte alignment, encoded as align = 0b10.

256 32-byte alignment, encoded as align = 0b11.

omitted Standard alignment, see Unaligned data access on page A3-5. Encoded as align
= 0b00.

! If present, specifies writeback.

<Rm> Contains an address offset applied after the access.

For more information about <Rn>, !, and <Rm>, see Advanced SIMD addressing mode on page A7-30.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled(); NullCheckIfThumbEE(n);
 address = R[n]; if (address MOD alignment) != 0 then GenerateAlignmentException();
 if wback then R[n] = R[n] + (if register_index then R[m] else 32);
 for e = 0 to elements-1
 MemU[address,ebytes] = Elem[D[d],e,esize];
 MemU[address+ebytes,ebytes] = Elem[D[d2],e,esize];
 MemU[address+2*ebytes,ebytes] = Elem[D[d3],e,esize];
 MemU[address+3*ebytes,ebytes] = Elem[D[d4],e,esize];
 address = address + 4*ebytes;

Exceptions

Undefined Instruction, Data Abort.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-781

Instruction Details
A8.6.398 VST4 (single 4-element structure from one lane)

This instruction stores one 4-element structure to memory from corresponding elements of four registers.
For details of the addressing mode see Advanced SIMD addressing mode on page A7-30.

if size == ‘11’ then UNDEFINED;
case size of
 when ‘00’
 ebytes = 1; esize = 8; index = UInt(index_align<3:1>); inc = 1;
 alignment = if index_align<0> == ‘0’ then 1 else 4;
 when ‘01’
 ebytes = 2; esize = 16; index = UInt(index_align<3:2>);
 inc = if index_align<1> == ‘0’ then 1 else 2;
 alignment = if index_align<0> == ‘0’ then 1 else 8;
 when ‘10’
 if index_align<1:0> == ‘11’ then UNDEFINED;
 ebytes = 4; esize = 32; index = UInt(index_align<3>);
 inc = if index_align<2> == ‘0’ then 1 else 2;
 alignment = if index_align<1:0> == ‘00’ then 1 else 4 << UInt(index_align<1:0>);
d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; d4 = d3 + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if d4 > 31 then UNPREDICTABLE;

Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VST4 instruction must be
unconditional.

<size> The data size. It must be one of:

8 encoded as size = 0b00

16 encoded as size = 0b01

32 encoded as size = 0b10.

Encoding T1 / A1 Advanced SIMD

VST4<c>.<size> <list>, [<Rn>{@<align>}]{!}

VST4<c>.<size> <list>, [<Rn>{@<align>}], <Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 1 D 0 0 Rn Vd size 1 1 index_align Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 1 D 0 0 Rn Vd size 1 1 index_align Rm

VST4<c><q>.<size> <list>, [<Rn>{@<align>}] Rm = ’1111’

VST4<c><q>.<size> <list>, [<Rn>{@<align>}]! Rm = ’1101’

VST4<c><q>.<size> <list>, [<Rn>{@<align>}], <Rm> Rm = other values
A8-782 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q1
Inserted Text

if n == 15 then UNPREDICTABLE;

Instruction Details
<list> The registers containing the structure. Encoded with D:Vd = <Dd>. It must be one of:

{<Dd[x]>, <Dd+1[x]>, <Dd+2[x]>, <Dd+3[x]>}

Single-spaced registers, see Table A8-12.

{<Dd[x]>, <Dd+2[x]>, <Dd+4[x]>, <Dd+6[x]>}

Double-spaced registers, see Table A8-12. This is not available if <size> == 8.

<Rn> The base address for the access.

<align> The alignment. It can be:

32 4-byte alignment, available only if <size> is 8.

64 8-byte alignment, available only if <size> is 16 or 32.

128 16-byte alignment, available only if <size> is 32.

omitted Standard alignment, see Unaligned data access on page A3-5.

! If present, specifies writeback.

<Rm> Contains an address offset applied after the access.

For more information about <Rn>, !, and <Rm>, see Advanced SIMD addressing mode on page A7-30.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled(); NullCheckIfThumbEE(n);
 address = R[n]; if (address MOD alignment) != 0 then GenerateAlignmentException();
 if wback then R[n] = R[n] + (if register_index then R[m] else 4*ebytes);
 MemU[address,ebytes] = Elem[D[d],index,esize];
 MemU[address+ebytes,ebytes] = Elem[D[d2],index,esize];
 MemU[address+2*ebytes,ebytes] = Elem[D[d3],index,esize];
 MemU[address+3*ebytes,ebytes] = Elem[D[d4],index,esize];

Exceptions

Undefined Instruction, Data Abort.

Table A8-12 Encoding of index, alignment, and register spacing

<size> == 8 <size> == 16 <size> == 32

Index index_align[3:1] = x index_align[3:2] = x index_align[3] = x

Single-spacing - index_align[1] = 0 index_align[2] = 0

Double-spacing - index_align[1] = 1 index_align[2] = 1

<align> omitted index_align[0] = 0 index_align[0] = 0 index_align[1:0] = ’00’

<align> == 32 index_align[0] = 1 - -

<align> == 64 - index_align[0] = 1 index_align[1:0] = ’01’

<align> == 128 - - index_align[1:0] = ’10’
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-783

Instruction Details
A8.6.399 VSTM

Vector Store Multiple stores multiple extension registers to consecutive memory locations using an address
from an ARM core register.

if P == ‘0’ && U == ‘0’ && W == ‘0’ then SEE “Related encodings”;
if P == ‘1’ && U == ‘0’ && W == ‘1’ && Rn == ‘1101’ then SEE VPUSH;
if P == ‘1’ && W == ‘0’ then SEE VSTR;
if P == U && W == ‘1’ then UNDEFINED;
// Remaining combinations are PUW = 010 (IA without !), 011 (IA with !), 101 (DB with !)
single_regs = FALSE; add = (U == ‘1’); wback = (W == ‘1’);
d = UInt(D:Vd); n = UInt(Rn); imm32 = ZeroExtend(imm8:’00’, 32);
regs = UInt(imm8) DIV 2; // If UInt(imm8) is odd, see “FSTMX”.
if n == 15 && (wback || CurrentInstrSet() != InstrSet_ARM) then UNPREDICTABLE;
if regs == 0 || regs > 16 || (d+regs) > 32 then UNPREDICTABLE;

if P == ‘0’ && U == ‘0’ && W == ‘0’ then SEE “Related encodings”;
if P == ‘1’ && U == ‘0’ && W == ‘1’ && Rn == ‘1101’ then SEE VPUSH;
if P == ‘1’ && W == ‘0’ then SEE VSTR;
if P == U && W == ‘1’ then UNDEFINED;
// Remaining combinations are PUW = 010 (IA without !), 011 (IA with !), 101 (DB with !)
single_regs = TRUE; add = (U == ‘1’); wback = (W == ‘1’); d = UInt(Vd:D); n = UInt(Rn);
imm32 = ZeroExtend(imm8:’00’, 32); regs = UInt(imm8);
if n == 15 && (wback || CurrentInstrSet() != InstrSet_ARM) then UNPREDICTABLE;
if regs == 0 || (d+regs) > 32 then UNPREDICTABLE;

Encoding T1 / A1 VFPv2, VFPv3, Advanced SIMD
VSTM{mode}<c> <Rn>{!}, <list> <list> is consecutive 64-bit registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 P U D W 0 Rn Vd 1 0 1 1 imm8

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 0 P U D W 0 Rn Vd 1 0 1 1 imm8

Encoding T2 / A2 VFPv2, VFPv3
VSTM{mode}<c> <Rn>{!}, <list> <list> is consecutive 32-bit registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 P U D W 0 Rn Vd 1 0 1 0 imm8

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 0 P U D W 0 Rn Vd 1 0 1 0 imm8

Related encodings See 64-bit transfers between ARM core and extension registers on page A7-32

FSTMX Encoding T1/A1 behaves as described by the pseudocode if imm8 is odd.
However, there is no UAL syntax for such encodings and their use is deprecated.
For more information, see FLDMX, FSTMX on page A8-101.
A8-784 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

VSTM{<mode>}<c><q>{.<size>} <Rn>{!}, <list>

where:

<mode> The addressing mode:

IA Increment After. The consecutive addresses start at the address specified in <Rn>.
This is the default and can be omitted. Encoded as P = 0, U = 1.

DB Decrement Before. The consecutive addresses end just before the address
specified in <Rn>. Encoded as P = 1, U = 0.

<c><q> See Standard assembler syntax fields on page A8-7.

<size> An optional data size specifier. If present, it must be equal to the size in bits, 32 or 64, of the
registers in <list>.

<Rn> The base register. The SP can be used. In the ARM instruction set, if ! is not specified the
PC can be used. However, use of the PC is deprecated.

! Causes the instruction to write a modified value back to <Rn>. Required if <mode> == DB.
Encoded as W = 1.

If ! is omitted, the instruction does not change <Rn> in this way. Encoded as W = 0.

<list> The extension registers to be stored, as a list of consecutively numbered doubleword
(encoding T1 / A1) or singleword (encoding T2 / A2) registers, separated by commas and
surrounded by brackets. It is encoded in the instruction by setting D and Vd to specify the
first register in the list, and imm8 to twice the number of registers in the list (encoding
T1 / A1) or the number of registers (encoding T2 / A2). <list> must contain at least one
register. If it contains doubleword registers it must not contain more than 16 registers.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE); NullCheckIfThumbEE(n);
 address = if add then R[n] else R[n]-imm32;
 if wback then R[n] = if add then R[n}+imm32 else R[n]-imm32;
 for r = 0 to regs-1
 if single_regs then
 MemA[address,4] = S[d+r]; address = address+4;
 else
 // Store as two word-aligned words in the correct order for current endianness.
 MemA[address,4] = if BigEndian() then D[d+r]<63:32> else D[d+r]<31:0>;
 MemA[address+4,4] = if BigEndian() then D[d+r]<31:0> else D[d+r]<63:32>;
 address = address+8;

Exceptions

Undefined Instruction, Data Abort.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-785

Instruction Details
A8.6.400 VSTR

This instruction stores a single extension register to memory, using an address from an ARM core register,
with an optional offset.

single_reg = FALSE; add = (U == ‘1’); imm32 = ZeroExtend(imm8:’00’, 32);
d = UInt(D:Vd); n = UInt(Rn);
if n == 15 && CurrentInstrSet() != InstrSet_ARM then UNPREDICTABLE;

single_reg = TRUE; add = (U == ‘1’); imm32 = ZeroExtend(imm8:’00’, 32);
d = UInt(Vd:D); n = UInt(Rn);
if n == 15 && CurrentInstrSet() != InstrSet_ARM then UNPREDICTABLE;

Encoding T1 / A1 VFPv2, VFPv3, Advanced SIMD

VSTR<c> <Dd>, [<Rn>{, #+/-<imm>}]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 1 U D 0 0 Rn Vd 1 0 1 1 imm8

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 0 1 U D 0 0 Rn Vd 1 0 1 1 imm8

Encoding T2 / A2 VFPv2, VFPv3

VSTR<c> <Sd>, [<Rn>{, #+/-<imm>}]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 1 U D 0 0 Rn Vd 1 0 1 0 imm8

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 0 1 U D 0 0 Rn Vd 1 0 1 0 imm8
A8-786 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7.

.32, .64 Optional data size specifiers.

<Dd> The source register for a doubleword store.

<Sd> The source register for a singleword store.

<Rn> The base register. The SP can be used. In the ARM instruction set the PC can be used.
However, use of the PC is deprecated.

+/- Is + or omitted if the immediate offset is to be added to the base register value (add == TRUE),
or – if it is to be subtracted (add == FALSE). #0 and #-0 generate different instructions.

<imm> The immediate offset used to form the address. Values are multiples of 4 in the range
0-1020. <imm> can be omitted, meaning an offset of +0.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE); NullCheckIfThumbEE(n);
 address = if add then (R[n] + imm32) else (R[n] - imm32);
 if single_reg then
 MemA[address,4] = S[d];
 else
 // Store as two word-aligned words in the correct order for current endianness.
 MemA[address,4] = if BigEndian() then D[d]<63:32> else D[d]<31:0>;
 MemA[address+4,4] = if BigEndian() then D[d]<31:0> else D[d]<63:32>;

Exceptions

Undefined Instruction, Data Abort.

VSTR<c><q>{.64} <Dd>, [<Rn>{, #+/-<imm>}] Encoding T1 / A1

VSTR<c><q>{.32} <Sd>, [<Rn>{, #+/-<imm>}] Encoding T2 / A2
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-787

Instruction Details
A8.6.401 VSUB (integer)

Vector Subtract subtracts the elements of one vector from the corresponding elements of another vector, and
places the results in the destination vector.

if Q == ‘1’ && (Vd<0> == ‘1’ || Vn<0> == ‘1’ || Vm<0> == ‘1’) then UNDEFINED;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == ‘0’ then 1 else 2;

Encoding T1 / A1 Advanced SIMD
VSUB<c>.<dt> <Qd>, <Qn>, <Qm>

VSUB<c>.<dt> <Dd>, <Dn>, <Dm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 0 D size Vn Vd 1 0 0 0 N Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 0 D size Vn Vd 1 0 0 0 N Q M 0 Vm
A8-788 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM Advanced SIMD VSUB
instruction must be unconditional.

<dt> The data type for the elements of the vectors. It must be one of:

I8 size = 0b00

I16 size = 0b01

I32 size = 0b10

I64 size = 0b11.

<Qd>, <Qn>, <Qm> The destination vector and the operand vectors, for a quadword operation.

<Dd>, <Dn>, <Dm> The destination vector and the operand vectors, for a doubleword operation.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 Elem[D[d+r],e,esize] = Elem[D[n+r],e,esize] - Elem[D[m+r],e,esize];

Exceptions

Undefined Instruction.

VSUB<c><q>.<dt> {<Qd>,} <Qn>, <Qm>

VSUB<c><q>.<dt> {<Dd>,} <Dn>, <Dm>
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-789

Instruction Details
A8.6.402 VSUB (floating-point)

Vector Subtract subtracts the elements of one vector from the corresponding elements of another vector, and
places the results in the destination vector.

if Q == ‘1’ && (Vd<0> == ‘1’ || Vn<0> == ‘1’ || Vm<0> == ‘1’) then UNDEFINED;
if sz == ‘1’ then UNDEFINED;
advsimd = TRUE; esize = 32; elements = 2;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == ‘0’ then 1 else 2;

if FPSCR.LEN != ‘000’ || FPSCR.STRIDE != ‘00’ then SEE “VFP vectors”;
advsimd = FALSE; dp_operation = (sz == ‘1’);
d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
n = if dp_operation then UInt(N:Vn) else UInt(Vn:N);
m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Encoding T1 / A1 Advanced SIMD (UNDEFINED in integer-only variant)
VSUB<c>.F32 <Qd>, <Qn>, <Qm>

VSUB<c>.F32 <Dd>, <Dn>, <Dm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 0 D 1 sz Vn Vd 1 1 0 1 N Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 D 1 sz Vn Vd 1 1 0 1 N Q M 0 Vm

Encoding T2 / A2 VFPv2, VFPv3 (sz = 1 UNDEFINED in single-precision only variants)
VSUB<c>.F64 <Dd>, <Dn>, <Dm>

VSUB<c>.F32 <Sd>, <Sn>, <Sm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 0 D 1 1 Vn Vd 1 0 1 sz N 1 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 1 0 0 D 1 1 Vn Vd 1 0 1 sz N 1 M 0 Vm

VFP vectors Encoding T2 / A2 can operate on VFP vectors under control of the FPSCR.LEN and
FPSCR.STRIDE bits. For details see Appendix F VFP Vector Operation Support.
A8-790 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM Advanced SIMD VSUB
instruction must be unconditional.

<Qd>, <Qn>, <Qm> The destination vector and the operand vectors, for a quadword operation.

<Dd>, <Dn>, <Dm> The destination vector and the operand vectors, for a doubleword operation.

<Sd>, <Sn>, <Sm> The destination vector and the operand vectors, for a singleword operation.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDOrVFPEnabled(TRUE, advsimd);
 if advsimd then // Advanced SIMD instruction
 for r = 0 to regs-1
 for e = 0 to elements-1
 Elem[D[d+r],e,esize] = FPSub(Elem[D[n+r],e,esize], Elem[D[m+r],e,esize], FALSE);
 else // VFP instruction
 if dp_operation then
 D[d] = FPSub(D[n], D[m], TRUE);
 else
 S[d] = FPSub(S[n], S[m], TRUE);

Exceptions

Undefined Instruction.

Floating-point exceptions: Input Denormal, Invalid Operation, Overflow, Underflow, and Inexact.

VSUB<c><q>.F32 {<Qd>,} <Qn>, <Qm> Encoding T1 / A1, Q = 1, sz = 0
VSUB<c><q>.F32 {<Dd>,} <Dn>, <Dm> Encoding T1 / A1, Q = 0, sz = 0
VSUB<c><q>.F64 {<Dd>,} <Dn>, <Dm> Encoding T2 / A2, sz = 1
VSUB<c><q>.F32 {<Sd>,} <Sn>, <Sm> Encoding T2 / A2, sz = 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-791

Instruction Details
A8.6.403 VSUBHN

Vector Subtract and Narrow, returning High Half subtracts the elements of one quadword vector from the
corresponding elements of another quadword vector takes the most significant half of each result, and places
the final results in a doubleword vector. The results are truncated. (For rounded results, see VRSUBHN on
page A8-748.

There is no distinction between signed and unsigned integers.

if size == ‘11’ then SEE “Related encodings”;
if Vn<0> == ‘1’ || Vm<0> == ‘1’ then UNDEFINED;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

Encoding T1 / A1 Advanced SIMD
VSUBHN<c>.<dt> <Dd>, <Qn>, <Qm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 1 D size Vn Vd 0 1 1 0 N 0 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 1 D size Vn Vd 0 1 1 0 N 0 M 0 Vm

Related encodings See Advanced SIMD data-processing instructions on page A7-10
A8-792 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VSUBHN instruction
must be unconditional.

<dt> The data type for the elements of the operands. It must be one of:

I16 size = 0b00

I32 size = 0b01

I64 size = 0b10.

<Dd>, <Qn>, <Qm> The destination vector, the first operand vector, and the second operand vector.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for e = 0 to elements-1
 result = Elem[Q[n>>1],e,2*esize] - Elem[Q[m>>1],e,2*esize];
 Elem[D[d],e,esize] = result<2*esize-1:esize>;

Exceptions

Undefined Instruction.

VSUBHN<c><q>.<dt> <Dd>, <Qn>, <Qm>
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-793

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Replacement Text
if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for e = 0 to elements-1
 result = Elem[Qin[n>>1],e,2*esize] - Elem[Qin[m>>1],e,2*esize];
 Elem[D[d],e,esize] = result<2*esize-1:esize>;

ARM_2011_Q2
Sticky Note
The replacement pseudocode removes a read-after-write error.

The insertion in the section Pseudocode details of Advanced SIMD and VFP extension registers on page A2-23 [PDF page 55] defines the Qin[] function.

Instruction Details
A8.6.404 VSUBL, VSUBW

Vector Subtract Long subtracts the elements of one doubleword vector from the corresponding elements of
another doubleword vector, and places the results in a quadword vector. Before subtracting, it sign-extends
or zero-extends the elements of both operands.

Vector Subtract Wide subtracts the elements of a doubleword vector from the corresponding elements of a
quadword vector, and places the results in another quadword vector. Before subtracting, it sign-extends or
zero-extends the elements of the doubleword operand.

if size == ‘11’ then SEE “Related encodings”;
if Vd<0> == ‘1’ || (op == ‘1’ && Vn<0> == ‘1’) then UNDEFINED;
esize = 8 << UInt(size); elements = 64 DIV esize; is_vsubw == (op == ‘1’);
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

Encoding T1 / A1 Advanced SIMD
VSUBL<c>.<dt> <Qd>, <Dn>, <Dm>

VSUBW<c>.<dt> {<Qd>,} <Qn>, <Dm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 1 D size Vn Vd 0 0 1 op N 0 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U 1 D size Vn Vd 0 0 1 op N 0 M 0 Vm

Related encodings See Advanced SIMD data-processing instructions on page A7-10
A8-794 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VSUBL or VSUBW instruction
must be unconditional.

<dt> The data type for the elements of the second operand. It must be one of:

S8 encoded as size = 0b00, U = 0

S16 encoded as size = 0b01, U = 0

S32 encoded as size = 0b10, U = 0

U8 encoded as size = 0b00, U = 1

U16 encoded as size = 0b01, U = 1

U32 encoded as size = 0b10, U = 1.

<Qd> The destination register.

<Qn>, <Dm> The first and second operand registers for a VSUBW instruction.

<Dn>, <Dm> The first and second operand registers for a VSUBL instruction.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for e = 0 to elements-1
 if is_vsubw then
 op1 = Int(Elem[Q[n>>1],e,2*esize], unsigned);
 else
 op1 = Int(Elem[D[n],e,esize], unsigned);
 result = op1 - Int(Elem[D[m],e,esize], unsigned);
 Elem[Q[d>>1],e,2*esize] = result<2*esize-1:0>;

Exceptions

Undefined Instruction.

VSUBL<c><q>.<dt> <Qd>, <Dn>, <Dm> Encoded as op = 0
VSUBW<c><q>.<dt> {<Qd>,} <Qn>, <Dm> Encoded as op = 1
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-795

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Replacement Text
if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for e = 0 to elements-1
 if is_vsubw then
 op1 = Int(Elem[Qin[n>>1],e,2*esize], unsigned);
 else
 op1 = Int(Elem[Din[n],e,esize], unsigned);
 result = op1 - Int(Elem[Din[m],e,esize], unsigned);
 Elem[Q[d>>1],e,2*esize] = result<2*esize-1:0>;

ARM_2011_Q2
Sticky Note
The replacement pseudocode removes a read-after-write error.

The insertion in the section Pseudocode details of Advanced SIMD and VFP extension registers on page A2-23 [PDF page 55] defines the Din[] and Qin[] functions.

Instruction Details
A8.6.405 VSWP

VSWP (Vector Swap) exchanges the contents of two vectors. The vectors can be either doubleword or
quadword. There is no distinction between data types.

if size != ‘00’ then UNDEFINED;
if Q == ‘1’ && (Vd<0> == ‘1’ || Vm<0> == ‘1’) then UNDEFINED;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == ‘0’ then 1 else 2;

Encoding T1 / A1 Advanced SIMD

VSWP<c> <Qd>, <Qm>

VSWP<c> <Dd>, <Dm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 1 0 Vd 0 0 0 0 0 Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size 1 0 Vd 0 0 0 0 0 Q M 0 Vm
A8-796 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VSWP instruction must be
unconditional.

<dt> An optional data type. It is ignored by assemblers, and does not affect the encoding.

<Qd>, <Qm> The vectors for a quadword operation.

<Dd>, <Dm> The vectors for a doubleword operation.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 if d == m then
 D[d+r] = bits(64) UNKNOWN;
 else
 tmp = D[d+r];
 D[d+r] = D[m+r];
 D[m+r] = tmp;

Exceptions

Undefined Instruction.

VSWP<c><q>{.<dt>} <Qd>, <Qm> Encoded as Q = 1, size = ’00’

VSWP<c><q>{.<dt>} <Dd>, <Dm> Encoded as Q = 0, size = ’00’
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-797

Instruction Details
A8.6.406 VTBL, VTBX

Vector Table Lookup uses byte indexes in a control vector to look up byte values in a table and generate a
new vector. Indexes out of range return 0.

Vector Table Extension works in the same way, except that indexes out of range leave the destination
element unchanged.

is_vtbl = (op == ‘0’); length = UInt(len)+1;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
if n+length > 32 then UNPREDICTABLE;

Encoding T1 / A1 Advanced SIMD

V<op><c>.8 <Dd>, <list>, <Dm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 Vn Vd 1 0 len N op M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 Vn Vd 1 0 len N op M 0 Vm
A8-798 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<op> Specifies the operation. It must be one of:

TBL encoded as op = 0

TBX encoded as op = 1

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VTBL or VTBX instruction must
be unconditional.

<Dd> The destination vector.

<list> The vectors containing the table. It must be one of:

{<Dn>} encoded as len = 0b00

{<Dn>,<Dn+1>} encoded as len = 0b01

{<Dn>,<Dn+1>,<Dn+2>} encoded as len = 0b10

{<Dn>,<Dn+1>,<Dn+2>,<Dn+3>}

encoded as len = 0b11

<Dm> The index vector.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();

 // Create 256-bit = 32-byte table variable, with zeros in entries that will not be used.
 table3 = if length == 4 then D[n+3] else Zeros(64);
 table2 = if length >= 3 then D[n+2] else Zeros(64);
 table1 = if length >= 2 then D[n+1] else Zeros(64);
 table = table3 : table2 : table1 : D[n];

 for i = 0 to 7
 index = UInt(Elem[D[m],i,8]);
 if index < 8*length then
 Elem[D[d],i,8] = Elem[table,index,8];
 else
 if is_vtbl then
 Elem[D[d],i,8] = Zeros(8);
 // else Elem[D[d],i,8] unchanged

Exceptions

Undefined Instruction.

V<op><c><q>.8 <Dd>, <list>, <Dm>
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-799

Instruction Details
A8.6.407 VTRN

Vector Transpose treats the elements of its operand vectors as elements of 2 × 2 matrices, and transposes the
matrices.

The elements of the vectors can be 8-bit, 16-bit, or 32-bit. There is no distinction between data types.

if size == ‘11’ then UNDEFINED;
if Q == ‘1’ && (Vd<0> == ‘1’ || Vm<0> == ‘1’) then UNDEFINED;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == ‘0’ then 1 else 2;

Figure A8-7 shows the operation of doubleword VTRN. Quadword VTRN performs the same operation as
doubleword VTRN twice, once on the upper halves of the quadword vectors, and once on the lower halves

Figure A8-7 Operation of doubleword VTRN

Encoding T1 / A1 Advanced SIMD

VTRN<c>.<size> <Qd>, <Qm>

VTRN<c>.<size> <Dd>, <Dm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 1 0 Vd 0 0 0 0 1 Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size 1 0 Vd 0 0 0 0 1 Q M 0 Vm

��

��� �

��

��
 � 	 � � �

��

��

�@7?��� �@7?��� �@7?�

�, �,�,
A8-800 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VTRN instruction must be
unconditional.

<size> The data size for the elements of the vectors. It must be one of:

8 encoded as size = 0b00

16 encoded as size = 0b01

32 encoded as size = 0b10.

<Qd>, <Qm> The destination vector, and the operand vector, for a quadword operation.

<Dd>, <Dm> The destination vector, and the operand vector, for a doubleword operation.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 h = elements/2;

 for r = 0 to regs-1
 if d == m then
 D[d+r] = bits(64) UNKNOWN;
 else
 for e = 0 to h-1
 tmp = Elem[D[d+r],2*e+1,esize];
 Elem[D[d+r],2*e+1,esize] = Elem[D[m+r],2*e,esize];
 Elem[D[m+r],2*e,esize] = tmp;

Exceptions

Undefined Instruction.

VTRN<c><q>.<size> <Qd>, <Qm> Encoded as Q = 1

VTRN<c><q>.<size> <Dd>, <Dm> Encoded as Q = 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-801

Instruction Details
A8.6.408 VTST

Vector Test Bits takes each element in a vector, and bitwise ANDs it with the corresponding element of a
second vector. If the result is not zero, the corresponding element in the destination vector is set to all ones.
Otherwise, it is set to all zeros.

The operand vector elements can be any one of:

• 8-bit, 16-bit, or 32-bit fields.

The result vector elements are bitfields the same size as the operand vector elements.

if Q == ‘1’ && (Vd<0> == ‘1’ || Vn<0> == ‘1’ || Vm<0> == ‘1’) then UNDEFINED;
if size == ‘11’ then UNDEFINED;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == ‘0’ then 1 else 2;

Encoding T1 / A1 Advanced SIMD
VTST<c>.<size> <Qd>, <Qn>, <Qm>

VTST<c>.<size> <Dd>, <Dn>, <Dm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 0 D size Vn Vd 1 0 0 0 N Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 D size Vn Vd 1 0 0 0 N Q M 1 Vm
A8-802 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VTST instruction must
be unconditional.

<size> The data size for the elements of the operands. It must be one of:

8 encoded as size = 0b00

16 encoded as size = 0b01

32 encoded as size = 0b10.

<Qd>, <Qn>, <Qm> The destination vector and the operand vectors, for a quadword operation.

<Dd>, <Dn>, <Dm> The destination vector and the operand vectors, for a doubleword operation.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 if !IsZero(Elem[D[n+r],e,esize] AND Elem[D[m+r],e,esize]) then
 Elem[D[d+r],e,esize] = Ones(esize);
 else
 Elem[D[d+r],e,esize] = Zeros(esize);

Exceptions

Undefined Instruction.

VTST<c><q>.<size> {<Qd>,} <Qn>, <Qm> Encoded as Q = 1
VTST<c><q>.<size> {<Dd>,} <Dn>, <Dm> Encoded as Q = 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-803

Instruction Details
A8.6.409 VUZP

Vector Unzip de-interleaves the elements of two vectors. See Table A8-13 and Table A8-14 for examples of
the operation.

The elements of the vectors can be 8-bit, 16-bit, or 32-bit. There is no distinction between data types.

if size == ‘11’ || (Q == ‘0’ && size == ‘10’) then UNDEFINED;
if Q == ‘1’ && (Vd<0> == ‘1’ || Vm<0> == ‘1’) then UNDEFINED;
quadword_operation = (Q == ‘1’); esize = 8 << UInt(size);
d = UInt(D:Vd); m = UInt(M:Vm);

Encoding T1 / A1 Advanced SIMD

VUZP<c>.<size> <Qd>, <Qm>

VUZP<c>.<size> <Dd>, <Dm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 1 0 Vd 0 0 0 1 0 Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size 1 0 Vd 0 0 0 1 0 Q M 0 Vm

Table A8-13 Operation of doubleword VUZP.8

Register state before operation Register state after operation

Dd A7 A6 A5 A4 A3 A2 A1 A0 B6 B4 B2 B0 A6 A4 A2 A0

Dm B7 B6 B5 B4 B3 B2 B1 B0 B7 B5 B3 B1 A7 A5 A3 A1

Table A8-14 Operation of quadword VUZP.32

Register state before operation Register state after operation

Qd A3 A2 A1 A0 B2 B0 A2 A0

Qm B3 B2 B1 B0 B3 B1 A3 A1
A8-804 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VUZP instruction must be
unconditional.

<size> The data size for the elements of the vectors. It must be one of:

8 encoded as size = 0b00.

16 encoded as size = 0b01.

32 encoded as size = 0b10 for a quadword operation.

Doubleword operation with <size> = 32 is a pseudo-instruction.

<Qd>, <Qm> The vectors for a quadword operation.

<Dd>, <Dm> The vectors for a doubleword operation.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 if quadword_operation then
 if d == m then
 Q[d>>1] = bits(128) UNKNOWN; Q[m>>1] = bits(128) UNKNOWN;
 else
 zipped_q = Q[m>>1]:Q[d>>1];
 for e = 0 to (128 DIV esize) - 1
 Elem[Q[d>>1],e,esize] = Elem[zipped_q,2*e,esize];
 Elem[Q[m>>1],e,esize] = Elem[zipped_q,2*e+1,esize];
 else
 if d == m then
 D[d] = bits(64) UNKNOWN; D[m] = bits(64) UNKNOWN;
 else
 zipped_d = D[m]:D[d];
 for e = 0 to (64 DIV esize) - 1
 Elem[D[d],e,esize] = Elem[zipped_d,2*e,esize];
 Elem[D[m],e,esize] = Elem[zipped_d,2*e+1,esize];

Exceptions

Undefined Instruction.

Pseudo-instruction

VUZP.32 <Dd>, <Dm> is a synonym for VTRN.32 <Dd>, <Dm>.

For details see VTRN on page A8-800.

VUZP<c><q>.<size> <Qd>, <Qm> Encoded as Q = 1

VUZP<c><q>.<size> <Dd>, <Dm> Encoded as Q = 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-805

Instruction Details
A8.6.410 VZIP

Vector Zip interleaves the elements of two vectors. See Table A8-15 and Table A8-16 for examples of the
operation.

The elements of the vectors can be 8-bit, 16-bit, or 32-bit. There is no distinction between data types.

if size == ‘11’ || (Q == ‘0’ && size == ‘10’) then UNDEFINED;
if Q == ‘1’ && (Vd<0> == ‘1’ || Vm<0> == ‘1’) then UNDEFINED;
quadword_operation = (Q == ‘1’); esize = 8 << UInt(size);
d = UInt(D:Vd); m = UInt(M:Vm);

Encoding T1 / A1 Advanced SIMD

VZIP<c>.<size> <Qd>, <Qm>

VZIP<c>.<size> <Dd>, <Dm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 1 0 Vd 0 0 0 1 1 Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size 1 0 Vd 0 0 0 1 1 Q M 0 Vm

Table A8-15 Operation of doubleword VZIP.8

Register state before operation Register state after operation

Dd A7 A6 A5 A4 A3 A2 A1 A0 B3 A3 B2 A2 B1 A1 B0 A0

Dm B7 B6 B5 B4 B3 B2 B1 B0 B7 A7 B6 A6 B5 A5 B4 A4

Table A8-16 Operation of quadword VZIP.32

Register state before operation Register state after operation

Qd A3 A2 A1 A0 B1 A1 B0 A0

Qm B3 B2 B1 B0 B3 A3 B2 A2
A8-806 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7. An ARM VZIP instruction must be
unconditional.

<size> The data size for the elements of the vectors. It must be one of:

8 encoded as size = 0b00.

16 encoded as size = 0b01.

32 encoded as size = 0b10 for a quadword operation.

Doubleword operation with <size> = 32 is a pseudo-instruction.

<Qd>, <Qm> The vectors for a quadword operation.

<Dd>, <Dm> The vectors for a doubleword operation.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 if quadword_operation then
 if d == m then
 Q[d>>1] = bits(128) UNKNOWN; Q[m>>1] = bits(128) UNKNOWN;
 else
 bits(256) zipped_q;
 for e = 0 to (128 DIV esize) - 1
 Elem[zipped_q,2*e,esize] = Elem[Q[d>>1],e,esize];
 Elem[zipped_q,2*e+1,esize] = Elem[Q[m>>1],e,esize];
 Q[d>>1] = zipped_q<127:0>; Q[m>>1] = zipped_q<255:128>;
 else
 if d == m then
 D[d] = bits(64) UNKNOWN; D[m] = bits(64) UNKNOWN;
 else
 bits(128) zipped_d;
 for e = 0 to (64 DIV esize) - 1
 Elem[zipped_d,2*e,esize] = Elem[D[d],e,esize];
 Elem[zipped_d,2*e+1,esize] = Elem[D[m],e,esize];
 D[d] = zipped_d<63:0>; D[m] = zipped_d<127:64>;

Exceptions

Undefined Instruction.

Pseudo-instructions

VZIP.32 <Dd>, <Dm> is a synonym for VTRN.32 <Dd>, <Dm>.

For details see VTRN on page A8-800.

VZIP<c><q>.<size> <Qd>, <Qm> Encoded as Q = 1

VZIP<c><q>.<size> <Dd>, <Dm> Encoded as Q = 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-807

Instruction Details
A8.6.411 WFE

Wait For Event is a hint instruction that permits the processor to enter a low-power state until one of a
number of events occurs, including events signaled by executing the SEV instruction on any processor in the
multiprocessor system. For more information, see Wait For Event and Send Event on page B1-44.

// No additional decoding required

// No additional decoding required

// No additional decoding required

Encoding T1 ARMv7 (executes as NOP in ARMv6T2)
WFE<c>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 1 0 0 1 0 0 0 0 0

Encoding T2 ARMv7 (executes as NOP in ARMv6T2)
WFE<c>.W

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 0 (1) (1) (1) (1) 1 0 (0) 0 (0) 0 0 0 0 0 0 0 0 0 1 0

Encoding A1 ARMv6K, ARMv7 (executes as NOP in ARMv6T2)
WFE<c>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 1 1 0 0 1 0 0 0 0 0 (1) (1) (1) (1) (0) (0) (0) (0) 0 0 0 0 0 0 1 0
A8-808 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

WFE<c><q>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 if EventRegistered() then
 ClearEventRegister();
 else
 WaitForEvent();

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-809

Instruction Details
A8.6.412 WFI

Wait For Interrupt is a hint instruction that permits the processor to enter a low-power state until one of a
number of asynchronous events occurs. For details, see Wait For Interrupt on page B1-47.

// No additional decoding required

// No additional decoding required

// No additional decoding required

Encoding T1 ARMv7 (executes as NOP in ARMv6T2)
WFI<c>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 1 0 0 1 1 0 0 0 0

Encoding T2 ARMv7 (executes as NOP in ARMv6T2)
WFI<c>.W

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 0 (1) (1) (1) (1) 1 0 (0) 0 (0) 0 0 0 0 0 0 0 0 0 1 1

Encoding A1 ARMv6K, ARMv7 (executes as NOP in ARMv6T2)
WFI<c>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 1 1 0 0 1 0 0 0 0 0 (1) (1) (1) (1) (0) (0) (0) (0) 0 0 0 0 0 0 1 1
A8-810 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

WFI<c><q>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 WaitForInterrupt();

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-811

Instruction Details
A8.6.413 YIELD

YIELD is a hint instruction. It enables software with a multithreading capability to indicate to the hardware
that it is performing a task, for example a spin-lock, that could be swapped out to improve overall system
performance. Hardware can use this hint to suspend and resume multiple code threads if it supports the
capability.

// No additional decoding required

// No additional decoding required

// No additional decoding required

Encoding T1 ARMv7 (executes as NOP in ARMv6T2)
YIELD<c>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 1 0 0 0 1 0 0 0 0

Encoding T2 ARMv7 (executes as NOP in ARMv6T2)
YIELD<c>.W

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 0 (1) (1) (1) (1) 1 0 (0) 0 (0) 0 0 0 0 0 0 0 0 0 0 1

Encoding A1 ARMv6K, ARMv7 (executes as NOP in ARMv6T2)
YIELD<c>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 1 1 0 0 1 0 0 0 0 0 (1) (1) (1) (1) (0) (0) (0) (0) 0 0 0 0 0 0 0 1
A8-812 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details
Assembler syntax

YIELD<c><q>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 Hint_Yield();

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-813

Instruction Details
A8-814 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Chapter A9
ThumbEE

This chapter contains detailed reference material on ThumbEE.

It contains the following sections:

• The ThumbEE instruction set on page A9-2

• ThumbEE instruction set encoding on page A9-6

• Additional instructions in Thumb and ThumbEE instruction sets on page A9-7

• ThumbEE instructions with modified behavior on page A9-8

• Additional ThumbEE instructions on page A9-14.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A9-1

ThumbEE
A9.1 The ThumbEE instruction set

In general, instructions in ThumbEE are identical to Thumb instructions, with the following exceptions:

• A small number of instructions are affected by modifications to transitions from ThumbEE state. For
more information, see ThumbEE state transitions.

• A substantial number of instructions have a null check on the base register before any other operation
takes place, but are identical (or almost identical) in all other respects. For more information, see Null
checking on page A9-3.

• A small number of instructions are modified in additional ways. See Instructions with modifications
on page A9-4.

• Three Thumb instructions, BLX (immediate), 16-bit LDM, and 16-bit STM, are removed in ThumbEE
state.

The encoding corresponding to BLX (immediate) in Thumb is UNDEFINED in ThumbEE state.

16-bit LDM and STM are replaced by new instructions, for details see Additional ThumbEE instructions
on page A9-14.

• Two new 32-bit instructions, ENTERX and LEAVEX, are introduced in both the Thumb instruction set and
the ThumbEE instruction set. See Additional instructions in Thumb and ThumbEE instruction sets on
page A9-7. These instructions use previously UNDEFINED encodings.

A9.1.1 ThumbEE state transitions

Instruction set state transitions to ThumbEE state can occur implicitly as part of a return from exception, or
explicitly on execution of an ENTERX instruction.

Instruction set state transitions from ThumbEE state can only occur due to an exception, or due to a
transition to Thumb state using the LEAVEX instruction. Return from exception instructions (RFE and SUBS PC,
LR, #imm) are UNPREDICTABLE in ThumbEE state.

Any other Thumb instructions that can update the PC in ThumbEE state are UNPREDICTABLE if they attempt
to change to ARM state. Interworking of ARM and Thumb instructions is not supported in ThumbEE state.
The instructions affected are:

• LDR, LDM, and POP instructions that write to the PC, if bit [0] of the value loaded to the PC is 0

• BLX (register), BX, and BXJ, where Rm bit [0] == 0.

Note
 SVC, BKPT, and UNDEFINED instructions cause an exception to occur.

If a BXJ <Rm> instruction is executed in ThumbEE state, with Rm bit[0] == 1, it does not enter Jazelle state.
Instead, it behaves like the corresponding BX <Rm> instruction and remains in ThumbEE state.

Debug state is a special case. For the rules governing changes to CPSR state bits and Debug state, see
Executing instructions in Debug state on page C5-9.
A9-2 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ThumbEE
A9.1.2 Null checking

A null check is performed for all load/store instructions when they are executed in ThumbEE state. If the
value in the base register is zero, execution branches to the NullCheck handler at HandlerBase – 4.

For most load/store instructions, this is the only difference from normal Thumb operation. Exceptions to
this rule are described in this chapter.

Note
 • The null check examines the value in the base register, not any calculated value offset from the base

register.

• If the base register is the SP or the PC, a zero value in the base register results in UNPREDICTABLE
behavior.

The instructions affected by null checking are:

• all instructions whose mnemonic starts with LD, ST, VLD or VST

• POP, PUSH, TBB, TBH, VPOP, and VPUSH.

For each of these instructions, the pseudocode shown in the Operation section uses the following function:

// NullCheckIfThumbEE()
// ====================

NullCheckIfThumbEE(integer n)
 if CurrentInstrSet() == InstrSet_ThumbEE then
 if n == 15 then
 if IsZero(Align(PC,4)) then UNPREDICTABLE;
 elsif n == 13 then
 if IsZero(SP) then UNPREDICTABLE;
 else
 if IsZero(R[n]) then
 LR = PC<31:1> : ‘1’; // PC holds this instruction’s address plus 4
 BranchWritePC(TEEHBR - 4);
 EndOfInstruction();
 return;
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A9-3

ARM_2008_Q4
Inserted Text

• Null checking is not required for RFE and SRS instructions, because they have UNPREDICTABLE behavior when executed in ThumbEE state.

ARM_2009_Q2
Inserted Text

 ITSTATE.IT = '00000000';

ThumbEE
A9.1.3 Instructions with modifications

In addition to the instructions described in ThumbEE state transitions on page A9-2 and Null checking on
page A9-3, Table A9-1 shows other instructions that are modified in ThumbEE state. The pseudocode,
including the null check if any, is given in ThumbEE instructions with modified behavior on page A9-8.

Table A9-1 Modified instructions

Instructions Rbase Modification

LDR (register) Rn Rm multiplied by 4, null check

LDRH (register) Rn Rm multiplied by 2, null check

LDRSH (register) Rn Rm multiplied by 2, null check

STR (register) Rn Rm multiplied by 4, null check

STRH (register) Rn Rm multiplied by 2, null check
A9-4 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ThumbEE
A9.1.4 IT block and check handlers

CHKA, stores, and permitted loads (loads to the PC are only permitted as the last instruction) can occur
anywhere in an IT block. If one of these instructions results in a branch to the null pointer or array index
handlers, the IT state bits in ITSTATE are cleared. This enables unconditional execution from the start of
the handler.

The original IT state bits are not preserved.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A9-5

ThumbEE
A9.2 ThumbEE instruction set encoding

In general, instructions in the ThumbEE instruction set are encoded in exactly the same way as Thumb
instructions described in Chapter A6 Thumb Instruction Set Encoding. The differences are as follows:

• There are no 16-bit LDM or STM instructions in the ThumbEE instruction set.

• The 16-bit encodings used for LDM and STM in the Thumb instruction set are used for different 16-bit
instructions in the ThumbEE instruction set. For details, see 16-bit ThumbEE instructions.

• There are two new 32-bit instructions in both Thumb state and ThumbEE state. For details, see
Additional instructions in Thumb and ThumbEE instruction sets on page A9-7.

A9.2.1 16-bit ThumbEE instructions

Table A9-2 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 Opcode

Table A9-2 16-bit ThumbEE instructions

Opcode Instruction See

0000 Handler Branch with Parameter HBP on page A9-18

0001 UNDEFINED

001x Handler Branch, Handler Branch with Link HB, HBL on page A9-16

01xx Handler Branch with Link and Parameter HBLP on page A9-17

100x Load Register from a frame LDR (immediate) on page A9-19

1010 Check Array CHKA on page A9-15

1011 Load Register from a literal pool LDR (immediate) on page A9-19

110x Load Register (array operations) LDR (immediate) on page A9-19

111x Store Register to a frame STR (immediate) on page A9-21
A9-6 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2008_Q4
Cross-Out
Editorial note: Table A9-2 shows all the encodings in this space. This comment is deleted to avoid possible confusion.

ThumbEE
A9.3 Additional instructions in Thumb and ThumbEE instruction sets

On a processor with the ThumbEE extension, there are two additional 32-bit instructions, ENTERX and LEAVEX.
These are available in both Thumb state and ThumbEE state.

A9.3.1 ENTERX, LEAVEX

ENTERX causes a change from Thumb state to ThumbEE state, or has no effect in ThumbEE state.

LEAVEX causes a change from ThumbEE state to Thumb state, or has no effect in Thumb state.

is_enterx = (J == ‘1’);

Assembler syntax

where:

<q> See Standard assembler syntax fields on page A8-7. An ENTERX or LEAVEX instruction must
be unconditional.

Operation

if is_enterx then
 SelectInstrSet(InstrSet_ThumbEE);
else
 SelectInstrSet(InstrSet_Thumb);

Exceptions

None.

Encoding T1 ThumbEE

ENTERX Not permitted in IT block.

LEAVEX Not permitted in IT block.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 1 (1) (1) (1) (1) 1 0 (0) 0 (1) (1) (1) (1) 0 0 0 J (1) (1) (1) (1)

ENTERX<q> Encoded as J = 1

LEAVEX<q> Encoded as J = 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A9-7

ARM_2008_Q4
Inserted Text

if InITBlock() then UNPREDICTABLE;

ThumbEE
A9.4 ThumbEE instructions with modified behavior

The 16-bit encodings of the following Thumb instructions have changed functionality in ThumbEE:

• LDR (register) on page A9-9

• LDRH (register) on page A9-10

• LDRSH (register) on page A9-11

• STR (register) on page A9-12

• STRH (register) on page A9-13.

In ThumbEE state there are the following changes in the behavior of instructions:

• All load/store instructions perform null checks on their base register values, as described in Null
checking on page A9-3. The pseudocode for these instructions in Chapter A8 Instruction Details
describes this by calling the NullCheckIfThumbEE() pseudocode procedure.

• Instructions that attempt to enter ARM state are UNPREDICTABLE, as described in ThumbEE state
transitions on page A9-2. The pseudocode for these instructions in Chapter A8 Instruction Details
describes this by calling the SelectInstrSet() or BXWritePC() pseudocode procedure.

• The BXJ instruction behaves like the BX instruction, as described in ThumbEE state transitions on
page A9-2. The pseudocode for the instruction, in BXJ on page A8-64, describes this directly.
A9-8 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ThumbEE
A9.4.1 LDR (register)

Load Register (register) calculates an address from a base register value and an offset register value, loads
a word from memory, and writes it to a register. The offset register value is shifted left by 2 bits. For
information about memory accesses see Memory accesses on page A8-13.

The similar Thumb instruction does not have a left shift.

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);

Assembler syntax

LDR<c><q> <Rt>, [<Rn>, <Rm>, LSL #2]

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rt> The destination register.

<Rn> The base register.

<Rm> Contains the offset that is shifted and applied to the value of <Rn> to form the address.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); NullCheckIfThumbEE(n);
 address = R[n] + LSL(R[m],2);
 R[t] = MemU[address,4];

Exceptions and checks

Data Abort, NullCheck.

Encoding T1 ThumbEE
LDR<c> <Rt>,[<Rn>,<Rm>, LSL #2]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 0 0 Rm Rn Rt
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A9-9

ThumbEE
A9.4.2 LDRH (register)

Load Register Halfword (register) calculates an address from a base register value and an offset register
value, loads a halfword from memory, zero-extends it to form a 32-bit word, and writes it to a register. The
offset register value is shifted left by 1 bit. For information about memory accesses see Memory accesses
on page A8-13.

The similar Thumb instruction does not have a left shift.

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);

Assembler syntax

LDRH<c><q> <Rt>, [<Rn>, <Rm>, LSL #1]

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rt> The destination register.

<Rn> The base register.

<Rm> Contains the offset that is shifted and applied to the value of <Rn> to form the address.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); NullCheckIfThumbEE(n);
 address = R[n] + LSL(R[m],1);
 R[t] = ZeroExtend(MemU[address,2], 32);

Exceptions and checks

Data Abort, NullCheck.

Encoding T1 ThumbEE
LDRH<c> <Rt>,[<Rn>,<Rm>, LSL #1]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 0 1 Rm Rn Rt
A9-10 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ThumbEE
A9.4.3 LDRSH (register)

Load Register Signed Halfword (register) calculates an address from a base register value and an offset
register value, loads a halfword from memory, sign-extends it to form a 32-bit word, and writes it to a
register. The offset register value is shifted left by 1 bit. For information about memory accesses see Memory
accesses on page A8-13.

The similar Thumb instruction does not have a left shift.

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);

Assembler syntax

LDRSH<c><q> <Rt>, [<Rn>, <Rm>, LSL #1]

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rt> The destination register.

<Rn> The base register.

<Rm> Contains the offset that is shifted and applied to the value of <Rn> to form the address.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); NullCheckIfThumbEE(n);
 address = R[n] + LSL(R[m],1);
 R[t] = SignExtend(MemU[address,2], 32);

Exceptions and checks

Data Abort, NullCheck.

Encoding T1 ThumbEE
LDRSH<c> <Rt>,[<Rn>,<Rm>, LSL #1]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 Rm Rn Rt
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A9-11

ThumbEE
A9.4.4 STR (register)

Store Register (register) calculates an address from a base register value and an offset register value, and
stores a word from a register to memory. The offset register value is shifted left by 2 bits. For information
about memory accesses see Memory accesses on page A8-13.

The similar Thumb instruction does not have a left shift.

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);

Assembler syntax

STR<c><q> <Rt>, [<Rn>, <Rm>, LSL #2]

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rt> The source register.

<Rn> The base register.

<Rm> Contains the offset that is shifted and applied to the value of <Rn> to form the address.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); NullCheckIfThumbEE(n);
 address = R[n] + LSL(R[m],2);
 MemU[address,4] = R[t];

Exceptions and checks

Data Abort, NullCheck.

Encoding T1 ThumbEE
STR<c> <Rt>,[<Rn>,<Rm>, LSL #2]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 0 0 Rm Rn Rt
A9-12 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ThumbEE
A9.4.5 STRH (register)

Store Register Halfword (register) calculates an address from a base register value and an offset register
value, and stores a halfword from a register to memory. The offset register value is shifted left by 1 bit. For
information about memory accesses see Memory accesses on page A8-13.

The similar Thumb instruction does not have a left shift.

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);

Assembler syntax

STRH<c><q> <Rt>, [<Rn>, <Rm>, LSL #1]

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rt> The source register.

<Rn> The base register.

<Rm> Contains the offset that is shifted and applied to the value of <Rn> to form the address.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); NullCheckIfThumbEE(n);
 address = R[n] + LSL(R[m],1);
 MemU[address,2] = R[t]<15:0>;

Exceptions and checks

Data Abort, NullCheck.

Encoding T1 ThumbEE
STRH<c> <Rt>,[<Rn>,<Rm>, LSL #1]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 0 1 Rm Rn Rt
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A9-13

ThumbEE
A9.5 Additional ThumbEE instructions

The following instructions are available in ThumbEE state, but not in Thumb state:

• CHKA on page A9-15

• HB, HBL on page A9-16

• HBLP on page A9-17

• HBP on page A9-18

• LDR (immediate) on page A9-19

• STR (immediate) on page A9-21.

These are 16-bit instructions. They occupy the instruction encoding space that STMIA and LDMIA occupy in
Thumb state.
A9-14 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ThumbEE
A9.5.1 CHKA

CHKA (Check Array) compares the unsigned values in two registers. If the first is lower than, or the same as,
the second, it copies the PC to the LR, and causes a branch to the IndexCheck handler.

n = UInt(N:Rn); m = UInt(Rm);
if n == 15 || BadReg(m) then UNPREDICTABLE;

Assembler syntax

CHKA<c><q> <Rn>, <Rm>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rn> The first operand register. This contains the array size. Use of the SP is permitted.

<Rm> The second operand register. This contains the array index.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 if UInt(R[n]) <= UInt(R[m]) then
 LR = PC<31:1> : ‘1’; // PC holds this instruction’s address + 4
 BranchWritePC(TEEHBR - 8);

Exceptions and checks

IndexCheck.

Usage

Use CHKA to check that an array index is in bounds.

CHKA does not modify the APSR condition code flags.

Encoding E1 ThumbEE
CHKA<c> <Rn>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 1 0 1 0 N Rm Rn
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A9-15

ARM_2009_Q2
Inserted Text

 ITSTATE.IT = '00000000';

ThumbEE
A9.5.2 HB, HBL

Handler Branch branches to a specified handler.

Handler Branch with Link saves a return address to the LR, and then branches to a specified handler.

generate_link = (L == ‘1’); handler_offset = ZeroExtend(handler:’00000’, 32);

Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<HandlerID> The index number of the handler to be called, in the range 0-255.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 if generate_link then
 next_instr_addr = PC - 2;
 LR = next_instr_addr<31:1> : ‘1’;
 BranchWritePC(TEEHBR + handler_offset);

Exceptions

None.

Usage

HB{L} makes a large number of handlers available.

Encoding E1 ThumbEE
HB{L}<c> #<HandlerID>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 0 0 1 L handler

HB<c><q> #<HandlerID> Encoded as L = 0

HBL<c><q> #<HandlerID> Encoded as L = 1
A9-16 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q2
Inserted Text
 Outside or last in IT block

ARM_2009_Q2
Inserted Text

if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

ThumbEE
A9.5.3 HBLP

HBLP (Handler Branch with Link and Parameter) saves a return address to the LR, and then branches to a
specified handler. It passes a 5-bit parameter to the handler in R8.

imm32 = ZeroExtend(imm5, 32); handler_offset = ZeroExtend(handler:’00000’, 32);

Assembler syntax

HBLP<c><q> #<imm>, #<HandlerID>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<imm> The parameter to pass to the handler, in the range 0-31.

<HandlerID> The index number of the handler to be called, in the range 0-31.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 R[8] = imm32;
 next_instr_addr = PC - 2;
 LR = next_instr_addr<31:1> : ‘1’;
 BranchWritePC(TEEHBR + handler_offset);

Exceptions

None.

Encoding E1 ThumbEE

HBLP<c> #<imm>, #<HandlerID>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 0 1 imm5 handler
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A9-17

ARM_2009_Q2
Inserted Text
Outside or last in IT block

ARM_2009_Q2
Inserted Text
if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

ThumbEE
A9.5.4 HBP

HBP (Handler Branch with Parameter) causes a branch to a specified handler. It passes a 3-bit parameter to
the handler in R8.

imm32 = ZeroExtend(imm3, 32); handler_offset = ZeroExtend(handler:’00000’, 32);

Assembler syntax

HBP<c><q> #<imm>, #<HandlerID>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<imm> The parameter to pass to the handler, in the range 0-7.

<HandlerID> The index number of the handler to be called, in the range 0-31.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 R[8] = imm32;
 BranchWritePC(TEEHBR + handler_offset);

Exceptions

None.

Encoding E1 ThumbEE

HBP<c> #<imm>, #<HandlerID>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 0 0 0 0 imm3 handler
A9-18 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q2
Inserted Text
Outside or last in IT block

ARM_2009_Q2
Inserted Text
if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

ThumbEE
A9.5.5 LDR (immediate)

Load Register (immediate) provides 16-bit instructions to load words using:

• R9 as base register, with a positive offset of up to 63 words, for loading from a frame

• R10 as base register, with a positive offset of up to 31 words, for loading from a literal pool

• R0-R7 as base register, with a negative offset of up to 7 words, for array operations.

t = UInt(Rt); n = 9; imm32 = ZeroExtend(imm6:’00’, 32); add = TRUE;

t = UInt(Rt); n = 10; imm32 = ZeroExtend(imm5:’00’, 32); add = TRUE;

t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm3:’00’, 32); add = FALSE;

Encoding E1 ThumbEE

LDR<c> <Rt>,[R9{, #<imm>}]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 1 1 0 imm6 Rt

Encoding E2 ThumbEE

LDR<c> <Rt>,[R10{, #<imm>}]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 1 0 1 1 imm5 Rt

Encoding E3 ThumbEE

LDR<c> <Rt>,[<Rn>{, #-<imm>}]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 1 0 0 imm3 Rn Rt
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A9-19

ThumbEE
Assembler syntax

LDR<c><q> <Rt>, [<Rn>{, #<imm>}]

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rt> The destination register.

<Rn> The base register. This register is:

• R9 for encoding E1

• R10 for encoding E2

• any of R0-R7 for encoding E3.

<imm> The immediate offset used to form the address. Values are multiples of 4 in the range:

0-252 encoding E1

0-124 encoding E2

–28-0 encoding E3.

<imm> can be omitted, meaning an offset of 0.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); NullCheckIfThumbEE(n);
 address = if add then (R[n] + imm32) else (R[n] - imm32);
 R[t] = MemU[address,4];

Exceptions and checks

Data Abort, NullCheck.
A9-20 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ThumbEE
A9.5.6 STR (immediate)

Store Register (immediate) provides a 16-bit word store instruction using R9 as base register, with a positive
offset of up to 63 words, for storing to a frame.

t = UInt(Rt); imm32 = ZeroExtend(imm6:’00’, 32);

Assembler syntax

STR<c><q> <Rt>, [R9, #<imm>]

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rt> The source register.

<imm> The immediate offset applied to the value of R9 to form the address. Values are multiples of
4 in the range 0-252.

<imm> can be omitted, meaning an offset of 0.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); NullCheckIfThumbEE(9);
 address = R[9] + imm32;
 MemU[address,4] = R[t];

Exceptions and checks

Data Abort, NullCheck.

Encoding E1 ThumbEE

STR<c> <Rt>, [R9, #<imm>]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 1 1 1 imm6 Rt
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A9-21

ThumbEE
A9-22 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Part B
System Level Architecture

Chapter B1
The System Level Programmers’ Model

This chapter provides a system-level view of the programmers’ model. It contains the following sections:

• About the system level programmers’ model on page B1-2

• System level concepts and terminology on page B1-3

• ARM processor modes and core registers on page B1-6

• Instruction set states on page B1-23

• The Security Extensions on page B1-25

• Exceptions on page B1-30

• Coprocessors and system control on page B1-62

• Advanced SIMD and floating-point support on page B1-64

• Execution environment support on page B1-73.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B1-1

The System Level Programmers’ Model
B1.1 About the system level programmers’ model

An application programmer has only a restricted view of the system. The system level programmers’ model
supports this application level view of the system, and includes features required for an operating system
(OS) to provide the programming environment seen by an application.

The system level programmers’ model includes all of the system features required to support operating
systems and to handle hardware events.

System level concepts and terminology on page B1-3 gives a system level introduction to the basic concepts
of the ARM architecture, and the terminology used to describe the architecture. The rest of this chapter
describes the system level programmers’ model.

The other chapters in this part describe:

• The memory system architectures:

— Chapter B2 Common Memory System Architecture Features describes common features of the
memory system architectures

— Chapter B3 Virtual Memory System Architecture (VMSA) describes the Virtual Memory
System Architecture (VMSA) used in the ARMv7-A profile

— Chapter B4 Protected Memory System Architecture (PMSA) describes the Protected Memory
System Architecture (PMSA) used in the ARMv7-R profile.

• The CPUID mechanism, that enables an OS to determine the capabilities of the processor it is running
on. See Chapter B5 The CPUID Identification Scheme.

• The instructions that provide system-level functionality, such as returning from an exception. See
Chapter B6 System Instructions.
B1-2 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The System Level Programmers’ Model
B1.2 System level concepts and terminology

A number of concepts are critical to understanding the system level architecture support. These are
introduced in the following sections:

• Privilege, mode, and state

• Exceptions on page B1-4

B1.2.1 Privilege, mode, and state

Privilege, mode, and state are key concepts in the ARM architecture.

Privilege

Software can execute as privileged or unprivileged:

• Unprivileged execution limits or excludes access to some resources in the current security state.

• Privileged execution gives access to all resources in the current security state.

Mode

The ARM architecture provides a set of modes that support normal software execution and handle
exceptions. The current mode determines the set of registers that are available and the privilege of the
executing software. For more information, see ARM processor modes and core registers on page B1-6.

State

In the ARM architecture, state is used to describe the following distinct concepts:

Instruction set state

ARMv7 provides four instruction set states. The instruction set state determines the
instruction set that is being executed, and is one of ARM state, Thumb state, Jazelle state,
or ThumbEE state. ISETSTATE on page A2-15 gives more information about these states.

Execution state

The execution state consists of the instruction set state and some control bits that modify
how the instruction stream is decoded. For details, see Execution state registers on
page A2-15 and Program Status Registers (PSRs) on page B1-14.

Security state In the ARM architecture, the number of security states depends on whether the Security
Extensions are implemented:

• When the Security Extensions are implemented, the ARM architecture provides two
security states, Secure state and Non-secure state. Each security state has its own
system registers and memory address space.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B1-3

The System Level Programmers’ Model
The security state is largely independent of the processor mode. The only exception
to this independence of security state and processor mode is Monitor mode. Monitor
mode exists only in the Secure state, and supports transitions between Secure and
Non-secure state.

Some system control resources are only accessible from the Secure state.

For more information, see The Security Extensions on page B1-25.

Note
 In some documentation, the Secure state is described as the Secure world, and the

Non-secure state is described as the Non-secure world.

• When the Security Extensions are not implemented, the ARM architecture provides
only a single security state.

Debug state Debug state refers to the processor being halted for debug purposes, because a debug event
has occurred when the processor is configured to Halting debug-mode. See Invasive debug
on page C1-3.

When the processor is not in Debug state it is in Non-debug state.

Except where explicitly stated otherwise, parts A and B of this manual describe processor
behavior and instruction execution in Non-debug state. Chapter C5 Debug State describes
the differences in Debug state.

B1.2.2 Exceptions

An exception is a condition that changes the normal flow of control in a program. The change of flow
switches execution to an exception handler, and the state of the system at the point where the exception
occurred is presented to the exception handler. A key component of the state presented to the handler is the
return address, that indicates the point in the instruction stream where the exception was taken.

The ARM architecture provides a number of different exceptions as described in Exceptions on page B1-30.

Terminology for describing exceptions

In this manual, a number of terms have specific meanings when used to describe exceptions:

• An exception is generated in one of the following ways:

— Directly as a result of the execution or attempted execution of the instruction stream. For
example, an exception is generated as a result of an UNDEFINED instruction.

— Less directly, as a result of something in the state of the system. For example, an exception is
generated as a result of an interrupt signaled by a peripheral.

• An exception is taken by a processor at the point where it causes a change to the normal flow of
control in the program.
B1-4 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The System Level Programmers’ Model
• An exception is described as synchronous if both of the following apply:

— the exception is generated as a result of direct execution or attempted execution of the
instruction stream

— the return address presented to the exception handler is guaranteed to indicate the instruction
that caused the exception.

• An exception is described as asynchronous if either of the following applies:

— the exception is not generated as a result of direct execution or attempted execution of the
instruction stream

— the return address presented to the exception handler is not guaranteed to indicate the
instruction that caused the exception.

Asynchronous exceptions are of two types:

• a precise asynchronous exception guarantees that the state presented to the exception handler is
consistent with the state at an identifiable instruction boundary in the execution stream from which
the exception was taken.

• an imprecise asynchronous exception is one where the state presented to the exception handler is not
guaranteed to be consistent with any point in the execution stream from which the exception was
taken.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B1-5

The System Level Programmers’ Model
B1.3 ARM processor modes and core registers

The following sections describe the ARM processor modes and the core registers:

• ARM processor modes

• ARM core registers on page B1-9

• Program Status Registers (PSRs) on page B1-14.

B1.3.1 ARM processor modes

The ARM architecture defines eight modes, shown in Table B1-1:

Mode changes can be made under software control, or can be caused by an external or internal exception.

Table B1-1 ARM processor modes

Processor
modea

Mode
encodingb Privilege Description

User usr 10000 Unprivileged Suitable for most application code.

FIQ fiq 10001 Privileged Entered as a result of a fast interrupt. c

IRQ irq 10010 Privileged Entered as a result of a normal interrupt.c

Supervisor svc 10011 Privileged Suitable for running most kernel code.

Entered on Reset, and on execution of a Supervisor Call (SVC)
instruction.

Monitord mon 10110 Privileged A Secure mode that enables change between Secure and
Non-secure states, and can also be used to handle any of
FIQs, IRQs and external aborts.c

Entered on execution of a Secure Monitor Call (SMC)
instruction.

Abort abt 10111 Privileged Entered as a result of a Data Abort exception or Prefetch
Abort exception.c

Undefined und 11011 Privileged Entered as a result of an instruction-related error.

System sys 11111 Privileged Suitable for application code that requires privileged access.

a. Processor mode names and abbreviations.
b. CPSR.M. All other values are reserved. When the Security Extensions are not implemented the Monitor mode encoding,

0b10110, is reserved.
c. Bits in the Secure Configuration Register can be set so that one or more of FIQs, IRQs and external aborts are handled

in Monitor mode, see c1, Secure Configuration Register (SCR) on page B3-106.
d. Only supported when the Security Extensions are implemented.
B1-6 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
application code and other unprivileged processes.

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
processes that require privileged access to system resources, and for privileged access to User mode registers

ARM_2009_Q1
Sticky Note
The changes to the Description entries for User and System mode are clarifications of the intended meanings, not changes to the architecture specification.

The System Level Programmers’ Model
Notes on the ARM processor modes

User mode User mode enables the operating system to restrict the use of system resources. Application
programs normally execute in User mode. In User mode, the program being executed:

• cannot access protected system resources

• cannot change mode except by causing an exception, see Exceptions on page B1-30.

Privileged modes

The modes other than User mode are known as privileged modes. In their security state they
have full access to system resources and can change mode freely.

Exception modes

The exception modes are:

• FIQ mode

• IRQ mode

• Supervisor mode

• Abort mode

• Undefined mode

• Monitor mode.

Each of these modes normally handles the corresponding exceptions, as shown in
Table B1-1 on page B1-6.

Each exception mode has some banked registers to avoid corrupting the registers of the
mode in use when the exception is taken, see ARM core registers on page B1-9.

System mode System mode has the same registers available as User mode, and is not entered by any
exception.

System mode is intended for use by operating system tasks that must access system
resources, but do not want to use the exception entry mechanism and the associated
additional registers. Also, it is used when the operating system has to access the User mode
registers.

Monitor mode

Monitor mode is only implemented as part of the Security Extensions, and is always in the
Secure state, regardless of the value of the SCR.NS bit. For more information, see The
Security Extensions on page B1-25.

Code running in Monitor mode has access to both the Secure and Non-secure copies of
system registers. This means Monitor mode provides the normal method of changing
between the Secure and Non-secure security states.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B1-7

The System Level Programmers’ Model
Secure and Non-secure modes

In a processor that implements the Security Extensions, a mode description can be qualified
as Secure or Non-secure, to indicate whether the processor is also in Secure state or
Non-secure state. For example:

• if a processor is in a privileged mode and Secure state, it is in a Secure privileged
mode

• if a processor is in User mode and Non-secure state, it is in Non-secure User mode.

Pseudocode details of mode operations

The BadMode() function tests whether a 5-bit mode number corresponds to one of the permitted modes:

// BadMode()
// =========

boolean BadMode(bits(5) mode)
 case mode of
 when ‘10000’ result = FALSE; // User mode
 when ‘10001’ result = FALSE; // FIQ mode
 when ‘10010’ result = FALSE; // IRQ mode
 when ‘10011’ result = FALSE; // Supervisor mode
 when ‘10110’ result = !HaveSecurityExt(); // Monitor mode
 when ‘10111’ result = FALSE; // Abort mode
 when ‘11011’ result = FALSE; // Undefined mode
 when ‘11111’ result = FALSE; // System mode
 otherwise result = TRUE;
 return result;

The following pseudocode functions provide information about the current mode:

// CurrentModeIsPrivileged()
// =========================

boolean CurrentModeIsPrivileged()
 if BadMode(CPSR.M) then UNPREDICTABLE;
 if CPSR.M == ‘10000’ then return FALSE; // User mode
 return TRUE; // Other modes

// CurrentModeIsUserOrSystem()
// ===========================

boolean CurrentModeIsUserOrSystem()
 if BadMode(CPSR.M) then UNPREDICTABLE;
 if CPSR.M == ‘10000’ then return TRUE; // User mode
 if CPSR.M == ‘11111’ then return TRUE; // System mode
 return FALSE; // Other modes
B1-8 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The System Level Programmers’ Model
B1.3.2 ARM core registers

ARM core registers on page A2-11 describes the application level view of the ARM register file. This view
provides 16 ARM core registers, R0 to R15, that include the Stack Pointer (SP), Link Register (LR), and
Program Counter (PC). These registers are selected from a total set of either 31 or 33 registers, depending
on whether or not the Security Extensions are implemented. The current execution mode determines the
selected set of registers, as shown in Figure B1-1. This shows that the arrangement of the registers provides
duplicate copies of some registers, with the current register selected by the execution mode. This
arrangement is described as banking of the registers, and the duplicated copies of registers are referred to as
banked registers:

Figure B1-1 Organization of general-purpose registers and Program Status Registers

Figure B1-1 includes the views of the Current Program Status Register (CPSR) and of the banked Saved
Program Status Register (SPSR), see Program Status Registers (PSRs) on page B1-14.

�����
��	

��

��	

��

��	

�������
��	
�����#�

���
��������	
�

�<

7�A$*�

7�A$*�

7�A$*�

7�A$*�

7�A$*�

7	A$*�

7�A$*�

7
A$*�

7
A$*�

7�A$*�

7��A$*�

7��A$*�

7��A$*�

��A$*�

37A$*�

<��7

���7A�-& ���7A$�� ���7A'�I ���7A('I

7
A('I

7�A('I

7��A('I

7��A('I

7��A('I

��A('I

37A('I37A*�� 37A,����# 37A�-& 37A$�� 37A'�I

��A*�� ��A,����# ��A�-& ��A$�� ��A'�I

������
�
	���	
�

����
���
�
����
��

��	
 ��
	
��	

���7A,���#���7A*��

�!�
������
��	

����
�
��	

��
�
��	

�<

7�

7�

7�

7�

7�

7	

7�

7

7

7�

7��

7��

7��

��

37

���7

������"����
�
�
����
�

�#�!��'&���,���6�����&)���**��'�&���-��>�����.'*&��*6�����',%��,��&���������*�%��&��(�&)�����$�'&��:+&��*'��*
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B1-9

The System Level Programmers’ Model
Note
 • System level register names, such as R0_usr, R8_usr, and R8_fiq, are used when it is necessary to

identify a specific register. The Application level names refer to the registers for the current mode,
and usually are sufficient to identify a register.

• In ARMv7, the Security Extensions can be implemented only as part of an ARMv7-A
implementation.

Each of the exception modes selects a different copy of the banked SP and LR, because these registers have
special functions on exception entry:

SP This enables the exception handler to use a different stack to the one in use when the
exception occurred. For example, it can use a stack in privileged memory rather than one in
unprivileged memory.

LR The exception return address is placed in the banked LR of the exception mode. This means
the use of the LR by the application is not corrupted. The address placed in the banked LR
is at an exception-dependent offset from the next instruction to be executed in the code in
which the exception occurred. This address enables the exception handler to return to that
code, so the processor can resume execution of the code. Table B1-4 on page B1-34 shows
the LR value saved on entry to each of the exception modes.

In addition:

• FIQ mode provides its own mappings for the general-purpose registers R8 to R12. These enable very
fast processing of interrupts that are simple enough to be processed using only registers R8 to R12,
SP, LR, and PC, without affecting the corresponding registers of the mode in which the interrupt was
taken.

• In an exception mode the processor can access the SPSR for that mode. There is no SPSR for User
mode and System mode.

In all ARMv7-A and ARMv7-R implementations:

• Every mode except User mode is privileged.

• User mode and System mode share the same register file. The only difference between System and
User modes is that System mode runs with privileged access.

For more information about the application level view of the SP, LR, and the Program Counter (PC), and
the alternative descriptions of them as R13, R14 and R15, see ARM core registers on page A2-11.
B1-10 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The System Level Programmers’ Model
Writing to the PC

In ARMv7, instruction writes to the PC are handled as follows:

• Exception return instructions write both the PC and the CPSR. The value written to the CPSR
determines the new instruction set state, and the value written to the PC determines the address that
is branched to. For full details, including which instructions are exception return instructions and how
incorrectly aligned PC values are handled, see Exception return on page B1-38.

• The following two 16-bit Thumb instruction encodings remain in Thumb state and branch to a value
written to the PC:

— encoding T2 of ADD (register) on page A8-24

— encoding T1 of MOV (register) on page A8-196.

The value written to the PC is forced to be halfword-aligned by ignoring its least significant bit,
instead treating that bit as being 0.

• The following instructions remain in the same instruction set state and branch to a value written to
the PC:

— B, BL, CBNZ, CBZ, CHKA, HB, HBL, HBLP, HBP, TBB, and TBH

— in ThumbEE state, load/store instructions that fail their null check.

The definition of each of these instructions ensures that the value written to the PC is correctly
aligned for the current instruction set state.

• The BLX (immediate) instruction switches between ARM and Thumb states and branches to a value
written to the PC. Its definition ensures that the value written to the PC is correctly aligned for the
new instruction set state.

• The following instructions write a value to the PC, treating that value as an interworking address with
low-order bits that determine the new instruction set state and an address to branch to:

— BLX (register), BX, and BXJ

— LDR, and LDRT instructions with <Rt> equal to the PC

— POP and all forms of LDM except LDM (exception return), when the register list includes the PC

— in ARM state only, ADC, ADD, ADR, AND, ASR (immediate), BIC, EOR, LSL (immediate), LSR
(immediate), MOV, MVN, ORR, ROR (immediate), RRX, RSB, RSC, SBC, and SUB instructions with <Rd>
equal to the PC and without flag setting specified.

For details of how an interworking address specifies the new instruction set state and instruction
address, see Pseudocode details of operations on ARM core registers on page A2-12.

Note
 — The LDR, LDRT, POP, and LDM instructions first have this behavior in ARMv5T.

— The instructions listed as having this behavior in ARM state only first have this behavior in
ARMv7.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B1-11

ARM_2009_Q2
Cross-Out

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Sticky Note
LDRT is UNPREDICTABLE if Rt is the PC. This is the same correction as that made earlier on this page in the ARM_2009_Q2 issue of this errata document.

The System Level Programmers’ Model
In both cases, the behavior in earlier architecture versions is a branch that remains in the same
instruction set state. For more information, see:

— Interworking on page AppxG-4, for ARMv6

— Interworking on page AppxH-5, for ARMv5 and ARMv4.

Pseudocode details of ARM core register operations

The following pseudocode gives access to the general-purpose registers:

// The names of the banked core registers.

enumeration RName {RName_0usr, RName_1usr, RName_2usr, RName_3usr, RName_4usr, RName_5usr,
 RName_6usr, RName_7usr, RName_8usr, RName_8fiq, RName_9usr, RName_9fiq,
 RName_10usr, RName_10fiq, RName_11usr, RName_11fiq, RName_12usr, RName_12fiq,
 RName_SPusr, RName_SPfiq, RName_SPirq, RName_SPsvc,
 RName_SPabt, RName_SPund, RName_SPmon,
 RName_LRusr, RName_LRfiq, RName_LRirq, RName_LRsvc,
 RName_LRabt, RName_LRund, RName_LRmon,
 RName_PC};

// The physical array of banked core registers.
//
// _R[RName_PC] is defined to be the address of the current instruction. The
// offset of 4 or 8 bytes is applied to it by the register access functions.

array bits(32) _R[RName];

// RBankSelect()
// =============

RName RBankSelect(bits(5) mode, RName usr, RName fiq, RName irq,
 RName svc, RName abt, RName und, RName mon)
 if BadMode(mode) then
 UNPREDICTABLE;
 else
 case mode of
 when ‘10000’ result = usr; // User mode
 when ‘10001’ result = fiq; // FIQ mode
 when ‘10010’ result = irq; // IRQ mode
 when ‘10011’ result = svc; // Supervisor mode
 when ‘10110’ result = mon; // Monitor mode
 when ‘10111’ result = abt; // Abort mode
 when ‘11011’ result = und; // Undefined mode
 when ‘11111’ result = usr; // System mode uses User mode registers
 return result;

// RfiqBankSelect()
// ================

RName RfiqBankSelect(bits(5) mode, RName usr, RName fiq)
 return RBankSelect(mode, usr, fiq, usr, usr, usr, usr, usr);
B1-12 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The System Level Programmers’ Model
// LookUpRName()
// =============

RName LookUpRName(integer n, bits(5) mode)
 assert n >= 0 && n <= 14;
 case n of
 when 0 result = RName_0usr;
 when 1 result = RName_1usr;
 when 2 result = RName_2usr;
 when 3 result = RName_3usr;
 when 4 result = RName_4usr;
 when 5 result = RName_5usr;
 when 6 result = RName_6usr;
 when 7 result = RName_7usr;
 when 8 result = RfiqBankSelect(mode, RName_8usr, RName_8fiq);
 when 9 result = RfiqBankSelect(mode, RName_9usr, RName_9fiq);
 when 10 result = RfiqBankSelect(mode, RName_10usr, RName_10fiq);
 when 11 result = RfiqBankSelect(mode, RName_11usr, RName_11fiq);
 when 12 result = RfiqBankSelect(mode, RName_12usr, RName_12fiq);
 when 13 result = RBankSelect(mode, RName_SPusr, RName_SPfiq, RName_SPirq,
 RName_SPsvc, RName_SPabt, RName_SPund, RName_SPmon);
 when 14 result = RBankSelect(mode, RName_LRusr, RName_LRfiq, RName_LRirq,
 RName_LRsvc, RName_LRabt, RName_LRund, RName_LRmon);
 return result;

// Rmode[] - non-assignment form
// =============================

bits(32) Rmode[integer n, bits(5) mode]
 assert n >= 0 && n <= 14;

 // In Non-secure state, check for attempted use of Monitor mode (‘10110’), or of FIQ
 // mode (‘10001’) when the Security Extensions are reserving the FIQ registers. The
 // definition of UNPREDICTABLE does not permit this to be a security hole.
 if !IsSecure() && mode == ‘10110’ then UNPREDICTABLE;
 if !IsSecure() && mode == ‘10001’ && NSACR.RFR == ‘1’ then UNPREDICTABLE;

 return _R[LookUpRName(n,mode)];

// Rmode[] - assignment form
// =========================

Rmode[integer n, bits(5) mode] = bits(32) value
 assert n >= 0 && n <= 14;

 // In Non-secure state, check for attempted use of Monitor mode (‘10110’), or of FIQ
 // mode (‘10001’) when the Security Extensions are reserving the FIQ registers. The
 // definition of UNPREDICTABLE does not permit this to be a security hole.
 if !IsSecure() && mode == ‘10110’ then UNPREDICTABLE;
 if !IsSecure() && mode == ‘10001’ && NSACR.RFR == ‘1’ then UNPREDICTABLE;

 // Writes of non word-aligned values to SP are only permitted in ARM state.
 if n == 13 && value<1:0> != ‘00’ && CurrentInstrSet() != InstrSet_ARM then UNPREDICTABLE;
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B1-13

The System Level Programmers’ Model
 _R[LookUpRName(n,mode)] = value;
 return;

// R[] - non-assignment form
// =========================

bits(32) R[integer n]
 assert n >= 0 && n <= 15;
 if n == 15 then
 offset = if CurrentInstrSet() == InstrSet_ARM then 8 else 4;
 result = _R[RName_PC] + offset;
 else
 result = Rmode[n, CPSR.M];
 return result;

// R[] - assignment form
// =====================

R[integer n] = bits(32) value
 assert n >= 0 && n <= 14;
 Rmode[n, CPSR.M] = value;
 return;

// BranchTo()
// ==========

BranchTo(bits(32) address)
 _R[RName_PC] = address;
 return;

B1.3.3 Program Status Registers (PSRs)

The application level programmers’ model provides the Application Program Status Register, see The
Application Program Status Register (APSR) on page A2-14. This is an application level alias for the
Current Program Status Register (CPSR). The system level view of the CPSR extends the register, adding
system level information.

Each of the exception modes has its own saved copy of the CPSR, the Saved Program Status Register
(SPSR), as shown in Figure B1-1 on page B1-9. For example, the SPSR for Monitor mode is called
SPSR_mon.

The Current Program Status Register (CPSR)

The Current Program Status Register (CPSR) holds processor status and control information:

• the APSR, see The Application Program Status Register (APSR) on page A2-14

• the current instruction set state, see ISETSTATE on page A2-15

• the execution state bits for the Thumb If-Then instruction, see ITSTATE on page A2-17

• the current endianness, see ENDIANSTATE on page A2-19

• the current processor mode
B1-14 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The System Level Programmers’ Model
• interrupt and asynchronous abort disable bits.

The non-APSR bits of the CPSR have defined reset values. These are shown in the TakeReset() pseudocode
function, see Reset on page B1-48.

Writes to the CPSR have side-effects on various aspects of processor operation. All of these side-effects,
except for those on memory accesses caused by fetching instructions, are synchronous to the CPSR write.
This means they are guaranteed not to be visible to earlier instructions in the execution stream, and they are
guaranteed to be visible to later instructions in the execution stream.

Fetching an instruction causes an instruction fetch memory access. In addition, in a Virtual Memory System
Architecture (VMSA) implementation, fetching an instruction can cause a translation table walk. The
privilege of these memory accesses can be affected by changes to the mode field of the CPSR. Also, if the
Security Extensions are implemented the virtual memory space of these accesses can be affected by changes
to the mode field. Those mode changes take effect on the memory accesses as follows:

• A mode change by an exception entry is synchronous to the exception entry. This applies to all
exception entries, including the exception entry for a synchronous exception generated directly by an
instruction.

• A mode change by an exception return instruction is synchronous to the instruction.

• A mode change by an instruction other than an exception return and that is not the result of a
synchronous exception generated directly by the instruction. Such a mode change can be the result
of a CPS or MSR instructions, and:

— is guaranteed not to be visible to memory accesses caused by fetching earlier instructions in
the execution stream

— is guaranteed to be visible to memory accesses caused by fetching instructions after the next
exception entry, exception return instruction, or ISB instruction in the execution stream

— might or might not affect memory accesses caused by fetching instructions between the mode
change instruction and the point where mode changes are guaranteed to be visible.

See Exception return on page B1-38 for the definition of exception return instructions.

The Saved Program Status Registers (SPSRs)

The purpose of an SPSR is to record the pre-exception value of the CPSR. When taking an exception, the
processor copies the CPSR to the SPSR of the exception mode it is about to enter. Saving this value means
the exception handler can:

• on exception return, restore the CPSR to the value it had when the exception was taken

• examine the value the CPSR had when the exception was taken, for example to determine the
instruction set state in which the instruction that caused an Undefined Instruction exception was
executed.

The SPSRs do not have defined reset values.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B1-15

The System Level Programmers’ Model
Format of the CPSR and SPSRs

The format of the CPSR and SPSRs is:

Condition code flags, bits [31:28]

Set on the result of instruction execution. The flags are:

N, bit [31] Negative condition code flag

Z, bit [30] Zero condition code flag

C, bit [29] Carry condition code flag

V, bit [28] Overflow condition code flag.

The condition code flags can be read or written in any mode, and are described in The
Application Program Status Register (APSR) on page A2-14.

Q, bit [27] Cumulative saturation flag. This flag can be read or written in any mode, and is described
in The Application Program Status Register (APSR) on page A2-14.

IT[7:0], bits [15:10,26:25]

If-Then execution state bits for the Thumb IT (If-Then) instruction. ITSTATE on page A2-17
describes the encoding of these bits. CPSR.IT[7:0] are the IT[7:0] bits described there. For
more information, see IT on page A8-104.

For details of how these bits can be accessed see Accessing the execution state bits on
page B1-18.

J, bit [24] Jazelle bit, see the description of the T bit, bit [5].

Bits [23:20] Reserved. RAZ/SBZP.

GE[3:0], bits [19:16]

Greater than or Equal flags, for SIMD instructions.

The GE[3:0] field can be read or written in any mode, and is described in The Application
Program Status Register (APSR) on page A2-14.

E, bit [9] Endianness execution state bit. Controls the load and store endianness for data accesses:

0 Little endian operation

1 Big endian operation.

This bit is ignored by instruction fetches.

ENDIANSTATE on page A2-19 describes the encoding of this bit. CPSR.E is the
ENDIANSTATE bit described there.

For details of how this bit can be accessed see Accessing the execution state bits on
page B1-18.

31 30 29 28 27 26 25 24 23 20 19 16 15 10 9 8 7 6 5 4 0

N Z C V Q
IT

[1:0]
J Reserved GE[3:0] IT[7:2] E A I F T M[4:0]
B1-16 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The System Level Programmers’ Model
Mask bits, bits [8:6]

The mask bits disable some asynchronous exceptions. The three mask bits are:

A, bit [8] Asynchronous abort disable bit. Used to mask asynchronous aborts.

I, bit [7] Interrupt disable bit. Used to mask IRQ interrupts.

F, bit [6] Fast interrupt disable bit. Used to mask FIQ interrupts.

The possible values of each bit are:

0 Exception enabled

1 Exception disabled.

The mask bits can be written only in privileged modes. Their values can be read in any
mode, but use of their values and attempts to change them by User mode code are
deprecated.

Updates to the F bit are restricted if Non-maskable Fast Interrupts (NMFIs) are supported,
see Non-maskable fast interrupts on page B1-18.

If implemented, the Security Extensions can restrict updates to the A and F bits from the
Non-secure state, see Use of the A, F, and Mode bits by the Security Extensions on
page B1-19.

T, bit [5] Thumb execution state bit. This bit and the J execution state bit, bit [24], determine the
instruction set state of the processor, ARM, Thumb, Jazelle, or ThumbEE. ISETSTATE on
page A2-15 describes the encoding of these bits. CPSR.J and CPSR.T are the same bits as
ISETSTATE.J and ISETSTATE.T respectively. For more information, see Instruction set
states on page B1-23.

For details of how these bits can be accessed see Accessing the execution state bits on
page B1-18.

M[4:0], bits [4:0]

Mode field. This field determines the current mode of the processor. The permitted values
of this field are listed in Table B1-1 on page B1-6. All other values of M[4:0] are reserved.
The effect of setting M[4:0] to a reserved value is UNPREDICTABLE.

For more information about the processor modes see ARM processor modes on page B1-6.
Figure B1-1 on page B1-9 shows the registers that can be accessed in each mode.

This field can be written only in privileged modes. Its value can be read in any mode, but
use of its value and attempts to change it by User mode code are deprecated.

If implemented, the Security Extensions restrict use of the mode field to enter Monitor and
FIQ modes, see Use of the A, F, and Mode bits by the Security Extensions on page B1-19.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B1-17

The System Level Programmers’ Model
Accessing the execution state bits

The execution state bits are the IT[7:0], J, E, and T bits. In exception modes you can read or write these bits
in the current SPSR.

In the CPSR, unless the processor is in Debug state:

• The execution state bits, other than the E bit, are RAZ when read by an MRS instruction.

• Writes to the execution state bits, other than the E bit, by an MSR instruction are:

— For ARMv7 and ARMv6T2, ignored in all modes.

— For architecture variants before ARMv6T2, ignored in User mode and required to write zeros
in privileged modes. If a nonzero value is written in a privileged mode, behavior is
UNPREDICTABLE.

Instructions other than MRS and MSR that access the execution state bits can read and write them in any mode.

Unlike the other execution state bits in the CPSR, CPSR.E can be read by an MRS instruction and written by
an MSR instruction. However, using the CPSR.E value read by an MRS instruction is deprecated, and using an
MSR instruction to change the value of CPSR.E is deprecated.

Note
 • Use the SETEND instruction to change the current endianness.

• To determine the current endianness, use an LDR instruction to load a word of memory whose value is
known and will differ if the endianness is reversed. For example, use an LDR (literal) instruction to
load a word whose four bytes are 0x01, 0x00, 0x00, and 0x00 in ascending order of memory address.
The LDR instruction loads the destination register with:

— 0x00000001 if the current endianness is little-endian

— 0x01000000 if the current endianness is big-endian.

For more information about the behavior of these bits in Debug state see Behavior of the PC and CPSR in
Debug state on page C5-7.

Non-maskable fast interrupts

Exceptions, debug events and checks on page A2-81 introduces the two levels of external interrupts to an
ARM processor, Interrupt Requests or IRQs and higher priority Fast Interrupt Requests or FIQs. Both IRQs
and FIQs can be masked by bits in the CPSR, see Program Status Registers (PSRs) on page B1-14:

• when the CPSR.I bit is set to 1, IRQ interrupts are masked

• when the CPSR.F bit is set to 1, FIQ interrupts are masked.

ARMv7 supports an operating mode where FIQs are not maskable by software. This Non-maskable Fast
Interrupt (NMFI) operation is controlled by a configuration input signal to the processor, that is asserted
HIGH to enable NMFI operation. There is no software control of NMFI operation.

Software can detect whether FIQs are maskable by reading the SCTLR.NMFI bit:

NMFI == 0 Software can mask FIQs by setting the CPSR.F bit to 1

NMFI == 1 Software cannot mask FIQs.
B1-18 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q1
Cross-Out
This deletion does not represent any change to the architecture specification. This sentence is deleted because the cross-referenced section makes no mention of IRQs and FIQs.

The System Level Programmers’ Model
For more information see:

• c1, System Control Register (SCTLR) on page B3-96 for a VMSA implementation

• c1, System Control Register (SCTLR) on page B4-45 for a PMSA implementation.

It is IMPLEMENTATION DEFINED whether an ARMv7 processor supports NMFIs. The SCTLR.NMFI bit is
RAO only if the processor supports NMFIs and the configuration input signal is asserted HIGH, otherwise
it is RAZ.

When the SCTLR.NMFI bit is 1:

• an instruction writing 0 to the CPSR.F bit clears it to 0, but an instruction attempting to write 1 to it
leaves it unchanged.

• CPSR.F can be set to 1 only by exception entries, as described in CPSR M field and A, I, and F mask
bit values on exception entry on page B1-36.

Use of the A, F, and Mode bits by the Security Extensions

When the Security Extensions are implemented and the processor is in the Non-secure state:

• the CPSR.F bit cannot be changed if the SCR.FW bit is set to 0

• the CPSR.A bit cannot be changed if the SCR.AW bit is set to 0

• the effect of setting CPSR.M to 0b10110, Monitor mode, is UNPREDICTABLE

• the effect of setting CPSR.M to 0b10001, FIQ mode, is UNPREDICTABLE if NSACR.RFR is set to 1.

Note
 • When the Security Extensions are implemented and the processor is in the Non-secure state the

SPSR.F and SPSR.A bits can be changed even if the corresponding bits in the SCR are set to 0.
However, when the SPSR is copied to the CPSR the CPSR.F and CPSR.A bits are not updated if the
corresponding bits in the SCR are set to 0.

• UNPREDICTABLE behavior must not be a security hole. Therefore, every implementation must ensure
that:

— If NSACR.RFR is 0, setting CPSR.M to 0b10110 when in Non-secure state cannot cause entry
to either Monitor mode or Secure state

— If NSACR.RFR is 1, setting CPSR.M to 0b10001 or 0b10110 when in Non-secure state cannot
cause entry to Monitor mode, FIQ mode or Secure state.

For more information about the access controls provided by the Security Extensions see c1, Secure
Configuration Register (SCR) on page B3-106.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B1-19

The System Level Programmers’ Model
Software running in Non-secure state might not be able to set the CPSR.F bit to 1 to mask FIQs, as described
in Use of the A, F, and Mode bits by the Security Extensions on page B1-19. Table B1-2 shows how the
SCTLR.NMFI bit interacts with the SCR.FW bit to control access to the CPSR.F bit, in the Secure and
Non-secure security states.

Note
 The SCTLR.NMFI bit is common to the Secure and Non-secure versions of the SCTLR, because it is a
read-only bit that reflects the value of a configuration input signal.

Pseudocode details of PSR operations

The following pseudocode gives access to the PSRs:

bits(32) CPSR, SPSR_fiq, SPSR_irq, SPSR_svc, SPSR_mon, SPSR_abt, SPSR_und;

// SPSR[] - non-assignment form
// ============================

bits(32) SPSR[]
 if BadMode(CPSR.M) then
 UNPREDICTABLE;
 else
 case CPSR.M of
 when ‘10001’ result = SPSR_fiq; // FIQ mode
 when ‘10010’ result = SPSR_irq; // IRQ mode
 when ‘10011’ result = SPSR_svc; // Supervisor mode
 when ‘10110’ result = SPSR_mon; // Monitor mode
 when ‘10111’ result = SPSR_abt; // Abort mode
 when ‘11011’ result = SPSR_und; // Undefined mode
 otherwise UNPREDICTABLE;
 return result;

// SPSR[] - assignment form
// ========================

Table B1-2 Summary of NMFI behavior when Security Extensions are implemented

Security state SCR.FW bit SCTLR.NMFI bit CPSR.F bit properties

Secure x 0 F bit can be written to 0 or 1

1 F bit can be written to 0 but not to 1

Non-secure 0 x F bit cannot be written

1 0 F bit can be written to 0 or 1

1 F bit can be written to 0 but not to 1
B1-20 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2010_Q3
Cross-Out
This is a reference to the contents of this section, and therefore is not required. This correction does not make any change to the architecture.

ARM_2010_Q3
Sticky Note
This deletion does not represent any change to the architecture specification. This sentence is deleted because it references this section of the document, and therefore serves no purpose.

Note, however, that the interaction between SCTLR.NMFI and SCR.FW applies only to the accesses in Non-secure state. In Secure state, SCR.FW has no effect, as the table shows.

The System Level Programmers’ Model
SPSR[] = bits(32) value
 if BadMode(CPSR.M) then
 UNPREDICTABLE;
 else
 case CPSR.M of
 when ‘10001’ SPSR_fiq = value; // FIQ mode
 when ‘10010’ SPSR_irq = value; // IRQ mode
 when ‘10011’ SPSR_svc = value; // Supervisor mode
 when ‘10110’ SPSR_mon = value; // Monitor mode
 when ‘10111’ SPSR_abt = value; // Abort mode
 when ‘11011’ SPSR_und = value; // Undefined mode
 otherwise UNPREDICTABLE;
 return;

// CPSRWriteByInstr()
// ==================

CPSRWriteByInstr(bits(32) value, bits(4) bytemask, boolean affect_execstate)

 privileged = CurrentModeIsPrivileged();
 nmfi = (SCTLR.NMFI == ‘1’);

 if bytemask<3> == ‘1’ then
 CPSR<31:27> = value<31:27>; // N,Z,C,V,Q flags
 if affect_execstate then
 CPSR<26:24> = value<26:24>; // IT<1:0>,J execution state bits

 if bytemask<2> == ‘1’ then
 // bits <23:20> are reserved SBZP bits
 CPSR<19:16> = value<19:16>; // GE<3:0> flags

 if bytemask<1> == ‘1’ then
 if affect_execstate then
 CPSR<15:10> = value<15:10>; // IT<7:2> execution state bits
 CPSR<9> = value<9>; // E bit is user-writable
 if privileged && (IsSecure() || SCR.AW == ‘1’) then
 CPSR<8> = value<8>; // A interrupt mask

 if bytemask<0> == ‘1’ then
 if privileged then
 CPSR<7> = value<7>; // I interrupt mask
 if privileged && (IsSecure() || SCR.FW == ‘1’) && (!nmfi || value<6> == ‘0’) then
 CPSR<6> = value<6>; // F interrupt mask
 if affect_execstate then
 CPSR<5> = value<5>; // T execution state bit
 if privileged then
 if BadMode(value<4:0>) then
 UNPREDICTABLE;
 else
 // Check for attempts to enter modes only permitted in Secure state from
 // Non-secure state. These are Monitor mode (‘10110’), and FIQ mode (‘10001’)
 // if the Security Extensions have reserved it. The definition of UNPREDICTABLE
 // does not permit the resulting behavior to be a security hole.
 if !IsSecure() && value<4:0> == ‘10110’ then UNPREDICTABLE;
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B1-21

The System Level Programmers’ Model
 if !IsSecure() && value<4:0> == ‘10001’ && NSACR.RFR == ‘1’ then UNPREDICTABLE;
 CPSR<4:0> = value<4:0>; // M<4:0> mode bits
 return;

// SPSRWriteByInstr()
// ==================

SPSRWriteByInstr(bits(32) value, bits(4) bytemask)

 if CurrentModeIsUserOrSystem() then UNPREDICTABLE;

 if bytemask<3> == ‘1’ then
 SPSR[]<31:24> = value<31:24>; // N,Z,C,V,Q flags, IT<1:0>,J execution state bits

 if bytemask<2> == ‘1’ then
 // bits <23:20> are reserved SBZP bits
 SPSR[]<19:16> = value<19:16>; // GE<3:0> flags

 if bytemask<1> == ‘1’ then
 SPSR[]<15:8> = value<15:8>; // IT<7:2> execution state bits, E bit, A interrupt mask

 if bytemask<0> == ‘1’ then
 SPSR[]<7:5> = value<7:5>; // I,F interrupt masks, T execution state bit
 if BadMode(value<4:0>) then // Mode bits
 UNPREDICTABLE;
 else
 SPSR[]<4:0> = value<4:0>;

 return;
B1-22 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The System Level Programmers’ Model
B1.4 Instruction set states

The instruction set states are described in Chapter A2 Application Level Programmers’ Model and
application level operations on them are described there. This section supplies more information about how
they interact with system level functionality, in the sections:

• Exceptions and instruction set state.

• Unimplemented instruction sets.

B1.4.1 Exceptions and instruction set state

An exception is handled in the appropriate exception mode. The SCTLR.TE bit determines the processor
instruction set state that handles exceptions. If necessary, the processor changes to this instruction set state
on exception entry. For more information see:

• c1, System Control Register (SCTLR) on page B3-96 for a VMSA implementation

• c1, System Control Register (SCTLR) on page B4-45 for a PMSA implementation.

When an exception is taken, the value of the CPSR before the exception is written to the SPSR for the
exception mode.

On returning from the exception:

• the CPSR is restored:

— from a memory location if the RFE instruction is used

— otherwise, from the SPSR for the exception mode

• the processor instruction set state is determined by the restored CPSR.J and CPSR.T values.

Note
 The Reset exception is a special case and behaves differently, see Reset on page B1-48.

B1.4.2 Unimplemented instruction sets

The CPSR.J and CPSR.T bits define the current instruction set state, see ISETSTATE on page A2-15. The
Jazelle state is optional, and the ThumbEE state is optional in the ARMv7-R architecture. Some system
instructions permit an attempt to set CPSR.J and CPSR.T to values that select an unimplemented instruction
set option, for example to set CPSR.J = 1, CPSR.T = 0 on an processor that does not implement the Jazelle
state. If such values are written to CPSR.J and CPSR.T, the implementation behaves in one of these ways:

• Sets CPSR.J and CPSR.T to the requested values and causes the next instruction to be UNDEFINED.

Entry to the Undefined Instruction handler forces the processor into the state indicated by the
SCTLR.TE bit. The handler can detect the cause of the exception because CPSR.J and CPSR.T are
set to the unimplemented combination in SPSR_und. Table B1-4 on page B1-34 shows the value in
LR_und on exception entry.

For the description of the SCTLR see:

— c1, System Control Register (SCTLR) on page B3-96 for a VMSA implementation

— c1, System Control Register (SCTLR) on page B4-45 for a PMSA implementation.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B1-23

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
executed as described in Exception return to an unsupported instruction set state on page B1-40 [PDF page 1190].

The System Level Programmers’ Model
• Does not set CPSR.J and CPSR.T to the requested values. The processor might change the value of
one or both of the bits in such a way that the new values correspond to an implemented instruction
set state. If this is done then the instruction set state changes to this new state. The detailed behavior
of the attempt to change to an unimplemented state is IMPLEMENTATION DEFINED.
B1-24 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The System Level Programmers’ Model
B1.5 The Security Extensions

It is IMPLEMENTATION DEFINED whether an ARMv7-A system includes the Security Extensions. When
implemented, the Security Extensions integrate hardware security features into the architecture, to facilitate
the development of secure applications. Many features of the architecture are extended to integrate with the
Security Extensions, and because of this integration of the Security Extensions into the architecture, features
of the Security Extensions are described in many sections of this manual.

Note
 The Security Extensions are also permitted as an extension to the ARMv6K architecture. The resulting
combination is sometimes known as the ARMv6Z or ARMv6KZ architecture.

General information about the Security Extensions is given in:

• Security states

• Impact of the Security Extensions on the modes and exception model on page B1-28

• Effect of the Security Extensions on the CP15 registers on page B3-71.

B1.5.1 Security states

The Security Extensions define two security states, Secure state and Non-secure state. All code execution
takes place either in Secure state or in Non-secure state:

• each security state operates in its own virtual memory address space

• many system controls can be set independently in each of the security states

• all of the processor modes that are available in a system that does not implement the Security
Extensions are available in each of the security states.

The Security Extensions also define an additional processor mode, Monitor mode, that provides a bridge
between code running in Non-secure state and code running in Secure state.

The following features mean the two security states can provide more security than is typically provided by
systems using the split between privileged and unprivileged code:

• the memory system provides mechanisms that prevent the Non-secure state accessing regions of the
physical memory designated as Secure

• system controls that apply to the Secure state are not accessible from the Non-secure state

• entry to the Secure state from the Non-secure state is provided only by a small number of exceptions

• exit from the Secure state to the Non-secure state is provided only by a small number of mechanisms

• many operating system exceptions can be handled without changing security state.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B1-25

The System Level Programmers’ Model
The fundamental mechanism that determines the security state is the SCR.NS bit, see c1, Secure
Configuration Register (SCR) on page B3-106:

• for all modes other than Monitor mode, the SCR.NS bit determines the security state for code
execution

• code executing in Monitor mode is executed in the Secure state regardless of the value of the SCR.NS
bit.

Code can change the SCR only if it is executing in the Secure state.

The general-purpose registers and the processor status registers are not banked between the Secure and the
Non-secure states. When execution switches between the Non-secure and Secure security states, ARM
expects that the values of these registers are switched by a kernel running mostly in Monitor mode.

Many of the system registers described in Coprocessors and system control on page B1-62 are banked
between the Secure and Non-secure security states. A banked copy of a register applies only to execution in
the appropriate security state. A small number of system registers are not banked but apply to both the
Secure and Non-secure security states. Typically the registers that are not banked relate to global system
configuration options that ARM expects to be common to the two security states.

Figure B1-2 on page B1-27 shows the normal transfers of control between different modes and security
states.

Note
 In Figure B1-2 on page B1-27, the route labelled as MCR is for an MCR instruction writing to the SCR, that sets
SCR.NS to 1 (Non-secure) at a time when SCR.NS == 0 (Secure) and the processor is not in Monitor mode.
This is a possible transfer, but ARM recommends that the value of SCR.NS is changed only by code
executing in Monitor mode, see Changing from Secure to Non-secure state on page B1-27.
B1-26 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q2
Inserted Text
 The registers LR_mon and SPSR_mon are UNKNOWN when executing in Non-secure state.

The System Level Programmers’ Model
Figure B1-2 Security state, Monitor mode, and the SCR.NS bit

Note
 It is important to distinguish between:

Monitor mode This is a processor mode that is only available when the Security Extensions are
implemented. It is used in normal operation, as a mechanism to transfer between Secure and
Non-secure state, as described in this section.

Monitor debug-mode

This is a debug mode and is available regardless of whether the Security Extensions are
implemented. For more information, see About the ARM Debug architecture on page C1-3.

Changing from Secure to Non-secure state

The security state is controlled by the SCR.NS bit, and ARM recommends that the SCR is modified only in
Monitor mode. Monitor mode is responsible for switching between Secure and Non-secure states.

To return to Non-secure state, set the SCR.NS bit to 1 and then perform an exception return.

���

���

���$��
*&�&�

?���*��$��
*&�&�

� �
�$%���'*��

"���(
�-��&

��*&�,

 7�
� �

�$%���'*��

"���(
�-��&

��*&�,

 7�

"*�� "*��

����#

<��	�<7�?��J��
1?���*��$��2

?���*��$��
%�'�'��.���,���*

#�����&)���,���
�)��.'�.�,�&)��

<��	�<7�?��J��
1���$��2

���$���%�'�'��.��
,���*��&)���&)��

!��'&���,���

!��'&��
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B1-27

The System Level Programmers’ Model
Note
 To avoid security holes, ARM strongly recommends that:

• you do not change from Secure to Non-secure state by using an MSR or CPS instruction to switch from
Monitor mode to some other mode while SCR.NS is 1

• you do not use an MCR instruction that writes SCR.NS to change from Secure to Non-secure state. This
means you should not alter the SCR.NS bit in any mode except Monitor mode.

The usual mechanism for changing from Secure to Non-secure state is an exception return.

Pseudocode details of Secure state operations

The HaveSecurityExt() function returns TRUE if the Security Extensions are implemented, and FALSE
otherwise.

The following function returns TRUE if the Security Extensions are not implemented or the processor is in
Secure state, and FALSE otherwise.

// IsSecure()
// ==========

boolean IsSecure()
 return !HaveSecurityExt() || SCR.NS == ‘0’ || CPSR.M == ‘10110’; // Monitor mode

B1.5.2 Impact of the Security Extensions on the modes and exception model

This section summarizes the effect of the Security Extensions on the modes and exception model, to give a
overview of the Security Extensions. When the Security Extensions are implemented:

• An additional mode, Monitor mode, is implemented. For more information, see ARM processor
modes on page B1-6 and Security states on page B1-25.

• An additional exception, the Secure Monitor Call (SMC) exception, is implemented. This is
generated by the SMC instruction. For more information, see Secure Monitor Call (SMC) exception on
page B1-53 and SMC (previously SMI) on page B6-18.

• Because the SCTLR is banked between the Secure and Non-secure states, the V and VE bits are
defined independently for the Secure and Non-secure states. For each state:

— the SCTLR.V bit controls whether the normal or the high exception vectors are used

— the SCTLR.VE bit controls whether the IRQ and FIQ vectors are IMPLEMENTATION DEFINED.

For more information, see Exception vectors and the exception base address on page B1-30.

• The base address for the normal exception vectors is held in a CP15 register that is banked between
the two security states. This register defines the base address used for exceptions handled in modes
other than Monitor mode. Another CP15 register holds the base address for exceptions handled in
Monitor mode. For more information, see Exception vectors and the exception base address on
page B1-30.
B1-28 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The System Level Programmers’ Model
• If an exception is taken in Monitor mode in Non-debug state, the SCR.NS bit is set to zero, see c1,
Secure Configuration Register (SCR) on page B3-106. This forces Secure state entry for all
exceptions. However, if an exception is taken in Monitor mode in Debug state, the SCR.NS bit is not
set to zero.

Note
 Many uses of the Security Extensions can be simplified if the system is designed so that exceptions

cannot be taken in Monitor mode.

• Setting bits in the Secure Configuration Register causes one or more of external aborts, IRQs and
FIQs to be handled in Monitor mode and to use the Monitor exception base address:

— setting the SCR.EA bit to 1 means external aborts are handled in Monitor mode, instead of
Abort mode

— setting the SCR.FIQ bit to 1 means FIQs are handled in Monitor mode, instead of FIQ mode

— setting the SCR.IRQ bit to 1 means IRQs are handled in Monitor mode, instead of IRQ mode.

For more information see:

— Control of exception handling by the Security Extensions on page B1-41

— c1, Secure Configuration Register (SCR) on page B3-106.

• Setting bits in the Secure Configuration Register prevents code executing in Non-secure state from
being able to mask one or both of asynchronous aborts and FIQs:

— Setting the SCR.AW bit to 1 prevents Non-secure setting of CPSR.A to 1.

— Setting the SCR.FW bit to 1 prevents Non-secure setting of CPSR.F to 1. For details of how
this setting interacts with NMFIs see Non-maskable fast interrupts on page B1-18.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B1-29

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
Clearing

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
Clearing

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
0

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
Clearing

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
0

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
the value of the CPSR.F bit affects

The System Level Programmers’ Model
B1.6 Exceptions

An exception causes the processor to suspend program execution to handle an event, such as an externally
generated interrupt or an attempt to execute an undefined instruction. Exceptions can be generated by
internal and external sources.

Normally, when an exception is taken the processor state is preserved immediately, before handling the
exception. This means that, when the event has been handled, the original state can be restored and program
execution resumed from the point where the exception was taken.

More than one exception might be generated at the same time, and a new exception can be generated while
the processor is handling an exception.

The following sections describe exception handling in general:

• Exception vectors and the exception base address

• Exception priority order on page B1-33

• Exception entry on page B1-34

• Exception return on page B1-38

• Exception-handling instructions on page B1-41

• Control of exception handling by the Security Extensions on page B1-41

• Low interrupt latency configuration on page B1-43.

• Wait For Event and Send Event on page B1-44

• Wait For Interrupt on page B1-47.

The following sections give details of each exception:

• Reset on page B1-48

• Undefined Instruction exception on page B1-49

• Supervisor Call (SVC) exception on page B1-52

• Secure Monitor Call (SMC) exception on page B1-53

• Prefetch Abort exception on page B1-54

• Data Abort exception on page B1-55

• IRQ exception on page B1-58

• FIQ exception on page B1-60.

B1.6.1 Exception vectors and the exception base address

When an exception is taken, processor execution is forced to an address that corresponds to the type of
exception. These addresses are called the exception vectors.

By default, the exception vectors are eight consecutive word-aligned memory addresses, starting at an
exception base address. Table B1-3 on page B1-31 shows the assignment of the exceptions to the eight
memory addresses.
B1-30 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The System Level Programmers’ Model
The default exception vectors for the IRQ and FIQ exceptions can be changed by setting the SCTLR.VE bit
to 1, as described in Vectored interrupt support on page B1-32.

If the Security Extensions are not implemented there is a single exception base address. This is controlled
by the SCTLR.V bit:

V == 0 Exception base address = 0x00000000. This setting is referred to as normal vectors, or as low
vectors.

V == 1 Exception base address = 0xFFFF0000. This setting is referred to as high vectors, or Hivecs.

Note
 Use of the Hivecs setting, V == 1, is deprecated in ARMv7-R. ARM recommends that Hivecs is used only
in ARMv7-A implementations.

If the Security Extensions are implemented there are three exception base addresses:

• the Non-secure exception base address is used for all exceptions that are processed in Non-secure
state

• the Secure exception base address is used for all exceptions that are processed in Secure state but not
in Monitor mode

• the Monitor exception base address is used for all exceptions that are processed in Monitor mode.

Table B1-3 Offsets from exception base addresses

Exception
offset

Exception that is vectored at that offset from:

Monitor exception base addressa

a. This column applies only if the Security Extensions are implemented.

Base address for all other exceptions

0x00 Not used Reset

0x04 Not used Undefined Instruction

0x08 Secure Monitor Call (SMC) Supervisor Call (SVC)

0x0C Prefetch Abort Prefetch Abort

0x10 Data Abort Data Abort

0x14 Not used Not used

0x18 IRQ (interrupt) IRQ (interrupt)

0x1C FIQ (fast interrupt) FIQ (fast interrupt)
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B1-31

The System Level Programmers’ Model
See CPSR M field and A, I, and F mask bit values on exception entry on page B1-36 to determine the mode
in which an exception is processed. If that mode is Monitor mode then the exception is processed in Secure
state, otherwise the exception is processed in the current security state, determined at the time when the
exception is taken.

The Non-secure exception base address is controlled by the SCTLR.V bit in the Non-secure SCTLR:

V == 0 The exception base address is the value of the Non-secure Vector Base Address Register
(VBAR), see c12, Vector Base Address Register (VBAR) on page B3-148.

V == 1 Exception base address = 0xFFFF0000. This setting is often referred to as Hivecs.

The Secure exception base address is controlled similarly, by the Secure SCTLR.V bit and the Secure
VBAR.

The Monitor exception base address is always the value of the Monitor Vector Base Address Register
(MVBAR), see c12, Monitor Vector Base Address Register (MVBAR) on page B3-149.

Vectored interrupt support

By default, the IRQ and FIQ exception vectors are at fixed offsets from the exception base address that is
being used. This is consistent with previous versions of the ARM architecture. With this default
configuration, each of the FIQ and IRQ handlers typically starts with an instruction sequence that
determines the cause of the interrupt and then branches to an appropriate routine to handle it.

Support for vectored interrupts means an interrupt controller can prioritize interrupts and provide the
address of the required interrupt handler directly to the processor, for use as the interrupt vector. Vectored
interrupt behavior is enabled by setting the SCTLR.VE bit to 1, see:

• c1, System Control Register (SCTLR) on page B3-96 for a VMSA implementation

• c1, System Control Register (SCTLR) on page B4-45 for a PMSA implementation.

The hardware that supports vectored interrupts is IMPLEMENTATION DEFINED.

For backwards compatibility, the vectored interrupt mechanism is disabled on reset.

When the Security Extensions are implemented:

• The SCTLR.VE bit is banked between Secure and Non-secure states to provide independent control
of whether vectored interrupt support is enabled.

• Interrupts can be trapped to Monitor mode, by setting either or both of the SCR.IRQ and SCR.FIQ
bits to 1. When an interrupt is trapped to Monitor mode it uses the vector in the vector table addressed
by the Monitor exception base address held in MVBAR, regardless of the value of either banked copy
of the SCTLR.VE bit.
B1-32 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The System Level Programmers’ Model
Operation

In pseudocode, the current exception base address for exceptions processed in Monitor mode is determined
by reading MVBAR, and for other exceptions by the following function:

// ExcVectorBase()
// ===============

bits(32) ExcVectorBase()
 if SCTLR.V == ‘1’ then // Hivecs selected, base = 0xFFFF0000
 return Ones(16):Zeros(16);
 elsif HaveSecurityExt() then
 return VBAR;
 else
 return Zeros(32);

B1.6.2 Exception priority order

In principle a number of different synchronous exceptions can be generated by a single instruction. The
following principles determine which synchronous exception is taken:

• No instruction is valid if it has a synchronous Prefetch Abort exception associated with it. Therefore,
other synchronous exceptions are not taken in this case.

• An instruction that generates an Undefined Instruction exception cannot cause any memory access,
and therefore cannot cause a Data Abort exception.

• All other synchronous exceptions are mutually exclusive and are derived from a decode of the
instruction.

The ARM architecture does not define when asynchronous exceptions are taken. Therefore the prioritization
of asynchronous exceptions relative to other exceptions, both synchronous and asynchronous, depends on
the implementation.

The CPSR includes a mask bit for each type of asynchronous exception. Setting one of these bits to 1
prevents the corresponding asynchronous exception from being taken. Taking an exception sets an
exception-dependent subset of these mask bits.

Note
 • The subset of the CPSR mask bits that is set on taking an exception prioritizes the execution of FIQ

handlers over that of IRQ and asynchronous abort handlers.

• A special requirement applies to asynchronous watchpoints - see Debug event prioritization on
page C3-43.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B1-33

The System Level Programmers’ Model
B1.6.3 Exception entry

On taking an exception:

1. The value of the CPSR is saved in the SPSR for the exception mode that is handling the exception.

2. The value of (PC + exception-dependent offset) is saved in the LR for the exception mode that is
handling the exception, see Table B1-4.

3. The CPSR and PC are updated with information for the exception handler:

• The CPSR is updated with new context information. This includes:

— Setting CPSR.M to the processor mode in which the exception is to be handled.

— Disabling appropriate classes of interrupt, to prevent uncontrolled nesting of exception
handlers. For more information, see Table B1-6 on page B1-36, Table B1-7 on
page B1-37, and Table B1-8 on page B1-37.

— Setting the instruction set state to the instruction set chosen for exception entry, see
Instruction set state on exception entry on page B1-35.

— Setting the endianness to the value chosen for exception entry, see CPSR.E bit value on
exception entry on page B1-38.

— Clearing the IT[7:0] bits to 0.

For more information, see CPSR M field and A, I, and F mask bit values on exception entry on
page B1-36.

• The appropriate exception vector is loaded to the PC, see Exception vectors and the exception
base address on page B1-30.

4. Execution continues from the address held in the PC.

At step 2 of the exception entry, the address saved in the LR depends on:

• the Exception type

• the instruction set state in which the processor is executing when the exception occurs.

Table B1-4 shows the LR value saved for all cases:

Table B1-4 Link Register value saved on exception entry

Exception Base LR value a
Offset, for processor state of:a

ARM Thumb or ThumbEE Jazelle

Reset UNKNOWN - - -

Undefined Instruction Address of the undefined instruction + 4 +2 +2 or +4b

SVC Address of SVC instruction + 4 +2 - c

SMC Address of SMC instruction + 4 +4 -c
B1-34 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q2
Cross-Out

The System Level Programmers’ Model
Instruction set state on exception entry

Exception handlers always execute in either Thumb state or ARM state. Which state they execute in is
determined by the Thumb Exception enable bit, SCTLR.TE, see:

• c1, System Control Register (SCTLR) on page B3-96 for a VMSA implementation

• c1, System Control Register (SCTLR) on page B4-45 for a PMSA implementation.

On exception entry, the CPSR.T and CPSR.J bits are set to values that depend on the SCTLR.TE value, as
shown in Table B1-5:

When the Security Extensions are implemented, the SCTLR is banked for Secure and Non-secure states,
and therefore the TE bit value might be different for Secure and Non-secure states. The SCTLR.TE bit for
the security state in which the exception is handled determines the instruction set state for the exception
handler. This means the exception handlers might run in different instruction set states, depending on the
security state.

Prefetch Abort Address of aborted instruction fetch + 4 +4 + 4

Data Abort Address of instruction that generated
the abort

 + 8 +8 + 8

IRQ or FIQ Address of next instruction to execute + 4 +4 + 4

a. Except for the Reset exception, the value saved in the LR is the base LR value plus the offset value for the processor
state immediately before the exception entry.

b. In Jazelle state, Undefined Instruction exceptions can only happen on a processor that includes a trivial implementation
of Jazelle state. On such a processor, if an exception return instruction writes {CPSR.J, CPSR.T} to 0b10, the processor
takes an Undefined Instruction exception when it next attempts to execute an instruction. It is IMPLEMENTATION
DEFINED whether the processor uses an offset of +2 or +4 in these circumstances, but it must always use the same offset.

c. SVC and SMC exceptions cannot occur in Jazelle state.

Table B1-4 Link Register value saved on exception entry (continued)

Exception Base LR value a
Offset, for processor state of:a

ARM Thumb or ThumbEE Jazelle

Table B1-5 CPSR.J and CPSR.T bit values on exception entry

SCTLR.TE CPSR.J CPSR.T Exception handler state

0 0 0 ARM

1 0 1 Thumb
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B1-35

ARM_2009_Q2 and ARM_2011_Q2
Cross-Out

ARM_2009_Q2 and ARM_2011_Q2
Replacement Text
With a non-trivial Jazelle implementation, the architecture does not define any behavior that requires a processor to take an Undefined Instruction exception when it is operating in Jazelle state. However, on some implementations that include a trivial Jazelle implementation, an Undefined Instruction might be taken as a result of attempting instruction execution in Jazelle state, see Exception return to an unsupported instruction set state on page B1-40 [PDF page 1190]. If such an Undefined Instruction exception is taken in Jazelle state, exception entry sets the LR to an UNKNOWN value.

ARM_2011_Q2
Sticky Note
This erratum was updated in the ARM_2010_Q1 errata release, to clarify its intended meaning.

The System Level Programmers’ Model
CPSR M field and A, I, and F mask bit values on exception entry

On exception entry, the processor mode is set to one of the exception modes and the CPSR[A,I,F] interrupt
disable (mask) bits are set to new values:

• the CPSR.I bit is always set to 1, to disable IRQs

• the CPSR.M (mode), CPSR.A (asynchronous abort disable), and CPSR.F (FIQ disable) bits are set
to values that depend:

— on the exception type

— if the Security Extensions are implemented, on the security state and some bits of the SCR, see
c1, Secure Configuration Register (SCR) on page B3-106.

The new values are shown in:

• Table B1-6, for an implementation that does not include the Security Extensions

• Table B1-7 on page B1-37, for an implementation that includes the Security Extensions, when the
security state is Secure (NS == 0).

• Table B1-8 on page B1-37, for an implementation that includes the Security Extensions, when the
security state is Non-secure (NS == 1).

In these tables, Unchanged indicates that the bit value is unchanged from its value when the exception was
taken.

Table B1-6 A and F bit values on exception entry, without Security Extensions

Exception Exception mode CPSR.A CPSR.F

Reset Supervisor 1 1

Undefined Instruction Undefined Unchanged Unchanged

Supervisor Call (SVC) Supervisor Unchanged Unchanged

All aborts Abort 1 Unchanged

IRQ IRQ 1 Unchanged

FIQ FIQ 1 1
B1-36 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The System Level Programmers’ Model
Table B1-7 A and F bit values on exception entry, with Security Extensions and NS == 0

Exception
SCR bits

Exception mode
NS == 0, Secure

EA IRQ FIQ CPSR.A CPSR.F

Reset x x x Supervisor 1 1

Undefined Instruction x x x Undefined Unchanged Unchanged

Supervisor Call (SVC) x x x Supervisor Unchanged Unchanged

Secure Monitor Call (SMC) x x x Monitor 1 1

All external aborts
0 x x Abort 1 Unchanged

1 x x Monitor 1 1

All internal aborts x x x Abort 1 Unchanged

IRQ
x 0 x IRQ 1 Unchanged

x 1 x Monitor 1 1

FIQ
x x 0 FIQ 1 1

x x 1 Monitor 1 1

Table B1-8 A and F bit values on exception entry, with Security Extensions and NS == 1

Exception
SCR bits

Exception
mode

NS == 1, Non-secure

EA IRQ FIQ AW FW CPSR.A CPSR.F

Reset x x x x x Supervisor 1 1

Undefined Instruction x x x x x Undefined Unchanged Unchanged

Supervisor Call (SVC) x x x x x Supervisor Unchanged Unchanged

Secure Monitor Call (SMC) x x x x x Monitor 1 1

All external aborts

0 x x 0 x Abort Unchanged Unchanged

0 x x 1 x Abort 1 Unchanged

1 x x x x Monitor 1 1
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B1-37

The System Level Programmers’ Model
CPSR.E bit value on exception entry

On exception entry, the CPSR.E bit is set to the value of the SCTLR.EE bit. This bit of the CPSR controls
the load and store endianness for data handling by the exception handler, see the bit description in Format
of the CPSR and SPSRs on page B1-16. For the description of the SCTLR see:

• c1, System Control Register (SCTLR) on page B3-96 for a VMSA implementation

• c1, System Control Register (SCTLR) on page B4-45 for a PMSA implementation.

B1.6.4 Exception return

In the ARM architecture, exception return requires the simultaneous restoration of the PC and CPSR to
values that are consistent with the desired state of execution on returning from the exception. Normally, this
is the state of execution just before the exception was taken, but it can be different in some circumstances,
for example if the exception handler performed instruction emulation.

Typically, this involves returning to one of:

• the instruction boundary at which an asynchronous exception was taken

• the instruction following an SVC or SMC instruction, for an exception generated by one of those
instructions

• the instruction that caused the exception, after the reason for the exception has been removed

All internal aborts
x x x 0 x Abort Unchanged Unchanged

x x x 1 x Abort 1 Unchanged

IRQ

x 0 x 0 x IRQ Unchanged Unchanged

x 0 x 1 x IRQ 1 Unchanged

x 1 x x x Monitor 1 1

FIQ

x x 0 0 0 FIQ Unchanged Unchanged

x x 0 0 1 FIQ Unchanged 1

x x 0 1 0 FIQ 1 Unchanged

x x 0 1 1 FIQ 1 1

x x 1 x x Monitor 1 1

Table B1-8 A and F bit values on exception entry, with Security Extensions and NS == 1 (continued)

Exception
SCR bits

Exception
mode

NS == 1, Non-secure

EA IRQ FIQ AW FW CPSR.A CPSR.F
B1-38 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The System Level Programmers’ Model
• the subsequent instruction, if the instruction that caused the exception has been emulated in the
exception handler.

The ARM architecture makes no requirement that exception return must be to any particular place in the
execution stream. However, the architecture does have a preferred exception return for each exception other
than Reset. The values of the SPSR.IT[7:0] bits generated on exception entry are always correct for the
preferred exception return, but might require adjustment by software if returning elsewhere.

In some cases, the value of the LR set on taking the exception, as shown in Table B1-4 on page B1-34,
makes it necessary to perform a subtraction to calculate the appropriate return address. The value that must
be subtracted for the preferred exception return, and other details of the preferred exception return, are given
in the description of each of the exceptions.

The ARM architecture provides the following exception return instructions:

• Data-processing instructions with the S bit set and the PC as a destination, see SUBS PC, LR and
related instructions on page B6-25.

Typically, SUBS is used when a subtraction is required, and SUBS with an operand of 0 or MOVS is used
otherwise.

• From ARMv6, the RFE instruction, see RFE on page B6-16. If a subtraction is required, typically it is
performed before saving the LR value to memory.

• In ARM state, a form of the LDM instruction, see LDM (exception return) on page B6-5. If a
subtraction is required, typically it is performed before saving the LR value to memory.

Alignment of exception returns

An unaligned exception return is one where the address transferred to the PC on an exception return is not
aligned to the size of instructions in the target instruction set. The target instruction set is controlled by the
[J,T] bits of the value transferred to the CPSR for the exception return. The behavior of the hardware for
exception returns for different values of the [J,T] bits is as follows:

[J,T] == 00 The target instruction set state is ARM state. Bits [1:0] of the address transferred to the PC
are ignored by the hardware.

[J,T] == 01 The target instruction set state is Thumb state:

• bit [0] of the address transferred to the PC is ignored by the hardware

• bit [1] of the address transferred to the PC is part of the instruction address.

[J,T] == 10 The target instruction set state is Jazelle state. In a non-trivial implementation of the Jazelle
extension, bits [1:0] of the address transferred to the PC are part of the instruction address.
In a trivial implementation of the Jazelle extension, behavior is UNPREDICTABLE, see
Exception return to an unsupported instruction set state on page B1-40. For details of the
trivial implementation of Jazelle state see Trivial implementation of the Jazelle extension on
page B1-81.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B1-39

ARM_2009_Q2
Inserted Text
the

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
extension

ARM_2009_Q2
Sticky Note
This is a minor correction, for consistency. It does not change the meaning of this paragraph.

ARM_2010_Q2
Cross-Out

ARM_2010_Q2
Sticky Note
This statement is wrong, and the information in the cross-referenced section has been corrected.

The System Level Programmers’ Model
[J,T] == 11 The target instruction set state is ThumbEE state:

• bit [0] of the address transferred to the PC is ignored by the hardware

• bit [1] of the address transferred to the PC is part of the instruction address.

ARM deprecates any dependence on the requirements that the hardware ignores bits of the address. ARM
recommends that the address transferred to the PC for an exception return is correctly aligned for the target
instruction set.

After an exception entry other than Reset, the LR value has the correct alignment for the instruction set
indicated by the SPSR.[J,T] bits. This means that if exception return instructions are used with the LR and
SPSR values produced by such an exception entry, the only precaution software needs to take to ensure
correct alignment is that any subtraction is of a multiple of four if returning to ARM state, or a multiple of
two if returning to Thumb state or to ThumbEE state.

Exception return to an unsupported instruction set state

An implementation that does not support one or both of Jazelle and ThumbEE states does not normally get
into an unsupported instruction set state, because:

• on a trivial Jazelle implementation, the BXJ instruction acts as a BX instruction

• on an implementation that does not include ThumbEE support, the ENTERX instruction is UNDEFINED

• normal exception entry and return preserves the instruction set state.

However, it is possible for an exception return instruction to set CPSR.J and CPSR.T to the values
corresponding to an unsupported instruction set state. This is most likely to happen because a faulty
exception handler restores the wrong value to the CPSR.

If the processor attempts to execute an instruction while the CPSR.J and CPSR.T bits indicate an
unsupported instruction set state:

• If the unsupported instruction set state is Jazelle state, behavior is UNPREDICTABLE.

• If the unsupported instruction set state is ThumbEE state, the processor takes an Undefined
Instruction exception.

The Undefined Instruction handler can detect the cause of this exception because on entry to the
handler the SPSR.J and SPSR.T bits indicate the ThumbEE state. If the Undefined Instruction handler
wants to return, avoiding a return to ThumbEE state, it can change the values its exception return
instruction writes to the CPSR.J and CPSR.T bits.

If an exception return writes CPSR.J = 1 and CPSR.T = 1, corresponding to ThumbEE state, and also
writes the address of an aborting memory location to the PC, it is IMPLEMENTATION DEFINED whether:

— the instruction is fetched and a Prefetch Abort exception is taken because the memory access
aborts

— an Undefined Instruction exception is taken, without the instruction being fetched.

An implementation that supports neither of the Jazelle and ThumbEE states can implement the J bits of the
PSRs as RAZ/WI. On such an implementation, a return to an unsupported instruction set state cannot occur.
B1-40 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q2
Inserted Text
on some implementations

ARM_2009_Q2
Inserted Text
, see Unimplemented instruction sets on page B1-23 [PDF page 1173].

ARM_2010_Q2
Cross-Out

ARM_2010_Q2
Replacement Text
the processor takes an Undefined Instruction exception

ARM_2010_Q2
Sticky Note
This information is not limited to the case of an attempted return to ThumbEE state on an implementation that does not support ThumbEE state. Similar considerations apply in the case where CPSR.J == 1 and CPSR.T == 0, indicating Jazelle state, and the processor does not support Jazelle state.

ARM_2011_Q2
Inserted Text

ARM_2011_Q2
Sticky Note
See inserted statement, intended to follow the bulleted list, regarding the width of any instruction fetch when CPSR.{J, T} correspond to an unimplemented instruction set state.

ARM_2011_Q2
Inserted Text
If an exception return writes CPSR.{J, T} values that correspond to an unimplemented instruction set, the width of the instruction fetch is an IMPLEMENTATION DEFINED value that is 1, 2 or 4 bytes.

The System Level Programmers’ Model
B1.6.5 Exception-handling instructions

From ARMv6, the instruction sets include the following exception-handling instructions, in addition to the
exception return instructions described in Exception return on page B1-38:

• a CPS (Change Processor State) instruction to simplify changes of processor mode and the disabling
and enabling of interrupts, see CPS on page B6-3

• an SRS (Store Return State) instruction, to reduce the processing cost of handling exceptions in a
different mode to the exception entry mode, by removing any need to use the stack of the original
mode, see SRS on page B6-20.

As an example of where these instructions might be used, an IRQ routine might want to execute in System
or Supervisor mode, so that it can both re-enable IRQs and use BL instructions. This is not possible in IRQ
mode, because a nested IRQ could corrupt the return link of a BL at any time.

With the CPS and SRS instructions, the system can use the following instruction sequence at the start of its
exception handler:

SUB LR,LR,#4 ; IRQ requires subtraction from LR
SRSFD SP!, #<mode> ; <mode> = 19 for Supervisor, 31 for System
CPSIE i,#<mode>

This:

• stores the return state held in the LR and SPSR_irq to the stack for Supervisor mode or for User and
System mode

• switches to Supervisor or System mode and re-enables IRQs.

This is done efficiently, without making any use of SP_irq or the IRQ stack.

At the end of the exception handler, an RFEFD SP! instruction pops the return state off the stack and returns
from the exception.

B1.6.6 Control of exception handling by the Security Extensions

The Security Exceptions provide additional controls of the handling of:

• aborts, see Control of aborts by the Security Extensions

• FIQs, see Control of FIQs by the Security Extensions on page B1-42

• IRQs, see Control of IRQs by the Security Extensions on page B1-43.

Control of aborts by the Security Extensions

The CPSR.A bit can be used to disable asynchronous aborts. When the Security Extensions are
implemented:

• the SCR.AW bit controls whether the CPSR.A bit can be modified in Non-secure state

• the SCR.EA bit controls whether external aborts are handled in Abort mode or Monitor mode.

For details of these bits see c1, Secure Configuration Register (SCR) on page B3-106.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B1-41

The System Level Programmers’ Model
Table B1-9 shows the possible values for the SCR.AW and SCR.EA bits, and the abort handling that results
in each case:

When the SCR.EA bit is set to 1, and an external abort causes entry to Monitor mode, fault information is
written to the Secure copies of the Fault Status and Fault Address registers.

Control of FIQs by the Security Extensions

The CPSR.F bit can be used to disable FIQs. When the Security Extensions are implemented:

• the SCR.FW bit controls whether the CPSR.F bit can be modified in Non-secure state

• the SCR.FIQ bit controls whether FIQs are handled in FIQ mode or Monitor mode.

For details of these bits see c1, Secure Configuration Register (SCR) on page B3-106.

Table B1-10 on page B1-43 shows the effect of these bits on FIQ handling:

Table B1-9 Effect of the SCR.AW and SCR.EA bits on abort handling

SCR bits
Effect on abort handling

AW EA

0 0 All aborts are handled locally using Abort mode. Asynchronous aborts are maskable only in Secure
state.

This is the reset state and supports legacy systems.

0 1 All external aborts, synchronous and asynchronous, are handled in Monitor mode. Asynchronous
aborts are maskable only in Secure state.

All security aborts from peripherals can be treated in a safe manner in Monitor mode.

1 0 All aborts are handled locally, using Abort mode. Asynchronous aborts are maskable in both Secure
and Non-secure states.

1 1 All external aborts are trapped to Monitor mode. Non-secure state can hide asynchronous external
aborts from the Monitor, by changing the CPSR.A bit.
B1-42 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The System Level Programmers’ Model
Note
 • The configuration with SCR.FW == 1 and SCR.FIQ == 1 permits Non-secure state to deny service

by changing the CPSR.F bit. ARM recommends that this configuration is not used.

• Interrupts driven by Secure peripherals are called Secure interrupts. When SCR.FW = 0 and
SCR.FIQ = 1, FIQ exceptions can be used as Secure interrupts. These enter Secure state in a
deterministic way.

Control of IRQs by the Security Extensions

When the Security Extensions are implemented, the SCR.IRQ bit controls whether IRQs are handled in IRQ
mode or Monitor mode. For details of this bit see c1, Secure Configuration Register (SCR) on page B3-106.

B1.6.7 Low interrupt latency configuration

The SCTLR.FI bit is set to 1 to enable the low interrupt latency configuration of an implementation. This
configuration can reduce the interrupt latency of the processor. The mechanisms implemented to achieve
low interrupt latency are IMPLEMENTATION DEFINED. For the description of the SCTLR see:

• c1, System Control Register (SCTLR) on page B3-96 for a VMSA implementation

• c1, System Control Register (SCTLR) on page B4-45 for a PMSA implementation.

To ensure that a change between normal and low interrupt latency configurations is synchronized correctly,
the SCTLR.FI bit must be changed only in IMPLEMENTATION DEFINED circumstances. The FI bit can be
changed shortly after reset and before enabling the MMU, MPU, or caches, when interrupts are disabled,
using the following sequence:

Table B1-10 Effect of the SCR.AW and SCR.EA bits on FIQ handling

SCR bits
Effect on FIQ handling

FW FIQ

0 0 FIQs are handled locally using FIQ mode. FIQs are maskable only in Secure state.

This is the reset state and supports legacy systems.

0 1 FIQs are handled in Monitor mode. FIQs are maskable only in Secure state.

This setting gives Secure FIQs.

1 0 FIQs are handled locally in FIQ mode. FIQs can be masked, in both Secure and Non-secure states.

1 1 All FIQs are trapped to Monitor mode. Non-secure state can hide FIQs from the Monitor, by changing
the CPSR.F bit.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B1-43

The System Level Programmers’ Model
DSB
ISB
MCR p15, 0, Rx, c1, c0, c0 ; change FI bit in the SCTLR
DSB
ISB

Implementation can define other sequences and circumstances that permit the SCTLR.FI bit to be changed.

When interrupt latency is reduced, this can result in reduced performance overall. Examples of methods that
might be used to reduce interrupt latency are:

• disabling Hit-Under-Miss functionality in a processor

• the abandoning of restartable external accesses.

These choices permit the processor to react to a pending interrupt faster than would otherwise be the case.

A low interrupt latency configuration permits interrupts and asynchronous aborts to be taken during a
sequence of memory transactions generated by a load/store instruction. For details of what these sequences
are and the consequences of taking interrupts and asynchronous aborts in this way see Single-copy atomicity
on page A3-27.

ARM deprecates any software reliance on the behavior that an interrupt or asynchronous abort cannot occur
in a sequence of memory transactions generated by a single load/store instruction to Normal memory.

Note
 A particular case that has shown this reliance is load multiples that load the stack pointer from memory. In
an implementation where an interrupt is taken during the LDM, this can result in corruption of the stack
pointer.

B1.6.8 Wait For Event and Send Event

A multiprocessor operating system requires locking mechanisms to protect data structures from being
accessed simultaneously by multiple processors. These mechanisms prevent the data structures becoming
inconsistent or corrupted if different processors try to make conflicting changes. If a lock is busy, because
a data structure is being used by one processor, it might not be practical for another processor to do anything
except wait for the lock to be released. For example, if a processor is handling an interrupt from a device it
might need to add data received from the device to a queue. If another processor is removing data from the
queue, it will have locked the memory area that holds the queue. The first processor cannot add the new data
until the queue is in a consistent state and the lock has been released. It cannot return from the interrupt
handler until the data has been added to the queue, so it must wait.

Typically, a spin-lock mechanism is provided for these circumstances:

• A processor requiring access to the protected data attempts to obtain the lock using single-copy
atomic synchronization primitives such as the ARM Load-Exclusive and Store-Exclusive operations
described in Synchronization and semaphores on page A3-12.

• If the processor obtains the lock it performs its memory operation and releases the lock.
B1-44 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The System Level Programmers’ Model
• If the processor cannot obtain the lock, it reads the lock value repeatedly in a tight loop until the lock
becomes available. At this point it again attempts to obtain the lock.

However, this spin-lock mechanism is not ideal for all situations:

• in a low-power system the tight read loop is undesirable because it uses energy to no effect

• in a multi-threaded processor the execution of spin-locks by waiting threads can significantly degrade
overall performance.

Therefore, ARMv7 provides an alternative locking mechanism based on events. The Wait For Event lock
mechanism permits a processor that has failed to obtain a lock to enter a low-power state. When the
processor that currently holds the required lock releases the lock it sends an event that causes any waiting
processors to wake up and attempt to gain the lock again.

Note
 Although a complex operating system can contain thousands of distinct locks, the event sent by this
mechanism does not indicate which lock has been released. If the event relates to a different lock, or if
another processor acquires the lock more quickly, the processor fails to acquire the lock and can re-enter the
low-power state waiting for the next event.

The Wait For Event system relies on hardware and software working together to achieve energy saving:

• the hardware provides the mechanism to enter the Wait For Event low-power state

• the operating system software is responsible for issuing:

— a Wait For Event instruction when waiting for a spin-lock, to enter the low-power state

— a Send Event instructions when releasing a spin-lock.

The mechanism depends on the interaction of:

• WFE wake-up events, see WFE wake-up events

• the Event Register, see The Event Register on page B1-46

• the Send Event instruction, see The Send Event instruction on page B1-46

• the Wait For Event instruction, see The Wait For Event instruction on page B1-46.

WFE wake-up events

The following events are WFE wake-up events:

• the execution of an SEV instruction on any processor in the multiprocessor system

• an IRQ interrupt, unless masked by the CPSR.I bit

• an FIQ interrupt, unless masked by the CPSR.F bit

• an asynchronous abort, unless masked by the CPSR.A bit

• a debug event, if invasive debug is enabled and the debug event is permitted.

For details of the masking bits in the CPSR see Format of the CPSR and SPSRs on page B1-16. This
masking is an important consideration with this mechanism, because lock mechanisms can be required
when interrupts are disabled.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B1-45

ARM_2009_Q3
Inserted Text
and ARMv6K

ARM_2009_Q3
Cross-Out

ARM_2010_Q2
Inserted Text

The architecture does not define the exact nature of the low power state, but the execution of a WFE instruction must not cause a loss of memory coherency.

ARM_2010_Q3
Inserted Text
 or the DBGDSCR.INTdis bit

ARM_2010_Q3
Inserted Text
either

ARM_2010_Q3
Inserted Text
either

ARM_2010_Q3
Inserted Text
 or the DBGDSCR.INTdis bit

ARM_2010_Q3 and ARM_2011_Q2
Sticky Note
Interrupts can be masked by the CPSR mask bits, or by DBGDSCR.INTdis. For more information about masking by DBGDSCR.INTdis see Debug Status and Control Register (DBGDSCR) on page C10-10 [PDF page 1778].

The DBGDSCR.INTdis bit can mask interrupts only when both DBGDSCR[15:14] != 00 and invasive debug is enabled. Otherwise DBGDSCR.INTdis does not affect WFE wake-up events.

The final insertion in this lists adds an additional bullet, that identifies the possibility of an IMPLEMENTATION DEFINED wake-up mechanism.

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Replacement Text

 • an event sent by some IMPLEMENTATION DEFINED mechanism.

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Replacement Text
n asynchronous

The System Level Programmers’ Model
The Event Register

The Event Register is a single bit register for each processor. When set, an event register indicates that an
event has occurred, since the register was last cleared, that might prevent the processor needing to suspend
operation on issuing a WFE instruction.

The value of the Event Register at reset is UNKNOWN.

The Event Register is set by any WFE wake-up event or by the execution of an exception return instruction.
For the definition of exception return instructions see Exception return on page B1-38.

The Event Register is cleared only by a Wait For Event instruction.

You cannot read or write the value of the Event Register directly.

The Send Event instruction

The Send Event instruction causes an event to be signaled to all processors in the multiprocessor system.
The mechanism used to signal the event to the processors is IMPLEMENTATION DEFINED. The Send Event
instruction sets the Event Register.

The Send Event instruction, SEV, is available to both unprivileged and privileged code, see SEV on
page A8-316.

The Wait For Event instruction

The action of the Wait For Event instruction depends on the state of the Event Register:

• If the Event Register is set, the instruction clears the register and returns immediately. Normally, if
this happens the processor makes another attempt to claim the lock.

• If the Event Register is clear the processor can suspend execution and enter a low-power state. It can
remain in that state until the processor detects a WFE wake-up event or a reset. When the processor
detects a WFE wake-up event, or earlier if the implementation chooses, the WFE instruction completes.

The Wait For Event instruction, WFE, is available to both unprivileged and privileged code, see WFE on
page A8-808.

The code using the Wait For Event mechanism must be tolerant to spurious wake-up events, including
multiple wake ups.

Pseudocode details of the Wait For Event lock mechanism

The ClearEventRegister() pseudocode procedure clears the Event Register of the current processor.

The EventRegistered() pseudocode function returns TRUE if the Event Register of the current processor is
set and FALSE if it is clear:

boolean EventRegistered()
B1-46 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2008_Q4
Inserted Text
Hardware does not guarantee the ordering of this event with respect to the completion of memory accesses by instructions before the SEV instruction.

ARM_2011_Q2
Sticky Note
The replacement list clarifies the events that are required to set the Event Register.

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Replacement Text
:
 • an SEV instruction
 • an event sent by some IMPLEMENTATION DEFINED mechanism
 • a debug event that causes entry into Debug state
 • an exception return.
The Event Register might also be set by other IMPLEMENTATION DEFINED mechanisms.

The System Level Programmers’ Model
The WaitForEvent() pseudocode procedure optionally suspends execution until a WFE wake-up event or
reset occurs, or until some earlier time if the implementation chooses. It is IMPLEMENTATION DEFINED
whether restarting execution after the period of suspension causes a ClearEventRegister() to occur.

The SendEvent() pseudocode procedure sets the Event Register of every processor in the multiprocessor
system.

B1.6.9 Wait For Interrupt

Previous versions of the ARM architecture have included a Wait For Interrupt concept, and Wait For
Interrupt is a required feature of the architecture from ARMv6. In ARMv7, Wait For Interrupt is supported
only through an instruction, WFI, that is provided in the ARM and Thumb instruction sets. For more
information, see WFI on page A8-810.

Note
 In ARMv7 the CP15 c7 encoding previously used for WFI is redefined as a NOP, see CP15 c7, No
Operation (NOP) on page B3-138 and CP15 c7, Miscellaneous functions on page B4-72.

When a processor issues a WFI instruction it can suspend execution and enter a low-power state. It can remain
in that state until the processor detects a reset or one of the following WFI wake-up events:

• an IRQ interrupt, regardless of the value of the CPSR.I bit

• an FIQ interrupt, regardless of the value of the CPSR.F bit

• an asynchronous abort, regardless of the value of the CPSR.A bit

• a debug event, when invasive debug is enabled and the debug event is permitted.

When the hardware detects a WFI wake-up event, or earlier if the implementation chooses, the WFI
instruction completes.

WFI wake-up events cannot be masked by the mask bits in the CPSR.

Note
 • Because debug entry is one of the WFI wake-up events, ARM strongly recommends that Wait For

Interrupt is used as part of an idle loop rather than waiting for a single specific interrupt event to occur
and then moving forward. This ensures the intervention of debug while waiting does not significantly
change the function of the program being debugged.

• In some previous implementations of Wait For Interrupt, the idle loop is followed by exit functions
that must be executed before the interrupt is taken. The operation of Wait For Interrupt remains
consistent with this model, and therefore differs from the operation of Wait For Event.

• Some implementations of Wait For Interrupt drain down any pending memory activity before
suspending execution. This increases the power saving, by increasing the area over which clocks can
be stopped. This operation is not required by the ARM architecture, and code must not rely on Wait
For Interrupt operating in this way.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B1-47

ARM_2010_Q2
Inserted Text

The architecture does not define the exact nature of the low power state, but the execution of a WFI instruction must not cause a loss of memory coherency.

ARM_2010_Q3
Cross-Out

ARM_2010_Q3
Replacement Text
and DBGDSCR.INTdis bits

ARM_2010_Q3
Cross-Out

ARM_2010_Q3
Replacement Text
and DBGDSCR.INTdis bits

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Replacement Text
n asynchronous

The System Level Programmers’ Model
Using WFI to indicate an idle state on bus interfaces

A common implementation practice is to complete any entry into power-down routines with a WFI
instruction. Typically, the WFI instruction:

1. forces the suspension of execution, and of all associated bus activity

2. ceases to execute instructions from processor.

The control logic required to do this typically tracks the activity of the bus interfaces of the processor. This
means it can signal to an external power controller that there is no ongoing bus activity.

The exact nature of this interface is IMPLEMENTATION DEFINED, but the use of Wait For Interrupt as the only
architecturally-defined mechanism that completely suspends execution makes it very suitable as the
preferred power-down entry mechanism for future implementations.

Pseudocode details of Wait For Interrupt

The WaitForInterrupt() pseudocode procedure optionally suspends execution until a WFI wake-up event or
reset occurs, or until some earlier time if the implementation chooses.

B1.6.10 Reset

On an ARM processor, when the Reset input is asserted the processor immediately stops execution of the
current instruction. When Reset is de-asserted, the actions described in Exception entry on page B1-34 are
performed, for the Reset exception. The processor then starts executing code, in Supervisor mode with
interrupts disabled. Execution starts from the normal or high reset vector address, 0x00000000 or 0xFFFF0000,
as determined by the reset value of the SCTLR.V bit. This reset value can be determined by an
IMPLEMENTATION DEFINED configuration input signal.

Note
 • The ARM architecture does not distinguish between multiple levels of reset. A system can provide

multiple distinct levels of reset that reset different parts of the system. These all correspond to this
single reset exception.

• The reset value of the SCTLR.EE bit can be defined by a configuration input signal. If this is done,
that value also applies to the CPSR.E bit on reset. For more information see:

— c1, System Control Register (SCTLR) on page B3-96 for a VMSA implementation

— c1, System Control Register (SCTLR) on page B4-45 for a PMSA implementation.

The following pseudocode describes how this exception is taken:

// TakeReset()
// ===========

TakeReset()
 // Enter Supervisor mode and (if relevant) Secure state, and reset CP15. This affects
 // the banked versions and values of various registers accessed later in the code.
 // Also reset other system components.
 CPSR.M = ‘10011’; // Supervisor mode
B1-48 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The System Level Programmers’ Model
 if HaveSecurityExt() then SCR.NS = ‘0’;
 ResetCP15Registers();
 ResetDebugRegisters();
 if HaveAdvSIMDorVFP() then FPEXC.EN = ‘0’; SUBARCHITECTURE_DEFINED further resetting;
 if HaveThumbEE() then TEECR.XED = ‘0’;
 if HaveJazelle() then JMCR.JE = ‘0’; SUBARCHITECTURE_DEFINED further resetting;

 // Further CPSR changes: all interrupts disabled, IT state reset, instruction set
 // and endianness according to the SCTLR values produced by the above call to
 // ResetCP15Registers().
 CPSR.I = ‘1’; CPSR.F = ‘1’; CPSR.A = ‘1’;
 CPSR.IT = ‘00000000’;
 CPSR.J = ‘0’; CPSR.T = SCTLR.TE; // TE=0: ARM, TE=1: Thumb
 CPSR.E = SCTLR.EE; // EE=0: little-endian, EE=1: big-endian

 // All registers, bits and fields not reset by the above pseudocode or by the
 // BranchTo() call below are UNKNOWN bitstrings after reset. In particular, the
 // return information registers R14_svc and SPSR_svc have UNKNOWN values, so that
 // it is impossible to return from a reset in an architecturally defined way.

 // Branch to Reset vector.
 BranchTo(ExcVectorBase() + 0);

The ARM architecture does not define any way of returning from a reset.

B1.6.11 Undefined Instruction exception

An Undefined Instruction exception might be caused by:

• a coprocessor instruction that is not accessible because of the settings in one or both of:

— the Coprocessor Access Control Register, see c1, Coprocessor Access Control Register
(CPACR) on page B3-104 for a VMSA implementation, or c1, Coprocessor Access Control
Register (CPACR) on page B4-51 for a PMSA implementation

— in an implementation that includes the Security Extensions, the Non-Secure Access Control
Register, see c1, Non-Secure Access Control Register (NSACR) on page B3-110

• a coprocessor instruction that is not implemented

• an instruction that is UNDEFINED

• an attempt to execute an instruction in an unsupported instruction set state, see Exception return to
an unsupported instruction set state on page B1-40

• division by zero in an SDIV or UDIV instruction in the ARMv7-R profile when the SCTLR.DZ bit is set
to 1, see c1, System Control Register (SCTLR) on page B4-45.

The Undefined Instruction exception can be used for:

• software emulation of a coprocessor in a system that does not have the physical coprocessor hardware

• lazy context switching of coprocessor registers

• general-purpose instruction set extension by software emulation
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B1-49

The System Level Programmers’ Model
• signaling an illegal instruction execution

• division by zero errors.

In some coprocessor designs, an internal exceptional condition caused by one coprocessor instruction is
signaled asynchronously by refusing to respond to a later coprocessor instruction that belongs to the same
coprocessor. In these circumstances, the Undefined Instruction handler must take whatever action is needed
to clear the exceptional condition, and then return to the second coprocessor instruction.

Note
 The only mechanism to determine the cause of an Undefined Instruction exception is analysis of the
instruction indicated by the return link in the LR on exception entry. Therefore it is important that a
coprocessor only reports exceptional conditions by generating Undefined Instruction exceptions on its own
coprocessor instructions.

The following pseudocode describes how this exception is taken:

// TakeUndefInstrException()
// =========================

TakeUndefInstrException()
 // Determine return information. SPSR is to be the current CPSR, and LR is to be the
 // current PC minus 2 for Thumb or 4 for ARM, to change the PC offsets of 4 or 8
 // respectively from the address of the current instruction into the required return
 // address offsets of 2 or 4 respectively.
 new_lr_value = if CPSR.T == ‘1’ then PC-2 else PC-4;
 new_spsr_value = CPSR;

 // Enter Undefined (‘11011’) mode, and ensure Secure state if initially in Monitor
 // (‘10110’) mode. This affects the banked versions of various registers accessed later
 // in the code.
 if CPSR.M == ‘10110’ then SCR.NS = ‘0’;
 CPSR.M = ‘11011’;

 // Write return information to registers, and make further CPSR changes: IRQs disabled,
 // IT state reset, instruction set and endianness to SCTLR-configured values.
 SPSR[] = new_spsr_value;
 R[14] = new_lr_value;
 CPSR.I = ‘1’;
 CPSR.IT = ‘00000000’;
 CPSR.J = ‘0’; CPSR.T = SCTLR.TE; // TE=0: ARM, TE=1: Thumb
 CPSR.E = SCTLR.EE; // EE=0: little-endian, EE=1: big-endian

 // Branch to Undefined Instruction vector.
 BranchTo(ExcVectorBase() + 4);

The preferred exception return from an Undefined Instruction exception is a return to the instruction that
generated the exception. Use the LR and SPSR values generated by the exception entry to produce this
return as follows:

• If SPSR.J and SPSR.T are both 0, indicating that the exception occurred in ARM state, use an
exception return instruction with a subtraction of 4
B1-50 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The System Level Programmers’ Model
• If SPSR.J and SPSR.T are not both 0, indicating that the exception occurred in Thumb state or
ThumbEE state, use an exception return instruction with a subtraction of 2.

For more information, see Exception return on page B1-38.

Note
 • Undefined Instruction exceptions cannot occur in Jazelle state

• If handling the Undefined Instruction exception requires instruction emulation, followed by return to
the next instruction after the instruction that caused the exception, the instruction emulator must use
the instruction length to calculate the correct return address, and to calculate the updated values of
the IT bits if necessary.

Conditional execution of undefined instructions

The conditional execution rules described in Conditional execution on page A8-8 apply to all instructions.
This includes UNDEFINED instructions and other instructions that would cause entry to the Undefined
Instruction exception.

If such an instruction fails its condition check, the behavior depends on the architecture profile and the
potential cause of entry to the Undefined Instruction exception, as follows:

• In the ARMv7-A profile:

— If the potential cause is the execution of the instruction itself and depends on data values the
instruction reads, the instruction executes as a NOP and does not cause an Undefined
Instruction exception.

— If the potential cause is the execution of an earlier coprocessor instruction, or the execution of
the instruction itself but does not depend on data values the instruction reads, it is
IMPLEMENTATION DEFINED whether the instruction executes as a NOP or causes an Undefined
Instruction exception.

An implementation must handle all such cases in the same way.

• In the ARMv7-R profile, the instruction executes as a NOP and does not cause an Undefined
Instruction exception.

Note
 Before ARMv7, all implementations executed any instruction that failed its condition check as a NOP, even
if it would otherwise have caused an Undefined Instruction exception. Undefined Instruction handlers
written for these implementations might assume without checking that the undefined instruction passed its
condition check. Such Undefined Instruction handlers are likely to need rewriting, to check the condition is
passed, before they function correctly on all ARMv7-A implementations.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B1-51

ARM_2009_Q4
Inserted Text

Interaction of UNPREDICTABLE and UNDEFINED instruction behavior

If this manual describes an instruction as both UNPREDICTABLE and UNDEFINED then the instruction is UNPREDICTABLE.

----- Note -----
An example of this is where both:
 • an instruction, or instruction class, is made UNDEFINED by some general principle, or by a configuration field
 • a particular encoding of that instruction or instruction class is specified as UNPREDICTABLE.

ARM_2011_Q2
Sticky Note
The insertion at the end of this Note adds an additional subsection, Interaction of UNPREDICTABLE and UNDEFINED instruction behavior.

The System Level Programmers’ Model
B1.6.12 Supervisor Call (SVC) exception

The Supervisor Call instruction SVC enters Supervisor mode and requests a supervisor function. Typically,
the SVC instruction is used to request an operating system function. For more information, see SVC
(previously SWI) on page A8-430.

Note
 In previous versions of the ARM architecture, the SVC instruction was called SWI, Software Interrupt.

The following pseudocode describes how this exception is taken:

// TakeSVCException()
// ==================

TakeSVCException()
 // Determine return information. SPSR is to be the current CPSR, after changing the IT[]
 // bits to give them the correct values for the following instruction, and LR is to be
 // the current PC minus 2 for Thumb or 4 for ARM, to change the PC offsets of 4 or 8
 // respectively from the address of the current instruction into the required address of
 // the next instruction (the SVC instruction having size 2 or 4 bytes respectively).
 ITAdvance();
 new_lr_value = if CPSR.T == ‘1’ then PC-2 else PC-4;
 new_spsr_value = CPSR;

 // Enter Supervisor (‘10011’) mode, and ensure Secure state if initially in Monitor
 // (‘10110’) mode. This affects the banked versions of various registers accessed later
 // in the code.
 if CPSR.M == ‘10110’ then SCR.NS = ‘0’;
 CPSR.M = ‘10011’;

 // Write return information to registers, and make further CPSR changes: IRQs disabled,
 // IT state reset, instruction set and endianness to SCTLR-configured values.
 SPSR[] = new_spsr_value;
 R[14] = new_lr_value;
 CPSR.I = ‘1’;
 CPSR.IT = ‘00000000’;
 CPSR.J = ‘0’; CPSR.T = SCTLR.TE; // TE=0: ARM, TE=1: Thumb
 CPSR.E = SCTLR.EE; // EE=0: little-endian, EE=1: big-endian

 // Branch to SVC vector.
 BranchTo(ExcVectorBase() + 8);

The preferred exception return from an SVC exception is a return to the next instruction after the SVC
instruction. Use the LR and SPSR values generated by the exception entry to produce this return by using
an exception return instruction without a subtraction.

For more information, see Exception return on page B1-38.
B1-52 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The System Level Programmers’ Model
B1.6.13 Secure Monitor Call (SMC) exception

The Secure Monitor Call instruction SMC enters Monitor mode and requests a Monitor function. For more
information, see SMC (previously SMI) on page B6-18.

Note
 In previous versions of the ARM architecture, the SMC instruction was called SMI, Software Monitor
Interrupt.

The following pseudocode describes how this exception is taken:

// TakeSMCException()
// ==================

TakeSMCException()
 // Determine return information. SPSR is to be the current CPSR, after changing the IT[]
 // bits to give them the correct values for the following instruction, and LR is to be
 // the current PC minus 0 for Thumb or 4 for ARM, to change the PC offsets of 4 or 8
 // respectively from the address of the current instruction into the required address of
 // the next instruction (with the SMC instruction always being 4 bytes in length).
 ITAdvance();
 new_lr_value = if CPSR.T == ‘1’ then PC else PC-4;
 new_spsr_value = CPSR;

 // Enter Monitor (‘10110’) mode, and ensure Secure state if initially in Monitor mode.
 // This affects the banked versions of various registers accessed later in the code.
 if CPSR.M == ‘10110’ then SCR.NS = ‘0’;
 CPSR.M = ‘10110’;

 // Write return information to registers, and make further CPSR changes: interrupts
 // disabled, IT state reset, instruction set and endianness to SCTLR-configured values.
 SPSR[] = new_spsr_value;
 R[14] = new_lr_value;
 CPSR.I = ‘1’; CPSR.F = ‘1’; CPSR.A = ‘1’;
 CPSR.IT = ‘00000000’;
 CPSR.J = ‘0’; CPSR.T = SCTLR.TE; // TE=0: ARM, TE=1: Thumb
 CPSR.E = SCTLR.EE; // EE=0: little-endian, EE=1: big-endian

 // Branch to SMC vector.
 BranchTo(MVBAR + 8);

The preferred exception return from an SMC exception is a return to the next instruction after the SMC
instruction. Use the LR and SPSR values generated by the exception entry to produce this return by using
an exception return instruction without a subtraction.

For more information, see Exception return on page B1-38.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B1-53

The System Level Programmers’ Model
Note
 You can return to the SMC instruction itself by returning using a subtraction of 4, without any adjustment to
the SPSR.IT[7:0] bits. The result is that the return occurs, then interrupts or external aborts might occur and
be handled, then the SMC instruction is re-executed and another SMC exception occurs.

This relies on:

• the SMC instruction being used correctly, either outside an IT block or as the last instruction in an IT
block, so that the SPSR.IT[7:0] bits indicate unconditional execution

• the SMC handler not changing the result of the original conditional execution test for the SMC
instruction.

B1.6.14 Prefetch Abort exception

A Prefetch Abort exception can be generated by:

• A synchronous memory abort on an instruction fetch.

Note
 Asynchronous aborts on instruction fetches are reported using the Data Abort exception, see Data

Abort exception on page B1-55.

Prefetch Abort exception entry is synchronous to the instruction whose instruction fetch aborted. If
an implementation prefetches instructions, it must handle a synchronous abort on an instruction
prefetch by:

— generating a Prefetch Abort exception if and when the instruction is about to execute

— ignoring the abort if the instruction does not reach the point of being about to execute, for
example, if a branch misprediction or exception entry occurs before the instruction is reached.

For more information about memory aborts see:

— VMSA memory aborts on page B3-40

— PMSA memory aborts on page B4-13.

• A Breakpoint, Vector Catch or BKPT Instruction debug event, see Debug exception on Breakpoint,
BKPT Instruction or Vector Catch debug events on page C4-2.

The following pseudocode describes how this exception is taken:

// TakePrefetchAbortException()
// ============================

TakePrefetchAbortException()
 // Determine return information. SPSR is to be the current CPSR, and LR is to be the
 // current PC minus 0 for Thumb or 4 for ARM, to change the PC offsets of 4 or 8
 // respectively from the address of the current instruction into the required address
 // of the current instruction plus 4.
 new_lr_value = if CPSR.T == ‘1’ then PC else PC-4;
B1-54 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The System Level Programmers’ Model
 new_spsr_value = CPSR;

 // Determine whether this is an external abort to be trapped to Monitor mode.
 trap_to_monitor = HaveSecurityExt() && SCR.EA == ‘1’ && IsExternalAbort();

 // Enter Abort (‘10111’) or Monitor (‘10110’) mode, and ensure Secure state if
 // initially in Monitor mode. This affects the banked versions of various registers
 // accessed later in the code.
 if CPSR.M == ‘10110’ then SCR.NS = ‘0’;
 CPSR.M = if trap_to_monitor then ‘10110’ else ‘10111’;

 // Write return information to registers, and make further CPSR changes: IRQs disabled,
 // other interrupts disabled if appropriate, IT state reset, instruction set and
 // endianness to SCTLR-configured values.
 SPSR[] = new_spsr_value;
 R[14] = new_lr_value;
 CPSR.I = ‘1’;
 if trap_to_monitor then
 CPSR.F = ‘1’; CPSR.A = ‘1’;
 else
 if !HaveSecurityExt() || SCR.NS == ‘0’ || SCR.AW == ‘1’ then CPSR.A = ‘1’;
 CPSR.IT = ‘00000000’;
 CPSR.J = ‘0’; CPSR.T = SCTLR.TE; // TE=0: ARM, TE=1: Thumb
 CPSR.E = SCTLR.EE; // EE=0: little-endian, EE=1: big-endian

 // Branch to correct Prefetch Abort vector.
 if trap_to_monitor then
 BranchTo(MVBAR + 12);
 else
 BranchTo(ExcVectorBase() + 12);

The preferred exception return from a Prefetch Abort exception is a return to the aborted instruction. Use
the LR and SPSR values generated by the exception entry to produce this return by using an exception return
instruction with a subtraction of 4.

For more information, see Exception return on page B1-38.

B1.6.15 Data Abort exception

A Data Abort exception can be generated by:

• A synchronous abort on a data read or write memory access. Exception entry is synchronous to the
instruction that generated the memory access.

• An asynchronous abort. The memory access that caused the abort can be any of:

— a data read or write access

— an instruction fetch or prefetch

— in a VMSA memory system, a translation table access.

Exception entry occurs asynchronously. It is similar to an interrupt, but uses either Abort mode or
Monitor mode, and the associated banked registers. Setting the CPSR.A bit prevents asynchronous
aborts from occurring.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B1-55

ARM_2009_Q2
Inserted Text
the processor taking a Data Abort exception that is generated by an

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Sticky Note
This change is a clarification of the meaning of this paragraph, not a change to the architecture.

The System Level Programmers’ Model
Note
 There are no asynchronous internal aborts in ARMv7 and earlier architecture versions, so

asynchronous aborts are always asynchronous external aborts.

• A Watchpoint debug event, see Debug exception on Watchpoint debug event on page C4-3.

Note
 A Data Abort exception generated by a Watchpoint debug event can be either asynchronous or

synchronous, but is not an abort. This means that if it is asynchronous, it is an asynchronous Data
Abort exception but not an asynchronous abort.

For more information about memory aborts see:

• VMSA memory aborts on page B3-40

• PMSA memory aborts on page B4-13.

The following pseudocode describes how this exception is taken:

// TakeDataAbortException()
// ========================

TakeDataAbortException()
 // Determine return information. SPSR is to be the current CPSR, and LR is to be the
 // current PC plus 4 for Thumb or 0 for ARM, to change the PC offsets of 4 or 8
 // respectively from the address of the current instruction into the required address
 // of the current instruction plus 8. For an asynchronous abort, the PC and CPSR are
 // considered to have already moved on to their values for the instruction following
 // the instruction boundary at which the exception occurred.
 new_lr_value = if CPSR.T == ‘1’ then PC+4 else PC;
 new_spsr_value = CPSR;

 // Determine whether this is an external abort to be trapped to Monitor mode.
 trap_to_monitor = HaveSecurityExt() && SCR.EA == ‘1’ && IsExternalAbort();

 // Enter Abort (‘10111’) or Monitor (‘10110’) mode, and ensure Secure state if
 // initially in Monitor mode. This affects the banked versions of various registers
 // accessed later in the code.
 if CPSR.M == ‘10110’ then SCR.NS = ‘0’;
 CPSR.M = if trap_to_monitor then ‘10110’ else ‘10111’;

 // Write return information to registers, and make further CPSR changes: IRQs disabled,
 // other interrupts disabled if appropriate, IT state reset, instruction set and
 // endianness to SCTLR-configured values.
 SPSR[] = new_spsr_value;
 R[14] = new_lr_value;
 CPSR.I = ‘1’;
 if trap_to_monitor then
 CPSR.F = ‘1’; CPSR.A = ‘1’;
 else
 if !HaveSecurityExt() || SCR.NS == ‘0’ || SCR.AW == ‘1’ then CPSR.A = ‘1’;
 CPSR.IT = ‘00000000’;
B1-56 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The System Level Programmers’ Model
 CPSR.J = ‘0’; CPSR.T = SCTLR.TE; // TE=0: ARM, TE=1: Thumb
 CPSR.E = SCTLR.EE; // EE=0: little-endian, EE=1: big-endian

 // Branch to correct Data Abort vector.
 if trap_to_monitor then
 BranchTo(MVBAR + 16);
 else
 BranchTo(ExcVectorBase() + 16);

The preferred exception return from a Data Abort exception is a return to the instruction that generated the
aborting memory access, or to the instruction following the instruction boundary at which an asynchronous
Data Abort exception occurred. Use the LR and SPSR values generated by the exception entry to produce
this return by using an exception return instruction with a subtraction of 8.

For more information, see Exception return on page B1-38.

Effects of data-aborted instructions

Instructions that access data memory can modify memory by storing one or more values. If a Data Abort
exception is generated by executing such an instruction, the value of each memory location that the
instruction stores to is:

• unchanged if the memory system does not permit write access to the memory location

• UNKNOWN otherwise.

Instructions that access data memory can modify registers in the following ways:

• By loading values into one or more of the general-purpose registers. The registers loaded can include
the PC.

• By specifying base register write-back, in which the base register used in the address calculation has
a modified value written to it. All instructions that support base register write-back have
UNPREDICTABLE results if this is specified with the PC as the base register. Only general-purpose
registers other than the PC can be modified reliably in this way.

• By loading values into coprocessor registers.

• By modifying the CPSR.

If a synchronous Data Abort exception is generated by executing such an instruction, the following rules
determine the values left in these registers:

1. On entry to the Data Abort handler:

• the PC value is the Data Abort vector address, see Exception vectors and the exception base
address on page B1-30

• the LR_abt value is determined from the address of the aborted instruction.

Neither value is affected in any way by the results of any load specified by the instruction.

2. The base register is restored to its original value if either:

• the aborted instruction is a load that includes the base register in the list to be loaded
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B1-57

ARM_2010_Q2
Cross-Out

ARM_2010_Q2
Replacement Text
 • unchanged for any location for which one of the following applies:
 - an MMU fault is generated
 - a Watchpoint is generated
 - an external abort is generated, if that external abort is taken synchronously
 • UNKNOWN for any location for which no exception is generated.

If the access to a memory location generates an external abort that will be taken asynchronously, it is outside the scope of the architecture to define the effect of the store on that memory location, because this will depend on the system-specific nature of the external abort. However, in general, ARM recommends that such locations are not updated.

For external aborts and Watchpoints, where in principle faulting could be identified at byte or halfword granularity, the size of a location in this definition is the size for which a memory access is single-copy atomic.

The System Level Programmers’ Model
• the base register is being written back.

3. If the instruction only loads one general-purpose register, the value in that register is unchanged.

4. If the instruction loads more than one general-purpose register, UNKNOWN values are left in
destination registers other than the PC and the base register of the instruction.

5. If the instruction loads coprocessor registers, UNKNOWN values are left in the destination coprocessor
registers.

6. CPSR bits that are not defined as updated on exception entry retain their current value.

7. If a synchronous Data Abort exception is generated by execution of a STREX, STREXB, STREXH, or STREXD
instruction:

• memory is not updated

• <Rd> is not updated

• it is UNPREDICTABLE whether the monitor changes from the Exclusive state to the Open state.

The ARM abort model

The abort model used by an ARM processor implementation is described as a Base Restored Abort Model.
This means that if a synchronous Data Abort exception is generated by executing an instruction that
specifies base register write-back, the value in the base register is unchanged.

Note
 In versions of the ARM architecture before ARMv6, it is IMPLEMENTATION DEFINED whether the abort
model used is the Base Restored Abort Model or the Base Updated Abort Model. For more information, see
The ARM abort model on page AppxH-20.

The abort model applies uniformly across all instructions.

B1.6.16 IRQ exception

The IRQ exception is generated by IMPLEMENTATION DEFINED means. Typically this is by asserting an IRQ
interrupt request input to the processor.

Whether and how an IRQ exception is taken depends on the CPSR.I and SCTLR.FI bits:

• If CPSR.I == 1, IRQ exceptions are disabled and are not taken.

• If CPSR.I == 0 and SCTLR.FI == 0, IRQ exceptions can be taken. In this case IRQ exception entry
is precise to an instruction boundary.
B1-58 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
If the instruction is

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Inserted Text

After taking a Data Abort exception, the state of the exclusive monitors is UNKNOWN. Therefore, ARM strongly recommends that the abort handling code performs a CLREX instruction, or a dummy STREX instruction, to clear the exclusive monitor state.

ARM_2009_Q2
Sticky Note
These changes are not a change to the architecture but clarify the intended meaning of point 7. In particular, any Data Abort exception leaves the exclusive monitor in an UNPREDICTABLE state.

The System Level Programmers’ Model
• If CPSR.I == 0 and SCTLR.FI == 1, IRQ exceptions can be taken. In this case IRQ exception entry
is precise to an instruction boundary, except that some of the effects of the instruction that follows
that boundary might have occurred. These effects are restricted to those that can be repeated
idempotently and without breaking the rules in Single-copy atomicity on page A3-27. Examples of
such effects are:

— changing the value of a register that the instruction writes but does not read

— performing an access to Normal memory.

Note
 This relaxation of the normal definition of a precise asynchronous exception permits interrupts to

occur during the execution of instructions that change register or memory values, while only
requiring the implementation to restore those register values that are needed to correctly re-execute
the instruction after the preferred exception return. LDM and STM are examples of such instructions.

The following pseudocode describes how this exception is taken:

// TakeIRQException()
// ==================

TakeIRQException()
 // Determine return information. SPSR is to be the current CPSR, and LR is to be the
 // current PC minus 0 for Thumb or 4 for ARM, to change the PC offsets of 4 or 8
 // respectively from the address of the current instruction into the required address
 // of the instruction boundary at which the interrupt occurred plus 4. For this
 // purpose, the PC and CPSR are considered to have already moved on to their values
 // for the instruction following that boundary.
 new_lr_value = if CPSR.T == ‘1’ then PC else PC-4;
 new_spsr_value = CPSR;

 // Determine whether IRQs are trapped to Monitor mode.
 trap_to_monitor = HaveSecurityExt() && SCR.IRQ == ‘1’;

 // Enter IRQ (‘10010’) or Monitor (‘10110’) mode, and ensure Secure state if initially
 // in Monitor mode. This affects the banked versions of various registers accessed
 // later in the code.
 if CPSR.M == ‘10110’ then SCR.NS = ‘0’;
 CPSR.M = if trap_to_monitor then ‘10110’ else ‘10010’;

 // Write return information to registers, and make further CPSR changes: IRQs disabled,
 // other interrupts disabled if appropriate, IT state reset, instruction set and
 // endianness to SCTLR-configured values.
 SPSR[] = new_spsr_value;
 R[14] = new_lr_value;
 CPSR.I = ‘1’;
 if trap_to_monitor then
 CPSR.F = ‘1’; CPSR.A = ‘1’;
 else
 if !HaveSecurityExt() || SCR.NS == ‘0’ || SCR.AW == ‘1’ then CPSR.A = ‘1’;
 CPSR.IT = ‘00000000’;
 CPSR.J = ‘0’; CPSR.T = SCTLR.TE; // TE=0: ARM, TE=1: Thumb
 CPSR.E = SCTLR.EE; // EE=0: little-endian, EE=1: big-endian
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B1-59

The System Level Programmers’ Model
 // Branch to correct IRQ vector.
 if trap_to_monitor then
 BranchTo(MVBAR + 24);
 elsif SCTLR.VE == ‘1’ then
 IMPLEMENTATION_DEFINED branch to an IRQ vector;
 else
 BranchTo(ExcVectorBase() + 24);

The preferred exception return from an IRQ interrupt is a return to the instruction following the instruction
boundary at which the interrupt occurred. Use the LR and SPSR values generated by the exception entry to
produce this return by using an exception return instruction with a subtraction of 4.

For more information, see Exception return on page B1-38.

B1.6.17 FIQ exception

The FIQ exception is generated by IMPLEMENTATION DEFINED means. Typically this is by asserting an FIQ
interrupt request input to the processor.

Whether and how an FIQ exception is taken depends on the CPSR.F and SCTLR.FI bits:

• If CPSR.F == 1, FIQ exceptions are disabled and are not taken.

• If CPSR.F == 0 and SCTLR.FI == 0, FIQ exceptions can be taken. In this case FIQ exception entry
is precise to an instruction boundary.

• If CPSR.F == 0 and SCTLR.FI == 1, FIQ exceptions can be taken. In this case FIQ exception entry
is precise to an instruction boundary, except that some of the effects of the instruction that follows
that boundary might have occurred. These effects are restricted to those that can be repeated
idempotently and without breaking the rules in Single-copy atomicity on page A3-27. Examples of
such effects are:

— changing the value of a register that the instruction writes but does not read

— performing an access to Normal memory.

Note
 This relaxation of the normal definition of a precise asynchronous exception permits interrupts to

occur during the execution of instructions that change register or memory values, while only
requiring the implementation to restore those register values that are needed to correctly re-execute
the instruction after the preferred exception return. LDM and STM are examples of such instructions.

The FIQ vector is the last vector in the vector table. This means the FIQ exception handler can be placed
directly at the FIQ vector address, see Exception vectors and the exception base address on page B1-30. For
example, if High vectors are enabled and VE == 0 the FIQ exception handler software can be placed at
0xFFFF001C. This avoids a branch instruction from the vector.

The following pseudocode describes how this exception is taken:

// TakeFIQException()
// ==================
B1-60 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The System Level Programmers’ Model
TakeFIQException()
 // Determine return information. SPSR is to be the current CPSR, and LR is to be the
 // current PC minus 0 for Thumb or 4 for ARM, to change the PC offsets of 4 or 8
 // respectively from the address of the current instruction into the required address
 // of the instruction boundary at which the interrupt occurred plus 4. For this
 // purpose, the PC and CPSR are considered to have already moved on to their values
 // for the instruction following that boundary.
 new_lr_value = if CPSR.T == ‘1’ then PC else PC-4;
 new_spsr_value = CPSR;

 // Determine whether FIQs are trapped to Monitor mode.
 trap_to_monitor = HaveSecurityExt() && SCR.FIQ == ‘1’;

 // Enter FIQ (‘10001’) or Monitor (‘10110’) mode, and ensure Secure state if initially
 // in Monitor mode. This affects the banked versions of various registers accessed
 // later in the code.
 if CPSR.M == ‘10110’ then SCR.NS = ‘0’;
 CPSR.M = if trap_to_monitor then ‘10110’ else ‘10001’;

 // Write return information to registers, and make further CPSR changes: IRQs disabled,
 // other interrupts disabled if appropriate, IT state reset, instruction set and
 // endianness to SCTLR-configured values.
 SPSR[] = new_spsr_value;
 R[14] = new_lr_value;
 CPSR.I = ‘1’;
 if trap_to_monitor then
 CPSR.F = ‘1’; CPSR.A = ‘1’;
 else
 if !HaveSecurityExt() || SCR.NS == ‘0’ || SCR.FW == ‘1’ then CPSR.F = ‘1’;
 if !HaveSecurityExt() || SCR.NS == ‘0’ || SCR.AW == ‘1’ then CPSR.A = ‘1’;
 CPSR.IT = ‘00000000’;
 CPSR.J = ‘0’; CPSR.T = SCTLR.TE; // TE=0: ARM, TE=1: Thumb
 CPSR.E = SCTLR.EE; // EE=0: little-endian, EE=1: big-endian

 // Branch to correct FIQ vector.
 if trap_to_monitor then
 BranchTo(MVBAR + 28);
 elsif SCTLR.VE == ‘1’ then
 IMPLEMENTATION_DEFINED branch to an FIQ vector;
 else
 BranchTo(ExcVectorBase() + 28);

The preferred exception return from an FIQ interrupt is a return to the instruction following the instruction
boundary at which the interrupt occurred. Use the LR and SPSR values generated by the exception entry to
produce this return by using an exception return instruction with a subtraction of 4.

For more information, see Exception return on page B1-38.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B1-61

The System Level Programmers’ Model
B1.7 Coprocessors and system control

The ARM architecture supports sixteen coprocessors, usually referred to as CP0 to CP15. These
coprocessors are introduced in Coprocessor support on page A2-68. The architecture reserves two of these
coprocessors, CP14 and CP15, for configuration and control related to the architecture:

• CP14 is reserved for the configuration and control of:

— debug features, see The CP14 debug register interfaces on page C6-32

— execution environment features, see Execution environment support on page B1-73.

• CP15 is called the System Control coprocessor, and is reserved for the control and configuration of
the ARM processor system, including architecture and feature identification.

This section gives:

• general information about the CP15 registers, in CP15 System Control coprocessor registers

• information about access controls for coprocessors CP0 to CP13, in Access controls on CP0 to CP13
on page B1-63.

B1.7.1 CP15 System Control coprocessor registers

The implementation of the CP15 registers depends heavily on whether the ARMv7 implementation is:

• an ARMv7-A implementation with a Virtual Memory System Architecture (VMSA)

• an ARMv7-R implementation with a Protected Memory System Architecture (PMSA).

Therefore, detailed descriptions of the CP15 registers are given in:

• CP15 registers for a VMSA implementation on page B3-64

• CP15 registers for a PMSA implementation on page B4-22.

Registers that are common to VMSA and PMSA implementations are described in both of these sections.
Some registers are implemented differently in VMSA and PMSA implementations.

Those descriptions do not include the registers that implement the processor identification scheme, CPUID.
The CPUID registers are described in Chapter B5 The CPUID Identification Scheme.

CP15, the System Control coprocessor, can contain up to 16 primary registers, each of which is 32 bits long.
The CP15 register access instructions define the required primary register. Additional fields in the
instruction are used to refine the access, and increase the number of physical 32-bit registers in CP15. In
descriptions of the System Control coprocessor the 4-bit primary register number is used as a top level
register identifier, because it is the primary factor determining the function of the register. The 16 primary
registers in CP15 are identified as c0 to c15.

For details of register access rights and restrictions see the descriptions of the individual registers. In
ARMv7-A implementations, see also Effect of the Security Extensions on the CP15 registers on page B3-71.

The CP15 register access instructions are:

• MCR, to write an ARM core register to a CP15 register, see MCR, MCR2 on page A8-186

• MRC, to read the value of a CP15 register into an ARM core register, see MRC, MRC2 on page A8-202.
B1-62 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The System Level Programmers’ Model
All CP15 CDP, CDP2, LDC, LDC2, MCR2, MCRR, MCRR2, MRC2, MRRC, MRRC2, STC, and STC2 instructions are UNDEFINED.

B1.7.2 Access controls on CP0 to CP13

Coprocessors CP0 to CP13 might be required for optional features of the ARMv7 implementation. In
particular, CP10 and CP11 are used to support floating-point operations through the VFP and Advanced
SIMD extensions to the architecture, see Advanced SIMD and floating-point support on page B1-64.

Coprocessors CP0 to CP7 can be used to provide IMPLEMENTATION DEFINED vendor specific features.

Access to the coprocessors CP0 to CP13 is controlled by the Coprocessor Access Control Register, see:

• c1, Coprocessor Access Control Register (CPACR) on page B3-104 for a VMSA implementation

• c1, Coprocessor Access Control Register (CPACR) on page B4-51 for a PMSA implementation.

Initially on power up or reset, access to coprocessors CP0 to CP13 is disabled.

When the Security Extensions are implemented, the Non-Secure Access Control Register determines which
of the CP0 to CP13 coprocessors can be accessed from the Non-secure state, see c1, Non-Secure Access
Control Register (NSACR) on page B3-110.

Note
 • When an implementation includes either or both of the VFP and Advanced SIMD extensions, the

access settings for CP10 and CP11 must be identical. If these settings are not identical the behavior
of the extensions is UNPREDICTABLE.

• To check which coprocessors are implemented:

1. If required, read the Coprocessor Access Control Register and save the value.

2. Write the value 0x0FFFFFFF to the register, to write 0b11 to the access field for each of the
coprocessors CP13 to CP0.

3. Read the Coprocessor Access Control Register again and check the access field for each
coprocessor:

• if the access field value is 0b00 the coprocessor is not implemented

• if the access field value is 0b11 the coprocessor is implemented.

4. If required, write the value from stage 1 back to the register to restore the original value.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B1-63

The System Level Programmers’ Model
B1.8 Advanced SIMD and floating-point support

Advanced SIMD and VFP extensions on page A2-20 introduces:

• the VFP extension, used for scalar floating-point operations

• the Advanced SIMD extension, used for integer and floating-point vector operations

• the Advanced SIMD and VFP extension registers D0 - D31 and their alternative views as S0 - S31
and Q0 - Q15

• the Floating-Point Status and Control Register (FPSCR).

For more information about the system registers for the Advanced SIMD and VFP extensions see Advanced
SIMD and VFP extension system registers on page B1-66.

Software can interrogate the registers described in Advanced SIMD and VFP feature identification registers
on page B5-34 to discover the Advanced SIMD and floating-point support implemented in a system.

This section gives more information about the Advanced SIMD and VFP extensions, in the subsections:

• Enabling Advanced SIMD and floating-point support

• Advanced SIMD and VFP extension system registers on page B1-66

• The Floating-Point Exception Register (FPEXC) on page B1-68

• Context switching with the Advanced SIMD and VFP extensions on page B1-69

• VFP support code on page B1-70

• VFP subarchitecture support on page B1-72.

B1.8.1 Enabling Advanced SIMD and floating-point support

If an ARMv7 implementation includes support for any Advanced SIMD or VFP features then the boot
software for any system that uses that implementation must ensure that:

• access to CP10 and CP11 is enabled in the Coprocessor Access Control Register, see:

— c1, Coprocessor Access Control Register (CPACR) on page B3-104 for a VMSA
implementation

— c1, Coprocessor Access Control Register (CPACR) on page B4-51 for a PMSA
implementation.

• if the Security Extensions are implemented and Non-secure access to the Advanced SIMD or VFP
features is required, the access flags for CP10 and CP11 in the NSACR must be set to 1, see c1,
Non-Secure Access Control Register (NSACR) on page B3-110.

If this is not done, operation of Advanced SIMD and VFP features is UNDEFINED.

If the access control bits are programmed differently for CP10 and CP11, operation of Advanced SIMD and
VFP features is UNPREDICTABLE.

In addition, software must set the FPEXC.EN bit to 1 to enable most Advanced SIMD and VFP operations,
see The Floating-Point Exception Register (FPEXC) on page B1-68.
B1-64 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The System Level Programmers’ Model
When floating-point operation is disabled because FPEXC.EN is 0, all Advanced SIMD and VFP
instructions are treated as Undefined Instructions except for:

• a VMSR to the FPEXC or FPSID register

• a VMRS from the FPEXC, FPSID, MVFR0, or MVFR1 register.

These instructions can be executed only in privileged modes.

Note
 • When FPEXC.EN == 0, these operations are treated as Undefined Instructions:

— a VMSR to the FPSCR

— a VMRS from the FPSCR

• If a VFP implementation contains system registers additional to the FPSID, FPSCR, FPEXC,
MVFR0, and MVFR1 registers, the behavior of VMSR instructions to them and VMRS instructions from
them is SUBARCHITECTURE DEFINED.

Pseudocode details of enabling the Advanced SIMD and VFP extensions

The following pseudocode takes appropriate action if an Advanced SIMD or VFP instruction is used when
the extensions are not enabled:

// CheckAdvSIMDOrVFPEnabled()
// ==========================

CheckAdvSIMDOrVFPEnabled(boolean include_fpexc_check, boolean advsimd)
 if HaveSecurityExt() then
 // Check Non-secure Access Control Register for permission to use CP10/11.
 if NSACR.cp10 != NSACR.cp11 then UNPREDICTABLE;
 if SCR.NS == ‘1’ && NSACR.cp10 == ‘0’ then UNDEFINED;

 // Check Coprocessor Access Control Register for permission to use CP10/11.
 if CPACR.cp10 != CPACR.cp11 then UNPREDICTABLE;
 case CPACR.cp10 of
 when ‘00’ UNDEFINED;
 when ‘01’ if !CurrentModeIsPrivileged() then UNDEFINED; // else CPACR permits access
 when ‘10’ UNPREDICTABLE;
 when ‘11’ // CPACR permits access

 // If the Advanced SIMD extension is specified, check whether it is disabled.
 if advsimd && CPACR.ASEDIS == ‘1’ then UNDEFINED;

 // If required, check FPEXC enabled bit.
 if include_fpexc_check && FPEXC.EN == ‘0’ then UNDEFINED;

 return;

// CheckAdvSIMDEnabled()
// =====================

CheckAdvSIMDEnabled()
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B1-65

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
!IsSecure()

ARM_2009_Q4
Sticky Note
Although FPSID is a read-only register, software can perform a VMSR to FPSID to force VFP synchronization, as shown by the operation pseudocode in VMSR on page B6-29 [PDF page 1587].

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Replacement Text
// CheckAdvSIMDEnabled()
// =====================

CheckAdvSIMDEnabled()
 result = CheckAdvSIMDOrVFPEnabled(TRUE, TRUE);

 if result then
 // Make temporary copy of D registers
 for i = 0 to 31
	 _Dclone[i] = _D[i]

 return result;

ARM_2011_Q2
Sticky Note
This change permits instruction pseudocode to use the _Dclone[] array as the input data for the operation, avoiding possible read-after-write errors. See, for example, the corrected instruction pseudocode for VABA on page A8-527 [PDF page 839].

The System Level Programmers’ Model
 return CheckAdvSIMDOrVFPEnabled(TRUE, TRUE);

// CheckVFPEnabled()
// =================

CheckVFPEnabled(boolean include_fpexc_check)
 return CheckAdvSIMDOrVFPEnabled(include_fpexc_check, FALSE);

B1.8.2 Advanced SIMD and VFP extension system registers

The Advanced SIMD and VFP extensions share a common set of special-purpose registers. Any ARMv7
implementation that includes either or both of these extensions must implement these registers. This section
gives general information about this set of registers, and indicates where each register is described in detail.
It contains the following subsections:

• Register map of the Advanced SIMD and VFP extension system registers

• Accessing the Advanced SIMD and VFP extension system registers on page B1-67.

Register map of the Advanced SIMD and VFP extension system registers

Table B1-11 shows the register map of the Advanced SIMD and VFP registers. When the Security
Extensions are implemented, the Advanced SIMD and VFP registers are not banked.

Table B1-11 Advanced SIMD and VFP common register block

System register Name Description

0b0000 FPSID See Floating-point System ID Register (FPSID) on page B5-34

0b0001 FPSCR See Floating-point Status and Control Register (FPSCR) on
page A2-28

0b0010- 0b0101 Reserved All accesses are UNPREDICTABLE

0b0110 MVFR1 Media and VFP Feature Registers 1 and 0, see Media and VFP Feature
registers on page B5-360b0111 MVFR0

0b1000 FPEXC See The Floating-Point Exception Register (FPEXC) on page B1-68

0b1001-0b1111 SUBARCHITECTURE
DEFINED

-

B1-66 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
system

ARM_2009_Q4
Sticky Note
This change is a clarification, to make this sentence consistent with the rest of this section. Special-purpose registers referred to exactly the same registers as the extension system registers.

ARM_2011_Q2
Cross-Out
See replacement pseudocode on previous page.

The System Level Programmers’ Model
Note
 • Appendix B Common VFP Subarchitecture Specification includes examples of how a VFP

subarchitecture might define additional registers, in the SUBARCHITECTURE DEFINED register space
using addresses in the 0b1001 to 0b1111 range.

• Appendix B is not part of the ARMv7 architecture. It is included as an example of how a VFP
subarchitecture might be defined.

Accessing the Advanced SIMD and VFP extension system registers

You access the Advanced SIMD and VFP extension system registers using the VMRS and VMSR instructions,
see:

• VMRS on page A8-658

• VMSR on page A8-660.

For example:

VMRS <Rt>, FPSID ; Read Floating-Point System ID Register
VMRS <Rt>, MVFR1 ; Read Media and VFP Feature Register 1
VMSR FPSCR, <Rt> ; Write Floating-Point System Control Register

You must enable access to CP10 and CP11 in the Coprocessor Access Control register before you can access
any of the Advanced SIMD and VFP extension system registers, see Enabling Advanced SIMD and
floating-point support on page B1-64.

To enable access to the FPSCR you must also set the EN flag in the FPEXC Register to 1, see The
Floating-Point Exception Register (FPEXC) on page B1-68.

Table B1-12 shows the permitted accesses to the Advanced SIMD and VFP extension system registers when
the access rights to CP10 and CP11 are sufficient.

Table B1-12 Access to Advanced SIMD and VFP system registers

Register
Register
access

Privileged accesses User accesses

EN == 0 a

a. In the FPEXC Register, see The Floating-Point Exception Register (FPEXC) on page B1-68.

EN == 1 a EN == 0 a EN == 1 a

FPSID Read-only Permitted Permitted Not permitted Not permitted

FPSCR Read/write Not permitted Permitted Not permitted Permitted

MVFR1, MVFR0 Read-only Permitted Permitted Not permitted Not permitted

FPEXC Read/write Permitted Permitted Not permitted Not permitted
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B1-67

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
B6-27 [PDF page 1585]

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
B6-29 [PDF page 1587]

The System Level Programmers’ Model
Note
 All hardware ID information can be accessed only from privileged modes.

The FPSID is privileged access only.

This is a change in VFPv3. In VFPv2 implementations the FPSID register can be accessed
in all modes.

The MVFR registers are privileged access only.

User code must issue a system call to determine what features are supported.

B1.8.3 The Floating-Point Exception Register (FPEXC)

The Floating-Point Exception Register (FPEXC) provides global enable and disable control of the
Advanced SIMD and VFP extensions, and to indicate how the state of these extensions is recorded.

The FPEXC:

• Is in the CP10 and CP11 register space.

• Is present only when at least one of the VFP and Advanced SIMD extensions is implemented.

• Is a 32-bit read/write register, that can have different access rights for different bits.

• If the Security Extensions are implemented, is a Configurable access register. The FPEXC is only
accessible in the Non-secure state if the CP10 and CP11 bits in the NSACR are set to 1, see c1,
Non-Secure Access Control Register (NSACR) on page B3-110

• Is accessible only in privileged modes, and only if access to coprocessors CP10 and CP11 is enabled
in the Coprocessor Access Control Register, see:

— c1, Coprocessor Access Control Register (CPACR) on page B3-104 for a VMSA
implementation

— c1, Coprocessor Access Control Register (CPACR) on page B4-51 for a PMSA
implementation.

• Has a reset value of 0 for bit [30], FPEXC.EN.

The format of the FPEXC is:

EX, bit [31] Exception bit. A status bit that specifies how much information must be saved to record the
state of the Advanced SIMD and VFP system:

0 The only significant state is the contents of the registers:

• D0 - D15

• D16 - D31, if implemented

31 30 29 0

EXEN SUBARCHITECTURE DEFINED
B1-68 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The System Level Programmers’ Model
• FPSCR

• FPEXC.

A context switch can be performed by saving and restoring the values of these
registers.

1 There is additional state that must be handled by any context switch system.

The behavior of the EX bit on writes is SUBARCHITECTURE DEFINED, except that in any
implementation a write of 0 to this bit must be a valid operation, and must return a value of
0 if read back immediately.

EN, bit [30] Enable bit. A global enable for the Advanced SIMD and VFP extensions:

0 The Advanced SIMD and VFP extensions are disabled. For details of how the
system operates when EN == 0 see Enabling Advanced SIMD and
floating-point support on page B1-64.

1 The Advanced SIMD and VFP extensions are enabled and operate normally.

This bit is always a normal read/write bit. It has a reset value of 0.

Bits [29:0] SUBARCHITECTURE DEFINED. An implementation can use these bits to communicate
exception information between the floating-point hardware and the support code. The
subarchitectural definition of these bits includes their read/write access. This can be defined
on a bit by bit basis.

A constraint on these bits is that if EX == 0 it must be possible to save and restore all
significant state for the floating-point system by saving and restoring only the two Advanced
SIMD and VFP extension registers FPSCR and FPEXC.

Writes to the FPEXC can have side-effects on various aspects of processor operation. All of these
side-effects are synchronous to the FPEXC write. This means they are guaranteed not to be visible to earlier
instructions in the execution stream, and they are guaranteed to be visible to later instructions in the
execution stream.

See Advanced SIMD and VFP extension system registers on page B1-66 for an overview of the common set
of system registers for the Advanced SIMD and VFP extensions.

B1.8.4 Context switching with the Advanced SIMD and VFP extensions

In an implementation that includes one or both of the Advanced SIMD and VFP extensions, if the VFP
registers are used by only a subset of processes, the operating system might implement lazy context
switching of the extension registers and extension system registers.

In the simplest lazy context switch implementation, the primary context switch code simply disables the
VFP and Advanced SIMD extensions, by disabling access to coprocessors CP10 and CP11 in the
Coprocessor Access Control Register, see Enabling Advanced SIMD and floating-point support on
page B1-64. Subsequently, when a process or thread attempts to use an Advanced SIMD or VFP instruction,
it triggers an Undefined Instruction exception. The operating system responds by saving and restoring the
extension registers and extension system registers.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B1-69

The System Level Programmers’ Model
B1.8.5 VFP support code

A complete VFP implementation might require a software component, known as the support code. For
example, if VFPv3U is implemented support code must handle the trapped floating-point exceptions.

Typically, the support code is entered through the ARM Undefined Instruction vector, when the extension
hardware does not respond to a VFP instruction. This software entry is known as a bounce.

When VFPv3U is implemented, the bounce mechanism is used to support trapped floating-point exceptions.
Trapped floating-point exceptions, known as traps, are floating-point exceptions that an implementation
passes back to application software to resolve, see Floating-point exceptions on page A2-42. The support
code must catch a trapped exception and convert it into a trap handler call.

The support code can perform other tasks, as determined by the implementation. It might be used for rare
conditions, such as operations that are difficult to implement in hardware, or operations that are gate
intensive in hardware. This permits consistent software behavior with varying degrees of hardware support.

The division of labor between the hardware and software components of an implementation, and details of
the interface between the support code and hardware are SUBARCHITECTURE DEFINED.

Asynchronous bounces, serialization, and VFP exception barriers

A VFP implementation can produce an asynchronous bounce, in which a VFP instruction takes the
Undefined Instruction exception because support code processing is required for an earlier VFP instruction.
The mechanism by which the nature of the required processing is communicated to the support code is
SUBARCHITECTURE DEFINED. Typically, it involves:

• using the SUBARCHITECTURE DEFINED bits of the FPEXC, see The Floating-Point Exception Register
(FPEXC) on page B1-68

• using the SUBARCHITECTURE DEFINED extension system registers, see Advanced SIMD and VFP
extension system registers on page B1-66

• setting FPEXC.EX == 1, to indicate that the SUBARCHITECTURE DEFINED extension system registers
must be saved on a context switch.

An asynchronous bounce might not relate to the last VFP instruction executed before the one that took the
Undefined Instruction exception. It is possible that another VFP instruction has been issued and retired
before the asynchronous bounce occurs. This is possible only if this intervening instruction has no register
dependencies on the VFP instruction that requires support code processing. In addition. it is possible that
there are SUBARCHITECTURE DEFINED mechanisms for handling an intervening VFP instruction that has
issued but not retired.

However, VMRS and VMSR instructions that access the FPSID, FPSCR, or FPEXC registers are serializing
instructions. This means they ensure that any exceptional condition in any preceding VFP instruction that
requires support code processing has been detected and reflected in the extension system registers before
they perform the register transfer. A VMSR instruction to the read-only FPSID register is a serializing NOP.
B1-70 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The System Level Programmers’ Model
In addition:

• A VMRS or VMSR instruction that accesses the FPSCR acts as a VFP exception barrier. This means it
ensures that any outstanding exceptional conditions in preceding VFP instructions have been detected
and processed by the support code before it performs the register transfer. If necessary, the VMRS or
VMSR instruction takes an asynchronous bounce to force the processing of outstanding exceptional
conditions.

• VMRS and VMSR instructions that access the FPSID or FPEXC do not take asynchronous bounces.

VFP serialization and the VFP exception barriers are described in pseudocode by the SerializeVFP() and
VFPExcBarrier() functions respectively:

SerializeVFP()

VFPExcBarrier()

Interactions with the ARM architecture

ARM recommends that a VFP extension uses the Undefined Instruction mechanism to invoke its support
code, see Undefined Instruction exceptions on page B1-76. To do this:

1. Before enabling the extension hardware, install the support code on the Undefined Instruction vector.

2. If the extension hardware requires assistance from the support code, it does not respond to a VFP
instruction.

3. This causes an Undefined Instruction exception, that causes the support code to be executed.

VFP load/store instructions can generate Data Abort exceptions, and therefore implementations must be
able to cope with a Data Abort exception on any memory access caused by such instructions.

Interrupts

Taking the Undefined Instruction exception causes IRQs to be disabled, see Undefined Instruction exception
on page B1-49. Normally, IRQs are not re-enabled until the exception handler returns. This means that
normal use of a VFP extension that requires support code in a system can increases worst case IRQ latency
considerably.

You can reduce this IRQ latency penalty considerably by explicitly re-enabling interrupts soon after entry
to the Undefined Instruction handler. This requires careful integration of the Undefined Instruction handler
into the rest of the operating system. How this might be done is highly system-specific and beyond the scope
of this manual.

A system where the IRQ handler itself might use the VFP coprocessor has a second potential cause of
increased IRQ latency. This increase occurs if a long latency VFP operation is initiated by the interrupted
application program, denying the use of the extension hardware to the IRQ handler for a significant number
of cycles.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B1-71

The System Level Programmers’ Model
Therefore, if a system contains IRQ handlers that require both low interrupt latency and the use of VFP
instructions, ARM recommends that the use of the highest latency Advanced SIMD or VFP instructions is
avoided.

Note
 FIQs are not disabled by entry to the Undefined Instruction handler, and so FIQ latency is not affected by
the use of the Undefined Instruction exception described here. However, because they are not disabled, an
FIQ can occur at any point during support code execution, including during the entry and exit sequences of
the Undefined Instruction handler. If an FIQ handler can make any change to the state of the Advanced
SIMD or VFP implementation, you must take great care to ensure that it handles every case correctly.
Usually, this requirement is incompatible with the requirement that FIQs provide fast interrupt processing.
Therefore ARM recommends that FIQ handlers do not use the Advanced SIMD or VFP extension.

B1.8.6 VFP subarchitecture support

In the ARMv7 specification of the VFP extension, some features are identified as SUBARCHITECTURE
DEFINED. ARMv7 is fully compatible with the ARM Common VFP subarchitecture, that ARM has used for
several VFP implementations. However, ARMv7 does not require or specifically recommend the use of the
ARM Common VFP subarchitecture.

Appendix B Common VFP Subarchitecture Specification is the specification of the ARM Common VFP
subarchitecture. The subarchitecture is not part of the ARMv7 architecture specification. For details of the
status of the subarchitecture specification see the Note on the cover page of Appendix B.
B1-72 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The System Level Programmers’ Model
B1.9 Execution environment support

Support code for an execution environment can execute in two of the processor states described in
Instruction set states on page B1-23:

• ThumbEE state supports the Thumb Execution Environment. For more information, see Thumb
Execution Environment.

• Jazelle state supports direct bytecode execution. For more information, see Jazelle direct bytecode
execution on page B1-74.

B1.9.1 Thumb Execution Environment

See Thumb Execution Environment on page A2-69 for an introduction to the Thumb Execution Environment
(ThumbEE), including an application level view of the execution environment, and a definition of its CP14
registers. This section describes the system level programmers’ model for ThumbEE. For more information
about ThumbEE see Chapter A9 ThumbEE.

The ThumbEE Configuration Register can be read in User mode, but can be written only in privileged
modes, see ThumbEE Configuration Register (TEECR) on page A2-70.

Access to the ThumbEE Handler Base Register depends on the value held in the TEECR and the current
privilege level, see ThumbEE Handler Base Register (TEEHBR) on page A2-71.

The processor executes ThumbEE instructions when it is in ThumbEE state.

The processor instruction set state is indicated by the CPSR.J and CPSR.T bits, see Program Status
Registers (PSRs) on page B1-14. (J,T) == 0b11 when the processor is in ThumbEE state.

During normal execution, not involving exception entries and returns:

• ThumbEE state can only be entered from Thumb state, using the ENTERX instruction

• exit from ThumbEE state always occurs using the LEAVEX instruction and returns execution to Thumb
state.

For details of these instructions see ENTERX, LEAVEX on page A9-7.

When an exception occurs in ThumbEE state, exception entry goes to either ARM state or Thumb state as
usual, depending on the value of SCTLR.TE. When the exception handler returns, the exception return
instruction restores CPSR.J and CPSR.T as usual, causing a return to ThumbEE state.

In ThumbEE state, execution of the exception return instructions described in Exception return on
page B1-38 is UNPREDICTABLE.

ThumbEE and the Security Extensions

When an implementation that supports ThumbEE includes the Security Extensions, the ThumbEE registers
are not banked. If ThumbEE support is required in both Secure and Non-secure states, the monitor must save
and restore the register contents accordingly.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B1-73

ARM_2011_Q2
Inserted Text

From the publication of the ARM_2011_Q2 release of this errata PDF, ARM deprecates any use of the ThumbEE instruction set.

ARM_2011_Q2
Sticky Note
The insertion after this paragraph deprecates use of the ThumbEE instruction set.

The System Level Programmers’ Model
Aborts, exceptions, and checks

Aborts and exceptions are unchanged in ThumbEE. A null check takes priority over an abort or watchpoint
on the same memory access. For more information, see Null checking on page A9-3.

The IT state bits in the CPSR are always cleared on entry to a NullCheck or IndexCheck handler. For more
information, see IT block and check handlers on page A9-5.

B1.9.2 Jazelle direct bytecode execution

In Jazelle state the processor executes bytecode programs, as described in Jazelle state on page A2-74.

The processor instruction set state is indicated by the CPSR.J and CPSR.T bits, see Program Status
Registers (PSRs) on page B1-14. (J,T) == 0b10 when the processor is in Jazelle state. For more information
about entering and leaving Jazelle state see Jazelle state on page B1-81.

Extension of the PC to 32 bits

To enable the PC to point to an arbitrary bytecode instruction, in a non-trivial Jazelle implementation all 32
bits of the PC are defined. In the PC, bit [0] always reads as zero when in ARM, Thumb, or ThumbEE state.

The existence of bit [0] in the PC is only visible in ARM, Thumb, or ThumbEE states when an exception
occurs in Jazelle state and the exception return address is odd-byte aligned.

The main architectural implication of this is that an exception handler must ensure that it restores all 32 bits
of the PC. The recommended ways of handling exception returns behave correctly.

Exception handling in the Jazelle extension

Exceptions on page B1-30 describes how exception entry occurs if an exception occurs while the processor
is executing in Jazelle state. This section gives more information about how exceptions in Jazelle state are
taken and handled.

Interrupts and Fast interrupts, IRQ and FIQ

To enable the standard mechanism for handling interrupts to work correctly, a Jazelle hardware
implementation must ensure that one of the following applies at the point where execution of a bytecode
instruction might be interrupted by an IRQ or FIQ:

• Execution has reached a bytecode instruction boundary. That is:

— all operations required to implement one bytecode instruction have completed

— no operations required to implement the next bytecode instruction has completed.

The LR value on entry to the interrupt handler must be (address of the next bytecode instruction) + 4.

• The sequence of operations performed from the start of execution of the current bytecode instruction,
up to the point where the interrupt occurs, is idempotent. This means that the sequence can be
repeated from its start without changing the overall result of executing the bytecode instruction.
B1-74 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The System Level Programmers’ Model
The LR value on entry to the interrupt handler must be (address of the current bytecode
instruction) + 4.

• Corrective action is taken either:

— directly by the Jazelle extension hardware

— indirectly, by calling a SUBARCHITECTURE DEFINED handler in the EJVM.

The corrective action must re-create a situation where the bytecode instruction can be re-executed
from its start.

The LR value on entry to the interrupt handler must be (address of the interrupted bytecode
instruction) + 4.

Data Abort exceptions

On taking a Data Abort exception, the value saved in LR_abt must ensure that the Data Abort handler can:

• read the CP15 Fault Status and Fault Address registers

• fix the reason for the abort

• return using SUBS PC,LR,#8 or its equivalent.

The abort handler must be able to do this without looking at the instruction that caused the abort or which
instruction set state it was executed in. On an ARMv7-A implementation, the abort handler must take
account of the virtual memory system.

Note
 • This assumes that the intention is to return to and retry the bytecode instruction that caused the Data

Abort exception. If the intention is instead to return to the bytecode instruction after the one that
caused the abort, then the return address must be modified by the length of the bytecode instruction
that caused the abort.

• For details of the CP15 Fault Status and Fault Address:

— for a VMSA implementation, see CP15 c5, Fault status registers on page B3-121 and CP15
c6, Fault Address registers on page B3-124

— for a PMSA implementation, see CP15 c5, Fault status registers on page B4-54 and CP15 c6,
Fault Address registers on page B4-57.

To enable the standard mechanism for handling Data Abort exceptions to work correctly, a Jazelle hardware
implementation must ensure that one of the following applies at any point where a bytecode instruction can
generate a Data Abort exception:

• The sequence of operations performed from the start of execution of the bytecode instruction, up to
the point where the Data Abort exception is generated, is idempotent. This means that the sequence
can be repeated from its start without changing the overall result of executing the bytecode
instruction.

• If the Data Abort exception is generated during execution of a bytecode instruction, corrective action
is taken either:

— directly by the Jazelle extension hardware
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B1-75

The System Level Programmers’ Model
— indirectly, by calling a SUBARCHITECTURE DEFINED handler in the EJVM.

The corrective action must re-create a situation where the bytecode instruction can be re-executed
from its start.

Note
 From ARMv6, the ARM architecture does not support the Base Updated Abort Model. This removes a
potential obstacle to the first of these solutions. For information about the Base Updated Abort Model in
earlier versions of the ARM architecture see The ARM abort model on page AppxH-20.

Prefetch Abort exceptions

On taking a Prefetch Abort exception, the value saved in LR_abt must ensure that the Prefetch Abort handler
can locate the start of the instruction that caused the abort simply and without looking at the instruction set
state in which its execution was attempted. The start of this instruction is always at address (LR_abt – 4).
On an ARMv7-A implementation, the abort handler must take account of the virtual memory system.

A multi-byte bytecode instruction can cross a page boundary. In this case the Prefetch Abort handler cannot
use LR_abt to determine which of the two pages caused the abort. How this situation is handled is
SUBARCHITECTURE DEFINED, but if it is handled by taking a Prefetch Abort exception, the architecture
requires that (LR_abt – 4) must point to the first byte of the bytecode instruction that caused the abort.

To ensure subarchitecture-independence, OS designers must write Prefetch Abort handlers in such a way
that they can handle a Prefetch Abort exception generated in either of the two pages spanned by a multi-byte
bytecode instruction that crosses a page boundary. In an implementation that has an Instruction Fault
Address Register (IFAR), the IFAR can be used to determine the faulting page. Otherwise, a simple
technique is:

IF the page pointed to by (LR_abt – 4) is not mapped
THEN map the page
ELSE map the page following the page including (LR_abt – 4)

ENDIF
retry the instruction

SVC and SMC exceptions

SVC and SMC exceptions must not be taken during Jazelle state execution. To cause either of these
exceptions to be taken, a Jazelle implementation must exit to a software handler that executes an SVC or SMC
instruction.

Undefined Instruction exceptions

The Undefined Instruction exception must not be taken during Jazelle state execution, except on a trivial
implementation of Jazelle state as described in Exception return to an unsupported instruction set state on
page B1-40.

When executing in Jazelle state, the Jazelle extension hardware might use a coprocessor extension such as
the VFP extension to execute some operations. If it does so, it must avoid taking Undefined Instruction
exceptions while in Jazelle state, even if an exceptional condition occurs that would normally cause the
coprocessor extension to generate an Undefined Instruction exception.
B1-76 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q2
Inserted Text
 might include taking the Undefined Instruction exception

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
the Jazelle extension, where the UNPREDICTABLE behavior

The System Level Programmers’ Model
Jazelle state configuration and control

For details of the configuration and control of Jazelle state from the application level, see Application level
configuration and control of the Jazelle extension on page A2-75. That section includes descriptions of the
Jazelle extension registers that can be accessed from User mode:

• Jazelle ID Register (JIDR) on page A2-76

• Jazelle Main Configuration Register (JMCR) on page A2-77.

The other Jazelle extension register is accessible only from privileged modes, see Jazelle OS Control
Register (JOSCR). This register controls access to the Jazelle extension.

When the Security Extensions are implemented, the Jazelle registers are common to the Secure and
Non-secure security states. Each register has the same access permissions in both security states. For more
information, see the register descriptions.

Changes to the Jazelle CP14 registers have the same synchronization requirements as changes to the CP15
registers. These are described in:

• Changes to CP15 registers and the memory order model on page B3-77 for a VMSA implementation

• Changes to CP15 registers and the memory order model on page B4-28 for a PMSA implementation.

Note
 • Normally, an EJVM never accesses the JOSCR.

• An EJVM that runs in User mode must not attempt to access the JOSCR.

Jazelle OS Control Register (JOSCR)

The Jazelle OS Control Register (JOSCR) provides operating system control of the use of the Jazelle
extension by processes and threads.

The JOSCR is:

• a CP14 register

• a 32-bit read/write register

• accessible only from privileged modes

• when the Security Extensions are implemented, a Common register.

The format of the JOSCR is:

Bits [31:2] Reserved, RAZ. These bits are reserved for future expansion.

CV, bit [1] Configuration Valid bit. This bit is used by an operating system to signal to the EJVM that
it must re-write its configuration to the configuration registers. The possible values are:

0 Configuration not valid. The EJVM must re-write its configuration to the
configuration registers before it executes another bytecode instruction.

31 2 1 0

Reserved, RAZ
C
V

C
D

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B1-77

The System Level Programmers’ Model
1 Configuration valid. The EJVM does not need to update the configuration
registers.

When the JMCR.JE bit is set to 1, the CV bit also controls entry to Jazelle state, see
Controlling entry to Jazelle state on page B1-79.

CD, bit [0] Configuration Disabled bit. This bit is used by an operating system to disable User mode
access to the JIDR and configuration registers:

0 Configuration enabled. Access to the Jazelle registers, including User mode
accesses, operate normally. For more information, see the register descriptions
in Application level configuration and control of the Jazelle extension on
page A2-75.

1 Configuration disabled in User mode. User mode access to the Jazelle registers
are UNDEFINED, and all User mode accesses to the Jazelle registers cause an
Undefined Instruction exception.

For more information about the use of this bit see Monitoring and controlling User mode
access to the Jazelle extension on page B1-80.

The JOSCR provides a control mechanism that is independent of the subarchitecture of the Jazelle
extension. An operating system can use this mechanism to control access to the Jazelle extension. Normally,
this register is used in conjunction with the JMCR.JE bit, see Jazelle Main Configuration Register (JMCR)
on page A2-77.

The JOSCR.CV and JOSCR.CD bits are both set to 0 on reset. This ensures that, subject to some conditions,
an EJVM can operate under an OS that does not support the Jazelle extension. The main condition required
to ensure an EJVM can operate under an OS that does not support the Jazelle extension it that the operating
system never swaps between two EJVM processes that require different settings of the Jazelle configuration
registers.

Two examples of how this condition can be met in a system are:

• if there is only ever one process or thread using the EJVM

• if all of the processes or threads that use the EJVM use the same static settings of the configuration
registers.

Accessing the JOSCR

To access the JOSCR you read or write the CP14 registers with <opc1> set to 7, <CRn> set to c1, <CRm> set to
c0, and <opc2> set to 0. For example:

MRC p14, 7, <Rt>, c1, c0, 0 ; Read Jazelle OS Control Register
MCR p14, 7, <Rt>, c1, c0, 0 ; Write Jazelle OS Control Register

Note
 For maximum compatibility with any future enhancements to the Jazelle extension, ARM strongly
recommends that a read, modify, write sequence is used to update the JOSCR. Updating the register in this
way preserves the value of any of bits [31:2] that might be used by a future expansion.
B1-78 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The System Level Programmers’ Model
Controlling entry to Jazelle state

The normal method of entering Jazelle state is using the BXJ instruction, see Jazelle state entry instruction,
BXJ on page A2-74. The operation of this instruction depends on both:

• the value of the JMCR.JE bit, see Jazelle Main Configuration Register (JMCR) on page A2-77

• the value of the JOSCR.CV bit.

When the JMCR.JE bit is 0, the JOSCR has no effect on the execution of BXJ instructions. They always
execute as BX instructions, and there is no attempt to enter Jazelle state.

When the JMCR.JE bit is 1, the JOSCR.CV bit controls the operation of BXJ instructions:

If CV == 1 The Jazelle extension hardware configuration is valid and enabled. A BXJ instruction causes
the processor to enter Jazelle state in SUBARCHITECTURE DEFINED circumstances, and
execute bytecode instructions as described in Executing BXJ with Jazelle extension enabled
on page A2-75.

If CV == 0 The Jazelle extension hardware configuration is not valid and therefore entry to Jazelle state
is disabled.

In all SUBARCHITECTURE DEFINED circumstances where, if CV had been 1 the BXJ
instruction would have caused the Jazelle extension hardware to enter Jazelle state, it
instead:

• enters a Configuration Invalid handler

• sets CV to 1.

A Configuration Invalid handler is a sequence of instructions that:

• includes MCR instructions to write the configuration required by the EJVM

• ends with a BXJ instruction to re-attempt execution of the required bytecode
instruction.

The following are SUBARCHITECTURE DEFINED:

• how the address of the Configuration Invalid handler is determined

• the entry and exit conditions of the Configuration Invalid handler.

In circumstances in which the Jazelle extension hardware would not have entered Jazelle
state if CV had been 1, it is IMPLEMENTATION DEFINED whether:

• the Configuration Invalid handler is entered

• a SUBARCHITECTURE DEFINED handler is entered, as described in Executing BXJ with
Jazelle extension enabled on page A2-75.

In ARMv7, the JOSCVR.CV bit is set to 0 on exception entry for all implementations other than a trivial
implementation of the Jazelle extension.

The intended use of the JOSCR.CV bit is:

1. When a context switch occurs, JOSCR.CV is set to 0. This is done by the operating system or, in
ARMv7, as the result of an exception.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B1-79

The System Level Programmers’ Model
2. When the new process or thread performs a BXJ instruction to start executing bytecode instructions,
the Configuration Invalid handler is entered and JOSCR.CV becomes 1.

3. The Configuration Invalid handler:

• writes the configuration required by the EJVM to the Jazelle configuration registers

• retries the BXJ instruction to execute the bytecode instruction.

This ensures that the Jazelle extension configuration registers are set up correctly for the EJVM concerned
before any bytecode instructions are executed. It successfully handles cases where a context switch occurs
during execution of the Configuration Invalid handler.

Monitoring and controlling User mode access to the Jazelle extension

The system can use the JOSCR.CD bit in different ways to monitor and control User mode access to the
Jazelle extension hardware. Possible uses include:

• An OS can set JOSCR.CD == 1 and JMCR.JE == 0, to prevent all User mode access to the Jazelle
extension hardware. With these settings any use of the BXJ instruction has the same result as a BX
instruction, and any attempt to configure the hardware, including any attempt to set the JMCR.JE bit
to 1, results in an Undefined Instruction exception.

• A simple mechanism for the OS to provide User mode access to the Jazelle extension hardware, while
protecting EJVMs from conflicting use of the hardware by other processes, is:

— Set the JOSCR.CD bit to 0.

— Preserve and restore the JMCR on context switches, initializing its value to 0 for new
processes.

— The JOSCR.CV bit is set to 0 on each context switch, either by the operating system or, in
ARMv7, as the result of an exception. This ensures that EJVMs reconfigure the Jazelle
extension hardware to match their requirements when necessary.

The context switch mechanism is described in Controlling entry to Jazelle state on page B1-79.

EJVM operation

EJVM operation on page A2-79 described the architectural requirements for an EJVM at the application
level. Because the EJVM is provided for use by applications, the system level description of the architecture
does not require significant additional information about the EJVM.

Initialization on page A2-79 stated that, if the EJVM is compatible with the subarchitecture, the EJVM must
write its required configuration to the JMCR and any other configuration registers. The EJVM must not omit
this step on the assumption that the JOSCR.CV bit is 0. In other words, the EJVM must not assume that
JOSCR.CV == 0, and that this will trigger entry to the Configuration Invalid handler before any bytecode
instruction is executed by the Jazelle extension hardware.
B1-80 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The System Level Programmers’ Model
Trivial implementation of the Jazelle extension

Jazelle direct bytecode execution support on page A2-73 introduced the possible trivial implementation of
the Jazelle extension, and summarized the application level requirements of a trivial implementation. This
section gives the system level description of a trivial implementation of the Jazelle extension.

A trivial implementation of the Jazelle extension must:

• Implement the JIDR with the implementer and subarchitecture fields set to zero. The register can be
implemented so that the whole register is RAZ.

• Implement the JMCR as RAZ/WI.

• Implement the JOSCR either:

— so that it can be read and written, but its effects are ignored

— as RAZ/WI.

This enables operating systems that support an EJVM to execute correctly.

• Implement the BXJ instruction to behave identically to the BX instruction in all circumstances, as
required by the fact that the JMCR.JE bit is always zero. This means that Jazelle state can never be
entered normally on a trivial implementation.

• Treat Jazelle state as an unsupported instruction set state, as described in Exception return to an
unsupported instruction set state on page B1-40.

A trivial implementation does not have to extend the PC to 32 bits, that is, it can implement PC[0] as
RAZ/WI. This is because the only way that PC[0] is visible in ARM or Thumb state is as a result of a
processor exception occurring during Jazelle state execution, and Jazelle state execution cannot occur on a
trivial implementation.

Jazelle state

All processor configuration information that can be modified by Jazelle state execution must be kept in the
Application Level registers described in ARM processor modes and core registers on page B1-6. This
ensures that the processor configuration information is preserved and restored correctly when processor
exceptions and context switches occur. Configuration information can be kept either in Application Level
registers or in configuration registers. In this context, configuration information is information that affects
Jazelle state execution but is not modified by it.

An Enabled Java Virtual Machine (EJVM) implementation must check whether the implemented Jazelle
extension is compatible with its use of the Application Level registers. If the implementation is compatible,
the EJVM sets JE == 1 in the JMCR, see Jazelle Main Configuration Register (JMCR) on page A2-77. If
the implementation is not compatible, the EJVM sets JE == 0 and executes without hardware acceleration.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B1-81

The System Level Programmers’ Model
Jazelle state exit

The processor exits Jazelle state in IMPLEMENTATION DEFINED circumstances. Typically, this is due to
attempted execution of a bytecode instruction that the implementation cannot handle in hardware, or that
generates one of the Java exceptions described in Lindholm and Yellin, The Java Virtual Machine
Specification 2nd Edition. On exit from Jazelle state, various processor registers contain SUBARCHITECTURE
DEFINED values, enabling the EJVM to resume software execution of the bytecode program correctly.

The processor also exits Jazelle state when a processor exception occurs. The CPSR is copied to the banked
SPSR for the exception mode, so the banked SPSR contains J == 1 and T == 0, and Jazelle state is restored
on return from the exception when the SPSR is copied back into the CPSR. With the restriction that Jazelle
state execution can modify only Application Level registers, this ensures that all registers are correctly
preserved and can be restored by the exception handlers. Configuration and control registers can be modified
in the exception handler itself as described in Jazelle state configuration and control on page B1-77 and
Jazelle OS Control Register (JOSCR) on page B1-77.

Specific considerations apply to processor exceptions, see Exception handling in the Jazelle extension on
page B1-74.

It is IMPLEMENTATION DEFINED whether Jazelle extension hardware contains state that is both:

• modified during Jazelle state execution

• held outside the Application Level registers during Jazelle state execution.

If such state exists, the implementation must:

• Initialize the state from one or more of the Application Level registers whenever Jazelle state is
entered, whether as the result of:

— the execution of a BXJ instruction

— returning from a processor exception.

• Write the state into one or more of the Application Level registers whenever Jazelle state is exited,
whether as a result of taking a processor exception or of IMPLEMENTATION DEFINED circumstances.

• Ensure that the mechanism for writing the state into Application Level registers on taking a processor
exception, and initializing the state from Application Level registers on returning from that exception,
ensures that the state is correctly preserved and restored over the exception.

Additional Jazelle state restrictions

The Jazelle extension hardware must obey the following restrictions:

• It must not change processor mode other than by taking one of the standard ARM processor
exceptions.

• It must not access banked versions of registers other than the ones belonging to the processor mode
in which it is entered.

• It must not do anything that is illegal for an UNPREDICTABLE instruction. That is, it must not:

— generate a security loophole

— halt or hang the processor or any other part of the system.
B1-82 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The System Level Programmers’ Model
As a result of these requirements, Jazelle state can be entered from User mode without risking a breach of
OS security.

In addition, Jazelle state execution is UNPREDICTABLE in FIQ mode.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B1-83

The System Level Programmers’ Model
B1-84 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Chapter B2
Common Memory System Architecture
Features

This chapter provides a system-level view of the general features of the memory system. It contains the
following sections:

• About the memory system architecture on page B2-2

• Caches on page B2-3

• Implementation defined memory system features on page B2-27

• Pseudocode details of general memory system operations on page B2-29.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B2-1

Common Memory System Architecture Features
B2.1 About the memory system architecture

The ARM architecture supports different implementation choices for the memory system microarchitecture
and memory hierarchy, depending on the requirements of the system being implemented. In this respect, the
memory system architecture describes a design space in which an implementation is made. The architecture
does not prescribe a particular form for the memory systems. Key concepts are abstracted in a way that
enables implementation choices to be made while enabling the development of common software routines
that do not have to be specific to a particular microarchitectural form of the memory system. For more
information about the concept of a hierarchical memory system see Memory hierarchy on page A3-52.

B2.1.1 Form of the memory system architecture

ARMv7 supports different forms of the memory system architecture, that map onto the different architecture
profiles. Two of these are described in this manual:

• ARMv7-A, the A profile, requires the inclusion of a Virtual Memory System Architecture (VMSA),
as described in Chapter B3 Virtual Memory System Architecture (VMSA).

• ARMv7-R, the R profile, requires the inclusion of a Protected Memory System Architecture (PMSA),
as described in Chapter B4 Protected Memory System Architecture (PMSA).

Both of these memory system architectures provide mechanisms to split memory into different regions.
Each region has specific memory types and attributes. The two memory system architectures have different
capabilities and programmers’ models.

The memory system architecture model required by ARMv7-M, the M profile, is outside the scope of this
manual. It is described in the ARMv7-M Architecture Reference Manual.

B2.1.2 Memory attributes

Summary of ARMv7 memory attributes on page A3-25 summarizes the memory attributes, including how
different memory types have different attributes. Each region of memory has a set of memory attributes:

• in a PMSA implementation the attributes are part of each MPU memory region definition

• in a VMSA implementation the translation table entry that defines a virtual memory region also
defines the attributes for that region.

B2.1.3 Levels of cache

From ARMv7, the architecturally-defined cache control mechanism covers multiple levels of cache, as
described in Caches on page B2-3. Also, it permits levels of cache beyond the scope of these cache control
mechanisms, see System-level caches on page B2-26.

Note
 Before ARMv7, the architecturally-defined cache control mechanism covers only a single level of cache,
and any support for other levels of cache is IMPLEMENTATION DEFINED.
B2-2 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Common Memory System Architecture Features
B2.2 Caches

The concept of caches is described in Caches and memory hierarchy on page A3-51. This section describes
the cache identification and control mechanisms in ARMv7. These are described in the following sections:

• Cache identification

• Cache behavior on page B2-5

• Cache enabling and disabling on page B2-8

• Cache maintenance functionality on page B2-9

• The interaction of cache lockdown with cache maintenance on page B2-18

• Branch predictors on page B2-19

• Ordering of cache and branch predictor maintenance operations on page B2-21

• Multiprocessor effects on cache maintenance operations on page B2-23

• System-level caches on page B2-26.

Note
 The cache identification and control mechanisms for previous versions of the ARM architecture are
described in:

• Cache support on page AppxG-21, for ARMv6

• Cache support on page AppxH-21, for the ARMv4 and ARMv5 architectures.

B2.2.1 Cache identification

The ARMv7 cache identification consists of a set of registers that describe the implemented caches that are
under the control of the processor:

• A single Cache Type Register defines:

— the minimum line length of any of the instruction caches

— the minimum line length of any of the data or unified caches

— the cache indexing and tagging policy of the Level 1 instruction cache.

For more information, see:

— c0, Cache Type Register (CTR) on page B3-83, for a VMSA implementation

— c0, Cache Type Register (CTR) on page B4-34, for a PMSA implementation.

• A single Cache Level ID Register defines:

— the type of cache implemented at a each cache level, up to the maximum of seven levels

— the Level of Coherence for the caches

— the Level of Unification for the caches.

For more information, see:

— c0, Cache Level ID Register (CLIDR) on page B3-92, for a VMSA implementation

— c0, Cache Level ID Register (CLIDR) on page B4-41, for a PMSA implementation.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B2-3

Common Memory System Architecture Features
• A single Cache Size Selection Register selects the cache level and cache type of the current Cache
Size Identification Register, see:

— c0, Cache Size Selection Register (CSSELR) on page B3-95, for a VMSA implementation

— c0, Cache Size Selection Register (CSSELR) on page B4-43, for a PMSA implementation.

• For each implemented cache, across all the levels of caching, a Cache Size Identification Register
defines:

— whether the cache supports Write-Through, Write-Back, Read-Allocate and Write-Allocate

— the number of sets, associativity and line size of the cache.

For more information, see:

— c0, Cache Size ID Registers (CCSIDR) on page B3-91, for a VMSA implementation

— c0, Cache Size ID Registers (CCSIDR) on page B4-40, for a PMSA implementation.

Identifying the cache resources in ARMv7

From ARMv7 the architecture defines support for multiple levels of cache, up to a maximum of seven levels.
This means the process of identifying the cache resources available to the processor in an ARMv7
implementation is more complicated. To obtain this information:

1. Read the Cache Type Register to find the indexing and tagging policy used for the Level 1 instruction
cache. This register also provides the size of the smallest cache lines used for the instruction caches,
and for the data and unified caches. These values are used in cache maintenance operations.

2. Read the Cache Level ID Register to find what caches are implemented. The register includes seven
Cache type fields, for cache levels 1 to 8. Scanning these fields, starting from Level 1, identifies the
instruction, data or unified caches implemented at each level. This scan ends when it reaches a level
at which no caches are defined. The Cache Level ID Register also provides the Level of Unification
and the Level of Coherency for the cache implementation.

3. For each cache identified at stage 2:

• Write to the Cache Size Selection Register to select the required cache. A cache is identified
by its level, and whether it is:

— an instruction cache

— a data or unified cache.

• Read the Cache Size ID Register to find details of the cache.

Note
 In ARMv6, only the Level 1 caches are architecturally defined, and the Cache Type Register holds details
of the caches. For more information, see Cache support on page AppxG-21.
B2-4 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
7

Common Memory System Architecture Features
B2.2.2 Cache behavior

The behavior of caches in an ARMv7 implementation is summarized in the following subsections:

• General behavior of the caches

• Behavior of the caches at reset on page B2-6

• Behavior of Preload Data (PLD, PLDW) and Preload Instruction (PLI) with caches on page B2-7.

General behavior of the caches

When a memory location is marked with a Normal Cacheable memory attribute, determining whether a
copy of the memory location is held in a cache still depends on many aspects of the implementation.
Typically, the following non-exhaustive list of factors might be involved:

• the size, line-length, and associativity of the cache

• the cache allocation algorithm

• activity by other elements of the system that can access the memory

• instruction prefetching algorithms

• data prefetching algorithms

• interrupt behaviors.

Given this range of factors, and the large variety of cache systems that might be implemented, the
architecture cannot guarantee whether:

• a memory location present in the cache remains in the cache

• a memory location not present in the cache is brought into the cache.

Instead, the following principles apply to the behavior of caches:

• The architecture has a concept of an entry locked down in the cache. How lockdown is achieved is
IMPLEMENTATION DEFINED, and lockdown might not be supported by:

— a particular implementation

— some memory attributes.

• An unlocked entry in the cache cannot be relied upon to remain in the cache. If an unlocked entry
does remain in the cache, it cannot be relied upon to remain incoherent with the rest of memory. In
other words, software must not assume that an unlocked item that remains in the cache remains dirty.

• A locked entry in the cache can be relied upon to remain in the cache. A locked entry in the cache
cannot be relied upon to remain incoherent with the rest of memory, that is, it cannot be relied on to
remain dirty.

Note
 For more information, see The interaction of cache lockdown with cache maintenance on

page B2-18.

• If a memory location is marked as Cacheable there is no mechanism by which it can be guaranteed
not to be allocated to an enabled cache at any time. Any application must assume that any Cacheable
memory location can be allocated to any enabled cache at any time.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B2-5

Common Memory System Architecture Features
• If the cache is disabled, it is guaranteed that no new allocation of memory locations into the cache
will occur.

• If the cache is enabled, it is guaranteed that no memory location that does not have a Cacheable
attribute is allocated into the cache.

• If the cache is enabled, it is guaranteed that no memory location is allocated to the cache if its
translation table attributes or region attributes prevent privileged read access.

• Any memory location that is marked as Normal Shareable is guaranteed to be coherent with all
masters in that shareability domain for data accesses.

• Any memory location is not guaranteed to remain incoherent with the rest of memory.

• The eviction of a cache entry from a cache level can overwrite memory that has been written by
another observer only if the entry contains a memory location that has been written to by a processor
that controls that cache. The maximum size of the memory that can be overwritten is called the Cache
Writeback Granule. In some implementations the CTR identifies the Cache Writeback Granule, see:

— c0, Cache Type Register (CTR) on page B3-83 for a VMSA implementation

— c0, Cache Type Register (CTR) on page B4-34 for a PMSA implementation.

• The allocation of a memory location into a cache cannot cause the most recent value of that memory
location to become invisible to an observer, if it had previously been visible to that observer.

For the purpose of these principles, a cache entry covers at least 16 bytes and no more than 2KB of
contiguous address space, aligned to its size.

In addition, in ARMv7, in the following situations it is UNPREDICTABLE whether the location is returned
from cache or from memory:

• The location is not marked as Cacheable but is contained in the cache. This situation can occur if a
location is marked as Non-cacheable after it has been allocated into the cache.

• The location is marked as Cacheable and might be contained in the cache, but the cache is disabled.

Behavior of the caches at reset

In ARMv7:

• All caches are disabled at reset.

• An implementation can require the use of a specific cache initialization routine to invalidate its
storage array before it is enabled. The exact form of any required initialization routine is
IMPLEMENTATION DEFINED, but the routine must be documented clearly as part of the documentation
of the device.

• It is IMPLEMENTATION DEFINED whether an access can generate a cache hit when the cache is
disabled. If an implementation permits cache hits when the cache is disabled the cache initialization
routine must:

— provide a mechanism to ensure the correct initialization of the caches

— be documented clearly as part of the documentation of the device.
B2-6 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Common Memory System Architecture Features
In particular, if an implementation permits cache hits when the cache is disabled and the cache
contents are not invalidated at reset, the initialization routine must avoid any possibility of running
from an uninitialized cache. It is acceptable for an initialization routine to require a fixed instruction
sequence to be placed in a restricted range of memory.

• ARM recommends that whenever an invalidation routine is required, it is based on the ARMv7 cache
maintenance operations.

When they are enabled the state of the caches is UNPREDICTABLE if the appropriate initialization routine has
not been performed.

Similar rules apply:

• to branch predictor behavior, see Behavior of the branch predictors at reset on page B2-21

• on an ARMv7-A implementation, to TLB behavior, see TLB behavior at reset on page B3-55.

Note
 Before ARMv7, caches are invalidated by the assertion of reset, see Cache behavior at reset on
page AppxG-23.

Behavior of Preload Data (PLD, PLDW) and Preload Instruction (PLI) with caches

Preload Data and Preload Instruction operations are provided by the PLD and PLI instructions. These are
implemented in the ARM and Thumb instruction sets. The Multiprocessing Extensions add the PLDW
instruction.

PLD, PLDW and PLI act as hints to the memory system, and as such their operation does not cause a precise
abort to occur. However, a memory operation performed as a result of one of these memory system hints
might trigger an asynchronous event, so influencing the execution of the processor. Examples of the
asynchronous events that might be triggered are asynchronous aborts and interrupts.

A PLD or PLDW instruction is guaranteed not to cause any effect to the caches, or TLB, or memory other than
the effects that, for permission or other reasons, the equivalent load from the same location with the same
context and at the same privilege level can cause.

A PLD or PLDW instruction is guaranteed not to access Strongly-ordered or Device memory.

A PLI instruction is guaranteed not to cause any effect to the caches, or TLB, or memory other than the
effects that, for permission or other reasons, the fetch resulting from changing the PC to the location
specified by the PLI instruction with the same context and at the same privilege level can cause.

A PLI instruction is guaranteed not to access Strongly-ordered or Device memory. In a VMSA
implementation, a PLI instruction must not perform any accesses when the MMU is disabled.

Note
 In ARMv6, an instruction prefetch is provided by the optional Prefetch instruction cache line operation in
CP15 c7, with encoding <opc1> == 0, <CRm> == c13, <opc2> == 1, see c7, Cache operations on
page AppxG-38.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B2-7

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
synchronous

Common Memory System Architecture Features
Cache lockdown

Cache lockdown requirements can conflict with the management of hardware coherency. For this reason,
ARMv7 introduces significant changes in this area, compared to previous versions of the ARM architecture.
These changes recognize that, in many systems, cache lockdown is inappropriate.

For an ARMv7 implementation:

• There is no requirement to support cache lockdown.

• If cache lockdown is supported, the lockdown mechanism is IMPLEMENTATION DEFINED. However
key properties of the interaction of lockdown with the architecture must be described in the
implementation documentation.

• The Cache Type Register does not hold information about lockdown. This is a change from ARMv6.
However some CP15 c9 encodings are available for IMPLEMENTATION DEFINED, cache lockdown
features, see Implementation defined memory system features on page B2-27.

Note
 For details of cache lockdown in ARMv6 see c9, Cache lockdown support on page AppxG-45.

B2.2.3 Cache enabling and disabling

Levels of cache on page B2-2 indicates that:

• from ARMv7 the architecture defines the control of multiple levels of cache

• before ARMv7 the architecture defines the control of only one level of cache.

This means the mechanism for cache enabling and disabling caches changes in ARMv7. In both cases,
enabling and disabling of caches is controlled by the SCTLR.C and SCTLR.I bits, see:

• c1, System Control Register (SCTLR) on page B3-96, for a VMSA implementation

• c1, System Control Register (SCTLR) on page B4-45, for a PMSA implementation.

In ARMv7:

• The SCTLR.C bit enables or disables all data and unified caches, across all levels of cache visible to
the processor.

• The SCTLR.I bit enables or disables all instruction caches, across all levels of cache visible to the
processor.

• If an implementation requires finer-grained control of cache enabling it can implement control bits
in the Auxiliary Control Register for this purpose. For example, an implementation might define
control bits to enable and disable the caches at a particular level. For more information about the
Auxiliary Control Register see:

— c1, Implementation defined Auxiliary Control Register (ACTLR) on page B3-103, for a VMSA
implementation

— c1, Implementation defined Auxiliary Control Register (ACTLR) on page B4-50, for a PMSA
implementation.
B2-8 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Common Memory System Architecture Features
Note
 In ARMv6, the SCTLR I, C, and W bits provide separate enables for the level 1 instruction cache (if
implemented), the level 1 data or unified cache, and write buffering. For more information, see c1, System
Control Register (SCTLR) on page AppxG-34.

When a cache is disabled:

• it is IMPLEMENTATION DEFINED whether a cache hit occurs if a location that is held in the cache is
accessed

• any location that is not held in the cache is not brought into the cache as a result of a memory access.

The SCTLR.C and SCTLR.I bits describe the enabling of the caches, and do not affect the memory attributes
generated by an enabled MMU or MPU.

If the MMU or MPU is disabled, the effects of the SCTLR.C and SCTLR.I bits on the memory attributes
are described in:

• Enabling and disabling the MMU on page B3-5 for the MMU

• Behavior when the MPU is disabled on page B4-5 for the MPU.

B2.2.4 Cache maintenance functionality

ARMv7 redefines the required CP15 cache maintenance operations. The two main features of this change
are:

• improved support for multiple levels of cache, including abstracting how many levels of cache are
implemented.

• reducing the architecturally-defined set of operations to the minimum set required for operating
systems

This section only describes cache maintenance for ARMv7. For details of cache maintenance in previous
versions of the ARM architecture see:

• c7, Cache operations on page AppxG-38 for ARMv6

• c7, Cache operations on page AppxH-49 for the ARMv4 and ARMv5 architectures.

Terms used in describing cache operations on page B2-10 describes the terms used in this section. Then the
following subsections describe the ARMv7 cache maintenance functionality:

• ARMv7 cache maintenance operations on page B2-13

• The ARMv7 abstraction of the cache hierarchy on page B2-15.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B2-9

Common Memory System Architecture Features
Terms used in describing cache operations

This section describes particular terms used in the descriptions of cache maintenance operations.

Cache maintenance operations are defined to act on particular memory locations. Operations can be defined:

• by the address of the memory location to be maintained, referred to as by MVA

• by a mechanism that describes the location in the hardware of the cache, referred to as by set/way.

In addition, the instruction cache invalidate operation has an option that invalidates all entries in the
instruction caches.

The following subsections define the terms used to describe the cache operations:

• Operations by MVA

• Operations by set/way

• Clean, Invalidate, and Clean and Invalidate on page B2-11.

Operations by MVA

For cache operations by MVA, these terms relate to memory addressing, and in particular the relation
between:

• Modified Virtual Address (MVA)

• Virtual Address (VA)

• Physical Address (PA).

The term Modified Virtual Address relates to the Fast Context Switch Extension (FCSE) mechanism,
described in Appendix E Fast Context Switch Extension (FCSE). Use of the FCSE is deprecated in ARMv6
and the FCSE is optional in ARMv7. When the FCSE is absent or disabled, the MVA and VA have the same
value. However the term MVA is used throughout this section, and elsewhere in this manual, for cache and
TLB operations. This is consistent with previous issues of the ARM Architecture Reference Manual.

Virtual addresses only exist in systems with a MMU. When no MMU is implemented or the MMU is
disabled, the MVA and VA are identical to the PA.

In the cache operations, any operation described as operating by MVA includes as part of any required MVA
to PA translation:

• the current system Application Space IDentifier (ASID)

• the current security state, if the Security Extensions are implemented.

Operations by set/way

Cache maintenance operations by set/way refer to the particular structures in a cache. Three parameters
describe the location in a cache hierarchy that an operation works on. These parameters are:

Level The cache level of the hierarchy. The number of levels of cache is IMPLEMENTATION
DEFINED, and can be determined from the Cache Level ID Register, see:

• c0, Cache Level ID Register (CLIDR) on page B3-92 for a VMSA implementation

• c0, Cache Level ID Register (CLIDR) on page B4-41 for a PMSA implementation.
B2-10 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
Address

Common Memory System Architecture Features
In the ARM architecture, the lower numbered levels are those closest to the processor, see
Memory hierarchy on page A3-52.

Set Each level of a cache is split up into a number of sets. Each set is a set of locations in a cache
level that an address can be assigned to. Usually, the set number is an IMPLEMENTATION
DEFINED function of an address.

In the ARM architecture, sets are numbered from 0.

Way The Associativity of a cache defines the number of locations in a set that an address can be
assigned to. The way number specifies a location in a set. In the ARM architecture, ways are
numbered from 0.

Cache maintenance operations that work by set/way use the level, set and way values to determine the
location acted on by the operation. The address in memory that corresponds to this cache location is
determined by the cache.

Note
 Because the allocation of a memory address to a cache location is entirely IMPLEMENTATION DEFINED, ARM
expects that most portable code will use only the set/way operations as single steps in a routine to perform
maintenance on the entire cache.

Clean, Invalidate, and Clean and Invalidate

Caches introduce coherency problems in two possible directions:

1. An update to a memory location by a processor that accesses a cache might not be visible to other
observers that can access memory. This can occur because new updates are still in the cache and are
not visible yet to the other observers that do not access that cache.

2. Updates to memory locations by other observers that can access memory might not be visible to a
processor that accesses a cache. This can occur when the cache contains an old, or stale, copy of the
memory location that has been updated.

The Clean and Invalidate operations address these two issues. The definitions of these operations are:

Clean A cache clean operation ensures that updates made by an observer that controls the cache
are made visible to other observers that can access memory at the point to which the
operation is performed. Once the Clean has completed, the new memory values are
guaranteed to be visible to the point to which the operation is performed, for example to the
point of unification.

The cleaning of a cache entry from a cache can overwrite memory that has been written by
another observer only if the entry contains a location that has been written to by a processor
that controls that cache.

Invalidate A cache invalidate operation ensures that updates made visible by observers that access
memory at the point to which the invalidate is defined are made visible to an observer that
controls the cache. This might result in the loss of updates to the locations affected by the
invalidate operation that have been written by observers that access the cache.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B2-11

Common Memory System Architecture Features
If the address of an entry on which the invalidate operates does not have a Normal Cacheable
attribute, or if the cache is disabled, then an invalidate operation also ensures that this
address is not present in the cache.

Note
 Entries for addresses with a Normal Cacheable attribute can be allocated to an enabled cache

at any time, and so the cache invalidate operation cannot ensure that the address is not
present in the cache.

Clean and Invalidate

A cache clean and invalidate operation behaves as the execution of a clean operation
followed immediately by an invalidate operation. Both operations are performed to the same
location.

The points to which a cache maintenance operation can be defined differ depending on whether the
operation is by MVA or by set/way:

• For set/way operations, and for All (entire cache) operations, the point is defined to be to the next
level of caching.

• For MVA operations, two conceptual points are defined:

Point of coherency (POC)

For a particular MVA, the POC is the point at which all agents that can access memory
are guaranteed to see the same copy of a memory location. In many cases, this is
effectively the main system memory, although the architecture does not prohibit the
implementation of caches beyond the POC that have no effect on the coherence between
memory system agents.

Point of unification (POU)

The PoU for a processor is the point by which the instruction and data caches and the
translation table walks of that processor are guaranteed to see the same copy of a memory
location. In many cases, the point of unification is the point in a uniprocessor memory
system by which the instruction and data caches and the translation table walks have
merged.

The PoU for an Inner Shareable shareability domain is the point by which the instruction
and data caches and the translation table walks of all the processors in that Inner
Shareable shareability domain are guaranteed to see the same copy of a memory location.

Defining this point permits self-modifying code to ensure future instruction fetches are
associated with the modified version of the code by using the standard correctness policy
of:

1. clean data cache entry by address

2. invalidate instruction cache entry by address.

The PoU also enables a uniprocessor system which does not implement the
Multiprocessing Extensions to use the clean data cache entry operation to ensure that all
writes to the translation tables are visible to the translation table walk hardware.
B2-12 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Common Memory System Architecture Features
Three field definitions in the Cache Level ID Register relate to these conceptual points:

Level of Coherence

The level of coherence field defines the first level of cache that does not have to be
cleaned or invalidated when cleaning or invalidating to the point of coherency. The value
in the register is one less than the cache level, so a value of 0 indicates level 1 cache. For
example, if the level of coherence field contains the value 3:

• level 4 cache is the first level that does not have to be cleaned or invalidated

• therefore, a clean to the point of coherency operation requires the level 1, level 2
and level 3 caches to be cleaned.

The specified level of coherence can be a level that is not implemented, indicating that all
implemented caches are before the point of coherency.

Level of Unification Uniprocessor

The Level of Unification Uniprocessor field defines the first level of cache that does not
have to be cleaned or invalidated when cleaning or invalidating to the point of unification
for the processor. As with the Level of Coherence, the value in the register is one less than
the cache level, so a value of 0 indicates Level 1 cache.

The specified Level of Unification Uniprocessor can be a level that is not implemented,
indicating that all implemented caches are before the point of unification.

Level of Unification Inner Shareable

The Level of Unification Inner Shareable field defines the first level of cache that does
not have to be cleaned or invalidated when cleaning or invalidating to the point of
unification for the Inner Shareable shareability domain. As with the Level of Coherence,
the value in the register is one less than the cache level, that means a value of 0 indicates
Level 1 cache.

The specified Level of Unification Inner Shareable can be a level that is not implemented,
indicating that all implemented caches are before the point of unification.

The Level of Unification Inner Shareable field is RAZ in implementations that do not
implement the Multiprocessing Extensions.

For more information, see:

— c0, Cache Level ID Register (CLIDR) on page B3-92 for a VMSA implementation

— c0, Cache Level ID Register (CLIDR) on page B4-41 for a PMSA implementation.

ARMv7 cache maintenance operations

Cache maintenance operations are performed using accesses to CP15 c7. The operations are described in:

• CP15 c7, Cache and branch predictor maintenance functions on page B3-126, for a VMSA
implementation

• CP15 c7, Cache and branch predictor maintenance functions on page B4-68, for a PMSA
implementation.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B2-13

Common Memory System Architecture Features
This operations required by ARMv7 are:

Data cache and unified cache line operations

Any of these operations can be applied to

• any data cache

• any unified cache.

The supported operations are:

Invalidate by MVA

Performs an invalidate of a data or unified cache line based on the address it
contains.

Invalidate by set/way

Performs an invalidate of a data or unified cache line based on its location in the
cache hierarchy.

Clean by MVA

Performs a clean of a data or unified cache line based on the address it contains.

Clean by set/way

Performs a clean of a data or unified cache line based on its location in the cache
hierarchy.

Clean and Invalidate by MVA

Performs a clean and invalidate of a data or unified cache line based on the
address it contains.

Clean and Invalidate by set/way

Performs a clean and invalidate of a data or unified cache line based on its
location in the cache hierarchy.

Instruction cache operations

Invalidate by MVA
Performs an invalidate of an instruction cache line based on the address it
contains.

Invalidate All
Performs an invalidate of the entire instruction cache or caches, and of all
Branch Prediction caches.

Note
 Other cache maintenance operations specified in ARMv6 are not supported in ARMv7. Their associated
encodings in CP15 c7 are UNPREDICTABLE.

An ARMv7 implementation can add additional IMPLEMENTATION DEFINED cache maintenance functionality
using CP15 c15 operations, if this is required.
B2-14 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2010_Q3
Inserted Text

To ensure all cache lines in a block of address space are maintained through all levels of cache, ARM strongly recommends that software:
 • for data or unified cache maintenance, uses the CTR.DMINLINE value to determine the loop increment size for a loop of data cache maintenance by MVA operations
 • for instruction cache maintenance, uses the CTR.IMINLINE value to determine the loop increment size for a loop of instruction cache maintenance by MVA operations.

Common Memory System Architecture Features
The ARMv7 specification of the cache maintenance operation describe what they are guaranteed to do in a
system. It does not limit other behaviors that might occur, provided they are consistent with the requirements
for cache behavior described in Cache behavior on page B2-5.

This means that as a side-effect of a cache maintenance operation:

• any location in the cache might be cleaned

• any unlocked location in the cache might be cleaned and invalidated.

Note
 ARM recommends that, for best performance, such side-effects are kept to a minimum. In particular, when
the Security Extensions are implemented ARM strongly recommends that the side-effects of operations
performed in Non-secure state do not have a significant performance impact on execution in Secure state.

Effect of the Security Extensions on the cache maintenance operations

When the Security Extensions are implemented, each security state has its own physical address space. For
details of how this affects the cache maintenance operations see The effect of the Security Extensions on the
cache operations on page B3-27.

The ARMv7 abstraction of the cache hierarchy

The following subsections describe the ARMv7 abstraction of the cache hierarchy:

• Cache hierarchy abstraction for address-based operations

• Cache hierarchy abstraction for set/way-based operations on page B2-16.

Example code for cache maintenance operations on page B2-16 gives an example of cache maintenance
code, that can be adapted for other cache operations, and Boundary conditions for cache maintenance
operations on page B2-17 gives more information about the cache operations.

Cache hierarchy abstraction for address-based operations

The addressed-based cache operations are described as operating by MVA. Each of these operations is
always qualified as being one of:

• performed to the point of coherency

• performed to the point of unification.

See Terms used in describing cache operations on page B2-10 for definitions of point of coherency and
point of unification, and more information about possible meanings of MVA.

This means that the full list of possible address-based cache operations is:

• Invalidate data cache or unified cache line by MVA to the point of coherency

• Clean data cache or unified cache line by MVA to the point of coherency

• Clean data cache or unified cache line by MVA to the point of unification

• Clean and invalidate data cache or unified cache line by MVA to the point of coherency

• Invalidate instruction cache line by MVA to the point of unification.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B2-15

Common Memory System Architecture Features
The Cache Type Register holds minimum line length values for:

• the instruction caches

• the data and unified caches.

These values enable a range of addresses to be invalidated in an efficient manner. For details of the register
see:

• c0, Cache Type Register (CTR) on page B3-83 for a VMSA implementation

• c0, Cache Type Register (CTR) on page B4-34 for a PMSA implementation.

For details of the CP15 c7 encodings for all cache maintenance operations see:

• CP15 c7, Cache and branch predictor maintenance functions on page B3-126 for a VMSA
implementation

• CP15 c7, Cache and branch predictor maintenance functions on page B4-68 for a PMSA
implementation.

Cache hierarchy abstraction for set/way-based operations

The set/way-based cache maintenance operations are:

• Invalidate data cache or unified cache line by set/way

• Clean data cache or unified cache line by set/way

• Clean and invalidate data cache or unified cache line by set/way

The CP15 c7 encodings of these operations include a field that must be used to specify the cache level for
the operation:

• a clean operation cleans from the level of cache specified through to at least the next level of cache,
moving further from the processor

• an invalidate operation invalidates only at the level specified.

In addition to these set/way operations, a cache operation is provided for instruction cache maintenance, to
Invalidate all instruction cache lines to the point of unification.

For details of the CP15 c7 encodings for all cache maintenance operations see:

• CP15 c7, Cache and branch predictor maintenance functions on page B3-126 for a VMSA
implementation

• CP15 c7, Cache and branch predictor maintenance functions on page B4-68 for a PMSA
implementation.

Example code for cache maintenance operations

This code sequence illustrates a generic mechanism for cleaning the entire data or unified cache to the point
of coherency:

MRC p15, 1, R0, c0, c0, 1 ; Read CLIDR
ANDS R3, R0, #&7000000
MOV R3, R3, LSR #23 ; Cache level value (naturally aligned)
BEQ Finished
MOV R10, #0
B2-16 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
These values enable efficient invalidation of a range of addresses, because this value is the most efficient address stride to use to apply a sequence of address-based maintenance operations to a range of addresses.

For the Invalidate data or unified cache line by MVA operation, the Cache Writeback Granule field of the Cache Type Register defines the maximum granule that a single invalidate instruction can invalidate. This meaning of the Cache Writeback Granule is in addition to its defining the maximum size that can be written back.

ARM_2008_Q4
Sticky Note
This change is a clarification of the use of this value. It is not a change to the architecture.

ARM_2011_Q2
Sticky Note
The cache maintenance operation is likely to be faster if the following code is used instead of that shown:
 MRC p15, 1, R0, c0, c0, 1 ; Read CLIDR into R0
 ANDS R3, R0, #&7000000
 MOV R3, R3, LSR #23 ; Cache level value (naturally aligned)
 BEQ Finished
 MOV R10, #0
Loop1
 ADD R2, R10, R10, LSR #1 ; Work out 3 x cachelevel
 MOV R1, R0, LSR R2 ; bottom 3 bits are the Cache type for this level
 AND R1, R1, #7 ; get those 3 bits alone
 CMP R1, #2
 BLT Skip ; no cache or only instruction cache at this level
 MCR p15, 2, R10, c0, c0, 0 ; write CSSELR from R10
 ISB ; ISB to sync the change to the CCSIDR
 MRC p15, 1, R1, c0, c0, 0 ; read current CCSIDR to R1
 AND R2, R1, #&7 ; extract the line length field
 ADD R2, R2, #4 ; add 4 for the line length offset (log2 16 bytes)
 LDR R4, =0x3FF
 ANDS R4, R4, R1, LSR #3 ; R4 is the max number on the way size (right aligned)
 CLZ R5, R4 ; R5 is the bit position of the way size increment
 MOV R9, R4 ; R9 working copy of the max way size (right aligned)
Loop2
 LDR R7, =0x00007FFF
 ANDS R7, R7, R1, LSR #13 ; R7 is the max number of the index size (right aligned)
Loop3
 ORR R11, R10, R9, LSL R5 ; factor in the way number and cache number into R11
 ORR R11, R11, R7, LSL R2 ; factor in the index number
 MCR p15, 0, R11, c7, c10, 2 ; DCCSW, clean by set/way
 SUBS R7, R7, #1 ; decrement the index
 BGE Loop3
 SUBS R9, R9, #1 ; decrement the way number
 BGE Loop2

Skip
 ADD R10, R10, #2 ; increment the cache number
 CMP R3, R10
 BGT Loop1
 DSB
Finished

Common Memory System Architecture Features
Loop1 ADD R2, R10, R10, LSR #1 ; Work out 3xcachelevel
MOV R1, R0, LSR R2 ; bottom 3 bits are the Cache type for this level
AND R1, R1, #7 ; get those 3 bits alone
CMP R1, #2
BLT Skip ; no cache or only instruction cache at this level
MCR p15, 2, R10, c0, c0, 0 ; write the Cache Size selection register
ISB ; ISB to sync the change to the CacheSizeID reg
MRC p15, 1, R1, c0, c0, 0 ; reads current Cache Size ID register
AND R2, R1, #&7 ; extract the line length field
ADD R2, R2, #4 ; add 4 for the line length offset (log2 16 bytes)
LDR R4, =0x3FF
ANDS R4, R4, R1, LSR #3 ; R4 is the max number on the way size (right aligned)
CLZ R5, R4 ; R5 is the bit position of the way size increment
LDR R7, =0x00007FFF
ANDS R7, R7, R1, LSR #13 ; R7 is the max number of the index size (right aligned)

Loop2 MOV R9, R4 ; R9 working copy of the max way size (right aligned)
Loop3 ORR R11, R10, R9, LSL R5 ; factor in the way number and cache number into R11

ORR R11, R11, R7, LSL R2 ; factor in the index number
MCR p15, 0, R11, c7, c10, 2 ; clean by set/way
SUBS R9, R9, #1 ; decrement the way number
BGE Loop3
SUBS R7, R7, #1 ; decrement the index
BGE Loop2

Skip ADD R10, R10, #2 ; increment the cache number
CMP R3, R10
BGT Loop1

Finished

Similar approaches can be used for all cache maintenance operations.

Boundary conditions for cache maintenance operations

Cache maintenance operations operate on the caches when the caches are enabled or when they are disabled.

For the address-based cache maintenance operations, the operations operate on the caches regardless of the
memory type and cacheability attributes marked for the memory address in the VMSA translation table
entries or in the PMSA section attributes. This means that the cache operations take no account of:

• whether the address accessed:

— is Strongly-ordered, Device or Normal memory

— has a Cacheable attribute or the Non-cacheable attribute

• the domain control of the address accessed

• the access permissions for the address accessed.

Therefore, software can:

• ensure there are no more allocations to the caches of a range of addresses because of prefetching
effects or interrupts

• at the same time, continue to perform cache maintenance operations on these addresses.

In a VMSA implementation, some cache maintenance operations can generate an MMU fault, see MMU
faults on page B3-40.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B2-17

ARM_2009_Q2
Inserted Text

 DSB

ARM_2011_Q2
Sticky Note
See comment on the previous page for an alternative version of this routine, that is likely to be faster.

Common Memory System Architecture Features
B2.2.5 The interaction of cache lockdown with cache maintenance

The interaction of cache lockdown and cache maintenance operations is IMPLEMENTATION DEFINED.
However, an architecturally-defined cache maintenance operation on a locked cache line must comply with
the following general rules:

• The effect of these operations on locked cache entries is IMPLEMENTATION DEFINED:

— cache clean by set/way

— cache invalidate by set/way

— cache clean and invalidate by set/way

— instruction cache invalidate all.

However, one of the following approaches must be adopted in all these cases:

1. If the operation specified an invalidation a locked entry is not invalidated from the cache. If the
operation specified a clean it is IMPLEMENTATION DEFINED whether locked entries are cleaned.

2. If an entry is locked down, or could be locked down, an IMPLEMENTATION DEFINED Data Abort
exception is generated, using the fault status code defined for this purpose in CP15 c5, see
either:

• Fault Status and Fault Address registers in a VMSA implementation on page B3-48

• Fault Status and Fault Address registers in a PMSA implementation on page B4-18.

This permits a typical usage model for cache invalidate routines to operate on a large range of
addresses by performing the required operation on the entire cache, without having to consider
whether any cache entries are locked. The operation performed is either an invalidate, or a clean and
invalidate.

• The effect of these operations is IMPLEMENTATION DEFINED:

— cache clean by MVA

— cache invalidate by MVA

— cache clean and invalidate by MVA.

However, one of the following approaches must be adopted in all these cases:

1. If the operation specified an invalidation a locked entry is invalidated from the cache. For the
clean and invalidate operation, the entry must be cleaned before it is invalidated.

2. If the operation specified an invalidation a locked entry is not invalidated from the cache. If the
operation specified a clean it is IMPLEMENTATION DEFINED whether locked entries are cleaned

3. If an entry is locked down, or could be locked down, an IMPLEMENTATION DEFINED Data Abort
exception is generated, using the fault status code defined for this purpose in CP15 c5, see
either:

• Fault Status and Fault Address registers in a VMSA implementation on page B3-48

• Fault Status and Fault Address registers in a PMSA implementation on page B4-18.

An implementation that uses the abort mechanisms for entries that could be locked must:

• document IMPLEMENTATION DEFINED code sequences that then perform the required operation on
entries that are not locked down
B2-18 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Common Memory System Architecture Features
• implement one of the other permitted alternatives for the locked entries.

ARM recommends that, where possible, architecturally-defined operations are used in such code sequences.
This minimizes the number of customized operations required.

In addition, any implementation that uses aborts for handling cache maintenance operations on entries that
might be locked must provide a mechanism that can be used to ensures that no entries are locked in the
cache. The reset setting of the cache must be that no cache entries are locked.

On an ARMv7-A implementation, similar rules apply to TLB lockdown, see The interaction of TLB
maintenance operations with TLB lockdown on page B3-57.

Additional cache functions for the implementation of lockdown

An implementation can add additional cache maintenance functions for the handling of lockdown in the
IMPLEMENTATION DEFINED spaces reserved for Cache Lockdown. Examples of possible functions are:

• Operations that unlock all cache entries.

• Operations that preload into specific levels of cache. These operations might be provided for
instruction caches, data caches, or both.

An implementation can add other functions as required.

B2.2.6 Branch predictors

Branch predictor hardware typically uses a form of cache to hold branch information. The ARM architecture
permits this branch predictor hardware to be visible to the functional behavior of software, and so the branch
predictor is not architecturally invisible. This means that under some circumstances software must perform
branch predictor maintenance to avoid incorrect execution caused by out of date entries in the branch
predictor.

Branch prediction maintenance operations

In some implementations, to ensure correct operation it might be necessary to invalidate branch prediction
entries on a change of instruction or instruction address mapping. For more information, see Branch
predictor maintenance operations and the memory order model on page B2-20.

Two CP15 c7 operations apply to branch prediction hardware, these two functions are:

MCR p15, 0, Rt, c7, c5, 6: Invalidate entire branch predictor array
MCR p15, 0, Rt, c7, c5, 7: Invalidate MVA from branch predictor array

In ARMv7, these functions can perform a NOP if the operation of Branch Prediction hardware is not visible
architecturally.

The invalidate entire branch predictor array operation ensures that any location held in the branch predictor
has no functional effect on execution.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B2-19

Common Memory System Architecture Features
The invalidate MVA from branch predictor array operation operates on the address of the branch instruction.
It includes the current system ASID and the security state when determining which line is affected as part
of any required VA to PA translation. Security state checking is performed only if the Security Extensions
are implemented. The invalidate by MVA operation can affect other branch predictor entries.

Note
 The architecture does not make visible the range of addresses in a branch predictor to which the invalidate
operation applies. This means the address used in the invalidate MVA instruction must be the address of the
branch to be invalidated.

If the correct functioning of a system requires invalidation of the branch predictor when there are changes
to the instructions in memory, the invalidate entire instruction cache operation also causes an invalidate
entire branch predictor array operation.

Branch predictor maintenance operations and the memory order model

The following rule describes the effect of the memory order model on the branch predictor maintenance
operations:

• Any invalidation of the branch predictor is guaranteed to take effect only after one of the following:

— execution of a ISB instruction

— taking an exception

— return from an exception.

Therefore, if a branch instruction appears between an invalidate branch prediction instruction and an ISB
operation, exception entry or exception return, it is UNPREDICTABLE whether the branch instruction is
affected by the invalidate. Software must avoid this ordering of instructions, because it might lead to
UNPREDICTABLE behavior.

The branch predictor maintenance operations must be used to invalidate entries in the branch predictor after
any of the following events:

• enabling or disabling the MMU

• writing new data to instruction locations

• writing new mappings to the translation tables

• changes to the TTBR0, TTBR1, or TTBCR registers, unless accompanied by a change to the
ContextID or the FCSE ProcessID.

Failure to invalidate entries might give UNPREDICTABLE results, caused by the execution of old branches.
B2-20 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Common Memory System Architecture Features
In ARMv7, there is no requirement to use the branch predictor maintenance operations to invalidate the
branch predictor after:

• changing the ContextID or FCSE ProcessID.

• a cache operation that is identified as also flushing the branch target cache, see either:

— CP15 c7, Cache and branch predictor maintenance functions on page B3-126 for a VMSA
implementation

— CP15 c7, Cache and branch predictor maintenance functions on page B4-68 for a PMSA
implementation.

Note
 In ARMv6, the branch predictor must be invalidated after a change to the ContextID or FCSE ProcessID,
see c13, Context ID support on page AppxG-54.

Behavior of the branch predictors at reset

In ARMv7:

• If branch predictors are not architecturally invisible the branch prediction logic is disabled at reset.

• An implementation can require the use of a specific branch predictor initialization routine to
invalidate its storage array before it is enabled. The exact form of any required initialization routine
is IMPLEMENTATION DEFINED, but the routine must be documented clearly as part of the
documentation of the device.

• ARM recommends that whenever an invalidation routine is required, it is based on the ARMv7
branch predictor maintenance operations.

When it is enabled the state of the branch predictor logic is UNPREDICTABLE if the appropriate initialization
routine has not been performed.

Similar rules apply:

• to cache behavior, see Behavior of the caches at reset on page B2-6

• on an ARMv7-A implementation, to TLB behavior, see TLB behavior at reset on page B3-55.

B2.2.7 Ordering of cache and branch predictor maintenance operations

The following rules describe the effect of the memory order model on the cache and branch predictor
maintenance operations:

• All cache and branch predictor maintenance operations are executed, relative to each other, in
program order.

• On an ARMv7-A implementation, where a cache or branch predictor maintenance operation appears
in program order before a change to the translation tables, the cache or branch predictor maintenance
operation is guaranteed to take place before the change to the translation tables is visible.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B2-21

ARM_2009_Q4
Cross-Out
• All cache and branch predictor maintenance operations that do not specify an
 address execute, relative to each other, in program order.
 All cache and branch predictor operations that specify an address:
 — execute in program order relative to all cache and branch predictor operations
 that do not specify an address
 — execute in program order relative to all cache and branch predictor operations
 that specify the same address
 — can execute in any order relative to cache and branch predictor operations that
 specify a different address.

ARM_2009_Q4
Sticky Note
This change relaxes the original requirement. Any implementation that meets the original requirement also meets the new requirement.

Common Memory System Architecture Features
• On an ARMv7-A implementation, where a change of the translation tables appears in program order
before a cache or branch predictor maintenance operation, that change is guaranteed to be visible only
after the sequence outlined in TLB maintenance operations and the memory order model on
page B3-59 is executed.

• A DMB instruction causes the effect of all data cache or unified cache maintenance operations
appearing in program order before the DMB to be visible to all explicit load and store operations
appearing in program order after the DMB.

It also ensures that the effects of any data cache or unified cache maintenance operations appearing
in program order before the DMB are observable by any observer in the same required shareability
domain before any data cache or unified cache maintenance or explicit memory operations appearing
in program order after the DMB are observed by the same observer. Completion of the DMB does not
guarantee the visibility of all data to other observers. For example, all data might not be visible to a
translation table walk, or to instruction fetches.

• A DSB causes the completion of all cache maintenance operations appearing in program order before
the DSB instruction.

• An ISB instruction or an exception entry or a return from exception causes the effect of all branch
predictor maintenance operations appearing in program order before the ISB instruction, exception
entry or exception return to be visible to all instructions after the ISB instruction, exception entry or
exception return.

• Any data cache or unified cache maintenance operation by MVA must be executed in program order
relative to any explicit load or store on the same processor to an address covered by the MVA of the
cache operation. The order of memory accesses that result from the cache maintenance operation,
relative to any other memory accesses, are subject to the memory ordering rules. For more
information, see Ordering requirements for memory accesses on page A3-45.

• There is no restriction on the ordering of data cache or unified cache maintenance operations by MVA
relative to any explicit load or store on the same processor where the address of the explicit load or
store is not covered by the MVA of the cache operation. Where the ordering must be restricted, a DMB
instruction must be inserted to enforce ordering.

• There is no restriction on the ordering of a data cache or unified cache maintenance operation by
set/way relative to any explicit load or store on the same processor. Where the ordering must be
restricted, a DMB instruction must be inserted to enforce ordering.

• The execution of a data cache or unified cache maintenance operation by set/way might not be visible
to other observers in the system until after a DSB instruction is executed.

• The execution of an instruction cache maintenance operation is guaranteed to be complete only after
the execution of a DSB instruction.

• The completion of an instruction cache maintenance operation is guaranteed to be visible to the
instruction fetch only after the execution of an ISB instruction or an exception entry or return from
exception.

The last two points mean that the sequence of cache cleaning operations for a line of self-modifying code
on a uniprocessor system is:
B2-22 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q2
Inserted Text
completed

ARM_2009_Q2
Sticky Note
This is a clarification, not an architectural change. An ISB instruction does not guarantee the completion of an earlier branch predictor maintenance operation.

ARM_2009_Q2
Inserted Text
or branch predictor

ARM_2009_Q2
Sticky Note
This is not an architectural change. The original statement omitted part of the architectural requirement.

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Sticky Note
This is a clarification of the intended meaning, not an architectural change.

ARM_2009_Q2
Sticky Note
This is a clarification of the intended meaning, not an architectural change.

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
software must execute

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
before performing the cache or branch predictor maintenance operation, to ensure that the maintenance operation uses the new translations.

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
Software must execute an ISB instruction, or perform an exception entry, or a return from exception after the completion of an instruction cache maintenance operation, to guarantee that the effect of the maintenance operation is visible to any instruction fetch.

ARM_2009_Q2 and ARM_2010_Q3
Sticky Note
This deletion is because it is not only the last two points that make this the required sequence. See, also, the comment added at the end of this example.

Common Memory System Architecture Features
; Enter this code with <Rx> containing the new 32-bit instruction. Use STRH in the first
; line instead of STR for a 16-bit instruction.
 STR <Rx>, [instruction location]
 Clean data cache by MVA to point of unification [instruction location]
 DSB ; Ensures visibility of the data cleaned from the data cache
 Invalidate instruction cache by MVA [instruction location]
 Invalidate BTC entry by MVA [instruction location]
 DSB ; Ensures completion of the instruction cache invalidation
 ISB

B2.2.8 Multiprocessor effects on cache maintenance operations

This section describes the multiprocessor effects on cache maintenance operations for the base ARMv7
architecture and the base ARMv7 architecture with Multiprocessing Extensions.

Base ARMv7 architecture

The base ARMv7 architecture defines that all cache maintenance operations apply only to the caches
directly attached to the processor on which the operation is executed. There is no requirement that cache
maintenance operations influence all processors with which the data can be shared.

In porting an architecturally portable multiprocessor operating system to ARMv7, when a cache
maintenance operation is performed, Inter-Processor Interrupts (IPIs) must be used to inform other
processors in a multiprocessor configuration that they must perform the equivalent operation.

Multiprocessing Extensions

To improve the implementation of multiprocessor systems, a set of extensions to ARMv7, called the
Multiprocessing Extensions, has been introduced. These expand the role of cache and branch predictor
maintenance operations in the multiprocessing system. For the VMSA architecture, the Multiprocessing
Extensions also extend the role of TLB operations. For more information see Multiprocessor effects on TLB
maintenance operations on page B3-62.

The extensions can be implemented in a uniprocessor system with no hardware support for cache coherency.
In such a system, the Inner Shareable and Outer Shareable domains would be limited to being the single
processor, and all instructions defined to apply to the Inner Shareable domains behave as aliases of the local
operations.

Data and Unified cache operations to the point of coherency

The following instructions have an effect on data and unified caches to the point of coherency, and must
affect the caches of other processors in the shareability domain described by the shareability attributes of
the MVA passed with the instruction:

• invalidate data, or unified, cache line by MVA to the point of coherency (DCIMVAC)

• clean data, or unified, cache line by MVA to the point of coherency (DCCMVAC)

• clean and invalidate data (or unified) cache line by MVA to the point of coherency (DCCIMVAC).
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B2-23

ARM_2010_Q2
Cross-Out

ARM_2010_Q2
Replacement Text
For Normal memory that is not Inner Non-cacheable, Outer Non-cacheable, the

ARM_2010_Q2
Inserted Text

For Strongly-ordered memory, the same instructions have an effect on data and unified caches to the point of coherency, and affect the caches of other processors in the Outer Shareable shareability domain.

For Device memory and for Normal memory that is Inner Non-cacheable, Outer Non-cacheable, the same instructions have an effect on data and unified caches to the point of coherency and it is IMPLEMENTATION DEFINED which of the following applies:
 • they affect the caches of other processors in the Outer Shareable shareability domain
 • they affect the caches of other processors in the shareability domain described by the shareability attributes of the MVA passed with the instruction.

ARM_2010_Q3
Inserted Text

In a VMSAv7 implementation, the scope of instruction cache maintenance depends on the form of the instruction cache. For more information see section B3.4.2 Instruction cache maintenance operations by MVA on page B3-25 [PDF page 1299].

Common Memory System Architecture Features
Table B2-1 shows, for these instructions, the minimum set of processors that they affect, and the earliest
point that the operations occur to depends upon the shareability attribute of the address being used.

Address based cache maintenance operations not to the point of coherency

The following operations are redefined in the Multiprocessing Extensions:

• Clean data, or unified, cache line by MVA to the point of unification (DCCMVAU)

• Invalidate instruction cache line by MVA to point of unification (ICIMVAU)

• Invalidate MVA from branch predictor array (BPIMVA)

Table B2-2 shows, for these instructions, the minimum set of processors that they effect, and the earliest
point that the operations occur to depends upon the shareability attribute of the address being used.

Table B2-1 Processors affected by Data and Unified cache operations

Shareability Processors affected Point that the operations occur to

Non-shareable The processor executing the instruction Point of coherency of the entire system

Inner Shareable All processors in the same Inner Shareable
shareability domain as the processor executing the
instruction

Point of coherency of the entire system

Outer Shareable All processors in the same Outer shareable
shareability domain as the processor executing the
instruction

Point of coherency of the entire system

Table B2-2 Processors affected byAddress based cache maintenance operations

Shareability of the Address Processors affected Point that the operations occur to

Non-Shareable The processor executing the
instruction

To the point of unification of instruction
cache fills, data cache fills and writebacks,
and translation table walks on the processor
executing the instruction

Inner Shareable or Outer
shareable

All processors in the same Inner
Shareable shareability domain
as the processor executing the
instruction

To the point of unification of instruction
cache fills, data cache fills and writebacks,
and translation table walks of all processors
in the same Inner Shareable shareability
domain as the processor executing the
instruction
B2-24 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q2
Inserted Text

ARM_2010_Q3
Cross-Out

ARM_2010_Q3
Replacement Text
For the cases where the shareability attribute of the MVA supplied with the instruction determines the scope of the operation, Table B2-1 shows how this attribute determines the minimum set of processors affected, and the point to which the operation must be effective.

ARM_2010_Q3
Sticky Note
This change clarifies how Table B2-1 should be interpreted to take account of the changes added in the ARM_2010_Q2 errata release.

Common Memory System Architecture Features
Note
 The set of processors that is guaranteed to be affected is never greater than the Inner Shareable shareability
domain containing the executing processor.

Entire and set/way based cache maintenance operations

This section describes the Local and Inner Shareable instructions for entire and set/way based cache
maintenance operations:

Local instructions The following instructions are only guaranteed to apply to the caches of the
processor that the instructions are run on:

• Invalidate entire instruction cache (ICIALLU)

• Invalidate entire branch predictor array (BPIALL)

• Clean and Invalidate data or unified cache line by set/way (DCCISW)

• Clean data or unified cache line by set/way (DCCSW)

• Invalidate data or unified cache line by set/way (DCISW).

These operations have an effect on the processor executing the instruction.

These operations are functionally unchanged from the base architecture.

Inner Shareable instructions

The following instructions can be applied to the caches of all processors in the same
Inner Shareable shareability domain as the processor executing the instruction:

• Invalidate entire branch predictor array Inner Shareable (BPIALLIS)

• Invalidate entire instruction cache Inner Shareable (ICIALLUIS).

ICIALLUIS automatically performs the BPIALLIS function, in the same way as
ICIALLU automatically performs the BPIALL function.

These operations have an effect to the point of unification of instruction cache fills,
data cache fills and writebacks, and translation table walks of all processors in the
same Inner Shareable shareability domain.

These instructions complement the ICIALLU and BPIALL instructions defined in
the base ARMv7 architecture, and extend them to the same Inner Shareable
shareability domain.

Inner Shareable instructions encodings:

• ICIALLUIS is encoded as MCR p15, 0, <Rt>, c7, c1, 0

• BPIALLIS is encoded as MCR p15, 0, <Rt>, c7, c1, 6
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B2-25

Common Memory System Architecture Features
B2.2.9 System-level caches

The system-level architecture might define further aspects of the software view of caches and the memory
model that are not defined by the ARMv7 processor architecture. These aspects of the system-level
architecture can affect the requirements for software management of caches and coherency. For example, a
system design might introduce additional levels of caching that cannot be managed using the CP15
maintenance operations defined by the ARMv7 architecture. Typically, such caches are referred to as system
caches and are managed through the use of memory-mapped operations. The ARMv7 architecture does not
forbid the presence of system caches that are outside the scope of the architecture, but ARM strongly
recommends the following for any such cache:

• Physical, rather than virtual, addresses are used for address-based cache maintenance operations.

• Any IMPLEMENTATION DEFINED system cache maintenance operations include as a minimum the set
of functions defined by ARMv7 cache maintenance operations on page B2-13, with the number of
levels of system cache operated on by these cache maintenance operations being IMPLEMENTATION
DEFINED.

• Where possible, such system caches are included in the caches affected by the architecturally-defined
CP15 cache maintenance operations, so that the architecturally-defined software sequences for
managing the memory model and coherency are sufficient for managing all caches in the system.
B2-26 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Common Memory System Architecture Features
B2.3 IMPLEMENTATION DEFINED memory system features

ARMv7 reserves space in the SCTLR for use with IMPLEMENTATION DEFINED features of the cache, and
other IMPLEMENTATION DEFINED features of the memory system architecture.

In particular, in ARMv7 the following memory system features are IMPLEMENTATION DEFINED:

• Cache lockdown, see Cache lockdown on page B2-8.

• In VMSAv7, TLB lockdown, see TLB lockdown on page B3-56.

• Tightly Coupled Memory (TCM) support, including any associated DMA scheme. The TCM Type
Register, TCMTR is required in all implementations, and if no TCMs are implemented this must be
indicated by the value of this register.

Note
 For details of the optional TCMs and associated DMA scheme in ARMv6 see Tightly Coupled

Memory (TCM) support on page AppxG-23.

B2.3.1 ARMv7 CP15 register support for IMPLEMENTATION DEFINED features

The ARMv7 CP15 registers implementation includes the following support for IMPLEMENTATION DEFINED
features of the memory system:

• The TCM Type Register, TCMTR, in CP15 c0, must be implemented. The following conditions
apply to this register:

— If no TCMs are implemented, the TCMTR indicates zero-size TCMs. For more information
see c0, TCM Type Register (TCMTR) on page B3-85 (for a VMSA implementation) or c0,
TCM Type Register (TCMTR) on page B4-35 (for a PMSA implementation).

— If bits [31:29] are 0b100, the format of the rest of the register format is IMPLEMENTATION
DEFINED. This value indicates that the implementation includes TCMs that do not follow the
ARMv6 usage model. Other fields in the register might give more information about the
TCMs.

For more information, see:

— c0, TCM Type Register (TCMTR) on page B3-85, for a VMSA implementation

— c0, TCM Type Register (TCMTR) on page B4-35, for a PMSA implementation.

• The CP15 c9 encoding space with <CRm> = {0-2,5-7} is IMPLEMENTATION DEFINED for all values of
<opc2> and <opc1>. This space is reserved for branch predictor, cache and TCM functionality, for
example maintenance, override behaviors and lockdown. It permits:

— ARMv6 backwards compatible schemes

— alternative schemes.

For more information, see:

— CP15 c9, Cache and TCM lockdown registers and performance monitors on page B3-141, for
a VMSA implementation

— CP15 c9, Cache and TCM lockdown registers and performance monitors on page B4-74, for
a PMSA implementation.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B2-27

Common Memory System Architecture Features
• In a VMSAv7 implementation, part of the CP15 c10 encoding space is IMPLEMENTATION DEFINED
and reserved for TLB functionality, see TLB lockdown on page B3-56.

• The CP15 c11 encoding space with <CRm> = {0-8,15} is IMPLEMENTATION DEFINED for all values of
<opc2> and <opc1>. This space is reserved for DMA operations to and from the TCMs It permits:

— an ARMv6 backwards compatible scheme

— an alternative scheme.

For more information, see:

— CP15 c11, Reserved for TCM DMA registers on page B3-147, for a VMSA implementation

— CP15 c11, Reserved for TCM DMA registers on page B4-75, for a PMSA implementation.
B2-28 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Common Memory System Architecture Features
B2.4 Pseudocode details of general memory system operations

This section contains pseudocode describing general memory operations, in the subsections:

• Memory data type definitions.

• Basic memory accesses on page B2-30.

• Interfaces to memory system specific pseudocode on page B2-30.

• Aligned memory accesses on page B2-31

• Unaligned memory accesses on page B2-32

• Reverse endianness on page B2-34

• Exclusive monitors operations on page B2-35

• Access permission checking on page B2-37

• Default memory access decode on page B2-37

• Data Abort exception on page B2-39.

The pseudocode in this section applies to both VMSA and PMSA implementations. Additional pseudocode
for memory operations is given in:

• Pseudocode details of VMSA memory system operations on page B3-156

• Pseudocode details of PMSA memory system operations on page B4-79.

B2.4.1 Memory data type definitions

The following data type definitions are used by the memory system pseudocode functions:

// Types of memory

enumeration MemType {MemType_Normal, MemType_Device, MemType_StronglyOrdered};

// Memory attributes descriptor

type MemoryAttributes is (
 MemType type,
 bits(2) innerattrs, // ‘00’ = Non-cacheable; ‘01’ = WBWA; ‘10’ = WT; ‘11’ = WBnWA
 bits(2) outerattrs, // ‘00’ = Non-cacheable; ‘01’ = WBWA; ‘10’ = WT; ‘11’ = WBnWA
 boolean shareable,
 boolean outershareable
)

// Physical address type, with extra bits used by some VMSA features

type FullAddress is (
 bits(32) physicaladdress,
 bits(8) physicaladdressext,
 bit NS // ‘0’ = Secure, ‘1’ = Non-secure
)

// Descriptor used to access the underlying memory array

type AddressDescriptor is (
 MemoryAttributes memattrs,
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B2-29

Common Memory System Architecture Features
 FullAddress paddress
)

// Access permissions descriptor

type Permissions is (
 bits(3) ap, // Access Permission bits
 bit xn // Execute Never bit
)

B2.4.2 Basic memory accesses

The _Mem[] function performs single-copy atomic, aligned, little-endian memory accesses to the underlying
physical memory array of bytes:

bits(8*size) _Mem[AddressDescriptor memaddrdesc, integer size]
 assert size == 1 || size == 2 || size == 4 || size == 8;

_Mem[AddressDescriptor memaddrdesc, integer size] = bits(8*size) value
 assert size == 1 || size == 2 || size == 4 || size == 8;

This function addresses the array using memaddrdesc.paddress,that supplies:

• A 32-bit physical address.

• An 8-bit physical address extension, that is treated as additional high-order bits of the physical
address. This extension is always 0b00000000 in the PMSA.

• A single NS bit to select between Secure and Non-secure parts of the array. This bit is always 0 if the
Security Extensions are not implemented.

The actual implemented array of memory might be smaller than the 241 bytes implied. In this case, the
scheme for aliasing is IMPLEMENTATION DEFINED, or some parts of the address space might give rise to
external aborts. For more information, see:

• External aborts on page B3-45 for a VMSA implementation

• External aborts on page B4-15 for a PMSA implementation.

The attributes in memaddrdesc.memattrs are used by the memory system to determine caching and ordering
behaviors as described in Memory types and attributes and the memory order model on page A3-24.

B2.4.3 Interfaces to memory system specific pseudocode

The following functions call the VMSA-specific or PMSA-specific functions to handle Alignment faults
and perform address translation.

// AlignmentFault()
// ================

AlignmentFault(bits(32) address, boolean iswrite)
 case MemorySystemArchitecture() of
 when MemArch_VMSA AlignmentFaultV(address, iswrite);
B2-30 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Common Memory System Architecture Features
 when MemArch_PMSA AlignmentFaultP(address, iswrite);

// TranslateAddress()
// ==================

AddressDescriptor TranslateAddress(bits(32) VA, boolean ispriv, boolean iswrite)
 case MemorySystemArchitecture() of
 when MemArch_VMSA return TranslateAddressV(VA, ispriv, iswrite);
 when MemArch_PMSA return TranslateAddressP(VA, ispriv, iswrite);

B2.4.4 Aligned memory accesses

The MemA[] function performs a memory access at the current privilege level, and the MemA_unpriv[] function
performs an access that is always unprivileged. In both cases the architecture requires the access to be
aligned, and in ARMv7 the function generates an Alignment fault if it is not.

Note
 In versions of the architecture before ARMv7, if the SCTLR.A and SCTLR.U bits are both 0, an unaligned
access is forced to be aligned by replacing the low-order address bits with zeros.

// MemA[]
// ======

bits(8*size) MemA[bits(32) address, integer size]
 return MemA_with_priv[address, size, CurrentModeIsPrivileged()];

MemA[bits(32) address, integer size] = bits(8*size) value
 MemA_with_priv[address, size, CurrentModeIsPrivileged()] = value;
 return;

// MemA_unpriv[]
// =============

bits(8*size) MemA_unpriv[bits(32) address, integer size]
 return MemA_with_priv[address, size, FALSE];

MemA_unpriv[bits(32) address, integer size] = bits(8*size) value
 MemA_with_priv[address, size, FALSE] = value;
 return;

// MemA_with_priv[]
// ================

// Non-assignment form

bits(8*size) MemA_with_priv[bits(32) address, integer size, boolean privileged]

 // Sort out alignment
 if address == Align(address, size) then
 VA = address;
 elsif SCTLR.A == ‘1’ || SCTLR.U == ‘1’ then
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B2-31

Common Memory System Architecture Features
 AlignmentFault(address, FALSE);
 else // if legacy non alignment-checking configuration
 VA = Align(address, size);

 // MMU or MPU
 memaddrdesc = TranslateAddress(VA, privileged, FALSE);

 // Memory array access, and sort out endianness
 value = _Mem[memaddrdesc, size];
 if CPSR.E == ‘1’ then
 value = BigEndianReverse(value, size);

 return value;

// Assignment form

MemA_with_priv[bits(32) address, integer size, boolean privileged] = bits(8*size) value

 // Sort out alignment
 if address == Align(address, size) then
 VA = address;
 elsif SCTLR.A == ‘1’ || SCTLR.U == ‘1’ then
 AlignmentFault(address, FALSE);
 else // if legacy non alignment-checking configuration
 VA = Align(address, size);

 // MMU or MPU
 memaddrdesc = TranslateAddress(VA, privileged, TRUE);

 // Effect on exclusives
 if memaddrdesc.memattrs.shareable then
 ClearExclusiveByAddress(memaddrdesc.physicaladdress, ProcessorID(), size);

 // Sort out endianness, then memory array access
 if CPSR.E == ‘1’ then
 value = BigEndianReverse(value, size);
 _Mem[memaddrdesc,size] = value;

 return;

B2.4.5 Unaligned memory accesses

The MemU[] function performs a memory access at the current privilege level, and the MemU_unpriv[] function
performs an access that is always unprivileged.

In both cases:

• if the SCTLR.A bit is 0, unaligned accesses are supported

• if the SCTLR.A bit is 1, unaligned accesses produce Alignment faults.
B2-32 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Common Memory System Architecture Features
Note
 In versions of the architecture before ARMv7, if the SCTLR.A and SCTLR.U bits are both 0, an unaligned
access is forced to be aligned by replacing the low-order address bits with zeros.

// MemU[]
// ======

bits(8*size) MemU[bits(32) address, integer size]
 return MemU_with_priv[address, size, CurrentModeIsPrivileged()];

MemU[bits(32) address, integer size] = bits(8*size) value
 MemU_with_priv[address, size, CurrentModeIsPrivileged()] = value;
 return;

// MemU_unpriv[]
// =============

bits(8*size) MemU_unpriv[bits(32) address, integer size]
 return MemU_with_priv[address, size, FALSE];

MemU_unpriv[bits(32) address, integer size] = bits(8*size) value
 MemU_with_priv[address, size, FALSE] = value;
 return;

// MemU_with_priv[]
// ================
//
// Due to single-copy atomicity constraints, the aligned accesses are distinguished from
// the unaligned accesses:
// * aligned accesses are performed at their size
// * unaligned accesses are expressed as a set of bytes.

// Non-assignment form

bits(8*size) MemU_with_priv[bits(32) address, integer size, boolean privileged]

 bits(8*size) value;

 // Legacy non alignment-checking configuration forces access to be aligned
 if SCTLR.A == ‘0’ && SCTLR.U == ‘0’ then address = Align(address, size);

 // Do aligned access, take alignment fault, or do sequence of bytes
 if address == Align(address, size) then
 value = MemA_with_priv[address, size, privileged];
 elsif SCTLR.A == ‘1’ then
 AlignmentFault(address, FALSE);
 else // if unaligned access, SCTLR.A == ‘0’, and SCTLR.U == ‘1’
 for i = 0 to size-1
 value<8*i+7:8*i> = MemA_with_priv[address+i, 1, privileged];
 if CPSR.E == ‘1’ then
 value = BigEndianReverse(value, size);
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B2-33

Common Memory System Architecture Features
 return value;

// Assignment form

MemU_with_priv[bits(32) address, integer size, boolean privileged] = bits(8*size) value

 // Legacy non alignment-checking configuration forces access to be aligned
 if SCTLR.A == ‘0’ && SCTLR.U == ‘0’ then address = Align(address, size);

 // Do aligned access, take alignment fault, or do sequence of bytes
 if address == Align(address, size) then
 MemA_with_priv[address, value, privileged] = value;
 elsif SCTLR.A == ‘1’ then
 AlignmentFault(address, TRUE);
 else // if unaligned access, SCTLR.A == ‘0’, and SCTLR.U == ‘1’
 if CPSR.E == ‘1’ then
 value = BigEndianReverse(value, size);
 for i = 0 to size-1
 MemA_with_priv[address+i, 1, privileged] = value<8*i+7:8*i>;

 return;

B2.4.6 Reverse endianness

The following pseudocode describes the operation to reverse endianness:

// BigEndianReverse()
// ==================

bits(8*N) BigEndianReverse (bits(8*N) value, integer N)
 assert N == 1 || N == 2 || N == 4 || N == 8;
 bits(8*N) result;
 case N of
 when 1
 result<7:0> = value<7:0>;
 when 2
 result<15:8> = value<7:0>;
 result<7:0> = value<15:8>;
 when 4
 result<31:24> = value<7:0>;
 result<23:16> = value<15:8>;
 result<15:8> = value<23:16>;
 result<7:0> = value<31:24>;
 when 8
 result<63:56> = value<7:0>;
 result<55:48> = value<15:8>
 result<47:40> = value<23:16>;
 result<39:32> = value<31:24>;
 result<31:24> = value<39:32>;
 result<23:16> = value<47:40>;
 result<15:8> = value<55:48>;
 result<7:0> = value<63:56>;
 return result;
B2-34 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Common Memory System Architecture Features
B2.4.7 Exclusive monitors operations

The SetExclusiveMonitors() function sets the exclusive monitors for a Load-Exclusive instruction. The
ExclusiveMonitorsPass() function checks whether a Store-Exclusive instruction still has possession of the
exclusive monitors and therefore completes successfully.

// SetExclusiveMonitors()
// ======================

SetExclusiveMonitors(bits(32) address, integer size)

 memaddrdesc = TranslateAddress(address, CurrentModeIsPrivileged(), FALSE);

 if memaddrdesc.memattrs.shareable then
 MarkExclusiveGlobal(memaddrdesc.physicaladdress, ProcessorID(), size);

 MarkExclusiveLocal(memaddrdesc.physicaladdress, ProcessorID(), size);

// ExclusiveMonitorsPass()
// =======================

boolean ExclusiveMonitorsPass(bits(32) address, integer size)

 // It is IMPLEMENTATION DEFINED whether the detection of memory aborts happens
 // before or after the check on the local Exclusive Monitor. As a result a failure
 // of the local monitor can occur on some implementations even if the memory
 // access would give an memory abort.

 if address != Align(address, size) then
 AlignmentFault(address, TRUE);
 else
 memaddrdesc = TranslateAddress(address, CurrentModeIsPrivileged(), TRUE);

 passed = IsExclusiveLocal(memaddrdesc.paddress, ProcessorID(), size);
 if memaddrdesc.memattrs.shareable then
 passed = passed && IsExclusiveGlobal(memaddrdesc.paddress, ProcessorID(), size);

 if passed then
 ClearExclusiveLocal(ProcessorID());

 return passed;

The MarkExclusiveGlobal() procedure takes as arguments a FullAddress paddress, the processor identifier
processorid and the size of the transfer. The procedure records that processor processorid has requested
exclusive access covering at least size bytes from address paddress. The size of region marked as exclusive
is IMPLEMENTATION DEFINED, up to a limit of 2KB, and no smaller than two words, and aligned in the
address space to the size of the region. It is UNPREDICTABLE whether this causes any previous request for
exclusive access to any other address by the same processor to be cleared.

MarkExclusiveGlobal(FullAddress paddress, integer processorid, integer size)
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B2-35

Common Memory System Architecture Features
The MarkExclusiveLocal() procedure takes as arguments a FullAddress paddress, the processor identifier
processorid and the size of the transfer. The procedure records in a local record that processor processorid
has requested exclusive access to an address covering at least size bytes from address paddress. The size of
the region marked as exclusive is IMPLEMENTATION DEFINED, and can at its largest cover the whole of
memory, but is no smaller than two words, and is aligned in the address space to the size of the region. It is
IMPLEMENTATION DEFINED whether this procedure also performs a MarkExclusiveGlobal() using the same
parameters.

MarkExclusiveLocal(FullAddress paddress, integer processorid, integer size)

The IsExclusiveGlobal() function takes as arguments a FullAddress paddress, the processor identifier
processorid and the size of the transfer. The function returns TRUE if the processor processorid has marked
in a global record an address range as exclusive access requested that covers at least the size bytes from
address paddress. It is IMPLEMENTATION DEFINED whether it returns TRUE or FALSE if a global record has
marked a different address as exclusive access requested. If no address is marked in a global record as
exclusive access, IsExclusiveGlobal() returns FALSE.

boolean IsExclusiveGlobal(FullAddress paddress, integer processorid, integer size)

The IsExclusiveLocal() function takes as arguments a FullAddress paddress, the processor identifier
processorid and the size of the transfer. The function returns TRUE if the processor processorid has marked
an address range as exclusive access requested that covers at least the size bytes from address paddress. It
is IMPLEMENTATION DEFINED whether this function returns TRUE or FALSE if the address marked as
exclusive access requested does not cover all of the size bytes from address paddress. If no address is
marked as exclusive access requested, then this function returns FALSE. It is IMPLEMENTATION DEFINED
whether this result is ANDed with the result of IsExclusiveGlobal() with the same parameters.

boolean IsExclusiveLocal(FullAddress paddress, integer processorid, integer size)

The ClearExclusiveByAddress() procedure takes as arguments a FullAddress paddress, the processor
identifier processorid and the size of the transfer. The procedure clears the global records of all processors,
other than processorid, for which an address region including any of the size bytes starting from paddress
has had a request for an exclusive access. It is IMPLEMENTATION DEFINED whether the equivalent global
record of the processor processorid is also cleared if any of the size bytes starting from paddress has had a
request for an exclusive access, or if any other address has had a request for an exclusive access.

ClearExclusiveByAddress(FullAddress paddress, integer processorid, integer size)

The ClearExclusiveLocal() procedure takes as arguments the processor identifier processorid. The
procedure clears the local record of processor processorid for which an address has had a request for an
exclusive access. It is IMPLEMENTATION DEFINED whether this operation also clears the global record of
processor processorid that an address has had a request for an exclusive access.

ClearExclusiveLocal(integer processorid)
B2-36 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Common Memory System Architecture Features
B2.4.8 Access permission checking

The function CheckPermission() is used by both the VMSA and PMSA architectures to perform access
permission checking based on attributes derived from the translation tables or region descriptors. The domain
and sectionnotpage arguments are only relevant for the VMSA architecture.

The interpretation of the access permissions is shown in:

• Access permissions on page B3-28, for a VMSA implementation

• Access permissions on page B4-9, for a PMSA implementation.

The following pseudocode describes the checking of the access permission:

// CheckPermission()
// =================

CheckPermission(Permissions perms, bits(32) mva,
 boolean sectionnotpage, bits(4) domain, boolean iswrite, boolean ispriv)

 if SCTLR.AFE == ‘0’ then
 perms.ap<0> = ‘1’;

 case perms.ap of
 when ‘000’ abort = TRUE;
 when ‘001’ abort = !ispriv;
 when ‘010’ abort = !ispriv && iswrite;
 when ‘011’ abort = FALSE;
 when ‘100’ UNPREDICTABLE;
 when ‘101’ abort = !ispriv || iswrite;
 when ‘110’ abort = iswrite;
 when ‘111’
 if MemorySystemArchitecture() == MemArch_VMSA then
 abort = iswrite
 else
 UNPREDICTABLE;

 if abort then
 DataAbort(mva, domain, sectionnotpage, iswrite, DAbort_Permission);

 return;

B2.4.9 Default memory access decode

The function DefaultTEXDecode() is used by both the VMSA and PMSA architectures to decode the texcb
and S attributes derived from the translation tables or region descriptors.

The interpretation of the arguments is shown in:

• C, B, and TEX[2:0] encodings without TEX remap on page B3-33, for a VMSA implementation

• C, B, and TEX[2:0] encodings on page B4-11, for a PMSA implementation.

The following pseudocode describes the default memory access decoding, when memory region remapping
is not implemented:
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B2-37

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
for a PMSA implementation, and for a VMSA implementation when TEX remap is not enabled

ARM_2009_Q2
Sticky Note
This is a clarification of the scope of this pseudocode.

ARM_2010_Q3
Cross-Out

ARM_2010_Q3
Replacement Text
1

Common Memory System Architecture Features
// DefaultTEXDecode()
// ==================

MemoryAttributes DefaultTEXDecode(bits(5) texcb, bit S)

 MemoryAttributes memattrs;

 case texcb of
 when ‘00000’
 memattrs.type = MemType_StronglyOrdered;
 memattrs.innerattrs = ‘00’; // Non-cacheable
 memattrs.outerattrs = ‘00’; // Non-cacheable
 memattrs.shareable = TRUE;
 when ‘00001’
 memattrs.type = MemType_Device;
 memattrs.innerattrs = ‘00’; // Non-cacheable
 memattrs.outerattrs = ‘00’; // Non-cacheable
 memattrs.shareable = TRUE;
 when ‘0001x’, ‘00100’
 memattrs.type = MemType_Normal;
 memattrs.innerattrs = texcb<1:0>;
 memattrs.outerattrs = texcb<1:0>;
 memattrs.shareable = (S == ‘1’);
 when ‘00110’
 IMPLEMENTATION_DEFINED setting of memattrs;
 when ‘00111’
 memattrs.type = MemType_Normal;
 memattrs.innerattrs = ‘01’; // Write-back write-allocate cacheable
 memattrs.outerattrs = ‘01’; // Write-back write-allocate cacheable
 memattrs.shareable = (S == ‘1’);
 when ‘01000’
 memattrs.type = MemType_Device;
 memattrs.innerattrs = ‘00’; // Non-cacheable
 memattrs.outerattrs = ‘00’; // Non-cacheable
 memattrs.shareable = FALSE;
 when ‘1xxxx’
 memattrs.type = MemType_Normal;
 memattrs.innerattrs = texcb<1:0>;
 memattrs.outerattrs = texcb<3:2>;
 memattrs.shareable = (S == ‘1’);
 otherwise
 UNPREDICTABLE;

 memattrs.outershareable = memattrs.shareable;

 return memattrs;
B2-38 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Common Memory System Architecture Features
B2.4.10 Data Abort exception

The DataAbort() function generates a Data Abort exception and is used by both the VMSA and PMSA
architectures. It sets the DFSR to indicate:

• the type of the abort, including the distinction between section and page on a VMSA implementation

• on a VMSA implementation, the domain, if appropriate

• whether the access was a read or write.

For a synchronous abort it also sets the DFAR to the MVA of the abort.

For details of the FSR encoding values see:

• Fault Status Register encodings for the VMSA on page B3-50, for a VMSA implementation

• Fault Status Register encodings for the PMSA on page B4-19, for a PMSA implementation.

An implementation might also set the IMPLEMENTATION DEFINED ADFSR.

// Data abort types.

enumeration DAbort {DAbort_AccessFlag,
 DAbort_Alignment,
 DAbort_Background,
 DAbort_Domain,
 DAbort_Permission,
 DAbort_Translation};

DataAbort(bits(32) address, bits(4) domain, boolean sectionnotpage, boolean iswrite, DAbort type)
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B2-39

Common Memory System Architecture Features
B2-40 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Chapter B3
Virtual Memory System Architecture (VMSA)

This chapter provides a system-level view of the Virtual Memory System Architecture (VMSA), the
memory system architecture of an ARMv7-A implementation. It contains the following sections:

• About the VMSA on page B3-2

• Memory access sequence on page B3-4

• Translation tables on page B3-7

• Address mapping restrictions on page B3-23

• Secure and Non-secure address spaces on page B3-26

• Memory access control on page B3-28

• Memory region attributes on page B3-32

• VMSA memory aborts on page B3-40

• Fault Status and Fault Address registers in a VMSA implementation on page B3-48

• Translation Lookaside Buffers (TLBs) on page B3-54

• Virtual Address to Physical Address translation operations on page B3-63

• CP15 registers for a VMSA implementation on page B3-64

• Pseudocode details of VMSA memory system operations on page B3-156.

Note
 For an ARMv7-A implementation, this chapter must be read with Chapter B2 Common Memory System
Architecture Features.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-1

Virtual Memory System Architecture (VMSA)
B3.1 About the VMSA

Complex operating systems typically use a virtual memory system to provide separate, protected address
spaces for different processes. The ARMv7 VMSA is referred to as VMSAv7. For details of the differences
in previous versions of the ARM architecture see:

• Virtual memory support on page AppxH-21 for the ARMv4 and ARMv5 architectures

• Virtual memory support on page AppxG-24 for ARMv6.

In a VMSA, a Memory Management Unit (MMU) provides facilities that enable an operating system to
dynamically allocate memory and other memory-mapped system resources to the processes. The MMU
provides fine-grained control of a memory system through a set of virtual to physical address mappings and
associated memory properties held in memory-mapped tables known as translation tables.

The translation properties associated with each translation table entry include:

Memory access permission control

This controls whether a program has access to a memory area. The possible settings are no
access, read-only access, or read/write access. In addition, there is control of whether code
can be executed from the memory area.

If a processor attempts an access that is not permitted, a memory abort is signaled to the
processor.

The permitted level of access can be affected by:

• whether the program is running in User mode or a privileged mode

• the use of domains.

Memory region attributes

These describe the properties of a memory region. The top-level attribute, the Memory type,
is one of Strongly-ordered, Device, or Normal. Device and Normal memory regions have
additional attributes, see Summary of ARMv7 memory attributes on page A3-25.

Virtual-to-physical address mapping

The VMSA regards the address of an explicit data access or an instruction fetch as a Virtual
Address (VA). The MMU maps this address onto the required Physical Address (PA).

VA to PA address mapping can be used to manage the allocation of physical memory in
many ways. For example:

• to allocate memory to different processes with potentially conflicting address maps

• to enable an application with a sparse address map to use a contiguous region of
physical memory.

A full translation table lookup is called a translation table walk. It is performed automatically by hardware,
and has a significant cost in execution time, requiring at least one main memory access, and often two.
Translation Lookaside Buffers (TLBs) reduce the average cost of a memory access by caching the results of
translation table walks. TLBs behave as caches of the translation table information, and the VMSA provides
TLB maintenance operations to manage TLB contents in software.
B3-2 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Virtual Memory System Architecture (VMSA)
To reduce the software overhead of TLB maintenance, the VMSA distinguishes between Global pages and
Process specific pages. The Address Space Identifier (ASID) identifies pages associated with a specific
process and provides a mechanism for changing process specific tables without having to perform
maintenance on the TLB structures.

System Control coprocessor (CP15) registers control the VMSA, including defining the location of the
translation tables. They include registers that contain memory fault status and address information. See
CP15 registers for a VMSA implementation on page B3-64. When the Security Extensions are implemented,
many of the CP15 registers are banked between the Secure and Non-secure security states. This means
separate system control software can be used in the different security states.

VMSAv7 supports physical addresses of up to 40 bits, though implementations are permitted to support only
32 bits of physical address. Where implementations support more than 32 bits of physical address,
generating physical addresses with PA[39:32] != 0b00000000 requires the use of Supersections, see
Translation tables on page B3-7.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-3

Virtual Memory System Architecture (VMSA)
B3.2 Memory access sequence

Explicit data accesses and instruction fetches generate memory accesses using VAs. The VA for an access
is subject to two stages of address translation:

1. A translation from VA to Modified Virtual Address (MVA) by the FCSE, if it is implemented, see
FCSE translation

2. A translation from MVA to PA using the translation tables, see Translation from MVA to PA using the
translation tables.

B3.2.1 FCSE translation

The FCSE translation is a linear remapping of the bottom 32MBytes of the Virtual Address map, to a
32MByte address block determined by the FCSEIDR, see c13, FCSE Process ID Register (FCSEIDR) on
page B3-152. Therefore, the translation is that shown by the pseudo-function FCSETranslate, see FCSE
translation on page B3-156.

Note
 • The FCSE translation has no effect if bits FCSEIDR[31:25] are 0b0000000, see c13, FCSE Process

ID Register (FCSEIDR) on page B3-152.

• From VMSAv6, use of FCSE translation is deprecated.

• In VMSAv7, the FCSE is optional and might not be implemented. If it is not implemented the VMSA
behavior is that MVA = VA, and the FCSEIDR register is RAZ/WI.

B3.2.2 Translation from MVA to PA using the translation tables

The MMU translates the MVA to the PA. Typically, this translation attempts to find the translation table
entry held in a TLB that either:

• is a global entry

• was brought into the TLB with the ASID that matches the current value held in the CONTEXTIDR,
see c13, Context ID Register (CONTEXTIDR) on page B3-153.

If no matching entry is found in a TLB, then the hardware locates the appropriate entry in the translation
tables held in memory.

When the translation table entry is located, in the TLB or in memory, either:

• It is not a valid translation, and therefore causes a Translation fault.

• The contents of the entry contain the PA, the memory permission attributes and the memory type
attributes for the required access. Using the entry might cause an abort, for variety of reasons.

For more information about MMU faults see MMU faults on page B3-40.
B3-4 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Virtual Memory System Architecture (VMSA)
B3.2.3 Enabling and disabling the MMU

The MMU can be enabled and disabled by writing to the SCTLR.M bit, see c1, System Control Register
(SCTLR) on page B3-96. On reset, this bit is cleared to 0, disabling the MMU.

When the MMU is disabled, memory accesses are treated as follows:

• All data accesses are treated as Non-cacheable and Strongly-ordered. Unexpected data cache hit
behavior is IMPLEMENTATION DEFINED.

• The treatment of instruction accesses depends on the value of the SCTLR.I bit:

When I == 0
All instruction accesses are Non-cacheable.

When I == 1

All instruction accesses are Cacheable:

• Inner Write-Through no Write-Allocate

• Outer Write-Through no Write-Allocate.

In both cases all instruction accesses are Non-shareable, Normal memory.

Note
 On some implementations, if the SCTLR.TRE bit is set to 0 then this behavior can be changed by the

remap settings in the memory remap registers, see CP15 c10, Memory Remap Registers on
page B3-143. The details of TEX remapping when SCTLR.TRE is set to 0 are IMPLEMENTATION
DEFINED, see SCTLR.TRE, SCTLR.M, and the effect of the MMU remap registers on page B3-38.

• No memory access permission checks are performed, and no aborts are generated by the MMU.

• For every access the PA is equal to the MVA. This is known as a flat address mapping.

• If the FCSE is implemented, the FCSE PID is SBZ when the MMU is disabled. This is the reset value
for the FCSE PID. Behavior is UNPREDICTABLE if the FCSE PID is not zero when the MMU is
disabled.

When the FCSE is implemented software must clear the FCSE PID before disabling the MMU.

• CP15 cache maintenance operations act on the target cache whether the MMU is enabled or not, and
regardless of the values of the memory attributes. However, if the MMU is disabled, they use the flat
address mapping, and all mappings are considered global.

CP15 TLB invalidate operations act on the target TLB whether the MMU is enabled or not.

All relevant CP15 registers must be programmed before the MMU is enabled. This includes setting up
suitable translation tables in memory.

When the MMU is disabled, an instruction can be fetched if one of the following conditions is met:

• The instruction is in the same 4KB block of memory (aligned to 4KB) as an instruction that is
required by a simple sequential execution of the program, or is in the 4KB block of memory
immediately following such a block.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-5

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
behave as if they were accessing Strongly-Ordered memory.

ARM_2008_Q4
Sticky Note
This change is merely a clarification, not a change to the specification.

ARM_2009_Q3
Cross-Out

ARM_2009_Q3
Replacement Text
the processor can access a memory location as a result of an instruction fetch or prefetch

ARM_2009_Q3
Sticky Note
This change, and the corresponding changes in the following two bullets, is a clarification, not a change to the specification.

ARM_2009_Q3
Cross-Out

ARM_2009_Q3
Replacement Text
memory location

Virtual Memory System Architecture (VMSA)
• The instruction is in the same 4KB block of memory (aligned to 4KB) from which an instruction has
previously been required by a simple sequential execution of the program with the MMU disabled,
or is in the 4KB block immediately following such a block.

Note
 • Software must ensure that instructions that will be executed when the MMU is disabled are located

within 4KB blocks of the address space that contain only memory which is tolerant to prefetching
and speculative accesses, and that the following 4KB blocks of the address space also contain only
memory which is tolerant to prefetching and speculative accesses.

• Enabling or disabling the MMU effectively changes the translation tables that are in use. The
synchronization requirements that apply on changing translation tables also apply to enabling or
disabling the MMU. For more information, see Changing translation table attributes on page B3-21.
See also Requirements for instruction caches on page B3-23.

In addition, if the physical address of the code that enables or disables the MMU differs from its
MVA, instruction prefetching can cause complications. Therefore, ARM strongly recommends that
any code that enables or disables the MMU has identical virtual and physical addresses.
B3-6 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q3
Cross-Out

ARM_2009_Q3
Inserted Text
memory location

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Sticky Note
This bullet is deleted because it was included only as guidance to programmers. However, its intention is not entirely clear, and feedback indicates that it is confusing rather than helpful.

This deletion does not represent any architectural change, and does not affect the validity of the information in the cross-referenced sections.

Virtual Memory System Architecture (VMSA)
B3.3 Translation tables

The MMU supports memory accesses based on memory sections or pages:

Supersections Consist of 16MB blocks of memory. Support for Supersections is optional.

Sections Consist of 1MB blocks of memory.

Large pages Consist of 64KB blocks of memory.

Small pages Consist of 4KB blocks of memory.

Support for Supersections, Sections and Large pages enables a large region of memory to be mapped using
only a single entry in the TLB.

The translation tables held in memory have two levels:

First-level table

Holds first-level descriptors that contain the base address and

• translation properties for Sections and Supersections

• translation properties and pointers to a second level table for Large pages and Small
pages

Second-level tables

Hold second-level descriptors, each containing the base address and translation properties
for a Small pages or a Large page. Second-level tables are also referred to as Page tables.

The translation tables are described in the following sections:

• Translation table entry formats

• Translation table base registers on page B3-11

• Translation table walks on page B3-13

• Changing translation table attributes on page B3-21

• The access flag on page B3-21.

B3.3.1 Translation table entry formats

The formats of the first-level and second-level translation table descriptor entries in the translation tables are
described in:

• First-level descriptors on page B3-8

• Second-level descriptors on page B3-10.

For more information about second-level translation tables see Additional requirements for translation
tables on page B3-11.

Note
 In previous versions of the ARM Architecture Reference Manual and in some other documentation, the
AP[2] bit in the translation table entries is described as the APX bit.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-7

Virtual Memory System Architecture (VMSA)
First-level descriptors

Each entry in the first-level table is a descriptor of how the associated 1MB MVA range is mapped.
Table B3-1 shows the possible first-level descriptor formats, where the value of bits [1:0] of the descriptor
identifies the descriptor type:

0b00 Invalid or fault entry. The associated MVA is unmapped, and attempting to access it
generates a Translation fault, see VMSA memory aborts on page B3-40. Software can use
bits [31:2] of an invalid descriptor for its own purposes, because these bits are ignored by
the hardware.

0b01 Page table descriptor. The descriptor gives the physical address of a second-level translation
table, that specifies how the associated 1MByte MVA range is mapped. A second level
translation table requires 1KByte of memory and can map Large pages and Small pages, see
Second-level descriptors on page B3-10.

0b10 Section or Supersection descriptor for the associated MVA. Bit [18] determines whether the
descriptor is of a Section or a Supersection. For details of how the descriptor is interpreted
see The full translation flow for Sections, Supersections, Small pages and Large pages on
page B3-15.

0b11 Reserved. In VMSAv7, descriptors with bits [1:0] == 0b11 generate Translation faults, and
must not be used.

The address information in the first-level descriptors is:

Page table Bits [31:10] of the descriptor are bits [31:10] of the physical address of a Page table.

Section Bits [31:20] of the descriptor are bits [31:20] of the physical address of the Section.

Supersection Bits [31:24] of the descriptor are bits [31:24] of the physical address of the Supersection.

Optionally, bits [8:5,23:20] of the descriptor are bits [39:32] of the extended Supersection
address.

Table B3-1 VMSAv7 first-level descriptor formats

31 24 23 20 19 18 17 16 15 14 12 11 10 9 8 5 4 3 2 1 0

Fault IGNORE 0 0

Page table Page table base address, bits [31:10]
I

M
P

Domain
S
B
Z

N
S

S
B
Z

0 1

Section Section base address, PA[31:20]
N
S

0
n
G

S
A
P

[2]

TEX
[2:0]

AP
[1:0]

I
M
P

Domain
X
N

C B 1 0

Supersection
Supersection base address

PA[31:24]

Extended
base address
PA[35:32]

N
S

1
n
G

S
A
P

[2]

TEX
[2:0]

AP
[1:0]

I
M
P

Extended
base address
PA[39:36]

X
N

C B 1 0

Reserved Reserved 1 1
B3-8 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Virtual Memory System Architecture (VMSA)
The other fields in the descriptors are:

TEX[2:0], C, B

Memory region attribute bits, see Memory region attributes on page B3-32.

These bits are not present in a Page table entry.

XN bit The execute-never bit. Determines whether the region is executable, see The Execute Never
(XN) attribute and instruction prefetching on page B3-30.

This bit is not present in a Page table entry.

NS bit Non-secure bit. When the Security Extensions are implemented this bit specifies whether
the translated PA targets Secure or Non-secure memory, see Secure and Non-secure address
spaces on page B3-26.

Domain Domain field, see Domains on page B3-31.

This field is not present in a Supersection entry. Memory described by Supersections is in
domain 0.

IMP bit The meaning of this bit is IMPLEMENTATION DEFINED.

AP[2], AP[1:0]

Access Permissions bits, see Memory access control on page B3-28.

AP[0] can be configured as the access flag, see The access flag on page B3-21.

These bits are not present in a Page table entry.

S bit The Shareable bit. Determines whether the translation is for Shareable memory, see Memory
region attributes on page B3-32.

This bit is not present in a Page table entry.

nG bit The not global bit. Determines how the translation is marked in the TLB, see Global and
non-global regions in the virtual memory map on page B3-54.

This bit is not present in a Page table entry.

Bit [18], when bits [1:0] == 0b10

0 Descriptor is for a Section

1 Descriptor is for a Supersection.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-9

Virtual Memory System Architecture (VMSA)
Second-level descriptors

Table B3-2 shows the possible formats of a second-level descriptor, where bits [1:0] of the descriptor
identify the descriptor type:

0b00 Invalid or fault entry. The associated MVA is unmapped, and attempting to access it
generates a Translation fault. Software can use bits [31:2] of an invalid descriptor for its own
purposes, because these bits are ignored by the hardware.

0b01 Large page descriptor. Bits [31:16] of the descriptor are the base address of the Large page.

0b1X Small page descriptor. Bits [31:12] of the descriptor are the base address of the Small page.

In this descriptor format, bit [0] of the descriptor is the XN bit.

The address information in the second-level descriptors is:

Large page Bits [31:16] of the descriptor are bits [31:16] of the physical address of the Large page.

Small page Bits [31:12] of the descriptor are bits [31:12] of the physical address of the Small page.

The other fields in the descriptors are:

XN bit The execute-never bit. Determines whether the region is executable, see The Execute Never
(XN) attribute and instruction prefetching on page B3-30.

TEX[2:0], C, B

Memory region attribute bits, see Memory region attributes on page B3-32.

AP[2], AP[1:0]

Access Permissions bits, see Memory access control on page B3-28.

AP[0] can be configured as the access flag, see The access flag on page B3-21.

S bit The Shareable bit. Determines whether the translation is for Shareable memory, see Memory
region attributes on page B3-32.

nG bit The not global bit. Used in the TLB matching process, see Global and non-global regions
in the virtual memory map on page B3-54.

Table B3-2 VMSAv7 second-level descriptor formats

31 16 15 14 12 11 10 9 8 7 6 5 4 3 2 1 0

Fault IGNORE 0 0

Large page Large page base address, PA[31:16]
X
N

TEX
[2:0]

n
G

S
A
P

[2]
SBZ

AP
[1:0]

C B 0 1

Small page Small page base address, PA[31:12]
n
G

S
A
P

[2]

TEX
[2:0]

AP
[1:0]

C B 1
X
N

B3-10 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Virtual Memory System Architecture (VMSA)
Additional requirements for translation tables

Additional requirements for the entries in a translation table apply:

• to first-level translation tables when Supersection descriptors are used

• to second-level translation tables when Large page descriptors are used.

These requirements exist because the top four bits of the Supersection or Large page index region of the
MVA overlap with the bottom four bits of the table index. Translation table walks on page B3-13 gives more
information, and these two cases are shown in:

• Figure B3-5 on page B3-18 for the first-level translation table Supersection entry

• Figure B3-7 on page B3-20 for the second-level translation table Large page table entry.

Considering the case of using Large page table descriptors in a second-level translation table, this overlap
means that for any specific Large page, the bottom four bits of the second-level translation table entry might
take any value from 0b0000 to 0b1111. Therefore, each of these sixteen index values must point to a separate
copy of the same descriptor. This means that, in a second-level translation table, each Large page descriptor
must:

• occur first on a sixteen-word boundary

• be repeated in 16 consecutive memory locations.

For similar reasons, in a first-level translation table, each Supersection descriptor must also:

• occur first on a sixteen-word boundary

• be repeated in 16 consecutive memory locations.

Second-level translation tables are 1KB in size, and must be aligned on a 1KB boundary. Each 32-bit entry
in a table provides translation information for 4KB of memory. VMSAv7 supports two page sizes:

• Large pages are 64KByte in size

• Small pages are 4KByte in size.

The required replication of Large page descriptors preserves this 4KB per entry relationship:

(4KBytes per entry) x (16 replicated entries) = 64KBytes = Large page size

B3.3.2 Translation table base registers

Three translation table registers describe the translation tables that are held in memory. For descriptions of
the registers, see:

• c2, Translation Table Base Register 0 (TTBR0) on page B3-113

• c2, Translation Table Base Register 1 (TTBR1) on page B3-116

• c2, Translation Table Base Control Register (TTBCR) on page B3-117.

On a translation table walk, the most significant bits of the MVA and the value of TTBCR.N determine
whether TTBR0 or TTBR1 is used as the translation table base register. The value of TTBCR.N indicates a
number of most significant bits of the MVA and:

• if either TTBCR.N is zero or the indicated bits of the MVA are zero, TTBR0 is used

• otherwise TTBR1 is used.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-11

Virtual Memory System Architecture (VMSA)
For more information, see Determining which TTBR to use, and the TTBR0 translation table size on
page B3-118.

The normal use of the two TTBRs is:

TTBR0 Typically used for process-specific addresses. This table ranges in size from 128bytes to
16Kbyte, depending on the value of TTBCR.N.

Each process maintains a separate first-level translation table. On a context switch:

• TTBR0 is updated to point to the first-level translation table for the new context

• TTBCR is updated if this change changes the size of the translation table

• the CONTEXTIDR is updated.

When the TTBCR is programmed to zero, all translations use TTBR0 in a manner
compatible with earlier versions of the architecture, that is, with versions before ARMv6.

TTBR1 Typically used for operating system and I/O addresses, that do not change on a context
switch. The size of this table is always 16KByte.

In the selected TTBR. the following bits define the memory region attributes for the translation table walk:

• the RGN, S and C bits, in the ARMv7-A base architecture

• the RGN, S, and IRGN[1:0] bits, when the Multiprocessing Extensions are implemented.

When the Security Extensions are implemented, two bits in the TTBCR for the current security state control
whether a translation table walk is performed on a TLB miss:

• PD0, bit [4], controls whether translation table walks based on TTBR0 are performed

• PD1, bit [5], controls whether translation table walks based on TTBR1 are performed.

For more information about the TTBCR see c2, Translation Table Base Control Register (TTBCR) on
page B3-117.

The effect of these bits is:

PDx == 0 When a TLB miss occurs based on TTBRx, a translation table walk is performed. The
privilege of the memory access, Secure or Non-secure, corresponds to the current security
state.

PDx == 1 If a TLB miss occurs based on TTBRx, a Section Translation fault is returned. No
translation table walk is performed.

Note
 When the Security Extensions are implemented, setting PD0 ==1 or PD1==1 can result in recursive entry
into the abort handler. This effectively deadlocks the system if the mapping for the abort vectors is not
guaranteed to be present in the TLB. TLB lockdown might be used to guarantee that the mapping for the
abort vectors is present in the TLB.
B3-12 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Virtual Memory System Architecture (VMSA)
B3.3.3 Translation table walks

A translation table walk occurs as the result of a TLB miss, and starts with a read of the appropriate
first-level translation table:

• a section-mapped access only requires a read of the first-level translation table

• a page-mapped access also requires a read of the second-level translation table.

The value of the SCTLR.EE bit determines the endianness of the translation table look ups. The physical
address of the base of the first-level translation table is determined from the appropriate Translation Table
Base Register (TTBR), see Translation table base registers on page B3-11.

In the base ARMv7 architecture, and in versions of the architecture before ARMv7, it is IMPLEMENTATION
DEFINED whether a hardware translation table walk can cause a read from the L1 unified or data cache. If an
implementation does not support translation table accesses from L1 then software must ensure coherency
between translation table walks and data updates.

Typically this involves one of:

• storing translation tables in Inner Write-Through Cacheable Normal memory

• storing translation tables in Inner Write-Back Cacheable Normal memory and ensure the appropriate
cache entries are cleaned after modification

• storing translation tables in Non-cacheable memory.

For more information, see TLB maintenance operations and the memory order model on page B3-59.

In the Multiprocessing Extensions, translation table walks are required to access data or unified caches, or
data and unified caches, of other agents participating in the coherency protocol, according to the shareability
attributes described in the translation table base register. The shareability attributes described in the
translation table base register must be consistent with the shareability attributes for the translation tables
themselves.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-13

ARM_2010_Q3
Inserted Text

------ Note ------
Dynamically changing translation table endianness
 Because a change to SCTLR.EE requires synchronization before it is visible to subsequent operations, ARM strongly recommends that SCTLR.EE is changed only when either:
 • executing in a mode that does not use the translation tables affected by SCTLR.EE
 • executing with SCTLR.M set to 0.

Virtual Memory System Architecture (VMSA)
Reading a first-level translation table

To perform a fetch based on TTBR1, Bits TTBR1[31:14] are concatenated with bits [31:20] of the MVA and
two zero bits to produce a 32-bit physical address, as shown in Figure B3-1.

Figure B3-1 Accessing the translation table first-level descriptors based on TTBR1

When performing a fetch based on TTBR0:

• the address bits taken from TTBR0 vary between bits [31:14] and bits [31:7]

• the address bits taken from the MVA vary between bits [31:20] and bits [24:20].

The width of the TTBR0 and MVA fields depend on the value of TTBCR.N, as shown in Figure B3-2.

Figure B3-2 Accessing the translation table first-level descriptors based on TTBR0

�� �� ��

�� �� ��

�� �� �� � �

@���*��&'���-�*� �9D

@���*��&'���-�*� @�-���'���+

@�-���'���+

���

�

�

�

@@97�

!��

��/��;�0��(
('�*&���������*��'%&��

��/��;��0�J��+��

�� ���? ���?

�� �� ��

�� ���? ���? � �

@���*��&'���-�*� �9D

@���*��&'���-�*� @�-���'���+

@�-���'���+

���

�

�

�

@@97�

!��

��/��;�0��(
('�*&���������*��'%&��

���?���?

��/��;��0�J��+��

?�'*�&)�����$���(�@@9<7�?

#

#�@)'*�('����'*��-*��&�'(�?JJ�
B3-14 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Virtual Memory System Architecture (VMSA)
Regardless of which register is used as the base for the fetch, the resulting physical address selects a
four-byte translation table entry that is one of:

• A first-level descriptor for a Section or Supersection.

• A Page table pointer to a second-level translation table. In this case a second fetch is performed to
retrieve a second-level descriptor, see Reading a second-level translation table.

• A faulting entry.

Note
 Comparing Figure B3-1 on page B3-14 with Figure B3-2 on page B3-14, you can see that when using
TTBR0 with N == 0 the construction of the PA becomes identical to that for TTBR1. Other diagrams in this
section show the PA formation from TTBR0, but also represent PA formation from TTBR1, for which case
N = 0.

Reading a second-level translation table

Figure B3-3 shows how the address of a second-level descriptor is obtained by combining:

• the result of the first-level fetch

• the second-level table index value held in bits [19:12] of the MVA.

See Table B3-1 on page B3-8 for the format of the Access control fields of the first-level descriptor.

Figure B3-3 Accessing second-level Page table descriptors

The full translation flow for Sections, Supersections, Small pages and Large
pages

This section summarizes how each of the memory section and page options is described in the translation
tables, and has a subsection summarizing the full translation flow for each of the options.

�'�*&������
��*��'%&��

�� � �

���

��� �

��.��&�-���-�*�������** ������������
&�-���'���+

�� � �

���

��� �

��.��&�-���-�*�������** ����**
���&����('���*

��/��;�0��(
����������������'%&��

�� �� �� �

!��

�� ��

������������
&�-���'���+

��/��;��0�J��+��
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-15

Virtual Memory System Architecture (VMSA)
The four options are:

Section A 1MB memory region, described by a first-level translation table descriptor with bits
[18,1:0] == 0b010.

See Translation flow for a Section on page B3-17.

Supersection A 16MB memory region, described by a first-level translation table entry with bits
[18,1:0] == 0b110.

See Translation flow for a Supersection on page B3-18.

Small page A 4KB memory region, described by:

• a first-level translation table entry with bits [1:0] == 0b01, giving a second-level Page
table address.

• a second-level descriptor with bit [1] == 1.

See Translation flow for a Small page on page B3-19.

Large page A 64KB memory region, described by:

• a first-level translation table entry with bits [1:0] == 0b01, giving a second-level Page
table address.

• a second-level descriptor with bits [1:0] == 0b01.

See Translation flow for a Large page on page B3-20.
B3-16 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Virtual Memory System Architecture (VMSA)
Translation flow for a Section

Figure B3-4 shows the virtual to physical addresses translation for a Section. For details of the access
control fields in the first-level descriptor see the Section entry in Table B3-1 on page B3-8.

Figure B3-4 Section address translation

�� ���? ���?

�� �� ��

�� ���? ���? � �

@���*��&'���-�*� �9D

@���*��&'���-�*� @�-���'���+

@�-���'���+

���

�

�

�

!��

��/��;�0��(
('�*&���������*��'%&��

���?���?

�� �� ��

���&'��
-�*�������**

� �

���

�
�'�*&������

����

�� �� ��

���&'��
-�*�������**

�

���&'���'���+

���&'���'���+

����**����&����('���*�'�*&������
���&'�����*��'%&��

��/��;�0

@���*��&'���@�-��
9�*��7�.'*&��

��/��;��0�J��+��

��/��;��0�J��+��

#

������&���*��&'���-�*������@@97�6�?�'*�&)�����$���(�@@9<7�?
������&���*��&'���-�*������@@97�6�?�'*��

#�@)'*�('����'*��-*��&�'(�?JJ�
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-17

Virtual Memory System Architecture (VMSA)
Translation flow for a Supersection

Figure B3-5 shows the virtual to physical addresses translation for a Supersection. For details of the
extended Supersection address and access control fields in the first-level descriptor see the Supersection
entry in Table B3-1 on page B3-8.

Figure B3-5 Supersection address translation

Note
 Figure B3-5 shows how, when the MVA addresses a Supersection, the top four bits of the Supersection index
bits of the MVA overlap the bottom four bits of the Table index bits. For more information, see Additional
requirements for translation tables on page B3-11.

�� ���? ���?

�� �� ��

�� ���? ���? � �

@���*��&'���-�*� �9D

@���*��&'���-�*� @�-���'���+ ���

�

�

�

!��

����;�0��(
('�*&���������*��'%&��

���?���?

��

�$%��*��&'��
-�*�������**

� �

���

�

�'�*&������
����

�� ��

:+&�����
-�*�������**

�

�$%��*��&'���'���+

:+&�������$%��*��&'���-�*�������**
��������**����&����('���*

�'�*&������
�$%��*��&'�����*��'%&��

��/��;�0

@���*��&'���@�-��
9�*��7�.'*&��

�� ��

�$%��*��&'��
-�*�������**

������

�� ��

@�-���'���+
�$%��*��&'���'���+

��/��;��0�J��+��

#

������&���*��&'���-�*������@@97�6�?�'*�&)�����$���(�@@9<7�?
������&���*��&'���-�*������@@97�6�?�'*��

#�@)'*�('����'*��-*��&�'(�?JJ�
B3-18 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Virtual Memory System Architecture (VMSA)
Translation flow for a Small page

Figure B3-6 shows the virtual to physical addresses translation for a Small page. For details of the access
control fields in the first-level descriptor see the Page table entry in Table B3-1 on page B3-8. For details of
the access control fields in the second-level descriptor see the Small page entry in Table B3-2 on
page B3-10.

Figure B3-6 Small page address translation

�� ���? ���?

�� �� ��

�� ���? ���? � �

@���*��&'���-�*� �9D

@���*��&'���-�*�

�'�*&������
&�-���'���+

���

�

�

�

!��

��/��;�0��(
('�*&���������*��'%&��

���?���?

�'�*&������
�����'�*&������

��*��'%&��

@���*��&'���@�-��
9�*��7�.'*&��

�� ��

������������
&�-���'���+

�'�*&������
&�-���'���+

�� � �

���

��� �

��.��&�-���-�*�������** ������������
&�-���'���+

�� � �

���

��� �

��.��&�-���-�*�������** ����**
���&����('���*

��/��;�0��(
����������������'%&��

��.��'���+

������������
����������������

��*��'%&�� �

� � ��� ����

��� ����

��/��;�0

����**
���&����('���*�,����%�.��-�*�������**

�,����%�.��-�*�������** ��.��'���+

��/��;��0�J��+��

��/��;��0�J��+��

��/��;��0�J��+��

#

������&���*��&'���-�*������@@97�6�?�'*�&)�����$���(�@@9<7�?
������&���*��&'���-�*������@@97�6�?�'*��

#�@)'*�('����'*��-*��&�'(�?JJ�
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-19

Virtual Memory System Architecture (VMSA)
Translation flow for a Large page

Figure B3-7 shows the virtual to physical addresses translation for a Large page. For details of the access
control fields in the first-level descriptor see the Page table entry in Table B3-1 on page B3-8. For details of
the access control fields in the second-level descriptor see the Large page entry in Table B3-2 on
page B3-10.

Figure B3-7 Large page address translation

Note
 Figure B3-7 shows how, when the MVA addresses a Large page, the top four bits of the page index bits of
the MVA overlap the bottom four bits of the First-level table index bits. For more information, see
Additional requirements for translation tables on page B3-11. This diagram also shows the width of the
page index bits when addressing a Small page, to show that there is no overlap in this case.

�� ���? ���?

�� �� ��

�� ���? ���? � �

@���*��&'���-�*� �9D

@���*��&'���-�*�

�'�*&������
&�-���'���+

���

�

�

�

!��

��/��;�0
�(�('�*&���������*��'%&��

���?���?

�'�*&������
�����'�*&������

��*��'%&��

�� ��

������������
&�-���'���+

�'�*&������
&�-���'���+

�� � �

���

��� �

��.��&�-���-�*�������** ������������
&�-���'���+

�� � �

���

��� �

��.��&�-���-�*�������** ����**
���&����('���*

��/��;�0��(
����������������'%&��

��.��'���+
�� �	

�,����%�.�
'���+����.�

������������
����������������

��*��'%&�� ���

� � ��� �	��

��� �	��

��/��;�0

����**����&����('���*3��.��%�.��-�*�������**

3��.��%�.��-�*�������** ��.��'���+

��/��;��0�J��+��

��/��;��0�J��+��

��/��;��0�J��+��

@���*��&'���@�-��
9�*��7�.'*&��

#

������&���*��&'���-�*������@@97�6�?�'*�&)�����$���(�@@9<7�?
������&���*��&'���-�*������@@97�6�?�'*��

#�@)'*�('����'*��-*��&�'(�?JJ�
B3-20 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Virtual Memory System Architecture (VMSA)
B3.3.4 Changing translation table attributes

When changing translation table attributes, you must avoid situations where caching or pipelining effects
mean that overlapping entries or aliases with different attributes might be visible to the processor at the same
time. To avoid these situations, ARM recommends that you invalidate old translation table entries, and
synchronize the effects of those invalidations, before you create new translation table entries that might
overlap or create aliases with different attributes. This approach is sometimes called break before make.

For information about the procedure for synchronizing a change to the translation tables see TLB
maintenance operations and the memory order model on page B3-59.

Translation table entries that create Translation faults are not held in the TLB, see Translation fault on
page B3-43. Therefore TLB and branch predictor invalidation is not required for the synchronization of a
change from a translation table entry that causes a Translation fault to one that does not.

B3.3.5 The access flag

From VMSAv7, the AP[0] bit in the translation table descriptors can be redefined as an access flag. This is
done by setting SCTLR.AFE to 1, see c1, System Control Register (SCTLR) on page B3-96. When this bit
is set, the access permissions information in the translation table descriptors is limited to the AP[2:1] bits,
as described in Simplified access permissions model on page B3-29.

The access flag is used to indicate when a page or section of memory is accessed for the first time since the
access flag was set to 0.

It is IMPLEMENTATION DEFINED whether the access flag is managed by software or by hardware. The two
options are described in the subsections:

• Software management of the access flag

• Hardware management of the access flag.

The access flag mechanism expects that, when an Access Flag fault occurs, software sets the access flag to
1 in the translation table entry that caused the fault. This prevents the fault occurring the next time the
memory is accessed. Software does not have to flush the entry from the TLB after setting the flag.

Software management of the access flag

With an implementation that requires software to manage the access flag, an Access Flag fault is generated
when both:

• the SCTLR.AFE bit is set to 1

• a translation table entry with the access flag set to 0 is read into the TLB.

Hardware management of the access flag

An implementation can choose to provide hardware management of the access flag. In this case, when the
SCTLR.AFE bit is set to 1 and a translation table entry with the access flag set to 0 is read into the TLB, the
hardware must write 1 to the access flag bit of the translation table entry in memory.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-21

ARM_2009_Q4
Inserted Text

When changing the cacheability attributes of an area of memory, including changes between WT and WB attributes, software must ensure that any cached copies of affected locations are removed from the caches, typically be cleaning and invalidating the locations from the levels of cache that might hold copies of the locations affected by the change in attributes.

ARM_2011_Q2
Inserted Text

To avoid possible coherency errors caused by mismatched memory attributes, the caches must be maintained after making one of the following changes to the inner cacheability or outer cacheability attributes:
 • Write-back to Write-through
 • Write-back to Non-cacheable
 • Write-through to Non-cacheable
 • Write-through to Write-back.

After updating the translation tables, a cache clean and invalidate must be performed to remove the updated locations from the caches.

To avoid possible coherency errors caused by mismatched memory attributes, the following sequence must be followed when changing the shareability attributes of a cacheable memory location:
 1. Make the memory location Non-cacheable, Outer shareable.
 2. Clean and invalidate the location from them cache.
 3. Change the shareability attributes to the required new values.

ARM_2011_Q2
Sticky Note
There is an important addition after this paragraph, that defines the cache maintenance requirements when either:
 • changing cacheability attributes
 • changing the shareability attributes of a cacheable memory location.

Virtual Memory System Architecture (VMSA)
Any implementation of hardware management of the access flag must ensure that any software changes to
the translation table are not lost. The architecture does not require software that performs translation table
changes to use interlocked operations. The hardware management mechanisms for the access flag must
prevent any loss of data written to translation table entries that might occur when, for example, a write by
another processor occurs between the read and write phases of a translation table walk that updates the
access flag.

An implementation that provides hardware management of the access flag:

• does not generate Access Flag faults when the access flag is enabled

• uses the HW access flag field, ID_MMFR2[31:28], to indicate this implementation choice, see c0,
Memory Model Feature Register 2 (ID_MMFR2) on page B5-14.

Architecturally, an operating system that makes use of the access flag must support the software faulting
option that uses the Access Flag fault. This provides compatibility between systems that include a hardware
implementation of the access flag and those systems that do not implement this feature.

When an implementation provides hardware management of the access flag it must also implement the
SCTLR.HA bit, that can be used to enable or disable the access flag mechanism. See c1, System Control
Register (SCTLR) on page B3-96.

Changing the access flag enable

It is UNPREDICTABLE whether the TLB caches the effect of the SCTLR.AFE bit on translation tables. This
means that, after changing the SCTLR.AFE bit software must invalidate the TLB before it relies on the
effect of the new value of the SCTLR.AFE bit.
B3-22 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2010_Q2
Inserted Text
hardware management of

ARM_2010_Q2
Sticky Note
This is a clarification of the intended meaning of this paragraph, not a change to the architecture.

Virtual Memory System Architecture (VMSA)
B3.4 Address mapping restrictions

ARMv6 supported a page coloring restriction that, when implemented, required all Virtual Address aliases
of a given Physical Address to have the same value for address bits [13:12]. This page coloring restriction
was required to support Virtually Index Physically Tagged (VIPT) caches with a cache way size larger than
4KBytes. For details of the page coloring restriction see Virtual to physical translation mapping restrictions
on page AppxG-26.

ARMv7 does not support page coloring, and requires that all data and unified caches behave as Physically
Indexed Physically Tagged (PIPT) caches.

Note
 An ARMv7 implementation might use techniques such as hardware alias avoidance to make a VIPT cache
behave as a PIPT cache, and might improve performance by avoiding accesses to frequently alternating
aliases to a physical address. Such approaches give good results, but ARM recommends migration to the
use of true PIPT caches for all data and unified caches.

In an ARMv7 implementation, any data or unified cache maintenance operation that operates on a virtual
address must take account of the fact that the cache behaves as a PIPT cache. This means that the
implementation must perform the appropriate action on the physical address that corresponds to the MVA
targeted by the operation.

The ARMv7 requirements for instruction caches are described in Requirements for instruction caches.

B3.4.1 Requirements for instruction caches

In a base VMSAv7 implementation, the following conditions require cache maintenance of an instruction
cache:

• writing new data to an instruction address

• writing new address mappings to the translation table

• changing one or more of the TTBR0, TTBR1 and TTBCR registers without changing the ASID

• enabling or disabling the MMU, by writing to the SCTLR.

Note
 These conditions are consistent with the maintenance required for an ASID-tagged Virtually Indexed
Virtually Tagged (VIVT) instruction cache that also includes a security status bit for each cache entry.

VMSAv7 can be implemented with an optional extension, the IVIPT extension (Instruction cache Virtually
Indexed Physically Tagged extension). The effect of this extension is to reduce the instruction cache
maintenance requirement to a single condition:

• writing new data to an instruction address.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-23

Virtual Memory System Architecture (VMSA)
Note
 This condition is consistent with the maintenance required for a Virtually Indexed Physically Tagged (VIPT)
instruction cache.

Software can read the Cache Type Register to determine whether the IVIPT extension is implemented, see
c0, Cache Type Register (CTR) on page B3-83.

Functionally, the relationship between cache type and the software management requirement depends on
whether the operating system uses ASIDs to distinguish processes that use different translation tables:

• when ASIDs are used, management is similar for a VIPT and an ASID-tagged VIVT cache

• when ASIDs are not used, management is similar for a VIVT and an ASID-tagged VIVT cache.

A remapping policy that supports ASID changes means that translation tables can be swapped simply by
updates to the TTBR0, TTBR1 and TTBCR registers, with an appropriate change of the ASID held in the
CONTEXTIDR, see Synchronization of changes of ASID and TTBR on page B3-60. Such changes are
transparent to an ASID-tagged VIVT instruction cache until an ASID value is reused. In contrast, a VIVT
instruction cache that is not ASID-tagged must be invalidated whenever the virtual to physical address
mappings change. Therefore, such a cache must be invalidated on an ASID change.

Software written to rely on a VIPT instruction cache must only be used with processors that implement the
IVIPT. For maximum compatibility across processors, ARM recommends that operating systems target the
ARMv7 base architecture that uses ASID-tagged VIVT instruction caches, and do not assume the presence
of the IVIPT extension. Software that relies on the IVIPT extension might fail in an UNPREDICTABLE way
on an ARMv7 implementation that does not include the IVIPT extension.

With an instruction cache, the distinction between a VIPT cache and a PIPT cache is much less visible to
the programmer than it is for a data cache, because normally the contents of an instruction cache are not
changed by writing to the cached memory. However, there are situations where a program must distinguish
between the different cache tagging strategies. Example B3-1 describes such a situation.

Example B3-1 A situation where software must be aware of the
Instruction cache tagging strategy

Two processes, P1 and P2, share some code and have separate virtual mappings to the same region of
instruction memory. P1 changes this region, for example as a result of a JIT, or some other self-modifying
code operation. P2 needs to see the modified code.

As part of its self-modifying code operation, P1 must invalidate the changed locations from the instruction
cache. For more information, see Ordering of cache and branch predictor maintenance operations on
page B2-21. If this invalidation is performed by MVA, and the instruction cache is a VIPT cache, then P2
might continue to see the old code.

In this situation, if the instruction cache is a VIPT cache, after the code modification the entire instruction
cache must be invalidated to ensure P2 observes the new version of the code.
B3-24 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2010_Q2
Inserted Text
 extension.

ARM_2010_Q2
Sticky Note
This insertion clarifies the intended meaning.

Virtual Memory System Architecture (VMSA)
Note
 Software can read the Cache Type Register to determine whether the instruction cache is PIPT, VIPT, or
ASID-tagged VIVT, see c0, Cache Type Register (CTR) on page B3-83.

B3.4.2 Instruction cache maintenance operations by MVA

On a cache maintenance operation by MVA, the generation of Data Abort exceptions can depend on the
tagging strategy of the instruction cache:

• With an ASID-tagged VIVT instruction cache, it is IMPLEMENTATION DEFINED whether the TLB is
checked to see whether a valid translation table mapping exists for the VA used by a cache
maintenance operation. Therefore, it is IMPLEMENTATION DEFINED whether cache maintenance
operations by MVA can generate Data Abort exceptions.

• With a VIPT or PIPT instruction cache, the TLB must be checked and an abort is generated on a
Translation fault or an Access Flag fault. No abort is generated on a Domain or Permission fault.

For maximum portability, ARM recommends that operating systems always provide an abort handler to
process Data Abort exceptions on instruction cache maintenance operations by MVA, even though some
ARMv7 implementations might not be capable of generating these aborts.

The effect of an instruction cache maintenance operation by MVA can depend on the tagging strategy of the
instruction cache:

• For an ASID -tagged VIVT instruction cache or a VIPT instruction cache, the effect of the operation
is only guaranteed to apply to the modified virtual address supplied to the instruction. It is not
guaranteed to apply to any other alias of that modified virtual address.

• For a PIPT instruction cache, the effect of the operation applies to all aliases of the modified virtual
address supplied to the instruction.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-25

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
Whether instruction cache maintenance operations by MVA can generate Data Abort exceptions for Translation or Access Flag faults is IMPLEMENTATION DEFINED. These operations do not generate Data Abort exceptions for Domain or Permission faults.

Virtual Memory System Architecture (VMSA)
B3.5 Secure and Non-secure address spaces

When implemented, the Security Extensions provide two physical address spaces, a Secure physical address
space and a Non-secure physical address space.

The translation table base registers, TTBR0, TTBR1 and TTBCR are banked between Secure and
Non-secure versions, and the security state of a memory access selects the corresponding version of the
registers. Therefore, the translation tables are separated between Secure and Non-secure versions.
Translation table walks are made to the physical address space corresponding to the security state of the
translation tables.

The Non-secure translation table entries can only translate a virtual address to a physical address in the
Non-secure physical address space. Secure translation table entries can translate a virtual address to a
physical addresses in either the Secure or the Non-secure address space. Selection of which physical address
space to use is managed by the NS field in the first-level descriptors, see First-level descriptors on
page B3-8:

• for Non-secure translation table entries, the NS field is ignored

• for Secure translation table entries, the NS field determines which physical address space is accessed:

NS == 0 Secure physical address space is accessed.

NS == 1 Non-secure physical address space is accessed.

Because the NS field is defined only in the first level translation tables, the granularity of the Secure and
Non-secure memory spaces is 1MB. However, in these memory regions you can define physical memory
regions with a granularity of 4KB. For more information, see Translation tables on page B3-7.

Note
 A system implementation can alias parts of the Secure physical address space to the Non-secure physical
address space in implementation-specific ways. As with any other aliasing of physical memory, the use of
aliases in this way can require the use of cache maintenance operations to ensure that changes to memory
made using one alias of the physical memory are visible to accesses to the other alias of the physical
memory.
B3-26 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Virtual Memory System Architecture (VMSA)
B3.5.1 The effect of the Security Extensions on the cache operations

When the Security Extensions are implemented and each security state has its own physical address space,
Table B3-3 shows the effect of the security state on the cache operations.

For locked entries and entries that might be locked, the behavior of cache maintenance operations described
in The interaction of cache lockdown with cache maintenance on page B2-18 applies. This behavior is not
affected by the Security Extensions.

With an implementation that generates aborts if entries are locked or might be locked in the cache, if the use
of lockdown aborts is enabled then these aborts can occur on any cache maintenance operation regardless
of the Security Extensions.

Table B3-3 Effect of the security state on the cache operations

Cache operation
Security
state

Targeted entry

Instruction cache operations

Invalidate All Non-
secure

All instruction cache lines that contain entries that can be accessed
from the Non-secure security state

Invalidate All Secure All instruction cache lines

Invalidate by MVA Either Base Architecture:

All Lines that match the specified MVA and the current ASID and
come from the same virtual address space as the current security
state

IVIPT extension:a

All Lines that match the specified MVA and the current ASID and
come from the same physical address space as described in the
translation tables

Data or unified cache operations

Invalidate, Clean, Clean
and Invalidate by set/way

Non-
secure

Line specified by set/way provided that the entry comes from the
Non-secure physical address space

Invalidate, Clean, Clean
and Invalidate by set/way

Secure Line specified by set/way regardless of the physical address space that
the entry has come from

Invalidate, Clean, Clean
and Invalidate by MVA

Either All Lines that match the specified MVA and the current ASID and
come from the same physical address space, as described in the
translation tables

a. For more information about the IVIPT extension see Requirements for instruction caches on page B3-23.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-27

Virtual Memory System Architecture (VMSA)
B3.6 Memory access control

Access to a memory region is controlled by the access permission bits and the domain field in the TLB entry.
These form part of the translation table entry formats described in Translation tables on page B3-7. The bits
and fields are summarized in First-level descriptors on page B3-8 and Second-level descriptors on
page B3-10.

The TLB memory access controls are described in:

• Access permissions

• The Execute Never (XN) attribute and instruction prefetching on page B3-30

• Domains on page B3-31.

B3.6.1 Access permissions

The access permission bits control access to the corresponding memory region. If an access is made to an
area of memory without the required permissions, a Permission fault is generated if the domain is set to
Client. The access permissions are determined by the AP[2:0] bits in the translation table entry. The XN bit
in the translation table entry provides an additional permission bit for instruction fetches.

Note
 • Before VMSAv7, the SCTLR.S and SCTLR.R bits also affect the access permissions. For more

information, see Translation attributes on page AppxH-22.

• From VMSAv7, the full set of access permissions shown in Table B3-4 are only supported when the
SCTLR.AFE bit is set to 0. When SCTLR.AFE = 1, the only supported access permissions are those
described in Simplified access permissions model on page B3-29.

• In previous issues of the ARM Architecture Reference Manual and in some other documentation, the
AP[2] bit in the translation table entries is described as the APX bit.

Table B3-4 shows the encoding of the access permissions:

Table B3-4 VMSAv7 MMU access permissions

AP[2] AP[1:0]
Privileged
permissions

User
permissions

Description

0 00 No access No access All accesses generate Permission faults

0 01 Read/write No access Privileged access only

0 10 Read/write Read-only Writes in User mode generate Permission faults

0 11 Read/write Read/write Full access

1 00 - - Reserved
B3-28 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Virtual Memory System Architecture (VMSA)
Each memory region can be tagged as not containing executable code. If the Execute-never (XN) bit is set
to 1 and the region is in a Client domain, any attempt to execute an instruction in that region results in a
Permission fault. If the XN bit is 0 and there is valid read permission, code can execute from that memory
region, provided that no other Prefetch Abort condition exists.

Note
 The XN bit is ignored on accesses to Manager domains.

Simplified access permissions model

Some memory management require a simple access permissions model where:

• one flag selects between read-only and read/write access

• a second flag selects between User and Kernel control.

In the ARM architecture, this model permits four access combinations:

• read-only by both privileged and unprivileged code

• read/write by both privileged and unprivileged code

• read-only by privileged code, no access by unprivileged code

• read/write by privileged code, no access by unprivileged code.

With the VMSAv7 MMU access permissions shown in Table B3-4 on page B3-28, this model is
implemented by:

• Setting the AP[0] bit to 1, unless the SCTLR.AFE bit is set to 1, see c1, System Control Register
(SCTLR) on page B3-96.

• Using the AP[2:1] bits to control access, as shown in Table B3-5 on page B3-30.

1 01 Read-only No access Privileged read-only

1 10 Read-only Read-only Privileged and User read-only, deprecated in VMSAv7a

1 11 Read-only Read-only Privileged and User read-onlyb

a. From VMSAv7, ARM strongly recommends that the 0b11 encoding is used for Privileged and User read-only.
b. This mapping is introduced in VMSAv7, and is reserved in VMSAv6. For more information, see Simplified access

permissions model.

Table B3-4 VMSAv7 MMU access permissions (continued)

AP[2] AP[1:0]
Privileged
permissions

User
permissions

Description
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-29

Virtual Memory System Architecture (VMSA)
Note
 This model depends on the definition of the AP[2] == 1, AP[1:0] == 0b11 encoding shown in Table B3-4
on page B3-28. This encoding is introduced in VMSAv7, and therefore the simplified access permissions
model cannot be supported in VMSAv6.

When the SCTLR.AFE bit is set to 1 the AP[0] bit becomes an access flag, see The access flag on
page B3-21. In this case, this simplified access permissions model becomes the only supported access
permissions model.

B3.6.2 The Execute Never (XN) attribute and instruction prefetching

An implementation must not fetch instructions from any memory location that is marked as Execute Never.
A location is marked as Execute Never when it has its XN attribute set to 1 in a Client domain. When the
MMU is enabled, instructions can only be fetched or prefetched from memory locations in Client domains
where:

• XN is set to 0

• valid read permissions exist

• no other Prefetch Abort condition exists.

Any region of memory that is read-sensitive must be marked as Execute Never, to avoid the possibility of a
speculative prefetch accessing the memory region. For example, any memory region that corresponds to a
read-sensitive peripheral must be marked as Execute Never.

The XN attribute is not checked for domains marked as Manager. Read-sensitive memory must not be
included in domains marked as Manager, because the XN bit does not prevent prefetches in these cases.

The XN attribute is not checked when the MMU is disabled. All VMSAv7 implementations must ensure
that, when the MMU is disabled, prefetching down non-sequential paths cannot cause unwanted accesses to
read-sensitive devices.

Table B3-5 VMSAv7 simple access control model

AP[2] AP[1] Accessa

a. Kernel access corresponds to access by privileged code
only.

0 0 Kernel, read/write

0 1 User, read/write

1 0 Kernel, read-only

1 1 User, read-only
B3-30 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2011_Q2
Inserted Text
 all of the following apply

Virtual Memory System Architecture (VMSA)
B3.6.3 Domains

A domain is a collection of memory regions. The ARM VMSA architecture supports 16 domains, and each
VMSA memory region is assigned to a domain:

• First-level translation table entries for Page tables and Sections include a domain field.

• Translation table entries for Supersections do not include a domain field. Supersections are defined
as being in domain 0.

• Second-level translation table entries inherit a domain setting from the parent first-level Page table
entry.

• Each TLB entry includes a domain field.

A domain field specifies which domain the entry is in. Access to each domain is controlled by a two-bit field
in the Domain Access Control Register, see c3, Domain Access Control Register (DACR) on page B3-119.
Each field enables the access to an entire domain to be enabled and disabled very quickly, so that whole
memory areas can be swapped in and out of virtual memory very efficiently. The VMSA supports two kinds
of domain access:

Clients Users of domains, guarded by the access permissions of the TLB entries for that domain.
Clients execute programs and access data held in the domain.

Managers Control the behavior of the domain, and are not guarded by the access permissions for TLB
entries in that domain. The domain behavior controlled by a Manager covers:

• the sections and pages currently in the domain

• the current access permissions for the domain.

A single program might:

• be a Client of some domains

• be a Manager of some other domains

• have no access to the remaining domains.

This permits very flexible memory protection for programs that access different memory resources.
Table B3-6 shows the encoding of the bits in the DACR.

Table B3-6 Domain access values

Value Access types Description

00 No access Any access generates a Domain fault

01 Client Accesses are checked against the access permission bits in the TLB entry

10 Reserved Using this value has UNPREDICTABLE results

11 Manager Accesses are not checked against the access permission bits in the TLB
entry, so a Permission fault cannot be generated
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-31

Virtual Memory System Architecture (VMSA)
B3.7 Memory region attributes

Each TLB entry has an associated set of memory region attributes. These control accesses to the caches,
how the write buffer is used, and if the memory region is Shareable and therefore must be kept coherent.
From VMSAv6:

• Most of the memory attributes are controlled by the C and B bits and the TEX[2:0] field of the
translation table entries. More information about these attributes is given in the sections:

— The alternative descriptions of the Memory region attributes

— C, B, and TEX[2:0] encodings without TEX remap on page B3-33

— Memory region attribute descriptions when TEX remap is enabled on page B3-34.

• When the Security Extensions are implemented, the NS bit provides an additional memory attribute,
see Secure and Non-secure address spaces on page B3-26.

Note
 The Bufferable (B), Cacheable (C), and Type Extension (TEX) bit names are inherited from earlier versions
of the architecture. These names no longer adequately describe the function of the B, C, and TEX bits.

The translation table entries also include an S bit. This bit:

• Is ignored if the entry refers to Device or Strongly-ordered memory.

• For Normal memory, determines whether the memory region is Shareable or Non-shareable:

S == 0 Normal memory region is Non-shareable

S == 1 Normal memory region is Shareable.

B3.7.1 The alternative descriptions of the Memory region attributes

From VMSAv7, there are two alternative schemes for describing the memory region attributes, and the
current scheme is selected by the SCTLR.TRE (TEX Remap Enable) bit, see c1, System Control Register
(SCTLR) on page B3-96. The two schemes are:

TRE == 0 TEX Remap disabled. TEX[2:0] are used, with the C and B bits, to describe the memory
region attributes.

This is the scheme used in VMSAv6, and it is described in C, B, and TEX[2:0] encodings
without TEX remap on page B3-33.

TRE == 1 TEX Remap enabled. TEX[2:1] are reassigned for use as flags managed by the operating
system. The TEX[0], C and B bits are used to describe the memory region attributes, with
the MMU remap registers:

• the Primary Region Remap Register, PRRR

• the Normal Memory Remap Register, NMRR.

This scheme is described in Memory region attribute descriptions when TEX remap is
enabled on page B3-34.
B3-32 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Virtual Memory System Architecture (VMSA)
When the Security Extensions are implemented, the SCTLR.TRE bit is banked between the Secure and
Non-secure states.

B3.7.2 C, B, and TEX[2:0] encodings without TEX remap

Table B3-7 shows the C, B, and TEX[2:0] encodings when TEX remap is disabled (TRE == 0).

See Memory types and attributes and the memory order model on page A3-24 for an explanation of Normal,
Strongly-ordered and Device memory types and of the Shareable attribute.

Table B3-7 TEX, C, and B encodings when TRE == 0

TEX[2:0] C B Description Memory type Page Shareable

000 0 0 Strongly-ordered Strongly-ordered Shareable

000 0 1 Shareable Device Device Shareable

000 1 0 Outer and Inner Write-Through, no
Write-Allocate

Normal S bita

000 1 1 Outer and Inner Write-Back, no Write-Allocate Normal S bita

001 0 0 Outer and Inner Non-cacheable Normal S bita

001 0 1 Reserved - -

001 1 0 IMPLEMENTATION DEFINED IMPLEMENTATION
DEFINED

IMPLEMENTATION
DEFINED

001 1 1 Outer and Inner Write-Back, Write-Allocate Normal S bita

010 0 0 Non-shareable Device Device Non-shareable

010 0 1 Reserved - -

010 1 X Reserved - -

011 X X Reserved - -

1BB A A Cacheable memory: AA = Inner attributeb

BB = Outer attribute

Normal S bita

a. Whether the memory is Shareable depends on the value of the S bit, see description in Memory region attributes on
page B3-32.

b. For more information, see Cacheable memory attributes on page B3-34.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-33

Virtual Memory System Architecture (VMSA)
Cacheable memory attributes

When TEX[2] == 1, the translation table entry describes Cacheable memory, and the rest of the encoding
defines the Inner and Outer cache attributes:

TEX[1:0] defines the Outer cache attribute

C,B defines the Inner cache attribute

The same encoding is used for the Outer and Inner cache attributes. Table B3-8 shows the encoding.

B3.7.3 Memory region attribute descriptions when TEX remap is enabled

The VMSAv6 scheme for describing the memory region attributes, described in C, B, and TEX[2:0]
encodings without TEX remap on page B3-33, uses the TEX[2:0], C and B bits to describe all of the options
for Inner and Outer cacheability. However, many system software implementations do not need to use all of
these options simultaneously. Instead a smaller subset of attributes can be enabled. This alternative
functionality is called TEX remap, and permits software to hold software-interpreted values in the
translation tables. When TEX remap is enabled:

• only the TEX[0], C and B bits are used to describe the memory region attributes

• fewer attribute options are available at any time

• the available options are configurable using the PRRR and NMRR registers

• TEX[2:1] are not updated by hardware, see The OS managed translation table bits on page B3-38.

When TEX remap is enabled:

• For seven of the eight possible combinations of the TEX[0], C and B bits:

— a field in the PRRR defines the corresponding memory region as being Normal, Device or
Strongly-ordered memory

— a field in the NMRR defines the Inner cache attributes that apply if the PRRR field identifies
the region as Normal memory

— a second field in the NMRR defines the Outer cache attributes that apply if the PRRR field
identifies the region as Normal memory.

• The meaning of the eighth combination for the TEX[0], C and B bits is IMPLEMENTATION DEFINED

Table B3-8 Inner and Outer cache attribute encoding

Encoding Cache attribute

0 0 Non-cacheable

0 1 Write-Back, Write-Allocate

1 0 Write-Through, no Write-Allocate

1 1 Write-Back, no Write-Allocate
B3-34 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Virtual Memory System Architecture (VMSA)
• Four bits in the PRRR permit mapping of the Shareable attribute by defining, for the translation table
S bit:

— the meaning of S == 0 if the region is identified as Device memory

— the meaning of S == 1 if the region is identified as Device memory

— the meaning of S == 0 if the region is identified as Normal memory

— the meaning of S == 1 if the region is identified as Normal memory.

In each case, the meaning of the Shareable bit value is that the memory region is one of:

— Shareable

— Non-shareable.

For each of the possible encodings of the TEX[0], C and B bits in a translation table entry, Table B3-9 shows
which fields of the PRRR and NMRR registers describe the memory region attributes.

To find the meaning of the value of the S bit in a translation table entry you must:

• use Table B3-9 to find the memory type of the region described by the entry

• if the memory type is Strongly-ordered then the region is Shareable

• if the memory type is not Strongly-ordered then look up the memory type and value of the S bit in
Table B3-10 on page B3-36 to find which bit of the PRRR defines the Shareable attribute of the
region.

Table B3-9 TEX, C, and B encodings when TRE == 1

Encoding
Memory typea

Cache attributesa, b: Outer Shareable
attributeb

TEX[0] C B Inner cache Outer cache

0 0 0 PRRR[1:0] NMRR[1:0] NMRR[17:16] NOT(PRRR[24])

0 0 1 PRRR[3:2] NMRR[3:2] NMRR[19:18] NOT(PRRR[25])

0 1 0 PRRR[5:4] NMRR[5:4] NMRR[21:20] NOT(PRRR[26])

0 1 1 PRRR[7:6] NMRR[7:6] NMRR[23:22] NOT(PRRR[27])

1 0 0 PRRR[9:8] NMRR[9:8] NMRR[25:24] NOT(PRRR[28])

1 0 1 PRRR[11:10] NMRR[11:10] NMRR[27:26] NOT(PRRR[29])

1 1 0 IMPLEMENTATION
DEFINED

IMPLEMENTATION
DEFINED

IMPLEMENTATION
DEFINED

IMPLEMENTATION
DEFINED

1 1 1 PRRR[15:14] NMRR[15:14] NMRR[31:30] NOT(PRRR[31])

a. For details of the memory type field encodings see c10, Primary Region Remap Register (PRRR) on page B3-143. For
details of the cache attribute encodings see Table B3-8 on page B3-34.

b. Only applies if the memory type for the region is mapped as Normal memory and the location is Shareable.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-35

ARM_2010_Q3
Sticky Note
In the published document, Footnote b is incorrect. The correct indication is:
 • The cache attributes apply only if the region is mapped as Normal memory.
 • The Outer Shareable attributes apply only if the region is mapped as Normal or Device memory, and is Shareable.

ARM_2010_Q3
Cross-Out

ARM_2010_Q3
Replacement Text
The Cache attributes apply only

ARM_2010_Q3
Cross-Out

ARM_2010_Q3
Replacement Text
. The Outer shareable attribute applies only if the memory type for the region is mapped as Normal or Device and the region

Virtual Memory System Architecture (VMSA)
• The appropriate bit of the PRRR indicates whether the region is Shareable or Non-shareable.

Note
 When TEX remapping is enabled, it is possible for a translation table entry with S = 0 to be mapped

as Shareable memory.

For full descriptions of the TEX remap registers see:

• c10, Primary Region Remap Register (PRRR) on page B3-143

• c10, Normal Memory Remap Register (NMRR) on page B3-146.

When the Security Extensions are implemented, the TEX remap registers and the SCTLR.TRE bit are
banked between the Secure and Non-secure security states. For more information, see The effect of the
Security Extensions on TEX remapping on page B3-39.

When TEX remap is enabled, the mappings specified by the PRRR and NMRR determine the mapping of
the TEX[0], C and B bits in the translation tables to memory type and cacheability attributes:

1. The primary mapping, indicated by a field in the PRRR as shown in the Memory region column of
Table B3-9 on page B3-35, takes precedence.

2. Any region that is mapped as Normal memory can have the Inner and Outer Cacheable attributes
determined by the NMRR.

3. If it is supported, the Outer Shareable mapping adds a third level of attribute, see Interpretation of the
NOSn fields in the PRRR on page B3-37.

The TEX remap registers must be static during normal operation. In particular, when the remap registers are
changed:

• it is IMPLEMENTATION DEFINED when the changes take effect

• it is UNPREDICTABLE whether the TLB caches the effect of the TEX remap on translation tables.

Table B3-10 Remapping of the S bit

Memory type
Remapping of Shareable attribute when

S = 0 S = 1

Strongly-ordered Shareablea

a. No remapping, Strongly-ordered memory is always Shareable.

Shareablea

Device PRRR[16] PRRR[17]

Normal PRRR[18] PRRR[19]
B3-36 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
identifies Shareable memory as either Inner Shareable or Outer Shareable

ARM_2009_Q2
Sticky Note
This change is a clarification of the intended meaning, not a change to the architecture.

Virtual Memory System Architecture (VMSA)
The sequence to ensure the synchronization of changes to the TEX remap registers is:

1. Perform a DSB. This ensures any memory accesses using the old mapping have completed.

2. Write the TEX remap registers or SCTLR.TRE bit.

3. Perform an ISB. This ensures synchronization of the register updates.

4. Invalidate the entire TLB.

5. Perform a DSB. This ensures completion of the entire TLB operation.

6. Clean and invalidate all caches. This removes any cached information associated with the old
mapping.

7. Perform a DSB. This ensures completion of the cache maintenance.

8. Perform an ISB. This ensures instruction synchronization.

This extends the standard rules for the synchronization of changes to CP15 registers described in Changes
to CP15 registers and the memory order model on page B3-77, and provides implementation freedom as to
whether or not the effect of the TEX remap is cached.

Interpretation of the NOSn fields in the PRRR

When all of the following apply, the NOSn fields in the PRRR distinguish between Inner Shareable and
Outer Shareable memory regions:

• the SCTLR.TRE bit is set to 1

• the region is mapped as Normal memory

• the Normal memory remapping of the S bit value for the entry makes the region Shareable

• the implementation supports the distinction between Inner Shareable and Outer Shareable.

If the SCTLR.TRE bit is set to 0, an implementation can provide an IMPLEMENTATION DEFINED mechanism
to interpret the NOSn fields in the PRRR, see SCTLR.TRE, SCTLR.M, and the effect of the MMU remap
registers on page B3-38.

The values of the NOSn fields in the PRRR have no effect if any of the following apply:

• the SCTLR.TRE bit is set to 0 and the IMPLEMENTATION DEFINED mechanism has not been invoked

• the region is not mapped as Normal memory

• the Normal memory remapping of the S bit value for the entry makes the region Non-shareable.

The NOSn fields in the PRRR are RAZ/WI if the implementation does not support the distinction between
Inner Shareable and Outer Shareable memory regions.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-37

ARM_2010_Q3
Inserted Text
or Device

ARM_2010_Q3
Inserted Text
or Device

ARM_2010_Q3
Inserted Text

----- Note -----
The meaning of shareability attributes for Device memory is IMPLEMENTATION DEFINED, see
Shareable attribute for Device memory regions on page A334 [PDF page 148].

ARM_2010_Q3
Inserted Text
or Device memory remapping

ARM_2010_Q3
Inserted Text
or Device memory remapping

Virtual Memory System Architecture (VMSA)
SCTLR.TRE, SCTLR.M, and the effect of the MMU remap registers

When TEX remap is disabled, because the SCTLR.TRE bit is set to 0:

• the effect of the MMU remap registers can be IMPLEMENTATION DEFINED

• the interpretation of the fields of the PRRR and NMRR registers can differ from the description given
in this section.

VMSAv7 requires that the effect of these registers is limited to remapping the attributes of memory
locations. These registers must not change whether any cache or MMU hardware is enabled. The
mechanism by which the MMU remap registers have an effect when the SCTLR.TRE bit is set to 0 is
IMPLEMENTATION DEFINED. The ARMv7 architecture requires that from reset, if the IMPLEMENTATION
DEFINED mechanism has not been invoked:

• If the MMU is enabled, the architecturally-defined behavior of the TEX[2:0], C, and B bits must
apply, without reference to the TEX remap functionality. In other words, memory attribute
assignment must comply with the scheme described in C, B, and TEX[2:0] encodings without TEX
remap on page B3-33.

• If the MMU is disabled, then the architecturally-defined behavior of the VMSA with the MMU
disabled must apply, without reference to the TEX remap functionality. See Enabling and disabling
the MMU on page B3-5.

Typical mechanisms for enabling the IMPLEMENTATION DEFINED effect of the TEX Remap registers when
SCTLR.TRE bit is set to 0 include:

• a control bit in the ACTLR, or in a CP15 c15 register

• changing the behavior when the PRRR and NMRR registers are changed from their
IMPLEMENTATION DEFINED reset values.

In addition, if the MMU is disabled and the SCTLR.TRE bit is set to 1, the architecturally-defined behavior
of the VMSA with the MMU disabled must apply without reference to the TEX remap functionality.

When the Security Extensions are implemented, the IMPLEMENTATION DEFINED effect of these registers
must only take effect in the security domain of the registers.

The OS managed translation table bits

When TEX remap is enabled, the TEX[2:1] bits in the translation table descriptors are available as two flags
that can be managed by the operating system. In VMSAv7, as long as the SCTLR.TRE bit is set to 1, the
values of the TEX[2:1] bits are ignored by the memory management hardware. You can write any value to
these bits in the translation tables. In a system that implements access flag updates in hardware, a hardware
access flag update never changes these bits.
B3-38 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Virtual Memory System Architecture (VMSA)
B3.7.4 The effect of the Security Extensions on TEX remapping

When the Security Extensions are implemented, the MMU remap registers are banked in the Secure and
Non-secure security states. The register versions for the current security state apply to all TLB lookups. The
SCTLR.TRE bit is banked in the Secure and Non-secure copies of the register, and the appropriate version
of this bit determines whether TEX remapping is applied to TLB lookups in the current security state.

When the Security Extensions are implemented, the translation table descriptors include an NS bit. For
security reasons, the NS bit is not accessible through the MMU remap registers.

Write accesses to the Secure copies of the MMU remap registers are disabled when the CP15SDISABLE
input is asserted HIGH, and the MCR operations to access these registers become UNDEFINED. For more
information, see The CP15SDISABLE input on page B3-76.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-39

Virtual Memory System Architecture (VMSA)
B3.8 VMSA memory aborts

The mechanisms that cause the ARM processor to take an exception because of a failed memory access are:

MMU fault The MMU detects an access restriction and signals the processor.

External abort A memory system component other than the MMU signals an illegal or faulting
memory access.

The exception taken is a Prefetch Abort exception if either of these occurs synchronously on an instruction
fetch, and a Data Abort exception otherwise.

Collectively, these mechanisms are called aborts. The different abort mechanisms are described in:

• MMU faults

• External aborts on page B3-45.

An access that causes an abort is said to be aborted, and uses the Fault Address Registers (FARs) and Fault
Status Registers (FSRs) to record context information. The FARs and FSRs are described in Fault Status
and Fault Address registers in a VMSA implementation on page B3-48.

Also, a debug exception can cause the processor to take a Prefetch Abort exception or a Data Abort
exception, and to update the FARs and FSRs. For details see Chapter C4 Debug Exceptions and Debug event
prioritization on page C3-43.

B3.8.1 MMU faults

The MMU checks the memory accesses required for instruction fetches and for explicit memory accesses:

• if an instruction fetch faults it generates a Prefetch Abort exception

• if an explicit memory access faults it generates a Data Abort exception.

For more information about Prefetch Abort exceptions and Data Abort exceptions see Exceptions on
page B1-30.

MMU faults are always synchronous. For more information, see Terminology for describing exceptions on
page B1-4.

When the MMU generates an abort for a region of memory, no memory access is made if that region is or
could be marked as Strongly-ordered or Device.

Fault-checking sequence

The sequence used by the MMU to check for access faults is slightly different for sections and pages. For
both sections and pages:

• Figure B3-8 on page B3-41 shows the checking sequence

• Figure B3-9 on page B3-42 shows the descriptor fetch and check performed during the checking
sequence.
B3-40 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Virtual Memory System Architecture (VMSA)
Figure B3-8 VMSA fault checking sequence

��.�

���&'��

K�&�*��������������*��'%&��

<)��>���,�'�<)��>���,�'�

����**
&�%�L

<�'��&

!���.��
?�

����**

?�

�)�*'���������**

<)��>�����**�%��,'**'��*

�'���&'��
L

?�

F�*���&'��
%��,'**'��

(�$�&

F�* ��.�
%��,'**'��

(�$�&

<)��>�����**�%��,'**'��*

�'���&'��
L

?�

<�'��&

����**
&�%�L

!���.��
?�

����**���&'��
��,�'�

(�$�&

��.�
��,�'�

(�$�&

K�&����'�
��*��'%&��

L
�-��&

���&'��
�����.�

L

K�&�('�*&���������*��'%&��

?�K�&����'�
��*��'%&��

L
�-��&

�����������	�����	�

����
��
����(��8�)��&

<)��>������**���'.�,��&

!'*��'.���
L

��'.�,��&
(�$�&

F�*

?�
?�

F�*

��'.�,��&
�)��>L

!��'('����'�&$��������**

�����������	�����	�
���
��
����(��8�)��&

 *�&)������**�*$-M��&�&�������'.�,��&��)��>L
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-41

Virtual Memory System Architecture (VMSA)
Figure B3-9 Descriptor fetch and check in the fault checking sequence

The faults that might be detected during the fault checking sequence are described in the following
subsections:

• Alignment fault

• External abort on a translation table walk

• Translation fault on page B3-43

• Access Flag fault on page B3-43

• Domain fault on page B3-44

• Permission fault on page B3-44.

Alignment fault

The ARMv7 memory architecture requires support for strict alignment checking. This checking is
controlled by the SCTLR.A bit, see c1, System Control Register (SCTLR) on page B3-96. For details of
when Alignment faults are generated see Unaligned data access on page A3-5.

External abort on a translation table walk

This is described in the section External aborts on page B3-45, see External abort on a translation table
walk on page B3-46.

:+&�����
�-��&L

?�

��*��'%&��
�(�$�&�L

����**�(��.
(�$�&

L

F�*

=$&

@���*��&'��
�+&�������-��&

���&'��������.�
��*��'%&��

(�$�&

���&'��������.�
����**�(��.

(�$�&

?�

F�*

?�

F�*

 �

K�&���*��'%&��

�&�('�*&����*�����������

���&'����&�('�*&������
��.���&�*�����������

���&'����&�('�*&������
��.���&�*�����������

�'�*&����*�����������
B3-42 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2010_Q2
Cross-Out

ARM_2010_Q2
Replacement Text
Translation

ARM_2010_Q2
Cross-Out

ARM_2010_Q2
Replacement Text
valid

Virtual Memory System Architecture (VMSA)
Translation fault

There are two types of Translation fault:

Section This is generated if the first-level descriptor is marked as invalid. This happens if bits [1:0]
of the descriptor are:

• 0b00, the fault encoding

• 0b11, the reserved encoding.

For more information, see First-level descriptors on page B3-8.

Page This is generated if the second-level descriptor is marked as invalid. This happens if
bits [1:0] of the descriptor are 0b00, the fault encoding. For more information, see
Second-level descriptors on page B3-10.

Translation table entries that result in Translation faults are guaranteed not to be cached, meaning the TLB
is not updated. Therefore, when a Translation fault occurs, it is not necessary to perform any TLB
maintenance operations to remove the faulting entries.

Translation faults can be generated by data and unified cache maintenance operations by MVA. It is
IMPLEMENTATION DEFINED whether Translation faults can be generated by instruction cache invalidate by
MVA operations, see Instruction cache maintenance operations by MVA on page B3-25.

It is IMPLEMENTATION DEFINED whether Translation faults can be generated by branch predictor
maintenance operations.

Access Flag fault

There are two types of Access Flag fault:

Section This can be generated when a section with AF == 0 is accessed.

Page This can be generated when a page with AF == 0 is accessed.

Access Flag faults only occur on a VMSAv7 implementation that provides software management of the
access flag, and are only generated when the AFE flag is set to 1 in the SCTLR, see c1, System Control
Register (SCTLR) on page B3-96.

Translation table entries that result in Access Flag faults are guaranteed not to be cached, meaning the TLB
is not updated. Therefore, when an Access Flag fault occurs, it is not necessary to perform any TLB
maintenance operations to remove the faulting entries.

It is IMPLEMENTATION DEFINED whether Access Flag faults can be generated by any cache maintenance
operations by MVA.

It is IMPLEMENTATION DEFINED whether Access Flag faults can be generated by branch predictor invalidate
by MVA operations.

For more information, see The access flag on page B3-21.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-43

Virtual Memory System Architecture (VMSA)
Domain fault

There are two types of Domain fault:

Section When a first-level descriptor fetch returns a valid Section first-level descriptor, the MMU
checks the domain field of that descriptor against the Domain Access Control Register, and
generates a Section Domain fault if this check fails.

Page When a second-level descriptor fetch returns a valid second-level descriptor, the MMU
checks the domain field of the first-level descriptor that required the second-level fetch
against the Domain Access Control Register, and generates a Page Domain fault if this
check fails.

Domain faults cannot occur on cache or branch predictor maintenance operations.

For more information, see Domains on page B3-31.

Where a Domain fault results in an update to the associated translation tables, the appropriate TLB entry
must be flushed to ensure correctness. For more information, see the translation table entry update example
in TLB maintenance operations and the memory order model on page B3-59.

Changes to the Domain Access Control register must be synchronized by one of:

• performing a ISB operation

• an exception

• exception return.

For details see Changes to CP15 registers and the memory order model on page B3-77.

Permission fault

When a memory access is to a Client domain, the MMU checks the access permission field in the translation
table entry. As with other MMU faults, there are two types of Permission fault:

Section This can be generated when a section in a Client domain is accessed.

Page This can be generated when a page in a Client domain is accessed.

For details of conditions that cause a Permission fault see Access permissions on page B3-28.

Where a Permission fault results in an update to the associated translation tables, the appropriate TLB entry
must be flushed to ensure correctness. For more information, see the translation table entry update example
in TLB maintenance operations and the memory order model on page B3-59.

Permission faults cannot occur on cache or branch predictor maintenance operations.
B3-44 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Virtual Memory System Architecture (VMSA)
B3.8.2 External aborts

External aborts are defined as errors that occur in the memory system other than those that are detected by
the MMU or Debug hardware. They include parity errors detected by the caches or other parts of the
memory system. An external abort is one of:

• synchronous

• precise asynchronous

• imprecise asynchronous.

For more information, see Terminology for describing exceptions on page B1-4.

The ARM architecture does not provide a method to distinguish between precise asynchronous and
imprecise asynchronous aborts.

The ARM architecture handles asynchronous aborts in a similar way to interrupts, except that they are
reported to the processor using the Data Abort exception. Setting the CPSR.A bit to 1 masks asynchronous
aborts, see Program Status Registers (PSRs) on page B1-14.

Normally, external aborts are rare. An imprecise asynchronous external abort is likely to be fatal to the
process that is running. An example of an event that might cause an external abort is an uncorrectable parity
or ECC failure on a Level 2 Memory structure.

It is IMPLEMENTATION DEFINED which external aborts, if any, are supported.

VMSAv7 permits external aborts on data accesses, translation table walks, and instruction fetches to be
either synchronous or asynchronous. The DFSR indicates whether the external abort is synchronous or
asynchronous, see c5, Data Fault Status Register (DFSR) on page B3-121.

Note
 Because imprecise external aborts are normally fatal to the process that caused them, ARM recommends
that implementations make external aborts precise wherever possible.

More information about possible external aborts is given in the subsections:

• External abort on instruction fetch on page B3-46

• External abort on data read or write on page B3-46

• External abort on a translation table walk on page B3-46

• Behavior of external aborts on a translation table walk caused by a VA to PA translation on
page B3-46

• Parity error reporting on page B3-46.

For details of how external aborts are reported see Fault Status and Fault Address registers in a VMSA
implementation on page B3-48.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-45

Virtual Memory System Architecture (VMSA)
External abort on instruction fetch

An external abort on an instruction fetch can be either synchronous or asynchronous. A synchronous
external abort on an instruction fetch is taken precisely.

An implementation can report the external abort asynchronously from the instruction that it applies to. In
such an implementation these aborts behave essentially as interrupts. They are masked by the CPSR.A bit
when it is set to 1, otherwise they are reported using the Data Abort exception.

External abort on data read or write

Externally generated errors during a data read or write can be either synchronous or asynchronous.

An implementation can report the external abort asynchronously from the instruction that generated the
access. In such an implementation these aborts behave essentially as interrupts. They are masked by the
CPSR.A bit when it is set to 1, otherwise they are reported using the Data Abort exception.

External abort on a translation table walk

An external abort on a translation table walk can be either synchronous or asynchronous. If the external
abort is synchronous then the result is:

• a synchronous Prefetch Abort exception if the translation table walk is for an instruction fetch

• a synchronous Data Abort exception if the translation table walk is for a data access.

An implementation can report the error in the translation table walk asynchronously from executing the
instruction whose instruction fetch or memory access caused the translation table walk. In such an
implementation these aborts behave essentially as interrupts. They are masked by the CPSR.A bit when it
is set to 1, otherwise they are reported using the Data Abort exception.

Behavior of external aborts on a translation table walk caused by a VA to PA
translation

The VA to PA translation operations described in CP15 c7, Virtual Address to Physical Address translation
operations on page B3-130 require translation table walks. An external abort can occur in the translation
table walk, as described in External abort on a translation table walk. The abort generates a Data Abort
exception, and can be synchronous or asynchronous.

Parity error reporting

The ARM architecture supports the reporting of both synchronous and asynchronous parity errors from the
cache systems. It is IMPLEMENTATION DEFINED what parity errors in the cache systems, if any, result in
synchronous or asynchronous parity errors.

A fault status code is defined for reporting parity errors, see Fault Status and Fault Address registers in a
VMSA implementation on page B3-48. However when parity error reporting is implemented it is
IMPLEMENTATION DEFINED whether the assigned fault status code or another appropriate encoding is used
to report parity errors.
B3-46 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Virtual Memory System Architecture (VMSA)
For all purposes other than the fault status encoding, parity errors are treated as external aborts.

B3.8.3 Prioritization of aborts

For synchronous aborts, Debug event prioritization on page C3-43 describes the relationship between debug
events, MMU faults and external aborts.

In general, the ARM architecture does not define when asynchronous events are taken, and therefore the
prioritization of asynchronous events is IMPLEMENTATION DEFINED.

Note
 A special requirement applies to asynchronous watchpoints, see Debug event prioritization on page C3-43.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-47

ARM_2009_Q4
Inserted Text
 generated by the same memory access

ARM_2009_Q4 and ARM_2010_Q3
Inserted Text
 The architecture does not define any prioritization between synchronous aborts generated by different memory accesses generated by the same instruction.

ARM_2010_Q3
Sticky Note
The second correction has been updated to clarify its intended meaning.

Virtual Memory System Architecture (VMSA)
B3.9 Fault Status and Fault Address registers in a VMSA implementation

This section describes the Fault Status and Fault Address registers, and how they report information about
VMSA aborts. It contains the following subsections:

• About the Fault Status and Fault Address registers

• Data Abort exceptions on page B3-49

• Prefetch Abort exceptions on page B3-49

• Fault Status Register encodings for the VMSA on page B3-50

• Distinguishing read and write accesses on Data Abort exceptions on page B3-52

• Provision for classification of external aborts on page B3-52

• The Domain field in the DFSR on page B3-52

• Auxiliary Fault Status Registers on page B3-53.

Also, these registers are used to report information about debug exceptions. For details see Effects of debug
exceptions on CP15 registers and the DBGWFAR on page C4-4.

B3.9.1 About the Fault Status and Fault Address registers

VMSAv7 provides four registers for reporting fault address and status information:

• The Data Fault Status Register, see c5, Data Fault Status Register (DFSR) on page B3-121. The
DFSR is updated on taking a Data Abort exception.

• The Instruction Fault Status Register, see c5, Instruction Fault Status Register (IFSR) on
page B3-122. The IFSR is updated on taking a Prefetch Abort exception.

• The Data Fault Address Register, see c6, Data Fault Address Register (DFAR) on page B3-124. In
some cases, on taking a synchronous Data Abort exception the DFAR is updated with the faulting
address. See Terminology for describing exceptions on page B1-4 for a description of synchronous
exceptions.

• The Instruction Fault Address Register, see c6, Instruction Fault Address Register (IFAR) on
page B3-125. The IFAR is updated with the faulting address on taking a Prefetch Abort exception.

In addition, the architecture provides encodings for two IMPLEMENTATION DEFINED Auxiliary Fault Status
Registers, see Auxiliary Fault Status Registers on page B3-53.

Note
 • On a Data Abort exception that is generated by an instruction cache maintenance operation, the IFSR

is also updated.

• Before ARMv7, the Data Fault Address Register (DFAR) was called the Fault Address Register
(FAR).
B3-48 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Virtual Memory System Architecture (VMSA)
On a Watchpoint debug exception, the Watchpoint Fault Address Register (DBGWFAR) is used to hold fault
information. On a watchpoint access the DBGWFAR is updated with the address of the instruction that
generated the Data Abort exception. For more information, see Watchpoint Fault Address Register
(DBGWFAR) on page C10-28.

B3.9.2 Data Abort exceptions

On taking a Data Abort exception the processor:

• updates the DFSR with a fault status code

• if the Data Abort exception is synchronous:

— updates the DFSR with whether the faulted access was a read or a write, and the domain
number of the access, if applicable

— if the Data Abort exception was not caused by a Watchpoint debug event, updates the DFAR
with the MVA that caused the Data Abort exception

— if the Data Abort exception was caused by a Watchpoint debug event, the DFAR becomes
UNKNOWN

• if the Data Abort exception is asynchronous, the DFAR becomes UNKNOWN.

When the Security Extensions are implemented, the security state of the processor immediately after taking
the Data Abort exception determines whether the Secure or Non-secure DFSR and DFAR are updated.

If the Data Abort exception is generated by an instruction cache or branch predictor invalidation by MVA,
the DFSR indicates an Instruction Cache Maintenance Operation Fault and the IFSR indicates a Translation
or Access Flag fault.

On an access that might have multiple aborts, the MMU fault checking sequence and the prioritization of
aborts determine which abort occurs. For more information, see Fault-checking sequence on page B3-40
and Prioritization of aborts on page B3-47.

B3.9.3 Prefetch Abort exceptions

A Prefetch Abort exception is taken synchronously with the instruction that an abort is reported on. This
means:

• If the instruction is executed a Prefetch Abort exception is generated.

• If the instruction fetch is issued but the processor does not attempt to execute the instruction no
Prefetch Abort exception is generated for that instruction. For example, if the processor branches
round the instruction no Prefetch Abort exception is generated.

On taking a Prefetch Abort exception the processor:

• updates the IFSR with a fault status code

• updates the IFAR with the MVA that caused the Prefetch Abort exception.

When the Security Extensions are implemented, the security state of the processor immediately after taking
the Prefetch Abort exception determines whether the Secure or Non-secure DFSR and DFAR are updated.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-49

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
I

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
I

Virtual Memory System Architecture (VMSA)
B3.9.4 Fault Status Register encodings for the VMSA

For the fault status encodings for a VMSA implementation see:

• Table B3-11 for the Instruction Fault Status Register (IFSR) encodings

• Table B3-12 on page B3-51 for the Data Fault Status Register (DFSR) encodings.

Note
 In previous ARM documentation, the terms precise and imprecise were used instead of synchronous and
asynchronous. For details of the more exact terminology introduced in this manual see Terminology for
describing exceptions on page B1-4.

Table B3-11 VMSAv7 IFSR encodings

IFSR
[10,3:0]a Source IFAR Notes

01100

01110
Translation table walk
synchronous external abort

1st level

2nd level

Valid
-

11100

11110
Translation table walk
synchronous parity error

1st level

2nd level

Valid
-

00101

00111
Translation fault

Section

Page

Valid
MMU fault

00011b

00110
Access Flag fault

Section

Page

Valid
MMU fault

01001

01011
Domain fault

Section

Page

Valid
MMU fault

01101

01111
Permission fault

Section

Page

Valid
MMU fault

00010 Debug event UNKNOWN See Software debug events on
page C3-5

01000 Synchronous external abort Valid -

10100 IMPLEMENTATION DEFINED Valid Lockdown

11010 IMPLEMENTATION DEFINED Valid Coprocessor abort

11001 Memory access synchronous parity error Valid -

a. All IFSR[10,3:0] values not listed in this table are reserved.
b. Previously, this encoding was a deprecated encoding for Alignment fault. The extensive changes in the memory model

in ARMv7 and VMSAv7 mean there should be no possibility of confusing these two uses.
B3-50 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2010_Q2
Cross-Out

ARM_2010_Q2
Replacement Text
-

ARM_2010_Q2
Cross-Out

ARM_2010_Q2
Replacement Text
-

ARM_2010_Q2
Sticky Note
Since the details of the use of these encodings in IMPLEMENTATION DEFINED, it is also IMPLEMENTATION DEFINED whether the faults leave IFAR in a valid state.
This is shown correctly for the DFAR encodings, in Table B3-12.

Virtual Memory System Architecture (VMSA)
Table B3-12 VMSAv7 DFSR encodings

DFSR
[10,3:0]a Source DFAR Domain Notes

00001 Alignment fault Valid UNKNOWN MMU fault

00100 Instruction cache maintenance fault Valid UNKNOWN -

01100

01110
Translation table walk
synchronous external abort

1st level

2nd level

Valid

Valid

UNKNOWN

Valid
-

11100

11110
Translation table walk
synchronous parity error

1st level

2nd level

Valid

Valid

UNKNOWN

Valid
-

00101

00111
Translation fault

Section

Page

Valid

Valid

UNKNOWN

Valid
MMU fault

00011b

00110
Access Flag fault

Section

Page

Valid

Valid

UNKNOWN

Valid
MMU fault

01001

01011
Domain fault

Section

Page

Valid

Valid

Valid

Valid
MMU fault

01101

01111
Permission fault

Section

Page

Valid

Valid

Valid

Valid
MMU fault

00010 Debug event UNKNOWN UNKNOWN
See Software debug
events on page C3-5

01000 Synchronous external abort Valid UNKNOWN -

10100 IMPLEMENTATION DEFINED - - Lockdown

11010 IMPLEMENTATION DEFINED - - Coprocessor abort

11001 Memory access synchronous parity error Valid UNKNOWN -

10110 Asynchronous external abortc UNKNOWN UNKNOWN -

11000 Memory access asynchronous parity error
UNKNOWN UNKNOWN Including on translation

table walk

a. All DFSR[10,3:0] values not listed in this table are reserved.
b. Previously, this encoding was a deprecated encoding for Alignment fault. The extensive changes in the memory model

in ARMv7 and VMSAv7 mean there should be no possibility of confusing these two uses.
c. Including asynchronous data external abort on translation table walk or instruction fetch.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-51

Virtual Memory System Architecture (VMSA)
Reserved encodings in the IFSR and DFSR encodings tables

A single encoding is reserved for cache and TLB lockdown faults. The details of these faults and any
associated subsidiary registers are IMPLEMENTATION DEFINED.

A single encoding is reserved for aborts associated with coprocessors. The details of these faults are
IMPLEMENTATION DEFINED.

B3.9.5 Distinguishing read and write accesses on Data Abort exceptions

On a synchronous Data Abort exception, the DFSR.WnR bit, bit [11] of the register, indicates whether the
abort occurred on a read access or on a write access. However, for a fault on a CP15 cache maintenance
operation, including a fault on a VA to PA translation operation, this bit always indicates a write access fault.

For a fault generated by an SWP or SWPB instruction, the WnR bit is 0 if a read to the location would have
generated a fault, otherwise it is 1.

B3.9.6 Provision for classification of external aborts

An implementation can use the DFSR.ExT and IFSR.ExT bits to provide more information about external
aborts:

• DFSR.ExT can provide an IMPLEMENTATION DEFINED classification of external aborts on data
accesses

• IFSR.ExT can provide an IMPLEMENTATION DEFINED classification of external aborts on instruction
accesses

For all aborts other than external aborts these bits return a value of 0.

B3.9.7 The Domain field in the DFSR

The DFSR includes a domain field. This has been inherited from previous versions of the VMSA. There is
no domain field in the IFSR. The domain field of the DFSR is not valid on watchpoints.

From ARMv7, use of the domain field in the DFSR is deprecated. This field might not be supported in future
versions of the ARM architecture. ARM strongly recommends that new software does not use this field.

For both Data Abort exceptions and Prefetch Abort exceptions, software can find the domain information
by performing a translation table read for the faulting address and extracting the domain field from the
translation table entry.
B3-52 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Virtual Memory System Architecture (VMSA)
B3.9.8 Auxiliary Fault Status Registers

ARMv7 architects two Auxiliary Fault Status Registers:

• the Auxiliary Data Fault Status Register (ADFSR)

• the Auxiliary Instruction Fault Status Register (AIFSR).

These registers enable additional fault status information to be returned:

• The position of these registers is architecturally-defined, but the content and use of the registers is
IMPLEMENTATION DEFINED.

• An implementation that does not need to report additional fault information must implement these
registers as UNK/SBZ. This ensures that a privileged attempt to access these registers does not cause
an Undefined Instruction exception.

An example use of these registers would be to return more information for diagnosing parity errors.

See c5, Auxiliary Data and Instruction Fault Status Registers (ADFSR and AIFSR) on page B3-123 for the
architectural details of these registers.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-53

ARM_2009_Q1
Inserted Text
P

Virtual Memory System Architecture (VMSA)
B3.10 Translation Lookaside Buffers (TLBs)

Translation Lookaside Buffers (TLBs) are an implementation technique that caches translations or
translation table entries. TLBs avoid the requirement for every memory access to perform a translation table
lookup. The ARM architecture does not specify the exact form of the TLB structures for any design. In a
similar way to the requirements for caches, the architecture only defines certain principles for TLBs:

• The architecture has a concept of an entry locked down in the TLB. The method by which lockdown
is achieved is IMPLEMENTATION DEFINED, and an implementation might not support lockdown.

• An unlocked entry in the TLB is not guaranteed to remain in the TLB.

• A locked entry in the TLB is guaranteed to remain in the TLB. However, a locked entry in a TLB
might be updated by subsequent updates to the translation tables. Therefore it is not guaranteed to
remain incoherent with an entry in the translation table if a change is made to the translation tables.

• A translation table entry that returns a Translation fault or an Access fault is guaranteed not to be held
in the TLB. However a translation table entry that returns a Domain fault or a Permission fault might
be held in the TLB.

• Any translation table entry that does not return a Translation or Access fault might be allocated to an
enabled TLB at any time. The only translation table entries guaranteed not to be held in the TLB are
those that return a Translation or Access fault.

• Software can rely on the fact that between disabling and re-enabling the MMU, entries in the TLB
have not have been corrupted to give incorrect translations.

B3.10.1 Global and non-global regions in the virtual memory map

The VMSA permits the virtual memory map to be divided into global and non-global regions, distinguished
by the nG bit in the translation table descriptors:

nG == 0 The translation is global.

nG == 1 The translation is process specific, meaning it relates to the current ASID, as defined by the
CONTEXTIDR.

Each non-global region has an associated Address Space Identifier (ASID). These identifiers enable
different translation table mappings to co-exist in a caching structure such as a TLB. This means that a new
mapping of a non-global memory region can be created without removing previous mappings.

For a symmetric multiprocessor cluster where a single operating system is running on the set of processing
elements, ARMv7 requires all ASID values to be assigned uniquely. In other words, each ASID value must
have the same meaning to all processing elements in the system.

The use of non-global pages when FCSEIDR[31:25] is not 0b0000000 is UNPREDICTABLE.
B3-54 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Virtual Memory System Architecture (VMSA)
B3.10.2 TLB matching

A TLB is a hardware caching structure for translation table information. Like other hardware caching
structures, it is mostly invisible to software. However, there are some situations where it can become visible.
These are associated with coherency problems caused by an update to the translation table that has not been
reflected in the TLB. The TLB maintenance operations, described in TLB maintenance on page B3-56,
enable software to prevent any TLB incoherency becoming a problem.

A particular case where the presence of the TLB can become visible is if the translation table entries that
are in use under a particular ASID are changed without suitable invalidation of the TLB. This is an issue
regardless of whether or not the translation table entries are global. In some cases, the TLB can hold two
mappings for the same address, and this can lead to UNPREDICTABLE behavior

TLB block size

When the TLB is scanned, address matching is performed on bits [31:N] of the MVA, where N is log2 of the
page size, or block size, for the TLB entry. In VMSAv7, a TLB can store entries based on the following
block sizes:

Supersections consist of 16MB blocks of memory, N = 24

Sections consist of 1MB blocks of memory, N = 20

Large pages consist of 64KB blocks of memory, N = 16

Small pages consist of 4KB blocks of memory, N = 12.

Supersections, Sections and Large pages are supported to permit mapping of a large region of memory while
using only a single entry in a TLB.

B3.10.3 TLB behavior at reset

In ARMv7, there is no requirement that a reset invalidates the TLBs. ARMv7 recognizes that an
implementation might require caches, including TLBs, to maintain context over a system reset. Possible
reasons for doing so include power management and debug requirements.

For ARMv7:

• All TLBs are disabled at reset.

• An implementation can require the use of a specific TLB invalidation routine, to invalidate the TLB
arrays before they are enabled after a reset. The exact form of this routine is IMPLEMENTATION
DEFINED, but if an invalidation routine is required it must be documented clearly as part of the
documentation of the device.

ARM recommends that if an invalidation routine is required for this purpose, the routine is based on
the ARMv7 TLB maintenance operations described in CP15 c8, TLB maintenance operations on
page B3-138.

• When TLBs that have not been invalidated by some mechanism since reset are enabled, the state of
those TLBs is UNPREDICTABLE.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-55

Virtual Memory System Architecture (VMSA)
Similar rules apply:

• to cache behavior, see Behavior of the caches at reset on page B2-6

• to branch predictor behavior, see Behavior of the branch predictors at reset on page B2-21.

B3.10.4 TLB lockdown

ARMv7 recognizes that any TLB lockdown scheme is heavily dependent on the microarchitecture, making
it inappropriate to define a common mechanism across all implementations. This means that:

• ARMv7 does not require TLB lockdown support.

• If TLB lockdown support is implemented, the lockdown mechanism is IMPLEMENTATION DEFINED.
However, key properties of the interaction of lockdown with the architecture must be documented as
part of the implementation documentation.

This means that:

• In ARMv7, the TLB Type Register TLBTR does not define the lockdown scheme in use. This is a
change from previous versions of the architecture.

• A region of the CP15 c10 encodings is reserved for IMPLEMENTATION DEFINED TLB functions, such
as TLB lockdown functions. The reserved encodings are those with:

— <CRm> = {0, 1, 4, 8}

— all values of <opc2> and <opc1>.

See also The implementation defined TLB control operations on page B3-143.

An implementation might use some of the CP15 c10 encodings that are reserved for IMPLEMENTATION
DEFINED TLB functions to implement additional TLB control functions. These functions might include:

• Unlock all locked TLB entries.

• Preload into a specific level of TLB. This is beyond the scope of the PLI and PLD hint instructions.

B3.10.5 TLB maintenance

TLB maintenance operations provide a mechanism to invalidate entries from a TLB.

Any TLB operation might affect other TLB entries that are not locked down.

TLB maintenance operations are provided by CP15 c8 functions. The following operations are supported:

• invalidate all unlocked entries in the TLB

• invalidate a single TLB entry, by MVA, or MVA and ASID for a non-global entry

• invalidate all TLB entries that match a specified ASID.

The Multiprocessing Extensions add the following operations:

• invalidate all TLB entries that match a specified by MVA, regardless of the ASID

• operations that apply across multiprocessors in the same Inner Shareable domain, see Multiprocessor
effects on TLB maintenance operations on page B3-62.
B3-56 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2008_Q4, ARM_2009_Q4, and ARM_2010_Q3
Inserted Text
 As stated at the start of section B3.10, any translation table entry that does not return a Translation or Access fault might be allocated to an enabled TLB at any time. This means that software must perform TLB maintenance whenever it updates a translation table entry that might be held in a TLB if either:
 • the entry applies to a translation that is global
 • the entry applies to a translation that is non-global, and software is not also updating the ASID.
This ensures the TLB does not contain stale entries.

----- Note -----
 • Any translation table entry that does not return a Translation or Access fault might be cached.
 • This requirement applies to translation table entries at any level of the translation tables, including entries that point to further levels of table, provided that the entry in that level of the table does not cause a Translation or Access Fault.

ARM_2008_Q4
Cross-Out

ARM_2010_Q3
Sticky Note
The original insertion was updated in the ARM_2009_Q4 errata. The ARM_2010_Q3 errata added additional information to clarify the intended meaning.

ARM_2010_Q3
Cross-Out

ARM_2010_Q3
Replacement Text
c0, c1, c4, c8

Virtual Memory System Architecture (VMSA)
In the TLB operations:

• An operation that depends on an MVA value includes a field for the ASID to be used as part of the
translation. For a translation table entry that refers to a non-global region, the ASID must be
specified.

• If the Security Extensions are implemented, operations include the current security state as part of
the VA to PA address translation required for the TLB operation.

A single register function can apply one of these operations:

• when separate Instruction and Data TLBs are implemented, to:

— only the Instruction TLB

— only the Data TLB

— both the Instruction TLB and the Data TLB

• the Unified TLB, when a Unified TLB is implemented.

The distinction between the Instruction TLB and Data TLB in TLB maintenance operations is historical and
is not supported in newer instructions. The distinction is deprecated in ARMv7. Developers must not rely
on this distinction being maintained in future versions of the ARM architecture.

The ARM architecture does not dictate the form in which the TLB stores translation table entries. However,
for TLB invalidate operations, the size of the table entry that must be removed from the TLB must be at least
the size that appears in the translation table entry.

These operations are described in CP15 c8, TLB maintenance operations on page B3-138.

The interaction of TLB maintenance operations with TLB lockdown

The precise interaction of TLB lockdown with the TLB maintenance operations is IMPLEMENTATION
DEFINED. However, the architecturally-defined TLB maintenance operations must comply with these rules:

• The effect on locked entries of the TLB invalidate all unlocked entries and TLB invalidate by MVA
all ASID operations is IMPLEMENTATION DEFINED. However, these operations must implement one
of the following options:

— Have no effect on entries that are locked down.

— Generate an IMPLEMENTATION DEFINED Data Abort exception if an entry is locked down, or
might be locked down. A fault status code is provided in the CP15 c5 fault status registers for
cache and TLB lockdown faults, see Table B3-11 on page B3-50 and Table B3-12 on
page B3-51.

This permits a typical usage model for TLB invalidate routines, where the routine invalidates a large
range of addresses, without considering whether any entries are locked in the TLB.

• The effect on locked entries of the TLB invalidate by MVA and invalidate by ASID match operations
is IMPLEMENTATION DEFINED. However, these operations must implement one of these options:

— A locked entry is invalidated in the TLB.

— The operation has no effect on a locked entry in the TLB. In the case of the Invalidate single
entry by MVA, this means the operation is treated as a NOP.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-57

Virtual Memory System Architecture (VMSA)
— The operation generates an IMPLEMENTATION DEFINED Data Abort exception if it operates on
an entry that is locked down, or might be locked down. A fault status code is provided in the
CP15 c5 fault status registers for cache and TLB lockdown faults, see Table B3-11 on
page B3-50 and Table B3-12 on page B3-51.

Any implementation that uses an abort mechanism for entries that might be locked must:

• document the IMPLEMENTATION DEFINED code sequences that then performs the required operations
on entries that are not locked down

• implement one of the other specified alternatives for the locked entries.

ARM recommends that architecturally-defined operations are used wherever possible in such sequences, to
minimize the number of customized operations required.

In addition, if an implementation uses an abort mechanisms for entries that might be locked it must also must
provide a mechanism that ensures that no TLB entries are locked.

Similar rules apply to cache lockdown, see The interaction of cache lockdown with cache maintenance on
page B2-18.

An unlocked entry in the TLB is not guaranteed to remain in the TLB. This means that, as a side effect of a
TLB maintenance operation, any unlocked entry in the TLB might be invalidated.

The effect of the Security Extensions on the TLB maintenance operations

If an implementation includes the Security Extensions, the TLB maintenance operations must take account
of the current security state. Table B3-13 summarizes how the Security Extensions affect these operations.

Table B3-13 TLB maintenance operations when the Security Extensions are implemented

TLB maintenance operation TLB entries guaranteed to be invalidated

Invalidate all entries All TLB entries accessible in the current security state.

Invalidate single entry by MVA Targeted TLB entry, only if all of these apply:

• the MVA value matches

• the ASID value matches, for a non-global entry

• the entry applies to the current security state.

Invalidate entries by ASID match All non-global TLB entries for which both:

• the ASID value matches

• the entry applies to the current security state.

Invalidate entries by MVA, all ASID All targeted TLB entries for which both:

• the MVA value matches

• the entry applies to the current security state.
B3-58 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Virtual Memory System Architecture (VMSA)
The Security Extensions do not change the possible effects of TLB maintenance operations on entries that
are locked or might be locked, as described in The interaction of TLB maintenance operations with TLB
lockdown on page B3-57. If an implementation has TLB maintenance operations that generate aborts on
entries that are locked or might be locked then those aborts can occur on any maintenance operation,
regardless of the Security Extensions. However aborts must not be generated as a result of entries from the
other security state.

TLB maintenance operations and the memory order model

The following rules describe the relations between the memory order model and the TLB maintenance
operations:

• A TLB invalidate operation is complete when all memory accesses using the TLB entries that have
been invalidated have been observed by all observers to the extent that those accesses are required to
be observed, as determined by the shareability and cacheability of the memory locations accessed by
the accesses. In addition, once the TLB invalidate operation is complete, no new memory accesses
that can be observed by those observers using those TLB entries will be performed.

• A TLB maintenance operation is only guaranteed to be complete after the execution of a DSB
instruction.

• An ISB instruction, or a return from an exception, causes the effect of all completed TLB maintenance
operations that appear in program order before the ISB or return from exception to be visible to all
subsequent instructions, including the instruction fetches for those instructions.

• An exception causes all completed TLB maintenance operations that appear in the instruction stream
before the point where the exception was taken to be visible to all subsequent instructions, including
the instruction fetches for those instructions.

• All TLB Maintenance operations are executed in program order relative to each other.

• The execution of a Data or Unified TLB maintenance operation is guaranteed not to affect any
explicit memory access of any instruction that appears in program order before the TLB maintenance
operation. This means no memory barrier instruction is required. This ordering is guaranteed by the
hardware implementation.

• The execution of a Data or Unified TLB maintenance operation is only guaranteed to be visible to a
subsequent explicit load or store operation after both:

— the execution of a DSB instruction to ensure the completion of the TLB operation

— a subsequent ISB instruction, or taking an exception, or returning from an exception.

• The execution of an Instruction or Unified TLB maintenance operation is only guaranteed to be
visible to a subsequent instruction fetch after both:

— the execution of a DSB instruction to ensure the completion of the TLB operation

— a subsequent ISB instruction, or taking an exception, or returning from an exception.

The following rules apply when writing translation table entries. They ensure that the updated entries are
visible to subsequent accesses and cache maintenance operations.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-59

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Sticky Note
This statement is deleted because it has no meaning.
It is a general requirement that any store operation requires a DSB for it to be visible to translation table walks. Therefore, any store that appears in program order before the TLB maintenance operation requires a DSB to ensure ordering.

Virtual Memory System Architecture (VMSA)
For TLB maintenance, the translation table walk is treated as a separate observer:

• A write to the translation tables, after it has been cleaned from the cache if appropriate, is only
guaranteed to be seen by a translation table walk caused by an explicit load or store after the execution
of both a DSB and an ISB.

However, it is guaranteed that any writes to the translation tables are not seen by any explicit memory
access that occurs in program order before the write to the translation tables.

• For the base ARMv7 architecture and versions of the architecture before ARMv7, if the translation
tables are held in Write-Back Cacheable memory, the caches must be cleaned to the point of
unification after writing to the translation tables and before the DSB instruction. This ensures that the
updated translation table are visible to a hardware translation table walk.

• A write to the translation tables, after it has been cleaned from the cache if appropriate, is only
guaranteed to be seen by a translation table walk caused by the instruction fetch of an instruction that
follows the write to the translation tables after both a DSB and an ISB.

Therefore, typical code for writing a translation table entry, covering changes to the instruction or data
mappings in a uniprocessor system is:

STR rx, [Translation table entry] ; write new entry to the translation table
Clean cache line [Translation table entry] : This operation is not required with the

; Multiprocessing Extensions.
DSB ; ensures visibility of the data cleaned from the D Cache
Invalidate TLB entry by MVA (and ASID if non-global) [page address]
Invalidate BTC
DSB ; ensure completion of the Invalidate TLB operation
ISB ; ensure table changes visible to instruction fetch

Synchronization of changes of ASID and TTBR

A common virtual memory management requirement is to change the ContextID and Translation Table Base
Registers together to associate the new ContextID with different translation tables. However, such a change
is complicated by:

• the depth of prefetch being IMPLEMENTATION DEFINED

• the use of branch prediction.

The virtual memory management operations must ensure the synchronization of changes of the ContextID
and the translation table registers. For example, some or all of the TLBs, BTCs (Branch Target Caches) and
other caching of ASID and translation information might become corrupt with invalid translations.
Synchronization is necessary to avoid either:

• the old ASID being associated with translation table walks from the new translation tables

• the new ASID being associated with translation table walks from the old translation tables.

There are a number of possible solutions to this problem, and the most appropriate approach depends on the
system. Example B3-2 on page B3-61 and Example B3-3 on page B3-61, and Example B3-4 on page B3-62
describe three possible approaches.
B3-60 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Virtual Memory System Architecture (VMSA)
Note
 Another instance of the synchronization problem occurs if a branch is encountered between changing the
ASID and performing the synchronization. In this case the value in the branch predictor might be associated
with the incorrect ASID. This possibility can be addressed by any of these approaches, but might be
addressed by avoiding such branches.

Example B3-2 Using a reserved ASID to synchronize ASID and TTBR changes

In this approach, a particular ASID value is reserved for use by the operating system, and is used only for
the synchronization of the ASID and Translation Table Base Register. This example uses the value of 0 for
this purpose, but any value could be used.

This approach can be used only when the size of the mapping for any given virtual address is the same in
the old and new translation tables.

The following sequence is followed, and must be executed from memory marked as being global:

Change ASID to 0
ISB
Change Translation Table Base Register
ISB
Change ASID to new value

This approach ensures that any non-global pages prefetched at a time when it is uncertain whether the old
or new translation tables are being accessed are associated with the unused ASID value of 0. Since the ASID
value of 0 is not used for any normal operations these entries cannot cause corruption of execution.

Example B3-3 Using translation tables that contain only global mappings
when changing the ASID

A second approach involves switching the translation tables to a set of translation tables that only contain
global mappings while switching the ASID.

The following sequence is followed, and must be executed from memory marked as being global:

Change Translation Table Base Register to the global-only mappings
ISB
Change ASID to new value
ISB
Change Translation Table Base Register to new value

This approach ensures that no non-global pages can be prefetched at a time when it is uncertain whether the
old or new ASID value will be used.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-61

Virtual Memory System Architecture (VMSA)
Example B3-4 Disabling non-global mappings when changing the ASID

In systems where the only non-global mappings are held in TTBR0, you can use the TTBCR.PD0 field to
disable use of the TTBR0 register during the change of ASID. This means you do not require a set of
global-only mappings.

The following sequence is followed, and must be executed from a memory region with a translation that is
accessed from the base address in the TTBR1 register, and is marked as global:

Set TTBCR.PD0 = 1
ISB
Change ASID to new value
Change Translation Table Base Register to new value
ISB
Set TTBCR.PD0 = 0

This approach ensures that no non-global pages can be prefetched at a time when it is uncertain whether the
old or new ASID value will be used.

Multiprocessor effects on TLB maintenance operations

The base ARMv7 architecture defines that the TLB maintenance operations apply only to the TLB directly
attached to the processor on which the operation is executed.

To improve the implementation of multiprocessor systems, a set of extensions to ARMv7, called the
Multiprocessing Extensions, has been introduced. These introduce some new TLB maintenance operations
to apply to the TLBs of processors in the same Inner Shareable domain.

The extensions can be implemented in a uniprocessor system with no hardware support for cache coherency.
In such a system, the Inner Shareable domain would be limited to being the single processor, and all
instructions defined to apply to the Inner Shareable domain behave as aliases of the local operations.
B3-62 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Virtual Memory System Architecture (VMSA)
B3.11 Virtual Address to Physical Address translation operations

CP15 c7 includes operations for Virtual Address (VA) to Physical Address (PA) translation. For more
information, see CP15 c7, Virtual Address to Physical Address translation operations on page B3-130. The
details of these operations depend on whether the Security Extensions are implemented.

All VA to PA translations take account of the TEX remapping when this remapping is enabled, see The
alternative descriptions of the Memory region attributes on page B3-32.

A VA to PA translation operation might require a translation table walk, and an external abort might occur
on this walk. For more information, see Behavior of external aborts on a translation table walk caused by
a VA to PA translation on page B3-46. If an external abort occurs on this walk:

• The Physical Address Register, PAR:

— is not updated if the abort is synchronous

— is UNPREDICTABLE if the abort is asynchronous.

• if the Security Extensions are implemented, fault status and fault address register updates occur only
in the security state in which the abort is handled. Fault address and fault status registers in the other
security state are not changed.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-63

ARM_2010_Q2
Inserted Text
, is UNKNOWN

ARM_2010_Q2
Cross-Out

ARM_2010_Q2
Sticky Note
The PAR is UNKNOWN, regardless of whether the abort is synchronous or asynchronous.

Virtual Memory System Architecture (VMSA)
B3.12 CP15 registers for a VMSA implementation

This section gives a full description of the registers implemented in the CP15 System Control Coprocessor
in an ARMv7 implementation that includes the VMSA memory system. Therefore, this is the description
of the CP15 registers for an ARMv7-A implementation.

Some of the registers described in this section are also included in an ARMv7 implementation with a PMSA.
The section CP15 registers for a PMSA implementation on page B4-22 also includes descriptions of these
registers.

See Coprocessors and system control on page B1-62 for general information about the System Control
Coprocessor, CP15 and the register access instructions MRC and MCR.

Information in this section is organized as follows:

• general information is given in:

— Organization of the CP15 registers in a VMSA implementation

— General behavior of CP15 registers on page B3-68

— Effect of the Security Extensions on the CP15 registers on page B3-71

— Changes to CP15 registers and the memory order model on page B3-77

— Meaning of fixed bit values in register diagrams on page B3-78.

• this is followed by, for each of the primary CP15 registers c0 to c15:

— a general description of the organization of the primary CP15 register

— detailed descriptions of all the registers in that primary register.

Note
 The detailed descriptions of the registers that implement the processor identification scheme, CPUID,

are given in Chapter B5 The CPUID Identification Scheme, and not in this section.

Table B3-14 on page B3-66 lists all of the CP15 registers in a VMSA implementation, and is an index to the
detailed description of each register.

B3.12.1 Organization of the CP15 registers in a VMSA implementation

Figure B3-10 on page B3-65 summarizes the ARMv7 CP15 registers when the VMSA is implemented.
Table B3-14 on page B3-66 lists all of these registers.

Note
 ARMv7 introduces significant changes to the memory system registers, especially in relation to caches. For
details of:

• the CP15 register implementation in VMSAv6, see Organization of CP15 registers for an ARMv6
VMSA implementation on page AppxG-29

• how the ARMv7 registers must be used to discover what caches can be accessed by the processor, see
Identifying the cache resources in ARMv7 on page B2-4.
B3-64 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Virtual Memory System Architecture (VMSA)
Figure B3-10 CP15 registers in a VMSA implementation

�� � �� 4���5 @���*��&'���@�-���9�*��7�.'*&��*
��<76���,�'������**�<��&����7�.'*&���� � �� �

��$�&������**�7�.'*&��*�� � �� 4�6�5
�	 � 4��6��5 4�6�5 ��$�&��&�&$*�7�.'*&��*

���$�'&��:+&��*'��*���.'*&��*6�'(�',%��,��&��

<7� �%�� <7, �%��

��*&�,�<��&������.'*&��*�� � �� 4���5
<��:376�<��)���'E�������&'���7�.'*&��

�

� �� �

<@76�<��)��@�%��7�.'*&��
��

@39@76�@39�@�%��7�.'*&��

� ��
�

�

<3 �76�<��)��3����� ��7�.'*&��
<<� �76�<��)���'E�� ��7�.'*&��*� �� �

@<!@76�@<!�@�%��7�.'*&��6� !�3:!:?@�@ =?��:� ?:��

! �76�!�'�� ��7�.'*&��

!� �76�!$�&'%����**����(('�'&��7�.'*&��
��'�*�*��(�!�'�� ��7�.'*&��
<�" ����.'*&��*

�

	
4�6�6
5

4����
5 4��
5

� �76��$+'�'���� ��7�.'*&��6� !�3:!:?@�@ =?��:� ?:�

�� 4���5

�
 � �� ?=��

<��)������-����)�%���'�&���,�'�&��������%���&'��*
��76��)�*'���������**�7�.'*&��

�	 4�6�6�6
5
�� �

���&�����&���*��&'����%���&'��*4��
5�

��� 4�6�5

4�6	5
�<<!��"6�<��)��-���'����%���&'������

��

#"�"��"���
����
�"�����

4�6�5 <��)��,�'�&��������%���&'��*

<��)��,���.�,��&��%���&'��*

$�%&��'(������!�������"���
����
�"�����

��� 4�6�5 <��)��,�'�&��������%���&'��*
�
 � 4��6�	6��6�
5 4���5 @39�,�'�&��������%���&'��*�N

7�*������(���9����)�����'�&��6�<��)������@<!��%���&'��*�� 4��
5 4�����6�	��
5 4��
5
4��
5 7�*������(������(��,�����,��'&��*4������	5 #

#

7�*������(����!���%���&'��*�(���@<!�����**��� 4��
5 4����
6��	5 4��
5
@:G�7�,�%�7�.'*&��*�1�7776�?!772
7�*������(���@39�3��>��8���%���&'��*��� �

�� 4�6�5
4��6��6��6�
5 4��
5

#

#

 �76����$�'&��:+&��*'��*���.'*&��6�'(�',%��,��&��
��� � �� 4�6�5

�� �
���$�'&��:+&��*'��*���.'*&��*6�'(�',%��,��&��

��� � �� �
4���5

�<�: �76��<�:�� ��7�.'*&��
��(&8����@)���������<��&�+&� ����.'*&��*

O

��� � ?=�

'��	��
���)����
�����
������
����	
7���PQ�'&�7�������� Q�'&������

7���������'(��<�:
��&�',%��,��&��

����**���%���*����&)���%���&'��# O

 !�3:!:?@�@ =?��:� ?:��7�.'*&��*��	 4��
5 4�����	5 4��
5 #

<��)��,�'�&��������%���&'��*6�!$�&'%����**'�.�:+&��*'��*�� 4�6�5

N���,�������'�.*����������'��&)�
!$�&'%����**'�.�:+&��*'��*
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-65

ARM_2010_Q3
Cross-Out

ARM_2010_Q3
Replacement Text
RAZ/WI

ARM_2010_Q3
Sticky Note
This change clarifies the behavior of the FCSEIDR when the FCSE is not implemented. This behavior is correctly described in section B3.12.44 c13, FCSE Process ID Register (FCSEIDR) on page B3-152 [pdf page 1426], and elsewhere in this document.

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Replacement Text
UNPREDICTABLE

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Replacement Text
UNPREDICTABLE

Virtual Memory System Architecture (VMSA)
For information about the CP15 encodings not shown in Figure B3-10 on page B3-65 see Unpredictable
and undefined behavior for CP15 accesses on page B3-68.

Summary of CP15 register descriptions in a VMSA implementation

Table B3-14 shows the CP15 registers in a VMSA implementation. The table also includes links to the
descriptions of each of the primary CP15 registers, c0 to c15.

Table B3-14 Summary of VMSA CP15 register descriptions

Register and description

CP15 c0, ID codes registers on page B3-79

c0, Main ID Register (MIDR) on page B3-81

c0, Cache Type Register (CTR) on page B3-83

c0, TCM Type Register (TCMTR) on page B3-85

c0, TLB Type Register (TLBTR) on page B3-86

c0, Multiprocessor Affinity Register (MPIDR) on page B3-87

CP15 c0, Processor Feature registers on page B5-4

c0, Debug Feature Register 0 (ID_DFR0) on page B5-6

c0, Auxiliary Feature Register 0 (ID_AFR0) on page B5-8

CP15 c0, Memory Model Feature registers on page B5-9

CP15 c0, Instruction Set Attribute registers on page B5-19

c0, Cache Size ID Registers (CCSIDR) on page B3-91

c0, Cache Level ID Register (CLIDR) on page B3-92

c0, Implementation defined Auxiliary ID Register (AIDR) on page B3-94

c0, Cache Size Selection Register (CSSELR) on page B3-95

CP15 c1, System control registers on page B3-96

c1, System Control Register (SCTLR) on page B3-96

c1, Implementation defined Auxiliary Control Register (ACTLR) on page B3-103

c1, Coprocessor Access Control Register (CPACR) on page B3-104

c1, Secure Configuration Register (SCR) on page B3-106
B3-66 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Virtual Memory System Architecture (VMSA)
c1, Secure Debug Enable Register (SDER) on page B3-108

c1, Non-Secure Access Control Register (NSACR) on page B3-110

CP15 c2 and c3, Memory protection and control registers on page B3-113

c2, Translation Table Base Register 0 (TTBR0) on page B3-113

c2, Translation Table Base Register 1 (TTBR1) on page B3-116

c2, Translation Table Base Control Register (TTBCR) on page B3-117

c3, Domain Access Control Register (DACR) on page B3-119

CP15 c4, Not used on page B3-120

CP15 c5 and c6, Memory system fault registers on page B3-120

c5, Data Fault Status Register (DFSR) on page B3-121

c5, Instruction Fault Status Register (IFSR) on page B3-122

c5, Auxiliary Data and Instruction Fault Status Registers (ADFSR and AIFSR) on page B3-123

c6, Data Fault Address Register (DFAR) on page B3-124

c6, Instruction Fault Address Register (IFAR) on page B3-125

CP15 c7, Cache maintenance and other functions on page B3-126

CP15 c7, Cache and branch predictor maintenance functions on page B3-126

CP15 c7, Virtual Address to Physical Address translation operations on page B3-130

CP15 c7, Data and Instruction Barrier operations on page B3-137

CP15 c7, No Operation (NOP) on page B3-138

CP15 c8, TLB maintenance operations on page B3-138

CP15 c9, Cache and TCM lockdown registers and performance monitors on page B3-141

CP15 c10, Memory remapping and TLB control registers on page B3-142

c10, Primary Region Remap Register (PRRR) on page B3-143

c10, Normal Memory Remap Register (NMRR) on page B3-146

CP15 c11, Reserved for TCM DMA registers on page B3-147

Table B3-14 Summary of VMSA CP15 register descriptions (continued)

Register and description
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-67

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Replacement Text
Retired operations

Virtual Memory System Architecture (VMSA)
B3.12.2 General behavior of CP15 registers

The following sections give information about the general behavior of CP15 registers:

• Read-only bits in read/write registers

• Unpredictable and undefined behavior for CP15 accesses

• Reset behavior of CP15 registers on page B3-70

See also Meaning of fixed bit values in register diagrams on page B3-78.

Read-only bits in read/write registers

Some read/write registers include bits that are read-only. These bits ignore writes.

An example of this is the SCTLR.NMFI bit, bit [27], see c1, System Control Register (SCTLR) on
page B3-96.

UNPREDICTABLE and UNDEFINED behavior for CP15 accesses

In ARMv7 the following operations are UNDEFINED:

• all CDP, MCRR, MRRC, LDC and STC operations to CP15

• all CDP2, MCR2, MRC2, MCRR2, MRRC2, LDC2 and STC2 operations to CP15.

Unless otherwise indicated in the individual register descriptions:

• reserved fields in registers are UNK/SBZP

• reserved values of fields can have UNPREDICTABLE effects.

CP15 c12, Security Extensions registers on page B3-148

c12, Vector Base Address Register (VBAR) on page B3-148

c12, Monitor Vector Base Address Register (MVBAR) on page B3-149

c12, Interrupt Status Register (ISR) on page B3-150

CP15 c13, Process, context and thread ID registers on page B3-151

c13, FCSE Process ID Register (FCSEIDR) on page B3-152

c13, Context ID Register (CONTEXTIDR) on page B3-153

CP15 c13 Software Thread ID registers on page B3-154

CP15 c14 is not used, see Unallocated CP15 encodings on page B3-69

CP15 c15, Implementation defined registers on page B3-155

Table B3-14 Summary of VMSA CP15 register descriptions (continued)

Register and description
B3-68 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Virtual Memory System Architecture (VMSA)
The following subsections give more information about UNPREDICTABLE and UNDEFINED behavior for
CP15:

• Unallocated CP15 encodings

• Rules for MCR and MRC accesses to CP15 registers

• Effects of the Security Extensions on page B3-70.

Unallocated CP15 encodings

When MCR and MRC instructions perform CP15 operations, the CRn value for the instruction is the major
register specifier for the CP15 space. Accesses to unallocated major registers are UNDEFINED. For the
ARMv7-A Architecture, this means that:

• for an implementation that includes the Security Extensions, accesses with <CRn> = {c4, c14} are
UNDEFINED

• for an implementation that does not include the Security Extensions, accesses with
<CRn> = {c4, c12, c14} are UNDEFINED

In an allocated CP15 major register specifier, MCR and MRC accesses to all unallocated encodings are
UNPREDICTABLE for privileged accesses. For the ARMv7-A architecture this means that:

• if the Security Extensions are implemented, any privileged MCR or MRC access with <CRn> != {c4, c14}
and a combination of <opc1>, <CRm> and <opc2> values not shown in Figure B3-10 on page B3-65 is
UNPREDICTABLE.

• if the Security Extensions are not implemented, any privileged MCR or MRC access with
<CRn> != {c4, c12, c14} and a combination of <opc1>, <CRm> and <opc2> values not shown in
Figure B3-10 on page B3-65 is UNPREDICTABLE.

Note
 As shown in Figure B3-10 on page B3-65, accesses to unallocated principal ID registers map onto MIDR.
These are accesses with <CRn> = c0, <opc1> = 0, <CRm> = c0, and <opc2> = {4, 6, 7}.

Rules for MCR and MRC accesses to CP15 registers

All MCR operations from the PC are UNPREDICTABLE for all coprocessors, including for CP15.

All MRC operations to APSR_nzcv are UNPREDICTABLE for CP15.

The following accesses are UNPREDICTABLE:

• an MCR access to an encoding for which no write behavior is defined in any circumstances

• an MRC access to an encoding for which no read behavior is defined in any circumstances.

Except for CP15 encoding that are accessible in User mode, all MCR and MRC accesses from User mode are
UNDEFINED. This applies to all User mode accesses to unallocated CP15 encodings. Individual register
descriptions, and the summaries of the CP15 major registers, show the CP15 encodings that are accessible
in User mode.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-69

Virtual Memory System Architecture (VMSA)
Some individual registers can be made inaccessible by setting configuration bits, possibly including
IMPLEMENTATION DEFINED configuration bits, to disable access to the register. The effects of the
architecturally-defined configuration bits are defined individually in this manual. Typically, setting a
configuration bit to disable access to a register results in the register becoming UNDEFINED for MRC and MCR
accesses.

Effects of the Security Extensions

In Non-secure state, any User or privileged access to a CP15 register is UNDEFINED if either:

• There are no circumstances in which all bits and fields in the register can be accessed from
Non-secure privileged modes.

• Settings in the NSACR mean that there are no circumstances in which all bits and fields in the register
can be accessed from Non-secure privileged modes.

Note
 The ARMv7-A architecture does not define any registers of this type. However an ARMv7-A

implementation might include one or more IMPLEMENTATION DEFINED registers of this type.

When Non-secure access to a field of a CP15 register is controlled by an access control bit in the NSACR,
and that access control bit is set to 0, then the controlled register field is RAZ/WI when accessed from a
privileged mode in Non-secure state. If the register can be accessed from User mode then the field is also
RAZ/WI when accessed from User mode.

If write access to a register is disabled by the CP15SDISABLE signal then any MCR access to that register
is UNDEFINED.

Reset behavior of CP15 registers

After a reset, only a limited subset of the processor state is guaranteed to be set to defined values. On reset,
the VMSAv7 architecture requires that the following CP15 registers are set to defined values.

Note
 When the Security Extensions are implemented, only the Secure copy of a banked register is reset to the
defined value.

• The SCTLR, see c1, System Control Register (SCTLR) on page B3-96.

• The CPACR, see c1, Coprocessor Access Control Register (CPACR) on page B3-104.

• The SCR, when the Security Extensions are implemented, see c1, Secure Configuration Register
(SCR) on page B3-106.

• The TTBCR, see c2, Translation Table Base Control Register (TTBCR) on page B3-117.

• The Secure version of the VBAR, when the Security Extensions are implemented, see c12, Vector
Base Address Register (VBAR) on page B3-148.
B3-70 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Virtual Memory System Architecture (VMSA)
• The FCSEIDR, if the Fast Context Switch Extension (FCSE) is implemented, see c13, FCSE Process
ID Register (FCSEIDR) on page B3-152. This register is RAZ/WI when the FCSE is not
implemented.

For details of the reset values of these registers see the register descriptions. If the introductory description
of a register does not include its reset value then the architecture does not require that register to be reset to
a defined value.

The values of all other registers at reset are architecturally UNKNOWN. An implementation can assign an
IMPLEMENTATION DEFINED reset value to a register whose reset value is architecturally UNKNOWN. After a
reset, software must not rely on the value of any read/write register that does not have either an
architecturally-defined reset value or an IMPLEMENTATION DEFINED reset value.

B3.12.3 Effect of the Security Extensions on the CP15 registers

When the Security Extensions are implemented, they integrate with many features of the architecture.
Therefore, the descriptions of the individual CP15 registers include information about how the Security
Extensions affect the register. This section:

• summarizes how the Security Extensions affect the implementation of the CP15 registers

• summarizes how the Security Extensions control access to the CP15 registers

• describes a Security Extensions signal that can control access to some CP15 registers.

It contains the following subsections:

• Banked CP15 registers on page B3-72

• Restricted access CP15 registers on page B3-73

• Configurable access CP15 registers on page B3-74

• Common CP15 registers on page B3-74

• The CP15SDISABLE input on page B3-76

• Access to registers in Monitor mode on page B3-77.

Note
 • This section describes the effect of the Security Extensions on all of CP15 registers that are present

in an implementation that includes the Security Extensions.

• When the Security Extensions are implemented, the register classifications of Banked, Restricted
access, Configurable, or Common can apply to some coprocessor registers in addition to the CP15
registers.

It is IMPLEMENTATION DEFINED whether each IMPLEMENTATION DEFINED register is Banked, Restricted
access, Configurable, or Common.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-71

Virtual Memory System Architecture (VMSA)
Banked CP15 registers

When the Security Extensions are implemented, some CP15 registers are banked. Banked CP15 registers
have two copies, one Secure and one Non-secure. The SCR.NS bit selects the Secure or Non-secure register,
see c1, Secure Configuration Register (SCR) on page B3-106. Table B3-15 shows which registers are
banked, and the permitted access to each register.

Table B3-15 Banked CP15 registers

CP15
register

Banked register Permitted accessesa

c0 CSSELR, Cache Size Selection Register Read/write in privileged modes only

c1 SCTLR, System Control Registerb Read/write in privileged modes only

ACTLR, Auxiliary Control Registerc Read/write in privileged modes only

c2 TTBR0, Translation Table Base 0 Read/write in privileged modes only

TTBR1, Translation Table Base 1 Read/write in privileged modes only

TTBCR, Translation Table Base Control Read/write in privileged modes only

c3 DACR, Domain Access Control Register Read/write in privileged modes only

c5 DFSR, Data Fault Status Register Read/write in privileged modes only

IFSR, Instruction Fault Status Register Read/write in privileged modes only

ADFSR, Auxiliary Data Fault Status Register c Read/write in privileged modes only

AIFSR, Auxiliary Instruction Fault Status Registerc Read/write in privileged modes only

c6 DFAR, Data Fault Address Register Read/write in privileged modes only

IFAR, Instruction Fault Address Register Read/write in privileged modes only

c7 PAR, Physical Address Register (VA to PA translation) Read/write in privileged modes only

c10 PRRR, Primary Region Remap Register Read/write in privileged modes only

NMRR, Normal Memory Remap Register Read/write in privileged modes only

c12 VBAR, Vector Base Address Register Read/write in privileged modes only
B3-72 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Virtual Memory System Architecture (VMSA)
A Banked CP15 register can contain a mixture of:

• fields that are banked

• fields that are read-only in Non-secure privileged modes but read/write in the Secure state.

The System Control Register SCTLR is an example of a register of that contains this mixture of fields.

The Secure copies of the Banked CP15 registers are sometimes referred to as the Secure Banked CP15
registers. The Non-secure copies of the Banked CP15 registers are sometimes referred to as the Non-secure
Banked CP15 registers.

Restricted access CP15 registers

When the Security Extensions are implemented, some CP15 registers are present only in the Secure security
state. These are called Restricted access registers, and their read/write access permissions are:

• Restricted access CP15 registers cannot be modified in Non-secure state.

• The NSACR can be read in Non-secure privileged modes, but not in Non-secure User mode. This
enables software running in a Non-secure privileged mode to read the access permissions for CP15
registers that have configurable access.

• Apart from the NSACR, Restricted access CP15 registers cannot be read in Non-secure state.

Table B3-16 on page B3-74 shows the Restricted access CP15 registers when the Security Extensions are
implemented:

c13 FCSEIDR, FCSE PID Registerd Read/write in privileged modes only

CONTEXTIDR, Context ID Register Read/write in privileged modes only

TPIDRURW, User Read/Write Thread ID Read/write in unprivileged and privileged
modes

TPIDRURO, User Read-only Thread ID Read-only in User mode

Read/write in privileged modes

TPIDRPRW, Privileged Only Thread ID Read/write in privileged modes only

a. Any attempt to execute an access that is not permitted results in an Undefined Instruction exception.
b. Some bits are common to the Secure and the Non-secure register, see c1, System Control Register (SCTLR) on

page B3-96.
c. Register is IMPLEMENTATION DEFINED.
d. Banked only if the FCSE is implemented. The FCSE PID Register is RAZ/WI if the FCSE is not implemented.

Table B3-15 Banked CP15 registers (continued)

CP15
register

Banked register Permitted accessesa
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-73

Virtual Memory System Architecture (VMSA)
Configurable access CP15 registers

Access to some CP15 registers is configurable. These registers can be:

• accessible from Secure states only

• accessible from both Secure and Non-secure states.

Access is controlled by bits in the NSACR, see c1, Non-Secure Access Control Register (NSACR) on
page B3-110.

In ARMv7-A, the only required Configurable access CP15 register is:

• CPACR, Coprocessor Access Control Register.

Common CP15 registers

Some CP15 registers and operations are common to the Secure and Non-secure security states. These are
described as the Common access CP15 registers, or simply as the Common CP15 registers. These registers
are:

• Read-only registers that hold configuration information.

• Register encodings used for various memory system operations, rather than to access registers.

• The Interrupt Status Register (ISR).

Table B3-16 Restricted access CP15 registers

CP15 register Secure register Permitted accessesa

c1 NSACR, Non-Secure Access Control Read/write in Secure privileged modes
Read-only in Non-secure privileged modes

SCR, Secure Configuration Read/write in Secure privileged modes

SDER, Secure Debug Enable Read/write in Secure privileged modes

c12 MVBAR, Monitor Vector Base Address Read/write in Secure privileged modes

a. Any attempt to execute an access that is not permitted results in an Undefined Instruction exception.
B3-74 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Virtual Memory System Architecture (VMSA)
Table B3-17 shows the registers that are present in an ARMv7-A implementation that are not affected by
the Security Extensions. When the Security Extensions are implemented these registers are sometimes
described as the common registers.

Table B3-17 Common CP15 registers

CP15
register

Register Permitted accessesa

c0 MIDR, Main ID Register Read-only in privileged modes only

CTR, Cache Type Register Read-only in privileged modes only

TCMTR, TCM Type Registerb Read-only in privileged modes only

TLBTR, TLB Type Registerb Read-only in privileged modes only

MPIDR, Multiprocessor Affinity Register Read-only in privileged modes only

ID_PFRx, Processor Feature Registers Read-only in privileged modes only

ID_DFR0, Debug Feature Register 0 Read-only in privileged modes only

ID_AFR0, Auxiliary Feature Register 0 Read-only in privileged modes only

ID_MMFRx, Memory Model Feature Registers Read-only in privileged modes only

ID_ISARx, Instruction Set Attribute Registers Read-only in privileged modes only

CCSIDR, Cache Size ID Register Read-only in privileged modes only

CLIDR, Cache Level ID Register Read-only in privileged modes only

AIDR, Auxiliary ID Registerb Read-only in privileged modes only

c7 NOP Write-only in privileged modes only

Cache maintenance operations See CP15 c7, Cache and branch predictor
maintenance functions on page B3-126

VA to PA Translation operations See CP15 c7, Virtual Address to Physical Address
translation operations on page B3-130

Data Barrier Operations Write-only in unprivileged and privileged modes

c8 TLB maintenance operations Write-only in privileged modes only

c9 Performance monitors See Access permissions on page C9-12

c12 ISR, Interrupt Status Register Read-only in privileged modes only

a. Any attempt to execute an access that is not permitted results in an Undefined Instruction exception.
b. Register or operation details are IMPLEMENTATION DEFINED.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-75

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Sticky Note
In ARMv7, architectually, the following CP15 c7 encodings are UNPREDICTABLE, but in some implementations the write operation is a NOP:
 • opc1 == 0, CRm == c0, opc2 == 4
 • opc1 == 0, CRm == c13, opc2 == 1.

Virtual Memory System Architecture (VMSA)
Secure CP15 registers

The Secure CP15 registers comprise:

• The Secure copies of the Banked CP15 registers

• Restricted access CP15 registers

• Configurable access CP15 registers that are configured to be accessible only from Secure state.

The CP15SDISABLE input

The Security Extensions include an input signal, CP15SDISABLE, that disables write access to some of
the Secure registers when asserted HIGH.

Note
 The interaction between CP15SDISABLE and any IMPLEMENTATION DEFINED register is IMPLEMENTATION
DEFINED.

Table B3-18 shows the registers and operations affected.

On a reset by the external system, the CP15SDISABLE input signal must be taken LOW. This permits the
Reset code to set up the configuration of the Security Extensions. When the input is asserted HIGH, any
attempt to write to the Secure registers shown in Table B3-18 results in an Undefined Instruction exception.

Table B3-18 Secure registers affected by CP15SDISABLE

CP15
register

Register name Affected operation

c1 SCTLR, System Control Register MCR p15, 0, <Rt>, c1, c0, 0

c2 TTBR0, Translation Table Base Register 0 MCR p15, 0, <Rt>, c2, c0, 0

TTBCR, Translation Table Base Control Register MCR p15, 0, <Rt>, c2, c0, 2

c3 DACR, Domain Access Control Register MCR p15, 0, <Rt>, c3, c0, 0

c10 PRRR. Primary Region Remap Register MCR p15, 0, <Rt>, c10, c2, 0

NMRR, Normal Memory Remap Register MCR p15, 0, <Rt>, c10, c2, 1

c12 VBAR, Vector Base Address Register MCR p15, 0, <Rt>, c12, c0, 0

MVBAR, Monitor Vector Base Address Register MCR p15, 0, <Rt>, c12, c0, 1

c13 FCSEIDR, FCSE PID Register a

a. If the FCSE is implemented. The FCSE PID Register is RAZ/WI if the FCSE is not implemented.

MCR p15, 0, <Rt>, c13, c0, 0
B3-76 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Virtual Memory System Architecture (VMSA)
The CP15SDISABLE input does not affect reading Secure registers, or reading or writing Non-secure
registers. It is IMPLEMENTATION DEFINED how the input is changed and when changes to this input are
reflected in the processor. However, changes must be reflected as quickly as possible. The change must
occur before completion of a Instruction Synchronization Barrier operation, issued after the change, is
visible to the processor with respect to instruction execution boundaries. Software must perform a
Instruction Synchronization Barrier operation meeting the above conditions to ensure all subsequent
instructions are affected by the change to CP15SDISABLE.

The assertion of CP15SDISABLE enables key Secure privileged features to be locked in a known good
state, providing an additional level of overall system security. ARM expects control of this input to reside
in the system, in a system block dedicated to security.

Access to registers in Monitor mode

When the processor is in Monitor mode, the processor is in Secure state regardless of the value of the
SCR.NS bit. In Monitor mode, the SCR.NS bit determines whether the Secure Banked CP15 registers or
Non-secure Banked CP15 registers are read or written using MRC or MCR instructions. That is:

NS = 0 Common, Restricted access, and Secure Banked registers are accessed by CP15 MRC and MCR
instructions.

CP15 operations use the security state to determine all resources used, that is, all CP15
based operations are performed in Secure state.

NS = 1 Common, Restricted access and Non-secure Banked registers are accessed by CP15 MRC and
MCR instructions.

CP15 operations use the security state to determine all resources used, that is, all CP15
based operations are performed in Secure state.

The security state determines whether the Secure or Non-secure Banked registers are used to determine the
control state.

B3.12.4 Changes to CP15 registers and the memory order model

All changes to CP15 registers that appear in program order after any explicit memory operations are
guaranteed not to affect those memory operations.

Any change to CP15 registers is guaranteed to be visible to subsequent instructions only after one of:

• the execution of an ISB instruction

• the taking of an exception

• the return from an exception.

To guarantee the visibility of changes to some CP15 registers, additional operations might be required, on
a case by case basis, before the ISB instruction, exception or return from exception. These cases are
identified specifically in the definition of the registers.

However, for CP15 register accesses, all MRC and MCR instructions to the same register using the same register
number appear to occur in program order relative to each other without context synchronization.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-77

ARM_2011_Q2
Sticky Note
To clarify the intended meaning of this statement:
The events listed can be described as context synchronization operations.
 • Without a context synchronization operation, the change becomes visible at some point after the instruction that changed the CP15 registers.
 • However, until a context synchronization operation has occurred, the architecture does not guarantee that the change is visible.

Virtual Memory System Architecture (VMSA)
Where a change to the CP15 registers that is not yet guaranteed to be visible has an effect on exception
processing, the following rule applies:

• When it is determined that an exception must be taken, any change of state held in CP15 registers
involved in the triggering of the exception and that affects the processing of the exception is
guaranteed to take effect before the exception is taken.

Therefore, in the following example, where initially A=1 and V=0, the LDR might or might not take a Data
Abort exception due to the unaligned access, but if an exception occurs the vector used is affected by the
V bit:

MCR p15, R0, c1, c0, 0 ; clears the A bit and sets the V bit
LDR R2, [R3] ; unaligned load.

B3.12.5 Meaning of fixed bit values in register diagrams

In register diagrams, fixed bits are indicated by one of following:

0 In any implementation:

• the bit must read as 0

• writes to the bit must be ignored.

Software:

• can rely on the bit reading as 0

• must use an SBZP policy to write to the bit.

(0) In any implementation:

• the bit must read as 0

• writes to the bit must be ignored.

Software:

• must not rely on the bit reading as 0

• must use an SBZP policy to write to the bit.

1 In any implementation:

• the bit must read as 1

• writes to the bit must be ignored.

Software:

• can rely on the bit reading as 1

• must use an SBOP policy to write to the bit.

(1) In any implementation:

• the bit must read as 1

• writes to the bit must be ignored.

Software:

• must not rely on the bit reading as 1

• must use an SBOP policy to write to the bit.

Fields that are more than 1 bit wide are sometimes described as UNK/SBZP, instead of having each bit
marked as (0).
B3-78 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2011_Q2
Inserted Text
0,

Virtual Memory System Architecture (VMSA)
B3.12.6 CP15 c0, ID codes registers

The CP15 c0 registers are used for processor and feature identification. Figure B3-11 shows the CP15 c0
registers.

Figure B3-11 CP15 c0 registers in a VMSA implementation

CP15 c0 register encodings not shown in Figure B3-11 are UNPREDICTABLE, see Unallocated CP15
encodings on page B3-69.

Note
 Chapter B5 The CPUID Identification Scheme describes the CPUID registers shown in Figure B3-11.

<7� �%�� <7,

<3 �76�<��)��3����� ��7�.'*&��
<<� �76�<��)���'E�� ��7�.'*&��*

<��:376�<��)���'E�������&'���7�.'*&���

��

�%��

��

��

!� �76�!$�&'%����**����(('�'&��7�.'*&��
��'�*�*��(�!�'�� ��7�.'*&��

	
4�6�6
5

��� #� �A��7�6������**������&$���7�.'*&����
#� �A��7�6������**������&$���7�.'*&����
#� �A��7�6���-$.����&$���7�.'*&����
#� �A��7�6��$+'�'�������&$���7�.'*&����
#� �A!!�7�6�!�,����!��������&$���7�.'*&����
#� �A!!�7�6�!�,����!��������&$���7�.'*&����
#� �A!!�7�6�!�,����!��������&$���7�.'*&����
#� �A!!�7�6�!�,����!��������&$���7�.'*&����

�

�

�
�

�
	
�

7�����*�D���

#� �A ��7�6� ������&$���7�.'*&����
#� �A ��7�6� ������&$���7�.'*&����
#� �A ��7�6� ������&$���7�.'*&����
#� �A ��7�6� ������&$���7�.'*&����
#� �A ��7�6� ������&$���7�.'*&����
#� �A ��7	6� ������&$���7�.'*&���	

�

�
�

�
	

4�6
5
7�����*�D���4����
5 4��
5

� �76��$+'�'���� ��7�.'*&��� !�3:!:?@�@ =?��:� ?:�

���

7���PQ�'&�7�������� Q�'&������

�

#�<�" ����.'*&��*

<@76�<��)��@�%��7�.'*&��
��

@39@76�@39�@�%��7�.'*&��6���&�'�*� !�3:!:?@�@ =?��:� ?:�

� ��

@<!@76�@<!�@�%��7�.'*&��6���&�'�*� !�3:!:?@�@ =?��:� ?:�

! �76�!�'�� ��7�.'*&��
�

�
�

�

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-79

Virtual Memory System Architecture (VMSA)
Table B3-19 lists the CP15 c0 registers and shows where each register is described in full. The table does
not include the reserved and aliased registers that are shown in Figure B3-11 on page B3-79.

Note
 The CPUID scheme described in Chapter B5 The CPUID Identification Scheme includes information about
the implementation of the optional VFP and Advanced SIMD architecture extensions. See Advanced SIMD
and VFP extensions on page A2-20 for a summary of the implementation options for these features.

Table B3-19 Index to CP15 c0 register descriptions

opc1 CRm opc2 Register and description

0 c0 0 c0, Main ID Register (MIDR) on page B3-81

1 c0, Cache Type Register (CTR) on page B3-83

2 c0, TCM Type Register (TCMTR) on page B3-85

3 c0, TLB Type Register (TLBTR) on page B3-86

5 c0, Multiprocessor Affinity Register (MPIDR) on page B3-87

4, 6, 7 c0, Main ID Register (MIDR) on page B3-81

c1 0, 1 CP15 c0, Processor Feature registers on page B5-4

2 c0, Debug Feature Register 0 (ID_DFR0) on page B5-6

3 c0, Auxiliary Feature Register 0 (ID_AFR0) on page B5-8

4-7 CP15 c0, Memory Model Feature registers on page B5-9

c2 0-5 CP15 c0, Instruction Set Attribute registers on page B5-19

1 c0 0 c0, Cache Size ID Registers (CCSIDR) on page B3-91

1 c0, Cache Level ID Register (CLIDR) on page B3-92

7 c0, Implementation defined Auxiliary ID Register (AIDR) on page B3-94

2 c0 0 c0, Cache Size Selection Register (CSSELR) on page B3-95
B3-80 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Virtual Memory System Architecture (VMSA)
B3.12.7 c0, Main ID Register (MIDR)

The Main ID Register, MIDR, provides identification information for the processor, including an
implementer code for the device and a device ID number.

The MIDR is:

• a 32-bit read-only register

• accessible only in privileged modes

• when the Security Extensions are implemented, a Common register.

Some fields of the MIDR are IMPLEMENTATION DEFINED. For details of the values of these fields for a
particular ARMv7 implementation, and any implementation-specific significance of these values, see the
product documentation.

The format of the MIDR is:

Implementer, bits [31:24]

The Implementer code. Table B3-20 shows the permitted values for this field:

All other values are reserved by ARM and must not be used.

Variant, bits [23:20]

An IMPLEMENTATION DEFINED variant number. Typically, this field is used to distinguish
between different product variants, or major revisions of a product.

31 24 23 20 19 16 15 4 3 0

Implementer Variant Architecture Primary part number Revision

Table B3-20 Implementer codes

Bits [31:24] ASCII character Implementer

0x41 A ARM Limited

0x44 D Digital Equipment Corporation

0x4D M Motorola, Freescale Semiconductor Inc.

0x51 Q QUALCOMM Inc.

0x56 V Marvell Semiconductor Inc.

0x69 i Intel Corporation
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-81

Virtual Memory System Architecture (VMSA)
Architecture, bits [19:16]

Table B3-21 shows the permitted values for this field:

All other values are reserved by ARM and must not be used.

Primary part number, bits [15:4]

An IMPLEMENTATION DEFINED primary part number for the device.

Note
 On processors implemented by ARM, if the top four bits of the primary part number are 0x0

or 0x7, the variant and architecture are encoded differently, see c0, Main ID Register (MIDR)
on page AppxH-34. Processors implemented by ARM have an Implementer code of 0x41.

Revision, bits [3:0]

An IMPLEMENTATION DEFINED revision number for the device.

ARMv7 requires all implementations to use the CPUID scheme, described in Chapter B5 The CPUID
Identification Scheme, and an implementation is described by the MIDR with the CPUID registers.

Note
 For an ARMv7 implementation by ARM, the MIDR is interpreted as:

Bits [31:24] Implementer code, must be 0x41.

Bits [23:20] Major revision number, rX.

Bits [19:16] Architecture code, must be 0xF.

Bits [15:4] ARM part number.

Bits [3:0] Minor revision number, pY.

Table B3-21 Architecture codes

Bits [19:16] Architecture

0x1 ARMv4

0x2 ARMv4T

0x3 ARMv5 (obsolete)

0x4 ARMv5T

0x5 ARMv5TE

0x6 ARMv5TEJ

0x7 ARMv6

0xF Defined by CPUID scheme
B3-82 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Virtual Memory System Architecture (VMSA)
Accessing the MIDR

To access the MIDR you read the CP15 registers with <opc1> set to 0, <CRn> set to c0, <CRm> set to c0, and
<opc2> set to 0. For example:

MRC p15,0,<Rt>,c0,c0,0 ; Read CP15 Main ID Register

B3.12.8 c0, Cache Type Register (CTR)

The Cache Type Register, CTR, provides information about the architecture of the caches.

The CTR is:

• a 32-bit read-only register

• accessible only in privileged modes

• when the Security Extensions are implemented, a Common register.

The format of the CTR is changed in ARMv7. The new format of the register is indicated by Bit [31:29]
being set to 0b100. For details of the format of the Cache Type Register in versions of the ARM architecture
before ARMv7 see c0, Cache Type Register (CTR) on page AppxH-35.

In ARMv7, the format of the CTR is:

Bits [31:29] Set to 0b100 for the ARMv7 register format. Set to 0b000 for the format used in ARMv6
and earlier.

Bit [28] RAZ.

CWG, bits [27:24]

Cache Writeback Granule. Log2 of the number of words of the maximum size of memory
that can be overwritten as a result of the eviction of a cache entry that has had a memory
location in it modified.

A value of 0b0000 indicates that the CTR does not provide Cache Writeback Granule
information and either:

• the architectural maximum of 512 words (2Kbytes) must be assumed

• the Cache Writeback Granule can be determined from maximum cache line size
encoded in the Cache Size ID Registers.

Values greater than 0b1001 are reserved.

ERG, bits [27:24]

Exclusives Reservation Granule. Log2 of the number of words of the maximum size of the
reservation granule that has been implemented for the Load-Exclusive and Store-Exclusive
instructions. For more information, see Tagging and the size of the tagged memory block on
page A3-20.

31 29 28 27 24 23 20 19 16 15 14 13 4 3 0

1 0 0 0 CWG ERG DminLine L1Ip 0 0 0 0 0 0 0 0 0 0 IminLine
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-83

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
23:20

Virtual Memory System Architecture (VMSA)
A value of 0b0000 indicates that the CTR does not provide Exclusives Reservation Granule
information and the architectural maximum of 512 words (2Kbytes) must be assumed.

Values greater than 0b1001 are reserved.

DminLine, bits [19:16]

Log2 of the number of words in the smallest cache line of all the data caches and unified
caches that are controlled by the processor.

L1Ip, bits [15:14]

Level 1 instruction cache policy. Indicates the indexing and tagging policy for the
L1 instruction cache. Table B3-22 shows the possible values for this field.

Bits [13:4] RAZ.

IminLine, bits [3:0]

Log2 of the number of words in the smallest cache line of all the instruction caches that are
controlled by the processor.

Accessing the CTR

To access the CTR you read the CP15 registers with <opc1> set to 0, <CRn> set to c0, <CRm> set to c0, and
<opc2> set to 1. For example

MRC p15,0,<Rt>,c0,c0,1 ; Read CP15 Cache Type Register

Table B3-22 Level 1 instruction cache policy field values

L1Ip bits L1 instruction cache indexing and tagging policy

00 Reserved

01 ASID-tagged Virtual Index, Virtual Tag (AIVIVT)

10 Virtual Index, Physical Tag (VIPT)

11 Physical Index, Physical Tag (PIPT)
B3-84 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Virtual Memory System Architecture (VMSA)
B3.12.9 c0, TCM Type Register (TCMTR)

The TCM Type Register, TCMTR, provides information about the implementation of the TCM.

The TCMTR is:

• a 32-bit read-only register

• accessible only in privileged modes.

• when the Security Extensions are implemented, a Common register.

From ARMv7:

• TCMTR must be implemented

• when the ARMv7 format is used, the meaning of register bits [28:0] is IMPLEMENTATION DEFINED

• the ARMv6 format of the TCM Type Register remains a valid usage model

• if no TCMs are implemented the ARMv6 format must be used to indicate zero-sized TCMs.

The ARMv7 format of the TCMTR is:

Bits [31:29] Set to 0b100 for the ARMv7 register format.

Note
 This field is set to 0b000 for the format used in ARMv6 and earlier.

Bits [28:0] IMPLEMENTATION DEFINED in the ARMv7 register format.

If no TCMs are implemented, the TCMTR must be implemented with this ARMv6 format:

For details of the ARMv6 optional implementation of the TCM Type Register see c0, TCM Type Register
(TCMTR) on page AppxG-33.

Accessing the TCMTR

To access the TCMTR you read the CP15 registers with <opc1> set to 0, <CRn> set to c0, <CRm> set to c0, and
<opc2> set to 2. For example:

MRC p15,0,<Rt>,c0,c0,2 ; Read CP15 TCM Type Register

31 29 28 0

1 0 0 IMPLEMENTATION DEFINED

31 29 28 19 18 16 15 3 2 0

0 0 0 UNKNOWN 0 0 0 UNKNOWN 0 0 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-85

Virtual Memory System Architecture (VMSA)
B3.12.10 c0, TLB Type Register (TLBTR)

The TLB Type Register, TLBTR, provides information about the TLB implementation. The register must
define whether the implementation provides separate instruction and data TLBs, or a unified TLB.
Normally, the IMPLEMENTATION DEFINED information in this register includes the number of lockable
entries in the TLB.

The TLBTR is:

• a 32-bit read-only register

• accessible only in privileged modes

• implemented only when the VMSA is implemented

• when the Security Extensions are implemented, a Common register.

The format of the TLBTR is:

Bits [31:1] IMPLEMENTATION DEFINED.

nU, bit [0] Not Unified TLB. Indicates whether the implementation has a unified TLB:

nU == 0 Unified TLB.

nU == 1 Separate Instruction and Data TLBs.

Note
 From ARMv7, the TLB lockdown mechanism is IMPLEMENTATION DEFINED, and therefore the details of
bits [31:1] of the TLB Type Register are IMPLEMENTATION DEFINED.

Accessing the TLBTR

To access the TLBTR you read the CP15 registers with <opc1> set to 0, <CRn> set to c0, <CRm> set to c0, and
<opc2> set to 3. For example:

MRC p15,0,<Rt>,c0,c0,3 ; Read CP15 TLB Type Register

31 1 0

IMPLEMENTATION DEFINED nU
B3-86 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Virtual Memory System Architecture (VMSA)
B3.12.11 c0, Multiprocessor Affinity Register (MPIDR)

The Multiprocessor Affinity Register, MPIDR, provides an additional processor identification mechanism
for scheduling purposes in a multiprocessor system. In a uniprocessor system ARM recommends that this
register returns a value of 0.

The MPIDR is:

• a 32-bit read-only register

• accessible only in privileged modes

• when the Security Extensions are implemented, a Common register

• introduced in ARMv7.

In the ARMv7 base architecture the format of the MPIDR is:

When the Multiprocessing Extensions are implemented the format of the MPIDR is:

Note
 In the MIDR bit definitions, a processor in the system can be a physical processor or a virtual CPU.

Bits [31:24], ARMv7 base architecture

Reserved, RAZ.

Bits [31], Multiprocessing Extensions

RAO. Indicates that the processor implements the Multiprocessing Extensions register
format.

U bit, bit [30], Multiprocessing Extensions

Indicates a Uniprocessor system, as distinct from processor 0 in a multiprocessor system.
The possible values of this bit are:

0 Processor is part of a multiprocessor system.

1 Processor is part of a uniprocessor system

0

31 24 23 16 15 8 7 0

0 0 0 0 0 0 0 Affinity Level 2 Affinity Level 1 Affinity Level 0

1

31 30 29 25 24 23 16 15 8 7 0

U (0) (0) (0) (0) (0) Affinity Level 2 Affinity Level 1 Affinity Level 0

MT
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-87

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
Aff2

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
Aff1

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
Aff0

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
Aff2

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
Aff1

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
Aff0

ARM_2008_Q4
Sticky Note
These changes, and the corresponding changes on the next page, only add short names for the MPIDR register fields. They do not affect functionality.

ARM_2010_Q3
Cross-Out

ARM_2010_Q3
Replacement Text
MPIDR

Virtual Memory System Architecture (VMSA)
Bits [29:25], Multiprocessing Extensions

Reserved, UNK.

MT bit, bit [24], Multiprocessing Extensions

Indicates whether the lowest level of affinity consists of logical processors that are
implemented using a multi-threading type approach. The possible values of this bit are:

0 Performance of processors at the lowest affinity level is largely independent.

1 Performance of processors at the lowest affinity level is very interdependent

For more information about the meaning of this bit see Multi-threading approach to lowest
affinity levels, Multiprocessing Extensions on page B3-89.

Affinity level 2, bits [23:16]

The least significant affinity level field, for this processor in the system.

Affinity level 1, bits [15:8]

The intermediate affinity level field, for this processor in the system.

Affinity level 0, bits [7:0]

The most significant level field, for this processor in the system.

In the system as a whole, for each of the affinity level fields, the assigned values must start at 0 and increase
monotonically.

Increasing monotonically means that:

• There must not be any gaps in the sequence of numbers used.

• A higher value of the field includes any properties indicated by all lower values of the field.

When matching against an affinity level field, scheduler software checks for a value equal to or greater than
a required value.

Recommended use of the MPIDR on page B3-89 includes a description of an example multiprocessor
system and the affinity level field values it might use.

The interpretation of these fields is IMPLEMENTATION DEFINED, and must be documented as part of the
documentation of the multiprocessor system. ARM recommends that this register might be used as
described in the next subsection.

The software mechanism to discover the total number of affinity numbers used at each level is
IMPLEMENTATION DEFINED, and is part of the general system identification task.
B3-88 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
Aff2

ARM_2008_Q4
Inserted Text
Affinity level 2.

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
Aff1

ARM_2008_Q4
Inserted Text
Affinity level 1.

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
Aff0

ARM_2008_Q4
Inserted Text
Affinity level 0.

ARM_2008_Q4
Sticky Note
These changes, and the corresponding changes on the previous page, only add short names for the MPIDR register fields. They do not affect functionality.

ARM_2009_Q1
Inserted Text
affinity

ARM_2009_Q1
Cross-Out
This is deletion of information that is not required and not appropriate. It is not a change to this specification.

Virtual Memory System Architecture (VMSA)
Multi-threading approach to lowest affinity levels, Multiprocessing Extensions

When the Multiprocessing Extensions are implemented, if the MPIDR.MT bit is set to 1, this indicates that
the processors at affinity level 0 are logical processors, implemented using a multi-threading type approach.
In such an approach, there can be a significant performance impact if a new thread is assigned the processor
with:

• the same Affinity Level 0 value as some other thread, referred to as the original thread

• a pair of values for Affinity Levels 2 and 3 that are different to the pair of values of the original thread.

In this situation, the performance of the original thread might be significantly reduced.

Note
 In this description, thread always refers to a thread or a process.

Recommended use of the MPIDR

In a multiprocessor system the register might provide two important functions:

• Identifying special functionality of a particular processor in the system. In general, the actual
meaning of the affinity level fields is not important. In a small number of situations, an affinity level
field value might have a special IMPLEMENTATION DEFINED significance. Possible examples include
booting from reset and power-down events.

• Providing affinity information for the scheduling software, to help the scheduler run an individual
thread or process on either:

— the same processor, or as similar a processor as possible, as the processor it was running on
previously

— a processor on which a related thread or process was run.

Note
 A monotonically increasing single number ID mechanism provides a convenient index into software arrays
and for accessing the interrupt controller. This might be:

• performed as part of the boot sequence

• stored as part of the local storage of threads.

MPIDR provides a mechanism with up to three levels of affinity information, but the meaning of those levels
of affinity is entirely IMPLEMENTATION DEFINED. The levels of affinity provided can have different
meanings. Table B3-23 on page B3-90 shows two possible implementations:
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-89

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
2

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
a different

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
to

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
the same as

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
1

ARM_2009_Q1
Cross-Out
This is deletion of information that is not required and not appropriate. It is not a change to this specification.

Virtual Memory System Architecture (VMSA)
The scheduler maintains affinity level information for all threads and processes. When it has to reschedule
a thread or process the scheduler:

• looks for an available processor that matches at all three affinity levels

• if this fails, it might look for a processor that matches at levels 2 and 3 only

• if it still cannot find an available processor it might look for a match at level 3 only.

A multiprocessor system corresponding to Example system 1 in Table B3-23 might implement affinity
values as shown in Table B3-24:

Accessing the MPIDR

To access MPIDR you read the CP15 registers with <opc1> set to 0, <CRn> set to c0, <CRm> set to c0, and <opc2>
set to 5. For example:

MRC p15,0,<Rt>,c0,c0,5 ; Read Multiprocessor Affinity Register

Table B3-23 Possible implementations of the affinity levels

Affinity Level Example system 1 Example system 2

0 Virtual CPUs in a multi-threaded processor Processors in an SMP cluster

1 Processors in an Symmetric Multi Processor (SMP) cluster Clusters with a system

2 Clusters in a system No meaning, fixed as 0.

Table B3-24 Example of possible affinity values at different affinity levels

Affinity level 2
Cluster level

Affinity level 1
Processor level

Affinity level 0
Virtual CPU level

0 0 0, 1

0 1 0, 1

0 2 0, 1

0 3 0, 1

1 0 0, 1

1 1 0, 1

1 2 0, 1

1 3 0, 1
B3-90 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
1

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
2

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
2

Virtual Memory System Architecture (VMSA)
B3.12.12 c0, Cache Size ID Registers (CCSIDR)

The Cache Size ID Registers, CCSIDR, provide information about the architecture of the caches.

The CCSIDR registers are:

• 32-bit read-only registers

• accessible only in privileged modes

• when the Security Extensions are implemented, Common registers

• introduced in ARMv7.

One CCSIDR is implemented for each cache that can be accessed by the processor. CSSELR selects which
Cache Size ID Register is accessible, see c0, Cache Size Selection Register (CSSELR) on page B3-95.

The format of a CCSIDR is:

WT, bit [31] Indicates whether the cache level supports Write-Through, see Table B3-25.

WB, bit [30] Indicates whether the cache level supports Write-Back, see Table B3-25.

RA, bit [29] Indicates whether the cache level supports Read-Allocation, see Table B3-25.

WA, bit [28] Indicates whether the cache level supports Write-Allocation, see Table B3-25.

NumSets, bits [27:13]

(Number of sets in cache) - 1, therefore a value of 0 indicates 1 set in the cache. The number
of sets does not have to be a power of 2.

Associativity, bits [12:3]

(Associativity of cache) - 1, therefore a value of 0 indicates an associativity of 1. The
associativity does not have to be a power of 2.

LineSize, bits [2:0]

(Log2(Number of words in cache line)) -2. For example:

• For a line length of 4 words: Log2(4) = 2, LineSize entry = 0.

31 30 29 28 27 13 12 3 2 0

W
T

W
B

RA
W
A

NumSets Associativity LineSize

Table B3-25 WT, WB, RA and WA bit values

WT, WB, RA or WA bit value Meaning

0 Feature not supported

1 Feature supported
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-91

Virtual Memory System Architecture (VMSA)
This is the minimum line length.

• For a line length of 8 words: Log2(8) = 3, LineSize entry = 1.

Accessing the currently selected CCSIDR

The CSSELR selects a CCSIDR, see c0, Cache Size Selection Register (CSSELR) on page B3-95. To access
the currently-selected CCSIDR you read the CP15 registers with <opc1> set to 1, <CRn> set to c0, <CRm> set
to c0, and <opc2> set to 0. For example:

MRC p15,1,<Rt>,c0,c0,0 ; Read current CP15 Cache Size ID Register

Accessing the CCSIDR when the value in CSSELR corresponds to a cache that is not implemented returns
an UNKNOWN value.

B3.12.13 c0, Cache Level ID Register (CLIDR)

The Cache Level ID Register, CLIDR:

• identifies the type of cache, or caches, implemented at each level, up to a maximum of eight levels

• identifies the Level of Coherency and Level of Unification for the cache hierarchy.

The CLIDR is:

• a 32-bit read-only register

• accessible only in privileged modes

• when the Security Extensions are implemented, a Common register

• introduced in ARMv7.

The format of the CLIDR is:

Bits [31:30] RAZ.

LoUU, bits [29:27]

Level of Unification Uniprocessor for the cache hierarchy, see Clean, Invalidate, and Clean
and Invalidate on page B2-11.

LoC, bits [26:24]

Level of Coherency for the cache hierarchy, see Clean, Invalidate, and Clean and Invalidate
on page B2-11.

LoUIS, bits [23:21]

Level of Unification Inner Shareable for the cache hierarchy, see Clean, Invalidate, and
Clean and Invalidate on page B2-11. This field is RAZ in implementations that do not
implement the Multiprocessing Extensions.

31 30 29 27 26 24 23 21 20 18 17 15 14 12 11 9 8 6 5 3 2 0

0 0 LoUU LoC LoUIS Ctype7 Ctype6 Ctype5 Ctype4 Ctype3 Ctype2 Ctype1
B3-92 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
seven

Virtual Memory System Architecture (VMSA)
CtypeX, bits [3(x - 1) + 2:3(x - 1)], for x = 1 to 7

Cache Type fields. Indicate the type of cache implemented at each level, from Level 1 up to
a maximum of seven levels of cache hierarchy. The Level 1 cache field, Ctype1, is bits [2:0],
see register diagram. Table B3-26 shows the possible values for each CtypeX field.

If you read the Cache Type fields from Ctype1 upwards, once you have seen a value of
0b000, no caches exist at further out levels of the hierarchy. So, for example, if Ctype3 is
the first Cache Type field with a value of 0b000, the values of Ctype4 to Ctype7 must be
ignored.

The CLIDR describes only the caches that are under the control of the processor.

Accessing the CLIDR

To access the CLIDR you read the CP15 registers with <opc1> set to 1, <CRn> set to c0, <CRm> set to c0, and
<opc2> set to 1. For example:

MRC p15,1,<Rt>,c0,c0,1 ; Read CP15 Cache Level ID Register

Table B3-26 Ctype bit values

CtypeX value Meaning, cache implemented at this level

000 No cache

001 Instruction cache only

010 Data cache only

011 Separate instruction and data caches

100 Unified cache

101, 11X Reserved
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-93

Virtual Memory System Architecture (VMSA)
B3.12.14 c0, IMPLEMENTATION DEFINED Auxiliary ID Register (AIDR)

The IMPLEMENTATION DEFINED Auxiliary ID Register, AIDR, provides implementation-specific ID
information. The value of this register must be used in conjunction with the value of MIDR.

The IMPLEMENTATION DEFINED AIDR is:

• a 32-bit read-only register

• accessible only in privileged modes

• when the Security Extensions are implemented, a Common register

• introduced in ARMv7.

The format of the AIDR is IMPLEMENTATION DEFINED.

Accessing the AIDR

To access the AIDR you read the CP15 registers with <opc1> set to 1, <CRn> set to c0, <CRm> set to c0, and
<opc2> set to 7. For example:

MRC p15,1,<Rt>,c0,c0,7 ; Read IMPLEMENTATION DEFINED Auxiliary ID Register
B3-94 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Virtual Memory System Architecture (VMSA)
B3.12.15 c0, Cache Size Selection Register (CSSELR)

The Cache Size Selection Register, CSSELR, selects the current CCSIDR. An ARMv7 implementation
must include a CCSIDR for every implemented cache that is under the control of the processor. The
CSSELR identifies which CP1CSID register can be accessed, by specifying, for the required cache:

• the cache level

• the cache type, either:

— instruction cache.

— Data cache. The data cache argument is also used for a unified cache.

The CSSELR is:

• a 32-bit read/write register

• accessible only in privileged modes

• when the Security Extensions are implemented, a Banked register

• introduced in ARMv7.

The format of the CSSELR is:

Bits [31:4] UNK/SBZP.

Level, bits [3:1]

Cache level of required cache. Permitted values are from 0b000, indicating Level 1 cache,
to 0b110 indicating Level 7 cache.

InD, bit [0]

Instruction not Data bit. Permitted values are:

0 Data or unified cache

1 Instruction cache.

If CSSELR is set to indicate a cache that is not implemented, the result of reading CCSIDR is
UNPREDICTABLE.

Accessing CSSELR

To access CSSELR you read or write the CP15 registers with <opc1> set to 2, <CRn> set to c0, <CRm> set to c0,
and <opc2> set to 0. For example:

MRC p15,2,<Rt>,c0,c0,0 ; Read Cache Size Selection Register
MCR p15,2,<Rt>,c0,c0,0 ; Write Cache Size Selection Register

�

��)�*������
�

��"

�� � ��
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-95

Virtual Memory System Architecture (VMSA)
B3.12.16 CP15 c1, System control registers

The CP15 c1 registers are used for system control. Figure B3-12 shows the CP15 c1 registers.

Figure B3-12 CP15 c1 registers in a VMSA implementation

CP15 c1 register encodings not shown in Figure B3-12 are UNPREDICTABLE. When the Security Extensions
are not implemented all encodings with CRm == c1 are UNPREDICTABLE. For more information, see
Unallocated CP15 encodings on page B3-69.

The following sections describe the CP15 c1 registers:

• c1, System Control Register (SCTLR)

• c1, Implementation defined Auxiliary Control Register (ACTLR) on page B3-103

• c1, Coprocessor Access Control Register (CPACR) on page B3-104

• c1, Secure Configuration Register (SCR) on page B3-106

• c1, Secure Debug Enable Register (SDER) on page B3-108

• c1, Non-Secure Access Control Register (NSACR) on page B3-110.

B3.12.17 c1, System Control Register (SCTLR)

The System Control Register, SCTLR, provides the top level control of the system, including its memory
system.

The SCTLR:

• Is a 32-bit read/write register, with different access rights for some bits of the register.

In ARMv7, some bits in the register are read-only. These bits relate to non-configurable features of
an ARMv7 implementation, and are provided for compatibility with previous versions of the
architecture.

• Is accessible only in privileged modes.

• Has a defined reset value. The reset value is IMPLEMENTATION DEFINED, see Reset value of the SCTLR
on page B3-102. When the Security Extensions are implemented the defined reset value applies only
to the Secure copy of the SCTLR, and software must program the non-banked read/write bits of the
Non-secure copy of the register with the required values.

<7� �%�� <7,
�� � �� �

�

�<@376�<��&����7�.'*&��

N��<76����$���<��('.$��&'���7�.'*&��

�%��

�

�� �
�
�

7���PQ�'&�7�������� Q�'&������

N�=����%��*��&�'(�&)�����$�'&��:+&��*'��*�����',%��,��&���

�<@376��$+'�'����<��&����7�.'*&��6� !�3:!:?@�@ =?��:� ?:�

<��<76�<�%����**�������**�<��&����7�.'*&��

N���:76����$�����-$.�:��-���7�.'*&��
N�?��<76�?���*��$�������**�<��&����7�.'*&��
B3-96 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2010_Q2
Cross-Out

ARM_2010_Q2
Replacement Text
System Control

Virtual Memory System Architecture (VMSA)
• When the Security Extensions are implemented:

— is a Banked register, with some bits common to the Secure and Non-secure copies of the
register

— has write access to the Secure copy of the register disabled when the CP15SDISABLE signal
is asserted HIGH.

For more information, see Effect of the Security Extensions on the CP15 registers on page B3-71.

Control bits in the SCTLR that are not applicable to a VMSA implementation read as the value that most
closely reflects that implementation, and ignore writes.

In an ARMv7-A implementation the format of the SCTLR is:

Bit [31] UNK/SBZP.

TE, bit [30] Thumb Exception enable. This bit controls whether exceptions are taken in ARM or Thumb
state:

0 Exceptions, including reset, handled in ARM state

1 Exceptions, including reset, handled in Thumb state.

When the Security Extensions are implemented, this bit is banked between the Secure and
Non-secure versions of the register.

An implementation can include a configuration input signal that determines the reset value
of the TE bit. If there is no configuration input signal to determine the reset value of this bit
then it resets to 0 in an ARMv7-A implementation.

For more information about the use of this bit see Instruction set state on exception entry on
page B1-35.

AFE, bit [29] Access Flag Enable bit. This bit enables use of the AP[0] bit in the translation table
descriptors as an access flag. It also restricts access permissions in the translation table
descriptors to the simplified model described in Simplified access permissions model on
page B3-29. The possible values of this bit are:

0 In the translation table descriptors, AP[0] is an access permissions bit. The full
range of access permissions is supported. No access flag is implemented.

1 In the translation table descriptors, AP[0] is an access flag. Only the simplified
model for access permissions is supported.

When the Security Extensions are implemented, this bit is banked between the Secure and
Non-secure versions of the register.

�� �� ��� �� �� �	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� � 	 � � �

� � %
 � � � � � � ���� ����

$$ �
#�

��

�(
((

�

�%#�

+$(
�#(

+(

�
�

��

�
 �

�,
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-97

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Replacement Text
(0)

ARM_2011_Q2
Sticky Note
Bit[31] is UNK/SBZP and therefore should be shown as (0) in the figure.

Virtual Memory System Architecture (VMSA)
TRE, bit [28] TEX Remap Enable bit. This bit enables remapping of the TEX[2:1] bits for use as two
translation table bits that can be managed by the operating system. Enabling this remapping
also changes the scheme used to describe the memory region attributes in the VMSA. The
possible values of this bit are:

0 TEX Remap disabled. TEX[2:0] are used, with the C and B bits, to describe the
memory region attributes.

1 TEX Remap enabled. TEX[2:1] are reassigned for use as flags managed by the
operating system. The TEX[0], C and B bits are used to describe the memory
region attributes, with the MMU remap registers.

When the Security Extensions are implemented, this bit is banked between the Secure and
Non-secure versions of the register.

For more information, see The alternative descriptions of the Memory region attributes on
page B3-32.

NMFI, bit [27]

Non-maskable Fast Interrupts enable:

0 Fast interrupts (FIQs) can be masked in the CPSR

1 Fast interrupts are non-maskable.

When the Security Extensions are implemented this bit is common to the Secure and
Non-secure versions of the register.

This bit is read-only. It is IMPLEMENTATION DEFINED whether an implementation supports
Non-Maskable Fast Interrupts (NMFIs):

• If NMFIs are not supported then this bit must be RAZ.

• If NMFIs are supported then this bit is controlled by a configuration input signal.

For more information, see Non-maskable fast interrupts on page B1-18.

Bit [26] RAZ/SBZP.

EE, bit [25] Exception Endianness bit. The value of this bit defines the value of the CPSR.E bit on entry
to an exception vector, including reset. This value also indicates the endianness of the
translation table data for translation table lookups. The permitted values of this bit are:

0 Little endian

1 Big endian.

When the Security Extensions are implemented, this bit is banked between the Secure and
Non-secure versions of the register.

This is a read/write bit. An implementation can include a configuration input signal that
determines the reset value of the EE bit. If there is no configuration input signal to determine
the reset value of this bit then it resets to 0.

VE, bit [24] Interrupt Vectors Enable bit. This bit controls the vectors used for the FIQ and IRQ
interrupts. The permitted values of this bit are:

0 Use the FIQ and IRQ vectors from the vector table, see the V bit entry

1 Use the IMPLEMENTATION DEFINED values for the FIQ and IRQ vectors.
B3-98 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
Software cannot mask FIQs

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
FIQ support

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
Software can mask FIQs by setting the CPSR.F bit to 1

ARM_2009_Q1
Sticky Note
These changes are a clarification of the description of this bit, not a change in the architecture specification.

Virtual Memory System Architecture (VMSA)
When the Security Extensions are implemented, this bit is banked between the Secure and
Non-secure versions of the register.

For more information, see Vectored interrupt support on page B1-32.

If the implementation does not support IMPLEMENTATION DEFINED FIQ and IRQ vectors
then this bit is RAZ/WI.

Bit [23] RAO/SBOP.

U, bit [22] In ARMv7 this bit is RAO/SBOP, indicating use of the alignment model described in
Alignment support on page A3-4.

For details of this bit in earlier versions of the architecture see Alignment on page AppxG-6.

FI, bit [21] Fast Interrupts configuration enable bit. This bit can be used to reduce interrupt latency in
an implementation by disabling IMPLEMENTATION DEFINED performance features. The
permitted values of this bit are:

0 All performance features enabled.

1 Low interrupt latency configuration. Some performance features disabled.

When the Security Extensions are implemented, this bit is common to the Secure and
Non-secure versions of the register.

This bit is:

• a read/write bit if the Security Extensions are not implemented

• if the Security Extensions are implemented:

— a read/write bit if the processor is in Secure state

— a read-only bit if the processor is in Non-secure state.

For more information, see Low interrupt latency configuration on page B1-43.

If the implementation does not support a mechanism for selecting a low interrupt latency
configuration this bit is RAZ/WI.

Bit [20:19] RAZ/SBZP.

Bit [18] RAO/SBOP.

HA, bit [17] Hardware Access Flag Enable bit. If the implementation provides hardware management of
the access flag this bit enables the access flag management:

0 Hardware management of access flag disabled

1 Hardware management of access flag enabled.

If the Security Extensions are implemented then this bit is banked between the Secure and
Non-secure versions of the register.

If the implementation does not provide hardware management of the access flag then this
bit is RAZ/WI.

For more information, see Hardware management of the access flag on page B3-21.

Bit [16] RAO/SBOP.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-99

Virtual Memory System Architecture (VMSA)
Bit [15] RAZ/SBZP.

RR, bit [14] Round Robin bit. If the cache implementation supports the use of an alternative replacement
strategy that has a more easily predictable worst-case performance, this bit selects it:

0 Normal replacement strategy, for example, random replacement

1 Predictable strategy, for example, round-robin replacement.

When the Security Extensions are implemented, this bit is common to the Secure and
Non-secure versions of the register.

This bit is:

• a read/write bit if the Security Extensions are not implemented

• if the Security Extensions are implemented:

— a read/write bit if the processor is in Secure state

— a read-only bit if the processor is in Non-secure state.

The replacement strategy associated with each value of the RR bit is IMPLEMENTATION
DEFINED.

If the implementation does not support multiple IMPLEMENTATION DEFINED replacement
strategies this bit is RAZ/WI.

V, bit [13] Vectors bit. This bit selects the base address of the exception vectors:

0 Normal exception vectors, base address 0x00000000.

When the Security Extensions are implemented this base address can be
re-mapped.

1 High exception vectors (Hivecs), base address 0xFFFF0000.

This base address is never remapped.

When the Security Extensions are implemented, this bit is banked between the Secure and
Non-secure versions of the register.

An implementation can include a configuration input signal that determines the reset value
of the V bit. If there is no configuration input signal to determine the reset value of this bit
then it resets to 0.

For more information, see Exception vectors and the exception base address on page B1-30.

I, bit [12] Instruction cache enable bit: This is a global enable bit for instruction caches:

0 Instruction caches disabled

1 Instruction caches enabled.

When the Security Extensions are implemented, this bit is banked between the Secure and
Non-secure versions of the register.

If the system does not implement any instruction caches that can be accessed by the
processor, at any level of the memory hierarchy, this bit is RAZ/WI.

If the system implements any instruction caches that can be accessed by the processor then
it must be possible to disable them by setting this bit to 0.

Cache enabling and disabling on page B2-8 describes the effect of enabling the caches.
B3-100 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Virtual Memory System Architecture (VMSA)
Z, bit [11] Branch prediction enable bit. This bit is used to enable branch prediction, also called
program flow prediction:

0 Program flow prediction disabled

1 Program flow prediction enabled.

When the Security Extensions are implemented, this bit is banked between the Secure and
Non-secure versions of the register.

If program flow prediction cannot be disabled, this bit is RAO/WI. Program flow prediction
includes all possible forms of speculative change of instruction stream prediction. Examples
include static prediction, dynamic prediction, and return stacks.

If the implementation does not support program flow prediction this bit is RAZ/WI.

SW, bit[10] SWP/SWPB Enable bit. This bit enables the use of SWP and SWPB instructions:

0 SWP and SWPB are UNDEFINED

1 SWP and SWPB perform as described in SWP, SWPB on page A8-432.

When the Security Extensions are implemented, this bit is banked between the Secure and
Non-secure versions of the register. The bit is reset to 0.

This is part of the Multiprocessing Extensions. In implementations that do not implement
the Multiprocessing Extensions this bit is RAZ and SWP and SWPB instructions perform as
described in SWP, SWPB on page A8-432.

Note
 At reset, this bit disables SWP and SWPB. This means that operating systems have to choose to

use SWP or SWPB.

Bits [9:8] RAZ/SBZP.

B, bit [7] In ARMv7 this bit is RAZ/SBZP, indicating use of the endianness model described in
Endian support on page A3-7.

For details of this bit in earlier versions of the architecture see Endian support on
page AppxG-7 and Endian support on page AppxH-7.

Bits [6:3] RAO/SBOP.

C, bit [2] Cache enable bit: This is a global enable bit for data and unified caches:

0 Data and unified caches disabled

1 Data and unified caches enabled.

When the Security Extensions are implemented, this bit is banked between the Secure and
Non-secure versions of the register.

If the system does not implement any data or unified caches that can be accessed by the
processor, at any level of the memory hierarchy, this bit is RAZ/WI.

If the system implements any data or unified caches that can be accessed by the processor
then it must be possible to disable them by setting this bit to 0.

Cache enabling and disabling on page B2-8 describes the effect of enabling the caches.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-101

Virtual Memory System Architecture (VMSA)
A, bit [1] Alignment bit. This is the enable bit for Alignment fault checking:

0 Alignment fault checking disabled

1 Alignment fault checking enabled.

When the Security Extensions are implemented, this bit is banked between the Secure and
Non-secure versions of the register.

For more information, see Alignment fault on page B3-42, for a VMSA implementation.

M, bit [0] MMU enable bit. This is a global enable bit for the MMU:

0 MMU disabled

1 MMU enabled.

When the Security Extensions are implemented, this bit is banked between the Secure and
Non-secure versions of the register.

For more information, see Enabling and disabling the MMU on page B3-5.

Reset value of the SCTLR

The SCTLR has a defined reset value that is IMPLEMENTATION DEFINED. There are different types of bit in
the SCTLR:

• Some bits are defined as RAZ or RAO, and have the same value in all VMSAv7 implementations.
Figure B3-13 on page B3-103 shows the values of these bits.

• Some bits are read-only and either:

— have an IMPLEMENTATION DEFINED value

— have a value that is determined by a configuration input signal.

• Some bits are read/write and either:

— reset to zero

— reset to an IMPLEMENTATION DEFINED value

— reset to a value that is determined by a configuration input signal.

Figure B3-13 on page B3-103 shows the reset value, or how the reset value is defined, for each bit of the
SCTLR. It also shows the possible values of each half byte of the register.
B3-102 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Virtual Memory System Architecture (VMSA)
Figure B3-13 Reset value of the SCTLR, ARMv7-A (VMSAv7)

Accessing the SCTLR

To access the SCTLR you read or write the CP15 registers with <opc1> set to 0, <CRn> set to c1, <CRm> set to
c0, and <opc2> set to 0. For example:

MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register
MCR p15,0,<Rt>,c1,c0,0 ; Write CP15 System Control Register

Note
 Additional configuration and control bits might be added to the SCTLR in future versions of the ARM
architecture. ARM strongly recommends that software always uses a read, modify, write sequence to update
the SCTLR. This prevents software modifying any bit that is currently unallocated, and minimizes the
chance of the register update having undesired side effects.

B3.12.18 c1, IMPLEMENTATION DEFINED Auxiliary Control Register (ACTLR)

The Auxiliary Control Register, ACTLR, provides implementation-specific configuration and control
options.

The ACTLR is:

• A 32-bit read/write register.

• Accessible only in privileged modes.

• When the Security Extensions are implemented, a Banked register. However, some bits might define
global configuration settings, and be common to the Secure and Non-secure copies of the register.

The contents of this register are IMPLEMENTATION DEFINED. ARMv7 requires this register to be privileged
read/write accessible, even if an implementation has not created any control bits in this register.

�� �� ��� �� �� �	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� � 	 � � �

� � %

�

� � � � � � �

��

� ����

$$ �
#�

��

�(

�

+$(
�#(

+(

� -

((
�%#�

- - -- - --- - -- -- -- - .�/

� �
 �

� � � � � � � � �
.-/

�
.-/
� �

.-/
� �

�0��0��0�1&�1�0��0�1&�1�0��0
�0�
�0�21�0�2
�0�1&�1�0��0�1&�1�0�

.3/

� �

$�4�5&�*617��821��9*:���;1$�
14��1$�'17��8<-
�4�17�1$�
<1'�=��>�8�1��4��>����21��8��81�&1�<.-/

.3/ �4�17�1��4�5&�*621>��=1�%��(%(�+�+�'�1"(#��("1)4*:�<1'�=��>�8�1��8��81�&1�<
� �4*:�1&�1��8��1)4*:�194�1��?���1&�19&�@�;:�4��&�1��?:�<1'�=��>�8�1$�
1&�1��8��81�&1�<

�,

.-/
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-103

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Inserted Text
(0)

Virtual Memory System Architecture (VMSA)
Accessing the ACTLR

To access the ACTLR you read or write the CP15 registers with <opc1> set to 0, <CRn> set to c1, <CRm> set to
c0, and <opc2> set to 1. For example:

MRC p15,0,<Rt>,c1,c0,1 ; Read CP15 Auxiliary Control Register
MCR p15,0,<Rt>,c1,c0,1 ; Write CP15 Auxiliary Control Register

B3.12.19 c1, Coprocessor Access Control Register (CPACR)

The Coprocessor Access Control Register, CPACR, controls access to all coprocessors other than CP14 and
CP15. It also enables software to check for the presence of coprocessors CP0 to CP13.

The CPACR:

• is a 32-bit read/write register

• is accessible only in privileged modes

• has a defined reset value of 0

• when the Security Extensions are implemented, is a Configurable access register.

The format of the CPACR is:

ASEDIS, bit[31]

Disable Advanced SIMD Functionality:

0 This bit does not cause any instructions to be UNDEFINED.

1 All instruction encodings identified in the Alphabetical list of instructions on
page A8-14 as being part of Advanced SIMD, but that are not VFPv3
instructions, are UNDEFINED.

On an implementation that:

• Implements VFP and does not implement Advanced SIMD, this bit is RAO/WI.

• Does not implement VFP or Advanced SIMD, this bit is UNK/SBZP.

• Implements both VFP and Advanced SIMD, it is IMPLEMENTATION DEFINED whether
this bit is supported. If it is not supported it is RAZ/WI.

This bit resets to 0 if it is supported.

D32DIS, bit[30]

Disable use of D16-D31 of the VFP register file:

0 This bit does not cause any instructions to be UNDEFINED.

cp13 cp0

31 30 29 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

(0) (0) cp12 cp11 cp10 cp9 cp8 cp7 cp6 cp5 cp4 cp3 cp2 cp1

D32DIS
ASEDIS

28 27
B3-104 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2011_Q2
Line

ARM_2011_Q2
Sticky Note
The attached file shows the updated CPACR format. Double-click on the pin to see the file. See the insertion after the modified description of bit[29] for more information about the additional bit.

This optional addition to the CPACR is permitted in all ARMv7 implementations. It is not associated with any ARMv7 architecture extension.

cp13 cp0

31 30 29 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

(0) cp12 cp11 cp10 cp9 cp8 cp7 cp6 cp5 cp4 cp3 cp2 cp1

D32DIS

ASEDIS

28 27

TRCDIS

		cpacr_format.vsd

		Page-1

ARM_2011_Q2
File Attachment
cpacr_format.pdf

Virtual Memory System Architecture (VMSA)
1 All instruction encodings identified in the Alphabetical list of instructions on
page A8-14 as being VFPv3 instructions are UNDEFINED if they access any of
registers D16-D31.

If this bit is 1 when CPACR.ASEDIS == 0, the result is UNPREDICTABLE.

On an implementation that:

• Does not implement VFP, this bit is UNK/SBZP.

• Implements VFP and does not implement D16-D31, this bit is RAO/WI.

• Implements VFP and implements D16-D31, it is IMPLEMENTATION DEFINED whether
this bit is supported. If it is not, then this bit is RAZ/WI.

This bit resets to 0 if it is supported.

Bits [29:28] Reserved. UNK/SBZP.

cp<n>, bits [2n+1, 2n], for n = 0 to 13

Defines the access rights for coprocessor n. The possible values of the field are:

0b00 Access denied. Any attempt to access the coprocessor generates an Undefined
Instruction exception.

0b01 Privileged access only. Any attempt to access the coprocessor in User mode
generates an Undefined Instruction exception.

0b10 Reserved. The effect of this value is UNPREDICTABLE.

0b11 Full access. The meaning of full access is defined by the appropriate
coprocessor.

The value for a coprocessor that is not implemented is 0b00, access denied.

When the Security Extensions are implemented, the NSACR controls whether each coprocessor can be
accessed from the Non-secure state, see c1, Non-Secure Access Control Register (NSACR) on page B3-110.
When the NSACR permits Non-secure access to a coprocessor the level of access permitted is determined
by the CPACR. Because the CPACR is not banked, the options for Non-secure state access to a coprocessor
are:

• no access

• identical access rights to the Secure state.

If more than one coprocessor is used to provide a set of functionality then having different values for the
CPACR fields for those coprocessors can lead to UNPREDICTABLE behavior. An example where this must be
considered is with the VFP extension. This uses CP10 and CP11.

Typically, an operating system uses this register to control coprocessor resource sharing among applications:

• Initially all applications are denied access to the shared coprocessor-based resources.

• When an application attempts to use a resource it results in an Undefined Instruction exception.

• The Undefined Instruction handler can then grant access to the resource by setting the appropriate
field in the CPACR.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-105

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Sticky Note
The insertion after the modified bit[29] description describes the additional TRCDIS bit, bit[28].

This optional addition to the CPACR is permitted in all ARMv7 implementations. It is not associated with any ARMv7 architecture extension.

ARM_2011_Q2
Inserted Text
TRCDIS, bit[28]
 Disable CP14 access to trace registers:
 0	 This bit does not cause any instructions to be undefined.
 1	 Any MRC or MCR instruction with coproc set to 0b1110 and opc1 set to 0b001 is UNDEFINED.
On an implementation that:
 • Does not include a trace macrocell, or does not include a CP14 interface to the trace macrocell registers, this bit is RAZ/WI.
 • Includes a CP14 interface to trace macrocell registers, it is IMPLEMENTATION DEFINED whether this bit is supported. If it is not supported it is RAZ/WI.

If this bit is implemented as an RW bit:
 • its reset value is UNKNOWN
 • when NSACR.NSTRCDIS is set to 1, it behaves as RAO/WI when accessed from Non-secure state.

ARM_2011_Q2
Cross-Out

Virtual Memory System Architecture (VMSA)
For details of how this register can be used to check for implemented coprocessors see Access controls on
CP0 to CP13 on page B1-63.

Sharing resources among applications requires a state saving mechanism. Two possibilities are:

• during a context switch, if the last executing process or thread had access rights to a coprocessor then
the operating system saves the state of that coprocessor

• on receiving a request for access to a coprocessor, the operating system saves the old state for that
coprocessor with the last process or thread that accessed it.

Accessing the CPACR

To access the CPACR you read or write the CP15 registers with <opc1> set to 0, <CRn> set to c1, <CRm> set to
c0, and <opc2> set to 2. For example:

MRC p15,0,<Rt>,c1,c0,2 ; Read CP15 Coprocessor Access Control Register
MCR p15,0,<Rt>,c1,c0,2 ; Write CP15 Coprocessor Access Control Register

Normally, software uses a read, modify, write sequence to update the CPACR, to avoid unwanted changes
to the access settings for other coprocessors.

B3.12.20 c1, Secure Configuration Register (SCR)

The Secure Configuration Register, SCR, is part of the Security Extensions.

The SCR defines the configuration of the current security state. It specifies:

• the security state of the processor, Secure or Non-secure

• what mode the processor branches to if an IRQ, FIQ or external abort occurs

• whether the CPSR.F and CPSR.A bits can be modified when SCR.NS = 1.

The SCR:

• is present only when the Security Extensions are implemented

• is a 32-bit read/write register

• is accessible in Secure privileged modes only

• has a defined reset value of 0

• is a Restricted access register, meaning it exists only in the Secure state.

The format of the SCR is:

Bits [31:7] Reserved. UNK/SBZP.

�

��������
�

#�!

� ��	
 ��� �

(�#,

�$!
�(+
�,
B3-106 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Virtual Memory System Architecture (VMSA)
nET, bit [6] Not Early Termination. This bit disables early termination:

0 Early termination permitted. Execution time of data operations can depend on
the data values.

1 Disable early termination. The number of cycles required for data operations is
forced to be independent of the data values.

This IMPLEMENTATION DEFINED mechanism can be used to disable data dependent timing
optimizations from multiplies and data operations. It can provide system support against
information leakage that might be exploited by timing correlation types of attack.

On implementations that do not have early termination, this bit is UNK/SBZP.

AW, bit [5] A bit writable. This bit controls whether the A bit in the CPSR can be modified in
Non-secure state:

0 the CPSR.A bit can be modified only in Secure state.

1 the CPSR.A bit can be modified in any security state.

For more information, see Control of aborts by the Security Extensions on page B1-41.

FW, bit [4] F bit writable. This bit controls whether the F bit in the CPSR can be modified in Non-secure
state:

0 the CPSR.F bit can be modified only in Secure state

1 the CPSR.F bit can be modified in any security state.

For more information, see Control of FIQs by the Security Extensions on page B1-42.

EA, bit [3] External Abort handler. This bit controls which mode handles external aborts:

0 Abort mode handles external aborts

1 Monitor mode handles external aborts.

For more information, see Control of aborts by the Security Extensions on page B1-41.

FIQ, bit [2] FIQ handler. This bit controls which mode the processor enters when a Fast Interrupt (FIQ)
is taken:

0 FIQ mode entered when FIQ is taken

1 Monitor mode entered when FIQ is taken.

For more information, see Control of FIQs by the Security Extensions on page B1-42.

IRQ, bit [1] IRQ handler. This bit controls which mode the processor enters when an Interrupt (IRQ)
is taken:

0 IRQ mode entered when IRQ is taken

1 Monitor mode entered when IRQ is taken.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-107

ARM_2009_Q2
Inserted Text
 or do not support disabling early termination

Virtual Memory System Architecture (VMSA)
NS, bit [0] Non Secure bit. Except when the processor is in Monitor mode, this bit determines the
security state of the processor. Table B3-27 shows the security settings:

For more information, see Changing from Secure to Non-secure state on page B1-27.

The value of the NS bit also affects the accessibility of the Banked CP15 registers in Monitor
mode, see Access to registers in Monitor mode on page B3-77.

Unless the processor is in Debug state, when an exception occurs in Monitor mode the
hardware sets the NS bit to 0.

Whenever the processor changes security state, the monitor code can change the value of the EA, FIQ and
IQ bits. This means that the behavior of IRQ, FIQ and External Abort exceptions can be different in each
security state.

Accessing the SCR

To access the SCR you read or write the CP15 registers with <opc1> set to 0, <CRn> set to c1, <CRm> set to c1,
and <opc2> set to 0. For example:

MRC p15,0,<Rt>,c1,c1,0 ; Read CP15 Secure Configuration Register
MCR p15,0,<Rt>,c1,c1,0 ; Write CP15 Secure Configuration Register

B3.12.21 c1, Secure Debug Enable Register (SDER)

The Secure Debug Enable Register, SDER, is part of the Security Extensions.

The SDER controls invasive and non-invasive debug in Secure User mode.

The SDER is:

• present only when the Security Extensions are implemented

• a 32-bit read/write register

• a Restricted access register, meaning it exists only in the Secure state

• accessible in Secure privileged modes only.

Table B3-27 Processor security state

SCR.NS
Processor mode, from CPSR.M bits

Monitor mode All modes except Monitor mode

0 Secure state Secure state

1 Secure state Non-secure state
B3-108 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
IRQ

Virtual Memory System Architecture (VMSA)
The format of the SDER is:

Bits [31:2] Reserved. UNK/SBZP.

SUNIDEN, bit [1]

Secure User Non-Invasive Debug ENable:

0 non-invasive debug not permitted in Secure User mode

1 non-invasive debug permitted in Secure User mode.

SUIDEN, bit [0]

Secure User Invasive Debug ENable:

0 invasive debug not permitted in Secure User mode

1 invasive debug permitted in Secure User mode.

For more information about the use of the SUNIDEN and SUIDEN bits see:

• Chapter C2 Invasive Debug Authentication

• Chapter C7 Non-invasive Debug Authentication.

Note
 Invasive and non-invasive debug in Secure privileged modes is controlled by hardware only. For more
information, see Chapter C2 Invasive Debug Authentication and Chapter C7 Non-invasive Debug
Authentication.

Accessing the SDER

To access the SDER you read or write the CP15 registers with <opc1> set to 0, <CRn> set to c1, <CRm> set to
c1, and <opc2> set to 1. For example:

MRC p15,0,<Rt>,c1,c1,1 ; Read CP15 Secure Debug Enable Register
MCR p15,0,<Rt>,c1,c1,1 ; Write CP15 Secure Debug Enable Register

��

������
�

����"(�
���"(�

���
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-109

Virtual Memory System Architecture (VMSA)
B3.12.22 c1, Non-Secure Access Control Register (NSACR)

The Non-Secure Access Control Register, NSACR, is part of the Security Extensions.

The NSACR defines the Non-secure access permissions to the coprocessors CP0 to CP13. Additional
IMPLEMENTATION DEFINED bits in the register can be used to define Non-secure access permissions for
IMPLEMENTATION DEFINED functionality.

The NSACR is:

• Present only when the Security Extensions are implemented.

• A 32-bit register

• A Restricted access register. NSACR exists only in the Secure state, but can be read from Non-secure
state.

• Accessible only in privileged modes, with access rights that depend on the mode and security state:

— the NSACR is read/write in Secure privileged modes

— the NSACR is read-only in Non-secure privileged modes.

The format of the NSACR is:

Bits [31:20]

Reserved. UNK/SBZP.

RFR, bit [19] Reserve FIQ Registers:

0 FIQ mode and the FIQ banked registers are accessible in Secure and Non-secure
security states.

1 FIQ mode and the FIQ banked registers are accessible in the Secure security
state only. Any attempt to access any FIQ Banked register or to enter an FIQ
mode when in the Non-secure security states is UNPREDICTABLE.

This bit resets to 0. On some implementations this bit cannot be set to 1.

If NSACR.RFR == 1 when SCR.FIQ == 0, instruction execution is UNPREDICTABLE in
Non-secure security state.

Bits [18:16] IMPLEMENTATION DEFINED.

These bits can be used to define the Non-secure access to IMPLEMENTATION DEFINED
features.

UNK/SBZP

31 20 19 18 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMP

RFR
NSASEDIS
NSD32DIS Coprocessor Non-secure access enables,

cp13 to cp0, see text

- - -cp13 cp0
B3-110 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
-

ARM_2011_Q2
Line

RFR

NSASEDIS

NSD32DIS

Coprocessor Non-secure access enables,

cp13 to cp0, see text

cp13 cp0

Reserved

31 21 20 19 18 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NSTRCDIS

IMPLEMENTATION DEFINED

ARM_2011_Q2
File Attachment
nsacr_format.pdf

ARM_2011_Q2
Sticky Note
The attached file shows the updated NSACR format. Double-click on the pin to see the file. See the insertion after the description of the Reserved bits [31:21] for more information about the additional bit.

This optional addition to the CPACR is permitted in all ARMv7 implementations that include the Security Extensions. It is not associated with any ARMv7 architecture extension, other than the Security Extensions.

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Replacement Text
21

ARM_2011_Q2
Inserted Text
NSTRCDIS, bit[20]
 Disable Non-secure access to CP14 trace registers:
 0 This bit has no effect on the ability to write to CPACR.TRCDIS.
 1 When executing in Non-secure state, CPACR.TRCDIS is RAO/WI.

The implementation of this bit depends on the implementation of CPACR.TRCDIS:
 • if CPACR.TRCDIS is RAZ/WI then this bit is RAZ/WI
 • if CPACR.TRCDIS is RW then this bit is RW.

If this bit is implemented as an RW bit, it resets to 0.

ARM_2011_Q2
Sticky Note
The insertion after the description of the Reserved field describes the additional NSTRCDIS bit, bit[20]. The reduction in the size of the Reserved field, to become Bits [31:21], is because of this additional bit.

This optional addition to the NSACR is permitted in all ARMv7 implementations that include the Security Extensions. It is not associated with any ARMv7 architecture extension other than the Security Extensions.

Virtual Memory System Architecture (VMSA)
NSASEDIS, bit[15]

Disable Non-secure Advanced SIMD functionality:

0 This bit has no effect on the ability to write CPACR.ASEDIS.

1 When executing in Non-secure state the CPACR.ASEDIS bit has a fixed value
of 1 and writes to it are ignored.

On an implementation that:

• Implements VFP and does not implement Advanced SIMD, this bit is RAO/WI.

• Does not implement VFP or Advanced SIMD, this bit is UNK/SBZP.

• Implements both VFP and Advanced SIMD, it is IMPLEMENTATION DEFINED whether
this bit is supported. If it is not supported it is RAZ/WI.

This bit resets to 0 if it is supported.

NSD32DIS, bit[14]

Disable Non-secure use of D16-D31 of the VFP register file:

0 This bit has no effect on the ability to write CPACR.D32DIS.

1 When executing in Non-secure state, the CPACR.D32DIS bit has a fixed value
of 1 and writes to it are ignored.

If this bit is 1 when NSACR.NSASEDIS == 0, the result is UNPREDICTABLE.

On an implementation that:

• Does not implement VFP, this bit is UNK/SBZP.

• Implements VFP and does not implement D16-D31, this bit is RAO/WI.

• Implements VFP and implements D16-D31, it is IMPLEMENTATION DEFINED whether
this bit is supported. If it is not supported it is RAZ/WI.

This bit resets to 0 if it is supported.

cp<n>, bit [n], for n = 0 to 13

Non-secure access to coprocessor <n> enable. Each bit enables access to the corresponding
coprocessor from Non-secure state:

0 Coprocessor <n> can be accessed only from Secure state. Any attempt to access
coprocessor <n> in Non-secure state results in an Undefined Instruction
exception.

If the processor is in Non-secure state it cannot write the corresponding bits in
the CPACR, and reads them as 0b00, access denied.

1 Coprocessor <n> can be accessed from any security state.

If Non-secure access to a coprocessor is enabled, the CPACR must be checked to determine
the level of access that is permitted, see c1, Coprocessor Access Control Register (CPACR)
on page B3-104.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-111

ARM_2011_Q2
Sticky Note
The implementation of the NSASEDIS bit must correspond to the implementation of CPACR.ASED:
 • if CPACR.ASED is not RW then NSASEDIS is RAZ/WI
 • if CPACR.ASED is RW then NSASEDIS is RW.

ARM_2011_Q2
Sticky Note
The implementation of the NSD32DIS bit must correspond to the implementation of CPACR.D32DIS:
 • if CPACR.D32DIS is not RW then NSD32DIS is RAZ/WI
 • if CPACR.D32DIS is RW then NSD32DIS is RW.

Virtual Memory System Architecture (VMSA)
If multiple coprocessors are used to control a feature then the Non-secure access enable bits
for those coprocessors must be set to the same value, otherwise behavior is UNPREDICTABLE.
For example, when the VFP extension is implemented it is controlled by coprocessors 10
and 11, and bits [10,11] of the NSACR must be set to the same value.

For bits that correspond to coprocessors that are not implemented, it is IMPLEMENTATION
DEFINED whether the bits:

• behave as RAZ/WI

• can be written by Secure privileged modes.

Accessing the NSACR

To access the NSACR you read or write the CP15 registers with <opc1> set to 0, <CRn> set to c1, <CRm> set to
c1, and <opc2> set to 2. For example:

MRC p15,0,<Rt>,c1,c1,2 ; Read CP15 Non-Secure Access Control Register
MCR p15,0,<Rt>,c1,c1,2 ; Write CP15 Non-Secure Access Control Register

You can write to the NSACR only in Secure privileged modes.

You can read the register in any privileged mode.
B3-112 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Virtual Memory System Architecture (VMSA)
B3.12.23 CP15 c2 and c3, Memory protection and control registers

On an ARMv7-A implementation, the CP15 c2 and c3 registers are used for memory protection and control.
Figure B3-14 shows these registers.

Figure B3-14 CP15 c2 and c3 registers

CP15 c2 and c3 register encodings not shown in Figure B3-14 are UNPREDICTABLE, see Unallocated CP15
encodings on page B3-69.

B3.12.24 CP15 c2, Translation table support registers

When the VMSA is implemented, three translation table support registers are implemented in CP15 c2.
Table B3-28 summarizes these registers.

The description of the TTBCR describes the use of this set of registers, see c2, Translation Table Base
Control Register (TTBCR) on page B3-117.

c2, Translation Table Base Register 0 (TTBR0)

The Translation Table Base Register 0, TTBR0, holds the base address of translation table 0, and
information about the memory it occupies.

The TTBR0 register:

• is a 32-bit read/write register

• is accessible only in privileged modes

• when the Security Extensions are implemented:

— is a Banked register.

— has write access to the Secure copy of the register disabled when the CP15SDISABLE signal
is asserted HIGH.

<7� �%�� <7, �%��
@@97�6�@���*��&'���@�-���9�*��7�.'*&������ � ��

@@9<76�@���*��&'���@�-���9�*��<��&����7�.'*&��

�

�
� @@97�6�@���*��&'���@�-���9�*��7�.'*&����

��<76���,�'������**�<��&����7�.'*&���� � �� �

7���PQ�'&�7�������� Q�'&������

Table B3-28 VMSA translation table support registers

Register name Description

Translation Table Base 0 c2, Translation Table Base Register 0 (TTBR0)

Translation Table Base 1 c2, Translation Table Base Register 1 (TTBR1) on page B3-116

Translation Table Base Control c2, Translation Table Base Control Register (TTBCR) on page B3-117
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-113

Virtual Memory System Architecture (VMSA)
When the Multiprocessing Extensions are not implemented, the format of the TTBR0 register is:

When the Multiprocessing Extensions are implemented, the format of the TTBR0 register is:

Bits [31:14-N] Translation table base 0 address, bits [31:14-N].

The value of N determines the required alignment of the translation table, which must be
aligned to 214-N bytes.

Bits [13-N:6], ARMv7-A base architecture

UNK/SBZP.

Bits [13-N:7], when the Multiprocessing Extensions are implemented

UNK/SBZP.

IRGN[0], bit [6], when the Multiprocessing Extensions are implemented

See the description of bit [0] when the Multiprocessing Extensions are implemented.

NOS, bit [5] Not Outer Shareable bit. Indicates the Outer Shareable attribute for the memory associated
with a translation table walk that has the Shareable attribute, indicated by TTBR0.S == 1:

0 Outer Shareable

1 Inner Shareable.

This bit is ignored when TTBR0.S == 0.

This bit is only implemented from ARMv7.

RGN, bits [4:3]

Region bits. Indicates the Outer Cacheability attributes for the memory associated with the
translation table walks:

0b00 Normal memory, Outer Non-cacheable

0b01 Normal memory, Outer Write-Back Write-Allocate Cacheable

C

31 14-N 13-N 6 5 4 3 2 1 0

Translation table base 0 address UNK/SBZP RGN S

NOS IMP

31 14-N 13-N 6 5 4 3 2 1 0

Translation table base 0 address UNK/SBZP RGN S

NOS

7

IRGN[0]

IRGN[1]
IMP
B3-114 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q2
Inserted Text
 If an implementation does not distinguish between Inner Shareable and Outer Shareable, this bit is UNK/SBZP.

Virtual Memory System Architecture (VMSA)
0b10 Normal memory, Outer Write-Through Cacheable

0b11 Normal memory, Outer Write-Back no Write-Allocate Cacheable.

IMP, bit [2] The effect of this bit is IMPLEMENTATION DEFINED. If the translation table implementation
does not include any IMPLEMENTATION DEFINED features this bit is SBZ.

S, bit [1] Shareable bit. Indicates the Shareable attribute for the memory associated with the
translation table walks:

0 Non-shareable

1 Shareable.

C, bit [0], ARMv7-A base architecture

Cacheable bit. Indicates whether the translation table walk is to Inner Cacheable memory.

0 Inner Non-cacheable

1 Inner Cacheable.

For regions marked as Inner Cacheable, it is IMPLEMENTATION DEFINED whether the read
has the Write-Through, Write-Back no Write-Allocate, or Write-Back Write-Allocate
attribute.

IRGN, bits [6,0], when the Multiprocessing Extensions are implemented

Inner region bits. Indicates the Inner Cacheability attributes for the memory associated with
the translation table walks. The possible values of IRGN[1:0] are:

0b00 Normal memory, Inner Non-cacheable

0b01 Normal memory, Inner Write-Back Write-Allocate Cacheable

0b10 Normal memory, Inner Write-Through Cacheable

0b11 Normal memory, Inner Write-Back no Write-Allocate Cacheable.

Note
 The encoding of the IRGN bits is counter-intuitive, with register bit [6] being IRGN[0] and

register bit [0] being IRGN[1]. This encoding is chosen to give a consistent encoding of
memory region types and to ensure that software written for the ARMv7 base architecture
can run unmodified on an implementation that includes the Multiprocessing Extensions.

Accessing the TTBR0 register

To access the TTBR0 register you read or write the CP15 registers with <opc1> set to 0, <CRn> set to c2, <CRm>
set to c0, and <opc2> set to 0. For example:

MRC p15,0,<Rt>,c2,c0,0 ; Read CP15 Translation Table Base Register 0
MCR p15,0,<Rt>,c2,c0,0 ; Write CP15 Translation Table Base Register 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-115

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
UNK/SBZP

Virtual Memory System Architecture (VMSA)
c2, Translation Table Base Register 1 (TTBR1)

The Translation Table Base Register 1, TTBR1, holds the base address of translation table 1, and
information about the memory it occupies.

The TTBR1 register is:

• a 32-bit read/write register

• accessible only in privileged modes

• when the Security Extensions are implemented, a Banked register.

When the Multiprocessing Extensions are not implemented, the format of the TTBR1 register is:

When the Multiprocessing Extensions are implemented, the format of the TTBR1 register is:

Bits [31:14] Translation table base 1 address, bits [31:14]. The translation table must be aligned on a
16KByte boundary.

Bits [13:6], ARMv7-A base architecture

UNK/SBZP.

Bits [13:7], when the Multiprocessing Extensions are implemented

UNK/SBZP.

IRGN[0:1], bits [6,0], when the Multiprocessing Extensions are implemented

See the definition given for the TTBR0 in c2, Translation Table Base Register 0 (TTBR0)
on page B3-113.

NOS, RGN, IMP, S, bits [5:1]

See the definitions given for the TTBR0 in c2, Translation Table Base Register 0 (TTBR0)
on page B3-113.

C

31 14 13 6 5 4 3 2 1 0

Translation table base 1 address UNK/SBZP RGN S

NOS IMP

31 14 13 6 5 4 3 2 1 0

Translation table base 1 address UNK/SBZP RGN S

NOS

7

IRGN[0]

IMP
IRGN[1]
B3-116 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Virtual Memory System Architecture (VMSA)
C, bit [0], ARMv7-A base architecture

See the definition given for the TTBR0 in c2, Translation Table Base Register 0 (TTBR0)
on page B3-113.

Accessing the TTBR1 register

To access the TTBR1 register you read or write the CP15 registers with <opc1> set to 0, <CRn> set to c2, <CRm>
set to c0, and <opc2> set to 1. For example:

MRC p15,0,<Rt>,c2,c0,1 ; Read CP15 Translation Table Base Register 1
MCR p15,0,<Rt>,c2,c0,1 ; Write CP15 Translation Table Base Register 1

c2, Translation Table Base Control Register (TTBCR)

The Translation Table Base Control Register, TTBCR, determines which of the Translation Table Base
Registers, TTBR0 or TTBR1, defines the base address for the translation table walk that is required when
an MVA is not found in the TLB.

The TTBCR:

• Is a 32-bit read/write register.

• Is accessible only in privileged modes

• Has a defined reset value of 0. When the Security Extensions are implemented, this reset value
applies only to the Secure copy of the register, and software must program the Non-secure copy of
the register with the required value.

• When the Security Extensions are implemented:

— is a Banked register.

— has write access to the Secure copy of the register disabled when the CP15SDISABLE signal
is asserted HIGH.

When the Security Extensions are not implemented, the format of the TTBCR is:

When the Security Extensions are implemented, the format of the TTBCR is:

Bits [31:6, 3] UNK/SBZP.

PD1, bit [5], when Security Extensions are implemented

Translation table walk Disable bit for TTBR1. This bit controls whether a translation table
walk is performed on a TLB miss when TTBR1 is used:

0 If a TLB miss occurs when TTBR1 is used a translation table walk is performed.

�

�������
�
�� ��

 � �

�.�/������
�
�� 	 ��

�"�
�"�
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-117

Virtual Memory System Architecture (VMSA)
1 If a TLB miss occurs when TTBR1 is used no translation table walk is
performed and a Section Translation fault is returned.

PD0, bit [4], when Security Extensions are implemented

Translation table walk Disable bit for TTBR0. This bit controls whether a translation table
walk is performed on a TLB miss when TTBR0 is used. The meanings of the possible values
of this bit are equivalent to those for the PD1 bit.

Bits [5:4], when Security Extensions are not implemented

UNK/SBZP.

N, bits [2:0] Indicate the width of the base address held in TTBR0. In TTBR0, the base address field is
bits [31:14-N]. The value of N also determines:

• whether TTBR0 or TTBR1 is used as the base address for translation table walks.

• the size of the translation table pointed to by TTBR0.

N can take any value from 0 to 7, that is, from 0b000 to 0b111.

When N has its reset value of 0, the translation table base is compatible with ARMv5 and
ARMv6.

Determining which TTBR to use, and the TTBR0 translation table size

When an MVA is not found in the TLB, the value of TTBCR.N determines whether TTBR0 or TTBR1 is
used as the base address for the translation table walk in memory:

• if N == 0 then always use TTBR0

• if N > 0 then:

— if bits [31:32-N] of the MVA are all zero then use TTBR0

— otherwise use TTBR1.

The size of the first-level translation tables accessed by TTBR0 depends on the value of TTBCR.N as shown
in Table B3-29:

Table B3-29 Value of N field and the size of the TTBR0 translation table

TTBCR.N Size of TTBR0 translation table

0b000 16KB

0b001 8KB

0b010 4KB

0b011 2KB

0b100 1KB
B3-118 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Virtual Memory System Architecture (VMSA)
Accessing the TTBCR

To access the TTBCR you read or write the CP15 registers with <opc1> set to 0, <CRn> set to c2, <CRm> set to
c0, and <opc2> set to 2. For example:

MRC p15,0,<Rt>,c2,c0,2 ; Read CP15 Translation Table Base Control Register
MCR p15,0,<Rt>,c2,c0,2 ; Write CP15 Translation Table Base Control Register

B3.12.25 c3, Domain Access Control Register (DACR)

The Domain Access Control Register, DACR, defines the access permission for each of the sixteen memory
domains.

The DACR:

• is a 32-bit read/write register

• is accessible only in privileged modes

• when the Security Extensions are implemented:

— is a Banked register.

— has write access to the Secure copy of the register disabled when the CP15SDISABLE signal
is asserted HIGH.

The format of the DACR is:

Dn, bits [(2n+1):2n]

Domain n access permission, where n = 0 to 15. Permitted values are:

0b00 No access. Any access to the domain generates a Domain fault.

0b01 Client. Accesses are checked against the permission bits in the translation
tables.

0b10 Reserved, effect is UNPREDICTABLE

0b11 Manager. Accesses are not checked against the permission bits in the translation
tables.

For more information, see Domains on page B3-31.

0b101 512 bytes

0b110 256 bytes

0b111 128 bytes

Table B3-29 Value of N field and the size of the TTBR0 translation table (continued)

TTBCR.N Size of TTBR0 translation table

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-119

Virtual Memory System Architecture (VMSA)
Accessing the DACR

To access the DACR you read or write the CP15 registers with <opc1> set to 0, <CRn> set to c3, <CRm> set to
c0, and <opc2> set to 0. For example:

MRC p15,0,<Rt>,c3,c0,0 ; Read CP15 Domain Access Control Register
MCR p15,0,<Rt>,c3,c0,0 ; Write CP15 Domain Access Control Register

B3.12.26 CP15 c4, Not used

CP15 c4 is not used on any ARMv7 implementation, see Unallocated CP15 encodings on page B3-69.

B3.12.27 CP15 c5 and c6, Memory system fault registers

The CP15 c5 and c6 registers are used for memory system fault reporting. Figure B3-15 shows the CP15 c5
and c6 registers.

Figure B3-15 CP15 c5 and c6 registers in a VMSA implementation

CP15 c5 and c6 register encodings not shown in Figure B3-15 are UNPREDICTABLE, see Unallocated CP15
encodings on page B3-69.

The CP15 c5 and c6 registers are described in:

• CP15 c5, Fault status registers on page B3-121

• CP15 c6, Fault Address registers on page B3-124.

Also, these registers are used to report information about debug exceptions. For details see Effects of debug
exceptions on CP15 registers and the DBGWFAR on page C4-4.

�	 � �� � ���76���&����$�&��&�&$*�7�.'*&��
 ��76� �*&�$�&'�����$�&��&�&$*�7�.'*&��

���76���&����$�&������**�7�.'*&��
 ��76� �*&�$�&'�����$�&������**�7�.'*&��

�

�� � �� �
�

��&�'�*����
 !�3:!:?@�@ =?��:� ?:�

����76��$+'�'�������7
� ��76��$+'�'���� ��7

�� �
�

<7� �%�� <7, �%��

7���PQ�'&�7�������� Q�'&������
B3-120 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Virtual Memory System Architecture (VMSA)
B3.12.28 CP15 c5, Fault status registers

There are two fault status registers, in CP15 c5, and the architecture provides encodings for two additional
IMPLEMENTATION DEFINED registers. Table B3-30 summarizes these registers.

Fault information is returned using the fault status registers and the fault address registers described in CP15
c6, Fault Address registers on page B3-124. For details of how these registers are used see Fault Status and
Fault Address registers in a VMSA implementation on page B3-48.

c5, Data Fault Status Register (DFSR)

The Data Fault Status Register, DFSR, holds status information about the last data fault.

The DFSR is:

• a 32-bit read/write register

• accessible only in privileged modes

• when the Security Extensions are implemented, a Banked register.

The format of the DFSR is:

Bits [31:13,9:8]

UNK/SBZP.

ExT, bit [12] External abort type. This bit can be used to provide an IMPLEMENTATION DEFINED
classification of external aborts.

For aborts other than external aborts this bit always returns 0.

Table B3-30 Fault status registers

Register name Description

Data Fault Status Register (DFSR) c5, Data Fault Status Register (DFSR)

Instruction Fault Status Register (IFSR) c5, Instruction Fault Status Register (IFSR) on page B3-122

Auxiliary Data Fault Status Register (ADFSR) c5, Auxiliary Data and Instruction Fault Status Registers
(ADFSR and AIFSR) on page B3-123Auxiliary Instruction Fault Status Register (AIFSR)

� �

#�A�B�C.�/������
�
��� �� �� � � �

(0+
,�$

"&D4��

#�A�C

.�/
�� ��
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-121

Virtual Memory System Architecture (VMSA)
WnR, bit [11] Write not Read bit. Indicates whether the abort was caused by a write or a read access:

0 Abort caused by a read access

1 Abort caused by a write access.

For faults on CP15 cache maintenance operations, including the VA to PA translation
operations, this bit always returns a value of 1.

FS, bits [10,3:0]

Fault status bits. For the valid encodings of these bits in an ARMv7-A implementation with
a VMSA, see Table B3-12 on page B3-51.

All encodings not shown in the table are reserved.

Domain, bits [7:4]

The domain of the fault address.

From ARMv7 use of this field is deprecated, see The Domain field in the DFSR on
page B3-52.

For information about using the DFSR see Fault Status and Fault Address registers in a VMSA
implementation on page B3-48.

Accessing the DFSR

To access the DFSR you read or write the CP15 registers with <opc1> set to 0, <CRn> set to c5, <CRm> set to
c0, and <opc2> set to 0. For example:

MRC p15,0,<Rt>,c5,c0,0 ; Read CP15 Data Fault Status Register
MCR p15,0,<Rt>,c5,c0,0 ; Write CP15 Data Fault Status Register

c5, Instruction Fault Status Register (IFSR)

The Instruction Fault Status Register, IFSR, holds status information about the last instruction fault.

The IFSR is:

• a 32-bit read/write register

• accessible only in privileged modes

• when the Security Extensions are implemented, a Banked register.

The format of the IFSR is:

Bits [31:13,11,9:4]

UNK/SBZP.

� �

#�A�B�C������
�
��� �� �� �

(0+
#�A�C

�� ��

������
�.�/
B3-122 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Virtual Memory System Architecture (VMSA)
ExT, bit [12] External abort type. This bit can be used to provide an IMPLEMENTATION DEFINED
classification of external aborts.

For aborts other than external aborts this bit always returns 0.

FS, bits [10,3:0]

Fault status bits. For the valid encodings of these bits in an ARMv7-A implementation with
a VMSA, see Table B3-11 on page B3-50.

All encodings not shown in the table are reserved.

For information about using the IFSR see Fault Status and Fault Address registers in a VMSA
implementation on page B3-48.

Accessing the IFSR

To access the IFSR you read or write the CP15 registers with <opc1> set to 0, <CRn> set to c5, <CRm> set to c0,
and <opc2> set to 1. For example:

MRC p15,0,<Rt>,c5,c0,1 ; Read CP15 Instruction Fault Status Register
MCR p15,0,<Rt>,c5,c0,1 ; Write CP15 Instruction Fault Status Register

c5, Auxiliary Data and Instruction Fault Status Registers (ADFSR and AIFSR)

The Auxiliary Data Fault Status Register (ADFSR) and the Auxiliary Instruction Fault Status Register
(AIFSR) enable the system to return additional IMPLEMENTATION DEFINED fault status information, see
Auxiliary Fault Status Registers on page B3-53.

The ADFSR and AIFSR are:

• 32-bit read/write registers

• accessible only in privileged modes

• when the Security Extensions are implemented, Banked registers

• introduced in ARMv7.

The formats of the ADFSR and AIFSR are IMPLEMENTATION DEFINED.

Accessing the ADFSR and AIFSR

To access the ADFSR or AIFSR you read or write the CP15 registers with <opc1> set to 0, <CRn> set to c5,
<CRm> set to c1, and <opc2> set to:

• 0 for the ADFSR

• 1 for the AIFSR.

For example:

MRC p15,0,<Rt>,c5,c1,0 ; Read CP15 Auxiliary Data Fault Status Register
MCR p15,0,<Rt>,c5,c1,0 ; Write CP15 Auxiliary Data Fault Status Register
MRC p15,0,<Rt>,c5,c1,1 ; Read CP15 Auxiliary Instruction Fault Status Register
MCR p15,0,<Rt>,c5,c1,1 ; Write CP15 Auxiliary Instruction Fault Status Register
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-123

Virtual Memory System Architecture (VMSA)
B3.12.29 CP15 c6, Fault Address registers

There are two Fault Address registers, in CP15 c6, as shown in Figure B3-15 on page B3-120s. The two
Fault Address registers complement the Fault Status registers, and are shown in Table B3-31.

Note
 Before ARMv7:

• The DFAR was called the Fault Address Register (FAR).

• The Watchpoint Fault Address Register (DBGWFAR) was implemented in CP15 c6, with <opc2> = 1.
From ARMv7, the DBGWFAR is only implemented as a CP14 debug register, see Watchpoint Fault
Address Register (DBGWFAR) on page C10-28.

Fault information is returned using the fault address registers and the fault status registers described in CP15
c5, Fault status registers on page B3-121. For details of how these registers are used, and when the value in
the IFAR is valid, see Fault Status and Fault Address registers in a VMSA implementation on page B3-48.

c6, Data Fault Address Register (DFAR)

The Data Fault Address Register, DFAR, holds the MVA of the faulting address that caused a synchronous
Data Abort exception.

The DFAR is:

• a 32-bit read/write register

• accessible only in privileged modes

• when the Security Extensions are implemented, a Banked register.

The format of the DFAR is:

For information about using the DFAR, and when the value in the DFAR is valid, see Fault Status and Fault
Address registers in a VMSA implementation on page B3-48.

A debugger can write to the DFAR to restore its value.

Table B3-31 Fault Address registers

Register name Description

Data Fault Address Register (DFAR) c6, Data Fault Address Register (DFAR)

Instruction Fault Address Register (IFAR) c6, Instruction Fault Address Register (IFAR) on page B3-125

31 0

MVA of faulting address of synchronous Data Abort exception
B3-124 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Virtual Memory System Architecture (VMSA)
Accessing the DFAR

To access the DFAR you read or write the CP15 registers with <opc1> set to 0, <CRn> set to c6, <CRm> set to
c0, and <opc2> set to 0. For example:

MRC p15,0,<Rt>,c6,c0,0 ; Read CP15 Data Fault Address Register
MCR p15,0,<Rt>,c6,c0,0 ; Write CP15 Data Fault Address Register

c6, Instruction Fault Address Register (IFAR)

The Instruction Fault Address Register, IFAR, holds the MVA of the faulting access that caused a
synchronous Prefetch Abort exception.

The IFAR is:

• a 32-bit read/write register

• accessible only in privileged modes

• when the Security Extensions are implemented, a Banked register.

The format of the IFAR is:

For information about using the IFAR see Fault Status and Fault Address registers in a VMSA
implementation on page B3-48.

A debugger can write to the IFAR to restore its value.

Accessing the IFAR

To access the IFAR you read or write the CP15 registers with <opc1> set to 0, <CRn> set to c6, <CRm> set to c0,
and <opc2> set to 2. For example:

MRC p15,0,<Rt>,c6,c0,2 ; Read CP15 Instruction Fault Address Register
MCR p15,0,<Rt>,c6,c0,2 ; Write CP15 Instruction Fault Address Register

31 0

MVA of faulting address of synchronous Prefetch Abort exception
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-125

Virtual Memory System Architecture (VMSA)
B3.12.30 CP15 c7, Cache maintenance and other functions

The CP15 c7 registers are used for cache maintenance operations. They also provide barrier operations, and
VA to PA address translation functions. Figure B3-16 shows the CP15 c7 registers.

Figure B3-16 CP15 c7 registers in a VMSA implementation

CP15 c7 register encodings not shown in Figure B3-16 are UNPREDICTABLE, see Unallocated CP15
encodings on page B3-69.

The CP15 c7 registers are described in:

• CP15 c7, Cache and branch predictor maintenance functions

• CP15 c7, Virtual Address to Physical Address translation operations on page B3-130

• CP15 c7, Miscellaneous functions on page B3-136.

B3.12.31 CP15 c7, Cache and branch predictor maintenance functions

CP15 c7 provides a number of functions. This section describes only the CP15 c7 cache and branch
predictor maintenance operations. Branch predictor operations are included in this section because they
operate in a similar way to the cache maintenance operations.

Note
 ARMv7 introduces significant changes in the CP c7 operations. Most of these changes are because, from
ARMv7, the architecture covers multiple levels of cache. This section only describes the ARMv7
requirements for these operations. For details of these operations in previous versions of the architecture see:

• c7, Cache operations on page AppxG-38 for ARMv6

• c7, Cache operations on page AppxH-49 for ARMv4 and ARMv5.

<��)��,�'�&��������%���&'��*
��76������*$�&�(��,����&�����&���*��&'��

�	
�� �

���&�����&���*��&'����%���&'��*4��
5�

��� 4�6�5

4�6	5
�<<!��"6����)��,�'�&��������%���&'������

��

#"�"��"���
����
�"�����

<��)��,�'�&��������%���&'��*

<��)��,�'�&��������%���&'��*

$�%&��'(������!����������*����+"�����'"���
����
�"����
9����)�%���'�&���,�'�&��������%���&'��*

4�6�5

4�6
5
�

4�6�5

'��	��
���)����
�����
������
����	
7���PQ�'&�7��������

��� 4�6�5
��� � ?=�

Q�'&������

<��)��,�'�&��������%���&'��*

<��)��,�'�&��������%���&'��*�#�� 4�6�5

#����&��(�&)��!$�&'%����**'�.�:+&��*'��*

�
 � �� ?=��
<7� �%�� <7, �%��
B3-126 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Replacement Text
UNPREDICTABLE

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Replacement Text
UNPREDICTABLE

Virtual Memory System Architecture (VMSA)
Figure B3-17 shows the CP15 c7 cache and branch predictor maintenance operations.

Figure B3-17 CP15 c7 Cache and branch predictor maintenance operations

The CP15 c7 cache and branch predictor maintenance operations are all write-only operations that can be
executed only in privileged modes. They are listed in Table B3-32.

For more information about the terms used in this section see Terms used in describing cache operations on
page B2-10. The Multiprocessing Extensions changes the set of caches affected by these operations,
Multiprocessor effects on cache maintenance operations on page B2-23.

In Table B3-32, the Rt data column specifies what data is required in the register Rt specified by the MCR
instruction used to perform the operation. For more information about the possible data formats, see Data
formats for the cache and branch predictor operations on page B3-128.

�
 �

 < �33"6� ����'��&������'�*&�$�&'������)�*�&����"

�< !��<6� ����'��&����&�O�����)���'���-��!���&����<�� �

�
�

 < !��"6� ����'��&��'�*&�$�&'������)�*�-��!���&����"
9� �336� ����'��&����&'���-����)�%���'�&��������
9� !��6� ����'��&��!���(��,�-����)�%���'�&��������

� �< �Q6� ����'��&����&�O����)���'���-��*�&P8��
��� � �<<!��<6�<�������&�O����)���'���-��!���&����<

�<<�Q6�<�������&�O����)���'���-��*�&P8���
����

��� �

��";���'�&��(�"�'('��&'��
��<;���'�&��(�<�)������

�<< !��<6�<���������'����'��&����&�O����)���'���-��!���&����<
�<< �Q6�<���������'����'��&����&�O����)���'���-��*�&P8���

�<<!��"6�<�������&�O����)���'���-��!���&����"

7�������� 7���PQ�'&� O���&�����$�'('��

<7� �%�� <7, �%��
 < �33" �6� ����'��&������'�*&�$�&'������)�*�&����"� ������)����-���#
9� �33 �6� ����'��&����&'���-����)�%���'�&��������� ������)����-���#

#����&��(�&)��!$�&'%����**'�.�:+&��*'��*

�� �
�

�	 �

Q�'&������

Table B3-32 CP15 c7 cache and branch predictor maintenance operations

CRm opc2 Mnemonic Functiona Rt data

c1 0 ICIALLUISb Invalidate all instruction caches Inner Shareable to PoU. Also
flushes branch target cache.c

Ignored

c1 6 BPIALLISb Invalidate entire branch predictor array Inner Shareable. Ignored

c5 0 ICIALLU Invalidate all instruction caches to PoU. Also flushes branch target
cache.c

Ignored

c5 1 ICIMVAU Invalidate instruction cache line by MVA to PoU.c MVA

c5 6 BPIALL Invalidate entire branch predictor array. Ignored
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-127

ARM_2008_Q4
Inserted Text

See The interaction of cache lockdown with cache maintenance on page B2-18 [PDF page 1252] for information about the interaction of these maintenance operations with cache lockdown.

Virtual Memory System Architecture (VMSA)
Data formats for the cache and branch predictor operations

Table B3-32 on page B3-127 shows three possibilities for the data in the register Rt specified by the MCR
instruction. These are described in the following subsections:

• Ignored

• MVA

• Set/way on page B3-129.

Ignored

The value in the register specified by the MCR instruction is ignored. You do not have to write a value to the
register before issuing the MCR instruction.

MVA

For more information about the possible meaning when the table shows that an MVA is required see Terms
used in describing cache operations on page B2-10. When the data is stated to be an MVA, it does not have
to be cache line aligned.

c5 7 BPIMVA Invalidate MVA from branch predictor array. MVA

c6 1 DCIMVAC Invalidate data or unified cache line by MVA to PoC. MVA

c6 2 DCISW Invalidate data or unified cache line by set/way. Set/way

c10 1 DCCMVAC Clean data or unified cache line by MVA to PoC. MVA

c10 2 DCCSW Clean data or unified cache line by set/way. Set/way

c11 1 DCCMVAU Clean data or unified cache line by MVA to PoU. MVA

c14 1 DCCIMVAC Clean and Invalidate data or unified cache line by MVA to PoC. MVA

c14 2 DCCISW Clean and Invalidate data or unified cache line by set/way. Set/way

a. Modified Virtual Address (MVA), point of coherency (PoC) and point of unification (PoU) are described in Terms used
in describing cache operations on page B2-10.

b. Part of the Multiprocessing Extensions, See Multiprocessor effects on cache maintenance operations on page B2-23.
c. Only applies to separate instruction caches, does not apply to unified caches.

Table B3-32 CP15 c7 cache and branch predictor maintenance operations (continued)

CRm opc2 Mnemonic Functiona Rt data
B3-128 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Virtual Memory System Architecture (VMSA)
Set/way

For an operation by set/way, the data identifies the cache line that the operation is to be applied to by
specifying:

• the cache set the line belongs to

• the way number of the line in the set

• the cache level.

The format of the register data for a set/way operation is:

Where:

A = Log2(ASSOCIATIVITY)

B = (L + S)

L = Log2(LINELEN)

S = Log2(NSETS)

ASSOCIATIVITY, LINELEN (Line Length) and NSETS (number of sets) have their usual
meanings and are the values for the cache level being operated on.

The values of A and S are rounded up to the next integer.

Level ((Cache level to operate on) -1)

For example, this field is 0 for operations on L 1 cache, or 1 for operations on L 2 cache.

Set The number of the set to operate on.

Way The number of the way to operate on.

Note
 • If L = 4 then there is no SBZ field between the set and level fields in the register.

• If A = 0 there is no way field in the register, and register bits [31:B] are SBZ.

• If the level, set or way field in the register is larger than the size implemented in the cache then the
effect of the operation is UNPREDICTABLE.

Accessing the CP15 c7 cache and branch predictor maintenance operations

To perform one of the cache maintenance operations you write the CP15 registers with <opc1> set to 0, <CRn>
set to c7, and <CRm> and <opc2> set to the values shown in Table B3-32 on page B3-127.

That is:

MCR p15,0,<Rt>,c7,<CRm>,<opc2>

For example:

MCR p15,0,<Rt>,c7,c5,0 ; Invalidate all instruction caches to point of unification
MCR p15,0,<Rt>,c7,c10,2 ; Clean data or unified cache line by set/way

31 32-A 31-A B B-1 L L-1 4 3 1 0

Way SBZ Set SBZ Level 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-129

ARM_2010_Q2
Inserted Text
, in bytes

Virtual Memory System Architecture (VMSA)
B3.12.32 CP15 c7, Virtual Address to Physical Address translation operations

CP15 c7 provides a number of functions, summarized in Figure B3-10 on page B3-65. This section
describes only the CP15 c7 operations that provide Virtual Address (VA) to Physical Address (PA)
translation on implementations that include the VMSA, and the register that returns the result of the
operation.

Figure B3-18 shows all of the CP15 c7 VA to PA translation operations. It does not show the other CP15 c7
operations.

Note
 As explained in this section, the CP15 c7 encodings for VA to PA translation with <opc2> == {4-7} are
available only when the Security Extensions are implemented. These encodings are reserved and
UNPREDICTABLE when the Security Extensions are not implemented.

Figure B3-18 CP15 c7 VA to PA translation operations

This set of registers comprises:

• A single Physical Address Register, PAR, that returns the result of the VA to PA translation. For more
information about this register see c7, Physical Address Register (PAR) and VA to PA translations on
page B3-133.

• A set of VA to PA translation operations. These are:

— 32-bit write-only operations

— accessible only in privileged modes.

�
 � ��76��)�*'���������**�7�.'*&���1@���*��&'�����*$�&2�� �
�
 ���<Q�76���'�'��.���7�������&�����&���*��&'���

�
�
�

	
�

�

���<Q�Q6���'�'��.���Q�'&�����&�����&���*��&'��
���<Q"76�"*���7�������&�����&���*��&'��
���<Q"Q6�"*���Q�'&�����&�����&���*��&'��
O����=Q�76���'�'��.���7�������&�����&���*��&'��
O����=Q�Q6���'�'��.���Q�'&�����&�����&���*��&'��
O����=Q"76�"*���7�������&�����&���*��&'��
O����=Q"Q6�"*���Q�'&�����&�����&���*��&'��

=&)��
*��$�'&�

*&�&�

<$����&
*��$�'&�

*&�&�

<7� �%�� <7, �%��

�)�8��8'&)����$�'&��:+&��*'��*�',%��,��&����Q)���&)���������&�',%��,��&��;
����&)�������%&*��(�������	�������	���	�	�������	
���������	���	�	��������&���('���
���������'�.*�,��>���O�������*����������"?�7:� <@�93:�

7�������� 7���PQ�'&� Q�'&������
B3-130 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Virtual Memory System Architecture (VMSA)
When the Security Extensions are not implemented, there are four VA to PA translation operations,
listed in Table B3-33.

When the Security Extensions are implemented, there are eight VA to PA translation operations. Four of
these are common to the Secure and Non-secure security states, and four are only available in the Secure
state. Table B3-34 lists these operations, and shows the security states in which each is available.

Table B3-33 VA to PA translation when Security Extensions are not implemented

CRm opc2 Mnemonic Register or operation

c4 0 - PAR, Physical Address Register

c8 0 V2PCWPR Privileged read VA to PA translation

c8 1 V2PCWPW Privileged write VA to PA translation

c8 2 V2PCWUR User read VA to PA translation

c8 3 V2PCWUW User write VA to PA translation

Table B3-34 VA to PA translation when Security Extensions are implemented

Register or operation:

CRm opc2 Mnemonic Common
Non-secure
state

Secure state

c4 0 - - PAR PAR

c8 0 V2PCWPR Current security state
privileged reada

- -

c8 1 V2PCWPW Current security state
privileged writea

- -

c8 2 V2PCWUR Current security state
User reada

- -

c8 3 V2PCWUW Current security state
User writea

- -

c8 4 V2POWPR - - Other security state privileged reada
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-131

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
UNDEFINED

Virtual Memory System Architecture (VMSA)
Writing a VA to a VA to PA translation operation encoding translates the VA to the corresponding PA. The
PA value is returned in the PAR. These operations are accessible only in privileged modes. The available
VA to PA translations depend on:

• whether the Security Extensions are implemented

• if the Security Extensions are implemented, whether the processor is in the Secure or Non-secure
state.

In more detail:

Security Extensions not implemented

Four VA to PA translation operations are available, as shown in Table B3-33 on
page B3-131. These operations provide VA to PA translation for privileged read or write,
and for User read or write.

Security Extensions implemented, processor in Non-secure state

Only the four current security state VA to PA translation operations are available, as shown
in Table B3-33 on page B3-131. These operations provide VA to PA translation for
privileged read or write, and for User read or write, in the Non-secure security state.

It is not possible to perform VA to PA translations for the Secure security state. Attempting
to access an Other security state VA to PA translation operation encoding generates an
Undefined Instruction exception.

Security Extensions implemented, processor in Secure security state

Eight VA to PA Translation operations are available, as shown in Table B3-34 on
page B3-131:

• The four current security state VA to PA translation operations provide address
translation for privileged read or write, and for User read or write, in the Secure
security state.

• The four other security state VA to PA translation operations provide address
translation for privileged read or write, and for User read or write, in the Non-secure
security state.

c8 5 V2POWPW - - Other security state privileged writea

c8 6 V2POWUR - - Other security state User reada

c8 7 V2POWUW - - Other security state User writea

a. VA to PA Translation operations.

Table B3-34 VA to PA translation when Security Extensions are implemented (continued)

Register or operation:

CRm opc2 Mnemonic Common
Non-secure
state

Secure state
B3-132 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
UNDEFINED

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
UNDEFINED

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
UNDEFINED

Virtual Memory System Architecture (VMSA)
Note
 In all cases:

• If the FCSE is implemented the VA required is the VA before any modification by the FCSE, not the
MVA.

• For information about translations when the MMU is disabled see VA to PA translation when the
MMU is disabled on page B3-136.

c7, Physical Address Register (PAR) and VA to PA translations

The Physical Address Register, PAR, of the current security state receives the PA during any VA to PA
translation.

The PAR is:

• a 32-bit read/write register

• accessible only in privileged modes

• when the Security Extensions are implemented, a Banked register.

Write access to the register means its contents can be context switched.

The PAR format depends on the value of bit [0]. Bit [0] indicates whether the address translation operation
completed successfully.

If the translation completed successfully, the format of the PAR is:

PA, bits [31:12]

Physical Address. The physical address corresponding to the supplied virtual address.
Address bits [31:12] are returned.

Bit [11] Reserved. UNK/SBZP.

Bits [10:1] Return information from the translation table entry used for the translation:

NOS, bit [10]
Not Outer Shareable attribute. Indicates whether the physical memory is Outer
Shareable:

0 Memory is Outer Shareable

1 Memory is not Outer Shareable.

On an implementation that do not support Outer Shareable, this bit is
UNK/SBZP.

NS, bit [9] Non-secure. The NS bit from the translation table entry.

����
��� �� �

�����A�B�C.�/

� � �

#�� �

':���A�B�C

� ��	����

�%��(%(�+�+�'�1"(#��("
�'�
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-133

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
memory attributes for the region

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
 attribute for a translation table entry read from Secure state.

This bit is UNKNOWN for a translation table entry read from Non-secure state.

ARM_2009_Q1
Inserted Text
CP15 c7

ARM_2009_Q1
Sticky Note
This is a clarification of when the PAR receives a PA. It is not a change to the architecture.

ARM_2009_Q2
Sticky Note
This is a clarification of the change made in the 2008'Q4 errata.

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
does not distinguish between Inner Shareable and

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Replacement Text
Shareable

ARM_2011_Q2
Inserted Text
If the physical memory is not Shareable, this bit is UNKNOWN.

Virtual Memory System Architecture (VMSA)
Bit [8] IMPLEMENTATION DEFINED.

SH, bit [7]

Shareable attribute. Indicates whether the physical memory is Shareable:

0 Memory is Non-shareable

1 Memory is Shareable.

Inner[2:0], bits [6:4]

Inner memory attributes from the translation table entry. Permitted values are:

0b111 Write-Back, no Write-Allocate

0b110 Write-Through

0b101 Write-Back, Write-Allocate

0b011 Device

0b001 Strongly-ordered

0b000 Non-cacheable.

Other encodings for Inner[2:0] are reserved.

Outer[1:0], bits [3:2]
Outer memory attributes from the translation table. Possible values are:

0b11 Write-Back, no Write-Allocate.

0b10 Write-Through, no Write-Allocate.

0b01 Write-Back, Write-Allocate.

0b00 Non-cacheable.

SS, bit [1] SuperSection. Used to indicate if the result is a Supersection:

0 Page is not a Supersection, that is, PAR[31:12] contains PA[31:12],
regardless of the page size.

1 Page is part of a Supersection

• PAR[31:24] contains PA[31:24]

• PAR[23:16] contains PA[39:32]

• PAR[15:12] contains 0b0000.

If an implementation supports less than 40 bits of physical address,
the bits in the PAR field that correspond to physical address bits that
are not implemented are UNKNOWN.

Note
 PA[23:12] is the same as VA[23:12] for Supersections

F, bit [0] F bit is 0 if the conversion completed successfully.

In the Inner[2:0] and Outer[1:0] fields, an implementation that does not support all of the attributes can
report the memory type behavior that the cache does support, rather than the value held in the translation
table entry.
B3-134 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Cross-Out

Virtual Memory System Architecture (VMSA)
If the translation fails without generating an abort, the format of the PAR is:

Bits [31:7] UNK/SBZP.

FS, bits [6:1] Fault status bits. Bits [12,10,3:0] from the Data Fault Status Register, indicate the source of
the abort. For more information, see c5, Data Fault Status Register (DFSR) on page B3-121.

F, bit [0] F bit is 1 if the conversion aborted.

The VA to PA translation only generates an abort if the translation fails because an external abort occurred
on a translation table walk request. In this case:

• If the external abort is synchronous, the DFSR and DFAR of the security state in which the abort is
handled are updated. The DFSR indicates the appropriate external abort on Translation fault, and the
DFAR indicates the MVA that caused the translation. PAR is UNKNOWN.

• If the external abort is asynchronous, the DFSR of the security state in which the abort is handled is
updated when the abort is taken. The DFSR indicates the asynchronous external abort. The DFAR is
not updated. PAR is UNKNOWN.

For all other cases where the VA to PA translation fails:

• No abort is generated, and the DFSR and DFAR are unchanged

• the PAR [6:1] field is updated with an FSR encoding that indicates the fault

• the PAR bit [0] is set to 1.

Implementations that do not support all attributes can report the behavior for those memory types that the
cache does support.

Accessing the PAR and the VA to PA translation operations

To access one of the VA to PA translation operations you write the CP15 registers with <opc1> set to 0, <CRn>
set to c7, <CRm> set to c8, and <opc2> set to the value shown in Table B3-33 on page B3-131 or Table B3-34
on page B3-131.

With register Rt containing the original VA this gives:

MCR p15,0,<Rt>,c7,c8,<opc2>

To read the PAR you read the CP15 registers with <opc1> set to 0, <CRn> set to c7, <CRm> set to c4, and <opc2>
set to 0. To return the translated PA in register Rt this gives:

MRC p15,0,<Rt>,c7,c4,0

The PAR is a read/write register, and you can write to the CP15 registers with the same settings to write to
the register. There is no translation operation that requires writing to this register, but the write operation
might be required to restore the value of the PAR after a context switch.

An example of a VA to PA translation when the Security Extensions are not implemented is:

31 7 6 1 0

UNK/SBZP FS F
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-135

Virtual Memory System Architecture (VMSA)
MCR p15,0,<Rt>,c7,c8,2 ; Write CP15 VA to User Read VA to PA Translation Register
MRC p15,0,<Rt>,c7,c4,0 ; Read CP15 PA from Physical Address Register

An example of a VA to PA translation when the Security Extensions are implemented and the processor is
in the Secure state is:

MCR p15,0,<Rt>,c7,c8,5 ; Write VA to Other State Privileged Write VA to PA Translation Register
; Performs VA to PA translation for Non-secure security state

MRC p15,0,<Rt>,c7,c4,0 ; Read PA from Physical Address Register

VA to PA translation when the MMU is disabled

The VA to PA translation operations occur even when the MMU is disabled. The operations report the flat
address mapping and the MMU-disabled value of the attributes and permissions for the data side accesses.
These include any MMU-disabled re-mapping specified by the TEX-remap facilities. The SuperSection bit
is 0 when the MMU is disabled. For more information about the address and attributes returned when the
MMU is disabled see Enabling and disabling the MMU on page B3-5.

When the Security Extensions are implemented, this information applies when the MMU is disabled in the
security state for which the VA to PA translation is performed.

B3.12.33 CP15 c7, Miscellaneous functions

CP15 c7 provides a number of functions, summarized in Figure B3-10 on page B3-65. This section
describes only the CP15 c7 miscellaneous operations.

Figure B3-19 shows the CP15 c7 miscellaneous operations. It does not show the other CP15 c7 operations.

Figure B3-19 CP15 c7 Miscellaneous operations

The CP15 c7 miscellaneous operations are described in:

• CP15 c7, Data and Instruction Barrier operations on page B3-137

• CP15 c7, No Operation (NOP) on page B3-138.

�
 � ?=�6�8�*����	�������	�����	�1<��	Q� 2�'���7!��

$�%&#�'(�#"�"�����*����+"�����'"���
����
�"����
$�%&#�'(�#"�"��
�����'"���
����
�"����

$�%&��'(������!����������*����+"�����'"���
����
�"����

<7� �%�� <7, �%��
�� �

��� �
	

�	 �

'��	��
���)����
�����
������
����	
7���PQ�'&�7�������� Q�'&������

��� � ?=�6�8�*����(�&�)�'�*&�$�&'���-��!���'���7!��
B3-136 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
MCR p15,0,<Rt>,c7,c8,2 ; Write CP15 VA to User Read VA to PA Translation Register
ISB ; Ensure completion of the CP15 write
MRC p15,0,<Rt>,c7,c4,0 ; Read CP15 PA from Physical Address Register

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
MCR p15,0,<Rt>,c7,c8,5 ; Write VA to Other State Privileged Write VA to PA Translation Register
 ; Performs VA to PA translation for Non-secure security state
ISB ; Ensure completion of the CP15 write
MRC p15,0,<Rt>,c7,c4,0 ; Read PA from Physical Address Register

ARM_2009_Q1
Sticky Note
The changes in these two code examples clarify that software must include an ISB instruction to guarantee that the VA to PA translation completes before the read of the PAR.

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Replacement Text
UNPREDICTABLE. NOP on some ARMv7 implementations.

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Replacement Text
UNPREDICTABLE. NOP on some ARMv7 implementations.

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Replacement Text
Retired operations

Virtual Memory System Architecture (VMSA)
CP15 c7, Data and Instruction Barrier operations

ARMv6 includes two CP15 c7 operations to perform Data Barrier operations, and another operation to
perform an Instruction Barrier operation. In ARMv7:

• The ARM and Thumb instruction sets include instructions to perform the barrier operations, that can
be executed in all modes, see Memory barriers on page A3-47.

• The CP15 c7 operations are defined as write-only operations, that can be executed in all modes. The
three operations are described in:

— Instruction Synchronization Barrier operation

— Data Synchronization Barrier operation

— Data Memory Barrier operation.

The value in the register Rt specified by the MCR instruction used to perform one of these operations
is ignored. You do not have to write a value to the register before issuing the MCR instruction.

In ARMv7 using these CP15 c7 operations is deprecated. Use the ISB, DSB, and DMB instructions
instead.

Note
 • In ARMv6 and earlier documentation, the Instruction Synchronization Barrier operation is referred

to as a Prefetch Flush (PFF).

• In versions of the ARM architecture before ARMv6 the Data Synchronization Barrier operation is
described as a Data Write Barrier (DWB).

Instruction Synchronization Barrier operation

In ARMv7, the ISB instruction is used to perform an Instruction Synchronization Barrier, see ISB on
page A8-102.

The deprecated CP15 c7 encoding for an Instruction Synchronization Barrier is <opc1> set to 0, <CRn> set to
c7, <CRm> set to c5, and <opc2> set to 4.

Data Synchronization Barrier operation

In ARMv7, the DSB instruction is used to perform a Data Synchronization Barrier, see DSB on page A8-92.

The deprecated CP15 c7 encoding for a Data Synchronization Barrier is <opc1> set to 0, <CRn> set to c7, <CRm>
set to c10, and <opc2> set to 4. This operation performs the full system barrier performed by the DSB
instruction.

Data Memory Barrier operation

In ARMv7, the DMB instruction is used to perform a Data Memory Barrier, see DMB on page A8-90.

The deprecated CP15 c7 encoding for a Data Memory Barrier is <opc1> set to 0, <CRn> set to c7, <CRm> set to
c10, and <opc2> set to 5. This operation performs the full system barrier performed by the DMB instruction.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-137

Virtual Memory System Architecture (VMSA)
CP15 c7, No Operation (NOP)

ARMv6 includes two CP15 c7 operations that are not supported in ARMv7, with encodings that become
No Operation (NOP) in ARMv7. These are:

• The Wait For Interrupt (CP15WFI) operation. In ARMv7 this operation is performed by the WFI
instruction, that is available in the ARM and Thumb instruction sets. For more information, see WFI
on page A8-810.

• The prefetch instruction by MVA operation. In ARMv7 this operation is replaced by the PLI
instruction, that is available in the ARM and Thumb instruction sets. For more information, see PLI
(immediate, literal) on page A8-242 and PLI (register) on page A8-244.

In ARMv7, the CP15 c7 encodings that were used for these operations must be valid write-only operations
that perform a NOP. These encodings are:

• for the ARMv6 CP15WFI operation:

— <opc1> set to 0, <CRn> set to c7, <CRm> set to c0, and <opc2> set to 4

• for the ARMv6 prefetch instruction by MVA operation:

— <opc1> set to 0, <CRn> set to c7, <CRm> set to c13, and <opc2> set to 1.

B3.12.34 CP15 c8, TLB maintenance operations

On ARMv7-A implementations, CP15 c8 operations are used for TLB maintenance functions. Figure B3-20
shows the CP15 c8 encodings.

Figure B3-20 CP15 c8 operations

CP15 c8 encodings not shown in Figure B3-20 are UNPREDICTABLE, see Unallocated CP15 encodings on
page B3-69.

�
 �

��

�

 @39 �336�'����'��&��'�*&�$�&'���@39
�
�

�
�
�

�
�
�

 @39 !��6�'����'��&��'�*&�$�&'���@39���&���-��!��
 @39 �� �6�'����'��&��'�*&�$�&'���@39�-���� ��,�&�)
�@39 �336�'����'��&����&��@39
�@39 !��6�'����'��&����&��@39���&���-��!��
�@39 �� �6�'����'��&����&��@39�-���� ��,�&�)
@39 �33N6�'����'��&��$�'('���@39
@39 !��N6�'����'��&��$�'('���@39���&���-��!��
@39 �� �N6�'����'��&��$�'('���@39�-���� ��,�&�)

�� �

�	 �

�
�
�

7���PQ�'&�7�������� Q�'&������

�

@39 �33 �6� ����'��&����&'���@39� ������)����-���#
@39 !�� �6� ����'��&��$�'('���@39���&���-��!��� ������)����-���#
@39 �� � �6� ����'��&��$�'('���@39�-���� ��,�&�)� ������)����-���#
@39 !��� �6� ����'��&��$�'('���@39���&���-��!��������� �� ������)����-���#

@39 !���6� ����'��&��$�'('���@39���&�'�*�-��!��������� ��#

<7� �%�� <7, �%��

#����&��(�&)��!$�&'%����**'�.�:+&��*'��*N�����&�+&�(���,����'�(��,�&'����-�$&�&)�*��,��,��'�*
B3-138 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Replacement Text
Retired operations

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Replacement Text
UNPREDICTABLE

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Replacement Text
are UNPREDICTABLE. Note: In some implementations they are write-only operations that perform a NOP.

ARM_2011_Q2
Sticky Note
Architecturally, these operations are UNPREDICTABLE, as indicated by the insertion in this line.

Virtual Memory System Architecture (VMSA)
The CP15 c8 TLB maintenance functions:

• are write-only operations

• can be executed only in privileged modes.

Table B3-35 summarizes the TLB maintenance operations.

For more information about the Inner Shareable operations see Multiprocessor effects on TLB maintenance
operations on page B3-62.

For information about the effect of these operations on locked TLB entries see The interaction of TLB
maintenance operations with TLB lockdown on page B3-57.

Table B3-35 CP15 c8 TLB maintenance operations

CRm opc2 Mnemonic Function Rt data

c3 0 TLBIALLIS Invalidate entire unified TLBd Inner Shareablea Ignored

1 TLBIMVAIS Invalidate unified TLBd entry by MVA Inner Shareablea MVA

2 TLBIASIDIS Invalidate unified TLBd by ASID match Inner Shareablea ASID

3 TLBIMVAAIS Invalidate unified TLBd entry by MVA all ASID Inner
Shareablea

MVA

c5 0 ITLBIALL Invalidate entire instruction TLBb Ignored

1 ITLBIMVA Invalidate instruction TLBb entry by MVA MVA

2 ITLBIASID Invalidate instruction TLBb by ASID match ASID

c6 0 DTLBIALL Invalidate entire data TLBb Ignored

1 DTLBIMVA Invalidate data TLBb entry by MVA MVA

2 DTLBIASID Invalidate data TLBb by ASID match ASID

c7 0 TLBIALLc Invalidate entire unified TLBd Ignore

1 TLBIMVAc Invalidate unified TLBd entry by MVA MVA

2 TLBIASIDc Invalidate unified TLBd by ASID match ASID

3 TLBIMVAA Invalidate unified TLBd entries by MVA all ASIDa MVA

a. Implemented only as part of the Multiprocessing Extensions.
b. If these operations are performed on an implementation that has a unified TLB they operate on the unified TLB.
c. The mnemonics for the operations with CRm==c7, opc2=={0,1,2} were previously UTLBIALL, UTLBIMVA and

UTLBIMASID.
d. When separate instruction and data TLBs are implemented, these operations are performed on both TLBs.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-139

Virtual Memory System Architecture (VMSA)
About the TLB maintenance operations

For more information about TLBs and their maintenance see Translation Lookaside Buffers (TLBs) on
page B3-54, and in particular TLB maintenance on page B3-56. The following subsections give more
information about the TLB maintenance operations:

• Invalidate entire TLB

• Invalidate single TLB entry by MVA

• Invalidate TLB entries by ASID match

• Invalidate TLB entries by MVA all ASID on page B3-141.

As stated in the footnotes to Table B3-35 on page B3-139:

• If an Instruction TLB or Data TLB operation is used on a system that implements a Unified TLB then
the operation is performed on the Unified TLB

• If a Unified TLB operation is used on a system that implements separate Instruction and Data TLBs
then the operation is performed on both the Instruction TLB and the Data TLB.

• The mnemonics for the operations to invalidate a unified TLB that are defined in the ARM v7 base
architecture were previously UTLBIALL, UTLBIMV, and UTLBIASID. These remain synonyms for
these operations, but ARM deprecates the use of the older names. These are the operations with
CRm==c7, opc2=={0,1,2}.

For information about the synchronization of the TLB maintenance operations see TLB maintenance
operations and the memory order model on page B3-59.

Invalidate entire TLB

The Invalidate entire TLB operations invalidate all unlocked entries in the TLB. The value in the register Rt
specified by the MCR instruction used to perform the operation is ignored. You do not have to write a value
to the register before issuing the MCR instruction.

Invalidate single TLB entry by MVA

The Invalidate Single Entry operations invalidate a TLB entry that matches the MVA and ASID values
provided as an argument to the operation. The register format required is:

With global entries in the TLB, the supplied ASID value is not checked.

Invalidate TLB entries by ASID match

The Invalidate on ASID Match operations invalidate all TLB entries for non-global pages that match the
ASID value provided as an argument to the operation. The register format required is:

31 12 11 8 7 0

MVA SBZ ASID

31 8 7 0

SBZ ASID
B3-140 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2008_Q4
Inserted Text

See The interaction of TLB maintenance operations with TLB lockdown on page B3-7 [PDF page 1331] for information about the interaction of these maintenance operations with TLB lockdown.

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
UTLBIMVA

Virtual Memory System Architecture (VMSA)
Invalidate TLB entries by MVA all ASID

The Invalidate TLB entries by MVA all ASID operations invalidate all TLB entries that matches the MVA
provided as an argument to the operation regardless of the ASID. The register format required is:

Accessing the CP15 c8 TLB maintenance operations

To perform one of the TLB maintenance operations you write the CP15 registers with <opc1> == 0,
<CRn>==c8, and <CRm> and <opc2> set to the values shown in Table B3-35 on page B3-139. That is:

MCR p15,0,<Rt>,c8,<CRm>,<opc2>

For example:

MCR p15,0,<Rt>,c8,c5,0 ; Invalidate all unlocked entries in Instruction TLB
MCR p15,0,<Rt>,c8,c6,2 ; Invalidate Data TLB entries on ASID match

B3.12.35 CP15 c9, Cache and TCM lockdown registers and performance monitors

Some CP15 c9 encodings are reserved for IMPLEMENTATION DEFINED memory system functions, in
particular:

• cache control, including lockdown

• TCM control, including lockdown

• branch predictor control.

Additional CP15 c9 encodings are reserved for performance monitors. These encodings fall into two groups:

• the optional performance monitors, described in Chapter C9 Performance Monitors

• additional IMPLEMENTATION DEFINED performance monitors.

The reserved encodings permit implementations that are compatible with previous versions of the ARM
architecture, in particular with the ARMv6 requirements. Figure B3-21 shows the permitted CP15 c9
register encodings.

Figure B3-21 Permitted CP15 c9 encodings

31 12 11 0

MVA SBZ

7�*������(���9����)�����'�&��6�<��)������@<!��%���&'��*�� 4��
5 4�����5 4��
5
7�*������(���9����)�����'�&��6�<��)������@<!��%���&'��*4�	��
5 4��
5
7�*������(����7!�����,,���������(��,�����!��'&��*

��	 4��
5

<7� �%�� <7, �%��
#
#

7�*������(��� !�3:!:?@�@ =?��:� ?:�����(��,�����!��'&��*
4�������5 4��
5

7���PQ�'&�7�������� Q�'&������

����**���%���*����&)���%���&'��
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-141

ARM_2008_Q4
Inserted Text
unlocked

ARM_2008_Q4
Cross-Out

Virtual Memory System Architecture (VMSA)
CP15 c9 encodings not shown in Figure B3-21 on page B3-141 are UNPREDICTABLE, see Unallocated CP15
encodings on page B3-69.

In ARMv6, CP15 c9 provides cache lockdown functions. With the ARMv7 abstraction of the hierarchical
memory model, for CP15 c9:

• All encodings with CRm = {c0-c2, c5-c8} are reserved for IMPLEMENTATION DEFINED cache, branch
predictor and TCM operations.

This reservation enables the implementation of a scheme that is backwards compatible with ARMv6.
For details of the ARMv6 implementation see c9, Cache lockdown support on page AppxG-45.

Note
 In an ARMv6 implementation that implements the Security Extensions, a Cache Behavior Override

Register is required in CP15 c9, with CRm = 8, see c9, Cache Behavior Override Register (CBOR)
on page AppxG-49. This register is not architecturally-defined in ARMv7, and therefore the CP15 c9
encoding with CRm = 8 is IMPLEMENTATION DEFINED. However, an ARMv7 implementation can
include the CBOR, in which case ARM recommends that this encoding is used for it.

• All encodings with CRm = {c12-c14} are reserved for the optional performance monitors that are
defined in Chapter C9 Performance Monitors.

• All encodings with CRm = c15 are reserved for IMPLEMENTATION DEFINED performance monitoring
features.

B3.12.36 CP15 c10, Memory remapping and TLB control registers

On ARMv7-A implementations, CP15 c10 is used for memory remapping registers. In addition, some
encodings are reserved for IMPLEMENTATION DEFINED TLB control functions, in particular TLB lockdown.
The reserved encodings permit implementations that are compatible with previous versions of the ARM
architecture, in particular with the ARMv6 requirements.

Figure B3-22 shows the CP15 c10 registers and reserved encodings.

Figure B3-22 CP15 c10 registers

CP15 c10 encodings not shown in Figure B3-22 are UNPREDICTABLE, see Unallocated CP15 encodings on
page B3-69.

The CP15 c10 memory remap registers are described in CP15 c10, Memory Remap Registers on
page B3-143.

�7776���',����7�.'���7�,�%�7�.'*&��
7�*������(���@39�3��>��8���%���&'��*��� �

�� �
4��6��6��6�
5 4��
5

?!776�?��,���!�,����7�,�%�7�.'*&��

7���PQ�'&�7�������� Q�'&������

����**���%���*����&)���%���&'��

<7� �%�� <7, �%��

�

#

#

B3-142 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Virtual Memory System Architecture (VMSA)
The IMPLEMENTATION DEFINED TLB control operations

In VMSAv6, CP15 c10 provides TLB lockdown functions. In VMSAv7, the TLB lockdown mechanism is
IMPLEMENTATION DEFINED and some CP15 c10 encodings are reserved for IMPLEMENTATION DEFINED TLB
control operations. These are the encodings with <CRn> == c10, <opc1> == 0, <CRm> == {c0, c1, c4, c8}, and
<opc2> == {0-7}.

B3.12.37 CP15 c10, Memory Remap Registers

CP15 c10 includes two Memory Remap Registers, described in the subsections:

• c10, Primary Region Remap Register (PRRR)

• c10, Normal Memory Remap Register (NMRR) on page B3-146.

In addition:

• The significance and use of these registers is described in Memory region attribute descriptions when
TEX remap is enabled on page B3-34.

• The function of these registers is architecturally defined only when the

— SCTLR.TRE bit is set to 1

— SCTLR.TRE bit is set to 0 and no IMPLEMENTATION DEFINED mechanism using MMU remap
has been invoked.

Otherwise their behavior is IMPLEMENTATION DEFINED, see SCTLR.TRE, SCTLR.M, and the effect of
the MMU remap registers on page B3-38.

c10, Primary Region Remap Register (PRRR)

The Primary Region Remap Register, PRRR, can in some cases control the top level mapping of the TEX[0],
C, and B memory region attributes.

The PRRR:

• is a 32-bit read/write register

• is accessible only in privileged modes

• when the Security Extensions are implemented:

— is a Banked register

— has write access to the Secure copy of the register disabled when the CP15SDISABLE signal
is asserted HIGH.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-143

Virtual Memory System Architecture (VMSA)
The format of the PRRR is:

The reset value of the PRRR is IMPLEMENTATION DEFINED.

NOSn, bit [24+n], for values of n from 0 to 7

Outer Shareable property mapping for memory attributes n, if the region is mapped as
Normal Memory that is Shareable. n is the value of the TEX[0], C and B bits, see
Table B3-36 on page B3-145. The possible values of each NOSn bit are:

0 Shareable Normal memory region is Outer Shareable

1 Shareable Normal Memory region is Inner Shareable.

The value of this bit is ignored if the region is not Shareable Normal memory.

The meaning of the field with n = 6 is IMPLEMENTATION DEFINED and might differ from the
meaning given here. This is because the meaning of the attribute combination
{TEX[0] = 1, C = 1, B = 0} is IMPLEMENTATION DEFINED.

If the implementation does not support the Outer Shareable memory attribute then these bits
are reserved, RAZ/SBZP.

Bits [23:20] Reserved. UNK/SBZP.

NS1, bit [19] Mapping of S = 1 attribute for Normal memory. This bit gives the mapped Shareable
attribute for a region of memory that:

• is mapped as Normal memory

• has the S bit set to 1.

The possible values of the bit are:

0 Region is not Shareable

1 Region is Shareable.

NS0, bit [18] Mapping of S = 0 attribute for Normal memory. This bit gives the mapped Shareable
attribute for a region of memory that:

• is mapped as Normal memory

• has the S bit set to 0.

The possible values of the bit are the same as those given for the NS1 bit, bit [19].

31 30 29 28 27 26 25 24 23 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

UNK/SBZP TR7 TR6 TR5 TR4 TR3 TR2 TR1 TR0

DS0
DS1

NS1
NS0

NOS0
NOS1
NOS2
NOS3

NOS7
NOS6
NOS5
NOS4
B3-144 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
WI

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
distinguish between Inner Shareable and

ARM_2010_Q2
Cross-Out

ARM_2010_Q2 and ARM_2010_Q3
Inserted Text
Normal or Device memory that is

ARM_2010_Q2 and ARM_2010_Q3
Inserted Text

For more information see Interpretation of the NOSn fields in the PRRR on page B3.37 [PDF page 1311].

ARM_2010_Q3
Cross-Out

ARM_2010_Q3
Replacement Text
Normal or Device memory

ARM_2010_Q3
Cross-Out

ARM_2010_Q3
Cross-Out

ARM_2009_Q2
Cross-Out

Virtual Memory System Architecture (VMSA)
DS1, bit [17] Mapping of S = 1 attribute for Device memory. This bit gives the mapped Shareable
attribute for a region of memory that:

• is mapped as Device memory

• has the S bit set to 1.

The possible values of the bit are the same as those given for the NS1 bit, bit [19].

DS0, bit [16] Mapping of S = 0 attribute for Device memory. This bit gives the mapped Shareable
attribute for a region of memory that:

• is mapped as Device memory

• has the S bit set to 0.

The possible values of the bit are the same as those given for the NS1 bit, bit [19].

TRn, bits [2n+1:2n] for values of n from 0 to 7

Primary TEX mapping for memory attributes n. n is the value of the TEX[0], C and B bits,
see Table B3-36. This field defines the mapped memory type for a region with attributes n.
The possible values of the field are:

00 Strongly-ordered

01 Device

10 Normal Memory

11 Reserved, effect is UNPREDICTABLE.

The meaning of the field with n = 6 is IMPLEMENTATION DEFINED and might differ from the
meaning given here. This is because the meaning of the attribute combination
{TEX[0] = 1, C = 1, B = 0} is IMPLEMENTATION DEFINED.

Table B3-36 shows the mapping between the memory region attributes and the n value used in the
PRRR.nOSn and PRRR.TRn field descriptions.

Table B3-36 Memory attributes and the n value for the PRRR field descriptions

Attributes
n value

TEX[0] C B

0 0 0 0

0 0 1 1

0 1 0 2

0 1 1 3

1 0 0 4

1 0 1 5
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-145

Virtual Memory System Architecture (VMSA)
For more information about the PRRR see Memory region attribute descriptions when TEX remap is
enabled on page B3-34.

Accessing the PRRR

To access the PRRR you read or write the CP15 registers with <opc1> set to 0, <CRn> set to c10, <CRm> set to
c2, and <opc2> set to 0. For example:

MRC p15,0,<Rt>,c10,c2,0 ; Read CP15 Primary Region Remap Register
MCR p15,0,<Rt>,c10,c2,0 ; Write CP15 Primary Region Remap Register

c10, Normal Memory Remap Register (NMRR)

The Normal Memory Remap Register, NMRR, can in some cases provide additional mapping controls for
memory regions that are mapped as Normal memory by their entry in the PRRR.

The NMRR:

• is a 32-bit read/write register

• is accessible only in privileged modes

• when the Security Extensions are implemented:

— is a Banked register

— has write access to the Secure copy of the register disabled when the CP15SDISABLE signal
is asserted HIGH.

The format of the NMRR is:

The reset value of the NMRR is IMPLEMENTATION DEFINED.

ORn, bits [2n+17:2n+16], for values of n from 0 to 7

Outer Cacheable property mapping for memory attributes n, if the region is mapped as
Normal Memory by the TRn entry in the PRRR, see c10, Primary Region Remap Register
(PRRR) on page B3-143. n is the value of the TEX[0], C and B bits, see Table B3-36 on
page B3-145. The possible values of this field are:

00 Region is Non-cacheable

01 Region is Write-Back, WriteAllocate

1 1 0 6

1 1 1 7

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OR7 OR6 OR5 OR4 OR3 OR2 OR1 OR0 IR7 IR6 IR5 IR4 IR3 IR2 IR1 IR0

Table B3-36 Memory attributes and the n value for the PRRR field descriptions (continued)

Attributes
n value

TEX[0] C B
B3-146 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Virtual Memory System Architecture (VMSA)
10 Region is WriteThrough, Non-WriteAllocate

11 Region is Write-Back, Non-WriteAllocate.

The meaning of the field with n = 6 is IMPLEMENTATION DEFINED and might differ from the
meaning given here. This is because the meaning of the attribute combination
{TEX[0] = 1, C = 1, B = 0} is IMPLEMENTATION DEFINED.

IRn, bits [2n+1:2n], for values of n from 0 to 7

Inner Cacheable property mapping for memory attributes n, if the region is mapped as
Normal Memory by the TRn entry in the PRRR, see c10, Primary Region Remap Register
(PRRR) on page B3-143. n is the value of the TEX[0], C and B bits, see Table B3-36 on
page B3-145. The possible values of this field are the same as those given for the ORn field.

The meaning of the field with n = 6 is IMPLEMENTATION DEFINED and might differ from the
meaning given here. This is because the meaning of the attribute combination
{TEX[0] = 1, C = 1, B = 0} is IMPLEMENTATION DEFINED.

For more information about the NMRR see Memory region attribute descriptions when TEX remap is
enabled on page B3-34.

Accessing the NMRR

To access the NMRR you read or write the CP15 registers with <opc1> set to 0, <CRn> set to c10, <CRm> set to
c2, and <opc2> set to 1. For example:

MRC p15,0,<Rt>,c10,c2,1 ; Read CP15 Normal Memory Remap Register
MCR p15,0,<Rt>,c10,c2,1 ; Write CP15 Normal Memory Remap Register

B3.12.38 CP15 c11, Reserved for TCM DMA registers

Some CP15 c11 register encodings are reserved for IMPLEMENTATION DEFINED DMA operations to and
from TCM, see Figure B3-23:

Figure B3-23 Permitted CP15 c11 encodings

CP15 c11 encodings not shown in Figure B3-23 are UNPREDICTABLE, see Unallocated CP15 encodings on
page B3-69.

7�*������(����!���%���&'��*�(���@<!�����**
7�*������(����!���%���&'��*�(���@<!�����**

��� 4��
5 4����
5 4��
5
��	 4��
5

7���PQ�'&�7�������� Q�'&������

<7� �%�� <7, �%��

����**���%���*����&)���%���&'��#

#
#

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-147

Virtual Memory System Architecture (VMSA)
B3.12.39 CP15 c12, Security Extensions registers

When the Security Extensions are implemented, CP15 c12 is used for the Vector base address registers and
an Interrupt status register. Figure B3-24 shows the CP15 c12 Security Extensions registers:

Figure B3-24 Security Extensions CP15 c12 registers

When the Security Extensions are implemented, CP15 c12 encodings not shown in Figure B3-24 are
UNPREDICTABLE. On an implementation that does not include the Security Extensions all CP15 c12
encodings are UNDEFINED. For more information, see Unallocated CP15 encodings on page B3-69.

The CP15 c12 registers are described in the subsections:

• c12, Vector Base Address Register (VBAR)

• c12, Monitor Vector Base Address Register (MVBAR) on page B3-149

• c12, Interrupt Status Register (ISR) on page B3-150.

B3.12.40 c12, Vector Base Address Register (VBAR)

When the Security Extensions are implemented and high exception vectors are not selected, the Vector Base
Address Register, VBAR, provides the exception base address for exceptions that are not handled in Monitor
mode, see Exception vectors and the exception base address on page B1-30. The high exception vectors
always have the base address 0xFFFF0000 and are not affected by the value of VBAR.

The VBAR:

• Is present only when the Security Extensions are implemented.

• Is a 32-bit read/write register.

• Is accessible only in privileged modes.

• Has a defined reset value, for the Secure copy of the register, of 0. This reset value does not apply to
the Non-secure copy of the register, and software must program the Non-secure copy of the register
with the required value, as part of the processor boot sequence.

• Is a Banked register.

• Has write access to the Secure copy of the register disabled when the CP15SDISABLE signal is
asserted HIGH.

N�!�9�76�!��'&������&���9�*�������**�7�.'*&��
N��9�76����&���9�*�������**�7�.'*&����� �

��

�� �

N� �76� �&���$%&��&�&$*�7�.'*&��

7���PQ�'&�7�������� Q�'&������

N� ,%��,��&��������8)���&)�����$�'&��:+&��*'��*�����',%��,��&��

<7� �%�� <7, �%��

�
�

B3-148 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Virtual Memory System Architecture (VMSA)
The format of the VBAR is:

The Secure copy of the VBAR holds the vector base address for the Secure state, described as the Secure
exception base address

The Non-secure copy of the VBAR holds the vector base address for the Non-secure state, described as the
Non-secure exception base address.

Vector_Base_Address, bits [31:5]

Bits [31:5] of the base address of the normal exception vectors. Bits [4:0] of an exception
vector is the exception offset, see Table B1-3 on page B1-31.

Bits [4:0] Reserved, UNK/SBZP.

For details of how the VBAR registers are used to determine the exception addresses see Exception vectors
and the exception base address on page B1-30.

Accessing the VBAR

To access the VBAR you read or write the CP15 registers with <opc1> set to 0, <CRn> set to c12, <CRm> set to
c0, and <opc2> set to 0. For example:

MRC p15,0,<Rt>,c12,c0,0 ; Read CP15 Vector Base Address Register
MCR p15,0,<Rt>,c12,c0,0 ; Write CP15 Vector Base Address Register

B3.12.41 c12, Monitor Vector Base Address Register (MVBAR)

The Monitor Vector Base Address Register, MVBAR, provides the exception base address for all exceptions
that are handled in Monitor mode, see Exception vectors and the exception base address on page B1-30.

The MVBAR is:

• present only when the Security Extensions are implemented

• a 32-bit read/write register

• accessible in Secure privileged modes only

• a Restricted access register, meaning it exists only in the Secure state.

The format of the MVBAR is:

31 5 4 0

Vector_Base_Address (0) (0) (0) (0) (0)

31 5 4 0

Monitor_Vector_Base_Address (0) (0) (0) (0) (0)
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-149

Virtual Memory System Architecture (VMSA)
The reset value of the MVBAR is UNKNOWN. The MVBAR must be programmed as part of the boot
sequence.

Monitor_Vector_Base_Address, bits [31:5]

Bits [31:5] of the base address of the exception vectors for exceptions that are handled in
Monitor mode. Bits [4:0] of an exception vector is the exception offset, see Table B1-3 on
page B1-31.

Bits [4:0] Reserved, UNK/SBZP.

For details of how the MVBAR is used to determine the exception addresses see Exception vectors and the
exception base address on page B1-30.

Accessing the MVBAR

To access the MVBAR you read or write the CP15 registers with <opc1> set to 0, <CRn> set to c12, <CRm> set
to c0, and <opc2> set to 1. For example:

MRC p15,0,<Rt>,c12,c0,1 ; Read CP15 Monitor Vector Base Address Register
MCR p15,0,<Rt>,c12,c0,1 ; Write CP15 Monitor Vector Base Address Register

B3.12.42 c12, Interrupt Status Register (ISR)

The Interrupt Status Register, ISR, shows whether an IRQ, FIQ or external abort is pending.

The ISR is:

• present only when the Security Extensions are implemented

• a 32-bit read-only register

• accessible only in privileged modes.

• a Common register, meaning it is available in the Secure and Non-secure states.

The format of the ISR is:

Bits [31:9] Reserved, UNK.

A, bit [8] External abort pending flag:

0 no pending external abort

1 an external abort is pending.

I, bit [7] Interrupt pending flag. Indicates whether an IRQ interrupt is pending:

0 no pending IRQ

1 an IRQ interrupt is pending.

31 9 8 7 6 5 0

UNK A I F (0) (0) (0) (0) (0) (0)
B3-150 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Virtual Memory System Architecture (VMSA)
F, bit [7] Fast interrupt pending flag. Indicates whether an FIQ fast interrupt is pending:

0 no pending FIQ

1 an FIQ fast interrupt is pending.

Bits [5:0] Reserved, UNK/SBZP.

The bit positions of the A, I and F flags in the ISR match the A, I and F flag bits in the CPSR, see Program
Status Registers (PSRs) on page B1-14. This means the same masks can be used to extract the flags from
the register value.

Note
 • The ISR.F and ISR.I bits directly reflect the state of the FIQ and IRQ inputs.

• the ISR.A bit is set when an asynchronous abort is generated and is cleared automatically when the
abort is taken.

Accessing the ISR

To access the ISR you read the CP15 registers with <opc1> set to 0, <CRn> set to c12, <CRm> set to c1, and
<opc2> set to 0. For example:

MRC p15,0,<Rt>,c12,c1,0 ; Read Interrupt Status Register

B3.12.43 CP15 c13, Process, context and thread ID registers

The CP15 c13 registers are used for:

• a Context ID register

• three software Thread ID registers

• an FCSE Process ID Register.

Note
 From ARMv6, use of the FCSE is a deprecated, and in ARMv7 the FCSE is an optional component of a
VMSA implementation. ARM expects the FCSE will become obsolete during the lifetime of ARMv7.
However, every ARMv7-A implementation must include the FCSE Process ID Register.

Figure B3-25 on page B3-152 shows the CP15 c13 registers:
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-151

ARM_2009_Q1
Cross-Out
6

ARM_2009_Q1
Inserted Text
6

Virtual Memory System Architecture (VMSA)
Figure B3-25 CP15 c13 registers in a VMSA implementation

CP15 c13 encodings not shown in Figure B3-25 are UNPREDICTABLE, see Unallocated CP15 encodings on
page B3-69.

The CP15 c13 registers are described in:

• c13, FCSE Process ID Register (FCSEIDR)

• c13, Context ID Register (CONTEXTIDR) on page B3-153

• CP15 c13 Software Thread ID registers on page B3-154.

B3.12.44 c13, FCSE Process ID Register (FCSEIDR)

The FCSE Process ID Register, FCSEIDR, identifies the current Process ID (PID) for the Fast Context
Switch Extension (FCSE). In ARMv7, the FCSE is optional. However, the FCSEIDR must be implemented
regardless of whether the FCSE is implemented. Software can access this register to determine whether the
FCSE is implemented.

The FCSEIDR:

• Is a 32-bit register, with access that depends on whether the FCSE is implemented:

FCSE implemented: . the register is read/write

FCSE not implemented: . the register is RAZ/WI.

• Is accessible only in privileged modes.

• When implemented as a read/write register, has a defined reset value of 0. When the Security
Extensions are implemented, this reset value applies only to the Secure copy of the register, and
software must program the Non-secure copy of the register with the required value.

• When the Security Extensions are implemented, is a Banked register.

When the Security Extensions are implemented and the FCSE is implemented, write access to the
Secure copy of the FCSEIDR is disabled when the CP15SDISABLE signal is asserted HIGH.

��(&8����@)����� �
7�.'*&��*

��� � ��

7���PQ�'&�7�������� Q�'&������

�<�: �76��<�:�� ��7�.'*&��
<=?@:G@ �76�<��&�+&� ��7�.'*&��

@� �7"7=6�"*���7����=���
@� �7�7Q6���'�'��.���=���

<7� �%�� <7, �%��
O

����**���%���*�8)�&)����<�:�'*�',%��,��&��O

�

�
�

�
� @� �7"7Q6�"*���7���PQ�'&�
B3-152 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Virtual Memory System Architecture (VMSA)
The format of the FCSEIDR is:

PID, bits [31:25]

The current Process ID, for the FCSE. If the FCSE is not implemented this field is RAZ/WI.

Bits [24:0] Reserved. If the FCSE is not implemented this field is RAZ/WI.

If the FCSE is implemented, the value of this field is UNKNOWN on reads and
Should-Be-Zero-or-Preserved on writes.

Note
 • When the PID is written, the overall virtual-to-physical address mapping changes. Because of this,

you must ensure that instructions that might have been prefetched already are not affected by the
address mapping change.

• From ARMv6, use of the FCSE is deprecated, and in ARMv7 the FCSE is optional.

Accessing the FCSEIDR

To access the FCSEIDR you read or write the CP15 registers with <opc1> set to 0, <CRn> set to c13, <CRm> set
to c0, and <opc2> set to 0. For example:

MRC p15,0,<Rt>,c13,c0,0 ; Read CP15 FCSE PID Register
MCR p15,0,<Rt>,c13,c0,0 ; Write CP15 FCSE PID Register

B3.12.45 c13, Context ID Register (CONTEXTIDR)

The Context ID Register, CONTEXTIDR, identifies the current:

• Process Identifier (PROCID)

• Address Space Identifier (ASID).

The value of the whole of this register is called the Context ID and is used by:

• the debug logic, for Linked and Unlinked Context ID matching, see Breakpoint debug events on
page C3-5 and Watchpoint debug events on page C3-15.

• the trace logic, to identify the current process.

The ASID field value is used by many memory management functions.

The CONTEXTIDR is:

• a 32-bit read/write register

• accessible only in privileged modes

• when the Security Extensions are implemented, a Banked register.

31 25 24 0

PID UNK/SBZP
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-153

Virtual Memory System Architecture (VMSA)
The format of the CONTEXTIDR is:

PROCID, bits [31:8]

Process Identifier. This field must be programmed with a unique value that identifies the
current process. It is used by the trace logic and the debug logic to identify the process that
is running currently.

ASID, bits [7:0]

Address Space Identifier. This field is programmed with the value of the current ASID.

Using the CONTEXTIDR

For information about the synchronization of changes to the CONTEXTIDR see Changes to CP15 registers
and the memory order model on page B3-77. There are particular synchronization requirements when
changing the ASID and Translation Table Base Registers, see Synchronization of changes of ASID and
TTBR on page B3-60.

Accessing the CONTEXTIDR

To access the CONTEXTIDR you read or write the CP15 registers with <opc1> set to 0, <CRn> set to c13,
<CRm> set to c0, and <opc2> set to 1. For example:

MRC p15,0,<Rt>,c13,c0,1 ; Read CP15 Context ID Register
MCR p15,0,<Rt>,c13,c0,1 ; Write CP15 Context ID Register

B3.12.46 CP15 c13 Software Thread ID registers

The Software Thread ID registers provide locations where software can store thread identifying information,
for OS management purposes. These registers are never updated by the hardware.

The Software Thread ID registers are:

• three 32-bit register read/write registers:

— User Read/Write Thread ID Register, TPIDRURW

— User Read-only Thread ID Register, TPIDRURO

— Privileged Only Thread ID Register, TPIDRPRW.

• accessible in different modes:

— the User Read/Write Thread ID Register is read/write in unprivileged and privileged modes

— the User Read-only Thread ID Register is read-only in User mode, and read/write in privileged
modes

— the Privileged Only Thread ID Register is only accessible in privileged modes, and is
read/write.

• when the Security Extensions are implemented, Banked registers

• introduced in ARMv7.

31 8 7 0

PROCID ASID
B3-154 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Virtual Memory System Architecture (VMSA)
Accessing the Software Thread ID registers

To access the Software Thread ID registers you read or write the CP15 registers with <opc1> set to 0, <CRn>
set to c13, <CRm> set to c0, and <opc2> set to:

• 2 for the User Read/Write Thread ID Register, TPIDRURW

• 3 for the User Read-only Thread ID Register, TPIDRURO

• 4 for the Privileged Only Thread ID Register, TPIDRPRW.

For example:

MRC p15, 0, <Rt>, c13, c0, 2 ; Read CP15 User Read/Write Thread ID Register
MCR p15, 0, <Rt>, c13, c0, 2 ; Write CP15 User Read/Write Thread ID Register
MRC p15, 0, <Rt>, c13, c0, 3 ; Read CP15 User Read-only Thread ID Register
MCR p15, 0, <Rt>, c13, c0, 3 ; Write CP15 User Read-only Thread ID Register
MRC p15, 0, <Rt>, c13, c0, 4 ; Read CP15 Privileged Only Thread ID Register
MCR p15, 0, <Rt>, c13, c0, 4 ; Write CP15 Privileged Only Thread ID Register

B3.12.47 CP15 c14, Not used

CP15 c14 is not used on any ARMv7 implementation, see Unallocated CP15 encodings on page B3-69.

B3.12.48 CP15 c15, IMPLEMENTATION DEFINED registers

CP15 c15 is reserved for IMPLEMENTATION DEFINED purposes. ARMv7 does not impose any restrictions on
the use of the CP15 c15 encodings. The documentation of the ARMv7 implementation must describe fully
any registers implemented in CP15 c15. Normally, for processor implementations by ARM, this information
is included in the Technical Reference Manual for the processor.

Typically, CP15 c15 is used to provide test features, and any required configuration options that are not
covered by this manual.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-155

Virtual Memory System Architecture (VMSA)
B3.13 Pseudocode details of VMSA memory system operations

This section contains pseudocode describing VMSA memory operations. The following subsections
describe the pseudocode functions:

• Alignment fault

• FCSE translation

• Address translation on page B3-157

• Domain checking on page B3-157

• TLB operations on page B3-158

• Translation table walk on page B3-158.

See also the pseudocode for general memory system operations in Pseudocode details of general memory
system operations on page B2-29.

B3.13.1 Alignment fault

The following pseudocode describes the generation of an Alignment fault Data Abort exception:

// AlignmentFaultV()
// =================

AlignmentFaultV(bits(32) address, boolean iswrite)

 mva = FCSETranslate(address);
 DataAbort(mva, bits(4) UNKNOWN, boolean UNKNOWN, iswrite, DAbort_Alignment);

B3.13.2 FCSE translation

The following pseudocode describes the FCSE translation:

// FCSETranslate()
// ===============

bits(32) FCSETranslate(bits(32) va)
 if va<31:25> == ‘0000000’ then
 mva = FCSEIDR.PID : va<24:0>;
 else
 mva = va;
 return mva;
B3-156 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Virtual Memory System Architecture (VMSA)
B3.13.3 Address translation

The following pseudocode describes address translation in a VMSA implementation:

// TranslateAddressV()
// ===================

AddressDescriptor TranslateAddressV(bits(32) va, boolean ispriv, boolean iswrite)

 mva = FCSETranslate(va);

 if SCTLR.M == ‘1’ then // MMU is enabled
 (tlbhit, tlbrecord) = CheckTLB(CONTEXTIDR.ASID, mva);
 if !tlbhit then
 tlbrecord = TranslationTableWalk(mva, iswrite);
 if CheckDomain(tlbrecord.domain, mva, tlbrecord.sectionnotpage, iswrite) then
 CheckPermission(tlbrecord.perms, mva, tlbrecord.sectionnotpage, iswrite, ispriv);
 else
 tlbrecord = TranslationTableWalk(mva, iswrite);

 return tlbrecord.addrdesc;

B3.13.4 Domain checking

The following pseudocode describes domain checking:

// CheckDomain()
// =============

boolean CheckDomain(bits(4) domain, bits(32) mva, boolean sectionnotpage, boolean iswrite)

 bitpos = 2*UInt(domain);
 case DACR<bitpos+1:bitpos> of
 when ‘00’ DataAbort(mva, domain, sectionnotpage, iswrite, DAbort_Domain);
 when ‘01’ permissioncheck = TRUE;
 when ‘10’ UNPREDICTABLE;
 when ‘11’ permissioncheck = FALSE;

 return permissioncheck;
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-157

Virtual Memory System Architecture (VMSA)
B3.13.5 TLB operations

The TLBRecord type represents the contentsof a TLB entry:

// Types of TLB entry

enumeration TLBRecType = { TLBRecType_SmallPage,
 TLBRecType_LargePage,
 TLBRecType_Section,
 TLBRecType_Supersection,
 TLBRecType_MMUDisabled
 };

type TLBRecord is (
 Permissions perms,
 bit nG, // ‘0’ = Global, ‘1’ = not Global
 bits(4) domain,
 boolean sectionnotpage,
 TLBRecType type,
 AddressDescriptor addrdesc
)

The CheckTLB() function checks whether the TLB contains an entry that matches an ASID and address, and
returns TRUE and the matching TLBRecord if so. Otherwise, it returns FALSE and an UNKNOWN TLBRecord.

(boolean, TLBRecord) CheckTLB(bits(8) asid, bits(32) address)

The AssignToTLB() procedure supplies an ASID and new TLBRecord to the TLB, for possible allocation to a
TLB entry. It is IMPLEMENTATION DEFINED under what circumstances this allocation takes place, and TLB
entries might also be allocated at other times.

AssignToTLB(bits(8) asid, bits(32) mva, TLBRecord entry)

B3.13.6 Translation table walk

The following pseudocode describes the translation table walk operation:

// TranslationTableWalk()
// ======================
//
// Returns a result of a translation table walk in TLBRecord form.

TLBRecord TranslationTableWalk(bits(32) mva, boolean is_write)

 TLBRecord result;
 AddressDescriptor l1descaddr;
 AddressDescriptor l2descaddr;

 if SCTLR.M == ‘1’ then // MMU is enabled

 domain = bits(4) UNKNOWN; // For Data Abort exceptions found before a domain is known

 // Determine correct Translation Table Base Register to use.
 n = UInt(TTBCR.N);
B3-158 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Virtual Memory System Architecture (VMSA)
 if n == 0 || IsZero(mva<31:(32-n)>) then
 ttbr = TTBR0;
 disabled = (TTBCR.PD0 == ‘1’);
 else
 ttbr = TTBR1;
 disabled = (TTBCR.PD1 == ‘1’);
 n = 0; // TTBR1 translation always works like N=0 TTBR0 translation

 // Check this Translation Table Base Register is not disabled.
 if HaveSecurityExt() && disabled == ‘1’ then
 DataAbort(mva, domain, TRUE, is_write, DAbort_Translation);

 // Obtain level 1 descriptor.
 l1descaddr.paddress.physicaladdress = ttbr<31:(14-n)> : mva<(31-n):20> : ‘00’;
 l1descaddr.paddress.physicaladdressext = ‘00000000’;
 l1descaddr.paddress.NS = if IsSecure() then ‘0’ else ‘1’;
 l1descaddr.memattrs.type = MemType_Normal;
 l1descaddr.memattrs.shareable = (ttbr<1> == ‘1’);
 l1descaddr.memattrs.outershareable = (ttbr<5> == ‘0’) && (ttbr<1> == ‘1’);
 l1descaddr.memattrs.outerattrs = ttbr<4:3>;

 if HaveMPExt() then
 1descaddr.memattrs.innerattrs = ttbr<0>:ttbr<6>;
 else
 if ttbr<0> == ‘0’ then
 l1descaddr.memattrs.innerattrs = ‘00’;
 else
 IMPLEMENTATION_DEFINED set l1descaddr.memattrs.innerattrs to one of
‘01’,’10’,’11’;
 l1desc = _Mem[l1descaddr,4];

 // Process level 1 descriptor.
 case l1desc<1:0> of
 when ‘00’, ‘11’ // Fault, Reserved
 DataAbort(mva, domain, TRUE, is_write, DAbort_Translation);

 when ‘01’ // Section or Supersection
 texcb = l1desc<14:12,3,2>;
 S = l1desc<16>;
 ap = l1desc<15,11:10>;
 xn = l1desc<4>;
 nG = l1desc<17>;
 sectionnotpage = TRUE;
 NS = l1desc<19>;

 if SCTLR.AFE == ‘1’ && l1desc<10> == ‘0’ then
 if SCTLR.HA == ‘0’ then
 DataAbort(mva, domain, sectionnotpage, is_write, DAbort_AccessFlag);
 else // Hardware-managed access flag must be set in memory
 _Mem[l1descaddr,4]<10> = ‘1’;

 if l1desc<18> == ‘0’ then // Section
 domain = l1desc<8:5>;
 type = TLBRecType_Section;
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-159

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
10

ARM_2009_Q2
Highlight
This is a single line that wraps because of the limited page width.

Virtual Memory System Architecture (VMSA)
 physicaladdressext = ‘00000000’;
 physicaladdress = l1desc<31:20> : mva<19:0>;
 else // Supersection
 domain = ‘0000’;
 type = TLBRecType_Supersection;
 physicaladdressext = l1desc<8:5,23:20>;
 physicaladdress = l1desc<31:24> : mva<23:0>;

 when ‘10’ // Large page or Small page
 domain = l1desc<8:5>;
 sectionnotpage = FALSE;
 NS = l1desc<3>;

 // Obtain level 2 descriptor.
 l2descaddr.paddress.physicaladdress = l1desc<31:10> : mva<19:12> : ‘00’;
 l2descaddr.paddress.physicaladdressext = ‘00000000’;
 l2descaddr.paddress.NS = if IsSecure() then ‘0’ else ‘1’;
 l2descaddr.memattrs = l1descaddr.memattrs;
 l2desc = _Mem[l2descaddr,4];

 // Process level 2 descriptor.
 if l2desc<1:0> == ‘00’ then
 DataAbort(mva, domain, sectionnotpage, is_write, DAbort_Translation);

 S = l2desc<10>;
 ap = l2desc<9,5:4>;
 nG = l2desc<11>;

 if SCTLR.AFE == ‘1’ && l2desc<4> == ‘0’ then
 if SCTLR.HA == ‘0’ then
 DataAbort(mva, domain, sectionnotpage, is_write, DAbort_AccessFlag);
 else // Hardware-managed access flag must be set in memory
 _Mem[l2descaddr,4]<4> = ‘1’;

 if l2desc<1> == ‘0’ then // Large page
 texcb = l2desc<14:12,3,2>
 xn = l2desc<15>;
 type = TLBRecType_LargePage;
 physicaladdressext = ‘00000000’;
 physicaladdress = l2desc<31:16> : mva<15:0>;
 else // Small page
 texcb = l2desc<8:6,3,2>;
 xn = l2desc<0>;
 type = TLBRecType_SmallPage;
 physicaladdressext = ‘00000000’;
 physicaladdress = l2desc<31:12> : mva<11:0>;

 else // MMU is disabled

 texcb = ‘00000’;
 S = ‘1’;
 ap = bits(3) UNKNOWN;
 xn = bit UNKNOWN;
 nG = bit UNKNOWN;
B3-160 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Inserted Text
01

Virtual Memory System Architecture (VMSA)
 domain = bits(4) UNKNOWN;
 sectionnotpage = boolean UNKNOWN;
 type = TLBRecType_MMUDisabled;
 physicaladdress = mva;
 physicaladdressext = ‘00000000’;
 NS = if IsSecure() then ‘0’ else ‘1’;

 // Decode the TEX, C, B and S bits to produce the TLBRecord’s memory attributes.

 if SCTLR.TRE == ‘0’ then
 if RemapRegsHaveResetValues() then
 result.addrdesc.memattrs = DefaultTEXDecode(texcb, S);
 else
 IMPLEMENTATION_DEFINED setting of result.addrdesc.memattrs;
 else
 if SCTLR.M == ‘0’ then
 result.addrdesc.memattrs = DefaultTEXDecode(texcb, S);
 else
 result.addrdesc.memattrs = RemappedTEXDecode(texcb, S);

 // Set the rest of the TLBRecord, try to add it to the TLB, and return it.
 result.perms.ap = ap;
 result.perms.xn = xn;
 result.nG = nG;
 result.domain = domain;
 result.sectionnotpage = sectionnotpage;
 result.type = type;
 result.addrdesc.paddress.physicaladdress = physicaladdress;
 result.addrdesc.paddress.physicaladdressext = physicaladdressext;
 result.addrdesc.paddress.NS = NS;

 AssignToTLB(CONTEXTIDR.ASID, mva, result);

 return result;
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B3-161

ARM_2009_Q1
Inserted Text
B3.13.7 Memory access decode when TEX remap is enabled

The function RemappedTEXDecode() decodes the texcb and S attributes derived from the translation tables when TEX remap is enabled. Memory region attribute descriptions when TEX remap is enabled on page B3‑34 [PDF page 1308] shows the interpretation of the arguments.

// RemappedTEXDecode()
// ===================

MemoryAttributes RemappedTEXDecode(bits(5) texcb, bit S)

 MemoryAttributes memattrs;
 region = UInt(texcb<2:0>); // texcb<4:3> are ignored in this mapping scheme
 if region == 6 then
 IMPLEMENTATION_DEFINED setting of memattrs;
 else
 case PRRR<(2*region+1):2*region> of
 when ‘00’
 memattrs.type = MemType_StronglyOrdered;
 memattrs.innerattrs = ‘00’; // Non-cacheable
 memattrs.outerattrs = ‘00’; // Non-cacheable
 memattrs.shareable = TRUE;
 memattrs.outershareable = TRUE;
 when ‘01’
 memattrs.type = MemType_Device;
 memattrs.innerattrs = ‘00’; // Non-cacheable
 memattrs.outerattrs = ‘00’; // Non-cacheable
 s_bit = if S == ‘0’ then PRRR.DS0 else PRRR.DS1;
 memattrs.shareable = (s_bit == ‘1’);
 memattrs.outershareable = memattrs.shareable;
 when ‘10’
 memattrs.type = MemType_Normal;
 memattrs.innerattrs = NMRR<(2*region+1):2*region>;
 memattrs.outerattrs = NMRR<(2*region+17):(2*region+16)>;
 s_bit = if S == ‘0’ then PRRR.NS0 else PRRR.NS1;
 memattrs.shareable = (s_bit == ‘1’);
 memattrs.outershareable = (s_bit == ‘1’) && (PRRR<region+24> == ‘1’);
 when ‘11’
 UNPREDICTABLE;

 return memattrs;

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
if IsSecure() then NS else '1';

Virtual Memory System Architecture (VMSA)
B3-162 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Chapter B4
Protected Memory System Architecture
(PMSA)

This chapter provides a system-level view of the memory system. It contains the following sections:

• About the PMSA on page B4-2

• Memory access control on page B4-9

• Memory region attributes on page B4-11

• PMSA memory aborts on page B4-13

• Fault Status and Fault Address registers in a PMSA implementation on page B4-18

• CP15 registers for a PMSA implementation on page B4-22

• Pseudocode details of PMSA memory system operations on page B4-79.

Note
 For an ARMv7-R implementation, this chapter must be read with Chapter B2 Common Memory System
Architecture Features.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B4-1

Protected Memory System Architecture (PMSA)
B4.1 About the PMSA

The PMSA is based on a Memory Protection Unit (MPU). The PMSA provides a much simpler memory
protection scheme than the MMU based VMSA described in Chapter B3 Virtual Memory System
Architecture (VMSA). The simplification applies to both the hardware and the software. A PMSAv7
processor is identified by the presence of the MPU Type Register, see c0, MPU Type Register (MPUIR) on
page B4-36.

The main simplification is that the MPU does not use translation tables. Instead, System Control
Coprocessor (CP15) registers are used to define protection regions. The protection regions eliminate the
need for:

• hardware to perform translation table walks

• software to set up and maintain the translation tables.

The use of protection regions has the benefit of making the memory checking fully deterministic. However,
the level of control is region based rather than page based, meaning the control is considerably less
fine-grained than in the VMSA.

A second simplification is that the PMSA does not support virtual to physical address mapping other than
flat address mapping. The physical memory address accessed is the same as the virtual address generated
by the processor.

B4.1.1 Protection regions

In a PMSA implementation, you can use CP15 registers to define protection regions in the physical memory
map. When describing a PMSA implementation, protection regions are often referred to as regions.

This means the PMSA has the following features:

• For each defined region, CP15 registers specify:

— the region size

— the base address

— the memory attributes, for example, memory type and access permissions.

Regions of 256 bytes or larger can be split into 8 sub-regions for improved granularity of memory
access control.

The minimum region size supported is IMPLEMENTATION DEFINED.

• Memory region control, requiring read and write access to the region configuration registers, is
possible only from privileged modes.

• Regions can overlap. If an address is defined in multiple regions, a fixed priority scheme is used to
define the properties of the address being accessed. This scheme gives priority to the region with the
highest region number.

• The PMSA can be configured so that an access to an address that is not defined in any region either:

— causes a memory abort

— if it is a privileged access, uses the default memory map.
B4-2 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Protected Memory System Architecture (PMSA)
• All addresses are physical addresses, address translation is not supported.

• Instruction and data address spaces can be either:

— unified, so a single region descriptor applies to both instruction and data accesses

— separated between different instruction region descriptors and data region descriptors.

When the processor generates a memory access, the MPU compares the memory address with the
programmed memory regions:

• If a matching memory region is not found, then:

— the access can be mapped onto a background region, see Using the default memory map as a
background region on page B4-5

— otherwise, a Background Fault memory abort is signaled to the processor.

• If a matching memory region is found:

— The access permission bits are used to determine whether the access is permitted. If the access
is not permitted, the MPU signals a Permissions Fault memory abort. Otherwise, the access
proceeds. See Memory access control on page B4-9 for a description of the access permission
bits.

— The memory region attributes are used to determine the memory type, as described in Memory
region attributes on page B4-11.

B4.1.2 Subregions

A region of the PMSA memory map can be split into eight equal sized, non-overlapping subregions:

• any region size between 256bytes and 4Gbytes supports 8 sub-regions

• region sizes below 256 bytes do not support sub-regions

In the Region Size Register for each region, there is a Subregion disable bit for each subregion. This means
that each subregion is either:

• part of the region, if its Subregion disable bit is 0

• not part of the region, if its Subregion disable bit is 1.

If the region size is smaller than 256 bytes then all eight of the Subregion bits are UNK/SBZ.

If a subregion is part of the region then the protection and memory type attributes of the region apply to the
subregion. If a subregion is not part of the region then the addresses covered by the subregion do not match
as part of the region.

Subregions are not available in versions of the PMSA before PMSAv7.

B4.1.3 Overlapping regions

The MPU can be programmed with two or more overlapping regions. When memory regions overlap, a fixed
priority scheme determines the region whose attributes are applied to the memory access. The higher the
region number the higher the priority. Therefore, for example, in an implementation that supports eight
memory regions, the attributes for region 7 have highest priority and those for region 0 have lowest priority.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B4-3

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
UNK/SBZP

Protected Memory System Architecture (PMSA)
Figure B4-1 shows a case where the MPU is programmed with overlapping memory regions.

Figure B4-1 Overlapping memory regions in the MPU

In this example:

• Data region 2 is programmed to be 4KB in size, starting from address 0x3000 with AP[2:0} == 0b010,
giving privileged mode full access, User mode read-only access.

• Data region 1 is programmed to be 16KB in size, starting from address 0x0 with AP[2:0} == 0b001,
giving privileged mode access only.

If the processor performs a data load from address 0x3010 while in User mode, the address is in both region 1
and region 2. Region 2 has the higher priority, therefore the region 2 attributes apply to the access. This
means the load does not abort.

B4.1.4 The background region

Background region refers to a region that matches the entire 4GB physical address map, and has a lower
priority than any other region. Therefore, a background region provides the memory attributes for any
memory access that does not match any of the defined memory regions.

When the SCTLR.BR bit is set to 0, the MPU behaves as if there is a background region that generates a
Background Fault memory abort on any access. This means that any memory access that does not match
any of the programmed memory regions generates a Background Fault memory abort. This is the same as
the behavior in PMSAv6.

If you want a background region with a different set of memory attributes, you can program region 0 as a
4GB region with the attributes you require. Because region 0 has the lowest priority this region then acts as
a background region.

������

��	���
��	�
� 7�.'����

7�.'����

������
B4-4 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Protected Memory System Architecture (PMSA)
Using the default memory map as a background region

The default memory map is defined in The default memory map on page B4-6. Before PMSAv7, the default
memory map is used only to define the behavior of memory accesses when the MPU is disabled or not
implemented. From PMSAv7, when the SCTLR.BR bit is set to 1, and the MPU is present and enabled:

• the default memory map defines the background region for privileged memory accesses, meaning
that a privileged access that does not match any of the programmed memory regions takes the
properties defined for that address in the default memory map

• an unprivileged memory access that does not match any of the defined memory regions generates a
Background Fault memory abort.

Using the default memory map as the background region means that all of the programmable memory region
definitions can be used to define protection regions in the 4GB memory address space.

B4.1.5 Enabling and disabling the MPU

The SCTLR.M bit is used to enable and disable the MPU, see c1, System Control Register (SCTLR) on
page B4-45. On reset, this bit is cleared to 0, meaning the MPU is disabled after a reset.

Software must program all relevant CP15 registers before enabling the MPU. This includes at least one of:

• setting up at least one memory region

• setting the SCTLR.BR bit to 1, to use the default memory map as a background region, see Using the
default memory map as a background region.

Synchronization of changes to the CP15 registers is discussed in Changes to CP15 registers and the memory
order model on page B4-28. These considerations apply to any change that enables or disables the MPU or
the caches.

Behavior when the MPU is disabled

When the MPU is disabled:

• Instruction accesses use the default memory map and attributes shown in Table B4-1 on page B4-6.
An access to a memory region with the Execute Never attribute generates a Permission fault, see The
Execute Never (XN) attribute and instruction prefetching on page B4-10. No other permission checks
are performed. Additional control of the cacheability is made by:

— the SCTLR.I bit if separate instruction and data caches are implemented

— the SCTLR.C bit if unified caches are implemented.

• Data accesses use the default memory map and attributes shown in Table B4-2 on page B4-7. No
memory access permission checks are performed, and no aborts can be generated.

• Program flow prediction functions as normal, controlled by the value of the SCTLR.Z bit, see c1,
System Control Register (SCTLR) on page B4-45.

• All of the CP15 cache operations work as normal.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B4-5

Protected Memory System Architecture (PMSA)
• Instruction and data prefetch operations work as normal, based on the default memory map:

— Data prefetch operations have no effect if the data cache is disabled

— Instruction prefetch operations have no effect if the instruction cache is disabled.

• The Outer memory attributes are the same as those for the Inner memory system.

The default memory map

The PMSAv7 default memory map is fixed and not configurable, and is shown in:

• Table B4-1 for the instruction access attributes

• Table B4-2 on page B4-7 for the data access attributes.

The regions of the default memory map are identical in both tables. The information about the memory map
is split into two tables only to improve the presentation of the information.

Table B4-1 Default memory map, showing instruction access attributes

Address
range

HIVECS
Instruction memory type

Execute Never, XN
Caching enableda Caching disableda

0xFFFFFFFF
-0xF0000000

0 Not applicable Not applicable Execute Never

0xFFFFFFFF -
0xF0000000

1b Normal, Non-cacheable Normal, Non-cacheable Execution permitted

0xEFFFFFFF -
0xC0000000

X Not applicable Not applicable Execute Never

0xBFFFFFFF -
0xA0000000

X Not applicable Not applicable Execute Never

0x9FFFFFFF -
0x80000000

X Not applicable Not applicable Execute Never

0x7FFFFFFF -
0x60000000

X
Normal, Non-shareable,
Write-Through Cacheable

Normal, Non-shareable,
Non-cacheable

Execution permitted

0x5FFFFFFF -
0x40000000

X
Normal, Non-shareable,
Write-Through Cacheable

Normal, Non-shareable,
Non-cacheable

Execution permitted

0x3FFFFFFF -
0x00000000

X
Normal, Non-shareable,
Write-Through Cacheable

Normal, Non-shareable,
Non-cacheable

Execution permitted

a. When separate instruction and data caches are implemented, caching is enabled for instruction accesses if the
instruction caches are enabled. When unified caches are implemented caching is enabled if the data or unified caches
are enabled. See the descriptions of the C and I bits in c1, System Control Register (SCTLR) on page B4-45.

b. Use of HIVECS == 1 is deprecated in PMSAv7, see Exception vectors and the exception base address on page B1-30.
B4-6 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Protected Memory System Architecture (PMSA)
Behavior of an implementation that does not include an MPU

If a PMSAv7 implementation does not include an MPU, it must adopt the default memory map behavior
described in Behavior when the MPU is disabled on page B4-5.

A PMSAv7 implementation that does not include an MPU is identified by an MPU Type Register entry that
shows a Unified MPU with zero Data or Unified regions, see c0, MPU Type Register (MPUIR) on
page B4-36.

B4.1.6 Finding the minimum supported region size

You can use the DRBAR to find the minimum region size supported by an implementation, by following
this procedure:

1. Write a valid memory region number to the RGNR. Normally you use region number 0, because this
is always a valid region number.

2. Write the value 0xFFFFFFFC to the DRBAR. This value sets all valid bits in the register to 1.

3. Read back the value of the DRBAR. In the returned value the least significant bit set indicates the
resolution of the selected region. If the least significant bit set is bit M the resolution of the region is
2M bytes.

If the MPU implements separate data and instruction regions this process gives the minimum size for data
regions. To find the minimum size for instruction regions, use the same procedure with the IRBAR.

Table B4-2 Default memory map, showing data access attributes

Address range
Data memory type

Caching enableda Caching disabled

0xFFFFFFFF - 0xC0000000 Strongly-ordered Strongly-ordered

0xBFFFFFFF - 0xA0000000 Shareable Device Shareable Device

0x9FFFFFFF - 0x80000000 Non-shareable Device Non-shareable Device

0x7FFFFFFF - 0x60000000 Normal, Shareable, Non-cacheable Normal, Shareable, Non-cacheable

0x5FFFFFFF - 0x40000000 Normal, Non-shareable, Write-Through
Cacheable

Normal, Shareable, Non-cacheable

0x3FFFFFFF - 0x00000000 Normal, Non-shareable, Write-Back,
Write-Allocate Cacheable

Normal, Shareable, Non-cacheable

a. Caching is enabled for data accesses if the data or unified caches are enabled. See the description of the C bit in
c1, System Control Register (SCTLR) on page B4-45.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B4-7

Protected Memory System Architecture (PMSA)
For more information about the registers used see:

• c6, MPU Region Number Register (RGNR) on page B4-66

• c6, Data Region Base Address Register (DRBAR) on page B4-60

• c6, Instruction Region Base Address Register (IRBAR) on page B4-61.
B4-8 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Protected Memory System Architecture (PMSA)
B4.2 Memory access control

Access to a memory region is controlled by the access permission bits for each region, held in the DRACR
and IRACR. For descriptions of the registers see:

• c6, Data Region Access Control Register (DRACR) on page B4-64

• c6, Instruction Region Access Control Register (IRACR) on page B4-65.

B4.2.1 Access permissions

Access permission bits control access to the corresponding memory region. If an access is made to an area
of memory without the required permissions, a Permission fault is generated. In the appropriate Region
Access Control Register:

• the AP bits determine the access permissions

• the XN bit provides an additional permission bit for instruction fetches.

The access permissions are a three-bit field, DRACR.AP[2:0] or IRACR.AP[2:0]. Table B4-3 shows the
possible values of this field.

Table B4-3 Access permissions

AP[2:0]
Privileged
permissions

User
permissions

Description

000 No access No access All accesses generate a Permission fault

001 Read/Write No access All User mode accesses generate Permission faults

010 Read/Write Read-only User mode write accesses generate Permission faults

011 Read/Write Read/Write Full access

100 UNPREDICTABLE UNPREDICTABLE Reserved

101 Read-only No Access Privileged read-only, all other accesses generate
Permission faults

110 Read-only Read-only All write accesses generate Permission faults.

111 UNPREDICTABLE UNPREDICTABLE Reserved
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B4-9

Protected Memory System Architecture (PMSA)
The Execute Never (XN) attribute and instruction prefetching

Each memory region can be tagged as not containing executable code. If the Execute never (XN) bit is set
to 1, any attempt to execute an instruction in that region results in a Permission fault, and the implementation
must not access the region to prefetch instructions speculatively. If the XN bit is 0, code can execute from
that memory region.

Note
 The XN bit acts as an additional permission check. The address must also have a valid read access
permission.

In ARMv7, all regions of memory that contain read-sensitive peripherals must be marked as XN to avoid
the possibility of a speculative prefetch accessing the locations.
B4-10 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Protected Memory System Architecture (PMSA)
B4.3 Memory region attributes

Each memory region has an associated set of memory region attributes. These control accesses to the caches,
how the write buffer is used, and whether the memory region is Shareable and therefore is guaranteed by
hardware to be coherent. These attributes are encoded in the C, B, TEX[2:0] and S bits of the appropriate
Region Access Control Register.

Note
 The Bufferable (B), Cacheable (C), and Type Extension (TEX) bit names are inherited from earlier versions
of the architecture. These names no longer adequately describe the function of the B, C, and TEX bits.

B4.3.1 C, B, and TEX[2:0] encodings

The TEX[2:0] field must be considered with the C and B bits to give a five bit encoding of the access
attributes for an MPU memory region. Table B4-4 shows these encodings.

For Normal memory regions, the S (Shareable) bit gives more information about whether the region is
Shareable. A Shareable region can be shared by multiple processors. A Normal memory region is Shareable
if the S bit for the region is set to 1. For other memory types, the value of the S bit is ignored.

Table B4-4 C, B and TEX[2:0] encodings

TEX[2:0] C B Description Memory type Shareable?

000 0 0 Strongly-ordered. Strongly-ordered Shareable

000 0 1 Shareable Device. Device Shareable

000 1 0 Outer and Inner Write-Through, no Write-Allocate. Normal S bita

000 1 1 Outer and Inner Write-Back, no Write-Allocate. Normal S bita

001 0 0 Outer and Inner Non-cacheable. Normal S bita

001 0 1 Reserved. - -

001 1 0 IMPLEMENTATION DEFINED. IMP. DEF.b IMP. DEF.b

001 1 1 Outer and Inner Write-Back, Write-Allocate. Normal S bita

010 0 0 Non-shareable Device. Device Non-shareable

010 0 1 Reserved. - -

010 1 X Reserved. - -
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B4-11

Protected Memory System Architecture (PMSA)
For an explanation of Normal, Strongly-ordered and Device memory types, and the Shareable attribute, see
Memory types and attributes and the memory order model on page A3-24.

Cacheable memory attributes

When TEX[2] == 1, the memory region is Cacheable memory, and the rest of the encoding defines the Inner
and Outer cache attributes:

TEX[1:0] defines the Outer cache attribute

C,B defines the Inner cache attribute

The same encoding is used for the Outer and Inner cache attributes. Table B4-5 shows the encoding.

011 X X Reserved. - -

1BB A A Cacheable memory: AA = Inner attributec

BB = Outer policy

Normal S bita

a. Region is Shareable if S == 1, and Non-shareable if S == 0.
b. IMP. DEF. = IMPLEMENTATION DEFINED.
c. For more information see Cacheable memory attributes.

Table B4-4 C, B and TEX[2:0] encodings (continued)

TEX[2:0] C B Description Memory type Shareable?

Table B4-5 Inner and Outer cache attribute encoding

Memory attribute encoding Cache attribute

00 Non-cacheable

01 Write-Back, Write-Allocate

10 Write-Through, no Write-Allocate

11 Write-Back, no Write-Allocate
B4-12 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Protected Memory System Architecture (PMSA)
B4.4 PMSA memory aborts

The mechanisms that cause the ARM processor to take an exception because of a memory access are:

MPU fault The MPU detects an access restriction and signals the processor.

External abort A memory system component other than the MPU signals an illegal or faulting
external memory access.

The exception taken is a Prefetch Abort exception if either of these occurs synchronously on an instruction
fetch, and a Data Abort exception otherwise.

Collectively these mechanisms are called aborts. The different abort mechanisms are described in:

• MPU faults

• External aborts on page B4-15.

An access that causes an abort is said to be aborted, and uses the Fault Address Registers (FARs) and Fault
Status Registers (FSRs) to record context information. The FARs and FSRs are described in Fault Status
and Fault Address registers in a PMSA implementation on page B4-18.

Also, a debug exception can cause the processor to take a Prefetch Abort exception or a Data Abort
exception, and to update the FARs and FSRs. For details see Chapter C4 Debug Exceptions and Debug event
prioritization on page C3-43.

B4.4.1 MPU faults

The MPU checks the memory accesses required for instruction fetches and for explicit memory accesses:

• if an instruction fetch faults it generates a Prefetch Abort exception

• if an explicit memory access faults it generates a Data Abort exception.

For more information about Prefetch Abort exceptions and Data Abort exceptions see Exceptions on
page B1-30.

MPU faults are always synchronous. For more information, see Terminology for describing exceptions on
page B1-4.

When the MPU generates an abort for a region of memory, no memory access is made if that region is or
could be marked as Strongly-ordered or Device.

The MPU can generate three types of fault, described in the subsections:

• Alignment fault on page B4-14

• Background fault on page B4-14

• Permission fault on page B4-14.

The MPU fault checking sequence on page B4-15 describes the fault checking sequence.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B4-13

Protected Memory System Architecture (PMSA)
Alignment fault

The ARMv7 memory architecture requires support for strict alignment checking. This checking is
controlled by the SCTLR.A bit, see c1, System Control Register (SCTLR) on page B4-45. For details of
when Alignment faults are generated see Unaligned data access on page A3-5.

Background fault

If the memory access address does not match one of the programmed MPU memory regions, and the default
memory map is not being used, a Background Fault memory abort is generated.

Background faults cannot occur on any cache or branch predictor maintenance operation.

Permission fault

The access permissions, defined in Memory access control on page B4-9, are checked against the processor
memory access. If the access is not permitted, a Permission Fault memory abort is generated.

Permission faults cannot occur on cache or branch predictor maintenance operation.
B4-14 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Protected Memory System Architecture (PMSA)
The MPU fault checking sequence

Figure B4-2 shows the MPU fault checking sequence, when the MPU is enabled.

Figure B4-2 MPU fault checking sequence

B4.4.2 External aborts

External memory errors are defined as errors that occur in the memory system other than those that are
detected by the MPU or Debug hardware. They include parity errors detected by the caches or other parts
of the memory system. An external abort is one of:

• synchronous

• precise asynchronous

• imprecise asynchronous.

Memory address

Alignment
check?

Check address alignmentYes

Does the access require
an alignment check?

No

Check address is in a
defined memory region

No

Address
 in a region

?

No

Is use of default memory map as
a Background region enabled?

Permission
fault

Valid
 permissions

?
No No

Execution
permitted

?

Misaligned
?

Alignment
faultYes

Background
region

?

Privileged
access

?

Yes

Background
faultNo

No

Yes

Yes

Yes

Access memory

Yes

Is access to an XN area in
the Background region?

Check access permissions
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B4-15

Protected Memory System Architecture (PMSA)
For more information, see Terminology for describing exceptions on page B1-4.

The ARM architecture does not provide a method to distinguish between precise asynchronous and
imprecise asynchronous aborts.

The ARM architecture handles asynchronous aborts in a similar way to interrupts, except that they are
reported to the processor using the Data Abort exception. Setting the CPSR.A bit to 1 masks asynchronous
aborts, see Program Status Registers (PSRs) on page B1-14.

Normally, external aborts are rare. An imprecise asynchronous external abort is likely to be fatal to the
process that is running. An example of an event that might cause an external abort is an uncorrectable parity
or ECC failure on a Level 2 memory structure.

It is IMPLEMENTATION DEFINED which external aborts, if any, are supported.

PMSAv7 permits external aborts on data accesses and instruction fetches to be either synchronous or
asynchronous. The DFSR indicates whether the external abort is synchronous or asynchronous, see c5, Data
Fault Status Register (DFSR) on page B4-55.

Note
 Because imprecise external aborts are normally fatal to the process that caused them, ARM recommends
that implementations make external aborts precise wherever possible.

More information about possible external aborts is given in the subsections:

• External abort on instruction fetch

• External abort on data read or write

• Parity error reporting on page B4-17.

For information about how external aborts are reported see Fault Status and Fault Address registers in a
PMSA implementation on page B4-18.

External abort on instruction fetch

An external abort on an instruction fetch can be either synchronous or asynchronous. A synchronous
external abort on an instruction fetch is taken precisely.

An implementation can report the external abort asynchronously from the instruction that it applies to. In
such an implementation these aborts behave essentially as interrupts. They are masked by the CPSR.A bit
when it is set to 1, otherwise they are reported using the Data Abort exception.

External abort on data read or write

Externally generated errors during a data read or write can be either synchronous or asynchronous.

An implementation can report the external abort asynchronously from the instruction that generated the
access. In such an implementation these aborts behave essentially as interrupts. They are masked by the
CPSR.A bit when it is set to 1, otherwise they are reported using the Data Abort exception.
B4-16 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Protected Memory System Architecture (PMSA)
Parity error reporting

The ARM architecture supports the reporting of both synchronous and asynchronous parity errors from the
cache systems. It is IMPLEMENTATION DEFINED what parity errors in the cache systems, if any, result in
synchronous or asynchronous parity errors.

A fault status code is defined for reporting parity errors, see Fault Status and Fault Address registers in a
PMSA implementation on page B4-18. However when parity error reporting is implemented it is
IMPLEMENTATION DEFINED whether the assigned fault status code or another appropriate encoding is used
to report parity errors.

For all purposes other than the fault status encoding, parity errors are treated as external aborts.

B4.4.3 Prioritization of aborts

For synchronous aborts, Debug event prioritization on page C3-43 describes the relationship between debug
events, MPU faults and external aborts.

In general, the ARM architecture does not define when asynchronous events are taken, and therefore the
prioritization of asynchronous events is IMPLEMENTATION DEFINED.

Note
 A special requirement applies to asynchronous watchpoints, see Debug event prioritization on page C3-43.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B4-17

ARM_2009_Q4
Inserted Text
 generated by the same memory access

ARM_2009_Q4
Inserted Text
 The prioritization of synchronous aborts generated by different memory accesses from the same instruction is IMPLEMENTATION DEFINED.

Protected Memory System Architecture (PMSA)
B4.5 Fault Status and Fault Address registers in a PMSA implementation

This section describes the Fault Status and Fault Address registers, and how they report information about
PMSA aborts. It contains the following subsections:

• About the Fault Status and Fault Address registers

• Data Abort exceptions on page B4-19

• Prefetch Abort exceptions on page B4-19

• Fault Status Register encodings for the PMSA on page B4-19

• Distinguishing read and write accesses on Data Abort exceptions on page B4-21

• Provision for classification of external aborts on page B4-21

• Auxiliary Fault Status Registers on page B4-21.

Also, these registers are used to report information about debug exceptions. For details see Effects of debug
exceptions on CP15 registers and the DBGWFAR on page C4-4.

B4.5.1 About the Fault Status and Fault Address registers

PMSAv7 provides four registers for reporting fault address and status information:

• The Data Fault Status Register, see c5, Data Fault Status Register (DFSR) on page B4-55. The DFSR
is updated on taking a Data Abort exception.

• The Instruction Fault Status Register, see c5, Instruction Fault Status Register (IFSR) on page B4-56.
The IFSR is updated on taking a Prefetch Abort exception.

• The Data Fault Address Register, see c6, Data Fault Address Register (DFAR) on page B4-57. In
some cases, on taking a synchronous Data Abort exception the DFAR is updated with the faulting
address. See Terminology for describing exceptions on page B1-4 for a description of synchronous
exceptions.

• The Instruction Fault Address Register, see c6, Instruction Fault Address Register (IFAR) on
page B4-58. The IFAR is updated with the faulting address on taking a Prefetch Abort exception.

In addition, the architecture provides encodings for two IMPLEMENTATION DEFINED Auxiliary Fault Status
Registers, see Auxiliary Fault Status Registers on page B4-21.

Note
 • On a Data Abort exception that is generated by an instruction cache maintenance operation, the IFSR

is also updated.

• Before ARMv7, the Data Fault Address Register (DFAR) was called the Fault Address Register
(FAR).

On a Watchpoint debug exception, the Watchpoint Fault Address Register (DBGWFAR) is used to hold fault
information. On a watchpoint access the DBGWFAR is updated with the address of the instruction that
generated the Data Abort exception. For more information, see Watchpoint Fault Address Register
(DBGWFAR) on page C10-28.
B4-18 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Sticky Note
This is deleted as there are no cases in the PMSA where this can happen, not as a specification change.

Protected Memory System Architecture (PMSA)
B4.5.2 Data Abort exceptions

On taking a Data Abort exception the processor:

• updates the DFSR with a fault status code

• if the Data Abort exception is synchronous:

— updates the DFSR with whether the faulted access was a read or a write

— if the Data Abort exception was not caused by a Watchpoint debug event, updates the DFAR
with the address that caused the Data Abort exception

— if the Data Abort exception was caused by a Watchpoint debug event, the DFAR becomes
UNKNOWN

• if the Data Abort exception is asynchronous, the DFAR becomes UNKNOWN.

On an access that might have multiple aborts, the MPU fault checking sequence and the prioritization of
aborts determine which abort occurs. For more information, see The MPU fault checking sequence on
page B4-15 and Prioritization of aborts on page B4-17.

B4.5.3 Prefetch Abort exceptions

A Prefetch Abort exception can be generated on an instruction fetch. The Prefetch Abort exception is taken
synchronously with the instruction that the abort is reported on. This means:

• If the instruction is executed a Prefetch Abort exception is generated.

• If the instruction fetch is issued but the processor does not attempt to execute the instruction no
Prefetch Abort exception is generated. For example, if the processor branches round the instruction
no Prefetch Abort exception is generated.

On taking a Prefetch Abort exception the processor:

• updates the IFSR with a fault status code

• updates the IFAR with the address that caused the Prefetch Abort exception.

B4.5.4 Fault Status Register encodings for the PMSA

For the PMSA fault status encodings in priority order see:

• Table B4-6 for the Instruction Fault Status Register (IFSR) encodings

• Table B4-7 on page B4-20 for the Data Fault Status Register (DFSR) encodings.

Table B4-6 PMSAv7 IFSR encodings

IFSR
[10,3:0]a Sources IFAR Notes

00001 Alignment fault Valid MPU fault

00000 Background fault Valid MPU fault

01101 Permission fault Valid MPU fault
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B4-19

Protected Memory System Architecture (PMSA)
Note
 In previous ARM documentation, the terms precise and imprecise were used instead of synchronous and
asynchronous. For details of the more exact terminology introduced in this manual see Terminology for
describing exceptions on page B1-4.

00010 Debug event UNKNOWN See Software debug events on page C3-5

01000 Synchronous external abort Valid -

10100 IMPLEMENTATION DEFINED - Lockdown

11010 IMPLEMENTATION DEFINED - Coprocessor abort

11001 Memory access synchronous parity error Valid -

a. All IFSR[10,3:0] values not listed in this table are reserved.

Table B4-7 PMSAv7 DFSR encodings

DFSR
[10,3:0]a Sources DFAR Notes

00001 Alignment fault Valid MPU fault

00000 Background fault Valid MPU fault

01101 Permission fault Valid MPU fault

00010 Debug event UNKNOWN See Software debug events on page C3-5

01000 Synchronous external abort Valid -

10100 IMPLEMENTATION DEFINED - Lockdown

11010 IMPLEMENTATION DEFINED - Coprocessor abort

11001 Memory access synchronous parity error b -

10110 Asynchronous external abort UNKNOWN -

11000 Memory access asynchronous parity error UNKNOWN -

a. All DFSR[10,3:0] values not listed in this table are reserved.
b. It is IMPLEMENTATION DEFINED whether the DFAR is updated for a synchronous parity error.

Table B4-6 PMSAv7 IFSR encodings (continued)

IFSR
[10,3:0]a Sources IFAR Notes
B4-20 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Protected Memory System Architecture (PMSA)
Reserved encodings in the IFSR and DFSR encodings tables

A single encoding is reserved for cache lockdown faults. The details of these faults and any associated
subsidiary registers are IMPLEMENTATION DEFINED.

A single encoding is reserved for aborts associated with coprocessors. The details of these faults are
IMPLEMENTATION DEFINED.

B4.5.5 Distinguishing read and write accesses on Data Abort exceptions

On a Data Abort exception, the DFSR.WnR bit, bit [11] of the register, indicates whether the abort occurred
on a read access or on a write access. However, for a fault on a CP15 cache maintenance operation this bit
always indicates a write access fault.

For a fault generated by a SWP or SWPB instruction, the WnR bit is 0 if a read to the location would have
generated a fault, otherwise it is 1.

B4.5.6 Provision for classification of external aborts

An implementation can use the DFSR.ExT and IFSR.ExT bits to provide more information about external
aborts:

• DFSR.ExT can provide an IMPLEMENTATION DEFINED classification of external aborts on data
accesses

• IFSR.ExT can provide an IMPLEMENTATION DEFINED classification of external aborts on instruction
accesses

For all aborts other than external aborts these bits return a value of 0.

B4.5.7 Auxiliary Fault Status Registers

ARMv7 architects two Auxiliary Fault Status Registers:

• the Auxiliary Data Fault Status Register (ADFSR)

• the Auxiliary Instruction Fault Status Register (AIFSR).

These registers enable additional fault status information to be returned:

• The position of these registers is architecturally-defined, but the content and use of the registers is
IMPLEMENTATION DEFINED.

• An implementation that does not need to report additional fault information must implement these
registers as UNK/SBZ. This ensures that a privileged attempt to access these registers is not faulted.

An example use of these registers would be to return more information for diagnosing parity errors.

See c5, Auxiliary Data and Instruction Fault Status Registers (ADFSR and AIFSR) on page B4-56 for the
architectural details of these registers.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B4-21

ARM_2009_Q1
Inserted Text
P

Protected Memory System Architecture (PMSA)
B4.6 CP15 registers for a PMSA implementation

This section gives a full description of the registers implemented in the CP15 System Control Coprocessor
in an ARMv7 implementation that includes the PMSA memory system. Therefore, this is the description of
the CP15 registers for an ARMv7-R implementation.

Some of the registers described in this section are also included in an ARMv7 implementation with a
VMSA. The section CP15 registers for a VMSA implementation on page B3-64 also includes descriptions
of these registers.

See Coprocessors and system control on page B1-62 for general information about the System Control
Coprocessor, CP15 and the register access instructions MRC and MCR.

Information in this section is organized as follows:

• general information is given in:

— Organization of the CP15 registers in a PMSA implementation

— General behavior of CP15 registers on page B4-26

— Changes to CP15 registers and the memory order model on page B4-28

— Meaning of fixed bit values in register diagrams on page B4-29.

• this is followed by, for each of the primary CP15 registers c0 to c15:

— a general description of the organization of the primary CP15 register

— detailed descriptions of all the registers in that primary register.

Note
 The detailed descriptions of the registers that implement the processor identification scheme, CPUID,

are given in Chapter B5 The CPUID Identification Scheme, and not in this section.

Table B4-8 on page B4-24 lists all of the CP15 registers in a PMSA implementation, and is an index to the
detailed description of each register.

B4.6.1 Organization of the CP15 registers in a PMSA implementation

Figure B4-3 on page B4-23 summarizes the ARMv7 CP15 registers when the PMSA is implemented.
Table B4-8 on page B4-24 lists all of these registers.

Note
 ARMv7 introduces significant changes to the memory system registers, especially in relation to caches. For
details of:

• the CP15 register implementation in PMSAv6, see Organization of CP15 registers for an ARMv6
PMSA implementation on page AppxG-31.

• how the ARMv7 registers must be used to discover what caches can be accessed by the processor, see
Identifying the cache resources in ARMv7 on page B2-4.
B4-22 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Protected Memory System Architecture (PMSA)
Figure B4-3 CP15 registers in a PMSA implementation

<��)��,�'�&��������%���&'��*�	 4�6�5
$�%&��'(������!�������"���
����
�"����
9����)�%���'�&���,�'�&��������%���&'��*

�
4�6
5

��� 4�6	5
4��6���5

#"�"��"���
����
�"�����
4�6�5 <��)��,�'�&��������%���&'��*

�<<!��"6�<��)��-���'����%���&'������

'��	��
���)����
�����
������
����	
7���PQ�'&�7�������� Q�'&������

����**���%���*����&)���%���&'��#

��� 4�6�5
7�*������(���9����)�����'�&��6�<��)������@<!��%���&'��*�� 4��
5 4�����6�	��
5 4��
5

7�*������(����!���%���&'��*�(���@<!�����**��� 4��
5 4����
6��	5 4��
5

<��)��,�'�&��������%���&'��*

7�*������(������(��,�����,��'&��*4������	5 4��
5
#
#
#

��� � �� � <=?@:G@ �76�<��&�+&� ��7�.'*&��
��(&8����@)�����7�.'*&��*4���5
 !�3:!:?@�@ =?��:� ?:��7�.'*&��*��	 4��
5 4�����	5 4��
5 #

?=�����

<��)��,�'�&��������%���&'��*6�!$�&'%����**'�.�:+&��*'��*�� 4�6�5

<7� �%�� <7, �%��

�
 � �� ?=�

�	 � �� 4�6�5 ��$�&��&�&$*�7�.'*&��*

��$�&������**�7�.'*&��*�� � �� 4�6�5
��

��

�
�

�

�
�
�
	

�$+'�'������$�&��&�&$*�7�.'*&��*6� !�3:!:?@�@ =?��:� ?:��� 4�6�5

�<@376��$+'�'����<��&����7�.'*&��6� !�3:!:?@�@ =?��:� ?:�

<@76�<��)��@�%��7�.'*&��
��

!�" 76�!�"�@�%��7�.'*&��

� ��
�

�<@376�<��&����7�.'*&���� � �� �

<3 �76�<��)��3����� ��7�.'*&��
<<� �76�<��)���'E�� ��7�.'*&��*

<��:376�<��)���'E�������&'���7�.'*&��

� �� �
�

� �� �

@<!@76�@<!�@�%��7�.'*&��6� !�3:!:?@�@ =?��:� ?:��
�

�

! �76�!�'�� ��7�.'*&���

!� �76�!$�&'%����**����(('�'&��7�.'*&��	
4�6�6
5 ��'�*�*��(�!�'�� ��7�.'*&��

<�" ����.'*&��*4��
54����
5

� �76��$+'�'���� ��7�.'*&��6� !�3:!:?@�@ =?��:� ?:�

� <��<76�<�%����**�������**�<��&����7�.'*&��

�79�76���&��7�.'���9�*�������**�7�.'*&��
 79�76� �*&�$�&'���7�.'���9�*�������**�7�.'*&��
�7�76���&��7�.'����'E������:��-���7�.'*&��
 7�76� �*&�$�&'���7�.'����'E������:��-���7�.'*&��
�7�<76���&��7�.'�������**�<��&����7�.'*&��
 7�<76� �*&�$�&'���7�.'�������**�<��&����7�.'*&��
7K?76�!�"�7�.'���?$,-���7�.'*&��

�

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B4-23

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Replacement Text
UNPREDICTABLE

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Replacement Text
UNPREDICTABLE

Protected Memory System Architecture (PMSA)
For information about the CP15 encodings not shown in Figure B4-3 on page B4-23 see Unpredictable and
undefined behavior for CP15 accesses on page B4-26.

Summary of CP15 register descriptions in a PMSA implementation

Table B4-8 shows the CP15 registers in a PMSA implementation. The table also includes links to the
descriptions of each of the primary CP15 registers, c0 to c15.

Table B4-8 Summary of CP15 registers in a PMSA implementation

Register and description

CP15 c0, ID codes registers on page B4-30

c0, Main ID Register (MIDR) on page B4-32

c0, Cache Type Register (CTR) on page B4-34

c0, TCM Type Register (TCMTR) on page B4-35

c0, MPU Type Register (MPUIR) on page B4-36

c0, Multiprocessor Affinity Register (MPIDR) on page B4-37

CP15 c0, Processor Feature registers on page B5-4

c0, Debug Feature Register 0 (ID_DFR0) on page B5-6

c0, Auxiliary Feature Register 0 (ID_AFR0) on page B5-8

CP15 c0, Memory Model Feature registers on page B5-9

CP15 c0, Instruction Set Attribute registers on page B5-19

c0, Cache Size ID Registers (CCSIDR) on page B4-40

c0, Cache Level ID Register (CLIDR) on page B4-41

c0, Implementation defined Auxiliary ID Register (AIDR) on page B4-43

c0, Cache Size Selection Register (CSSELR) on page B4-43

CP15 c1, System control registers on page B4-44

c1, System Control Register (SCTLR) on page B4-45

c1, Implementation defined Auxiliary Control Register (ACTLR) on page B4-50

c1, Coprocessor Access Control Register (CPACR) on page B4-51

CP15 registers c2, c3, and c4 are not used on a PMSA implementation, see Unallocated CP15
encodings on page B4-27
B4-24 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Protected Memory System Architecture (PMSA)
CP15 c5 and c6, Memory system fault registers on page B4-53

c5, Data Fault Status Register (DFSR) on page B4-55

c5, Instruction Fault Status Register (IFSR) on page B4-56

c5, Auxiliary Data and Instruction Fault Status Registers (ADFSR and AIFSR) on page B4-56

c6, Data Fault Address Register (DFAR) on page B4-57

c6, Instruction Fault Address Register (IFAR) on page B4-58

c6, Data Region Base Address Register (DRBAR) on page B4-60

c6, Instruction Region Base Address Register (IRBAR) on page B4-61

c6, Data Region Size and Enable Register (DRSR) on page B4-62

c6, Instruction Region Size and Enable Register (IRSR) on page B4-63

c6, Data Region Access Control Register (DRACR) on page B4-64

c6, Instruction Region Access Control Register (IRACR) on page B4-65

c6, MPU Region Number Register (RGNR) on page B4-66

CP15 c7, Cache maintenance and other functions on page B4-68

CP15 c7, Cache and branch predictor maintenance functions on page B4-68

CP15 c7, Data and Instruction Barrier operations on page B4-72

CP15 c7, No Operation (NOP) on page B4-73

CP15 c8 is not used on a PMSA implementation, see Unallocated CP15 encodings on page B4-27

CP15 c9, Cache and TCM lockdown registers and performance monitors on page B4-74

CP15 c10 is not used on a PMSA implementation, see Unallocated CP15 encodings on page B4-27

CP15 c11, Reserved for TCM DMA registers on page B4-75

CP15 c12 is not used on a PMSA implementation, see Unallocated CP15 encodings on page B4-27

Table B4-8 Summary of CP15 registers in a PMSA implementation (continued)

Register and description
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B4-25

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Replacement Text
Retired operations

Protected Memory System Architecture (PMSA)
B4.6.2 General behavior of CP15 registers

The following sections give information about the general behavior of CP15 registers:

• Unpredictable and undefined behavior for CP15 accesses

• Reset behavior of CP15 registers on page B4-27

See also Meaning of fixed bit values in register diagrams on page B4-29.

Read-only bits in read/write registers

Some read/write registers include bits that are read-only. These bits ignore writes.

An example of this is the SCTLR.NMFI bit, bit [27], see c1, System Control Register (SCTLR) on
page B4-45.

UNPREDICTABLE and UNDEFINED behavior for CP15 accesses

In ARMv7 the following operations are UNDEFINED:

• all CDP, MCRR, MRRC, LDC and STC operations to CP15

• all CDP2, MCR2, MRC2, MCRR2, MRRC2, LDC2 and STC2 operations to CP15.

Unless otherwise indicated in the individual register descriptions:

• reserved fields in registers are UNK/SBZP

• reserved values of fields can have UNPREDICTABLE effects.

The following subsections give more information about UNPREDICTABLE and UNDEFINED behavior for
CP15:

• Unallocated CP15 encodings on page B4-27

• Rules for MCR and MRC accesses to CP15 registers on page B4-27.

CP15 c13, Context and Thread ID registers on page B4-75

c13, Context ID Register (CONTEXTIDR) on page B4-76

CP15 c13 Software Thread ID registers on page B4-77

CP15 c14 is not used on a PMSA implementation, see Unallocated CP15 encodings on page B4-27

CP15 c15, Implementation defined registers on page B4-78

Table B4-8 Summary of CP15 registers in a PMSA implementation (continued)

Register and description
B4-26 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Protected Memory System Architecture (PMSA)
Unallocated CP15 encodings

When MCR and MRC instructions perform CP15 operations, the <CRn> value for the instruction is the major
register specifier for the CP15 space. Accesses to unallocated major registers are UNDEFINED. For the
ARMv7-R Architecture, this means that accesses with <CRn> = {c2-c4, c8, c10, c12, c14} are UNDEFINED.

In an allocated CP15 major register specifier, MCR and MRC accesses to all unallocated encodings are
UNPREDICTABLE for privileged accesses. For the ARMv7-A architecture this means that privileged MCR and
MRC accesses with <CRn> != {c2-c4, c8, c10, c12, c14} but with an unallocated combination of <opc1>, <CRm>
and <opc2> values, are UNPREDICTABLE. For <CRn> != {c2-c4, c8, c10, c12, c14}, Figure B4-3 on page B4-23
shows all allocated allocations of <opc1>, <CRm> and <opc2>. A privileged access using any combination not
show in the figure is UNPREDICTABLE.

Note
 As shown in Figure B4-3 on page B4-23, accesses to unallocated principal ID registers map onto the Main
ID Register. These are accesses with <CRn> = c0, <opc1> = 0, <CRm> = c0, and <opc2> = {4, 6, 7}.

Rules for MCR and MRC accesses to CP15 registers

All MCR operations from the PC are UNPREDICTABLE for all coprocessors, including for CP15.

All MRC operations to APSR_nzcv are UNPREDICTABLE for CP15.

The following accesses are UNPREDICTABLE:

• an MCR access to an encoding for which no write behavior is defined in any circumstances

• an MRC access to an encoding for which no read behavior is defined in any circumstances.

Except for CP15 encoding that are accessible in User mode, all MCR and MRC accesses from User mode are
UNDEFINED. This applies to all User mode accesses to unallocated CP15 encodings. Individual register
descriptions, and the summaries of the CP15 major registers, show the CP15 encodings that are accessible
in User mode.

Some individual registers can be made inaccessible by setting configuration bits, possibly including
IMPLEMENTATION DEFINED configuration bits, to disable access to the register. The effects of the
architecturally-defined configuration bits are defined individually in this manual. Typically, setting a
configuration bit to disable access to a register results in the register becoming UNDEFINED for MRC and MCR
accesses.

Reset behavior of CP15 registers

After a reset, only a limited subset of the processor state is guaranteed to be set to defined values. On reset,
the PMSAv7 architecture requires that the following CP15 registers are set to defined values:

• the SCTLR, see c1, System Control Register (SCTLR) on page B4-45

• the CPACR, see c1, Coprocessor Access Control Register (CPACR) on page B4-51

• the DRSR, see c6, Data Region Size and Enable Register (DRSR) on page B4-62

• the IRSR, if implemented, see c6, Instruction Region Size and Enable Register (IRSR) on page B4-63.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B4-27

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
R

Protected Memory System Architecture (PMSA)
For details of the reset values of these registers see the register descriptions.

After a reset, software must not rely on the value of any read/write register not included in this list.

B4.6.3 Changes to CP15 registers and the memory order model

All changes to CP15 registers that appear in program order after any explicit memory operations are
guaranteed not to affect those memory operations.

Any change to CP15 registers is guaranteed to be visible to subsequent instructions only after one of:

• the execution of an ISB instruction

• the taking of an exception

• the return from an exception.

To guarantee the visibility of changes to some CP15 registers, additional operations might be required, on
a case by case basis, before the ISB instruction, exception or return from exception. These cases are
identified specifically in the definition of the registers.

However, for CP15 register accesses, all MRC and MCR instructions to the same register using the same register
number appear to occur in program order relative to each other without context synchronization.

Where a change to the CP15 registers that is not yet guaranteed to be visible has an effect on exception
processing, the following rule applies:

• When it is determined that an exception must be taken, any change of state held in CP15 registers
involved in the triggering of the exception and that affects the processing of the exception is
guaranteed to take effect before the exception is taken.

Therefore, in the following example, where initially A=1 and V=0, the LDR might or might not take a Data
Abort exception due to the unaligned access, but if an exception occurs, the vector used is affected by the V
bit:

MCR p15, R0, c1, c0, 0 ; clears the A bit and sets the V bit
LDR R2, [R3] ; unaligned load.
B4-28 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2011_Q2
Sticky Note
To clarify the intended meaning of this statement:
The events listed can be described as context synchronization operations.
 • Without a context synchronization operation, the change becomes visible at some point after the instruction that changed the CP15 registers.
 • However, until a context synchronization operation has occurred, the architecture does not guarantee that the change is visible.

ARM_2011_Q2
Inserted Text
0,

Protected Memory System Architecture (PMSA)
B4.6.4 Meaning of fixed bit values in register diagrams

In register diagrams, fixed bits are indicated by one of following:

0 In any implementation:

• the bit must read as 0

• writes to the bit must be ignored.

Software:

• can rely on the bit reading as 0

• must use an SBZP policy to write to the bit.

(0) In any implementation:

• the bit must read as 0

• writes to the bit must be ignored.

Software:

• must not rely on the bit reading as 0

• must use an SBZP policy to write to the bit.

1 In any implementation:

• the bit must read as 1

• writes to the bit must be ignored.

Software:

• can rely on the bit reading as 1

• must use an SBOP policy to write to the bit.

(1) In any implementation:

• the bit must read as 1

• writes to the bit must be ignored.

Software:

• must not rely on the bit reading as 1

• must use an SBOP policy to write to the bit.

Fields that are more than 1 bit wide are sometimes described as UNK/SBZP, instead of having each bit
marked as (0).
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B4-29

Protected Memory System Architecture (PMSA)
B4.6.5 CP15 c0, ID codes registers

The CP15 c0 registers are used for processor and feature identification. Figure B4-4 shows the CP15 c0
registers.

Figure B4-4 CP15 c0 registers in a PMSA implementation

All CP15 c0 register encodings not shown in Figure B4-4 are UNPREDICTABLE, see Unallocated CP15
encodings on page B4-27.

Note
 Chapter B5 The CPUID Identification Scheme describes the CPUID registers shown in Figure B4-4.

<7� �%�� <7,

<3 �76�<��)��3����� ��7�.'*&��
<<� �76�<��)���'E�� ��7�.'*&��*

<��:376�<��)���'E�������&'���7�.'*&���

��

�%��

��

��

!�" 76�!�"�@�%��7�.'*&��
!� �76�!$�&'%����**����(('�'&��7�.'*&��
��'�*�*��(�!�'�� ��7�.'*&��

�
	

4�6�6
5
��� #� �A��7�6������**������&$���7�.'*&����

#� �A��7�6������**������&$���7�.'*&����
#� �A��7�6���-$.����&$���7�.'*&����
#� �A��7�6��$+'�'�������&$���7�.'*&����
#� �A!!�7�6�!�,����!��������&$���7�.'*&����
#� �A!!�7�6�!�,����!��������&$���7�.'*&����
#� �A!!�7�6�!�,����!��������&$���7�.'*&����
#� �A!!�7�6�!�,����!��������&$���7�.'*&����

�

�

�
�

�
	
�

7�����*�D���

#� �A ��7�6� ������&$���7�.'*&����
#� �A ��7�6� ������&$���7�.'*&����
#� �A ��7�6� ������&$���7�.'*&����
#� �A ��7�6� ������&$���7�.'*&����
#� �A ��7�6� ������&$���7�.'*&����
#� �A ��7	6� ������&$���7�.'*&���	

�

�
�

�
	

4�6
5
7�����*�D���4����
5 4��
5

� �76��$+'�'���� ��7�.'*&��6� !�3:!:?@�@ =?��:� ?:�

���

7���PQ�'&�7�������� Q�'&������

�

#�<�" ����.'*&��*

<@76�<��)��@�%��7�.'*&��
�� � ��

@<!@76�@<!�@�%��7�.'*&��6���&�'�*� !�3:!:?@�@ =?��:� ?:�

! �76�!�'�� ��7�.'*&��
�
�

�

B4-30 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Protected Memory System Architecture (PMSA)
Table B4-9 lists the CP15 c0 registers and shows where each register is described in full. The table does not
include the reserved and aliased registers that are shown in Figure B4-4 on page B4-30.

Note
 The CPUID scheme described in Chapter B5 The CPUID Identification Scheme includes information about
the implementation of the optional Floating-Point and Advanced SIMD architecture extensions. See
Advanced SIMD and VFP extensions on page A2-20 for a summary of the implementation options for these
features.

Table B4-9 Index to CP15 c0 register descriptions

opc1 CRm opc2 Register and description

0 c0 0 c0, Main ID Register (MIDR) on page B4-32

1 c0, Cache Type Register (CTR) on page B4-34

2 c0, TCM Type Register (TCMTR) on page B4-35

4 c0, MPU Type Register (MPUIR) on page B4-36

5 c0, Multiprocessor Affinity Register (MPIDR) on page B4-37

3, 6, 7 c0, Main ID Register (MIDR) on page B4-32

c1 0, 1 CP15 c0, Processor Feature registers on page B5-4

2 c0, Debug Feature Register 0 (ID_DFR0) on page B5-6

3 c0, Auxiliary Feature Register 0 (ID_AFR0) on page B5-8

4-7 CP15 c0, Memory Model Feature registers on page B5-9

c2 0-5 CP15 c0, Instruction Set Attribute registers on page B5-19

1 c0 0 c0, Cache Size ID Registers (CCSIDR) on page B4-40

1 c0, Cache Level ID Register (CLIDR) on page B4-41

7 c0, Implementation defined Auxiliary ID Register (AIDR) on page B4-43

2 c0 0 c0, Cache Size Selection Register (CSSELR) on page B4-43
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B4-31

Protected Memory System Architecture (PMSA)
B4.6.6 c0, Main ID Register (MIDR)

The Main ID Register, MIDR, provides identification information for the processor, including an
implementer code for the device and a device ID number.

The MIDR is:

• a 32-bit read-only register

• accessible only in privileged modes.

Some fields of the MIDR are IMPLEMENTATION DEFINED. For details of the values of these fields for a
particular ARMv7 implementation, and any implementation-specific significance of these values, see the
product documentation.

The format of the MIDR is:

Implementer, bits [31:24]

The Implementer code. Table B4-10 shows the permitted values for this field:

All other values are reserved by ARM and must not be used.

Variant, bits [23:20]

An IMPLEMENTATION DEFINED variant number. Typically, this field is used to distinguish
between different product variants, for example implementations of the same product with
different cache sizes.

31 24 23 20 19 16 15 4 3 0

Implementer Variant Architecture Primary part number Revision

Table B4-10 Implementer codes

Bits [31:24] ASCII character Implementer

0x41 A ARM Limited

0x44 D Digital Equipment Corporation

0x4D M Motorola, Freescale Semiconductor Inc.

0x51 Q QUALCOMM Inc.

0x56 V Marvell Semiconductor Inc.

0x69 i Intel Corporation
B4-32 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Protected Memory System Architecture (PMSA)
Architecture, bits [19:16]

Table B4-11 shows the permitted values for this field:

All other values are reserved by ARM and must not be used.

Primary part number, bits [15:4]

An IMPLEMENTATION DEFINED primary part number for the device.

Note
 On processors implemented by ARM, if the top four bits of the primary part number are 0x0

or 0x7, the variant and architecture are encoded differently, see c0, Main ID Register (MIDR)
on page AppxH-34. Processors implemented by ARM have an Implementer code of 0x41.

Revision, bits [3:0]

An IMPLEMENTATION DEFINED revision number for the device.

ARMv7 requires all implementations to use the CPUID scheme, described in Chapter B5 The CPUID
Identification Scheme, and an implementation is described by the MIDR and the CPUID registers.

Note
 For an ARMv7 implementation by ARM, the MIDR is interpreted as:

Bits [31:24] Implementer code, must be 0x41.

Bits [23:20] Major revision number, rX.

Bits [19:16] Architecture code, must be 0xF.

Bits [15:4] ARM part number.

Bits [3:0] Minor revision number, pY.

Table B4-11 Architecture codes

Bits [19:16] Architecture

0x1 ARMv4

0x2 ARMv4T

0x3 ARMv5 (obsolete)

0x4 ARMv5T

0x5 ARMv5TE

0x6 ARMv5TEJ

0x7 ARMv6

0xF Defined by CPUID scheme
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B4-33

Protected Memory System Architecture (PMSA)
Accessing the MIDR

To access the MIDR you read the CP15 registers with <opc1> set to 0, <CRn> set to c0, <CRm> set to c0, and
<opc2> set to 0. For example:

MRC p15,0,<Rt>,c0,c0,0 ; Read CP15 Main ID Register

B4.6.7 c0, Cache Type Register (CTR)

The Cache Type Register, CTR, provides information about the architecture of the caches.

The CTR is:

• a 32-bit read-only register

• accessible only in privileged modes.

The format of the CTR is changed from ARMv7. The ARMv7 format of the register is indicated by bits
[31:29] being set to 0b100. For details of the format of the Cache Type Register in versions of the ARM
architecture before ARMv7 see c0, Cache Type Register (CTR) on page AppxH-35.

In ARMv7, the format of the CTR is:

Bits [31:29] Set to 0b100 for the ARMv7 register format. Set to 0b000 for the format used in ARMv6
and earlier.

Bit [28] RAZ.

CWG, bits [27:24]

Cache Writeback Granule. Log2 of the number of words of the maximum size of memory
that can be overwritten as a result of the eviction of a cache entry that has had a memory
location in it modified.

A value of 0b0000 indicates that the CTR does not provide Cache Writeback Granule
information and either:

• the architectural maximum of 512 words (2Kbytes) must be assumed

• the Cache Writeback Granule can be determined from maximum cache line size
encoded in the Cache Size ID Registers.

Values greater than 0b1001 are reserved.

ERG, bits [27:24]

Exclusives Reservation Granule. Log2 of the number of words of the maximum size of the
reservation granule that has been implemented for the Load-Exclusive and Store-Exclusive
instructions. For more information, see Tagging and the size of the tagged memory block on
page A3-20.

A value of 0b0000 indicates that the CTR does not provide Exclusives Reservation Granule
information and the architectural maximum of 512 words (2Kbytes) must be assumed.

31 29 28 27 24 23 20 19 16 15 4 3 0

1 0 0 0 CWG ERG DminLine 1 0 0 0 0 0 0 0 0 0 0 0 IminLine
B4-34 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
23:20

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
1

Protected Memory System Architecture (PMSA)
Values greater than 0b1001 are reserved.

DminLine, bits [19:16]

Log2 of the number of words in the smallest cache line of all the data caches and unified
caches that are controlled by the processor.

Bit [15] RAO.

Bits [14:4] RAZ.

IminLine, bits [3:0]

Log2 of the number of words in the smallest cache line of all the instruction caches that are
controlled by the processor.

Accessing the CTR

To access the CTR you read the CP15 registers with <opc1> set to 0, <CRn> set to c0, <CRm> set to c0, and
<opc2> set to 1. For example

MRC p15,0,<Rt>,c0,c0,1 ; Read CP15 Cache Type Register

B4.6.8 c0, TCM Type Register (TCMTR)

The TCM Type Register, TCMTR, provides information about the implementation of the TCM.

The TCMTR is:

• a 32-bit read-only register

• accessible only in privileged modes.

From ARMv7:the

• TCMTR must be implemented

• when the ARMv7 format is used, the meaning of register bits [28:0] is IMPLEMENTATION DEFINED

• the ARMv6 format of the TCM Type Register remains a valid usage model

• if no TCMs are implemented the ARMv6 format must be used to indicate zero-sized TCMs.

The ARMv7 format of the TCMTR is:

Bits [31:29] Set to 0b100 for the ARMv7 register format. Set to 0b000 for the format used in ARMv6
and earlier.

Bits [28:0] IMPLEMENTATION DEFINED in the ARMv7 register format.

31 29 28 0

1 0 0 IMPLEMENTATION DEFINED
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B4-35

ARM_2009_Q1
Inserted Text
:14

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
13

ARM_2009_Q1
Sticky Note
For a PMSA implementation, Issue A of this manual described CTR bits [15:14] wrongly. Unfortunately the correction made in Issue B gave the wrong value for bit [14], which is RAO.
However, in a PMSA implementation, the value of these bits has no functional significance.

Protected Memory System Architecture (PMSA)
If no TCMs are implemented, the TCMTR must be implemented with this ARMv6 format:

For details of the ARMv6 optional implementation of the TCM Type Register see c0, TCM Type Register
(TCMTR) on page AppxG-33.

Accessing the TCMTR

To access the TCMTR you read the CP15 registers with <opc1> set to 0, <CRn> set to c0, <CRm> set to c0, and
<opc2> set to 2. For example:

MRC p15,0,<Rt>,c0,c0,2 ; Read CP15 TCM Type Register

B4.6.9 c0, MPU Type Register (MPUIR)

The MPU Type Register, MPUIR, identifies the features of the MPU implementation. In particular it
identifies:

• whether the MPU implements:

— a Unified address map, also referred to as a von Neumann architecture

— separate Instruction and Data address maps, also referred to as a Harvard architecture.

• the number of memory regions implemented by the MPU.

The MPUIR is:

• a 32-bit read-only register

• accessible only in privileged modes

• implemented only when the PMSA is implemented.

The format of the MPUIR is:

Bits [31:24] UNKNOWN.

IRegion, bits [23:16]

Specifies the number of Instruction regions implemented by the MPU.

If the MPU implements a Unified memory map this field is UNK/SBZ.

DRegion, bits [15:8]

Specifies the number of Data or Unified regions implemented by the MPU.

If this field is zero, no MPU is implemented, and the default memory map is in use.

Bits [7:1] UNKNOWN.

31 29 28 19 18 16 15 3 2 0

0 0 0 UNKNOWN 0 0 0 UNKNOWN 0 0 0

31 24 23 16 15 8 7 1 0

UNKNOWN IRegion DRegion UNKNOWN nU
B4-36 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q1
Cross-Out

Protected Memory System Architecture (PMSA)
nU, bit [0] Not Unified MPU. Indicates whether the MPU implements a unified memory map:

nU == 0 Unified memory map. Bits [23:16] of the register are zero.

nU == 1 Separate Instruction and Data memory maps.

Accessing the MPUIR

To access the MPUIR you read the CP15 registers with <opc1> set to 0, <CRn> set to c0, <CRm> set to c0, and
<opc2> set to 4. For example:

MRC p15,0,<Rt>,c0,c0,4 ; Read CP15 MPU Type Register

B4.6.10 c0, Multiprocessor Affinity Register (MPIDR)

The Multiprocessor Affinity Register, MPIDR, provides an additional processor identification mechanism
for scheduling purposes in a multiprocessor system. In a uniprocessor system ARM recommends that this
register returns a value of 0.

The MPIDR is:

• a 32-bit read-only register

• accessible only in privileged modes

• introduced in ARMv7.

The format of the MPIDR is:

Note
 In the MIDR bit definitions, a processor in the system can be a physical processor or a virtual processor.

Bits [31:24] Reserved, RAZ.

Affinity level 2, bits [23:16]

The least significant affinity level field, for this processor in the system.

Affinity level 1, bits [15:8]

The intermediate affinity level field, for this processor in the system.

Affinity level 0, bits [7:0]

The most significant level field, for this processor in the system.

In the system as a whole, for each of the affinity level fields, the assigned values must start at 0 and increase
monotonically.

31 24 23 16 15 8 7 0

0 0 0 0 0 0 0 0 Affinity level 2 Affinity level 1 Affinity level 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B4-37

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
In the ARMv7 base architecture t

ARM_2008_Q4
Sticky Note
The Multiprocessing Extensions modify the format of the MPIDR. This information has been omitted from this section, but the PMSA format is identical to the VMSA format, as described in section B3.12.12 c0, Multiprocessor Affinity Register (MPIDR), see PDF page 1361.

The subsection Multi-threading approach to lowest affinity levels, Multiprocessing Extensions on PDF page 1363 also applies to a PMSA implementation.

The other changes in this section only add short names for the MPIDR register fields. They do not affect functionality.

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
Aff2

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
Aff1

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
Aff0

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
Aff2

ARM_2008_Q4
Inserted Text
Affinity level 2.

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
Aff1

ARM_2008_Q4
Inserted Text
Affinity level 1.

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
Aff0

ARM_2008_Q4
Inserted Text
Affinity level 0.

ARM_2009_Q1
Inserted Text
affinity

ARM_2010_Q3
Cross-Out

ARM_2010_Q3
Replacement Text
MPIDR

Protected Memory System Architecture (PMSA)
Increasing monotonically means that:

• There must not be any gaps in the sequence of numbers used.

• A higher value of the field includes any properties indicated by all lower values of the field.

When matching against an affinity level field, scheduler software checks for a value equal to or greater than
a required value.

Recommended use of the MPIDR includes a description of an example multiprocessor system and the
affinity level field values it might use.

The interpretation of these fields is IMPLEMENTATION DEFINED, and must be documented as part of the
documentation of the multiprocessor system. ARM recommends that this register might be used as
described in the next subsection.

The software mechanism to discover the total number of affinity numbers used at each level is
IMPLEMENTATION DEFINED, and is part of the general system identification task.

Recommended use of the MPIDR

In a multiprocessor system the register might provide two important functions:

• Identifying special functionality of a particular processor in the system. In general, the actual
meaning of the affinity level fields is not important. In a small number of situations, an affinity level
field value might have a special IMPLEMENTATION DEFINED significance. Possible examples include
booting from reset and power-down events.

• Providing affinity information for the scheduling software, to help the scheduler run an individual
thread or process on either:

— the same processor, or as similar a processor as possible, as the processor it was running on
previously

— a processor on which a related thread or process was run.

Note
 A monotonically increasing single number ID mechanism provides a convenient index into software arrays
and for accessing the interrupt controller. This might be:

• performed as part of the boot sequence

• stored as part of the local storage of threads.
B4-38 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q1
Cross-Out
This is deletion of information that is not required and not appropriate. It is not a change to this specification.

ARM_2009_Q1
Cross-Out
This is deletion of information that is not required and not appropriate. It is not a change to this specification.

Protected Memory System Architecture (PMSA)
MPIDR provides a mechanism with up to three levels of affinity information, but the meaning of those levels
of affinity is entirely IMPLEMENTATION DEFINED. The levels of affinity provided can have different
meanings. Table B4-12 shows two possible implementations:

The scheduler maintains affinity level information for all threads and processes. When it has to reschedule
a thread or process the scheduler:

• looks for an available processor that matches at all three affinity levels

• if this fails, it might look for a processor that matches at levels 2 and 3 only

• if it still cannot find an available processor it might look for a match at level 3 only.

A multiprocessor system corresponding to Example system 1 in Table B4-12 might implement affinity
values as shown in Table B4-13:

Accessing the MPIDR

To access the MPIDR you read the CP15 registers with <opc1> set to 0, <CRn> set to c0, <CRm> set to c0, and
<opc2> set to 5. For example:

MRC p15,0,<Rt>,c0,c0,5 ; Read Multiprocessor Affinity Register

Table B4-12 Possible implementations of the affinity levels

Affinity Level Example system 1 Example system 2

0 Virtual CPUs in a in a multi-threaded processor Processors in an SMP cluster

1 Processors in an Symmetric Multi Processor (SMP) cluster Clusters with a system

2 Clusters in a system No meaning, fixed as 0.

Table B4-13 Example of possible affinity values at different affinity levels

Affinity level 2, Cluster level Affinity level 1, Processor level Affinity level 0, Virtual CPU level

0 0 0, 1

0 1 0, 1

0 2 0, 1

0 3 0, 1

1 0 0, 1

1 1 0, 1

1 2 0, 1

1 3 0, 1
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B4-39

Protected Memory System Architecture (PMSA)
B4.6.11 c0, Cache Size ID Registers (CCSIDR)

The Cache Size ID Registers, CCSIDR, provide information about the architecture of the caches.

The CCSIDR registers are:

• 32-bit read-only registers

• accessible only in privileged modes

• introduced in ARMv7.

One CCSIDR is implemented for each cache that can be accessed by the processor. CSSELR selects which
Cache Size ID register is accessible, see c0, Cache Size Selection Register (CSSELR) on page B4-43.

The format of a CCSIDR is:

WT, bit [31] Indicates whether the cache level supports Write-Through, see Table B4-14.

WB, bit [30] Indicates whether the cache level supports Write-Back, see Table B4-14.

RA, bit [29] Indicates whether the cache level supports Read-Allocation, see Table B4-14.

WA, bit [28] Indicates whether the cache level supports Write-Allocation, see Table B4-14.

NumSets, bits [27:13]

(Number of sets in cache) - 1, therefore a value of 0 indicates 1 set in the cache. The number
of sets does not have to be a power of 2.

Associativity, bits [12:3]

(Associativity of cache) - 1, therefore a value of 0 indicates an associativity of 1. The
associativity does not have to be a power of 2.

31 30 29 28 27 13 12 3 2 0

W
T

W
B

R
A

W
A

NumSets Associativity LineSize

Table B4-14 WT, WB, RA and WA bit values

WT, WB, RA or WA bit value Meaning

0 Feature not supported

1 Feature supported
B4-40 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Protected Memory System Architecture (PMSA)
LineSize, bits [2:0]

(Log2(Number of words in cache line)) -2. For example:

• For a line length of 4 words: Log2(4) = 2, LineSize entry = 0.

This is the minimum line length.

• For a line length of 8 words: Log2(8) = 3, LineSize entry = 1.

Accessing the currently selected CCSIDR

The CSSELR selects a CCSIDR, see c0, Cache Size Selection Register (CSSELR) on page B4-43. To access
the currently-selected CCSIDR you read the CP15 registers with <opc1> set to 1, <CRn> set to c0, <CRm> set
to c0, and <opc2> set to 0. For example:

MRC p15,1,<Rt>,c0,c0,0 ; Read current CP15 Cache Size ID Register

Accessing the CCSIDR when the value in CSSELR corresponds to a cache that is not implemented returns
an UNKNOWN value.

B4.6.12 c0, Cache Level ID Register (CLIDR)

The Cache Level ID Register, CLIDR:

• identifies the type of cache, or caches, implemented at each level, up to a maximum of eight levels

• identifies the Level of Coherency and Level of Unification for the cache hierarchy.

The CLIDR is:

• a 32-bit read-only register

• accessible only in privileged modes

• introduced in ARMv7.

The format of the CLIDR is:

Bits [31:30] RAZ.

LoUU, bits [29:27]

Level of Unification Uniprocessor for the cache hierarchy, see Clean, Invalidate, and Clean
and Invalidate on page B2-11.

LoC, bits [26:24]

Level of Coherency for the cache hierarchy, see Clean, Invalidate, and Clean and Invalidate
on page B2-11.

31 30 29 27 26 24 23 21 20 18 17 15 14 12 11 9 8 6 5 3 2 0

0 0 LoUU LoC LoUIS Ctype7 Ctype6 Ctype5 Ctype4 Ctype3 Ctype2 Ctype1
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B4-41

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
seven

Protected Memory System Architecture (PMSA)
LoUIS, bits [23:21]

Level of Unification Inner Shareable for the cache hierarchy, see Clean, Invalidate, and
Clean and Invalidate on page B2-11. This field is RAZ in implementations that do not
implement the Multiprocessing extension.

CtypeX, bits [3(x - 1) + 2:3(x - 1)], for x = 1 to 7

Cache type fields. Indicate the type of cache implemented at each level, from Level 1 up to
a maximum of seven levels of cache hierarchy. The Level 1 cache type field, Ctype1, is bits
[2:0], see register diagram. Table B4-15 shows the possible values for each CtypeX field.

If you read the Cache type fields from Ctype1 upwards, once you have seen a value of
0b000, no caches exist at further out levels of the hierarchy. So, for example, if Ctype3 is
the first Cache type field with a value of 0b000, the values of Ctype4 to Ctype7 must be
ignored.

The CLIDR describes only the caches that are under the control of the processor.

Accessing the CLIDR

To access the CLIDR you read the CP15 registers with <opc1> set to 1, <CRn> set to c0, <CRm> set to c0, and
<opc2> set to 1. For example:

MRC p15,1,<Rt>,c0,c0,1 ; Read CP15 Cache Level ID Register

Table B4-15 Ctype bit values

CtypeX bits Meaning, cache implemented at this level

000 No cache

001 Instruction cache only

010 Data cache only

011 Separate instruction and data caches

100 Unified cache

101, 11X Reserved
B4-42 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Protected Memory System Architecture (PMSA)
B4.6.13 c0, IMPLEMENTATION DEFINED Auxiliary ID Register (AIDR)

The IMPLEMENTATION DEFINED Auxiliary ID Register, AIDR, provides implementation-specific ID
information. The value of this register must be used in conjunction with the value of the MIDR.

The IMPLEMENTATION DEFINED AIDR is:

• a 32-bit read-only register

• accessible only in privileged modes

• introduced in ARMv7.

The format of the AIDR is IMPLEMENTATION DEFINED.

Accessing the AIDR

To access the AIDR you read the CP15 registers with <opc1> set to 1, <CRn> set to c0, <CRm> set to c0, and
<opc2> set to 7. For example:

MRC p15,1,<Rt>,c0,c0,7 ; Read IMPLEMENTATION DEFINED Auxiliary ID Register

B4.6.14 c0, Cache Size Selection Register (CSSELR)

The Cache Size Selection Register, CSSELR, selects the current CCSIDR. An ARMv7 implementation
must include a CCSIDR for every implemented cache that is under the control of the processor. The
CSSELR identifies which CCSIDR can be accessed, by specifying, for the required cache:

• the cache level

• the cache type, either:

— instruction cache.

— Data cache. The data cache argument is also used for a unified cache.

CSSELR is:

• a 32-bit read/write register

• accessible only in privileged modes

• introduced in ARMv7.

The format of the CSSELR is:

Bits [31:4] UNK/SBZP.

Level, bits [3:1]

Cache level of required cache. Permitted values are from 0b000, indicating Level 1 cache,
to 0b110 indicating Level 7 cache.

�

��)�*������
�

��"

�� � ��
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B4-43

Protected Memory System Architecture (PMSA)
InD, bit [0]

Instruction not data bit. Permitted values are:

0 Data or unified cache

1 Instruction cache.

If CSSELR is set to indicate a cache that is not implemented, the result of reading the current CCSIDR is
UNPREDICTABLE.

Accessing CSSELR

To access CSSELR you read or write the CP15 registers with <opc1> set to 2, <CRn> set to c0, <CRm> set to
c0, and <opc2> set to 0. For example:

MRC p15,2,<Rt>,c0,c0,0 ; Read Cache Size Selection Register
MCR p15,2,<Rt>,c0,c0,0 ; Write Cache Size Selection Register

B4.6.15 CP15 c1, System control registers

The CP15 c1 registers are used for system control. Figure B4-5 shows the CP15 c1 registers.

Figure B4-5 CP15 c1 registers in a PMSA implementation

All CP15 c1 register encodings not shown in Figure B4-5 are UNPREDICTABLE, see Unallocated CP15
encodings on page B4-27.

<7� �%�� <7,
�� � �� �

�

�<@376�<��&����7�.'*&��
�%��

� �<@376��$+'�'����<��&����7�.'*&��6� !�3:!:?@�@ =?��:� ?:�

<��<76�<�%����**�������**�<��&����7�.'*&��

7���PQ�'&�7�������� Q�'&������
B4-44 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2010_Q2
Cross-Out

ARM_2010_Q2
Replacement Text
System Control

Protected Memory System Architecture (PMSA)
B4.6.16 c1, System Control Register (SCTLR)

The System Control Register, SCTLR, provides the top level control of the system, including its memory
system.

The SCTLR:

• Is a 32-bit read/write register, with different access rights for some bits of the register.

In ARMv7, some bits in the register are read-only. These bits relate to non-configurable features of
an ARMv7 implementation, and are provided for compatibility with previous versions of the
architecture.

• Is accessible only in privileged modes.

• Has a defined reset value. The reset value is IMPLEMENTATION DEFINED, see Reset value of the SCTLR
on page B4-49.

Control bits in the SCTLR that are not applicable to a PMSA implementation read as the value that most
closely reflects that implementation, and ignore writes.

In an ARMv7-R implementation the format of the SCTLR is:

IE, bit [31] Instruction Endianness. This bit indicates the endianness of the instructions issued to the
processor:

0 Little-endian byte ordering in the instructions

1 Big-endian byte ordering in the instructions.

When set, this bit causes the byte order of instructions to be reversed at runtime.

This bit is read-only. It is IMPLEMENTATION DEFINED which instruction endianness is used
by an ARMv7-R implementation, and this bit must indicate the implemented endianness.

If IE == 1 and EE == 0, behavior is UNPREDICTABLE.

TE, bit [30] Thumb Exception enable. This bit controls whether exceptions are taken in ARM or Thumb
state:

0 Exceptions, including reset, handled in ARM state

1 Exceptions, including reset, handled in Thumb state.

An implementation can include a configuration input signal that determines the reset value
of the TE bit. If the implementation does not include a configuration signal for this purpose
then this bit resets to zero in an ARMv7-R implementation.

For more information about the use of this bit see Instruction set state on exception entry on
page B1-35.

Bits [29:28] RAZ/SBZP.

�� �� ��� �� �� �	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� � 	 � � �

� � %
 � � � � � � ���� ���

$$�$
#�

��

�(
((

�

�%#�
+(

�(

� �

"

� �

��
 �

�,
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B4-45

Protected Memory System Architecture (PMSA)
NMFI, bit [27]

Non-Maskable Fast Interrupts enable:

0 Fast interrupts (FIQs) can be masked in the CPSR

1 Fast interrupts are non-maskable.

This bit is read-only. It is IMPLEMENTATION DEFINED whether an implementation supports
Non-Maskable Fast Interrupts (NMFIs):

• If NMFIs are not supported then this bit is RAZ/WI.

• If NMFIs are supported then this bit is determined a configuration input signal.

For more information, see Non-maskable fast interrupts on page B1-18.

Bit [26] RAZ/SBZP.

EE, bit [25] Exception Endianness bit. The value of this bit defines the value of the CPSR.E bit on entry
to an exception vector, including reset. The permitted values of this bit are:

0 Little endian

1 Big endian.

This is a read/write bit. An implementation can include a configuration input signal that
determines the reset value of the EE bit. If the implementation does not include a
configuration signal for this purpose then this bit resets to zero.

If IE == 1 and EE == 0, behavior is UNPREDICTABLE.

VE, bit [24] Interrupt Vectors Enable bit. This bit controls the vectors used for the FIQ and IRQ
interrupts. The permitted values of this bit are:

0 Use the FIQ and IRQ vectors from the vector table, see the V bit entry

1 Use the IMPLEMENTATION DEFINED values for the FIQ and IRQ vectors.

For more information, see Vectored interrupt support on page B1-32.

If the implementation does not support IMPLEMENTATION DEFINED FIQ and IRQ vectors
then this bit is RAZ/WI.

Bit [23] RAO/SBOP.

U, bit [22] In ARMv7 this bit is RAO/SBOP, indicating use of the alignment model described in
Alignment support on page A3-4.

For details of this bit in earlier versions of the architecture see Alignment on page AppxG-6.

FI, bit [21] Fast Interrupts configuration enable bit. This bit can be used to reduce interrupt latency in
an implementation by disabling IMPLEMENTATION DEFINED performance features. The
permitted values of this bit are:

0 All performance features enabled.

1 Low interrupt latency configuration. Some performance features disabled.

If the implementation does not support a mechanism for selecting a low interrupt latency
configuration this bit is RAZ/WI.

For more information, see Low interrupt latency configuration on page B1-43.
B4-46 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q1
Sticky Note
These changes are a clarification of the description of this bit, not a change in the architecture specification.

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
FIQ support

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
Software can mask FIQs by setting the CPSR.F bit to 1

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
Software cannot mask FIQs

ARM_2009_Q1
Inserted Text
by

Protected Memory System Architecture (PMSA)
Bit [20] RAZ/SBZP.

DZ, bit [19] Divide by Zero fault enable bit. Any ARMv7-R implementation includes instructions to
perform unsigned and signed division, see SDIV on page A8-310 and UDIV on
page A8-468. This bit controls whether an integer divide by zero causes an Undefined
Instruction exception:

0 Divide by zero returns the result zero, and no exception is taken

1 Attempting a divide by zero causes an Undefined Instruction exception on the
SDIV or UDIV instruction.

Bit [18] RAO/SBOP.

BR, bit [17] Background Region bit. When the MPU is enabled this bit controls how an access that does
not map to any MPU memory region is handled:

0 Any access to an address that is not mapped to an MPU region generates a
Background Fault memory abort. This is the PMSAv6 behavior.

1 The default memory map is used as a background region:

• A privileged access to an address that does not map to an MPU region
takes the properties defined for that address in the default memory map.

• An unprivileged access to an address that does not map to an MPU region
generates a Background Fault memory abort.

For more information, see Using the default memory map as a background region on
page B4-5.

Bit [16] RAO/SBOP.

Bit [15] RAZ/SBZP.

RR, bit [14] Round Robin bit. If the cache implementation supports the use of an alternative replacement
strategy that has a more easily predictable worst-case performance, this bit selects it:

0 Normal replacement strategy, for example, random replacement

1 Predictable strategy, for example, round-robin replacement.

The RR bit must reset to 0.

The replacement strategy associated with each value of the RR bit is IMPLEMENTATION
DEFINED.

If the implementation does not support multiple IMPLEMENTATION DEFINED replacement
strategies this bit is RAZ/WI.

V, bit [13] Vectors bit. This bit selects the base address of the exception vectors:

0 Normal exception vectors, base address 0x00000000.

1 High exception vectors (Hivecs), base address 0xFFFF0000.

For more information, see Exception vectors and the exception base address on page B1-30.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B4-47

Protected Memory System Architecture (PMSA)
Note
 Use of the Hivecs setting, V == 1, is deprecated in an ARMv7-R implementation.

An implementation can include a configuration input signal that determines the reset value
of the V bit. If the implementation does not include a configuration signal for this purpose
then this bit resets to zero.

I, bit [12] Instruction cache enable bit: This is a global enable bit for instruction caches:

0 Instruction caches disabled

1 Instruction caches enabled.

If the system does not implement any instruction caches that can be accessed by the
processor, at any level of the memory hierarchy, this bit is RAZ/WI.

If the system implements any instruction caches that can be accessed by the processor then
it must be possible to disable them by setting this bit to 0.

Cache enabling and disabling on page B2-8 describes the effect of enabling the caches.

Z, bit [11] Branch prediction enable bit. This bit is used to enable branch prediction, also called
program flow prediction:

0 Program flow prediction disabled

1 Program flow prediction enabled.

If program flow prediction cannot be disabled, this bit is RAO/WI.

If the implementation does not support program flow prediction then this bit is RAZ/WI.

SW, bit[10] SWP/SWPB enable bit. This bit enables the use of SWP and SWPB instructions:

0 SWP and SWPB are UNDEFINED

1 SWP and SWPB perform as described in section SWP, SWPB on page A8-432.

This bit is added as part of the Multiprocessing Extensions.

Note
 At reset, this bit disables SWP and SWPB. This means that operating systems have to choose to

use SWP and SWPB.

Bits [9:8] RAZ/SBZP.

B, bit [7] In ARMv7 this bit is RAZ/SBZP, indicating use of the endianness model described in
Endian support on page A3-7.

For details of this bit in earlier versions of the architecture see Endian support on
page AppxG-7 and Endian support on page AppxH-7.

Bits [6:3] RAO/SBOP.
B4-48 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Protected Memory System Architecture (PMSA)
C, bit [2] Cache enable bit: This is a global enable bit for data and unified caches:

0 Data and unified caches disabled

1 Data and unified caches enabled.

If the system does not implement any data or unified caches that can be accessed by the
processor, at any level of the memory hierarchy, this bit is RAZ/WI.

If the system implements any data or unified caches that can be accessed by the processor
then it must be possible to disable them by setting this bit to 0.

Cache enabling and disabling on page B2-8 describes the effect of enabling the caches.

A, bit [1] Alignment bit. This is the enable bit for Alignment fault checking:

0 Alignment fault checking disabled

1 Alignment fault checking enabled.

For more information, see Alignment fault on page B4-14.

M, bit [0] MPU enable bit. This is a global enable bit for the MPU:

0 MPU disabled

1 MPU enabled.

For more information, see Enabling and disabling the MPU on page B4-5.

Reset value of the SCTLR

The SCTLR has a defined reset value that is IMPLEMENTATION DEFINED. There are different types of bit in
the SCTLR:

• Some bits are defined as RAZ or RAO, and have the same value in all PMSAv7 implementations.
Figure B4-6 on page B4-50 shows the values of these bits.

• Some bits are read-only and either:

— have an IMPLEMENTATION DEFINED value

— have a value that is determined by a configuration input signal.

• Some bits are read/write and either:

— reset to zero

— reset to an IMPLEMENTATION DEFINED value

— reset to a value that is determined by a configuration input signal.

Figure B4-6 on page B4-50 shows the reset value, or how the reset value is defined, for each bit of the
SCTLR. It also shows the possible values of each half byte of the register.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B4-49

Protected Memory System Architecture (PMSA)
Figure B4-6 Reset value of the SCTLR, ARMv7-R (PMSAv7)

Accessing the SCTLR

To access SCTLR you read or write the CP15 registers with <opc1> set to 0, <CRn> set to c1, <CRm> set to c0,
and <opc2> set to 0. For example:

MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register
MCR p15,0,<Rt>,c1,c0,0 ; Write CP15 System Control Register

Note
 Additional configuration and control bits might be added to the SCTLR in future versions of the ARM
architecture. ARM strongly recommends that software always uses a read, modify, write sequence to update
the SCTLR. This prevents software modifying any bit that is currently unallocated, and minimizes the
chance of the register update having undesired side effects.

B4.6.17 c1, IMPLEMENTATION DEFINED Auxiliary Control Register (ACTLR)

The Auxiliary Control Register, ACTLR, provides implementation-specific configuration and control
options.

The ACTLR is:

• A 32-bit read/write register.

• Accessible only in privileged modes.

The contents of this register are IMPLEMENTATION DEFINED. ARMv7 requires this register to be privileged
read/write accessible, even if an implementation has not created any control bits in this register.

�� �� ��� �� �� �	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� � 	 � � �

� � %

�

� � � � � � �

��

� ����

$$�$
#�

��

�(

�

+(

3 -

((�%#�

- - -- - -- - -- -- -- - .�/

� �
 �

� � � � � � � � � �
.-/
� �

.-/
� �

�0��0��0�1&�1�0��0�1&�1�0��0
�0�
�0�21�0�2
�0�1&�1�0�

�(
"

- - .3/

�0�21�0�2
�0�1&�1�0�

� �

$�4�5&�*617��821��9*:���;1$�
14��1$�'17��8<-
�4�17�1$�
<1'�=��>�8�1��4��>����21��8��81�&1�<.-/

�4*:�1�81�%��(%(�+�+�'�1"(#��("<
�4�17�1��4�5&�*621>��=1�%��(%(�+�+�'�1"(#��("1)4*:�<1'�=��>�8�1��8��81�&1�<

� �4*:�1&�1��8��1)4*:�194�1��?���1&�19&�@�;:�4��&�1��?:�<1'�=��>�8�1$�
1&�1��8��81�&1�<

3
.3/

�,

.-/
B4-50 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Protected Memory System Architecture (PMSA)
Accessing the ACTLR

To access the ACTLR you read or write the CP15 registers with <opc1> set to 0, <CRn> set to c1, <CRm> set to
c0, and <opc2> set to 1. For example:

MRC p15,0,<Rt>,c1,c0,1 ; Read CP15 Auxiliary Control Register
MCR p15,0,<Rt>,c1,c0,1 ; Write CP15 Auxiliary Control Register

B4.6.18 c1, Coprocessor Access Control Register (CPACR)

The Coprocessor Access Control Register, CPACR, controls access to all coprocessors other than CP14 and
CP15. It also enables software to check for the presence of coprocessors CP0 to CP13.

The CPACR:

• is a 32-bit read/write register

• is accessible only in privileged modes.

• has a defined reset value of 0.

The format of the CPACR is:

ASEDIS, bit[31]

Disable Advanced SIMD functionality:

0 This bit does not cause any instructions to be UNDEFINED.

1 All instruction encodings identified in the Alphabetical list of instructions on
page A8-14 as being part of Advanced SIMD, but that are not VFPv3
instructions, are UNDEFINED.

On an implementation that:

• Implements VFP and does not implement Advanced SIMD, this bit is RAO/WI.

• Does not implement VFP or Advanced SIMD, this bit is UNK/SBZP.

• Implements both VFP and Advanced SIMD, it is IMPLEMENTATION DEFINED whether
this bit is supported. If it is not supported it is RAZ/WI.

This bit resets to 0 if it is supported.

cp13 cp0

31 30 29 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

(0) (0) cp12 cp11 cp10 cp9 cp8 cp7 cp6 cp5 cp4 cp3 cp2 cp1

D32DIS
ASEDIS

28 27
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B4-51

ARM_2011_Q2
Line

ARM_2011_Q2
Sticky Note
The attached file shows the updated CPACR format. Double-click on the pin to see the file. See the insertion after the modified description of bit[29] for more information about the additional bit.

This optional addition to the CPACR is permitted in all ARMv7 implementations. It is not associated with any ARMv7 architecture extension.

cp13 cp0

31 30 29 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

(0) cp12 cp11 cp10 cp9 cp8 cp7 cp6 cp5 cp4 cp3 cp2 cp1

D32DIS

ASEDIS

28 27

TRCDIS

		cpacr_format.vsd

		Page-1

ARM_2011_Q2
File Attachment
cpacr_format.pdf

Protected Memory System Architecture (PMSA)
D32DIS, bit[30]

Disable use of D16-D31 of the VFP register file:

0 This bit does not cause any instructions to be UNDEFINED.

1 All instruction encodings identified in the Alphabetical list of instructions on
page A8-14 as being VFPv3 instructions are UNDEFINED if they access any of
registers D16-D31.

If this bit is 1 when CPACR.ASEDIS == 0, the result is UNPREDICTABLE.

On an implementation that:

• Does not implement VFP, this bit is UNK/SBZP.

• Implements VFP and does not implement D16-D31, this bit is RAO/WI.

• Implements VFP and implements D16-D31, it is IMPLEMENTATION DEFINED whether
this bit is supported. If it is not supported it is RAZ/WI.

This bit resets to 0 if it is supported.

Bits [29:28] Reserved. UNK/SBZP.

cp<n>, bits [2n+1, 2n], for n = 0 to 13

Defines the access rights for coprocessor n. The possible values of the field are:

00 Access denied. Any attempt to access the coprocessor generates an Undefined
Instruction exception.

01 Privileged access only. Any attempt to access the coprocessor in User mode
generates an Undefined Instruction exception.

10 Reserved. The effect of this value is UNPREDICTABLE.

11 Full access. The meaning of full access is defined by the appropriate
coprocessor.

The value for a coprocessor that is not implemented is 00, access denied.

If more than one coprocessor is used to provide a set of functionality then having different values for the
CPACR fields for those coprocessors can lead to UNPREDICTABLE behavior. An example where this must be
considered is with the VFP extension, that uses CP10 and CP11.

Typically, an operating system uses this register to control coprocessor resource sharing among applications:

• Initially all applications are denied access to the shared coprocessor-based resources.

• When an application attempts to use a resource it results in an Undefined Instruction exception.

• The Undefined Instruction handler can then grant access to the resource by setting the appropriate
field in the CPACR.

For details of how this register can be used to check for implemented coprocessors see Access controls on
CP0 to CP13 on page B1-63.
B4-52 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2011_Q2
Sticky Note
The insertion after the modified bit[29] description describes the additional TRCDIS bit, bit[28].

This optional addition to the CPACR is permitted in all ARMv7 implementations. It is not associated with any ARMv7 architecture extension.

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Inserted Text
TRCDIS, bit[28]
 Disable CP14 access to trace registers:
 0	 This bit does not cause any instructions to be undefined.
 1	 Any MRC or MCR instruction with coproc set to 0b1110 and opc1 set to 0b001 is UNDEFINED.

On an implementation that:
 • Does not include a trace macrocell, or does not include a CP14 interface to the trace macrocell registers, this bit is RAZ/WI.
 • Includes a CP14 interface to trace macrocell registers, it is IMPLEMENTATION DEFINED whether this bit is supported. If it is not supported it is RAZ/WI.

If this bit is implemented as an RW bit its reset value is UNKNOWN.

Protected Memory System Architecture (PMSA)
Sharing resources among applications requires a state saving mechanism. Two possibilities are:

• during a context switch, if the last executing process or thread had access rights to a coprocessor then
the operating system saves the state of that coprocessor

• on receiving a request for access to a coprocessor, the operating system saves the old state for that
coprocessor with the last process or thread that accessed it.

Accessing the CPACR

To access the CPACR you read or write the CP15 registers with <opc1> set to 0, <CRn> set to c1, <CRm> set to
c0, and <opc2> set to 2. For example:

MRC p15,0,<Rt>,c1,c0,2 ; Read CP15 Coprocessor Access Control Register
MCR p15,0,<Rt>,c1,c0,2 ; Write CP15 Coprocessor Access Control Register

Normally, software uses a read, modify, write sequence to update the CPACR, to avoid unwanted changes
to the access settings for other coprocessors.

B4.6.19 CP15 c2 and c3, Not used on a PMSA implementation

The CP15 c2 and c3 register encodings are not used on an ARMv7-R implementation, see Unallocated
CP15 encodings on page B4-27.

B4.6.20 CP15 c4, Not used

The CP15 c4 register encodings are not used on an ARMv7 implementation, see Unallocated CP15
encodings on page B4-27.

B4.6.21 CP15 c5 and c6, Memory system fault registers

The CP15 c5 and c6 registers are used for memory system fault reporting. In addition, c6 provides the MPU
Region registers. Figure B4-7 on page B4-54 shows the CP15 c5 and c6 registers.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B4-53

Protected Memory System Architecture (PMSA)
Figure B4-7 CP15 c5 and c6 registers in a PMSA implementation

All CP15 c5 and c6 register encodings not shown in Figure B4-7 are UNPREDICTABLE, see Unallocated
CP15 encodings on page B4-27.

The CP15 c5 and c6 registers are described in:

• CP15 c5, Fault status registers

• CP15 c6, Fault Address registers on page B4-57

• CP15 c6, Memory region programming registers on page B4-59.

Also, these registers are used to report information about debug exceptions. For details see Effects of debug
exceptions on CP15 registers and the DBGWFAR on page C4-4.

B4.6.22 CP15 c5, Fault status registers

There are two fault status registers, in CP15 c5, and the architecture provides encodings for two additional
IMPLEMENTATION DEFINED registers. Table B4-16 summarizes these registers.

�	 � �� � ���76���&����$�&��&�&$*�7�.'*&��
 ��76� �*&�$�&'�����$�&��&�&$*�7�.'*&��

���76���&����$�&������**�7�.'*&��
 ��76� �*&�$�&'�����$�&������**�7�.'*&��

�

�� � �� �
�

�� �79�76���&��7�.'���9�*�������**�7�.'*&��
 79�76� �*&�$�&'���7�.'���9�*�������**�7�.'*&��
�7�76���&��7�.'����'E������:��-���7�.'*&��
 7�76� �*&�$�&'���7�.'����'E������:��-���7�.'*&��
�7�<76���&��7�.'�������**�<��&����7�.'*&��
 7�<76� �*&�$�&'���7�.'�������**�<��&����7�.'*&��
7K?76�!�"�7�.'���?$,-���7�.'*&����

�
�

�

�
�
�
	

��&�'�*����
 !�3:!:?@�@ =?��:� ?:�

����76��$+'�'�������7
� ��76��$+'�'���� ��7

�� �
�

<7� �%�� <7, �%��

7���PQ�'&�7�������� Q�'&������

Table B4-16 Fault status registers

Register name Description

Data Fault Status Register (DFSR) c5, Data Fault Status Register (DFSR) on page B4-55

Instruction Fault Status Register (IFSR) c5, Instruction Fault Status Register (IFSR) on page B4-56

Auxiliary Data Fault Status Register (ADFSR) c5, Auxiliary Data and Instruction Fault Status Registers
(ADFSR and AIFSR) on page B4-56Auxiliary Instruction Fault Status Register (AIFSR)
B4-54 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Protected Memory System Architecture (PMSA)
Fault information is returned using the fault status registers and the fault address registers described in CP15
c6, Fault Address registers on page B4-57. For details of how these registers are used see Fault Status and
Fault Address registers in a PMSA implementation on page B4-18.

c5, Data Fault Status Register (DFSR)

The Data Fault Status Register, DFSR, holds status information about the last data fault.

The DFSR is:

• a 32-bit read/write register

• accessible only in privileged modes.

The format of the DFSR is:

Bits [31:13,9:4]

UNK/SBZP.

ExT, bit [12] External abort type. This bit can be used to provide an IMPLEMENTATION DEFINED
classification of external aborts.

For aborts other than external aborts this bit always returns 0.

WnR, bit [11] Write not Read bit. Indicates whether the abort was caused by a write or a read access:

0 Abort caused by a read access

1 Abort caused by a write access.

For faults on CP15 cache maintenance operations this bit always returns a value of 1.

FS, bits [10,3:0]

Fault status bits. For the valid encodings of these bits in an ARMv7-R implementation with
a PMSA, see Table B4-7 on page B4-20.

All encodings not shown in the table are reserved.

For information about using the DFSR see Fault Status and Fault Address registers in a PMSA
implementation on page B4-18.

Accessing the DFSR

To access the DFSR you read or write the CP15 registers with <opc1> set to 0, <CRn> set to c5, <CRm> set to
c0, and <opc2> set to 0. For example:

MRC p15,0,<Rt>,c5,c0,0 ; Read CP15 Data Fault Status Register
MCR p15,0,<Rt>,c5,c0,0 ; Write CP15 Data Fault Status Register

� �

#�A�B�C������
�
��� �� �� �

(0+
,�$
#�A�C

�� ��

������
�
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B4-55

Protected Memory System Architecture (PMSA)
c5, Instruction Fault Status Register (IFSR)

The Instruction Fault Status Register, IFSR, holds status information about the last instruction fault.

The IFSR is:

• a 32-bit read/write register

• accessible only in privileged modes.

The format of the IFSR is:

Bits [31:13,11,9:4]

UNK/SBZP.

ExT, bit [12] External abort type. This bit can be used to provide an IMPLEMENTATION DEFINED
classification of external aborts.

For aborts other than external aborts this bit always returns 0.

FS, bits [10,3:0]

Fault status bits.

See Table B4-7 on page B4-20 for the valid encodings of these bits. All encodings not
shown in the table are reserved.

For information about using the IFSR see Fault Status and Fault Address registers in a PMSA
implementation on page B4-18.

Accessing the IFSR

To access the IFSR you read or write the CP15 registers with <opc1> set to 0, <CRn> set to c5, <CRm> set to c0,
and <opc2> set to 1. For example:

MRC p15,0,<Rt>,c5,c0,1 ; Read CP15 Instruction Fault Status Register
MCR p15,0,<Rt>,c5,c0,1 ; Write CP15 Instruction Fault Status Register

c5, Auxiliary Data and Instruction Fault Status Registers (ADFSR and AIFSR)

The Auxiliary Data Fault Status Register (ADFSR) and the Auxiliary Instruction Fault Status Register
(AIFSR) enable the system to return additional IMPLEMENTATION DEFINED fault status information, see
Auxiliary Fault Status Registers on page B4-21.

The ADFSR and AIFSR are:

• 32-bit read/write registers

• accessible only in privileged modes

• introduced in ARMv7.

� �

#�A�B�C������
�
��� �� �� �

(0+
#�A�C

�� ��

������
�.�/
B4-56 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Protected Memory System Architecture (PMSA)
The formats of the ADFSR and AIFSR are IMPLEMENTATION DEFINED.

Accessing the ADFSR and AIFSR

To access the ADFSR or AIFSR you read or write the CP15 registers with <opc1> set to 0, <CRn> set to c5,
<CRm> set to c1, and <opc2> set to:

• 0 for the ADFSR

• 1 for the AIFSR.

For example:

MRC p15,0,<Rt>,c5,c1,0 ; Read CP15 Auxiliary Data Fault Status Register
MCR p15,0,<Rt>,c5,c1,0 ; Write CP15 Auxiliary Data Fault Status Register
MRC p15,0,<Rt>,c5,c1,1 ; Read CP15 Auxiliary Instruction Fault Status Register
MCR p15,0,<Rt>,c5,c1,1 ; Write CP15 Auxiliary Instruction Fault Status Register

B4.6.23 CP15 c6, Fault Address registers

There are two Fault Address registers, in CP15 c6, as shown in Figure B4-7 on page B4-54. The two Fault
Address registers complement the Fault Status registers, and are shown in Table B4-17.

Note
 Before ARMv7:

• The DFAR was called the Fault Address Register (FAR).

• The Watchpoint Fault Address Register (DBGWFAR) was implemented in CP15 c6 with <opc2> ==1.
From ARMv7, the DBGWFAR is only implemented as a CP14 debug register, see Watchpoint Fault
Address Register (DBGWFAR) on page C10-28.

Fault information is returned using the fault address registers and the fault status registers described in CP15
c5, Fault status registers on page B4-54. For details of how these registers are used see Fault Status and
Fault Address registers in a PMSA implementation on page B4-18.

c6, Data Fault Address Register (DFAR)

The Data Fault Address Register, DFAR, holds the faulting address that caused a synchronous Data Abort
exception.

Table B4-17 Fault address registers

Register name Description

Data Fault Address Register (DFAR) c6, Data Fault Address Register (DFAR)

Instruction Fault Address Register (IFAR) c6, Instruction Fault Address Register (IFAR) on page B4-58
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B4-57

Protected Memory System Architecture (PMSA)
The DFAR is:

• a 32-bit read/write register

• accessible only in privileged modes.

The format of the DFAR is:

For information about using the DFAR, including when the value in the DFAR is valid, see Fault Status and
Fault Address registers in a PMSA implementation on page B4-18.

A debugger can write to the DFAR to restore its value.

Accessing the DFAR

To access the DFAR you read or write the CP15 registers with <opc1> set to 0, <CRn> set to c6, <CRm> set to
c0, and <opc2> set to 0. For example:

MRC p15,0,<Rt>,c6,c0,0 ; Read CP15 Data Fault Address Register
MCR p15,0,<Rt>,c6,c0,0 ; Write CP15 Data Fault Address Register

c6, Instruction Fault Address Register (IFAR)

The Instruction Fault Address Register, IFAR, holds the address of the faulting access that caused a
synchronous Prefetch Abort exception.

The IFAR is:

• a 32-bit read/write register

• accessible only in privileged modes.

The format of the IFAR is:

For information about using the IFAR, including when the value in the IFAR is valid, see Fault Status and
Fault Address registers in a PMSA implementation on page B4-18.

A debugger can write to the IFAR to restore its value.

Accessing the IFAR

To access the IFAR you read or write the CP15 registers with <opc1> set to 0, <CRn> set to c6, <CRm> set to c0,
and <opc2> set to 2. For example:

MRC p15,0,<Rt>,c6,c0,2 ; Read CP15 Instruction Fault Address Register
MCR p15,0,<Rt>,c6,c0,2 ; Write CP15 Instruction Fault Address Register

31 0

Faulting address of synchronous Data Abort exception

31 0

Faulting address of synchronous Prefetch Abort exception
B4-58 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Protected Memory System Architecture (PMSA)
B4.6.24 CP15 c6, Memory region programming registers

When the PMSA is implemented, a number of registers in CP15 c6 are used to configure the MPU memory
regions. There are three registers for each memory region supported by the MPU:

• A Base Address Register, that defined the start address of the region in the memory map.

• A Region Size and Enable Register, that:

— has a single enable bit for the region

— defines the size of the region

— has a disable bit for each of the eight subregions in the region.

• A Region Access Control Register that defines the memory access attributes for the region.

The multiple copies of these registers are mapped onto three or six registers in CP15 c6, and another register
is used to select the current memory region. The mapping of the region registers onto the CP15 registers
depends on whether the MPU implements a unified memory map, or separate Instruction and Data memory
maps:

Separate Instruction and Data memory maps

The multiple copies of the registers that describe each memory region map onto six CP15
registers.

For the memory regions in the Instruction memory map:

• the multiple Region Base Address Registers map onto the Instruction Region Base
Address Register, IRBAR

• the multiple Region Size and Enable Registers map onto the Instruction Region Size
and Enable Register, IRSR

• the multiple Region Access Control Registers map onto the Instruction Region
Access Control Register, IRACR.

For the memory regions in the Data memory map:

• the multiple Region Base Address Registers map onto the Data Region Base Address
Register, DRBAR

• the multiple Region Size and Enable Registers map onto the Data Region Size and
Enable Register, DRSR

• the multiple Region Access Control Registers map onto the Data Region Access
Control Register, DRACR.

The value in the RGNR is the index value for both the instruction region and the data region
registers, see c6, MPU Region Number Register (RGNR) on page B4-66. The RGNR value
indicates the current memory region for both the instruction and the data memory maps.
However, a particular value might not be valid for both memory maps.

Unified memory maps

The multiple copies of the registers that describe each memory region map onto three CP15
registers:

• the multiple Region Base Address Registers map onto the Data Region Base Address
Register, DRBAR
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B4-59

Protected Memory System Architecture (PMSA)
• the multiple Region Size and Enable Registers map onto the Data Region Size and
Enable Register, DRSR

• the multiple Region Access Control Registers map onto the Data Region Access
Control Register, DRACR.

The IRBAR, IRSR, and IRACR are not implemented.

The value in the RGNR is the index value for the data region registers, see c6, MPU Region
Number Register (RGNR) on page B4-66. Its value indicates the current memory region in
the unified memory map.

The read-only MPUIR indicates:

• whether the MPU implements separate Instruction and Data address maps, or a Unified address map

• the number of Data or Unified regions the MPU supports

• if separate Instruction and Data address maps are implemented, the number of Instruction regions the
MPU supports.

For more information, see c0, MPU Type Register (MPUIR) on page B4-36.

Table B4-18 summarizes the CP15 registers that are used to program the MPU memory regions, and gives
references to the full descriptions of these registers.

c6, Data Region Base Address Register (DRBAR)

The Data Region Base Address Register, DRBAR, indicates the base address of the current memory region
in the data or unified address map. The base address must be aligned to the region size. The current memory
region is selected by the value held in the RGNR, see c6, MPU Region Number Register (RGNR) on
page B4-66.

Table B4-18 MPU Memory Region Programming Registers

Register name Description

Data or Unified Region Base Address c6, Data Region Base Address Register (DRBAR)

Instruction Region Base Addressa c6, Instruction Region Base Address Register (IRBAR) on page B4-61a

Data or Unified Region Size and Enable c6, Data Region Size and Enable Register (DRSR) on page B4-62

Instruction Region Size and Enablea c6, Instruction Region Size and Enable Register (IRSR) on page B4-63a

Data or Unified Region Access Control c6, Data Region Access Control Register (DRACR) on page B4-64

Instruction Region Access Controla c6, Instruction Region Access Control Register (IRACR) on page B4-65a

MPU Region Number c6, MPU Region Number Register (RGNR) on page B4-66

a. These registers are implemented only if the MPU implements separate Instruction and Data memory maps.
B4-60 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2010_Q2
Inserted Text
, otherwise behavior is UNPREDICTABLE

Protected Memory System Architecture (PMSA)
The DRBAR is:

• a 32-bit read/write register

• accessible only in privileged modes.

The format of the DRBAR is:

Region Base Address, bits [31:2]

The Base Address for the region, in the Data or Unified address map. The region referenced
is selected by the RGNR

Bit [1:0] UNK/SBZP.

The DRBAR can be used to find the size of the supported physical address space for the Data or Unified
memory map, see Finding the minimum supported region size on page B4-7.

Accessing the DRBAR

To access the DRBAR you read or write the CP15 registers with <opc1> set to 0, <CRn> set to c6, <CRm> set to
c1, and <opc2> set to 0. For example:

MRC p15,0,<Rt>,c6,c1,0 ; Read CP15 Data Region Base Address Register
MCR p15,0,<Rt>,c6,c1,0 ; Write CP15 Data Region Base Address Register

c6, Instruction Region Base Address Register (IRBAR)

The Instruction Region Base Address Register, IRBAR, indicates the base address of the current memory
region in the Instruction address map. The base address must be aligned to the region size. The current
memory region is selected by the value held in the RGNR, see c6, MPU Region Number Register (RGNR)
on page B4-66.

The IRBAR is:

• a 32-bit read/write register

• accessible only in privileged modes.

• implemented only when the PMSA implements separate instruction and data memory maps.

The format of the IRBAR is identical to the DRBAR, see c6, Data Region Base Address Register (DRBAR)
on page B4-60.

The IRBAR can be used to find the minimum region size supported by the implementation, see Finding the
minimum supported region size on page B4-7.

31 2 1 0

Region Base Address (0) (0)
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B4-61

ARM_2010_Q2
Inserted Text
, otherwise behavior is UNPREDICTABLE

Protected Memory System Architecture (PMSA)
Accessing the IRBAR

To access the IRBAR you read or write the CP15 registers with <opc1> set to 0, <CRn> set to c6, <CRm> set to
c1, and <opc2> set to 1. For example:

MRC p15,0,<Rt>,c6,c1,1 ; Read CP15 Instruction Region Base Address Register
MCR p15,0,<Rt>,c6,c1,1 ; Write CP15 Instruction Region Base Address Register

c6, Data Region Size and Enable Register (DRSR)

The Data Region Size and Enable Register, DRSR, indicates the size of the current memory region in the
data or unified address map, and can be used to enable or disable:

• the entire region

• each of the eight subregions, if the region is enabled.

The current memory region is selected by the value held in the RGNR see c6, MPU Region Number Register
(RGNR) on page B4-66.

The DRSR:

• is a 32-bit read/write register

• is accessible only in privileged modes.

• has a defined reset value of 0.

The format of the DRSR is:

Bit [31:16,7:6]

UNK/SBZP.

SnD, bit [n+8], for values of n from 0 to 7

Subregion disable bit for region n. Indicates whether the subregion is part of this region:

0 Subregion is part of this region

1 Subregion disabled. The subregion is not part of this region.

The region is divided into exactly eight equal sized subregions. Subregion 0 is the subregion
at the least significant address. For more information, see Subregions on page B4-3.

If the size of this region, indicated by the RSize field, is less than 256 bytes then the SnD
fields are not defined, and register bits [15:8] are UNK/SBZP.

������
�
��� �� � � � 	���
 �� ��

.�/ $��E� (�
�� �	
 �

.�/

��"
��"
��"
��"

��"
�	"
�
"
��"
B4-62 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Protected Memory System Architecture (PMSA)
RSize, bits [5:1]

Region Size field. Indicates the size of the current memory region:

• A value of 0 is not permitted, this value is reserved and UNPREDICTABLE.

• If N is the value in this field, the region size is 2N+1 bytes.

En, bit [0] Enable bit for the region:

0 Region is disabled

1 Region is enabled.

Because this register resets to zero, all memory regions are disabled on reset.

All memory regions must be enabled before they are used.

The minimum region size supported is IMPLEMENTATION DEFINED, but if the memory system
implementation includes a cache, ARM strongly recommends that the minimum region size is a multiple of
the cache line length. This prevents cache attributes changing mid-way through a cache line.

Behavior is UNPREDICTABLE if you:

• write a region size that is outside the range supported by the implementation

• access this register when the RGNR does not point to a valid region in the MPU Data or Unified
address map.

Accessing the DRSR

To access the DRSR you read or write the CP15 registers with <opc1> set to 0, <CRn> set to c6, <CRm> set to
c1, and <opc2> set to 2. For example:

MRC p15,0,<Rt>,c6,c1,2 ; Read CP15 Data Region Size and Enable Register
MCR p15,0,<Rt>,c6,c1,2 ; Write CP15 Data Region Size and Enable Register

c6, Instruction Region Size and Enable Register (IRSR)

The Instruction Region Size and Enable Register, IRSR, indicates the size of the current memory region in
the instruction address map, and to enable or disable:

• the entire region

• each of the eight subregions, if the region is enabled.

The current memory region is selected by the value held in the RGNR, see c6, MPU Region Number
Register (RGNR) on page B4-66.

The IRSR:

• is a 32-bit read/write register

• is accessible only in privileged modes

• has a defined reset value of 0.

• is implemented only when the PMSA implements separate instruction and data memory maps.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B4-63

Protected Memory System Architecture (PMSA)
The format of the IRSR is identical to the DRSR, see c6, Data Region Size and Enable Register (DRSR) on
page B4-62.

All memory regions must be enabled before they are used.

The minimum region size supported is IMPLEMENTATION DEFINED, but if the memory system
implementation includes an instruction cache, ARM strongly recommends that the minimum region size is
a multiple of the instruction cache line length. This prevents cache attributes changing mid-way through a
cache line.

Behavior is UNPREDICTABLE if you:

• write a region size that is outside the range supported by the implementation

• access this register when the RGNR does not point to a valid region in the MPU instruction address
map.

Accessing the IRSR

To access the IRSR you read or write the CP15 registers with <opc1> set to 0, <CRn> set to c6, <CRm> set to c1,
and <opc2> set to 3. For example:

MRC p15,0,<Rt>,c6,c1,3 ; Read CP15 Instruction Region Size and Enable Register
MCR p15,0,<Rt>,c6,c1,3 ; Write CP15 Instruction Region Size and Enable Register

c6, Data Region Access Control Register (DRACR)

The Data Region Access Control Register, DRACR, defines the memory attributes for the current memory
region in the data or unified address map.

The current memory region is selected by the value held in the RGNR, see c6, MPU Region Number
Register (RGNR) on page B4-66.

The DRACR is:

• a 32-bit read/write register

• accessible only in privileged modes.

The format of the DRACR is:

Bit [31:13,11,7:6]

UNK/SBZP.

XN, bit [12] Execute Never bit. Indicates whether instructions can be fetched from this region:

0 region can contain executable code

1 region is an Execute never region, and any attempt to execute an instruction
from the region results in a Permission fault.

31 13 12 11 10 8 7 6 5 3 2 1 0

UNK/SBZP
X
N

(0) AP [2:0] (0) (0)
TEX
[2:0]

S C B
B4-64 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Protected Memory System Architecture (PMSA)
If the MPU implements separate Instruction and Data memory maps this bit is UNK/SBZ

For more information, see The Execute Never (XN) attribute and instruction prefetching on
page B4-10.

AP[2:0], bits [10:8]

Access Permissions field. Indicates the read and write access permissions for unprivileged
and privileged accesses to the memory region.

For more information, see Access permissions on page B4-9.

TEX[2:0], C, B, bits [5:3,1:0]

Memory access attributes. For more information, see C, B, and TEX[2:0] encodings on
page B4-11.

S, bit [2] Shareable bit, for Normal memory regions:

0 If region is Normal memory, memory is Non-shareable

1 If region is Normal memory, memory is Shareable.

The value of this bit is ignored if the region is not Normal memory.

If you access this register when the RGNR does not point to a valid region in the MPU data or unified
address map, the result is UNPREDICTABLE.

Accessing the DRACR

To access the DRACR you read or write the CP15 registers with <opc1> set to 0, <CRn> set to c6, <CRm> set to
c1, and <opc2> set to 4. For example:

MRC p15,0,<Rt>,c6,c1,4 ; Read CP15 Data Region Access Control Register
MCR p15,0,<Rt>,c6,c1,4 ; Write CP15 Data Region Access Control Register

c6, Instruction Region Access Control Register (IRACR)

The Instruction Region Access Control Register, IRACR, defines the memory attributes for the current
memory region in the instruction address map, when the MPU implements separate data and instruction
address maps.

The current memory region is selected by the value held in the RGNR, see c6, MPU Region Number
Register (RGNR) on page B4-66.

The IRACR is:

• a 32-bit read/write register

• accessible only in privileged modes

• implemented only when the PMSA implements separate instruction and data memory maps.

The format of the IRACR is identical to the DRACR, see c6, Data Region Access Control Register (DRACR)
on page B4-64.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B4-65

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Inserted Text
UNK/SBZP.

Protected Memory System Architecture (PMSA)
Note
 The XN bit, bit [12], is always valid in the IRACR.

If you access this register when the RGNR does not point to a valid region in the MPU instruction address
map, the result is UNPREDICTABLE.

Accessing the IRACR

To access the IRACR you read or write the CP15 registers with <opc1> set to 0, <CRn> set to c6, <CRm> set to
c1, and <opc2> set to 5. For example:

MRC p15,0,<Rt>,c6,c1,5 ; Read CP15 Instruction Region Access Control Register
MCR p15,0,<Rt>,c6,c1,5 ; Write CP15 Instruction Region Access Control Register

c6, MPU Region Number Register (RGNR)

The MPU Region Number Register, RGNR, defines the current memory region in:

• the MPU data or unified address map

• the MPU instruction address map, if the MPU implements separate data and instruction address
maps.

The value in the RGNR identifies the memory region description accessed by the Region Base Address, Size
and Enable, and Access Control Registers.

Note
 There is only a single MPU Region Number Register. When the MPU implements separate data and
instruction address maps, the current region number is always identical for both address maps. This might
mean that the current region number is valid for one address map but invalid for the other map.

The RGNR is:

• a 32-bit read/write register

• accessible only in privileged modes.

The format of the RGNR is:

Bit [31:N] UNK/SBZP.

Region, bits [N-1:0]

The number of the current region in the Data or Unified address map, and in the Instruction
address map if the MPU implements separate Data and Instruction address maps.

The value of N is Log2(Number of regions supported) rounded up to an integer.

31 N N-1 0

UNK/SBZP Region
B4-66 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Protected Memory System Architecture (PMSA)
Memory region numbering starts at 0 and goes up to one less than the number of regions
supported.

Writing a value to this register that is greater than or equal to the number of memory regions supported has
UNPREDICTABLE results.

In the context of the RGNR description, when the MPU implements separate Data and Instruction address
maps the Number of memory regions supported is the greater of:

• number of Data memory regions supported

• number of Instruction memory regions supported.

Accessing the RGNR

To access the RGNR you read or write the CP15 registers with <opc1> set to 0, <CRn> set to c6, <CRm> set to
c2, and <opc2> set to 0. For example:

MRC p15,0,<Rt>,c6,c2,0 ; Read CP15 MPU Region Number Register
MCR p15,0,<Rt>,c6,c2,0 ; Write CP15 MPU Region Number Register
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B4-67

Protected Memory System Architecture (PMSA)
B4.6.25 CP15 c7, Cache maintenance and other functions

The CP15 c7 registers are used for cache maintenance operations, and also provide barrier operations.
Figure B4-8 shows the CP15 c7 registers.

Figure B4-8 CP15 c7 registers in a PMSA implementation

All CP15 c7 encodings not shown in Figure B4-8 are UNPREDICTABLE, see Unallocated CP15 encodings on
page B4-27.

The CP15 c7 operations are described in:

• CP15 c7, Cache and branch predictor maintenance functions

• CP15 c7, Miscellaneous functions on page B4-72.

B4.6.26 CP15 c7, Cache and branch predictor maintenance functions

CP15 c7 provides a number of functions. This section describes only the CP15 c7 cache and branch
predictor maintenance operations. Branch predictor operations are included in this section, because they
operate in a similar way to the cache maintenance operations.

Note
 ARMv7 introduces significant changes in the CP15 c7 operations. Most of these changes are because, from
ARMv7, the architecture covers multiple levels of cache. This section only describes the ARMv7
requirements for these operations. For details of these operations in previous versions of the architecture see:

• c7, Cache operations on page AppxG-38 for ARMv6

• c7, Cache operations on page AppxH-49 for ARMv4 and ARMv5.

<��)��,�'�&��������%���&'��*�	

��� 4�6�5
4�6	5

�<<!��"6����)��,�'�&��������%���&'������

��

#"�"��"���
����
�"�����

4�6�5 <��)��,�'�&��������%���&'��*
<��)��,�'�&��������%���&'��*

$�%&��'(������!����������*����+"�����'"���
����
�"����
9����)�%���'�&���,�'�&��������%���&'��*

4�6�5
�

4�6
5

'��	��
���)����
�����
������
����	
7���PQ�'&�7�������� Q�'&������

��� 4�6�5 <��)��,�'�&��������%���&'��*
��� � ?=�

<��)��,�'�&��������%���&'��*�#�� 4�6�5

#����&��(�&)��!$�&'%����**'�.�:+&��*'��*

<7� �%�� <7, �%��
�
 � �� ?=��
B4-68 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Replacement Text
UNPREDICTABLE

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Replacement Text
UNPREDICTABLE

Protected Memory System Architecture (PMSA)
Figure B4-9 shows the CP15 c7 cache and branch predictor maintenance operations.

Figure B4-9 CP15 c7 Cache and branch predictor maintenance operations

The CP15 c7 cache and branch predictor maintenance operations are all write-only operations that can be
executed only in privileged modes. They are listed in Table B4-19.

For more information about the terms used in this section see Terms used in describing cache operations on
page B2-10. The Multiprocessing Extensions changes the set of caches affected by these operations, see
Multiprocessor effects on cache maintenance operations on page B2-23.

In Table B4-19, the Rt data column specifies what data is required in the register Rt specified by the MCR
instruction used to perform the operation. For more information about the possible data formats see Data
formats for the cache and branch predictor operations on page B4-70.

�
 �

 < �33"6� ����'��&������'�*&�$�&'������)�*�&����"

�< !��<6� ����'��&����&�O�����)���'���-��!���&����<�� �

�
�

 < !��"6� ����'��&��'�*&�$�&'������)�*�-��!���&����"
9� �336� ����'��&����&'���-����)�%���'�&��������
9� !��6� ����'��&��!���(��,�-����)�%���'�&��������

� �< �Q6� ����'��&����&�O����)���'���-��*�&P8��
��� � �<<!��<6�<�������&�O����)���'���-��!���&����<

�<<�Q6�<�������&�O����)���'���-��*�&P8���
����

��� �

��";���'�&��(�"�'('��&'��
��<;���'�&��(�<�)������

�<< !��<6�<���������'����'��&����&�O����)���'���-��!���&����<
�<< �Q6�<���������'����'��&����&�O����)���'���-��*�&P8���

�<<!��"6�<�������&�O����)���'���-��!���&����"

7�������� 7���PQ�'&� O���&�����$�'('��

<7� �%�� <7, �%��
 < �33" �6� ����'��&������'�*&�$�&'������)�*�&����"� ������)����-���#
9� �33 �6� ����'��&����&'���-����)�%���'�&��������� ������)����-���#

#����&��(�&)��!$�&'%����**'�.�:+&��*'��*

�� �
�

�	 �

Q�'&������

Table B4-19 CP15 c7 cache and branch predictor maintenance operations

CRm opc2 Mnemonic Functiona Rt data

c1 0 ICIALLUIS Invalidate all instruction caches to PoU Inner Shareable. Also
flushes branch target cache.b

Ignored

c1 1 BPIALLIS Invalidate entire branch predictor array Inner Shareable. Ignored

c5 0 ICIALLU Invalidate all instruction caches to PoU. Also flushes branch target
cache.c

Ignored

c5 1 ICIMVAU Invalidate instruction cache line by address to PoU.b, d Address

c5 6 BPIALL Invalidate entire branch predictor array. Ignored
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B4-69

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
6

ARM_2008_Q4
Inserted Text

See The interaction of cache lockdown with cache maintenance on page B2-18 [PDF page 1252] for information about the interaction of these maintenance operations with cache lockdown.

Protected Memory System Architecture (PMSA)
Data formats for the cache and branch predictor operations

Table B4-19 on page B4-69 shows three possibilities for the data in the register Rt specified by the MCR
instruction. These are described in the following subsections:

• Ignored

• Address

• Set/way on page B4-71

Ignored

The value in the register specified by the MCR instruction is ignored. You do not have to write a value to the
register before issuing the MCR instruction.

Address

In general descriptions of the maintenance operations, operations that require a memory address are
described as operating by MVA. For more information, see Terms used in describing cache operations on
page B2-10. In a PMSA implementation, these operations require the physical address in the memory map.
When the data is stated to be an address, it does not have to be cache line aligned.

c5 7 BPIMVA Invalidate address from branch predictor array in the inner
shareable domain.d

Address

c6 1 DCIMVAC Invalidate data or unified cache line by address to PoU.d Address

c6 2 DCISW Invalidate data or unified cache line by set/way. Set/way

c10 1 DCCMVAC Clean data or unified cache line by address to PoC.d Address

c10 2 DCCSW Clean data or unified cache line by set/way. Set/way

c11 1 DCCMVAU Clean data or unified cache line by address to PoU.d Address

c14 1 DCCIMVAC Clean and invalidate data or unified cache line by address to PoC.d Address

c14 2 DCCISW Clean and invalidate data or unified cache line by set/way. Set/way

a. Address, point of coherency (PoC) and point of unification (PoU) are described in Terms used in describing cache
operations on page B2-10.

b. Only applies to separate instruction caches, does not apply to unified caches.
c. Only applies to separate instruction caches, does not apply to unified caches.
d. In general descriptions of the cache operations, these functions are described as operating by MVA

(Modified Virtual Address). In a PMSA implementation the MVA and the PA have the same value, and so
the functions operate using a physical address in the memory map.

Table B4-19 CP15 c7 cache and branch predictor maintenance operations (continued)

CRm opc2 Mnemonic Functiona Rt data
B4-70 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2010_Q3
Cross-Out

ARM_2010_Q3
Replacement Text
C

Protected Memory System Architecture (PMSA)
Set/way

For an operation by set/way, the data identifies the cache line that the operation is to be applied to by
specifying:

• the cache set the line belongs to

• the way number of the line in the set

• the cache level.

The format of the register data for a set/way operation is:

Where:

A = Log2(ASSOCIATIVITY)

B = (L + S)

L = Log2(LINELEN)

S = Log2(NSETS)

ASSOCIATIVITY, LINELEN (Line Length) and NSETS (number of sets) have their usual
meanings and are the values for the cache level being operated on.

The values of A and S are rounded up to the next integer.

Level ((Cache level to operate on) -1)

For example, this field is 0 for operations on L 1 cache, or 1 for operations on L 2 cache.

Set The number of the set to operate on.

Way The number of the way to operate on.

Note
 • If L = 4 then there is no SBZ field between the set and level fields in the register.

• If A = 0 there is no way field in the register, and register bits [31:B] are SBZ.

• If the level, set or way field in the register is larger than the size implemented in the cache then the
effect of the operation is UNPREDICTABLE.

Accessing the CP15 c7 cache maintenance operations

To perform one of the cache maintenance operations you write the CP15 registers with <opc1> set to 0, <CRn>
set to c7, and <CRm> and <opc2> set to the values shown in Table B4-19 on page B4-69.

That is:

MCR p15,0,<Rt>,c7,<CRm>,<opc2>

For example:

MCR p15,0,<Rt>,c7,c5,0 ; Invalidate all instruction caches to point of unification
MCR p15,0,<Rt>,c7,c10,2 ; Clean data or unified cache line by set/way

31 32-A 31-A B B-1 L L-1 4 3 1 0

Way SBZ Set SBZ Level 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B4-71

ARM_2010_Q2
Inserted Text
, in bytes

Protected Memory System Architecture (PMSA)
B4.6.27 CP15 c7, Miscellaneous functions

CP15 c7 provides a number of functions, summarized in Figure B4-8 on page B4-68. This section describes
only the CP15 c7 miscellaneous operations.

Figure B4-10 shows the CP15 c7 miscellaneous operations. It does not show the other CP15 c7 operations.

Figure B4-10 CP15 c7 Miscellaneous operations

The CP15 c7 miscellaneous operations are described in:

• CP15 c7, Data and Instruction Barrier operations

• CP15 c7, No Operation (NOP) on page B4-73.

CP15 c7, Data and Instruction Barrier operations

ARMv6 includes two CP15 c7 operations to perform Data Barrier operations, and another operation to
perform an Instruction Barrier operation. In ARMv7:

• The ARM and Thumb instruction sets include instructions to perform the barrier operations, that can
be executed in unprivileged and privileged modes, see Memory barriers on page A3-47.

• The CP15 c7 operations are defined as write-only operations, that can be executed in unprivileged
and privileged modes, but using these operations is deprecated. The three operations are described in:

— Instruction Synchronization Barrier operation on page B4-73

— Data Synchronization Barrier operation on page B4-73

— Data Memory Barrier operation on page B4-73.

The value in the register Rt specified by the MCR instruction used to perform one of these operations
is ignored. You do not have to write a value to the register before issuing the MCR instruction.

In ARMv7 using these CP15 c7 operations is deprecated. Use the ISB, DSB, and DMB instructions
instead.

Note
 • In ARMv6 and earlier documentation, the Instruction Synchronization Barrier operation is referred

to as a Prefetch Flush.

• In versions of the ARM architecture before ARMv6 the Data Synchronization Barrier operation is
described as a Data Write Barrier (DWB).

�
 � ?=�6�8�*����	�������	�����	�1<��	Q� 2�'���7!��

$�%&#�'(�#"�"�����*����+"�����'"���
����
�"����
$�%&#�'(�#"�"��
�����'"���
����
�"����

$�%&��'(������!����������*����+"�����'"���
����
�"����

<7� �%�� <7, �%��
�� �

��� �
	

�	 �

'��	��
���)����
�����
������
����	
7���PQ�'&�7�������� Q�'&������

��� � ?=�6�8�*����(�&�)�'�*&�$�&'���-��!���'���7!��
B4-72 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Replacement Text
UNPREDICTABLE. NOP on some ARMv7 implementations.

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Replacement Text
UNPREDICTABLE. NOP on some ARMv7 implementations.

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Replacement Text
Retired operations

Protected Memory System Architecture (PMSA)
Instruction Synchronization Barrier operation

In ARMv7, the ISB instruction is used to perform an Instruction Synchronization Barrier, see ISB on
page A8-102.

The deprecated CP15 c7 encoding for an Instruction Synchronization Barrier is <opc1> set to 0, <CRn> set to
c7, <CRm> set to c5, and <opc2> set to 4.

Data Synchronization Barrier operation

In ARMv7, the DSB instruction is used to perform a Data Synchronization Barrier, see DSB on page A8-92.

The deprecated CP15 c7 encoding for a Data Synchronization Barrier is <opc1> set to 0, <CRn> set to c7, <CRm>
set to c10, and <opc2> set to 4. This operation performs the full system barrier performed by the DSB
instruction.

Data Memory Barrier operation

In ARMv7, the DMB instruction is used to perform a Data Memory Barrier, see DMB on page A8-90.

The deprecated CP15 c7 encoding for a Data Memory Barrier is <opc1> set to 0, <CRn> set to c7, <CRm> set to
c10, and <opc2> set to 5. This operation performs the full system barrier performed by the DMB instruction.

CP15 c7, No Operation (NOP)

ARMv6 includes two CP15 c7 operations that are not supported in ARMv7, with encodings that become
No Operation (NOP) in ARMv7. These are:

• The Wait For Interrupt (CP15WFI) operation. In ARMv7 this operation is performed by the WFI
instruction, that is available in the ARM and Thumb instruction sets. For more information, see WFI
on page A8-810.

• The prefetch instruction by MVA operation. In ARMv7 this operation is replaced by the PLI
instruction, that is available in the ARM and Thumb instruction sets. For more information, see PLI
(immediate, literal) on page A8-242, and PLI (register) on page A8-244.

In ARMv7, the CP15 c7 encodings that were used for these operations must be valid write-only operations
that perform a NOP. These encodings are:

• for the ARMv6 CP15WFI operation:

— <opc1> set to 0, <CRn> set to c7, <CRm> set to c0, and <opc2> set to 4

• for the ARMv6 prefetch instruction by MVA operation:

— <opc1> set to 0, <CRn> set to c7, <CRm> set to c13, and <opc2> set to 1.

B4.6.28 CP15 c8, Not used on a PMSA implementation

CP15 c8 is not used on an ARMv7-R implementation, see Unallocated CP15 encodings on page B4-27.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B4-73

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Inserted Text
Retired operations

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Replacement Text
UNPREDICTABLE

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Replacement Text
are UNPREDICTABLE. Note: In some implementation they are write-only operations that perform a NOP.

ARM_2011_Q2
Sticky Note
Architecturally, these operations are UNPREDICTABLE, as indicated by the insertion in this line.

Protected Memory System Architecture (PMSA)
B4.6.29 CP15 c9, Cache and TCM lockdown registers and performance monitors

Some CP15 c9 register encodings are reserved for IMPLEMENTATION DEFINED memory system functions, in
particular:

• cache control, including lockdown

• TCM control, including lockdown

• branch predictor control.

Additional CP15 c9 encodings are reserved for performance monitors. These encodings fall into two groups:

• the optional performance monitors described in Chapter C9 Performance Monitors

• additional IMPLEMENTATION DEFINED performance monitors.

The reserved encodings permit implementations that are compatible with previous versions of the ARM
architecture, in particular with the ARMv6 requirements. Figure B4-11 shows the permitted CP15 c9
register encodings.

Figure B4-11 Permitted CP15 c9 register encodings

All CP15 c9 encodings not shown in Figure B4-11 are UNPREDICTABLE, see Unallocated CP15 encodings
on page B4-27.

In ARMv6, CP15 c9 provides cache lockdown functions. With the ARMv7 abstraction of the hierarchical
memory model, for CP15 c9:

• All encodings with CRm = {c0-c2, c5-c8} are reserved for IMPLEMENTATION DEFINED cache, branch
predictor and TCM operations.

This reservation enables the implementation of a scheme that is backwards compatible with ARMv6.
For details of the ARMv6 implementation see c9, Cache lockdown support on page AppxG-45.

• All encodings with CRm = {c12-c14} are reserved for the optional performance monitors that are
defined in Chapter C9 Performance Monitors.

• All encodings with CRm = c15 are reserved for IMPLEMENTATION DEFINED performance monitoring
features.

B4.6.30 CP15 c10, Not used on a PMSA implementation

CP15 c10 is not used on an ARMv7-R implementation, see Unallocated CP15 encodings on page B4-27.

7�*������(���9����)�����'�&��6�<��)������@<!��%���&'��*�� 4��
5 4�����5 4��
5
7�*������(���9����)�����'�&��6�<��)������@<!��%���&'��*4�	��
5 4��
5
7�*������(����7!�����,,���������(��,�����!��'&��*

��	 4��
5

<7� �%�� <7, �%��
#
#

7�*������(��� !�3:!:?@�@ =?��:� ?:�����(��,�����!��'&��*
4�������5 4��
5

7���PQ�'&�7�������� Q�'&������

����**���%���*����&)���%���&'��
B4-74 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Protected Memory System Architecture (PMSA)
B4.6.31 CP15 c11, Reserved for TCM DMA registers

Some CP15 c11 register encodings are reserved for IMPLEMENTATION DEFINED DMA operations to and
from TCM, see Figure B4-12.

Figure B4-12 Permitted CP15 c11 register encodings

All CP15 c11 encodings not shown in Figure B4-12 are UNPREDICTABLE, see Unallocated CP15 encodings
on page B4-27.

B4.6.32 CP15 c12, Not used on a PMSA implementation

CP15 c12 is not used on an ARMv7-R implementation, see Unallocated CP15 encodings on page B4-27.

B4.6.33 CP15 c13, Context and Thread ID registers

The CP15 c13 registers are used for:

• a Context ID register

• three software Thread ID registers.

Figure B4-13 shows the CP15 c13 registers:

Figure B4-13 CP15 c13 registers in a PMSA implementation

All CP15 c13 encodings not shown in Figure B4-13 are UNPREDICTABLE, see Unallocated CP15 encodings
on page B4-27.

The CP15 c13 registers are described in:

• c13, Context ID Register (CONTEXTIDR) on page B4-76

• CP15 c13 Software Thread ID registers on page B4-77.

7�*������(����!���%���&'��*�(���@<!�����**
7�*������(����!���%���&'��*�(���@<!�����**

��� 4��
5 4����
5 4��
5
��	 4��
5

7���PQ�'&�7�������� Q�'&������

<7� �%�� <7, �%��

����**���%���*����&)���%���&'��#

#
#

��� � �� �
<7� �%�� <7, �%��

�
�

<=?@:G@ �76�<��&�+&� ��7�.'*&��
�

7���PQ�'&�7�������� Q�'&������

��(&8����@)����� �
7�.'*&��*@� �7"7=6�"*���7����=���

@� �7�7Q6���'�'��.���=���

@� �7"7Q6�"*���7���PQ�'&�
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B4-75

Protected Memory System Architecture (PMSA)
B4.6.34 c13, Context ID Register (CONTEXTIDR)

The Context ID Register, CONTEXTIDR, identifies the current context by means of a Context Identifier
(Context ID).

Note
 Previously, on PMSA implementations, this Context ID has been described as a Process Identifier
(PROCID), and this CP15 c13 register has been called the Process ID Register. The new naming makes the
register naming consistent for PMSA and VMSA implementations.

The whole of this register is used by:

• the debug logic, for Linked and Unlinked Context ID matching, see Breakpoint debug events on
page C3-5 and Watchpoint debug events on page C3-15.

• the trace logic, to identify the current process.

The CONTEXTIDR is:

• a 32-bit read/write register

• accessible only in privileged modes.

The format of the CONTEXTIDR is:

ContextID, bits [31:0]

Context Identifier. This field must be programmed with a unique context identifier value that
identifies the current process. It is used by the trace logic and the debug logic to identify the
process that is running currently.

Accessing the CONTEXTIDR

To access the CONTEXTIDR you read or write the CP15 registers with <opc1> set to 0, <CRn> set to c13,
<CRm> set to c0, and <opc2> set to 1. For example:

MRC p15,0,<Rt>,c13,c0,1 ; Read CP15 Context ID Register
MCR p15,0,<Rt>,c13,c0,1 ; Write CP15 Context ID Register

31 0

ContextID
B4-76 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Protected Memory System Architecture (PMSA)
B4.6.35 CP15 c13 Software Thread ID registers

The Software Thread ID registers provide locations where software can store thread identifying information,
for OS management purposes. These registers are never updated by the hardware.

The Software Thread ID registers are:

• three 32-bit register read/write registers:

— User Read/Write Thread ID Register, TPIDRURW

— User Read-only Thread ID Register, TPIDRURO

— Privileged Only Thread ID Register, TPIDRPRW.

• accessible in different modes:

— the User Read/Write Thread ID Register is read/write in unprivileged and privileged modes

— the User Read-only Thread ID Register is read-only in User mode, and read/write in privileged
modes

— the Privileged Only Thread ID Register is only accessible in privileged modes, and is
read/write

• introduced in ARMv7.

Accessing the Software Thread ID registers

To access the Software Thread ID registers you read or write the CP15 registers with <opc1> set to 0, <CRn>
set to c13, <CRm> set to c0, and <opc2> set to:

• 2 for the User Read/Write Thread ID Register, TPIDRURW

• 3 for the User Read-only Thread ID Register, TPIDRURO

• 4 for the Privileged Only Thread ID Register, TPIDRPRW.

For example:

MRC p15, 0, <Rt>, c13, c0, 2 ; Read CP15 User Read/Write Thread ID Register
MCR p15, 0, <Rt>, c13, c0, 2 ; Write CP15 User Read/Write Thread ID Register
MRC p15, 0, <Rt>, c13, c0, 3 ; Read CP15 User Read-only Thread ID Register
MCR p15, 0, <Rt>, c13, c0, 3 ; Write CP15 User Read-only Thread ID Register
MRC p15, 0, <Rt>, c13, c0, 4 ; Read CP15 Privileged Only Thread ID Register
MCR p15, 0, <Rt>, c13, c0, 4 ; Write CP15 Privileged Only Thread ID Register

B4.6.36 CP15 c14, Not used

CP15 c14 is not used on any ARMv7 implementation, see Unallocated CP15 encodings on page B4-27.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B4-77

Protected Memory System Architecture (PMSA)
B4.6.37 CP15 c15, IMPLEMENTATION DEFINED registers

CP15 c15 is reserved for IMPLEMENTATION DEFINED purposes. ARMv7 does not impose any restrictions on
the use of the CP15 c15 encodings. The documentation of the ARMv7 implementation must describe fully
any registers implemented in CP15 c15. Normally, for processor implementations by ARM, this information
is included in the Technical Reference Manual for the processor.

Typically, CP15 c15 is used to provide test features, and any required configuration options that are not
covered by this manual.
B4-78 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Protected Memory System Architecture (PMSA)
B4.7 Pseudocode details of PMSA memory system operations

This section contains pseudocode describing PMSA-specific memory operations. The following
subsections describe the pseudocode functions:

• Alignment fault

• Address translation

• Default memory map attributes on page B4-81.

See also the pseudocode for general memory system operations in Pseudocode details of general memory
system operations on page B2-29.

B4.7.1 Alignment fault

The following pseudocode describes the Alignment fault in a PMSA implementation:

// AlignmentFaultP()
// =================

AlignmentFaultP(bits(32) address, boolean iswrite)

 DataAbort(address, bits(4) UNKNOWN, boolean UNKNOWN, iswrite, DAbort_Alignment);

B4.7.2 Address translation

The following pseudocode describes address translation in a PMSA implementation:

// TranslateAddressP()
// ===================

AddressDescriptor TranslateAddressP(bits(32) va, boolean ispriv, boolean iswrite)

 AddressDescriptor result;
 Permissions perms;

 // PMSA only does flat mapping and security domain is effectively IMPLEMENTATION DEFINED.
 result.paddress.physicaladdress = va;
 result.paddress.physicaladdressext = ‘00000000’;
 IMPLEMENTATION_DEFINED setting of result.paddress.NS;

 if SCTLR.M == 0 then // MPU is disabled

 result.memAttrs = DefaultMemoryAttributes(va);

 else // MPU is enabled

 // Scan through regions looking for matching ones. If found, the last
 // one matched is used.
 region_found = FALSE;

 for r=0 to MPUIR.DRegion-1
 size_enable = DRSR[r];
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B4-79

Protected Memory System Architecture (PMSA)
 base_address = DRBAR[r];
 access_control = DRACR[r];

 if size_enable<0> == ‘1’ then // Region is enabled
 lsbit = UInt(size_enable<5:1>) + 1;
 if lsbit < 2 then UNPREDICTABLE;

 if lsbit == 32 || va<31:lsbit> == base_address<31:lsbit> then
 if lsbit >= 8 then // can have subregions
 subregion = UInt(va<lsbit-1:lsbit-3>);
 hit = (size_enable<subregion+8> == ‘0’);
 else
 hit = TRUE;

 if hit then
 texcb = access_control<5:3,1:0>;
 S = access_control<2>;
 perms.ap = access_control<10:8>;
 perms.xn = access_control<12>;
 region_found = TRUE;

 // Generate the memory attributes, and also the permissions if no region found.
 if region_found then
 result.memattrs = DefaultTEXDecode(texcb, S);
 else
 if SCTLR.BR == ‘0’ || NOT(ispriv) then
 DataAbort(address, bits(4) UNKNOWN, boolean UNKNOWN, iswrite, DAbort_Background);
 else
 result.memattrs = DefaultMemoryAttributes(va);
 perms.ap = ‘011’;
 perms.xn = if va<31:28> == ‘1111’ then NOT(SCTLR.V) else va<31>;

 // Check the permissions.
 CheckPermission(perms, VA, boolean UNKNOWN, bits(4) UNKNOWN, iswrite, ispriv);

 return result;
B4-80 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2010_Q2
Inserted Text

 if lsbit > 2 && IsZero(base_address<lsbit-1:2>) == FALSE then UNPREDICTABLE

Protected Memory System Architecture (PMSA)
B4.7.3 Default memory map attributes

The following pseudocode describes the default memory map attributes in a PMSA implementation:

// DefaultMemoryAttributes()
// =========================

MemoryAttributes DefaultMemoryAttributes(bits(32) va)

 MemoryAttributes memattrs;

 case va<31:30> of
 when ‘00’
 if SCTLR.C == ‘0’ then
 memattrs.type = MemType_Normal;
 memattrs.innerattrs = ‘00’; // Non-cacheable
 memattrs.shareable = TRUE;
 else
 memattrs.type = MemType_Normal;
 memattrs.innerattrs = ‘01’; // Write-back write-allocate cacheable
 memattrs.shareable = FALSE;
 when ‘01’
 if SCTLR.C == ‘0’ || va<29> == ‘1’ then
 memattrs.type = MemType_Normal;
 memattrs.innerattrs = ‘00’; // Non-cacheable
 memattrs.shareable = TRUE;
 else
 memattrs.type = MemType_Normal;
 memattrs.innerattrs = ‘10’; // Write-through cacheable
 memattrs.shareable = FALSE;
 when ‘10’
 memattrs.type = MemType_Device;
 memattrs.innerattrs = ‘00’; // Non-cacheable
 memattrs.shareable = (va<29> == ‘1’);
 when ‘11’
 memattrs.type = MemType_StronglyOrdered;
 memattrs.innerattrs = ‘00’; // Non-cacheable
 memattrs.shareable = TRUE;

 // Outer attributes are the same as the inner attributes in all cases.
 memattrs.outerattrs = memattrs.innerattrs;
 memattrs.outershareable = memattrs.shareable;

 return memattrs;
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B4-81

Protected Memory System Architecture (PMSA)
B4-82 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Chapter B5
The CPUID Identification Scheme

This chapter describes the CPUID scheme introduced as a requirement in ARMv7. This scheme provides
registers that identify the architecture version and many features of the processor implementation. This
chapter also describes the registers that identify the implemented Advanced SIMD and VFP features, if any.

This chapter contains the following sections:

• Introduction to the CPUID scheme on page B5-2

• The CPUID registers on page B5-4

• Advanced SIMD and VFP feature identification registers on page B5-34.

Note
 The other chapters of this manual describe the permitted combinations of architectural features for the
ARMv7-A and ARMv7-R architecture profiles, and some of the appendices give this information for
previous versions of the architecture. Typically, permitted features are associated with a named architecture
version, or version and profile, such as ARMv7-A or ARMv6.

The CPUID scheme is a mechanism for describing these permitted combinations in a way that enables
software to determine the capabilities of the hardware it is running on.

The CPUID scheme does not extend the permitted combinations of architectural features beyond those
associated with named architecture versions and profiles. The fact that the CPUID scheme can describe
other combinations does not imply that those combinations are permitted ARM architecture variants.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B5-1

The CPUID Identification Scheme
B5.1 Introduction to the CPUID scheme

In ARM architecture versions before ARMv7, the architecture version is indicated by the Architecture field
in the Main ID Register, see:

• c0, Main ID Register (MIDR) on page B3-81, for a VMSA implementation

• c0, Main ID Register (MIDR) on page B4-32, for a PMSA implementation.

From ARMv7, the architecture implements an extended processor identification scheme, using a number of
registers in CP15 c0. ARMv7 requires the use of this scheme, and use of the scheme is indicated by a value
of 0xF in the Architecture field of the Main ID Register.

Note
 Some ARMv6 processors implemented the scheme before its formal adoption in the architecture.

The CPUID scheme provides information about the implemented:

• processor features

• debug features

• auxiliary features, in particular IMPLEMENTATION DEFINED features

• memory model features

• instruction set features.

The following sections give more information about the CPUID registers:

• Organization of the CPUID registers

• General features of the CPUID registers on page B5-3.

The CPUID registers on page B5-4 gives detailed descriptions of the registers.

This chapter also describes the identification registers for any Advanced SIMD or VFP implementation.
These are registers in the shared register space for the Advanced SIMD and VFP extensions, in CP 10 and
CP 11. Advanced SIMD and VFP feature identification registers on page B5-34 describes these registers.

B5.1.1 Organization of the CPUID registers

Figure B5-1 on page B5-3 shows the CPUID registers and their encodings in CP15. Two of the encodings
shown, with <CRm> == c2 and <opc2> == {6,7}, are reserved for future expansion of the CPUID scheme. In
addition, all CP15 c0 encodings with <CRm> == {c3-c7} and <opc2> == {0-7} are reserved for future
expansion of the scheme. These reserved encodings must be RAZ.
B5-2 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The CPUID Identification Scheme
Figure B5-1 The CPUID register encodings

B5.1.2 General features of the CPUID registers

All of the CPUID registers are:

• 32-bit read-only registers

• accessible only in privileged modes

• when the Security Extensions are implemented, Common registers, see Common CP15 registers on
page B3-74.

Each register is divided into eight 4-bit fields, and the possible field values are defined individually for each
field. Some registers do not use all of these fields.

<7� �%�� <7,
�� � ��

�%��

��

���� �A��7�6������**������&$���7�.'*&����
 �A��7�6������**������&$���7�.'*&����
 �A��7�6���-$.����&$���7�.'*&����
 �A��7�6��$+'�'�������&$���7�.'*&����
 �A!!�7�6�!�,����!��������&$���7�.'*&����
 �A!!�7�6�!�,����!��������&$���7�.'*&����
 �A!!�7�6�!�,����!��������&$���7�.'*&����
 �A!!�7�6�!�,����!��������&$���7�.'*&����

�

�

�
�

�
	
�

7�*�����

 �A ��7�6� ������&$���7�.'*&����
 �A ��7�6� ������&$���7�.'*&����
 �A ��7�6� ������&$���7�.'*&����
 �A ��7�6� ������&$���7�.'*&����
 �A ��7�6� ������&$���7�.'*&����
 �A ��7	6� ������&$���7�.'*&���	

�

�
�

�
	

4��
5

7���PQ�'&�7�������� Q�'&������
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B5-3

The CPUID Identification Scheme
B5.2 The CPUID registers

The CPUID registers are described in detail in the following sections:

• CP15 c0, Processor Feature registers

• c0, Debug Feature Register 0 (ID_DFR0) on page B5-6

• c0, Auxiliary Feature Register 0 (ID_AFR0) on page B5-8

• CP15 c0, Memory Model Feature registers on page B5-9

• CP15 c0, Instruction Set Attribute registers on page B5-19.

See also General features of the CPUID registers on page B5-3.

B5.2.1 CP15 c0, Processor Feature registers

The Processor Feature registers, ID_PFR0 and ID_PFR1, provide information about the instruction set state
support and programmers’ model for the processor. There are two Processor Feature registers, described in:

• c0, Processor Feature Register 0 (ID_PFR0)

• c0, Processor Feature Register 1 (ID_PFR1) on page B5-5

• Accessing the Processor Feature registers on page B5-6.

c0, Processor Feature Register 0 (ID_PFR0)

The format of ID_PFR0 is:

Bits [31:16] Reserved, RAZ.

State3, bits [15:12]

ThumbEE instruction set support. Permitted values are:

0b0000 Not supported.

0b0001 ThumbEE instruction set supported.

The value of 0b0001 is only permitted when State1 == 0b0011.

State2, bits [11:8]

Jazelle extension support. Permitted values are:

0b0000 Not supported.

0b0001 Support for Jazelle extension, without clearing of JOSCR.CV on exception
entry.

0b0010 Support for Jazelle extension, with clearing of JOSCR.CV on exception entry.

Reserved, RAZ

31 16 15 12 11 8 7 4 3 0

State3 State2 State1 State0
B5-4 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The CPUID Identification Scheme
State1, bits [7:4]

Thumb instruction set support. Permitted values are:

0b0000 No support for Thumb instruction set.

0b0001 Support for Thumb encoding before the introduction of Thumb-2 technology:

• all instructions are 16-bit

• a BL or BLX is a pair of 16-bit instructions

• 32-bit instructions other than BL and BLX cannot be encoded.

0b0010 Reserved.

0b0011 Support for Thumb encoding after the introduction of Thumb-2 technology, and
for all 16-bit and 32-bit Thumb basic instructions.

State0, bits [3:0]

ARM instruction set support. Permitted values are:

0b0000 No support for ARM instruction set.

0b0001 Support for ARM instruction set.

c0, Processor Feature Register 1 (ID_PFR1)

The format of ID_PFR1 is:

Bits [31:12] Reserved, RAZ.

M profile programmers’ model, bits [11:8]

Permitted values are:

0b0000 Not supported.

0b0010 Support for two-stack programmers’ model.

The value of 0b0001 is reserved.

Security Extensions, bits [7:4]

Permitted values are:

0b0000 Not supported.

0b0001 Support for the Security Extensions.

This includes support for Monitor mode and the SMC instruction.

0b0010 As for 0b0001, and adds the ability to set the NSACR.RFR bit.

Reserved, RAZ

31 13 12 8 7 4 3 0

Security
Extensions

Programmers’ modelM profile programmers’ model
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B5-5

ARM_2009_Q1
Line

ARM_2009_Q1
Line

ARM_2009_Q1
Line

ARM_2009_Q1
Line

ARM_2009_Q1
Line

ARM_2009_Q1
Line

ARM_2009_Q1
Line

ARM_2009_Q1
Sticky Note
The M profile programmers' model field is bits[11:8], not [12:8] as shown on the original diagram.

The CPUID Identification Scheme
Programmers’ model, bits [3:0]

Support for the standard programmers’ model for ARMv4 and later. Model must support
User, FIQ, IRQ, Supervisor, Abort, Undefined and System modes. Permitted values are:

0b0000 Not supported.

0b0001 Supported.

Accessing the Processor Feature registers

To access the Processor Feature Registers you read the CP15 registers with <opc1> set to 0, <CRn> set to c0,
<CRm> set to c1, and <opc2> set to:

• 0 for ID_PFR0

• 1 for ID_PFR1.

For example:

MRC p15, 0, <Rt>, c0, c1, 0 ; Read Processor Feature Register 0

B5.2.2 c0, Debug Feature Register 0 (ID_DFR0)

The Debug Feature Register 0, ID_DFR0, provides top level information about the debug system for the
processor. You can obtain more information from the debug infrastructure, see Debug identification
registers on page C10-3.

The format of the ID_DFR0 is:

Bits [31:24] Reserved, RAZ.

Debug model, M profile, bits [23:20]

Support for memory-mapped debug model for M profile processors. Permitted values are:

0b0000 Not supported.

0b0001 Support for M profile Debug architecture, with memory-mapped access.

31 24 23 20 19 16 15 12 11 8 7 4 3 0

Reserved, RAZ

Debug model, M profile
Memory-mapped trace model

Coprocessor trace model
Memory-mapped debug model, A and R profiles
Coprocessor Secure debug model, A profile only

Coprocessor debug model, A and R profiles
B5-6 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The CPUID Identification Scheme
Memory-mapped trace model, bits [19:16]

Support for memory-mapped trace model. Permitted values are:

0b0000 Not supported.

0b0001 Support for ARM trace architecture, with memory-mapped access.

The ID register, register 0x079, gives more information about the
implementation. See also Trace on page C1-5.

Coprocessor trace model, bits [15:12]

Support for coprocessor-based trace model. Permitted values are:

0b0000 Not supported.

0b0001 Support for ARM trace architecture, with CP14 access.

The ID register, register 0x079, gives more information about the
implementation. See also Trace on page C1-5.

Memory-mapped debug model, A and R profiles, bits [11:8]

Support for memory-mapped debug model, for A and R profile processors. Permitted values
are:

0b0000 Not supported, or pre-ARMv6 implementation.

0b0100 Support for v7 Debug architecture, with memory-mapped access.

Values 0b0001, 0b0010, and 0b0011 are reserved.

Coprocessor Secure debug model, bits [7:4]

Support for coprocessor-based Secure debug model, for an A profile processor that includes
the Security Extensions. Permitted values are:

0b0000 Not supported.

0b0011 Support for v6.1 Debug architecture, with CP14 access.

0b0100 Support for v7 Debug architecture, with CP14 access.

Values 0b0001 and 0b0010 are reserved.

Coprocessor debug model, bits [3:0]

Support for coprocessor based debug model, for A and R profile processors. Permitted
values are:

0b0000 Not supported.

0b0010 Support for v6 Debug architecture, with CP14 access.

0b0011 Support for v6.1 Debug architecture, with CP14 access.

0b0100 Support for v7 Debug architecture, with CP14 access.

Value 0b0001 is reserved.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B5-7

The CPUID Identification Scheme
Accessing the ID_DFR0

To access the ID_DFR0 you read the CP15 registers with <opc1> set to 0, <CRn> set to c0, <CRm> set to c1, and
<opc2> set to 2. For example:

MRC p15, 0, <Rt>, c0, c1, 2 ; Read Debug Feature Register 0

B5.2.3 c0, Auxiliary Feature Register 0 (ID_AFR0)

The Auxiliary Feature Register 0, ID_AFR0, provides information about the IMPLEMENTATION DEFINED
features of the processor.

The format of the ID_AFR0 is:

Bits [31:16] Reserved, RAZ.

IMPLEMENTATION DEFINED, bits [15:12]

IMPLEMENTATION DEFINED, bits [11:8]

IMPLEMENTATION DEFINED, bits [7:4]

IMPLEMENTATION DEFINED, bits [3:0]

The Auxiliary Feature Register 0 has four 4-bit IMPLEMENTATION FIELDS. These fields are defined by the
implementer of the design. The implementer is identified by the Implementer field of the Main ID Register,
see:

• c0, Main ID Register (MIDR) on page B3-81, for a VMSA implementation

• c0, Main ID Register (MIDR) on page B4-32, for a PMSA implementation.

The Auxiliary Feature Register 0 enables implementers to include additional design features in the CPUID
scheme. Field definitions for the Auxiliary Feature Register 0 might:

• differ between different implementers

• be subject to change

• migrate over time, for example if they are incorporated into the main architecture.

Accessing the ID_AFR0

To access the ID_AFR0 you read the CP15 registers with <opc1> set to 0, <CRn> set to c0, <CRm> set to c1, and
<opc2> set to 3. For example:

MRC p15, 0, <Rt>, c0, c1, 3 ; Read Auxiliary Feature Register 0

Reserved, RAZ

31 16 15 12 11 8 7 4 3 0

IMP IMP IMP IMP
B5-8 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The CPUID Identification Scheme
B5.2.4 CP15 c0, Memory Model Feature registers

The Memory Model Feature registers, ID_MMF0 to ID_MMFR3, provide general information about the
implemented memory model and memory management support, including the supported cache and TLB
operations. There are four Memory Model Feature registers, described in:

• c0, Memory Model Feature Register 0 (ID_MMFR0)

• c0, Memory Model Feature Register 1 (ID_MMFR1) on page B5-11

• c0, Memory Model Feature Register 2 (ID_MMFR2) on page B5-14

• c0, Memory Model Feature Register 3 (ID_MMFR3) on page B5-17

• Accessing the Memory Model Feature registers on page B5-19.

c0, Memory Model Feature Register 0 (ID_MMFR0)

The format of the ID_MMFR0 is:

Innermost shareability, bits [31:28]

Indicates the innermost shareability domain implemented. Permitted values are:

0b0000 Implemented as Non-cacheable.

0b0001 Implemented with hardware coherency support.

0b1111 Shareability ignored.

This field is valid only if more than one level of shareability is implemented, as indicated by
the value of the Shareability levels field, bits [15:12].

When the Shareability level field is zero, this field is UNK.

FCSE support, bits [27:24]

Indicates whether the implementation includes the FCSE. Permitted values are:

0b0000 Not supported.

0b0001 Support for FCSE.

The value of 0b0001 is only permitted when the VMSA_support field has a value greater
than 0b0010.

Auxiliary registers, bits [23:20]

Indicates support for Auxiliary registers. Permitted values are:

0b0000 None supported.

0b0001 Support for Auxiliary Control Register only.

0b0010 Support for Auxiliary Fault Status Registers (AIFSR and ADFSR) and
Auxiliary Control Register.

Innermost
shareability

FCSE
support

Auxiliary
registers

TCM
support

31 16 15 12 11 8 7 4 3 0

Shareability
levels

Outermost
shareability

PMSA
support

VMSA
support

28 27 24 23 20 19
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B5-9

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
the implementation distinguishes between Inner Shareable and Outer Shareable, by implementing two levels of shareability

ARM_2009_Q2
Sticky Note
This change is a clarification of the intended meaning, not a change to the architecture.

The CPUID Identification Scheme
TCM support, bits [19:16]

Indicates support for TCMs and associated DMAs. Permitted values are:

0b0000 Not supported.

0b0001 Support is IMPLEMENTATION DEFINED. ARMv7 requires this setting.

0b0010 Support for TCM only, ARMv6 implementation.

0b0011 Support for TCM and DMA, ARMv6 implementation.

Note
 An ARMv7 implementation might include an ARMv6 model for TCM support. However,

in ARMv7 this is an IMPLEMENTATION DEFINED option, and therefore it must be represented
by the 0b0001 encoding in this field.

Shareability levels, bits [15:12]

Indicates the number of shareability levels implemented. Permitted values are:

0b0000 One level of shareability implemented.

0b0001 Two levels of shareability implemented.

Outermost shareability, bits [11:8]

Indicates the outermost shareability domain implemented. Permitted values are:

0b0000 Implemented as Non-cacheable.

0b0001 Implemented with hardware coherency support.

0b1111 Shareability ignored.

PMSA support, bits [7:4]

Indicates support for a PMSA. Permitted values are:

0b0000 Not supported.

0b0001 Support for IMPLEMENTATION DEFINED PMSA.

0b0010 Support for PMSAv6, with a Cache Type Register implemented.

0b0011 Support for PMSAv7, with support for memory subsections. ARMv7-R profile.

When the PMSA support field is set to a value other than 0b0000 the VMSA support field
must be set to 0b0000.

VMSA support, bits [3:0]

Indicates support for a VMSA. Permitted values are:

0b0000 Not supported.

0b0001 Support for IMPLEMENTATION DEFINED VMSA.

0b0010 Support for VMSAv6, with Cache and TLB Type Registers implemented.

0b0011 Support for VMSAv7, with support for remapping and the access flag.
ARMv7-A profile.

When the VMSA support field is set to a value other than 0b0000 the PMSA support field
must be set to 0b0000.
B5-10 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The CPUID Identification Scheme
c0, Memory Model Feature Register 1 (ID_MMFR1)

The format of the ID_MMFR1 is:

Branch predictor, bits [31:28]

Indicates branch predictor management requirements. Permitted values are:

0b0000 No branch predictor, or no MMU present. Implies a fixed MPU configuration.

0b0001 Branch predictor requires flushing on:

• enabling or disabling the MMU

• writing new data to instruction locations

• writing new mappings to the translation tables

• any change to the TTBR0, TTBR1, or TTBCR registers

• changes of FCSE ProcessID or ContextID.

0b0010 Branch predictor requires flushing on:

• enabling or disabling the MMU

• writing new data to instruction locations

• writing new mappings to the translation tables

• any change to the TTBR0, TTBR1, or TTBCR registers without a
corresponding change to the FCSE ProcessID or ContextID.

0b0011 Branch predictor requires flushing only on:

• writing new data to instruction locations.

0b0100 For execution correctness, branch predictor requires no flushing at any time.

Note
 The branch predictor is described in some documentation as the Branch Target Buffer.

L1 cache Test and Clean, bits [27:24]

Indicates the supported Level 1 data cache test and clean operations, for Harvard or unified
cache implementations. Permitted values are:

0b0000 None supported. This is the required setting for ARMv7.

0b0001 Supported Level 1 data cache test and clean operations are:

• Test and clean data cache.

0b0010 As for 0b0001, and adds:

• Test, clean, and invalidate data cache.

L1 cache
Test and

Clean

L1 Harvard
cache VA

31 24 23 20 19 16 15 12 11 8 7 4 3 0

Branch
Predictor

L1 unified
cache

L1 Harvard
cache

L1 unified
cache s/w

L1 Harvard
cache s/w

L1 unified
cache VA

28 27
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B5-11

The CPUID Identification Scheme
L1 unified cache, bits [23:20]

Indicates the supported entire Level 1 cache maintenance operations, for a unified cache
implementation. Permitted values are:

0b0000 None supported. This is the required setting for ARMv7, because ARMv7
requires a hierarchical cache implementation.

0b0001 Supported entire Level 1 cache operations are:

• Invalidate cache, including branch predictor if appropriate

• Invalidate branch predictor, if appropriate.

0b0010 As for 0b0001, and adds:

• Clean cache. Uses a recursive model, using the cache dirty status bit.

• Clean and invalidate cache. Uses a recursive model, using the cache dirty
status bit.

If this field is set to a value other than 0b0000 then the L1 Harvard cache field, bits [19:16],
must be set to 0b0000.

L1 Harvard cache, bits [19:16]

Indicates the supported entire Level 1 cache maintenance operations, for a Harvard cache
implementation. Permitted values are:

0b0000 None supported. This is the required setting for ARMv7, because ARMv7
requires a hierarchical cache implementation.

0b0001 Supported entire Level 1 cache operations are:

• Invalidate instruction cache, including branch predictor if appropriate

• Invalidate branch predictor, if appropriate.

0b0010 As for 0b0001, and adds:

• Invalidate data cache

• Invalidate data cache and instruction cache, including branch predictor if
appropriate.

0b0011 As for 0b0010, and adds:

• Clean data cache. Uses a recursive model, using the cache dirty status bit.

• Clean and invalidate data cache. Uses a recursive model, using the cache
dirty status bit.

If this field is set to a value other than 0b0000 then the L1 unified cache field, bits [23:20],
must be set to 0b0000.

L1 unified cache s/w, bits [15:12]

Indicates the supported Level 1 cache line maintenance operations by set/way, for a unified
cache implementation. Permitted values are:

0b0000 None supported. This is the required setting for ARMv7, because ARMv7
requires a hierarchical cache implementation.

0b0001 Supported Level 1 unified cache line maintenance operations by set/way are:

• Clean cache line by set/way.
B5-12 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The CPUID Identification Scheme
0b0010 As for 0b0001, and adds:

• Clean and invalidate cache line by set/way.

0b0011 As for 0b0010, and adds:

• Invalidate cache line by set/way.

If this field is set to a value other than 0b0000 then the L1 Harvard cache s/w field,
bits [11:8], must be set to 0b0000.

L1 Harvard cache s/w, bits [11:8]

Indicates the supported Level 1 cache line maintenance operations by set/way, for a Harvard
cache implementation. Permitted values are:

0b0000 None supported. This is the required setting for ARMv7, because ARMv7
requires a hierarchical cache implementation.

0b0001 Supported Level 1 Harvard cache line maintenance operations by set/way are:

• Clean data cache line by set/way

• Clean and invalidate data cache line by set/way.

0b0010 As for 0b0001, and adds:

• Invalidate data cache line by set/way.

0b0011 As for 0b0010, and adds:

• Invalidate instruction cache line by set/way.

If this field is set to a value other than 0b0000 then the L1 unified cache s/w field,
bits [15:12], must be set to 0b0000.

L1 unified cache VA, bits [7:4]

Indicates the supported Level 1 cache line maintenance operations by MVA, for a unified
cache implementation. Permitted values are:

0b0000 None supported. This is the required setting for ARMv7, because ARMv7
requires a hierarchical cache implementation.

0b0001 Supported Level 1 unified cache line maintenance operations by MVA are:

• Clean cache line by MVA

• Invalidate cache line by MVA

• Clean and invalidate cache line by MVA.

0b0010 As for 0b0001, and adds:

• Invalidate branch predictor by MVA, if branch predictor is implemented.

If this field is set to a value other than 0b0000 then the L1 Harvard cache VA field, bits [3:0],
must be set to 0b0000.

L1 Harvard cache VA, bits [3:0]

Indicates the supported Level 1 cache line maintenance operations by MVA, for a Harvard
cache implementation. Permitted values are:

0b0000 None supported. This is the required setting for ARMv7, because ARMv7
requires a hierarchical cache implementation.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B5-13

The CPUID Identification Scheme
0b0001 Supported Level 1 Harvard cache line maintenance operations by MVA are:

• Clean data cache line by MVA

• Invalidate data cache line by MVA

• Clean and invalidate data cache line by MVA

• Clean instruction cache line by MVA.

0b0010 As for 0b0001, and adds:

• Invalidate branch predictor by MVA, if branch predictor is implemented.

If this field is set to a value other than 0b0000 then the L1 unified cache VA field, bits [7:4],
must be set to 0b0000.

c0, Memory Model Feature Register 2 (ID_MMFR2)

The format of the ID_MMFR2 is:

HW access flag, bits [31:28]

Indicates support for a Hardware access flag, as part of the VMSAv7 implementation.
Permitted values are:

0b0000 Not supported.

0b0001 Support for VMSAv7 access flag, updated in hardware.

On an ARMv7-R implementation this field must be 0b0000.

WFI stall, bits [27:24]

Indicates the support for Wait For Interrupt (WFI) stalling. Permitted values are:

0b0000 Not supported.

0b0001 Support for WFI stalling.

Mem barrier, bits [23:20]

Indicates the supported CP15 memory barrier operations:

0b0000 None supported.

0b0001 Supported CP15 Memory barrier operations are:

• Data Synchronization Barrier (DSB). In previous versions of the ARM
architecture, DSB was named Data Write Barrier (DWB).

0b0010 As for 0b0001, and adds:

• Instruction Synchronization Barrier (ISB). In previous versions of the
ARM architecture, the ISB operation was called Prefetch Flush.

• Data Memory Barrier (DMB).

HW
access flag

WFI
stall

Mem
barrier

Unified
TLB

31 16 15 12 11 8 7 4 3 0

Harvard
TLB

L1 Harvard
range

L1 Harvard
bg prefetch

L1 Harvard
fg prefetch

28 27 24 23 20 19
B5-14 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The CPUID Identification Scheme
Unified TLB, bits [19:16]

Indicates the supported TLB maintenance operations, for a unified TLB implementation.
Permitted values are:

0b0000 Not supported.

0b0001 Supported unified TLB maintenance operations are:

• Invalidate all entries in the TLB

• Invalidate TLB entry by MVA.

0b0010 As for 0b0001, and adds:

• Invalidate TLB entries by ASID match.

0b0011 As for 0b0010 and adds:

• Invalidate TLB entries by MVA All ASID.

If this field is set to a value other than 0b0000 then the Harvard TLB field, bits [15:12], must
be set to 0b0000.

Harvard TLB, bits [15:12]

Indicates the supported TLB maintenance operations, for a Harvard TLB implementation.
Permitted values are:

0b0000 Not supported.

0b0001 Supported Harvard TLB maintenance operations are:

• Invalidate all entries in the ITLB and the DTLB.

This is a shared unified TLB operation.

• Invalidate all ITLB entries.

• Invalidate all DTLB entries.

• Invalidate ITLB entry by MVA.

• Invalidate DTLB entry by MVA.

0b0010 As for 0b0001, and adds:

• Invalidate ITLB and DTLB entries by ASID match.

This is a shared unified TLB operation.

• Invalidate ITLB entries by ASID match

• Invalidate DTLB entries by ASID match.

If this field is set to a value other than 0b0000 then the Unified TLB field, bits [19:16], must
be set to 0b0000.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B5-15

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Replacement Text
 instruction TLB and data TLB

ARM_2011_Q2
Inserted Text
. This is a shared unified TLB operation.

ARM_2011_Q2
Sticky Note
These insertions clarify the architectural meaning of this value.

The CPUID Identification Scheme
L1 Harvard range, bits [11:8]

Indicates the supported Level 1 cache maintenance range operations, for a Harvard cache
implementation. Permitted values are:

0b0000 Not supported.

0b0001 Supported Level 1 Harvard cache maintenance range operations are:

• Invalidate data cache range by VA

• Invalidate instruction cache range by VA

• Clean data cache range by VA

• Clean and invalidate data cache range by VA.

L1 Harvard bg prefetch, bits [7:4]

Indicates the supported Level 1 cache background prefetch operations, for a Harvard cache
implementation. When supported, background prefetch operations are non-blocking
operations. Permitted values are:

0b0000 Not supported.

0b0001 Supported Level 1 Harvard cache foreground prefetch operations are:

• Prefetch instruction cache range by VA

• Prefetch data cache range by VA.

L1 Harvard fg prefetch, bits [3:0]

Indicates the supported Level 1 cache foreground prefetch operations, for a Harvard cache
implementation. When supported, foreground prefetch operations are blocking operations.
Permitted values are:

0b0000 Not supported.

0b0001 Supported Level 1 Harvard cache foreground prefetch operations are:

• Prefetch instruction cache range by VA

• Prefetch data cache range by VA.
B5-16 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
back

The CPUID Identification Scheme
c0, Memory Model Feature Register 3 (ID_MMFR3)

The format of the ID_MMFR3 is:

Supersection support, bits [31:28]

On a VMSA implementation, indicates whether Supersections are supported. Permitted
values are:

0b0000 Supersections supported.

0b1111 Supersections not supported.

All other values are reserved.

Note
 The sense of this identification is reversed from the normal usage in the CPUID mechanism,

with the value of zero indicating that the feature is supported.

Bits [27:24] Reserved, RAZ.

Coherent walk, bits [23:20]

Indicates whether Translation table updates require a clean to the point of unification.
Permitted values are:

0b0000 Updates to the translation tables require a clean to the point of unification to
ensure visibility by subsequent translation table walks.

0b0001 Updates to the translation tables do not require a clean to the point of unification
to ensure visibility by subsequent translation table walks.

Bits [19:16] Reserved, RAZ.

Maintenance broadcast, bits [15:12]

Indicates whether Cache, TLB and branch predictor operations are broadcast. Permitted
values are:

0b0000 Cache, TLB and branch predictor operations only affect local structures.

0b0001 Cache and branch predictor operations affect structures according to
shareability and defined behavior of instructions. TLB operations only affect
local structures.

31 28 27 16 15 12 11 8 7 4 3 0

Reserved,
RAZ

Supersection support

BP maintain
Cache maintainence s/w

Cache maintainence MVA

Maintenance broadcast

1920

Reserved,
RAZ

2324

Coherent walk
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B5-17

The CPUID Identification Scheme
0b0010 Cache, TLB and branch predictor operations affect structures according to
shareability an defined behavior of instructions.

BP maintain, bits [11:8]

Indicates the supported branch predictor maintenance operations in an implementation with
hierarchical cache maintenance operations. Permitted values are:

0b0000 None supported.

0b0001 Supported branch predictor maintenance operations are:

• Invalidate entire branch predictor array

0b0010 As for 0b0001, and adds:

• Invalidate branch predictor by MVA.

Cache maintain s/w, bits [7:4]

Indicates the supported cache maintenance operations by set/way, in an implementation
with hierarchical caches. Permitted values are:

0b0000 None supported.

0b0001 Supported hierarchical cache maintenance operations by set/way are:

• Invalidate data cache by set/way

• Clean data cache by set/way

• Clean and invalidate data cache by set/way.

In a unified cache implementation, the data cache operations apply to the unified caches.

Cache maintain MVA, bits [3:0]

Indicates the supported cache maintenance operations by MVA, in an implementation with
hierarchical caches. Permitted values are:

0b0000 None supported.

0b0001 Supported hierarchical cache maintenance operations by MVA are:

• Invalidate data cache by MVA

• Clean data cache by MVA

• Clean and invalidate data cache by MVA

• Invalidate instruction cache by MVA

• Invalidate all instruction cache entries.

In a unified cache implementation, the data cache operations apply to the unified caches, and
the instruction cache operations are not implemented.
B5-18 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q1
Inserted Text
d

The CPUID Identification Scheme
Accessing the Memory Model Feature registers

To access the Memory Model Feature Registers you read the CP15 registers with <opc1> set to 0, <CRn> set
to c0, <CRm> set to c1, and <opc2> set to:

• 4 for the ID_MMFR0

• 5 for the ID_MMFR1

• 6 for the ID_MMFR2

• 7 for the ID_MMFR3.

For example:

MRC p15, 0, <Rt>, c0, c1, 6 ; Read Memory Model Feature Register 2

B5.2.5 CP15 c0, Instruction Set Attribute registers

The Instruction Set Attribute registers, ID_ISAR0 to ID_ISAR5, provide information about the instruction
set supported by the processor. The instruction set is divided into:

• The basic instructions, for the ARM, Thumb, and ThumbEE instruction sets. If the Processor Feature
Register 0 indicates support for one of these instruction sets then all basic instructions that have
encodings in the corresponding instruction set must be implemented.

• The non-basic instructions. The Instruction Set Attribute registers indicate which of these instructions
are implemented.

Instruction set descriptions in the CPUID scheme on page B5-20 describes the division of the instruction
set into basic and non-basic instructions.

Summary of Instruction Set Attribute register attributes on page B5-22 lists all of the attributes and shows
which register holds each attribute.

ARMv7 implements six Instruction Set Attribute registers, described in:

• c0, Instruction Set Attribute Register 0 (ID_ISAR0) on page B5-24

• c0, Instruction Set Attribute Register 1 (ID_ISAR1) on page B5-25

• c0, Instruction Set Attribute Register 2 (ID_ISAR2) on page B5-27

• c0, Instruction Set Attribute Register 3 (ID_ISAR3) on page B5-29

• c0, Instruction Set Attribute Register 4 (ID_ISAR4) on page B5-31

• c0, Instruction Set Attribute Register 5 (ID_ISAR5) on page B5-33

• Accessing the Instruction Set Attribute registers on page B5-33.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B5-19

The CPUID Identification Scheme
Instruction set descriptions in the CPUID scheme

The following subsections describe how the CPUID scheme describes the instruction set, and how
instructions are classified as either basic or non-basic:

• General rules for instruction classification

• Data-processing instructions

• Multiply instructions on page B5-21

• Branches on page B5-21

• Load or Store single word instructions on page B5-21

• Load or Store multiple word instructions on page B5-21

• Q flag support in the PSRs on page B5-21.

General rules for instruction classification

Two general rules apply to the description of instruction classification given in this section:

1. The rules about an instruction being basic do not guarantee that it is available in any particular
instruction set. For example, the rules given in this section classify MOV R0, #123456789 as a basic
instruction, but this instruction is not available in any existing ARM instruction set.

2. Whether an instruction is conditional or unconditional never makes any difference to whether it is a
basic instruction.

Data-processing instructions

The data-processing instructions are:

ADC ADD AND ASR BIC CMN CMP EOR LSL LSR MOV MVN
NEG ORN ORR ROR RRX RSB RSC SBC SUB TEQ TST

An instruction from this group is a basic instruction if these conditions both apply:

• The second source operand, or the only source operand of a MOV or MVN instruction, is an immediate
or an unshifted register.

Note
 A MOV instruction with a shifted register source operand must be treated as the equivalent ASR, LSL, LSR,

ROR, or RRX instruction, see MOV (shifted register) on page A8-198.

• The instruction is not one of the exception return instructions described in SUBS PC, LR and related
instructions on page B6-25.

If either of these conditions does not apply then the instruction is a non-basic instruction. One or both of
these attributes in the Instruction Set Attribute registers shows the support for non-basic data-processing
instructions:

• PSR_instrs

• WithShifts_instrs.
B5-20 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The CPUID Identification Scheme
Multiply instructions

The classification of multiply instructions is:

• MUL instructions are always basic instructions

• all other multiply instructions, and all multiply-accumulate instructions, are non-basic instructions.

Branches

All B and BL instructions are basic instructions.

Load or Store single word instructions

The instructions in this group are:

LDR LDRB LDRH LDRSB LDRSH STR STRB STRH

An instruction in this group is a basic instruction if its addressing mode is one of these forms:

• [Rn, #immediate]

• [Rn, #-immediate]

• [Rn, Rm]

• [Rn, -Rm].

A Load or Store single word instruction with any other addressing mode is a non-basic instruction. One or
more of these attributes in the Instruction Set Attribute registers shows the support for these instructions:

• WithShifts_instrs

• Writeback_instrs

• Unpriv_instrs.

Load or Store multiple word instructions

The Load or Store multiple word instructions are:

LDM<mode> STM<mode> PUSH POP

A limited number of variants of these instructions are non-basic. The Except_instrs attribute in the
Instruction Set Attribute registers shows the support for these instructions. For details of these non-basic
instructions see c0, Instruction Set Attribute Register 1 (ID_ISAR1) on page B5-25.

All other forms of these instructions are always basic instructions.

Q flag support in the PSRs

The Q flag is present in the CPSR and SPSRs when one or more of these conditions apply to the Instruction
Set Attribute register attributes:

• MultS_instrs ≥ 2

• Saturate_instrs ≥ 1

• SIMD_instrs ≥ 1.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B5-21

The CPUID Identification Scheme
Summary of Instruction Set Attribute register attributes

The Instruction Set Attribute registers use a set of attributes to indicate the non-basic instructions supported
by the processor. The descriptions of the non-basic instructions in Instruction set descriptions in the CPUID
scheme on page B5-20 include the attribute or attributes used to indicate support for each category of
non-basic instructions. Table B5-1 lists all of these attributes in alphabetical order, and shows which
Instruction Set Attribute register holds each attribute.

Table B5-1 Alphabetic list of Instruction Set Attribute registers attributes

Attribute Register

Barrier_instrs c0, Instruction Set Attribute Register 4 (ID_ISAR4) on page B5-31

BitCount_instrs c0, Instruction Set Attribute Register 0 (ID_ISAR0) on page B5-24

Bitfield_instrs c0, Instruction Set Attribute Register 0 (ID_ISAR0) on page B5-24

CmpBranch_instrs c0, Instruction Set Attribute Register 0 (ID_ISAR0) on page B5-24

Coproc_instrs c0, Instruction Set Attribute Register 0 (ID_ISAR0) on page B5-24

Debug_instrs c0, Instruction Set Attribute Register 0 (ID_ISAR0) on page B5-24

Divide_instrs c0, Instruction Set Attribute Register 0 (ID_ISAR0) on page B5-24

Endian_instrs c0, Instruction Set Attribute Register 1 (ID_ISAR1) on page B5-25

Except_AR_instrs c0, Instruction Set Attribute Register 1 (ID_ISAR1) on page B5-25

Except_instrs c0, Instruction Set Attribute Register 1 (ID_ISAR1) on page B5-25

Extend_instrs c0, Instruction Set Attribute Register 1 (ID_ISAR1) on page B5-25

IfThen_instrs c0, Instruction Set Attribute Register 1 (ID_ISAR1) on page B5-25

Immediate_instrs c0, Instruction Set Attribute Register 1 (ID_ISAR1) on page B5-25

Interwork_instrs c0, Instruction Set Attribute Register 1 (ID_ISAR1) on page B5-25

Jazelle_instrs c0, Instruction Set Attribute Register 1 (ID_ISAR1) on page B5-25

LoadStore_instrs c0, Instruction Set Attribute Register 2 (ID_ISAR2) on page B5-27

MemHint_instrs c0, Instruction Set Attribute Register 2 (ID_ISAR2) on page B5-27

Mult_instrs c0, Instruction Set Attribute Register 2 (ID_ISAR2) on page B5-27

MultiAccessInt_instrs c0, Instruction Set Attribute Register 2 (ID_ISAR2) on page B5-27

MultS_instrs c0, Instruction Set Attribute Register 2 (ID_ISAR2) on page B5-27

MultU_instrs c0, Instruction Set Attribute Register 2 (ID_ISAR2) on page B5-27
B5-22 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The CPUID Identification Scheme
PSR_AR_instrs c0, Instruction Set Attribute Register 2 (ID_ISAR2) on page B5-27

PSR_M_instrs c0, Instruction Set Attribute Register 4 (ID_ISAR4) on page B5-31

Reversal_instrs c0, Instruction Set Attribute Register 2 (ID_ISAR2) on page B5-27

Saturate_instrs c0, Instruction Set Attribute Register 3 (ID_ISAR3) on page B5-29

SIMD_instrs c0, Instruction Set Attribute Register 3 (ID_ISAR3) on page B5-29

SMC_instrs c0, Instruction Set Attribute Register 4 (ID_ISAR4) on page B5-31

SVC_instrs c0, Instruction Set Attribute Register 3 (ID_ISAR3) on page B5-29

Swap_instrs c0, Instruction Set Attribute Register 0 (ID_ISAR0) on page B5-24

SynchPrim_instrs c0, Instruction Set Attribute Register 3 (ID_ISAR3) on page B5-29

SynchPrim_instrs_frac c0, Instruction Set Attribute Register 4 (ID_ISAR4) on page B5-31

TabBranch_instrs c0, Instruction Set Attribute Register 3 (ID_ISAR3) on page B5-29

ThumbCopy_instrs c0, Instruction Set Attribute Register 3 (ID_ISAR3) on page B5-29

ThumbEE_extn_instrs c0, Instruction Set Attribute Register 3 (ID_ISAR3) on page B5-29

TrueNOP_instrs c0, Instruction Set Attribute Register 3 (ID_ISAR3) on page B5-29

Unpriv_instrs c0, Instruction Set Attribute Register 4 (ID_ISAR4) on page B5-31

WithShifts_instrs c0, Instruction Set Attribute Register 4 (ID_ISAR4) on page B5-31

Writeback_instrs c0, Instruction Set Attribute Register 4 (ID_ISAR4) on page B5-31

Table B5-1 Alphabetic list of Instruction Set Attribute registers attributes (continued)

Attribute Register
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B5-23

The CPUID Identification Scheme
c0, Instruction Set Attribute Register 0 (ID_ISAR0)

The format of the ID_ISAR0 is:

Bits [31:28] Reserved, RAZ.

Divide_instrs, bits [27:24]

Indicates the supported Divide instructions. Permitted values are:

0b0000 . None supported.

0b0001 . Adds support for SDIV and UDIV.

Debug_instrs, bits [23:20]

Indicates the supported Debug instructions. Permitted values are:

0b0000 None supported.

0b0001 Adds support for BKPT.

Coproc_instrs, bits [19:16]

Indicates the supported Coprocessor instructions. Permitted values are:

0b0000 None supported, except for separately attributed architectures including CP15,
CP14, and Advanced SIMD and VFP.

0b0001 Adds support for generic CDP, LDC, MCR, MRC, and STC.

0b0010 As for 0b0001, and adds generic CDP2, LDC2, MCR2, MRC2, and STC2.

0b0011 As for 0b0010, and adds generic MCRR and MRRC.

0b0100 As for 0b0011, and adds generic MCRR2 and MRRC2.

CmpBranch_instrs, bits [15:12]

Indicates the supported combined Compare and Branch instructions in the Thumb
instruction set. Permitted values are:

0b0000 None supported.

0b0001 Adds support for CBNZ and CBZ.

Bitfield_instrs, bits [11:8]

Indicates the supported BitField instructions. Permitted values are:

0b0000 None supported.

0b0001 Adds support for BFC, BFI, SBFX, and UBFX.

BitCount_instrs, bits [7:4]

Indicates the supported Bit Counting instructions. Permitted values are:

0b0000 None supported.

0b0001 Adds support for CLZ.

Reserved,
RAZ

Divide
_instrs

Debug
_instrs

Coproc
_instrs

31 16 15 12 11 8 7 4 3 0

CmpBranch
_instrs

Bitfield
_instrs

BitCount
_instrs

Swap
_instrs

28 27 24 23 20 19
B5-24 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The CPUID Identification Scheme
Swap_instrs, bits [3:0]

Indicates the supported Swap instructions in the ARM instruction set. Permitted values are:

0b0000 None supported.

0b0001 Adds support for SWP and SWPB.

c0, Instruction Set Attribute Register 1 (ID_ISAR1)

The format of the IID_ISAR1 is:

Jazelle_instrs, bits [31:28]

Indicates the supported Jazelle extension instructions. Permitted values are:

0b0000 No support for Jazelle.

0b0001 Adds support for BXJ instruction, and the J bit in the PSR.

This setting might indicate a trivial implementation of Jazelle support.

Interwork_instrs, bits [27:24]

Indicates the supported Interworking instructions. Permitted values are:

0b0000 None supported.

0b0001 Adds support for BX instruction, and the T bit in the PSR.

0b0010 As for 0b0001, and adds support for BLX instruction. PC loads have BX-like
behavior.

0b0011 As for 0b0010, but guarantees that data-processing instructions in the ARM
instruction set with the PC as the destination and the S bit clear have BX-like
behavior.

Note
 A value of 0b0000, 0b0001, or 0b0010 in this field does not guarantee that an ARM

data-processing instruction with the PC as the destination and the S bit clear behaves like an
old MOV PC instruction, ignoring bits [1:0] of the result. With these values of this field:

• if bits [1:0] of the result value are 0b00 then the processor remains in ARM state

• if bits [1:0] are 0b01, 0b10 or 0b11, the result must be treated as UNPREDICTABLE.

Immediate_instrs, bits [23:20]

Indicates the support for data-processing instructions with long immediates. Permitted
values are:

0b0000 None supported.

Jazelle
_instrs

Interwork
_instrs

Immediate
_instrs

IfThen
_instrs

31 16 15 12 11 8 7 4 3 0

Extend
_instrs

Except_AR
_instrs

Except
_instrs

Endian
_instrs

28 27 24 23 20 19
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B5-25

The CPUID Identification Scheme
0b0001 Adds support for:

• the MOVT instruction

• the MOV instruction encodings with zero-extended 16-bit immediates

• the Thumb ADD and SUB instruction encodings with zero-extended 12-bit
immediates, and the other ADD, ADR and SUB encodings cross-referenced by
the pseudocode for those encodings.

IfThen_instrs, bits [19:16]

Indicates the supported IfThen instructions in the Thumb instruction set. Permitted values
are:

0b0000 None supported.

0b0001 Adds support for the IT instructions, and for the IT bits in the PSRs.

Extend_instrs, bits [15:12]

Indicates the supported Extend instructions. Permitted values are:

0b0000 No scalar sign-extend or zero-extend instructions are supported, where scalar
instructions means non-Advanced SIMD instructions.

0b0001 Adds support for the SXTB, SXTH, UXTB, and UXTH instructions.

0b0010 As for 0b0001, and adds support for the SXTB16, SXTAB, SXTAB16, SXTAH, UXTB16,
UXTAB, UXTAB16, and UXTAH instructions.

Note
 In addition:

• the shift options on these instructions are available only if the WithShifts_instrs
attribute is 0b0011 or greater

• the SXTAB16, SXTB16, UXTAB16, and UXTB16 instructions are available only if both:

— the Extend_instrs attribute is 0b0010 or greater

— the SIMD_instrs attribute is 0b0011 or greater.

Except_AR_instrs, bits [11:8]

Indicates the supported A and R profile exception-handling instructions. Permitted values
are:

0b0000 None supported.

0b0001 Adds support for the SRS and RFE instructions, and the A and R profile forms of
the CPS instruction.

Except_instrs, bits [7:4]

Indicates the supported exception-handling instructions in the ARM instruction set.
Permitted values are:

0b0000 Not supported. This indicates that the User bank and Exception return forms of
the LDM and STM instructions are not supported.

0b0001 Adds support for the LDM (exception return), LDM (user registers) and STM (user
registers) instruction versions.
B5-26 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The CPUID Identification Scheme
Endian_instrs, bits [3:0]

Indicates the supported Endian instructions. Permitted values are:

0b0000 None supported.

0b0001 Adds support for the SETEND instruction, and the E bit in the PSRs.

c0, Instruction Set Attribute Register 2 (ID_ISAR2)

The format of the ID_ISAR2 is:

Reversal_instrs, bits [31:28]

Indicates the supported Reversal instructions. Permitted values are:

0b0000 None supported.

0b0001 Adds support for the REV, REV16, and REVSH instructions.

0b0010 As for 0b0001, and adds support for the RBIT instruction.

PSR_AR_instrs, bits [27:24]

Indicates the supported A and R profile instructions to manipulate the PSR. Permitted values
are:

0b0000 None supported.

0b0001 Adds support for the MRS and MSR instructions, and the exception return forms of
data-processing instructions described in SUBS PC, LR and related instructions
on page B6-25.

Note
 The exception return forms of the data-processing instructions are:

• In the ARM instruction set, data-processing instructions with the PC as the
destination and the S bit set. These instructions might be affected by the WithShifts
attribute.

• In the Thumb instruction set, the SUBS PC,LR,#N instruction.

MultU_instrs, bits [23:20]

Indicates the supported advanced unsigned Multiply instructions. Permitted values are:

0b0000 None supported.

0b0001 Adds support for the UMULL and UMLAL instructions.

0b0010 As for 0b0001, and adds support for the UMAAL instruction.

Reversal
_instrs

PSR_AR
_instrs

MultU
_instrs

MultS
_instrs

31 16 15 12 11 8 7 4 3 0

Mult
_instrs

MultiAccess
Int_instrs

MemHint
_instrs

LoadStore
_instrs

28 27 24 23 20 19
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B5-27

The CPUID Identification Scheme
MultS_instrs, bits [19:16]

Indicates the supported advanced signed Multiply instructions. Permitted values are:

0b0000 None supported.

0b0001 Adds support for the SMULL and SMLAL instructions.

0b0010 As for 0b0001, and adds support for the SMLABB, SMLABT, SMLALBB, SMLALBT,
SMLALTB, SMLALTT, SMLATB, SMLATT, SMLAWB, SMLAWT, SMULBB, SMULBT, SMULTB, SMULTT,
SMULWB, and SMULWT instructions.

Also adds support for the Q bit in the PSRs.

0b0011 As for 0b0010, and adds support for the SMLAD, SMLADX, SMLALD, SMLALDX, SMLSD,
SMLSDX, SMLSLD, SMLSLDX, SMMLA, SMMLAR, SMMLS, SMMLSR, SMMUL, SMMULR, SMUAD,
SMUADX, SMUSD, and SMUSDX instructions.

Mult_instrs, bits [15:12]

Indicates the supported additional Multiply instructions. Permitted values are:

0b0000 No additional instructions supported. This means only MUL is supported.

0b0001 Adds support for the MLA instruction.

0b0010 As for 0b0001, and adds support for the MLS instruction.

MultiAccessInt_instrs, bits [11:8]

Indicates the support for multi-access interruptible instructions. Permitted values are:

0b0000 None supported. This means the LDM and STM instructions are not interruptible.

0b0001 LDM and STM instructions are restartable.

0b0010 LDM and STM instructions are continuable.

MemHint_instrs, bits [7:4]

Indicates the supported Memory Hint instructions. Permitted values are:

0b0000 None supported.

0b0001 Adds support for the PLD instruction.

0b0010 Adds support for the PLD instruction.

In the MemHint_instrs field, entries of 0b0001 and 0b0010 have identical
meanings.

0b0011 As for 0b0001 (or 0b0010), and adds support for the PLI instruction.

0b0100 As for 0b0011, and adds support for the PLDW instruction.

LoadStore_instrs, bits [3:0]

Indicates the supported additional load/store instructions. Permitted values are:

0b0000 None supported.

0b0001 Adds support for the LDRD and STRD instructions.
B5-28 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The CPUID Identification Scheme
c0, Instruction Set Attribute Register 3 (ID_ISAR3)

The format of the ID_ISAR3 is:

ThumbEE_extn_instrs, bits [31:28]

Indicates the supported Thumb Execution Environment (ThumbEE) extension instructions.
Permitted values are:

0b0000 None supported.

0b0001 Adds support for the ENTERX and LEAVEX instructions, and modifies the load
behavior to include null checking.

Note
 This field can only have a value other than 0b0000 when the PFR0 register State3 field has

a value of 0b0001, see c0, Processor Feature Register 0 (ID_PFR0) on page B5-4.

TrueNOP_instrs, bits [27:24]

Indicates the support for True NOP instructions. Permitted values are:

0b0000 None supported. This means there are no NOP instructions that do not have any
register dependencies.

0b0001 Adds true NOP instructions in both the Thumb and ARM instruction sets. Also
permits additional NOP-compatible hints.

ThumbCopy_instrs, bits [23:20]

Indicates the supported Thumb non flag-setting MOV instructions. Permitted values are:

0b0000 Not supported. This means that in the Thumb instruction set, encoding T1 of the
MOV (register) instruction does not support a copy from a low register to a low
register.

0b0001 Adds support for Thumb instruction set encoding T1 of the MOV (register)
instruction, copying from a low register to a low register.

TabBranch_instrs, bits [19:16]

Indicates the supported Table Branch instructions in the Thumb instruction set. Permitted
values are:

0b0000 None supported.

0b0001 Adds support for the TBB and TBH instructions.

ThumbEE_
extn_instrs

TrueNOP
_instrs

TabBranch
_instrs

31 16 15 12 11 8 7 4 3 0

SynchPrim
_instrs

SVC
_instrs

SIMD
_instrs

Saturate
_instrs

28 27 24 23 20 19

ThumbCopy
_instrs
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B5-29

The CPUID Identification Scheme
SynchPrim_instrs, bits [15:12]

This field is used with the SynchPrim_instrs_frac field of ID_ISAR4 to indicate the
supported Synchronization Primitive instructions. Table B5-2 shows the permitted values of
these fields:

All combinations of SynchPrim_instrs and SynchPrim_instrs_frac not shown in Table B5-2
are reserved.

SVC_instrs, bits [11:8]

Indicates the supported SVC instructions. Permitted values are:

0b0000 Not supported.

0b0001 Adds support for the SVC instruction.

Note
 The SVC instruction was called the SWI instruction in previous versions of the ARM

architecture.

SIMD_instrs, bits [7:4]

Indicates the supported SIMD instructions. Permitted values are:

0b0000 None supported.

0b0001 Adds support for the SSAT and USAT instructions, and for the Q bit in the PSRs.

0b0011 As for 0b0001, and adds support for the PKHBT, PKHTB, QADD16, QADD8, QASX, QSUB16,
QSUB8, QSAX, SADD16, SADD8, SASX, SEL, SHADD16, SHADD8, SHASX, SHSUB16, SHSUB8,
SHSAX, SSAT16, SSUB16, SSUB8, SSAX, SXTAB16, SXTB16, UADD16, UADD8, UASX, UHADD16,
UHADD8, UHASX, UHSUB16, UHSUB8, UHSAX, UQADD16, UQADD8, UQASX, UQSUB16, UQSUB8,
UQSAX, USAD8, USADA8, USAT16, USUB16, USUB8, USAX, UXTAB16, and UXTB16
instructions.

Also adds support for the GE[3:0] bits in the PSRs.

Table B5-2 Synchronization Primitives support

SynchPrim_instrs SynchPrim_instrs_frac Supported Synchronization Primitives

0000 0000 None supported

0001 0000 Adds support for the LDREX and STREX instructions.

0001 0011 As for [0001,0000], and adds support for the CLREX, LDREXB,
LDREXH, STREXB, and STREXH instructions.

0010 0000 As for [0001,0011], and adds support for the LDREXD and
STREXD instructions.
B5-30 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The CPUID Identification Scheme
Note
 • in the SIMD_instrs field, the value of 0b0010 is reserved

• the SXTAB16, SXTB16, UXTAB16, and UXTB16 instructions are available only if both:

— the Extend_instrs attribute is 0b0010 or greater

— the SIMD_instrs attribute is 0b0011 or greater.

Saturate_instrs, bits [3:0]

Indicates the supported Saturate instructions. Permitted values are:

0b0000 None supported. This means no non-Advanced SIMD saturate instructions are
supported.

0b0001 Adds support for the QADD, QDADD, QDSUB, and QSUB instructions, and for the Q bit
in the PSRs.

c0, Instruction Set Attribute Register 4 (ID_ISAR4)

The format of the ID_ISAR4 is:

SWP_frac, bits [31:28]

Indicates support for the memory system locking the bus for SWP or SWPB instructions.
Permitted values are:

0b0000 SWP or SWPB not supported.

0b0001 SWP or SWPB supported but only in a uniprocessor context. SWP and SWPB do not
guarantee whether memory accesses from other masters can come between the
load memory access and the store memory access of the SWP or SWPB.

This field is valid only if the Swap_instrs field in ID_ISAR0 is zero.

PSR_M_instrs, bits [27:24]

Indicates the supported M profile instructions to modify the PSRs. Permitted values are:

0b0000 None supported.

0b0001 Adds support for the M profile forms of the CPS, MRS and MSR instructions.

SynchPrim_instrs_frac, bits [23:20]

This field is used with the SynchPrim_instrs field of ID_ISAR3 to indicate the supported
Synchronization Primitive instructions. Table B5-2 on page B5-30 shows the permitted
values of these fields.

All combinations of SynchPrim_instrs and SynchPrim_instrs_frac not shown in Table B5-2
on page B5-30 are reserved.

SWP_frac PSR_M
_instrs

SynchPrim
_instrs_frac

Barrier
_instrs

31 16 15 12 11 8 7 4 3 0

SMC
_instrs

Writeback
_instrs

WithShifts
_instrs

Unpriv
_instrs

28 27 24 23 20 19
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B5-31

The CPUID Identification Scheme
Barrier_instrs, bits [19:16]

Indicates the supported Barrier instructions in the ARM and Thumb instruction sets.
Permitted values are:

0b0000 None supported. Barrier operations are provided only as CP15 operations.

0b0001 Adds support for the DMB, DSB, and ISB barrier instructions.

If this field is set to a value other than 0b0000 then the L1 unified cache field, bits [23:20],
must be set to 0b0000.

SMC_instrs, bits [15:12]

Indicates the supported SMC instructions. Permitted values are:

0b0000 Not supported.

0b0001 Adds support for the SMC instruction.

Note
 The SMC instruction was called the SMI instruction in previous versions of the ARM

architecture.

Writeback_instrs, bits [11:8]

Indicates the support for Writeback addressing modes. Permitted values are:

0b0000 Basic support. Only the LDM, STM, PUSH, POP, SRS, and RFE instructions support
writeback addressing modes. These instructions support all of their writeback
addressing modes.

0b0001 Adds support for all of the writeback addressing modes defined in ARMv7.

WithShifts_instrs, bits [7:4]

Indicates the support for instructions with shifts. Permitted values are:

0b0000 Nonzero shifts supported only in MOV and shift instructions.

0b0001 Adds support for shifts of loads and stores over the range LSL 0-3.

0b0011 As for 0b0001, and adds support for other constant shift options, both on
load/store and other instructions.

0b0100 As for 0b0011, and adds support for register-controlled shift options.

Note
 • In this field, the value of 0b0010 is reserved.

• Additions to the basic support indicated by the 0b0000 field value only apply when
the encoding supports them. In particular, in the Thumb instruction set there is no
difference between the 0b0011 and 0b0100 levels of support.

• MOV instructions with shift options are treated as ASR, LSL, LSR, ROR or RRX instructions,
as described in Data-processing instructions on page B5-20.
B5-32 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2010_Q3
Cross-Out

The CPUID Identification Scheme
Unpriv_instrs, bits [3:0]

Indicates the supported Unprivileged instructions. Permitted values are:

0b0000 None supported. No T variant instructions are implemented.

0b0001 Adds support for LDRBT, LDRT, STRBT, and STRT instructions.

0b0010 As for 0b0001, and adds support for LDRHT, LDRSBT, LDRSHT, and STRHT
instructions.

c0, Instruction Set Attribute Register 5 (ID_ISAR5)

The format of the ID_ISAR5 is:

Bits [31:0] Reserved, RAZ.

Accessing the Instruction Set Attribute registers

To access the Instruction Set Attribute Registers you read the CP15 registers with <opc1> set to 0, <CRn> set
to c0, <CRm> set to c2, and <opc2> set to:

• 0 for the ID_ISAR0

• 1 for the ID_ISAR1

• 2 for the ID_ISAR2

• 3 for the ID_ISAR3

• 4 for the ID_ISAR4

• 5 for the ID_ISAR5.

For example:

MRC p15, 0, <Rt>, c0, c2, 3 ; Read Instruction Set Attribute Register 3

Reserved, RAZ

31 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B5-33

The CPUID Identification Scheme
B5.3 Advanced SIMD and VFP feature identification registers

When an implementation includes one or both of the optional Advanced SIMD and VFP extensions, the
feature identification registers for the extensions are implemented in a common register block. The
extensions reside in the coprocessor space for coprocessors CP10 and CP11, and the registers are accessed
using the VMRS and VMSR instructions. For more information, see Register map of the Advanced SIMD and
VFP extension system registers on page B1-66.

Table B5-3 lists the feature identification registers for the Advanced SIMD and VFP extensions. These are
described in the remainder of this section.

When the Security Extensions are implemented, these registers are Common registers.

B5.3.1 Floating-point System ID Register (FPSID)

In ARMv7, the FPSID Register provides top-level information about the floating-point implementation.

Note
 • In an ARMv7 implementation that includes one or both of the Advanced SIMD and VFP extensions

the Media and VFP Feature registers provide details of the implemented VFP architecture.

• The FPSID can be implemented in a system that provides only software emulation of the ARM
floating-point instructions.

The ARMv7 format of the FPSID is:

Implementer, bits [31:24]

Implementer codes are the same as those used for the Main ID Register, see:

• c0, Main ID Register (MIDR) on page B3-81, for a VMSA implementation

• c0, Main ID Register (MIDR) on page B4-32, for a PMSA implementation.

For an implementation by ARM this field is 0x41, the ASCII code for A.

Table B5-3 Advanced SIMD and VFP feature identification registers

System register Name Description

0b0000 FPSID See Floating-point System ID Register (FPSID)

0b0110 MVFR1 See Media and VFP Feature Register 1 (MVFR1) on page B5-38

0b0111 MVFR0 See Media and VFP Feature Register 0 (MVFR0) on page B5-36

Implementer

31 24 23 22 16 15 8 7 4 3 0

Subarchitecture Part number Variant Revision

SW
B5-34 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The CPUID Identification Scheme
SW, bit [23] Software flag. This bit is used to indicate that a system provides only software emulation of
the VFP floating-point instructions:

0 The system includes hardware support for VFP floating-point operations.

1 The system provides only software emulation of the VFP floating-point
instructions.

Subarchitecture, bits [22:16]

Subarchitecture version number. For an implementation by ARM, permitted values are:

0b0000000
VFPv1 architecture with an IMPLEMENTATION DEFINED subarchitecture.

Not permitted in an ARMv7 implementation.

0b0000001

VFPv2 architecture with Common VFP subarchitecture v1.

Not permitted in an ARMv7 implementation.

0b0000010

VFP architecture v3 or later with Common VFP subarchitecture v2. The VFP
architecture version is indicated by the MVFR0 and MVFR1 registers.

0b0000011

VFP architecture v3 or later with Null subarchitecture. The entire floating-point
implementation is in hardware, and no software support code is required. The
VFP architecture version is indicated by the MVFR0 and MVFR1 registers.

This value can be used only by an implementation that does not support the trap
enable bits in the FPSCR, see Floating-point Status and Control Register
(FPSCR) on page A2-28.

0b0000100

VFP architecture v3 or later with Common VFP subarchitecture v3. The VFP
architecture version is indicated by the MVFR0 and MVFR1 registers.

For a subarchitecture designed by ARM the most significant bit of this field, register
bit [22], is 0. Values with a most significant bit of 0 that are not listed here are reserved.

When the subarchitecture designer is not ARM, the most significant bit of this field, register
bit [22], must be 1. Each implementer must maintain its own list of subarchitectures it has
designed, starting at subarchitecture version number 0x40.

Part number, bits [15:8]

An IMPLEMENTATION DEFINED part number for the floating-point implementation, assigned
by the implementer.

Variant, bits [7:4]

An IMPLEMENTATION DEFINED variant number. Typically, this field is used to distinguish
between different production variants of a single product.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B5-35

The CPUID Identification Scheme
Revision, bits [3:0]

An IMPLEMENTATION DEFINED revision number for the floating-point implementation.

B5.3.2 Media and VFP Feature registers

The Media and VFP Feature registers describe the features provided by the Advanced SIMD and VFP
extensions, when an implementation includes either or both of these extensions. For details of the
implementation options for these extensions see Advanced SIMD and VFP extensions on page A2-20.

In VFPv2, it is IMPLEMENTATION DEFINED whether the Media and VFP Feature registers are implemented.

Note
 Often, the complete implementation of a VFP architecture uses support code to provide some VFP
functionality. In such an implementation, only the support code can provide full details of the supported
features. In this case the Media and VFP Feature registers are not used directly.

The Media and VFP Feature registers are described in:

• Media and VFP Feature Register 0 (MVFR0)

• Media and VFP Feature Register 1 (MVFR1) on page B5-38.

Media and VFP Feature Register 0 (MVFR0)

The format of the MVFR0 register is:

VFP rounding modes, bits [31:28]

Indicates the rounding modes supported by the VFP floating-point hardware. Permitted
values are:

0b0000 Only Round to Nearest mode supported, except that Round towards Zero mode
is supported for VCVT instructions that always use that rounding mode
regardless of the FPSCR setting.

0b0001 All rounding modes supported.

Short vectors, bits [27:24]

Indicates the hardware support for VFP short vectors. Permitted values are:

0b0000 Not supported.

0b0001 Short vector operation supported.

VFP
rounding
modes

Short
vectors

Square
root Divide

31 16 15 12 11 8 7 4 3 0
VFP

exception
trapping

Double-
precision

Single-
precision

A_SIMD
registers

28 27 24 23 20 19
B5-36 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The CPUID Identification Scheme
Square root, bits [23:20]

Indicates the hardware support for VFP square root operations. Permitted values are:

0b0000 Not supported in hardware.

0b0001 Supported.

Note
 • the FSQRTS instruction also requires the single-precision VFP attribute, bits [7:4]

• the FSQRTD instruction also requires the double-precision VFP attribute, bits [11:8].

Divide, bits [19:16]

Indicates the hardware support for VFP divide operations. Permitted values are:

0b0000 Not supported in hardware.

0b0001 Supported.

Note
 • the FDIVS instruction also requires the single-precision VFP attribute, bits [7:4]

• the FDIVD instruction also requires the double-precision VFP attribute, bits [11:8].

VFP exception trapping, bits [15:12]

Indicates whether the VFP hardware implementation supports exception trapping.
Permitted values are:

0b0000 Not supported. This is the value for VFPv3.

0b0001 Supported by the hardware. This is the value for VFPv3U, and for VFPv2.

When exception trapping is supported, support code is needed to handle the
trapped exceptions.

Note
 This value does not indicate that trapped exception handling is available.

Because trapped exception handling requires support code, only the support
code can provide this information.

Double-precision, bits [11:8]

Indicates the hardware support for VFP double-precision operations. Permitted values are:

0b0000 Not supported in hardware.

0b0001 Supported, VFPv2.

0b0010 Supported, VFPv3.

VFPv3 adds an instruction to load a double-precision floating-point constant,
and conversions between double-precision and fixed-point values.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B5-37

ARM_2010_Q2
Cross-Out

ARM_2010_Q2
Replacement Text
VSQRT.F32

ARM_2010_Q2
Cross-Out

ARM_2010_Q2
Replacement Text
VSQRT.F64

ARM_2010_Q2
Cross-Out

ARM_2010_Q2
Replacement Text
VDIV.F32

ARM_2010_Q2
Cross-Out

ARM_2010_Q2
Replacement Text
VDIV.F64

ARM_2010_Q2
Sticky Note
The instructions quoted in the Notes for the Square root and Divide fields used pre-UAL instruction syntax. These changes update these examples to use UAL syntax.

The CPUID Identification Scheme
A value of 0b0001 or 0b0010 indicates support for all VFP double-precision instructions in
the supported version of VFP, except that, in addition to this field being nonzero:

• FSQRTD is only available if the Square root field is 0b0001

• FDIVD is only available if the Divide field is 0b0001

• conversion between double-precision and single-precision is only available if the
single-precision field is nonzero.

Single-precision, bits [7:4]

Indicates the hardware support for VFP single-precision operations. Permitted values are:

0b0000 Not supported in hardware.

0b0001 Supported, VFPv2.

0b0010 Supported, VFPv3.

VFPv3 adds an instruction to load a single-precision floating-point constant,
and conversions between single-precision and fixed-point values.

A value of 0b0001 or 0b0010 indicates support for all VFP single-precision instructions in
the supported version of VFP, except that, in addition to this field being nonzero:

• FSQRTS is only available if the Square root field is 0b0001

• FDIVS is only available if the Divide field is 0b0001

• conversion between double-precision and single-precision is only available if the
double-precision field is nonzero.

A_SIMD registers, bits [3:0]

Indicates support for the Advanced SIMD register bank. Permitted values are:

0b0000 Not supported.

0b0001 Supported, 16 x 64-bit registers.

0b0010 Supported, 32 x 64-bit registers.

If this field is nonzero:

• all VFP LDC, STC, MCR, and MRC instructions are supported

• if the CPUID register shows that the MCRR and MRRC instructions are supported then the
corresponding VFP instructions are supported.

Media and VFP Feature Register 1 (MVFR1)

The format of the MVFR1 register is:

Bits [31:28] Reserved, RAZ.

Reserved,
RAZ

VFP
HPFP

A_SIMD
HPFP

A_SIMD
SPFP

31 16 15 12 11 8 7 4 3 0

A_SIMD
integer

A_SIMD
load/store

D_NaN
mode

FtZ
mode

28 27 24 23 20 19
B5-38 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2010_Q2
Cross-Out

ARM_2010_Q2
Replacement Text
VSQRT.F64

ARM_2010_Q2
Cross-Out

ARM_2010_Q2
Replacement Text
VDIV.F64

ARM_2010_Q2
Cross-Out

ARM_2010_Q2
Replacement Text
VSQRT.F32

ARM_2010_Q2
Cross-Out

ARM_2010_Q2
Replacement Text
VDIV.F32

ARM_2010_Q2
Sticky Note
The instructions quoted in the Notes for the Double-precision and Single-precision fields used pre-UAL instruction syntax. These changes update these examples to use UAL syntax.

The CPUID Identification Scheme
VFP HPFP, bits[27:24]

Indicates whether the VFP supports half-precision floating-point conversion operations.
Permitted values are:

0b0000 Not supported.

0b0001 Supported.

A_SIMD HPFP, bits[23:20]

Indicates whether Advanced SIMD supports half-precision floating-point conversion
operations. Permitted values are:

0b0000 Not supported.

0b0001 Supported. This value is only permitted if the A_SIMD SPFP field is 0b0001.

A_SIMD SPFP, bits [19:16]

Indicates whether the Advanced SIMD extension supports single-precision floating-point
operations. Permitted values are:

0b0000 Not supported.

0b0001 Supported. This value is only permitted if the A_SIMD integer field is 0b0001.

A_SIMD integer, bits [15:12]

Indicates whether the Advanced SIMD extension supports integer operations. Permitted
values are:

0b0000 Not supported.

0b0001 Supported.

A_SIMD load/store, bits [11:8]

Indicates whether the Advanced SIMD extension supports load/store instructions. Permitted
values are:

0b0000 Not supported.

0b0001 Supported.

D_NaN mode, bits [7:4]

Indicates whether the VFP hardware implementation supports only the Default NaN mode.
Permitted values are:

0b0000 Hardware supports only the Default NaN mode. If a VFP subarchitecture is
implemented its support code might include support for propagation of NaN
values.

0b0001 Hardware supports propagation of NaN values.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B5-39

The CPUID Identification Scheme
FtZ mode, bits [7:4]

Indicates whether the VFP hardware implementation supports only the Flush-to-Zero mode
of operation. Permitted values are:

0b0000 Hardware supports only the Flush-to-Zero mode of operation. If a VFP
subarchitecture is implemented its support code might include support for full
denormalized number arithmetic.

0b0001 Hardware supports full denormalized number arithmetic.

B5.3.3 Accessing the Advanced SIMD and VFP feature identification registers

You access the Advanced SIMD and VFP feature identification registers using the VMRS instruction, see
VMRS on page A8-658.

For example:

VMRS <Rt>, FPSID ; Read Floating-Point System ID Register
VMRS <Rt>, MVFR1 ; Read Media and VFP Feature Register 1
B5-40 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
3:0

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
B6-27 [PDF page 1585]

Chapter B6
System Instructions

This chapter describes the instructions that are only available, or that behave differently, in privileged
modes. It contains the following section:

• Alphabetical list of instructions on page B6-2.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B6-1

System Instructions
B6.1 Alphabetical list of instructions

This section lists every instruction that behaves differently in privileged modes, or that is only available in
privileged modes. For information about privileged modes see ARM processor modes and core registers on
page B1-6.
B6-2 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

System Instructions
B6.1.1 CPS

Change Processor State is available only in privileged modes. It changes one or more of the A, I, and F
interrupt disable bits and the mode bits of the CPSR, without changing the other CPSR bits.

enable = (im == ‘0’); disable = (im == ‘1’); changemode = FALSE;
affectA = (A == ‘1’); affectI = (I == ‘1’); affectF = (F == ‘1’);
if InITBlock() then UNPREDICTABLE;

if imod == ‘00’ && M == ‘0’ then SEE “Hint instructions”;
enable = (imod == ‘10’); disable = (imod == ‘11’); changemode = (M == ‘1’);
affectA = (A == ‘1’); affectI = (I == ‘1’); affectF = (F == ‘1’);
if imod == ‘01’ || InITBlock() then UNPREDICTABLE;

enable = (imod == ‘10’); disable = (imod == ‘11’); changemode = (M == ‘1’);
affectA = (A == ‘1’); affectI = (I == ‘1’); affectF = (F == ‘1’);
if (imod == ‘00’ && M == ‘0’) || imod == ‘01’ then UNPREDICTABLE;

Assembler syntax

CPS<effect><q> <iflags> {, #<mode>}
CPS<q> #<mode>

where:

<effect> The effect required on the A, I, and F bits in the CPSR. This is one of:

IE Interrupt Enable. This sets the specified bits to 0.

ID Interrupt Disable. This sets the specified bits to 1.

Encoding T1 ARMv6*, ARMv7
CPS<effect> <iflags> Not permitted in IT block.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 1 1 0 0 1 1 im (0) A I F

Encoding T2 ARMv6T2, ARMv7
CPS<effect>.W <iflags>{,#<mode>} Not permitted in IT block.
CPS #<mode> Not permitted in IT block.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 0 (1) (1) (1) (1) 1 0 (0) 0 (0) imod M A I F mode

Encoding A1 ARMv6*, ARMv7
CPS<effect> <iflags>{,#<mode>}

CPS #<mode>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 1 0 0 0 0 imod M 0 (0) (0) (0) (0) (0) (0) (0) A I F 0 mode
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B6-3

ARM_2010_Q3
Inserted Text
if A:I:F == '000' then UNPREDICTABLE;

ARM_2010_Q3
Inserted Text
if mode != '00000' && M == '0' then UNPREDICTABLE;
if (imod<1> == '1' && A:I:F == '000') || (imod<1> == '0' && A:I:F != '000') then UNPREDICTABLE;

ARM_2010_Q3
Inserted Text
if mode != '00000' && M == '0' then UNPREDICTABLE;
if (imod<1> == '1' && A:I:F == '000') || (imod<1> == '0' && A:I:F != '000') then UNPREDICTABLE;

System Instructions
If <effect> is specified, the bits to be affected are specified by <iflags>. The mode can
optionally be changed by specifying a mode number as <mode>.

If <effect> is not specified, then:

• <iflags> is not specified and interrupt settings are not changed

• <mode> specifies the new mode number.

<q> See Standard assembler syntax fields on page A8-7. A CPS instruction must be
unconditional.

<iflags> Is a sequence of one or more of the following, specifying which interrupt disable flags are
affected:

a Sets the A bit in the instruction, causing the specified effect on the CPSR.A
(asynchronous abort) bit.

i Sets the I bit in the instruction, causing the specified effect on the CPSR.I (IRQ
interrupt) bit.

f Sets the F bit in the instruction, causing the specified effect on the CPSR.F (FIQ
interrupt) bit.

<mode> The number of the mode to change to. If this option is omitted, no mode change occurs.

Operation

EncodingSpecificOperations();
if CurrentModeIsPrivileged() then
 cpsr_val = CPSR;
 if enable then
 if affectA then cpsr_val<8> = ‘0’;
 if affectI then cpsr_val<7> = ‘0’;
 if affectF then cpsr_val<6> = ‘0’;
 if disable then
 if affectA then cpsr_val<8> = ‘1’;
 if affectI then cpsr_val<7> = ‘1’;
 if affectF then cpsr_val<6> = ‘1’;
 if changemode then
 cpsr_val<4:0> = mode;
 CPSRWriteByInstr(cpsr_val, ‘1111’, TRUE);

Exceptions

None.

Hint instructions

If the imod field and the M bit in encoding T2 are '00' and'0' respectively, a hint instruction is encoded. To
determine which hint instruction, see Change Processor State, and hints on page A6-21.
B6-4 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

System Instructions
B6.1.2 LDM (exception return)

Load Multiple (exception return) loads multiple registers from consecutive memory locations using an
address from a base register. The SPSR of the current mode is copied to the CPSR. An address adjusted by
the size of the data loaded can optionally be written back to the base register.

The registers loaded include the PC. The word loaded for the PC is treated as an address and a branch occurs
to that address.

n = UInt(Rn); registers = register_list;
wback = (W == ‘1’); increment = (U == ‘1’); wordhigher = (P == U);
if n == 15 then UNPREDICTABLE;
if wback && registers<n> == ‘1’ && ArchVersion() >= 7 then UNPREDICTABLE;

Assembler syntax

LDM{<amode>}<c><q> <Rn>{!}, <registers_with_pc>^

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<amode> is one of:

DA Decrement After. The consecutive memory addresses end at the address in the
base register. For this instruction, FA, meaning Full Ascending, is equivalent to
DA. Encoded as P = 0, U = 0.

DB Decrement Before. The consecutive memory addresses end one word below the
address in the base register. For this instruction, EA, meaning Empty Ascending,
is equivalent to DB. Encoded as P = 1, U = 0.

IA Increment After. The consecutive memory addresses start at the address in the
base register. This is the default, and is normally omitted. For this instruction,
FD, meaning Full Descending, is equivalent to IA. Encoded as P = 0, U = 1.

IB Increment Before. The consecutive memory addresses start one word above the
address in the base register. For this instruction, ED, meaning Empty
Descending, is equivalent to IB. Encoded as P = 1, U = 1.

<Rn> The base register. This register can be the SP.

! Causes the instruction to write a modified value back to <Rn>. Encoded as W = 1.

If ! is omitted, the instruction does not change <Rn> in this way. Encoded as W = 0.

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
LDM{<amode>}<c> <Rn>{!},<registers_with_pc>^

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 0 0 P U 1 W 1 Rn 1 register_list
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B6-5

System Instructions
<registers_with_pc>

Is a list of one or more registers, separated by commas and surrounded by { and }. It
specifies the set of registers to be loaded. The registers are loaded with the lowest-numbered
register from the lowest memory address, through to the highest-numbered register from the
highest memory address. The PC must be specified in the register list, and the instruction
causes a branch to the address (data) loaded into the PC.

The pre-UAL syntax LDM<c>{<amode>} is equivalent to LDM{<amode>}<c>.

Note
 Instructions with similar syntax but without the PC included in <registers> are described in LDM (user
registers) on page B6-7.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 if CurrentModeIsUserOrSystem() then UNPREDICTABLE;
 length = 4*BitCount(registers) + 4;
 address = if increment then R[n] else R[n]-length;
 if wordhigher then address = address+4;
 for i = 0 to 14
 if registers<i> == ‘1’ then
 R[i] = MemA[address,4]; address = address + 4;
 new_pc_value = MemA[address,4];
 if wback && registers<n> == ‘0’ then R[n] = if increment then R[n]+length else R[n]-length;
 if wback && registers<n> == ‘1’ then R[n] = bits(32) UNKNOWN;
 CPSRWriteByInstr(SPSR[], ‘1111’, TRUE);
 BranchWritePC(new_pc_value);

Exceptions

Data Abort.
B6-6 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

System Instructions
B6.1.3 LDM (user registers)

Load Multiple (user registers) is UNPREDICTABLE in User or System modes. In exception modes, it loads
multiple User mode registers from consecutive memory locations using an address from a banked base
register. Writeback to the base register is not available with this instruction.

The registers loaded cannot include the PC.

n = UInt(Rn); registers = register_list; increment = (U == ‘1’); wordhigher = (P == U);
if n == 15 || BitCount(registers) < 1 then UNPREDICTABLE;

Assembler syntax

LDM{<amode>}<c><q> <Rn>, <registers_without_pc>^

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<amode> is one of:

DA Decrement After. The consecutive memory addresses end at the address in the
base register. For this instruction, FA, meaning Full Ascending, is equivalent to
DA. Encoded as P = 0, U = 0.

DB Decrement Before. The consecutive memory addresses end one word below the
address in the base register. For this instruction, EA, meaning Empty Ascending,
is equivalent to DB. Encoded as P = 1, U = 0.

IA Increment After. The consecutive memory addresses start at the address in the
base register. This is the default, and is normally omitted. For this instruction,
FD, meaning Full Descending, is equivalent to IA. Encoded as P = 0, U = 1.

IB Increment Before. The consecutive memory addresses start one word above the
address in the base register. For this instruction, ED, meaning Empty
Descending, is equivalent to IB. Encoded as P = 1, U = 1.

<Rn> The base register. This register can be the SP.

<registers_without_pc>

Is a list of one or more registers, separated by commas and surrounded by { and }. It
specifies the set of registers to be loaded by the LDM instruction. The registers are loaded with
the lowest-numbered register from the lowest memory address, through to the
highest-numbered register from the highest memory address. The PC must not be in the
register list.

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
LDM{<amode>}<c> <Rn>,<registers_without_pc>^

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 0 0 P U 1 (0) 1 Rn 0 register_list
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B6-7

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Inserted Text
The processor reads the base register value normally, using the current mode to determine the correct banked version of the register.

ARM_2009_Q2
Sticky Note
This change is a clarification of the intended meaning, and not a change to the specification.

System Instructions
The pre-UAL syntax LDM<c>{<amode>} is equivalent to LDM{<amode>}<c>.

Note
 Instructions with similar syntax but with the PC included in <registers> are described in LDM (exception
return) on page B6-5.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 if CurrentModeIsUserOrSystem() then UNPREDICTABLE;
 length = 4*BitCount(registers);
 address = if increment then R[n] else R[n]-length;
 if wordhigher then address = address+4;
 for i = 0 to 14
 if registers<i> == ‘1’ then // Load User mode (‘10000’) register
 Rmode[i, ‘10000’] = MemA[address,4]; address = address + 4;

Exceptions

Data Abort.
B6-8 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

System Instructions
B6.1.4 LDRBT, LDRHT, LDRSBT, LDRSHT, and LDRT

Even in privileged modes, loads from memory by these instructions are restricted in the same way as loads
from memory in User mode. This is encapsulated in the MemA_unpriv[] and MemU_unpriv[] pseudocode
functions. For details see Aligned memory accesses on page B2-31 and Unaligned memory accesses on
page B2-32.

For details of the instructions see:

• LDRBT on page A8-134

• LDRHT on page A8-158

• LDRSBT on page A8-166

• LDRSHT on page A8-174

• LDRT on page A8-176.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B6-9

System Instructions
B6.1.5 MRS

Move to Register from Special Register moves the value from the CPSR or SPSR of the current mode into
a general-purpose register.

d = UInt(Rd); read_spsr = (R == ‘1’);
if BadReg(d) then UNPREDICTABLE;

d = UInt(Rd); read_spsr = (R == ‘1’);
if d == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
MRS<c> <Rd>,<spec_reg>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 1 1 R (1) (1) (1) (1) 1 0 (0) 0 Rd (0) (0) (0) (0) (0) (0) (0) (0)

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
MRS<c> <Rd>,<spec_reg>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 1 0 R 0 0 (1) (1) (1) (1) Rd (0) (0) (0) (0) 0 0 0 0 (0) (0) (0) (0)
B6-10 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

System Instructions
Assembler syntax

MRS<c><q> <Rd>, <spec_reg>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<spec_reg> Is one of:
• APSR

• CPSR

• SPSR.

ARM recommends the APSR form when only the N, Z, C, V, Q, or GE[3:0] bits of the read
value are going to be used (see The Application Program Status Register (APSR) on
page A2-14).

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 if read_spsr then
 if CurrentModeIsUserOrSystem() then
 UNPREDICTABLE;
 else
 R[d] = SPSR[];
 else
 // CPSR is read with execution state bits other than E masked out.
 R[d] = CPSR AND ‘11111000 11111111 00000011 11011111’;

Exceptions

None.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B6-11

System Instructions
B6.1.6 MSR (immediate)

Move immediate value to Special Register moves selected bits of an immediate value to the CPSR or the
SPSR of the current mode.

if mask == ‘0000’ && R == ‘0’ then SEE “Related encodings”;
imm32 = ARMExpandImm(imm12); write_spsr = (R == ‘1’);
if mask == ‘0000’ then UNPREDICTABLE;
if n == 15 then UNPREDICTABLE;

Assembler syntax

MSR<c><q> <spec_reg>, #<const>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<spec_reg> Is one of:
• APSR_<bits>

• CPSR_<fields>

• SPSR_<fields>.

ARM recommends the APSR forms when only the N, Z, C, V, Q, and GE[3:0] bits are being
written. For more information, see The Application Program Status Register (APSR) on
page A2-14.

<const> The immediate value to be transferred to <spec_reg>. See Modified immediate constants in
ARM instructions on page A5-9 for the range of values.

<bits> Is one of nzcvq, g, or nzcvqg.

In the A and R profiles:

• APSR_nzcvq is the same as CPSR_f (mask == ’1000’)

• APSR_g is the same as CPSR_s (mask == ’0100’)

• APSR_nzcvqg is the same as CPSR_fs (mask == ’1100’).

<fields> Is a sequence of one or more of the following:

c mask<0> = '1' to enable writing of bits<7:0> of the destination PSR

x mask<1> = '1' to enable writing of bits<15:8> of the destination PSR

s mask<2> = '1' to enable writing of bits<23:16> of the destination PSR

f mask<3> = '1' to enable writing of bits<31:24> of the destination PSR.

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
MSR<c> <spec_reg>,#<const>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 1 1 0 R 1 0 mask (1) (1) (1) (1) imm12
B6-12 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Inserted Text
Related encodings See MSR (immediate), and hints on page A5-17 [PDF page 223].

ARM_2011_Q2
Sticky Note
The text inserted immediately before the Assembler syntax heading adds the Related encodings information referred to in this pseudocode.

System Instructions
Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 if write_spsr then
 SPSRWriteByInstr(imm32, mask);
 else
 CPSRWriteByInstr(imm32, mask, FALSE); // Does not affect execution state bits
 // other than E

Exceptions

None.

E bit

The CPSR.E bit is writable from any mode using an MSR instruction. Use of this to change its value is
deprecated. Use the SETEND instruction instead.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B6-13

System Instructions
B6.1.7 MSR (register)

Move to Special Register from ARM core register moves the value of a general-purpose register to the
CPSR or the SPSR of the current mode.

n = UInt(Rn); write_spsr = (R == ‘1’);
if mask == ‘0000’ then UNPREDICTABLE;
if BadReg(n) then UNPREDICTABLE;

n = UInt(Rn); write_spsr = (R == ‘1’);
if mask == ‘0000’ then UNPREDICTABLE;
if n == 15 then UNPREDICTABLE;

Assembler syntax

MSR<c><q> <spec_reg>, <Rn>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<spec_reg> Is one of:
• APSR_<bits>

• CPSR_<fields>

• SPSR_<fields>.

ARM recommends the APSR forms when only the N, Z, C, V, Q, and GE[3:0] bits are being
written. For more information, see The Application Program Status Register (APSR) on
page A2-14.

<Rn> Is the general-purpose register to be transferred to <spec_reg>.

<bits> Is one of nzcvq, g, or nzcvqg.

In the A and R profiles:

• APSR_nzcvq is the same as CPSR_f (mask == ’1000’)

• APSR_g is the same as CPSR_s (mask == ’0100’)

• APSR_nzcvqg is the same as CPSR_fs (mask == ’1100’).

Encoding T1 ARMv6T2, ARMv7

MSR<c> <spec_reg>,<Rn>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 0 R Rn 1 0 (0) 0 mask (0) (0) (0) (0) (0) (0) (0) (0)

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7

MSR<c> <spec_reg>,<Rn>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 1 0 R 1 0 mask (1) (1) (1) (1) (0) (0) (0) (0) 0 0 0 0 Rn
B6-14 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

System Instructions
<fields> Is a sequence of one or more of the following:

c mask<0> = '1' to enable writing of bits<7:0> of the destination PSR

x mask<1> = '1' to enable writing of bits<15:8> of the destination PSR

s mask<2> = '1' to enable writing of bits<23:16> of the destination PSR

f mask<3> = '1' to enable writing of bits<31:24> of the destination PSR.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 if write_spsr then
 SPSRWriteByInstr(R[n], mask);
 else
 CPSRWriteByInstr(R[n], mask, FALSE); // Does not affect execution state bits
 // other than E

Exceptions

None.

E bit

The CPSR.E bit is writable from any mode using an MSR instruction. Use of this to change its value is
deprecated. Use the SETEND instruction instead.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B6-15

System Instructions
B6.1.8 RFE

Return From Exception loads the PC and the CPSR from the word at the specified address and the following
word respectively. For information about memory accesses see Memory accesses on page A8-13.

n = UInt(Rn); wback = (W == ‘1’); increment = FALSE; wordhigher = FALSE;
if n == 15 then UNPREDICTABLE;
if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

n = UInt(Rn); wback = (W == ‘1’); increment = TRUE; wordhigher = FALSE;
if n == 15 then UNPREDICTABLE;
if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

n = UInt(Rn);
wback = (W == ‘1’); inc = (U == ‘1’); wordhigher = (P == U);
if n == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
RFEDB<c> <Rn>{!} Outside or last in IT block

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 0 0 W 1 Rn (1) (1) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)

Encoding T2 ARMv6T2, ARMv7
RFE{IA}<c> <Rn>{!} Outside or last in IT block

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 1 1 0 W 1 Rn (1) (1) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)

Encoding A1 ARMv6*, ARMv7
RFE{<amode>} <Rn>{!}

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 P U 0 W 1 Rn (0) (0) (0) (0) (1) (0) (1) (0) (0) (0) (0) (0) (0) (0) (0) (0)
B6-16 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2011_Q2
Sticky Note
An insertion made in the ARM_2008_Q4 edition of the markup added the test:
if CurrentInstrSet() == InstrSet_ThumbEE then UNPREDICTABLE;

However, this test is not required here because it is made in the Operation pseudcode on the next page.

ARM_2011_Q2
Sticky Note
An insertion made in the ARM_2008_Q4 edition of the markup added the test:
if CurrentInstrSet() == InstrSet_ThumbEE then UNPREDICTABLE;

However, this test is not required here because it is made in the Operation pseudcode on the next page.

System Instructions
Assembler syntax

RFE{<amode>}<c><q> <Rn>{!}

where:

<amode> is one of:

DA Decrement After. ARM code only. The consecutive memory addresses end at
the address in the base register. Encoded as P = 0, U = 0 in encoding A1.

DB Decrement Before. The consecutive memory addresses end one word below the
address in the base register. Encoding T1, or encoding A1 with P = 1, U = 0.

IA Increment After. The consecutive memory addresses start at the address in the
base register. This is the default, and is normally omitted. Encoding T2, or
encoding A1 with P = 0, U = 1.

IB Increment Before. ARM code only. The consecutive memory addresses start
one word above the address in the base register. Encoded as P = 1, U = 1 in
encoding A1.

<c><q> See Standard assembler syntax fields on page A8-7. An ARM RFE instruction must be
unconditional.

<Rn> The base register.

! Causes the instruction to write a modified value back to <Rn>. If ! is omitted, the instruction
does not change <Rn>.

RFEFA, RFEEA, RFEFD, and RFEED are pseudo-instructions for RFEDA, RFEDB, RFEIA, and RFEIB respectively,
referring to their use for popping data from Full Ascending, Empty Ascending, Full Descending, and Empty
Descending stacks.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 if !CurrentModeIsPrivileged() || CurrentInstrSet() == InstrSet_ThumbEE then
 UNPREDICTABLE;
 else
 address = if increment then R[n] else R[n]-8;
 if wordhigher then address = address+4;
 CPSRWriteByInstr(MemA[address+4,4], ‘1111’, TRUE);
 BranchWritePC(MemA[address,4]);
 if wback then R[n] = if increment then R[n]+8 else R[n]-8;

Exceptions

Data Abort.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B6-17

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Replacement Text
if wback then R[n] = if increment then R[n]+8 else R[n]-8;
 new_pc_value = MemA[address,4];
 CPSRWriteByInstr(MemA[address+4,4], '1111', TRUE);
 BranchWritePC(new_pc_value);

System Instructions
B6.1.9 SMC (previously SMI)

Secure Monitor Call causes a Secure Monitor exception. It is available only in privileged modes. An attempt
to execute this instruction in User mode causes an Undefined Instruction exception.

For details of the effects of a Secure Monitor exception see Secure Monitor Call (SMC) exception on
page B1-53.

imm32 = ZeroExtend(imm4, 32);
// imm32 is for assembly/disassembly only and is ignored by hardware
if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

imm32 = ZeroExtend(imm4, 32);
// imm32 is for assembly/disassembly only and is ignored by hardware

Encoding T1 Security Extensions (not in ARMv6K)
SMC<c> #<imm4>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 1 1 1 1 1 1 imm4 1 0 0 0 (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)

Encoding A1 Security Extensions
SMC<c> #<imm4>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 1 0 1 1 0 (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) 0 1 1 1 imm4
B6-18 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

System Instructions
Assembler syntax

SMC<c><q> #<imm4>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<imm4> Is a 4-bit immediate value. This is ignored by the ARM processor. It can be used by the SMC
exception handler (Secure Monitor code) to determine what service is being requested, but
this is not recommended.

The pre-UAL syntax SMI<c> is equivalent to SMC<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 if HaveSecurityExt() && CurrentModeIsPrivileged() then
 TakeSMCException(); // Secure Monitor Call if privileged
 else
 UNDEFINED;

Exceptions

Secure Monitor Call.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B6-19

ARM_2009_Q3
Cross-Out

ARM_2009_Q3
Replacement Text
{#}

System Instructions
B6.1.10 SRS

Store Return State stores the LR and SPSR of the current mode to the stack of a specified mode. For
information about memory accesses see Memory accesses on page A8-13.

wback = (W == ‘1’); increment = FALSE; wordhigher = FALSE;
// In Non-secure state, check for attempts to access Monitor mode (‘10110’), or FIQ
// mode (‘10001’) when the Security Extensions are reserving the FIQ registers. The
// definition of UNPREDICTABLE does not permit this to be a security hole.
if !IsSecure() && mode == ‘10110’ then UNPREDICTABLE;
if !IsSecure() && mode == ‘10001’ && NSACR.RFR == ‘1’ then UNPREDICTABLE;

wback = (W == ‘1’); increment = TRUE; wordhigher = FALSE;
// In Non-secure state, check for attempts to access Monitor mode (‘10110’), or FIQ
// mode (‘10001’) when the Security Extensions are reserving the FIQ registers. The
// definition of UNPREDICTABLE does not permit this to be a security hole.
if !IsSecure() && mode == ‘10110’ then UNPREDICTABLE;
if !IsSecure() && mode == ‘10001’ && NSACR.RFR == ‘1’ then UNPREDICTABLE;

wback = (W == ‘1’); inc = (U == ‘1’); wordhigher = (P == U);
// In Non-secure state, check for attempts to access Monitor mode (‘10110’), or FIQ
// mode (‘10001’) when the Security Extensions are reserving the FIQ registers. The
// definition of UNPREDICTABLE does not permit this to be a security hole.
if !IsSecure() && mode == ‘10110’ then UNPREDICTABLE;
if !IsSecure() && mode == ‘10001’ && NSACR.RFR == ‘1’ then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
SRSDB<c> SP{!},#<mode>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 0 0 W 0 (1) (1) (0) (1) (1) (1) (0) (0) (0) (0) (0) (0) (0) (0) (0) mode

Encoding T2 ARMv6T2, ARMv7
SRS{IA}<c> SP{!},#<mode>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 1 1 0 W 0 (1) (1) (0) (1) (1) (1) (0) (0) (0) (0) (0) (0) (0) (0) (0) mode

Encoding A1 ARMv6*, ARMv7
SRS{<amode>} SP{!},#<mode>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 P U 1 W 0 (1) (1) (0) (1) (0) (0) (0) (0) (0) (1) (0) (1) (0) (0) (0) mode
B6-20 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2011_Q2
Sticky Note
An insertion made in the ARM_2008_Q4 edition of the Errata document added the test:
if CurrentInstrSet() == InstrSet_ThumbEE then UNPREDICTABLE;

However, this test is not required here because it is made in the Operation pseudcode on the next page. Therefore that insertion has been deleted.

ARM_2011_Q2
Sticky Note
An insertion made in the ARM_2008_Q4 edition of the Errata document added the test:
if CurrentInstrSet() == InstrSet_ThumbEE then UNPREDICTABLE;

However, this test is not required here because it is made in the Operation pseudcode on the next page. Therefore that insertion has been deleted.

System Instructions
Assembler syntax

SRS{<amode>}<c><q> SP{!}, #<mode>

where:

<amode> is one of:

DA Decrement After. ARM code only. The consecutive memory addresses end at
the address in the base register. Encoded as P = 0, U = 0 in encoding A1.

DB Decrement Before. The consecutive memory addresses end one word below the
address in the base register. Encoding T1, or encoding A1 with P = 1, U = 0.

IA Increment After. The consecutive memory addresses start at the address in the
base register. This is the default, and is normally omitted. Encoding T2, or
encoding A1 with P = 0, U = 1.

IB Increment Before. ARM code only. The consecutive memory addresses start
one word above the address in the base register. Encoded as P = 1, U = 1 in
encoding A1.

<c><q> See Standard assembler syntax fields on page A8-7. An ARM SRS instruction must be
unconditional.

! Causes the instruction to write a modified value back to the base register (encoded as W
= 1). If ! is omitted, the instruction does not change the base register (encoded as W = 0).

<mode> The number of the mode whose banked SP is used as the base register. For details of
processor modes and their numbers see ARM processor modes on page B1-6.

SRSFA, SRSEA, SRSFD, and SRSED are pseudo-instructions for SRSIB, SRSIA, SRSDB, and SRSDA respectively,
referring to their use for pushing data onto Full Ascending, Empty Ascending, Full Descending, and Empty
Descending stacks.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 if CurrentModeIsUserOrSystem() || CurrentInstrSet() == InstrSet_ThumbEE then
 UNPREDICTABLE;
 else
 base = Rmode[13,mode];
 address = if increment then base else base-8;
 if wordhigher then address = address+4;
 MemA[address,4] = LR;
 MemA[address+4,4] = SPSR[];
 if wback then Rmode[13] = if increment then base+8 else base-8;

Exceptions

Data Abort.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B6-21

ARM_2009_Q1
Inserted Text
,mode

System Instructions
B6.1.11 STM (user registers)

Store Multiple (user registers) is UNPREDICTABLE in User or System modes. In exception modes, it stores
multiple User mode registers to consecutive memory locations using an address from a banked base register.
Writeback to the base register is not available with this instruction.

n = UInt(Rn); registers = register_list; increment = (U == ‘1’); wordhigher = (P == U);
if n == 15 || BitCount(registers) < 1 then UNPREDICTABLE;

Assembler syntax

STM{amode}<c><q> <Rn>, <registers>^

where:

<c><q> See Standard assembler syntax fields on page A8-7.

amode is one of:

DA Decrement After. The consecutive memory addresses end at the address in the
base register. For this instruction, ED, meaning Empty Descending, is equivalent
to DA. Encoded as P = 0, U = 0.

DB Decrement Before. The consecutive memory addresses end one word below the
address in the base register. For this instruction, FD, meaning Full Descending,
is equivalent to DB. Encoded as P = 1, U = 0.

IA Increment After. The consecutive memory addresses start at the address in the
base register. This is the default, and is normally omitted. For this instruction,
EA, meaning Empty Ascending, is equivalent to IA. Encoded as P = 0, U = 1.

IB Increment Before. The consecutive memory addresses start one word above the
address in the base register. For this instruction, FA, meaning Full Ascending, is
equivalent to IB. Encoded as P = 1, U = 1.

<Rn> The base register. This register can be the SP.

<registers> Is a list of one or more registers, separated by commas and surrounded by { and }. It
specifies the set of registers to be stored by the STM instruction. The registers are stored with
the lowest-numbered register to the lowest memory address, through to the
highest-numbered register to the highest memory address.

The pre-UAL syntax STM<c>{amode} is equivalent to STM{amode}<c>.

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
STM{amode}<c> <Rn>,<registers>^

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 0 0 P U 1 (0) 0 Rn register_list
B6-22 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q1
Inserted Text
<

ARM_2009_Q1
Inserted Text
<

ARM_2009_Q1
Inserted Text
<

ARM_2009_Q1
Inserted Text
<

ARM_2009_Q1
Inserted Text
<

ARM_2009_Q1
Inserted Text
>

ARM_2009_Q1
Inserted Text
>

ARM_2009_Q1
Inserted Text
>

ARM_2009_Q1
Inserted Text
>

ARM_2009_Q1
Inserted Text
>

ARM_2009_Q2
Inserted Text
 The processor reads the base register value normally, using the current mode to determine the correct banked version of the register.

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Sticky Note
This change is a clarification of the intended meaning, and not a change to the specification.

System Instructions
Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 if CurrentModeIsUserOrSystem() then UNPREDICTABLE;
 length = 4*BitCount(registers);
 address = if increment then R[n] else R[n]-length;
 if wordhigher then address = address+4;
 for i = 0 to 14
 if registers<i> == ‘1’ then / Store User mode (‘10000’) register
 MemA[address,4] = Rmode[i, ‘10000’];
 address = address + 4;
 if registers<15> == ‘1’ then
 MemA[address,4] = PCStoreValue();

Exceptions

Data Abort.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B6-23

System Instructions
B6.1.12 STRBT, STRHT, and STRT

Even in privileged modes, stores to memory by these instructions are restricted in the same way as stores to
memory in User mode. This is encapsulated in the MemA_unpriv[] and MemU_unpriv[] pseudocode functions.
For details see Aligned memory accesses on page B2-31 and Unaligned memory accesses on page B2-32.

For details of the instructions see:

• STRBT on page A8-394

• STRHT on page A8-414

• STRT on page A8-416.
B6-24 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

System Instructions
B6.1.13 SUBS PC, LR and related instructions

The SUBS PC, LR, #<const> instruction provides an exception return without the use of the stack. It subtracts
the immediate constant from LR, branches to the resulting address, and also copies the SPSR to the CPSR.
The ARM instruction set contains similar instructions based on other data-processing operations, with a
wider range of operands, or both. The use of these other instructions is deprecated, except for MOVS PC, LR.

n = 14; imm32 = ZeroExtend(imm8, 32); register_form = FALSE; opcode = ‘0010’; // = SUB
if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

n = UInt(Rn); imm32 = ARMExpandImm(imm12); register_form = FALSE;

n = UInt(Rn); m = UInt(Rm); register_form = TRUE;
(shift_t, shift_n) = DecodeImmShift(type, imm5);

Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A8-7.

Encoding T1 ARMv6T2, ARMv7
SUBS<c> PC,LR,#<imm8> Outside or last in IT block

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 1 0 1 (1) (1) (1) (0) 1 0 (0) 0 (1) (1) (1) (1) imm8

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
<opc1>S<c> PC,<Rn>,#<const>

<opc2>S<c> PC,#<const>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 1 opcode 1 Rn 1 1 1 1 imm12

Encoding A2 ARMv4*, ARMv5T*, ARMv6*, ARMv7
<opc1>S<c> PC,<Rn>,<Rm>{,<shift>}

<opc2>S<c> PC,<Rm>{,<shift>}

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 opcode 1 Rn 1 1 1 1 imm5 type 0 Rm

SUBS<c><q> PC, LR, #<const> Encodings T1, A1
<opc1>S<c><q> PC, <Rn>, #<const> Encoding A1
<opc1>S<c><q> PC, <Rn>, <Rm> {,<shift>} Encoding A2, deprecated
<opc2>S<c><q> PC, #<const> Encoding A1, deprecated
<opc2>S<c><q> PC, <Rm> {,<shift>} Encoding A2
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B6-25

ARM_2008_Q4
Inserted Text
if CurrentInstrSet() == InstrSet_ThumbEE then UNPREDICTABLE;

System Instructions
<opc1> The operation. <opc1> is one of ADC, ADD, AND, BIC, EOR, ORR, RSB, RSC, SBC, and SUB. Use of all
of these operations except SUB is deprecated.

<opc2> The operation. <opc2> is MOV or MVN. Use of MVN is deprecated.

<Rn> The first operand register. Use of any register except LR is deprecated.

<const> The immediate constant. For encoding T1, <const> is in the range 0-255. See Modified
immediate constants in ARM instructions on page A5-9 for the range of available values in
encoding A1.

<Rm> The optionally shifted second or only operand register. Use of any register except LR is
deprecated.

<shift> The shift to apply to the value read from <Rm>. If absent, no shift is applied. The shifts and
how they are encoded are described in Shifts applied to a register on page A8-10. Use of
<shift> is deprecated.

The value of the operation <opc1> or <opc2> is encoded in the opcode field of the instruction. For the opcode
values for different operations see Operation on page B6-6.

In Thumb code, MOVS<c><q> PC,LR is a pseudo-instruction for SUBS<c><q> PC,LR,#0.

The pre-UAL syntax <opc1><c>S is equivalent to <opc1>S<c>. The pre-UAL syntax <opc2><c>S is equivalent
to <opc2>S<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 if CurrentInstrSet() == InstrSet_ThumbEE then
 UNPREDICTABLE;
 operand2 = if register_form then Shift(R[m], shift_t, shift_n, APSR.C) else imm32;
 case opcode of
 when ‘0000’ result = R[n] AND operand2; // AND
 when ‘0001’ result = R[n] EOR operand2; // EOR
 when ‘0010’ (result, -, -) = AddWithCarry(R[n], NOT(operand2), ‘1’); // SUB
 when ‘0011’ (result, -, -) = AddWithCarry(NOT(R[n]), operand2, ‘1’); // RSB
 when ‘0100’ (result, -, -) = AddWithCarry(R[n], operand2, ‘0’); // ADD
 when ‘0101’ (result, -, -) = AddWithCarry(R[n], operand2, APSR.c); // ADC
 when ‘0110’ (result, -, -) = AddWithCarry(R[n], NOT(operand2), APSR.C); // SBC
 when ‘0111’ (result, -, -) = AddWithCarry(NOT(R[n]), operand2, APSR.C); // RSC
 when ‘1100’ result = R[n] OR operand2; // ORR
 when ‘1101’ result = operand2; // MOV
 when ‘1110’ result = R[n] AND NOT(operand2); // BIC
 when ‘1111’ result = NOT(operand2); // MVN
 CPSRWriteByInstr(SPSR[], ‘1111’, TRUE);
 BranchWritePC(result);

Exceptions

None.
B6-26 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
Constant shifts

ARM_2009_Q2
Inserted Text
 [PDF page 322]

System Instructions
B6.1.14 VMRS

Move to ARM core register from Advanced SIMD and VFP extension System Register moves the value of
an extension system register to a general-purpose register.

t = UInt(Rt);
if t == 13 && CurrentInstrSet() != InstrSet_ARM then UNPREDICTABLE;
if t == 15 && reg != ‘0001’ then UNPREDICTABLE;

Encoding T1 / A1 VFPv2, VFPv3, Advanced SIMD
VMRS<c> <Rt>,<spec_reg>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 1 1 1 reg Rt 1 0 1 0 (0) (0) (0) 1 (0) (0) (0) (0)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 1 0 1 1 1 1 reg Rt 1 0 1 0 (0) (0) (0) 1 (0) (0) (0) (0)
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B6-27

System Instructions
Assembler syntax

VMRS<c><q> <Rt>, <spec_reg>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rt> The destination ARM core register. This register can be R0-R14.

If <spec_reg> is FPSCR, it is also permitted to be APSR_nzcv, encoded as Rt = ’1111’. This
instruction transfers the FPSCR N, Z, C, and V flags to the APSR N, Z, C, and V flags.

<spec_reg> Is one of:

FPSID reg = ’0000’

FPSCR reg = ’0001’

MVFR1 reg = ’0110’

MVFR0 reg = ’0111’

FPEXC reg = ’1000’.

If the Common VFP subarchitecture is implemented, see Subarchitecture additions to the
VFP system registers on page AppxB-15 for additional values of <spec_reg>.

The pre-UAL instruction FMSTAT is equivalent to VMRS APSR_nzcv, FPSCR.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 if reg == ‘0001’ then // FPSCR
 CheckVFPEnabled(TRUE); SerializeVFP(); VFPExcBarrier();
 if t == 15 then
 APSR.N = FPSCR.N; APSR.Z = FPSCR.Z; APSR.C = FPSCR.C; APSR.V = FPSCR.V;
 else
 R[t] = FPSCR;
 else // Non-FPSCR registers are privileged-only and not affected by FPEXC.EN
 CheckVFPEnabled(FALSE);
 if !CurrentModeIsPrivileged() then UNDEFINED;
 case reg of
 when ‘0000’ SerializeVFP(); R[t] = FPSID;
 // ‘0001’ already dealt with above
 when ‘001x’ UNPREDICTABLE;
 when ‘010x’ UNPREDICTABLE;
 when ‘0110’ SerializeVFP(); R[t] = MVFR1;
 when ‘0111’ SerializeVFP(); R[t] = MVFR0;
 when ‘1000’ SerializeVFP(); R[t] = FPEXC;
 otherwise SUBARCHITECTURE_DEFINED register access;

Exceptions

Undefined Instruction.
B6-28 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

System Instructions
B6.1.15 VMSR

Move to Advanced SIMD and VFP extension System Register from ARM core register moves the value of
a general-purpose register to a VFP system register.

t = UInt(Rt);
if t == 15 || (t == 13 && CurrentInstrSet() != InstrSet_ARM) then UNPREDICTABLE;

Encoding T1 / A1 VFPv2, VFPv3, Advanced SIMD

VMSR<c> <spec_reg>,<Rt>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 1 1 0 reg Rt 1 0 1 0 (0) (0) (0) 1 (0) (0) (0) (0)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 1 0 1 1 1 0 reg Rt 1 0 1 0 (0) (0) (0) 1 (0) (0) (0) (0)
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. B6-29

System Instructions
Assembler syntax

VMSR<c><q> <spec_reg>, <Rt>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<spec_reg> Is one of:

FPSID reg = ’0000’

FPSCR reg = ’0001’

FPEXC reg = ’1000’.

If the Common VFP subarchitecture is implemented, see Subarchitecture additions to the
VFP system registers on page AppxB-15 for additional values of <spec_reg>.

<Rt> The general-purpose register to be transferred to <spec_reg>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 if reg == ‘0001’ then // FPSCR
 CheckVFPEnabled(TRUE); SerializeVFP(); VFPExcBarrier();
 FPSCR = R[t];
 else // Non-FPSCR registers are privileged-only and not affected by FPEXC.EN
 CheckVFPEnabled(FALSE);
 if !CurrentModeIsPrivileged() then UNDEFINED;
 case reg of
 when ‘0000’ SerializeVFP();
 // ‘0001’ already dealt with above
 when ‘001x’ UNPREDICTABLE;
 when ‘01xx’ UNPREDICTABLE;
 when ‘1000’ SerializeVFP(); FPEXC = R[t];
 otherwise SUBARCHITECTURE_DEFINED register access;

Exceptions

Undefined Instruction.
B6-30 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Part C
Debug Architecture

Chapter C1
Introduction to the ARM Debug Architecture

This chapter introduces part C of this manual, and the ARM Debug architecture. It contains the following
sections:

• Scope of part C of this manual on page C1-2

• About the ARM Debug architecture on page C1-3

• Security Extensions and debug on page C1-8

• Register interfaces on page C1-9.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C1-1

Introduction to the ARM Debug Architecture
C1.1 Scope of part C of this manual

Part C of this manual defines the debug features of ARMv7. However, ARM recognizes that many
debuggers require compatibility with previous versions of the ARM Debug architecture. Therefore, this part
includes information about three versions of the ARM Debug architecture:

• v7 Debug

• v6.1 Debug

• v6 Debug

These three versions of the Debug architecture are introduced in Major differences between the ARMv6 and
ARMv7 Debug architectures on page C1-7.

In part C of this manual:

• ARMv6 is used sometimes to refer to an implementation that includes either v6.1 Debug or
v6 Debug.

• ARMv7 is used sometimes to refer to an implementation that includes v7 Debug.

Note
 • v6.1 Debug and v6 Debug are two different versions of the Debug architecture for the ARMv6

architecture. They might be described as:

— ARMv6, v6.1 Debug

— ARMv6, v6 Debug.

Throughout this part the descriptions v6.1 Debug and v6 Debug are used, for brevity.

• Any processor that implements the ARMv7 architecture must implement v7 Debug. Information
about v6.1 Debug and v6 Debug is given:

— to enable developers to produce debuggers that are backwards compatible with these Debug
architecture versions

— as reference material for processors that implement the ARMv6 architecture.
C1-2 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Introduction to the ARM Debug Architecture
C1.2 About the ARM Debug architecture

ARM processors implement two types of debug support:

Invasive debug All debug features that permit modification of processor state. For more
information, see Invasive debug.

Non-invasive debug All debug features that permit data and program flow observation, especially trace
support. For more information, see Non-invasive debug on page C1-5.

The following sections introduce invasive and non-invasive debug. Summary of the ARM debug component
descriptions on page C1-7 gives a quick reference summary of the rest of this part of this manual.

C1.2.1 Invasive debug

The invasive debug component of the ARM Debug architecture is intended primarily for run-control
debugging.

Note
 In this part of this manual, invasive debug is often referred to simply as debug. For example, debug events,
debug exceptions, and Debug state are all part of the invasive debug implementation.

The programmers’ model can be used to manage and control debug events. Watchpoints and breakpoints are
two examples of debug events. Debug events are described in Chapter C3 Debug Events.

You can configure the processor through the DBGDSCR into one of two debug-modes:

Monitor debug-mode

In Monitor debug-mode, a debug event causes a debug exception to occur:

• a debug exception that relates to instruction execution generates a Prefetch Abort
exception

• a debug exception that relates to a data access generates a Data Abort exception.

Debug exceptions are described in Chapter C4 Debug Exceptions.

Halting debug-mode

In Halting debug-mode, a debug event causes the processor to enter a special Debug state.
When the processor is in Debug state, the processor ceases to execute instructions from the
program counter location, but is instead controlled through the external debug interface, in
particular the Instruction Transfer Register (DBGITR). This enables an external agent, such
as a debugger, to interrogate processor context, and control all subsequent instruction
execution. Because the processor is stopped, it ignores the system and cannot service
interrupts.

Debug state is described in Chapter C5 Debug State.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C1-3

Introduction to the ARM Debug Architecture
A debug solution can use a mixture of the two methods, for example to support an OS or RTOS with both:

• Running System Debug (RSD) using Monitor debug-mode

• Halting debug-mode support available as a fallback for system failure and boot time debug.

The architecture supports the ability to switch between these two debug-modes.

When no debug-mode is selected, debug is restricted to simple monitor solutions. These are usually ROM
or Flash-based. Such a monitor might use standard system features, such as a UART or Ethernet connection,
to communicate with a debug host. Alternatively, it might use the Debug Communications Channel (DCC)
as an out-of-band communications channel to the host. This minimizes the debug requirement on system
resources.

All versions of the Debug architecture provide a software interface that includes:

• a Debug Identification Register (DBGDIDR)

• status and control registers, including the Debug Status and Control Register (DBGDSCR)

• hardware breakpoint and watchpoint support

• the DCC.

In addition, the v7 Debug software interface includes reset, power-down and operating system debug
support features.

The Debug architecture requires an external debug interface that supports access to the programmers’
model.

This forms the basis of the Debug Programmers' Model (DPM) for ARMv6 and ARMv7.

Description of invasive debug features

The following chapters describe the invasive debug implementation:

• Chapter C2 Invasive Debug Authentication

• Chapter C3 Debug Events

• Chapter C4 Debug Exceptions

• Chapter C5 Debug State.

In addition, see:

• Chapter C6 Debug Register Interfaces for a description of the register interfaces to the debug
components

• Chapter C10 Debug Registers Reference for descriptions of the registers used to configure and
control debug operations

• Appendix A Recommended External Debug Interface for a description of the recommended external
interface to the debug components.
C1-4 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Introduction to the ARM Debug Architecture
C1.2.2 Non-invasive debug

Non-invasive debug includes all debug features that permit data and program flow to be observed, but that
do not permit modification of the main processor state.

The v7 Debug architecture defines three areas of non-invasive debug:

• Instruction trace and, in some implementations, data trace. Trace support is an architecture extension
typically implemented using a trace macrocell, see Trace.

• Sample-based profiling, see Sample-based profiling on page C1-6.

• Performance monitors, see Performance monitors on page C1-6.

A processor implementation might include other forms of non-invasive debug.

Chapter C7 Non-invasive Debug Authentication describes the authentication of non-invasive debug
operations.

Trace

Trace support is an architecture extension. This manual describes such an extension as a trace macrocell. A
trace macrocell constructs a real-time trace stream corresponding to the operation of the processor. It is
IMPLEMENTATION DEFINED whether the trace stream is:

• stored locally in an Embedded Trace Buffer (ETB) for independent download and analysis

• exported directly through a trace port to a Trace Port Analyzer (TPA) and its associated host based
trace debug tools.

Typically, use of a trace macrocell is non-invasive. Development tools can connect to the trace macrocell,
configure it, capture trace and download the trace without affecting the operation of the processor in any
way. A trace macrocell provides an enhanced level of runtime system observation and debug granularity. It
is particularly useful in cases where:

• Stopping the processor affects the behavior of the system.

• There is insufficient state visible in a system by the time a problem is detected to be able to determine
its cause. Trace provides a mechanism for system logging and back tracing of faults.

Trace might also be used to perform analysis of code running on the processor, such as performance analysis
or code coverage analysis.

Typically, a trace architecture defines:

• the trace macrocell programmers’ model

• permitted trace protocol formats

• the physical trace port connector.

The following documents define the ARM trace architectures:

• Embedded Trace Macrocell Architecture Specification

• CoreSight Program Flow Trace Architecture Specification.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C1-5

Introduction to the ARM Debug Architecture
The ARM trace architectures have a common identification mechanism. This means development tools can
detect which architecture is implemented.

Sample-based profiling

Sample-based profiling is an optional non-invasive component of the Debug architecture, that enables debug
software to profile a program. For more information, see Chapter C8 Sample-based Profiling.

Performance monitors

Performance monitors were implemented in several processors before ARMv7, but before ARMv7 they did
not form part of the architecture. The ARMv7 form of the monitors, described here, follows those
implementations with minor modifications to enable future expansion.

The basic form of the performance monitors is:

• A cycle counter, with the ability to count every cycle or every sixty-fourth cycle.

• A number of event counters. The event counted by each counter is programmable:

— Previous implementations provided up to four counters

— In ARMv7, space is provided for up to 31 counters. The actual number of counters is
IMPLEMENTATION DEFINED, and an identification mechanism is provided.

• Controls for

— enabling and resetting counters

— flagging overflows

— enabling interrupts on overflow.

The cycle counter can be enabled independently from the event counters.

The set of events that can be monitored is divided into:

• events that are likely to be consistent across many microarchitectures

• other events, that are likely to be implementation specific.

As a result, the architecture defines a common set of events to be used across many microarchitectures, and
a large space reserved for IMPLEMENTATION DEFINED events. The full set of events for any given
implementation is IMPLEMENTATION DEFINED. There is no requirement to implement any of the common set
of events, but the numbers allocated for the common set of events must not be used except as defined.

Chapter C9 Performance Monitors describes the performance monitors.
C1-6 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Introduction to the ARM Debug Architecture
C1.2.3 Major differences between the ARMv6 and ARMv7 Debug architectures

ARMv6 is the first version of the ARM architecture to include debug. The introduction of the ARM
architecture Security Extensions extended the ARMv6 Debug architecture:

• ARMv6 processors without the Security Extensions implement v6 Debug

• ARMv6 processors with the Security Extensions implement v6.1 Debug.

ARMv7 introduces additional extensions to support developments in the debug environment.

The main change in the Debug architecture is the specification of new forms of external debug interface.
ARMv6 Debug does not require a particular debug interface, but can be implemented with access from a
JTAG interface as defined in IEEE Standard Test Access Port and Boundary Scan Architecture (JTAG).
However, systems such as the ARM CoreSight™ architecture require changes in the debug interface. For
more information about the CoreSight architecture see the CoreSight Architecture Specification.
ARMv7 Debug addresses some of the aims of the CoreSight architecture, such as a more system-centric
view of debug, and improved debug of powered-down systems.

v7 Debug also introduces an architecture extension to provide performance monitors.

C1.2.4 Summary of the ARM debug component descriptions

Table C1-1 shows the main components of v7 Debug, and where they are described.

For more information, see:

• Chapter C10 Debug Registers Reference

• Appendix A Recommended External Debug Interface.

Table C1-1 v7 Debug subarchitectures

Component Status Type Reference

Run-control Debug Required Invasive Chapter C2 Invasive Debug Authentication

Chapter C3 Debug Events

Chapter C4 Debug Exceptions

Chapter C5 Debug State

Chapter C6 Debug Register Interfaces

Trace Optional Non-invasivea Trace on page C1-5

Sample-based profiling Optional Non-invasivea Chapter C8 Sample-based Profiling

Performance monitors Optional Non-invasivea Chapter C9 Performance Monitors

a. For information about authentication of these components see Chapter C7 Non-invasive Debug Authentication.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C1-7

Introduction to the ARM Debug Architecture
C1.3 Security Extensions and debug

Security Extensions debug enables you to not permit invasive debug events and non-invasive debug
operations independently in either:

• In all processor modes in Secure state.

• In Secure privileged modes but not in Secure User mode. In v7 Debug, for invasive debug events that
cause entry to Debug state:

— support for not permitting these events is optional

— if an implementation does support not permitting these events the use of them is deprecated.

This is controlled by two control bits in the Secure Debug Enable Register and, in the recommended external
debug interface, four input signals:

• the Secure User Invasive Debug Enable bit, SDER.SUIDEN

• the Secure User Non-invasive Debug Enable bit, SDER.SUNIDEN

• in the recommended external debug interface:

— the Debug Enable signal, DBGEN
— the Non-Invasive Debug Enable signal, NIDEN

— the Secure Privileged Invasive Debug Enable signal, SPIDEN

— the Secure Privileged Non-Invasive Debug Enable signal, SPNIDEN.

For more information, see:

• Chapter C2 Invasive Debug Authentication

• Chapter C7 Non-invasive Debug Authentication

• c1, Secure Debug Enable Register (SDER) on page B3-108 for details of the SUIDEN and SUNIDEN
control bits

• Authentication signals on page AppxA-3 for details of the DBGEN, NIDEN, SPIDEN and
SPNIDEN signals.
C1-8 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Introduction to the ARM Debug Architecture
C1.4 Register interfaces

This section gives a brief description of the different debug register interfaces defined by v7 Debug. The
most important distinction is between:

• the external debug interface, that defines how an external debugger can access the v7 Debug
resources

• the processor interface, that describes how an ARMv7 processor can access its own debug resources.

For v7 Debug, ARM recommends an external debug interface based on the ARM Debug Interface v5
Architecture Specification (ADIv5). The most significant difference between ADIv5 and the interface
recommended by v6 Debug and v6.1 Debug is that ADIv5 supports debug over power-down of the
processor.

Although the ADIv5 interface is not required for compliance with ARMv7, the ARM RealView® tools
require this interface to be implemented.

ADIv5 supports both a JTAG wire interface and a low pin-count Serial Wire (SW) interface. The RealView
tools support either wire interface.

An ADIv5 interface enables a debug object, such as an ARMv7 processor, to abstract a set of resources as
a memory-mapped peripheral. Accesses to debug resources are made as 32-bit read/write transfers.
Power-down debug is supported by introducing the abstraction that accesses to certain resources can return
an error response when they are unavailable, just as a memory-mapped peripheral can return a
slave-generated error response in exceptional circumstances.

v7 Debug requires software executing on the processor to be able to access all debug registers. To provide
access to a particular basic subset of debug registers, v7 Debug requires implementation of the Baseline
Coprocessor 14 (CP14) Interface, see The Baseline CP14 debug register interface on page C6-32. To
provide access to the rest of the debug registers v7 Debug permits one of two options:

• An Extended CP14 interface. This is similar to the requirement of v6 Debug and v6.1 Debug.

• A memory-mapped interface.

An implementation can include both of these options.

ARMv7 does not permit all combinations of debug, trace, and performance monitor register interfaces.
There are three options for ARMv7 implementations, shown in Table C1-2 on page C1-10. In a number of
cases an optional memory-mapped interface is permitted, indicated by brackets. ARM recommends that if
the optional memory-mapped interface is implemented for either the debug interface or the trace interface
then it is implemented for both of these interfaces.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C1-9

Introduction to the ARM Debug Architecture
Table C1-2 Options for interfacing to debug in ARMv7

Processor interface to debug registers
Processor interface
to trace registers

Processor interface to
performance monitor

Baseline CP14 + Memory-mapped (Memory-mapped)a CP15

Baseline CP14 + Extended CP14 (+ Memory-mapped)a Memory-mapped)a CP15

Baseline CP14 + Extended CP14 (+ Memory-mapped)a CP14
(+ Memory-mapped)a

CP15

a. Interfaces shown in brackets are optional, see text for more information.
C1-10 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Chapter C2
Invasive Debug Authentication

This chapter describes the authentication controls on invasive debug operations. It contains the following
section:

• About invasive debug authentication on page C2-2.

Note
 The recommended external debug interface provides an authentication interface that controls both invasive
debug and non-invasive debug, as described in Authentication signals on page AppxA-3. This chapter
describes how you can use this interface to control invasive debug. For information about using the interface
to control non-invasive debug see Chapter C7 Non-invasive Debug Authentication.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C2-1

Invasive Debug Authentication
C2.1 About invasive debug authentication

Invasive debug can be enabled or disabled. If it is disabled the processor ignores all debug events except
BKPT Instruction. This means that debug events other than the BKPT Instruction debug event do not cause
the processor to enter Debug state or to take a debug exception.

In addition, if a processor implements the Security Extensions, invasive debug can be permitted or not
permitted. When invasive debug is not permitted, all debug events are not permitted. When a debug event is
not permitted:

• if the debug event is not a BKPT Instruction debug event then it is ignored

• if the debug event is a BKPT Instruction debug event then it causes a debug exception.

Note
 The BKPT Instruction debug event is never ignored.

The difference between enabled and permitted is that whether a debug event is permitted depends on both
the security state and the operating mode of the processor.

For debug events that cause entry to Debug state, Secure User halting debug refers to permitting these events
in Secure User mode when invasive debug is not permitted in Secure privileged modes. The debug events
that cause entry to Debug state are:

• Halting debug events

• if Halting debug-mode is selected, Software debug events.

Support for Secure User halting debug is required in v6.1 Debug. In v7 Debug it is IMPLEMENTATION
DEFINED whether Secure User halting debug is supported. On an implementation that does not support
Secure User halting debug the DBGDIDR.nSUHD_imp bit is RAO, see Debug ID Register (DBGDIDR) on
page C10-3. ARM deprecates the use of Secure User halting debug.

If the Security Extensions are implemented, when invasive debug is not permitted in Secure privileged
modes it must be possible to permit, in Secure User mode, the debug events that do not cause entry to Debug
state. The debug events that do not cause entry to Debug state are Software debug events when Monitor
debug-mode is selected.

Note
 When the Security Extensions are implemented, the Debug architecture distinguishes between permitting
invasive halting debug and permitting invasive non-halting debug. However, in Non-secure state and in
Secure privileged modes whether a debug event is permitted does not depend on whether the event would
cause entry to Debug state. Therefore, the distinction between permitting invasive halting debug and
invasive non-halting debug applies only in Secure User mode.

When Secure User halting debug is supported, the processor can be configured so that both invasive halting
debug and invasive non-halting debug are permitted in Secure User mode when invasive debug is not
permitted in Secure privileged modes. Therefore, the alternatives for when a debug event is permitted are:

• in all processor modes, in both Secure and Non-secure security states

• only in Non-secure state
C2-2 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Invasive Debug Authentication
• in Non-secure state and also in Secure User mode.

When Secure User halting debug is not supported, the processor can be configured only so that invasive
non-halting debug is permitted in Secure User mode when invasive debug is not permitted in Secure
privileged modes. Any debug event that would cause entry to Debug state is ignored, unless it is a BKPT
Instruction debug event. Therefore, the alternatives for when a debug event is permitted are:

• in all processor modes, in both Secure and Non-secure security states

• only in Non-secure state

• in Non-secure state and also, if it will not cause entry to Debug state, in Secure User mode.

In v6.1 Debug and v7 Debug, invasive debug authentication can be controlled dynamically, meaning that
whether a debug event is permitted can change while the processor is running, or while the processor is in
Debug state. For more information, see Generation of debug events on page C3-40.

In v6 Debug, invasive debug authentication can be changed only while the processor is in reset.

In the recommended external debug interface, the signals that control the enabling and permitting of debug
events are DBGEN and SPIDEN. SPIDEN is only implemented on processors that implement Security
Extensions. See Authentication signals on page AppxA-3.

Part C of this manual assumes that the recommended external debug interface is implemented.

Note
 • DBGEN and SPIDEN also control non-invasive debug, see About non-invasive debug authentication

on page C7-2.

• For more information about use of the authentication signals see Changing the authentication signals
on page AppxA-4.

If DBGEN is LOW, all invasive debug is disabled.

On processors that do not implement Security Extensions, if DBGEN is HIGH, invasive debug is enabled
and permitted in all modes, see Table C2-1:

On processors that implement the Security Extensions, if both DBGEN and SPIDEN are HIGH, invasive
debug is enabled and all debug events are permitted in all modes and in both Secure and Non-secure security
states.

Table C2-1 Invasive debug authentication, Security Extensions not implemented

DBGEN Modes in which invasive debug is permitted

LOW None. Invasive debug is disabled.

HIGH All modes.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C2-3

ARM_2008_Q4
Inserted Text
In v7 Debug it is IMPLEMENTATION DEFINED whether setting the OS Lock:
 • means Software debug events are not permitted
 • has no effect on whether Software debug events are permitted.

For details of the OS Lock see The OS Save and Restore mechanism on page C6-8 [pdf page 1692].

v6 Debug and v6.1 Debug do not support the OS Lock mechanism.

The rest of this section describes the behavior where either the OS Lock is not implemented or does not affect whether Software debug events are permitted, or the OS Lock is not set.

Invasive Debug Authentication
If DBGEN is HIGH and SPIDEN is LOW:

• invasive debug is enabled

• all debug events are permitted in the Non-secure state

• no debug events are permitted in Secure privileged modes.

• whether invasive debug is permitted in Secure User mode depends on:

— the value of the SDER.SUIDEN bit, see c1, Secure Debug Enable Register (SDER) on
page B3-108.

— if Secure User halting debug is not supported, whether the debug event would cause entry to
Debug state.

This is shown in Table C2-2.

Note
 Invasive and non-invasive debug authentication enable you to protect Secure processing from direct
observation or invasion by an untrusted debugger. If you are designing a system you must be aware that
security attacks can be aided by the invasive and non-invasive debug facilities. For example, Debug state or
the DBGDSCR.INTdis register bit might be used for a denial of service attack, and the Non-secure
performance monitors might be used to measure the side-effects of Secure processing on Non-secure code.

ARM recommends that where you are concerned about such attacks you disable invasive and non-invasive
debug in all modes. However you must be aware of the limitations on the protection that debug
authentication can provide, because similar attacks can be made by running malicious code on the processor
in Non-secure state.

Table C2-2 Invasive debug authentication, Security Extensions implemented

DBGENa SPIDENa SUIDENb Mode Security state Invasive debug

LOW X X Any Either Disabled

HIGH LOW 0 Any Non-secure Enabled and permitted

Secure Enabled but not permitted

HIGH LOW 1 Any Non-secure Enabled and permitted

User Secure See note c

Privileged Secure Enabled but not permitted

HIGH HIGH X Any Either Enabled and permitted

a. Authentication signals, see Authentication signals on page AppxA-3.
b. SDER.SUIDEN bit, see c1, Secure Debug Enable Register (SDER) on page B3-108.
c. Invasive non-halting debug is permitted.

If Secure User halting debug is not supported then invasive halting debug is enabled but not permitted. Otherwise,
invasive halting debug is enabled and permitted.
C2-4 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
a

ARM_2008_Q4
Inserted Text
event

Chapter C3
Debug Events

This chapter describes debug events. Debug events trigger invasive debug operations. It contains the
following sections:

• About debug events on page C3-2

• Software debug events on page C3-5

• Halting debug events on page C3-38

• Generation of debug events on page C3-40

• Debug event prioritization on page C3-43.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C3-1

Debug Events
C3.1 About debug events

A debug event can be either:

• A Software debug event, see Software debug events on page C3-5

• A Halting debug event, see Halting debug events on page C3-38.

A processor responds to a debug event in one of the following ways:

• ignores the debug event

• takes a debug exception, see Chapter C4 Debug Exceptions

• enters Debug state, see Chapter C5 Debug State.

The response depends on the configuration. This is shown in Table C3-1 and in:

• Figure C3-1 on page C3-3 for v7 Debug

• Figure C3-2 on page C3-4 for v6 Debug and v6.1 Debug.

Table C3-1 Processor behavior on debug events

Configuration Behavior, for specified debug event
Debug-mode
selected and
enabled

Enabled
and
permitteda

DBGDSCR
[15:14]b

BKPT
Instruction
debug event

Other Software
debug event

Halting debug
event

No xx c Debug
exception d

Ignore Ignoree Disabled or
not permitted

Yes 00 Debug
exception d

Ignore Debug state entryf None

Yes x1 Debug state
entry

Debug state entry Debug state entry Halting

Yes 10 Debug
exception

Debug exception or
UNPREDICTABLEg

Debug state entryf Monitor

a. Invasive debug is enabled and the debug event is permitted. Whether a debug event is permitted might depend on the
type of debug event as well as the configuration of the processor, see Chapter C2 Invasive Debug Authentication.

b. See Debug Status and Control Register (DBGDSCR) on page C10-10.
c. The value of DBGSCR[15:14] is ignored when invasive debug is disabled or the debug event is not permitted. If debug

is disabled these bits are RAZ.
d. When debug is disabled or the debug event is not permitted, the BKPT instruction generates a debug exception rather than

being ignored. The DBGDSCR, IFSR and IFAR are set as if a BKPT Instruction debug exception occurred. See Effects
of debug exceptions on CP15 registers and the DBGWFAR on page C4-4.

e. The processor might enter Debug state later, see Halting debug events on page C3-38.
f. In v6 Debug, it is IMPLEMENTATION DEFINED whether the processor enters Debug state or ignores the event.
g. Be careful when programming debug events when Monitor debug-mode is selected and enabled, because certain

conditions can lead to UNPREDICTABLE behavior, see Unpredictable behavior on Software debug events on page C3-24.
In v6 Debug and v6.1 Debug, some events are ignored in this state.
C3-2 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
DBGDSCR

Debug Events
Figure C3-1 Processor behavior on debug events, for v7 Debug

:+&��������-$.
7�I$�*&

9R�@� �*&�$�&'��

9���>%�'�&

���&���<�&�)

Q�&�)%�'�&

S��&�7�I$�*&

��(&8������-$.�:���&*

S��&'�.���-$.�:���&*

��-$.��'*�-���������-$.�����&���&�%��,'&&�� ��-$.�,���;�����

��-$.�,���;�S��&'�. ��-$.�,���;�!��'&��

:+&��������-$.
7�I$�*&

9R�@� �*&�$�&'��

9���>%�'�&

���&���<�&�)

Q�&�)%�'�&

S��&�7�I$�*&

��(&8������-$.�:���&*

S��&'�.���-$.�:���&*

:+&��������-$.
7�I$�*&

9R�@� �*&�$�&'��

9���>%�'�&

���&���<�&�)

Q�&�)%�'�&

S��&�7�I$�*&

=��"����>�<�&�)

��-$.��&�&�
:�&��

��(&8������-$.�:���&*

S��&'�.���-$.�:���&*

:+&��������-$.
7�I$�*&

9R�@� �*&�$�&'��

9���>%�'�&

���&���<�&�)

Q�&�)%�'�&

S��&�7�I$�*&

=��"����>�<�&�)

��-$.�:+��%&'��
1���(�&�)��-��&2

��-$.��&�&�
:�&��

��(&8������-$.�:���&*

S��&'�.���-$.�:���&*

��-$.�:+��%&'��
1��&���-��&2

"?�7:� <@�93:

 .�����

��-$.�:+��%&'��
1���(�&�)��-��&2

��-$.�:+��%&'��
1��&���-��&2

"?�7:� <@�93:

 .�����

��-$.�:+��%&'��
1���(�&�)��-��&2

��-$.�:+��%&'��
1��&���-��&2

"?�7:� <@�93:

 .�����

��-$.�:+��%&'��
1���(�&�)��-��&2

��-$.�:+��%&'��
1��&���-��&2

"?�7:� <@�93:

 .�����

#

#���,����*�*�����"?�7:� <@�93:6�*���&�+&�

=��"����>�<�&�)

��-$.��&�&�
:�&��

=��"����>�<�&�)

��-$.��&�&�
:�&��

#

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C3-3

Debug Events
Figure C3-2 Processor behavior on debug events, for v6 Debug and v6.1 Debug

��-$.��'*�-���������-$.�����&���&�%��,'&&��

��-$.�,���;�S��&'�. ��-$.�,���;�!��'&��

:+&��������-$.
7�I$�*&

9R�@� �*&�$�&'��

9���>%�'�&

���&���<�&�)

Q�&�)%�'�&

S��&�7�I$�*&

��-$.��&�&�
:�&��

��(&8������-$.�:���&*

S��&'�.���-$.�:���&*

:+&��������-$.
7�I$�*&

9R�@� �*&�$�&'��

9���>%�'�&

���&���<�&�)

Q�&�)%�'�&

S��&�7�I$�*&

��-$.�:+��%&'��
1���(�&�)��-��&2

��-$.��&�&�
:�&��

��(&8������-$.�:���&*

S��&'�.���-$.�:���&*

��-$.�:+��%&'��
1��&���-��&2

"?�7:� <@�93:

 .�����

��-$.�:+��%&'��
1���(�&�)��-��&2

��-$.�:+��%&'��
1��&���-��&2

"?�7:� <@�93:

 .�����

#� !�3:!:?@�@ =?��:� ?:����&���&'���-�)��'���(��������-$.

O

#

#

O

O���,����*�*�����'.�����6�*���&�+&

��-$.�,���;�����

:+&��������-$.
7�I$�*&

9R�@� �*&�$�&'��

9���>%�'�&

���&���<�&�)

Q�&�)%�'�&

��(&8������-$.�:���&*

S��&'�.���-$.�:���&*

��-$.�:+��%&'��
1���(�&�)��-��&2

��-$.�:+��%&'��
1��&���-��&2

 .�����

"?�7:� <@�93:

#

#

S��&�7�I$�*&

��-$.��&�&�
:�&��

#� !�3:!:?@�@ =?��:� ?:����&���&'���-�)��'���(��������-$.

9R�@� �*&�$�&'��

9���>%�'�&

���&���<�&�)

Q�&�)%�'�&

��(&8������-$.�:���&*

S��&'�.���-$.�:���&*

��-$.�:+��%&'��
1���(�&�)��-��&2

��-$.�:+��%&'��
1��&���-��&2

"?�7:� <@�93:

 .�����

:+&��������-$.
7�I$�*&

S��&�7�I$�*&

��-$.��&�&�
:�&��
C3-4 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug Events
C3.2 Software debug events

A Software debug event can be any of the following:

• A Breakpoint debug event, see Breakpoint debug events

• A Watchpoint debug event, see Watchpoint debug events on page C3-15

• A BKPT Instruction debug event, see BKPT Instruction debug events on page C3-20

• A Vector Catch debug event, see Vector Catch debug events on page C3-20.

Memory addresses on page C3-23 describes the addresses used for generating Software debug events in
different memory system implementations.

If Monitor debug-mode is selected and enabled, the behavior of certain types of Software debug event is
UNPREDICTABLE. For more information, see Unpredictable behavior on Software debug events on
page C3-24.

Pseudocode details of Software debug events on page C3-27 gives pseudocode for the operation of the
Software debug events.

C3.2.1 Breakpoint debug events

A Breakpoint debug event is defined by a pair of registers described to as a Breakpoint Register Pair (BRP),
comprising a Breakpoint Control Register (DBGBCR) and a Breakpoint Value Register (DBGBVR). BRPs,
DBGBCRs, and DBGBVRs number upwards from 0, with BRPn comprising DBGBCRn and DBGBVRn.
For details of the breakpoint registers see:

• Breakpoint Control Registers (DBGBCR) on page C10-49

• Breakpoint Value Registers (DBGBVR) on page C10-48.

The DBGDIDR.BRPs field specifies the number of BRPs implemented, see Debug ID Register
(DBGDIDR) on page C10-3. The maximum number of BRPs is 16.

You can define a Breakpoint debug event:

• Based on comparison of an Instruction Virtual Address (IVA) with the value held in a DBGBVR. See
Memory addresses on page C3-23 for the definition of an IVA.

• Based on comparison of the Context ID with the value held in a DBGBVR. Some BRPs might not
support Context ID comparison. The DBGDIDR.CTX_CMPs field specifies the number of BRPs
that support Context ID comparison, see Debug ID Register (DBGDIDR) on page C10-3.

• By linking a BRP to a second BRP, to define a single Breakpoint debug event. One pair includes an
IVA for comparison, and the second pair includes a Context ID value.

In all cases, the DBGBCR defines some additional conditions that must be met for the BRP to generate a
Breakpoint debug event, including whether the BRP is enabled.

The terms hit and miss are used to describe whether the conditions defined in the BRP are met:

• a hit occurs when the conditions are met

• a miss occurs when a condition is not met, meaning the processor does not generate a debug event.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C3-5

ARM_2009_Q4
Cross-Out

Debug Events
The following sections describe Breakpoint debug events:

• Generation of Breakpoint debug events

• Debug event generation conditions defined by the DBGBCR on page C3-7

• IVA comparisons for Debug event generation on page C3-8

• IVA comparisons and instruction length on page C3-10

• Context ID comparisons for Debug event generation on page C3-13

• Additional considerations for IVA mismatch breakpoints on page C3-13

• Additional conditions for linked BRPs on page C3-15.

Generation of Breakpoint debug events

For each instruction in the program flow, the debug logic tests all the BRPs. For each BRP, the debug logic
generates a Breakpoint debug event only if all of the following apply:

• When the BRP is tested, the conditions specified in the DBGBCR are met, see Debug event
generation conditions defined by the DBGBCR on page C3-7.

• The comparison with the value in the DBGBVR is successful. When two BRPs are linked to define
a single Breakpoint debug event, both comparisons must succeed. For more information see:

— IVA comparisons for Debug event generation on page C3-8

— Context ID comparisons for Debug event generation on page C3-13.

• The instruction is committed for execution.

Note
 The processor must test for any possible Breakpoint debug events before it executes the instruction.

The debug logic might test the BRPs when an instruction is prefetched. However, it must not generate
a Breakpoint debug event if the instruction is not committed for execution.

If all of these conditions are met, the debug logic generates the Breakpoint debug event regardless of
whether the instruction passes its condition code test.

In ARMv6 and the ARMv7-A and ARMv7-R architecture profiles, the debug logic generates the debug
event regardless of the type of instruction.

Breakpoint debug events are synchronous. That is, the debug event acts like an exception that cancels the
breakpointed instruction.

When invasive debug is enabled and Monitor debug-mode is selected, if Breakpoint debug events are
permitted a Breakpoint debug event generates a Prefetch Abort exception.
C3-6 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug Events
Debug event generation conditions defined by the DBGBCR

For each BRP, the DBGBCR defines some conditions for generating a Breakpoint debug event, using the
following register fields:

Breakpoint enable

Controls whether this BRP is enabled.

Privileged mode control

Controls whether this BRP defines a Breakpoint debug event that can occur:

• only in User mode

• only in a privileged mode

• only in User, System or Supervisor modes

• in any mode.

Security state control

If the processor implements the Security Extensions, this field controls whether this BRP
defines a Breakpoint debug event that can occur only in Secure state, only in Non-secure
state, or in either security state.

For more information, including the differences in different versions of the Debug architecture, see
Breakpoint Control Registers (DBGBCR) on page C10-49.

When two BRPs are linked to define a single Breakpoint debug event, the BRP that defines the IVA
comparison also defines the privileged mode control and security state control, see Additional conditions
for linked BRPs on page C3-15 for more information.

Other information in the DBGBCR

In addition to defining these conditions for generating a Breakpoint debug event, the DBGBCR controls the
following:

• The DBGBVR meaning field defines the breakpoint type. The following sections describe all of the
breakpoint types:

— IVA comparisons for Debug event generation on page C3-8

— Context ID comparisons for Debug event generation on page C3-13.

• The Linked BRP number field specifies whether the BRP is linked to another BRP. If this BRP is
linked, this field gives the number of the linked BRP. For more information see Additional conditions
for linked BRPs on page C3-15.

• For an IVA comparison, the DBGBVR defines a word-aligned address, and the Byte address select
field specifies the bytes in that word that comprise the breakpointed instruction, see IVA comparisons
for Debug event generation on page C3-8.

• For an IVA comparison in v7 Debug, the Address range mask field optionally specifies a bitmask that
defines the low-order bits of the IVA and DBGBVR values that are excluded from the comparison,
see IVA comparisons for Debug event generation on page C3-8.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C3-7

Debug Events
Note
 For IVA comparison in v7 Debug, you must use either byte address selection or address range

masking to restrict the comparison made. However, you cannot use both at the same time.

IVA comparisons for Debug event generation

The result of an IVA comparison depends on the value in the DBGBVR either matching or mismatching the
IVA value. In each case, you can link the BRP to a second BRP that defines a Context ID comparison. This
means that the breakpoint types that depend on an IVA comparison are:

• Unlinked IVA match

• Unlinked IVA mismatch

• Linked IVA match

• Linked IVA mismatch.

When the DBGBCR is programmed for one of these breakpoint types, the debug logic generates a
Breakpoint debug event only if all the other conditions for the breakpoint are met, and the IVA comparison
is successful. That is, all other conditions are met and, taking account of any masking:

• for an IVA match, the IVA value equals the value in the DBGBVR

• for an IVA mismatch, the IVA value does not equal the value in the DBGBVR.

In the linked cases, the debug logic generates a Breakpoint debug event only if all the other conditions for
the breakpoint are met, the IVA comparison is successful, and the Context ID comparison in the linked BRP
is successful, see Context ID comparisons for Debug event generation on page C3-13. See Additional
conditions for linked BRPs on page C3-15 for more information.

All versions of the Debug architecture support byte address selection, to specify which bytes of the word
addressed by DBGBVR comprise the breakpointed instruction. v7 Debug supports an alternative bit
masking scheme referred to as address range masking. The following subsections give more information
about the IVA comparisons:

• Condition for breakpoint generation on IVA match, without address range masking on page C3-9

• Condition for breakpoint generation on IVA mismatch, without address range masking on page C3-9

• Breakpoint address range masking behavior, v7 Debug on page C3-9.

DBGBVR values must be word-aligned, and DBGBVR[1:0] are never used for IVA comparison. ARM
instructions are always word-aligned, and therefore a DBGBVR value can specify exactly the IVA of an
ARM instruction. See IVA comparisons and instruction length on page C3-10 for more information about
how the instruction length affects how you must define a breakpoint.

Note
 • v6 Debug does not support IVA mismatch.

• If it is supported, you can use IVA mismatch to generate a Breakpoint debug event when the processor
executes an instruction other than the instruction indicated by the DBGBVR. You can use this for
single-stepping, or for breakpointing all instructions outside a range of instruction addresses.
C3-8 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug Events
Condition for breakpoint generation on IVA match, without address range masking

When BRPn is programmed for IVA match, without address range masking, and all other conditions for
generating a breakpoint are met, a Breakpoint debug event is generated only if both:

• bits [31:2] of the IVA are equal to the value of bits [31:2] of DBGBVRn

• the Byte address select field, bits [8:5], of DBGBCRn is programmed for an IVA match for the
current Instruction set state and IVA[1:0] value, see Byte address selection behavior on IVA match or
mismatch on page C10-55.

Note
 In v7 Debug, to perform IVA comparison without address range masking you must set DBGBCR[28:24],
the Address range mask field, to zero.

Condition for breakpoint generation on IVA mismatch, without address range masking

When BRPn is programmed for IVA mismatch, without address range masking, and all other conditions for
generating a breakpoint are met, a Breakpoint debug event is generated only if either:

• bits [31:2] of the IVA are not equal to the value of bits [31:2] of DBGBVRn

• the Byte address select field, bits [8:5], of DBGBCRn is programmed for an IVA mismatch for the
current Instruction set state and IVA[1:0] value, see Byte address selection behavior on IVA match or
mismatch on page C10-55.

Note
 In v7 Debug, to perform IVA comparison without address range masking you must set DBGBCR[28:24],
the Address range mask field, to zero.

Breakpoint address range masking behavior, v7 Debug

When BRPn is programmed for IVA matching, the comparison is masked using the value held in the
Address range mask field, DBGBCRn[28:24].

You can use the Address range mask field when programming the BRP for IVA mismatch, that is, when
DBGBCR[28:24] != 0b00000 and DBGBCR[22] == 1. In this case, the address comparison portion of
breakpoint generation hits for all addresses outside the masked address region.

If an implementation does not support breakpoint address range masking, the Address range mask field is
RAZ.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C3-9

ARM_2008_Q4
Inserted Text
/WI

Debug Events
Note
 There is no encoding for a full 32-bit mask. This mask would have the effect of setting a breakpoint that hits
on every address comparison, and you can achieve this by setting:

• DBGBCR[22] to 1 to select an IVA mismatch

• DBGBCR[8:5] to 0b0000.

To use address range masking, you must also set DBGBCR[8:5], the Byte address field, to 0b1111.

IVA comparisons and instruction length

An instruction set is fixed-length if all of its instructions have the same length, and variable-length
otherwise. In a variable-length instruction set a single instruction comprises one or more units of memory.

The ARM instruction set is an example of a fixed-length instruction set. In the ARM instruction set the size
of each instruction is one word, and ARM instructions are always word aligned.

The following are examples of variable-length instruction sets:

• The ThumbEE instruction set, and the Thumb instruction set from ARMv6T2 onwards. In these
instruction sets an instruction comprises one or two halfwords.

• Java bytecodes. A single Java bytecode comprises one or more bytes.

Before ARMv6T2, an implementation can treat the Thumb instruction set as a fixed-length 16-bit
instruction set, as described in BL and BLX (immediate) instructions, before ARMv6T2 on page AppxG-4.
An implementation that does this can permit an exception to be taken between the two halfwords of a BL or
BLX (immediate) instruction.

In a variable-length instruction set, for an instruction consisting of more than one unit of memory, the first
unit of the instruction is defined as the unit of the instruction with the lowest address in memory.

In a fixed-length instruction set, an instruction consists of a single unit of memory. This unit is also the first
unit of the instruction.

Instruction length considerations depend on the Debug architecture version, as described in the following
subsections:

• Effect of instruction length in v7 Debug

• Effect of instruction length in v6 Debug and v6.1 Debug on page C3-11.

IVA comparison programming examples on page C3-12 gives examples of Breakpoint programming, taking
account of possible instruction length effects, for all versions of the Debug architecture.

Effect of instruction length in v7 Debug

In v7 Debug there are four types of IVA breakpoint:

• IVA match with no address range mask, described as a regular IVA breakpoint

• IVA mismatch with no address range mask, described as a step-off IVA breakpoint

• IVA match with an address range mask, described as an included range IVA breakpoint
C3-10 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug Events
• IVA mismatch with an address range mask, described as an excluded range IVA breakpoint

Note
 Support for address range masks on breakpoints is IMPLEMENTATION DEFINED.

For all types of IVA breakpoint, if the conditions in the DBGBCR are met, and the instruction is committed
for execution, the BRP generates a Breakpoint debug event if the required DBGBVR comparison, taking
account of the byte address selection and any address range masking, hits for the first unit of the instruction.

Table C3-2 shows the conditions for Breakpoint debug event generation by an instruction that comprises
more than one unit of memory, assuming that the conditions in the DBGBCR are met and that the instruction
is committed for execution.

Effect of instruction length in v6 Debug and v6.1 Debug

If the conditions in the DBGBCR are met, and the instruction is committed for execution, the BRP generates
a Breakpoint debug event if the required DBGBVR comparison, taking account of the byte address
selection, hits for the first unit of the instruction.

In v6 Debug and v6.1 Debug, it is IMPLEMENTATION DEFINED whether an IVA comparison on an instruction
memory unit other than the first unit, following a breakpoint miss on the first unit of the instruction, can
cause a Breakpoint debug event.

For Java bytecodes, v6 Debug and v6.1 Debug specify that a BRP comparison on an operand does not
generate a Breakpoint debug event. A Breakpoint debug is generated only if the BRP hits on the opcode.

For Java bytecodes the instruction memory unit is a byte, and the opcode is always the first byte of the
instruction.

Table C3-2 Breakpoint debug event generation for instructions of more than one unit of memory

DBGBVR comparison resulta :
IVA breakpoint type

Breakpoint debug
event generated?

First unitb Any subsequent unitb

Hit - Any Yes

Miss Hit Regular, included range, or excluded range UNPREDICTABLE

Step-off No

Miss Miss Any No

a. Taking account of the byte address selection and any address range masking.
b. Of the instruction whose IVA is being compared.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C3-11

Debug Events
Note
 • v6 Debug does not support IVA mismatch breakpoints.

• v6.1 Debug and v6 Debug do not support address range masks on breakpoints.

IVA comparison programming examples

In all Debug architecture versions, a debugger must configure the BRP so that it matches on all bytes of the
first unit of the instruction, otherwise the generation of Breakpoint debug events is UNPREDICTABLE.

Before ARMv6T2, on a processor that implements the Thumb instruction set and can take an exception
between the two halfwords of a Thumb BL or BLX (immediate) instruction, a debugger must treat the two
halfwords as separate instructions, and set breakpoints on both halfwords. This might require two BRPs.

Note
 • To ensure compatibility across ARMv6 implementations, a debugger can always treat BL or BLX

(immediate) as two instructions when debugging code on an ARMv6 processor before ARMv6T2.

• The examples that follow include setting breakpoints on ThumbEE instructions. These are supported
only in ARMv7.

For example, if BRPn and BRPm are two breakpoint register pairs, then:

• On any ARMv6 or ARMv7 processor:

— To breakpoint on a Java bytecode at address 0x8001, the debugger must set DBGBVRn to
0x8000 and DBGBCRn[8:5] to 0b0010.

— To breakpoint on a 16-bit Thumb or ThumbEE instruction starting at address 0x8002, a
debugger must set DBGBVRn to 0x8000 and DBGBCRn[8:5] to 0b1100.

— To breakpoint on an ARM instruction starting at address 0x8004, a debugger must set
DBGBVRn to 0x8004 and DBGBCRn[8:5] to 0b1111.

• On an ARMv7 or ARMv6T2 processor, a debugger sets breakpoints on a 32-bit Thumb instruction,
or on a 16-bit or a 32-bit ThumbEE instruction, in exactly the same way as on a 16-bit Thumb
instruction. For example:

— To breakpoint on a 16-bit or a 32-bit Thumb or ThumbEE instruction starting at address
0x8000, the debugger must set DBGBVRn to 0x8000 and DBGBCRn[8:5] to 0b0011. These are
the settings for breakpointing on any Thumb or ThumbEE instruction, including BL and BLX
(immediate).

• On an ARMv6 or ARMv6K processor:

— To breakpoint on a Thumb BL or BLX instruction at address 0x8000, a debugger must set
DBGBVRn to 0x8000, and DBGBCRn[8:5] to 0b1111.

— To breakpoint on a Thumb BL or BLX instruction at address 0x8002, a debugger must set
DBGBVRn to 0x8000, DBGBVRm to 0x8004, DBGBCRn[8:5] to 0b1100, and
DBGBCRm[8:5] to 0b0011.
C3-12 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug Events
Note
 When programming DBGBVR for IVA match or mismatch, the debugger must program DBGBVR[1:0] to
0b00, otherwise Breakpoint debug event generation is UNPREDICTABLE.

Context ID comparisons for Debug event generation

A Context ID comparison depends on the value in the DBGBVR matching the Context ID, held in the
Context ID Register, when the instruction is committed for execution. The breakpoint types that depend on
a Context ID comparison are:

• Unlinked Context ID match

• Linked Context ID match.

When the DBGBCR is programmed for one of these debug types, the debug logic generates a Breakpoint
debug event only if all the other conditions for the breakpoint are met, and the Context ID equals the value
in the DBGBVR.

In the linked case, the BRP that is programmed for a Context ID match is linked to at least one of:

• a BRP programmed for Linked IVA match or mismatch

• a Watchpoint Register Pair (WRP) programmed for linked Data Virtual Address (DVA) match.

In the linked IVA cases, the debug logic generates a Breakpoint debug event only if all the other conditions
for the breakpoint are met, the Context ID comparison is successful, and the IVA comparison in the linked
BRP is successful, see IVA comparisons for Debug event generation on page C3-8. See Additional
conditions for linked BRPs on page C3-15 for more information.

In the linked DVA case, the debug logic generates a Watchpoint debug event only if all the other conditions
for the watchpoint are met, the Context ID comparison is successful, and the DVA comparison in the linked
WRP is successful, See Watchpoint debug events on page C3-15 for more information.

Note
 • You cannot define a Breakpoint debug event based on a Context ID mismatch.

• You can link a BRP programmed for linked Context ID match to any number of:

— BRPs programmed for Linked IVA match or mismatch

— WRPs programmed for Linked DVA match.

This means you can use a single BRP to define the Context ID match for multiple breakpoints and
watchpoints.

Additional considerations for IVA mismatch breakpoints

The following subsections describe additional considerations for IVA mismatch breakpoints:

• Interaction of IVA mismatch breakpoints with other breakpoints and Vector Catch on page C3-14

• Generation of IVA mismatch breakpoints on branch to self instructions on page C3-14.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C3-13

Debug Events
Interaction of IVA mismatch breakpoints with other breakpoints and Vector Catch

When a BRPn is programmed for IVA mismatch and does not generate a Breakpoint debug event because
the general conditions specified in DBGBCRn are not met, this does not affect the generation of:

• Breakpoint debug events by other BRPs

• Vector Catch debug events.

Note
 In this context, the general conditions specified in DBGBCR not being met means that at least one of the
following applies:

• the BRP is not enabled

• the Privileged mode control bits of the DBGBCR do not match the mode of the processor

• DBGBCR is configured for linked Context ID matching but the linked BRP either is not enabled or
does not match the current Context ID

• the Security Extensions are implemented, and the Security state control field of DBGBCR does not
match the security state of the processor.

However, if the general conditions specified in DBGBCRn are met, and BRPn does not generate a
Breakpoint debug event only because the IVA fails the comparison required for an IVA mismatch, then the
failure of this comparison can affect the generation of other debug events:

• if any other BRP, BRPm, hits on its required comparison with the IVA and meets the general
conditions specified in DBGBCRm, it is UNPREDICTABLE whether BRPm generates a Breakpoint
debug event

• if the Vector Catch Register defines a Vector Catch that matches the IVA, it is UNPREDICTABLE
whether a Vector Catch debug event is generated.

Generation of IVA mismatch breakpoints on branch to self instructions

This section describes the generation of Breakpoint debug events when the IVA of an instruction that
branches to itself misses a BRP programmed for IVA mismatch, and all the general conditions specified in
the DBGBCR are met. See the IVA mismatch column of Table C10-11 on page C10-56 for details of when
an IVA mismatch comparison misses. In this case:

1. The first time the instruction is committed for execution the BRP does not generate a Breakpoint
debug event.

2. Because the instruction branches to itself, if no exception is generated, the instruction is committed
for execution again. On this and any subsequent execution, it is UNPREDICTABLE whether the BRP
generates a Breakpoint debug event.
C3-14 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug Events
Note
 Instructions that branch to themselves include:

• a branch instruction that specifies itself as the branch destination

• a load instruction that loads the PC from a memory location that holds the address of that load
instruction.

Additional conditions for linked BRPs

When you link two BRPs to define a single Linked IVA match or mismatch breakpoint, if BRPn defines the
IVA match or mismatch and BRPm defines the Context ID match:

• for the DBGBCR fields described in Debug event generation conditions defined by the DBGBCR on
page C3-7, you must program DBGBCRn and DBGBCRm as follows:

— in DBGBCRn, program the Security state control and Privileged mode control fields to define
the required conditions for Debug event generation

— in DBGBCRm, program the Security state control field to 0b00, and the Privileged mode
control field to 0b11

• you must program the Linked BRP number field:

— of DBGBCRn with the value of m

— of DBGBCRm to zero

• you must program the DBGBVR meaning field:

— of DBGBCRn for Linked IVA match or mismatch

— of DBGBCRm for Linked Context ID match

• BRPm must support Context ID comparisons.

Breakpoint debug event generation is UNPREDICTABLE if you do not meet all these conditions.

You must also set the Breakpoint enable bits in DBGBCRn and DBGBCRm to 1, to enable both BRPs.

Note
 If you fail to enable either or both of the BRPs, BRPn never generates any Breakpoint debug events.

For more information see Linked comparisons on page C10-59

C3.2.2 Watchpoint debug events

A Watchpoint debug event is defined by a pair of registers described as a Watchpoint Register Pair (WRP),
comprising a Watchpoint Control Register (DBGWCR) and a Watchpoint Value Register (DBGWVR).
WRPs, DBGWCRs, and DBGWVRs number upwards from 0, with WRPn comprising DBGWCRn and
DBGWVRn. For details of the Watchpoint registers see:

• Watchpoint Control Registers (DBGWCR) on page C10-61
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C3-15

Debug Events
• Watchpoint Value Registers (DBGWVR) on page C10-60.

The DBGDIDR.WRPs field specifies the number of WRPs implemented, see Debug ID Register
(DBGDIDR) on page C10-3.

A WRP can be linked to a BRP, to define a single watchpoint event. The WRP holds a virtual address for
comparison, and the BRP holds a Context ID value. For more information, see Linked comparisons on
page C10-59.

A Watchpoint debug event is defined based on comparisons of a Data Virtual Address (DVA) with the value
held in a WVR. See Memory addresses on page C3-23 for the definition of a DVA.

For a given Watchpoint Register Pair, WRPn, a Watchpoint debug event occurs when all of the following
are true:

• The watchpoint is enabled, in DBGWCRn.

• The DVA matches the value in DBGWVRn.

• When the processor tests the WRP, all the conditions of DBGWCRn are met.

• If linking is enabled in DBGWCRn, when the processor tests the WRP, the Linked Context ID
matching BRP, BRPm, meets the following conditions:

— the BRP is enabled, in DBGBCRm

— the value held in the DBGBVRm matches the Context ID held in the CONTEXTIDR.

For more information about BRPs see Breakpoint debug events on page C3-5.

• The instruction that initiated the memory access is committed for execution. A Watchpoint debug
event is generated only if the instruction passes its condition code check.

Note
 A watchpoint match does not require the access to match exactly the watched address. A match is generated
on any access to any watched byte or bytes. For example, a match is generated on an unaligned word access
that includes a byte that is being watched, even when the watched byte is not in the same word as the start
address of the unaligned word.

All instructions that are defined as memory access instructions can generate Watchpoint debug events. For
information about which instructions are memory accesses see Alphabetical list of instructions on
page A8-14. Watchpoint debug event generation can be conditional on whether the memory access is a load
access or a store access.

For a Store-Exclusive instruction, if the target address of the instruction would generate a Watchpoint debug
event, but the check of whether the Store-Exclusive operation has control of the exclusive monitors returns
FALSE, then it is IMPLEMENTATION DEFINED whether the processor generates the Watchpoint debug event.
C3-16 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug Events
For each of the memory hint instructions, PLD and PLI, it is IMPLEMENTATION DEFINED whether the
instruction generates Watchpoint debug events. If either or both of the PLD and PLI instructions normally
generates Watchpoint debug events, the behavior must be:

• For the PLI instruction:

— no watchpoint is generated in a situation where, if the instruction was a real fetch rather than
a hint, the real fetch would generate a Prefetch Abort exception

— in all other situations a Watchpoint debug event is generated.

• For the PLD instruction:

— no watchpoint is generated in a situation where, if the instruction was a real memory access
rather than a hint, the real memory access would generate a Data Abort exception

— in all other situations a Watchpoint debug event is generated.

• When watchpoint generation is conditional on the type of memory access, a memory hint instruction
is treated as generating a load access.

It is IMPLEMENTATION DEFINED whether the following cache maintenance operations generate Watchpoint
debug events:

• Clean data or unified cache line by MVA to PoU, DCCMVAU

• Clean data or unified cache line by MVA to PoC, DCCMVAC

• Invalidate data or unified cache line by MVA to PoC, DCIMVAC

• Invalidate instruction cache line by MVA to PoU, ICIMVAU

• Clean and Invalidate data or unified cache line by MVA to PoC, DCCIMVAC.

When Watchpoint debug event generation by these cache maintenance operations is implemented, the
behavior must be:

• the cache maintenance operation must generate a Watchpoint debug event on a DVA match,
regardless of whether the data is stored in any cache

• when watchpoint generation is conditional on the type of memory access, a cache maintenance
operation is treated as generating a store access.

For regular data accesses, the size of the access is considered when determining whether a watched byte is
being accessed. The size of the access is IMPLEMENTATION DEFINED for:

• memory hint instructions, PLD and PLI

• cache maintenance operations.

Watchpoint debug events are precise and can be synchronous or asynchronous:

• a synchronous Watchpoint debug event acts like a synchronous abort exception on the memory access
instruction itself

• an asynchronous Watchpoint debug event acts like a precise asynchronous abort exception that
cancels a later instruction.

For more information, see Synchronous and Asynchronous Watchpoint debug events on page C3-18.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C3-17

ARM_2008_Q4
Inserted Text
, PLDW,

ARM_2008_Q4
Inserted Text
and PLDW

ARM_2008_Q4
Inserted Text
s

Debug Events
For the ordering of debug events, ARMv7 requires that:

• Regardless of the actual ordering of memory accesses, Watchpoint debug events must be taken in
program order. See Debug event prioritization on page C3-43.

• Watchpoint debug events must behave as if the processor tested for any possible Watchpoint debug
event before the memory access was observed, regardless of whether the Watchpoint debug event is
synchronous or asynchronous. See Generation of debug events on page C3-40.

Synchronous and Asynchronous Watchpoint debug events

ARMv7 permits watchpoints to be either synchronous or asynchronous. An implementation can implement
synchronous watchpoints, asynchronous watchpoints, or both. It is IMPLEMENTATION DEFINED under what
circumstances a watchpoint is synchronous or asynchronous.

ARMv6 only permits asynchronous watchpoints.

Synchronous Watchpoint debug events

A synchronous Watchpoint debug event acts like a synchronous abort:

• The debug event occurs before any following instructions or exceptions have altered the state of the
processor.

• The value in the base register for the memory access is not updated.

Note
 The Base Updated Abort Model is not permitted in ARMv7.

• If the instruction was a register load, the data returned is marked as invalid and:

— if the instruction was a single register load, the destination is not updated

— if the instruction loaded multiple registers, the values in the destination registers, other than
the PC and base register, are UNKNOWN.

• If the instruction is a coprocessor load, the values left in the coprocessor registers are UNKNOWN.

• If the instruction is a store, the content of the memory location written to is unchanged.

When invasive debug is enabled and Monitor debug-mode is selected, if Watchpoint debug events are
permitted a synchronous Watchpoint debug event generates a synchronous Data Abort exception. On a
synchronous Watchpoint debug event, the DBGDSCR.MOE field is set to Synchronous Watchpoint
occurred.

When an instruction that causes multiple memory operations is addressing Device or Strongly-ordered
memory, if a synchronous Watchpoint debug event is signaled by a memory operation other than the first
operation of the instruction, the memory access rules might not be maintained. Examples of instructions that
cause multiple memory operations are the LDM and LDC instructions.
C3-18 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
the value of each memory location that the instruction stores to is:
 — unchanged if the location contains a byte that is being watched
 — UNKNOWN otherwise.

ARM_2009_Q4
Sticky Note
This change is a clarification of the intended meaning.

Debug Events
For example, if the second memory operation of an STM instruction signals a synchronous Watchpoint debug
event, then when the instruction is re-tried following processing of the debug event, the first memory
operation is repeated. This behavior is not normally permitted for accesses to Device or Strongly-ordered
memory.

To avoid this circumstance, debuggers must not set watchpoints on addresses in regions of Device or
Strongly-ordered memory that might be accessed in this way. The address range masking features of
watchpoints can be used to set a watchpoint on an entire region, ensuring the synchronous Watchpoint debug
event is taken on the first operation of such an instruction.

Asynchronous Watchpoint debug events

An asynchronous Watchpoint debug event acts like a precise asynchronous abort. Its behavior is:

• The watchpointed instruction must have completed, and other instructions that followed it, in
program order, might have completed. For more information, see Recognizing asynchronous
Watchpoint debug events.

• The watchpoint must be taken before any exceptions that occur in program order after the watchpoint
is triggered.

• All the registers written by the watchpointed instruction are updated.

• Any memory accessed by the watchpointed instruction is updated.

When invasive debug is enabled and Monitor debug-mode is selected, if Watchpoint debug events are
permitted an asynchronous Watchpoint debug event generates a precise asynchronous Data Abort exception.

An asynchronous Watchpoint debug event is not an abort and is not affected by architectural rules about
aborts, including the rules about external aborts and asynchronous aborts. An asynchronous Watchpoint
debug event:

• is not affected by the SCR.EA bit

• is not ignored when the CPSR.A bit is set to 1.

On an asynchronous Watchpoint debug event, the DBGDSCR.MOE field is set to Asynchronous
Watchpoint occurred.

Recognizing asynchronous Watchpoint debug events

When an instruction that consists of multiple memory operations is accessing Device or Strongly-ordered
memory, and an asynchronous Watchpoint debug event is signaled by a memory operation other than the
first operation of the instruction, the debug event must not cause Debug state entry or a debug exception until
all the operations have completed. This ensures the memory access rules for Device and Strongly-ordered
memory are preserved.

Examples of instructions that cause multiple memory operations are the LDM and LDC instructions.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C3-19

Debug Events
Note
 To understand why the architecture does not permit the asynchronous Watchpoint debug event to be taken
before the watchpointed instruction completes, consider an LDM instruction accessing Device or
Strongly-ordered memory, with an asynchronous Watchpoint debug event signaled after the first word of
memory is accessed. If the debug event was taken immediately, the LDM would be re-executed on return from
the event handler. This would cause a new access to the first word of memory, breaking the rule that, for
Device or Strongly-ordered memory, each memory operation of an instruction is issued precisely once.

C3.2.3 BKPT Instruction debug events

A BKPT Instruction debug event occurs when a BKPT instruction is committed for execution. BKPT is an
unconditional instruction.

BKPT Instruction debug events are synchronous. That is, the debug event acts like an exception that cancels
the BKPT instruction.

For details of the BKPT instruction and its encodings in the ARM and Thumb instruction sets see BKPT on
page A8-56.

C3.2.4 Vector Catch debug events

The Vector Catch Register (DBGVCR) controls Vector Catch debug events, see Vector Catch Register
(DBGVCR) on page C10-67.

A Vector Catch debug event occurs when:

• The IVA of an instruction matches a vector address for the current security state.

See Memory addresses on page C3-23 for a definition of the IVA.

• When the processor tests for the possible vector catch, the corresponding bit of the DBGVCR is set
to 1, indicating that vector catch is enabled.

• The instruction is committed for execution. The debug event is generated whether the instruction
passes or fails its condition code check.

If all the conditions for a Vector Catch debug event are met, the processor generates the event regardless of
the mode in which it is executing.

The processor must test for any possible Vector Catch debug events before it executes the instruction.

If the Security Extensions are not implemented the debug logic uses only one set of vector addresses to
generate Vector Catch debug events, and these are called the Local vector addresses.

If the Security Extensions are implemented, the debug logic uses three sets of vector addresses to generate
Vector Catch debug events:

• One set for exceptions taken in the Non-secure exception modes. These are called the Non-secure
Local vector addresses.
C3-20 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug Events
• One set for exceptions taken in the Secure exception modes other than Monitor mode. These are
called the Secure Local vector addresses.

• One set for exceptions taken in Monitor mode. These are called the Monitor vector addresses.

You enable vector catch independently for each of these vector addresses, by setting a bit in the DBGVCR
to 1, see Vector Catch Register (DBGVCR) on page C10-67.

If the Security Extensions are not implemented, the debug logic determines whether to generate a Vector
Catch debug event by comparing every instruction fetch with the Local vector addresses.

If the Security Extensions are implemented, the debug logic determines whether to generate a Vector Catch
debug event by comparing every Secure instruction fetch with the Secure Local and Monitor vector
addresses, and by comparing every Non-secure instruction fetch with the Non-secure Local vector
addresses.

Note
 Any instruction fetched from an exception vector address and committed for execution triggers a Vector
Catch debug event if the appropriate bit in the DBGVCR is set to 1. Testing for possible Vector Catch debug
events does not check whether the instruction is executed as a result of an exception entry.

Whether a Vector Catch debug event is generated for an instruction is UNPREDICTABLE if either:

• The exception vector address is word-aligned and one of the following applies:

— the first unit of the instruction is in the word at the exception vector address but is not at the
exception vector address

— the first unit of the instruction is not in the word at the exception vector address but another
unit of the instruction is in that word.

This can occur when the processor is executing a variable-length instruction set, that is, in Thumb,
ThumbEE or Jazelle state.

• The exception vector address is not word-aligned but is halfword-aligned and one of the following
applies:

— The first unit of the instruction is in the halfword at the exception vector address but is not at
the exception vector address. This can occur only in Jazelle state, where instructions consist
of one or more byte-sized units.

— The first unit of the instruction includes the halfword at the exception vector address but is not
at the exception vector address. This can occur only in ARM state, where all instructions are
a single word and are word-aligned.

— The first unit of the instruction is not in the halfword at the exception vector address but
another unit of the instruction is in that halfword. This can occur in variable-length instruction
set states, that is, in Thumb, ThumbEE or Jazelle state.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C3-21

Debug Events
Note
 Normally, exception vector addresses must be word-aligned. However, when SCTLR.VE == 1, enabling
vectored interrupt support, the exception vector address for one or both of the IRQ and FIQ vectors might
not be word-aligned. Support for exception vector addresses that are not word-aligned is IMPLEMENTATION
DEFINED, see Vectored interrupt support on page B1-32.

If Monitor debug-mode is selected and enabled, and the vector is either the Prefetch Abort vector or the Data
Abort vector, the debug event is:

• UNPREDICTABLE in v7 Debug

• ignored in v6 Debug and v6.1 Debug.

Vector Catch debug events are synchronous. That is, the debug event acts like an exception that cancels the
instruction at the caught vector. When invasive debug is enabled and Monitor debug-mode is selected, if
Vector Catch debug events are permitted a Vector Catch debug event generates a Prefetch Abort exception.
For more information, see Generation of debug events on page C3-40.

Note
 A Vector Catch debug event is taken only when the instruction is committed for execution and therefore
might not be taken if another exception occurs, see Debug event prioritization on page C3-43.

For more information, see Vector Catch Register (DBGVCR) on page C10-67.

Vector catch debug events and vectored interrupt support

The ARM architecture provides support for vectored interrupts, where an interrupt controller provides the
interrupt vector address directly to the processor. The mechanism for defining the vectors is
IMPLEMENTATION DEFINED. You enable the use of vectored interrupts by setting the SCTLR.VE bit to 1. For
more information see Vectored interrupt support on page B1-32.

Vectored interrupt support affects Vector Catch debug event generation for the IRQ and FIQ exception
vectors. These two vectors are described as the interrupt vectors. The details of Vector Catch debug event
generation on the interrupt vectors depend on whether the Security Extensions are implemented:

If the Security Extensions are not implemented

• If the SCTRL.VE bit is set to 0, then the Local vector addresses for IRQ and FIQ
vector catch are determined by the exception base address.

• If the SCTRL.VE bit is set to 1, then the Local vector address for an IRQ or FIQ
vector catch is the interrupt vector address supplied by the interrupt controller on
taking the interrupt.
C3-22 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
SCTLR

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
SCTLR

Debug Events
If the Security Extensions are implemented

The Secure Local and Non-secure Local vector addresses for IRQ and FIQ vector catch are
determined by the appropriate banked copy of the SCTRL.VE bit:

• If the SCTRL.VE bit is set to 0, then the corresponding Local vector addresses for
IRQ and FIQ vector catch are determined by the banked exception base address.

• If the SCTRL.VE bit is set to 1, then for each of IRQ and FIQ vector catch:

— if the interrupt is taken in Secure or Non-Secure IRQ mode or FIQ mode, then
the corresponding Local vector address is the interrupt vector address supplied
by the interrupt controller on taking the interrupt.

— if the interrupt is taken in Monitor mode, then it is IMPLEMENTATION DEFINED
whether the IRQ and FIQ Vector Catch debug events generated from the Local
vector addresses can occur, and if they can occur the Secure and Non-secure
Local vector addresses for the vector catches are IMPLEMENTATION DEFINED.

The Monitor vector addresses for IRQ and FIQ vector catch are determined by the Monitor
exception base address.

When the Vector Catch debug logic uses addresses supplied by the interrupt controller, then:

• if the interrupt controller has not supplied an interrupt address to the processor since vectored
interrupt support was enabled then no Vector Catch debug events using Local vector addresses are
generated

• if Vector Catch debug events were not enabled when the interrupt controller supplied a vector address
to the processor, but have been enabled since, an implementation must consistently either:

— generate a Vector Catch debug event if the IVA of an instruction matches the Local vector
address

— not generate Vector Catch debug events using any Local vector address.

C3.2.5 Memory addresses

On processors that implement the Virtual Memory System Architecture (VMSA), and also implement the
Fast Context Switch Extension (FCSE):

• It is IMPLEMENTATION DEFINED whether the Instruction Virtual Address (IVA) used in generating
Breakpoint debug events is the Modified Virtual Address (MVA) or Virtual Address (VA) of the
instruction.

• It is IMPLEMENTATION DEFINED whether the Data Virtual Address (DVA) used in generating
Watchpoint debug events is the MVA or VA of the data access.

• The IVA used in generating Vector Catch debug events is always the VA of the instruction.

• The Watchpoint Fault Address Register (DBGWFAR) reads a VA plus an offset that depends on the
processor instruction set state.

• The Program Counter Sampling Register (DBGPCSR), if implemented, reads a VA plus an offset that
depends on the processor instruction set state.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C3-23

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
 • if Vector catch on a particular vector is otherwise enabled and permitted, it is UNPREDICTABLE whether the debug logic generates a Vector Catch debug event when the IVA of an instruction matches that Local vector address if either:
— Vector catch on that vector was not enabled, or not permitted, when the interrupt controller supplied the corresponding vector address to the processor
— Vector catch on that vector has been disabled, or become not permitted, since the interrupt controller supplied the corresponding vector address to the processor.

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Inserted Text
SCTLR

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Inserted Text
SCTLR

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
SCTLR

Debug Events
Note
 The FCSE is optional in ARMv7, and ARM deprecates use of the FCSE.

On processors that implement the VMSA, and do not implement the FCSE:

• The IVA used in generating Breakpoint debug events is the VA of the instruction.

• The DVA used in generating Watchpoint debug events is the VA of the data access.

• The IVA used in generating Vector Catch debug events is the VA of the instruction.

• The DBGWFAR reads a VA plus an offset that depends on the processor instruction set state.

• The DBGPCSR reads a VA plus an offset that depends on the processor instruction set state.

On processors that implement the Protected Memory System Architecture (PMSA), the Virtual Address is
identical to the Physical Address (PA) and therefore:

• The IVA used in generating Breakpoint debug events is the PA of the instruction.

• The DVA used in generating Watchpoint debug events is the PA of the data access.

• The IVA used in generating Vector Catch debug events is the PA of the instruction.

• The DBGWFAR reads a PA plus an offset that depends on the processor instruction set state.

• The DBGPCSR reads a PA plus an offset that depends on the processor instruction set state.

For more information about the DBGWFAR, see:

• Effects of debug exceptions on CP15 registers and the DBGWFAR on page C4-4

• Effect of entering Debug state on CP15 registers and the DBGWFAR on page C5-4

• Watchpoint Fault Address Register (DBGWFAR) on page C10-28.

For more information about the DBGPCSR, see Program Counter sampling on page C8-2 and Program
Counter Sampling Register (DBGPCSR) on page C10-38.

C3.2.6 UNPREDICTABLE behavior on Software debug events

In ARMv6 the following events are ignored if Monitor debug-mode is configured, because they could lead
to an unrecoverable state:

• Vector Catch debug events on the Prefetch Abort and Data Abort vectors

• Unlinked Context ID Breakpoint debug events, if the processor is running in a privileged mode

• Linked or Unlinked Instruction Virtual Address mismatch Breakpoint debug events, if the processor
is running in a privileged mode.

In ARMv7, if Monitor debug-mode is configured the generation of the following events is UNPREDICTABLE
and can lead to an unrecoverable state:

• Vector Catch debug events on the Prefetch Abort and Data Abort vectors

• Unlinked Context ID Breakpoint debug events that are configured to be generated in any mode, or to
be generated only in privileged modes

• Linked or Unlinked Instruction Virtual Address mismatch Breakpoint debug events that are
configured to be generated in any mode, or to be generated only in privileged modes.
C3-24 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug Events
When Monitor debug-mode is configured, debuggers must avoid these cases by restricting the programming
of the debug event control registers:

• DBGVCR[28,27,12,11,4,3] must be programmed as zero, see Vector Catch Register (DBGVCR) on
page C10-67.

• The permitted values of the Privileged Mode control bits, DBGBCR[2:1], must be restricted in the
following cases:

— if DBGBCR[22:20] is set to 0b010, selecting an Unlinked Context ID breakpoint

— If DBGBCR[22:20] is set to 0b100 or 0b101, selecting an IVA mismatch breakpoint.

For these cases, DBGBCR[2:1] must be programmed to one of:

— 0b00, selecting match only in User, Supervisor or System mode

— 0b10, selecting match only in User mode.

See Debug exceptions in abort handlers for additional points that must be considered before using
the 0b00 setting.

For details of programming the DBGBCR see Breakpoint Control Registers (DBGBCR) on
page C10-49.

If these restrictions are not followed, processor behavior on a resulting debug event is UNPREDICTABLE.

When the Security Extensions are implemented Vector Catch debug events on the Secure Monitor Call
vector are not ignored and are not UNPREDICTABLE. However, normally DBGVCR[10] is also programmed
as zero, see Monitor debug-mode vector catch on Secure Monitor Call on page C3-26.

Debug exceptions in abort handlers

The previous section indicated that, in ARMv7, a debugger might set DBGBCR[2:1] to 0b00, match in User,
Supervisor and System modes, to avoid the possibility of reaching an unrecoverable state in the Unlinked
Context ID and IVA mismatch breakpoint cases when Monitor debug-mode is selected. However,
DBGBCR[2:1] must only be programmed to 0b00 if you are confident that the abort handler will not switch
to one of these modes before saving context that might be corrupted by an additional debug event. The
context that might be corrupted by such an event includes LR_abt, SPSR_abt, IFAR, DFAR, and DFSR.

It is unlikely that an abort handler would switch to User mode to process an abort before saving these
registers, so setting DBGBCR[2:1] to 0b10, match only in User mode, is safer.

Also, take care when setting a Breakpoint or BKPT Instruction debug event inside a Prefetch Abort or Data
Abort handler, or when setting a Watchpoint debug event on a data address that might be accessed by any
of these handlers.

In general, a user must only set Breakpoint or BKPT Instruction debug events inside an abort handler at a
point after the context that would be corrupted by a debug event has been saved. Breakpoint debug events
in code that might be run by an abort handler can be avoided by setting DBGBCR[2:1] to 0b00 or 0b01, as
appropriate.

Watchpoint debug events in abort handlers can be avoided by setting DBGWCR[2:1] for the watchpoint to
0b10, match only unprivileged accesses, if the code being debugged is not running in a privileged mode.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C3-25

Debug Events
If these guidelines are not followed, a debug event might occur before the handler has saved the context of
the abort, causing the context to be overwritten. This loss of context results in UNPREDICTABLE software
behavior. The context that might be corrupted by such an event includes LR_abt, SPSR_abt, IFAR, DFAR,
and DFSR.

Debug events in the debug monitor

Because debug exceptions generate Data Abort or Prefetch Abort exceptions, the precautions outlined in the
section Debug exceptions in abort handlers on page C3-25 also apply to debug monitors. The suggested
settings for breakpoints and watchpoints that can avoid taking debug exceptions in a Data Abort handler can
be used to avoid taking debug exceptions in the debug monitor.

In addition, particularly on ARMv7 processors that do not implement the Extended CP14 interface, and
particularly those that implement synchronous Watchpoint debug events, when Monitor debug-mode is
enabled debuggers must avoid:

• setting Watchpoint debug events on the addresses of debug registers

• setting Breakpoint and Vector Catch debug events on the addresses of instructions in the debug
monitor.

In particular, it is unwise to set a watchpoint on the address of the Watchpoint Control Register (DBGWCR)
for that watchpoint, or to set a breakpoint on the address of an instruction that disables the breakpoint.

The section Generation of debug events on page C3-40 identifies two problem cases:

• A write to the DBGWCR for a watchpoint set on the address of that DBGWCR, to disable that
watchpoint, triggers the watchpoint.

In this case:

— if watchpoints are asynchronous, the write to the DBGWCR still takes place and the
watchpoint is disabled. The debug software must then deal with the re-entrant debug
exception.

— if watchpoints are synchronous the value in the DBGWCR after the watchpoint is signaled is
unchanged, and the debug event is left enabled.

• an instruction that disables a breakpoint on that instruction triggers the breakpoint.

In this case, the debug exception is taken before the debug event is disabled.

In both of these cases it might be impossible to recover.

Monitor debug-mode vector catch on Secure Monitor Call

Debuggers must be cautious about programming a Vector Catch debug event on the Secure Monitor Call
(SMC) vector when Monitor debug-mode is configured. If such an event is programmed, the following
sequence can occur:

1. Non-secure code executes an SMC instruction.
C3-26 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug Events
2. The processor takes the SMC exception, branching to the Monitor vector in Monitor mode. The
SCR.NS bit is set to 1, indicating the SMC originated in the Non-secure state.

3. The Vector Catch debug event is taken. Although SCR.NS is set to 1, the processor is in the Secure
state because it is in Monitor mode.

4. The processor jumps to the Secure Prefetch Abort vector, and sets SCR.NS to 0.

Note
 Aborts taken in Secure state cause SCR.NS to be set to 0.

5. The abort handler at the Secure Prefetch Abort handler can tell a Vector Catch debug event occurred,
and can determine the address of the SMC instruction from LR_mon. However, it cannot determine
whether that is a Secure or Non-secure address.

Therefore, ARM recommends that you do not program a Vector Catch debug event on the SMC vector when
Monitor debug-mode is enabled.

Note
 This is not a security issue, because the sequence given here can only occur if SPIDEN is HIGH.

Possible effect of the Security Extensions on FIQ vector catch

When the Security Extensions are implemented, a debugger might need to consider the implications of the
SCR on a Vector Catch event set on the FIQ vector, when the SCR is configured with both:

• the SCR.FW bit set to 0, so the CPSR.F bit cannot be modified in Non-secure state

• the SCR.FIQ bit set to 0, so that FIQs are handled in FIQ mode.

With this configuration, if an FIQ occurs in Non-secure state, the processor does not set CPSR.F to disable
FIQs, and so the processor repeatedly takes the FIQ exception.

It might not be possible to debug this situation using the vector catch on FIQ because the instruction at the
FIQ exception vector is never committed for execution and therefore the debug event never occurs.

C3.2.7 Pseudocode details of Software debug events

The following subsections give pseudocode details of Software debug events:

• Debug events

• Breakpoints and Vector Catches on page C3-28

• Watchpoints on page C3-35.

Debug events

The following functions cause the corresponding debug events to occur:

BKPTInstrDebugEvent()
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C3-27

Debug Events
BreakpointDebugEvent()
VectorCatchDebugEvent()
WatchpointDebugEvent()

If the debug event is not permitted, it is ignored by the processor.

Breakpoints and Vector Catches

If invasive debug is enabled, on each instruction the Debug_CheckInstruction() function checks for BRP and
DBGVCR matches. If a match is found the function calls BreakpointDebugEvent() or
VectorCatchDebugEvent(). If the debug event is not permitted, it is ignored by the processor.

On a simple sequential execution model, the Debug_CheckInstruction() call for an instruction occurs just
before the Operation pseudocode for the instruction is executed, and any call it generates to
BreakpointDebugEvent() or VectorCatchDebugEvent() must happen at that time. However, the architecture
does not define when the checks for BRP and DBGVCR matches are made, other than that they must be
made at or before that time. Therefore an implementation can perform the checks much earlier in an
instruction pipeline, marking the instruction as breakpointed, and cause a marked instruction to call
BreakpointDebugEvent() or VectorCatchDebugEvent() if and when it is about to execute.

The BRPMatch() function checks an individual BRP match, calling the BRPLinkMatch() function if necessary
to check whether a linked BRP matches.

The VCRMatch() function checks for a Vector Catch debug event. When vectored interrupt support is enabled,
it uses variables to hold the IRQ and FIQ interrupt vector addresses supplied to the processor by the interrupt
controller on taking an interrupt in IRQ mode or FIQ mode. These variables are updated by the
VCR_OnTakingInterrupt() function, that is called each time the processor takes an IRQ or FIQ interrupt.

For all of these functions, between a context changing operation and an exception entry, exception return or
explicit Instruction Synchronization Barrier (ISB) operation, it is UNPREDICTABLE whether the values of
CurrentModeIsPrivileged(), CPSR.M, CurrentInstrSet(), FindSecure(), and the CONTEXTIDR used by
BRPMatch(), BRPLinkMatch(), and VCRMatch() are the old or the new values.

// Debug_CheckInstruction()
// ========================

Debug_CheckInstruction(bits(32) address, integer length)

 // Do nothing if debug disabled.
 if DBGDSCR<15:14> == ‘00’ then return;

 case CurrentInstrSet() of
 when InstrSet_ARM
 step = 4;
 when InstrSet_Thumb, InstrSet_ThumbEE
 step = 2;
 when InstrSet_Jazelle
 step = 1;
 length = length / step;

 vcr_match = FALSE;
 brp_match = FALSE;
C3-28 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug Events
 // Each unit of the instruction is checked against the VCR and the BRPs. VCRMatch()
 // and BRPMatch() might return UNKNOWN for units other than the first unit of the
 // instruction, as in some cases the generation of Debug events is UNPREDICTABLE.
 for W = 0 to length-1
 vcr_match = VCRMatch(address, W == 0) || vcr_match;

 // This code does not take into account the case where a mismatch breakpoint
 // does not match the address of an instruction but another breakpoint or
 // vector catch does match the instruction. In that situation, generation of
 // the Debug event is UNPREDICTABLE.
 for N = 0 to UInt(DBGDIDR.BRPs)
 brp_match = BRPMatch(N, address, W == 0) || brp_match;

 address = address + step;

 // A suitable debug event occurs if there has been a BRP match or a VCR match. If
 // both have occurred, just one debug event occurs, and its type is IMPLEMENTATION
 // DEFINED.
 if vcr_match || brp_match then
 if !vcr_match then BreakpointDebugEvent();
 elsif !brp_match then VectorCatchDebugEvent();
 else IMPLEMENTATION_DEFINED either BreakpointDebugEvent() or VectorCatchDebugEvent();

 return;

// BRPMatch()
// ==========

boolean BRPMatch(integer N, bits(32) address, boolean first)
 assert N <= UInt(DBGDIDR.BRPs);

 // If this breakpoint is not enabled, return immediately.
 if DBGBCR[N]<0> == ‘0’ return FALSE;

 unk_match = FALSE;

 // Mode control match
 case DBGBCR[N]<2:1> of
 when ‘00’
 if UInt(DBGDIDR.Version) < 3 then
 UNPREDICTABLE;
 else
 case CPSR.M of
 when ‘10000’ mode_control_match = TRUE; // User mode
 when ‘10011’ mode_control_match = TRUE; // Supervisor mode
 when ‘11111’ mode_control_match = TRUE; // System mode
 otherwise mode_control_match = FALSE; // Any other mode
 when ‘01’ mode_control_match = CurrentModeIsPrivileged(); // Privileged mode
 when ‘10’ mode_control_match = !CurrentModeIsPrivileged(); // Unprivileged mode
 when ‘11’ mode_control_match = TRUE; // Any mode

 // Byte lane select
 case CurrentInstrSet() of
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C3-29

Debug Events
 when InstrSet_ARM
 byte_select_match = (DBGBCR[N]<8:5> != ‘0000’);
 when InstrSet_Thumb, InstrSet_ThumbEE
 case address<1> of
 when ‘0’ byte_select_match = (DBGBCR[N]<6:5> != ‘00’);
 when ‘1’ byte_select_match = (DBGBCR[N]<8:7> != ‘00’);
 when InstrSet_Jazelle
 case address<1:0> of
 when ‘00’ byte_select_match = (DBGBCR[N]<5> == ‘1’);
 when ‘01’ byte_select_match = (DBGBCR[N]<6> == ‘1’);
 when ‘10’ byte_select_match = (DBGBCR[N]<7> == ‘1’);
 when ‘11’ byte_select_match = (DBGBCR[N]<8> == ‘1’);

 // Address mask
 case DBGBCR[N]<28:24> of
 when ‘00000’
 // This implies no mask, but the byte address is always dealt with by
 // byte_select_match, so the mask always has the bottom two bits set.
 mask = ZeroExtend(‘11’, 32);
 when ‘00001’, ‘00010’
 UNPREDICTABLE;
 otherwise
 mask = ZeroExtend(Ones(UInt(DBGBCR[N]<28:24>)), 32);
 if DBGBCR[N]<8:5> != ‘1111’ then unk_match = TRUE;

 // Meaning of BVR
 case DBGBCR[N]<22:20> of
 when ‘000’ // Unlinked IVA match
 cmp_in = address; linked = FALSE; mismatch = FALSE; mon_debug_ok = TRUE;

 when ‘001’ // Linked IVA match
 cmp_in = address; linked = TRUE; mismatch = FALSE; mon_debug_ok = TRUE;

 when ‘010’ // Unlinked context ID match
 if N < UInt(DBGDIDR.BRPs) - UInt(DBGDIDR.CTX_CMPs) then UNPREDICTABLE;
 if DBGBCR[N]<8:5> != ‘1111’ || DBGBCR[N]<28:24> != ‘00000’ then unk_match = TRUE;
 mask = Zeros(32);
 cmp_in = CONTEXTIDR; linked = FALSE; mismatch = FALSE; mon_debug_ok = FALSE;

 when ‘011’ // Linked context ID match (does not match directly, only via link)
 return FALSE;

 when ‘100’ // Unlinked IVA mismatch
 if UInt(DBGDIDR.Version) < 2 then UNPREDICTABLE;
 cmp_in = address; linked = FALSE; mismatch = TRUE; mon_debug_ok = FALSE;

 when ‘101’ // Linked IVA mismatch
 if UInt(DBGDIDR.Version) < 2 then UNPREDICTABLE;
 cmp_in = address; linked = TRUE; mismatch = TRUE; mon_debug_ok = FALSE;

 otherwise // Reserved
 unk_match = TRUE;

 if !IsZero(DBGBVR[N] AND mask) then unk_match = TRUE;
C3-30 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Replacement Text
 when InstrSet_ARM
 byte_select_match = (DBGBCR[N]<8:5> != ‘0000’);
 if DBGBCR[N]<8:5> != ‘0000’ && DBGBCR[N]<8:5> != ‘1111’ then unk_match = TRUE;

 when InstrSet_Thumb, InstrSet_ThumbEE
 case address<1> of
 when ‘0’
 byte_select_match = (DBGBCR[N]<6:5> != ‘00’);
 if DBGBCR[N]<6:5> != ‘00’ && DBGBCR[N]<6:5> != ‘11’ then unk_match = TRUE;
 when ‘1’
 byte_select_match = (DBGBCR[N]<8:7> != ‘00’);
 if DBGBCR[N]<8:7> != ‘00’ && DBGBCR[N]<8:7> != ‘11’ then unk_match = TRUE;

ARM_2011_Q2
Sticky Note
This correction to the pseudocode identifies some additional UNPREDICTABLE cases that are shown correctly in Table C10-11 on page C10-56 [PDF page 1824].

Debug Events
 BVR_match = byte_select_match && (cmp_in AND NOT(mask)) == DBGBVR[N];
 if mismatch then BVR_match = !BVR_match;

 // If this is not the first unit of the instruction and there is an address match, then
 // the breakpoint match is UNPREDICTABLE, except in the “single-step” case where it is a
 // mismatch breakpoint without a range set. If there is a match on the first unit of the
 // instruction, that will override the UNKNOWN case here. In the single-step case, matches
 // on the subsequent units of the instruction are ignored.
 if BVR_match && !first then
 if mismatch && DBGBCR[N]<28:24> == ‘00000’ then // Single-step case
 BVR_match = FALSE;
 else
 BVR_match = boolean UNKNOWN;

 // Security state
 case DBGBCR[N]<15:14> of
 when ‘00’ secure_state_match = TRUE; // Any state (or no Security Extensions)
 when ‘01’ secure_state_match = !IsSecure(); // Non-secure only
 when ‘10’ secure_state_match = IsSecure(); // Secure only
 when ‘11’ UNPREDICTABLE; // Reserved

 match = mode_control_match && BVR_match && secure_state_match;

 // If linked, check the linked BRP.
 if linked then match = match && BRPLinkMatch(UInt(DBGBCR[N]<19:16>));
 elsif DBGBCR[N]<19:16> != ‘0000’ then unk_match = TRUE;

 // When Monitor debug-mode is configured:
 // * some types of event are ignored in v6 Debug and v6.1 Debug in privileged modes
 // * some types of event are UNPREDICTABLE in v7 Debug.
 if !mon_debug_ok && DBGDSCR<15:14> == ‘10’ then
 if UInt(DBGDIDR.Version) < 3 then
 if CurrentModeIsPrivileged() then return FALSE;
 else
 if DBGBCR[N]<2:1> == ‘01’ || DBGBCR[N]<2:1> == ‘11’ then UNPREDICTABLE;

 if unk_match then
 return boolean UNKNOWN;
 else
 return match;

// BRPLinkMatch()
// ==============

boolean BRPLinkMatch(integer M)
 assert M <= UInt(DBGDIDR.BRPs);

 if M < UInt(DBGDIDR.BRPs) - UInt(DBGDIDR.CTX_CMPs) then UNPREDICTABLE;

 // If this breakpoint is not enabled, return immediately.
 if DBGBCR[M]<0> == ‘0’ return FALSE;

 unk_match = FALSE;
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C3-31

Debug Events
 if DBGBCR[M]<2:1> != ‘11’ then unk_match = TRUE;
 if DBGBCR[M]<8:5> != ‘1111’ then unk_match = TRUE;
 if DBGBCR[M]<15:14> != ‘00’ then unk_match = TRUE;
 if DBGBCR[M]<19:16> != ‘0000’ then unk_match = TRUE;
 if DBGBCR[M]<22:20> != ‘011’ then unk_match = TRUE;
 if DBGBCR[M]<28:24> != ‘00000’ then unk_match = TRUE;

 if unk_match then
 return boolean UNKNOWN;
 else
 return (CONTEXTIDR == DBGBVR[M]);

// Variables used to record most recent interrupts of various types.

bits(32) VCR_Recent_IRQ_S;
bits(32) VCR_Recent_IRQ_NS;
bits(32) VCR_Recent_FIQ_S;
bits(32) VCR_Recent_FIQ_NS;
boolean VCR_Recent_IRQ_S_Valid;
boolean VCR_Recent_IRQ_NS_Valid;
boolean VCR_Recent_FIQ_S_Valid;
boolean VCR_Recent_FIQ_NS_Valid;

// VCR_OnTakingInterrupt()
// =======================

VCR_OnTakingInterrupt(bits(32) vector, boolean FIQnIRQ)
 if SCTLR.VE == ‘1’ then
 if FIQnIRQ then
 if IsSecure() then
 if DBGVCR<7> == ‘0’ || (HaveSecurityExt() && SCR.FIQ == ‘1’) then
 IMPLEMENTATION_DEFINED whether the variables are updated;
 else
 VCR_Recent_FIQ_S = vector;
 VCR_Recent_FIQ_S_Valid = TRUE;
 else
 if DBGVCR<31> == ‘0’ || (HaveSecurityExt() && SCR.FIQ == ‘1’) then
 IMPLEMENTATION_DEFINED whether the variables are updated;
 else
 VCR_Recent_FIQ_NS = vector;
 VCR_Recent_FIQ_NS_Valid = TRUE;
 else
 if IsSecure() then
 if DBGVCR<6> == ‘0’ || (HaveSecurityExt() && SCR.IRQ == ‘1’) then
 IMPLEMENTATION_DEFINED whether the variables are updated;
 else
 VCR_Recent_IRQ_S = vector;
 VCR_Recent_IRQ_S_Valid = TRUE;
 else
 if DBGVCR<30> == ‘0’ || (HaveSecurityExt() && SCR.IRQ == ‘1’) then
 IMPLEMENTATION_DEFINED whether the variables are updated;
 else
 VCR_Recent_IRQ_NS = vector;
C3-32 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug Events
 VCR_Recent_IRQ_NS_Valid = TRUE;

 return;

// VCRVectorMatch()
// ================
//
// The result of this function says whether iaddr and eaddr match for vector catch purposes:
// TRUE if they definitely match
// boolean UNKNOWN if it is UNPREDICTABLE whether they match
// FALSE if they definitely do not match

boolean VCRVectorMatch(bits(32) iaddr, boolean first, bits(32) eaddr)

 match = FALSE;
 unpred = FALSE;

 if eaddr<31:2> == iaddr<31:2> then
 if eaddr<1:0> == iaddr<1:0> then
 // Exact address match is a definite match if on the first unit of the instruction,
 // otherwise an UNPREDICTABLE match.
 if first then match = TRUE; else unpred = TRUE;
 else
 // Check for other cases of UNPREDICTABLE matches.
 case CurrentInstrSet() of
 when InstrSet_ARM
 unpred = TRUE;
 when InstrSet_Thumb, InstrSet_ThumbEE
 if iaddr<1> == eaddr<1> then unpred = TRUE;
 if iaddr<1:0> == ‘10’ && eaddr<1:0> == ‘00’ then unpred = TRUE;
 when InstrSet_Jazelle
 if eaddr<1:0> == ‘00’ then unpred = TRUE;
 if eaddr<1:0> == ‘10’ && iaddr<1:0> == ‘11’ then unpred = TRUE;

 if match then
 return TRUE;
 elsif unpred then
 return boolean UNKNOWN;
 else
 return FALSE;

// VCRMatch()
// ==========

boolean VCRMatch(bits(32) address, boolean first)

 // Determine addresses for IRQ and FIQ comparisons.

 if SCTLR.VE == ‘0’ then
 VCR_Recent_IRQ_S_Valid = FALSE; VCR_Recent_IRQ_NS_Valid = FALSE;
 VCR_Recent_FIQ_S_Valid = FALSE; VCR_Recent_FIQ_NS_Valid = FALSE;
 irq_addr = ExcVectorBase() + 24; irq_addr_v = TRUE;
 fiq_addr = ExcVectorBase() + 28; fiq_addr_v = TRUE;
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C3-33

Debug Events
 else
 if IsSecure() then
 irq_addr = VCR_Recent_IRQ_S; irq_addr_v = VCR_Recent_IRQ_S_Valid;
 fiq_addr = VCR_Recent_FIQ_S; fiq_addr_v = VCR_Recent_FIQ_S_Valid;
 else
 irq_addr = VCR_Recent_IRQ_NS; irq_addr_v = VCR_Recent_IRQ_NS_Valid;
 fiq_addr = VCR_Recent_FIQ_NS; fiq_addr_v = VCR_Recent_FIQ_NS_Valid;

 a_match = FALSE; // Boolean for a match on an abort vector
 match = FALSE; // Boolean for a match on any other vector

 // Check for non-monitor, non-reset matches, using DBGVCR<7:1> if no Security
 // Extensions or in Secure state, or DBGVCR<31:25> if in Non-secure state.
 start = if IsSecure() then 0 else 24;
 if DBGVCR<start+1> == ‘1’ then
 match = match || VCRVectorMatch(address, first, ExcVectorBase()+4);
 if DBGVCR<start+2> == ‘1’ then
 match = match || VCRVectorMatch(address, first, ExcVectorBase()+8);
 if DBGVCR<start+3> == ‘1’ then
 a_match = a_match || VCRVectorMatch(address, first, ExcVectorBase()+12);
 if DBGVCR<start+4> == ‘1’ then
 a_match = a_match || VCRVectorMatch(address, first, ExcVectorBase()+16);
 if DBGVCR<start+6> == ‘1’ then
 if HaveSecurityExt() && SCR.IRQ == ‘1’ && SCTLR.VE == ‘1’ then
 IMPLEMENTATION_DEFINED what test is made, if any;
 else if irq_addr_v then
 match = match || VCRVectorMatch(address, first, irq_addr);
 if DBGVCR<start+7> == ‘1’ then
 if HaveSecurityExt() && SCR.FIQ == ‘1’ && SCTLR.VE == ‘1’ then
 IMPLEMENTATION_DEFINED what test is made, if any;
 else if fiq_addr_v then
 match = match || VCRVectorMatch(address, first, fiq_addr);

 // If we have the Security Extensions and are in Secure state, check for monitor matches.
 if HaveSecurityExt() && IsSecure() then
 if DBGVCR<10> == ‘1’ then
 match = match || VCRVectorMatch(address, first, MVBAR+8);
 if DBGVCR<11> == ‘1’ then
 a_match = a_match || VCRVectorMatch(address, first, MVBAR+12);
 if DBGVCR<12> == ‘1’ then
 a_match = a_match || VCRVectorMatch(address, first, MVBAR+16);
 if DBGVCR<14> == ‘1’ then
 match = match || VCRVectorMatch(address, first, MVBAR+24);
 if DBGVCR<15> == ‘1’ then
 match = match || VCRVectorMatch(address, first, MVBAR+28);

 // Check for reset matches.
 // In v7 Debug this check is made regardless of the security state.
 // In v6 Debug and v6.1 Debug this check is only made in Secure state.
 vector = if SCTLR.V == ‘1’ then Ones(16):Zeros(16) else Zeros(32);
 if DBGVCR<0> == ‘1’ && (UInt(DBGDIDR.Version) >= 3 || IsSecure()) then
 match = match || VCRVectorMatch(address, first, vector);
C3-34 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q2
Sticky Note
The value of the vector addresses depends on the value of the SCTLR.V bit. An implementation can include a configuration input signal that determines the reset value of the SCTLR.V bit. For the Reset vector only, it is IMPLEMENTATION DEFINED whether the value of the Reset vector address depends on the reset value or on the current value of SCTLR.V.

This pseudocode assumes the current value of SCTLR.V is used.

Debug Events
 // When Monitor debug-mode is configured, abort vector catches are ignored in v6 Debug
 // and v6.1 Debug, but UNPREDICTABLE in v7 Debug.
 if a_match && DBGDSCR<15:14> == ‘10’ then
 if UInt(DBGDIDR.Version) < 3 then
 a_match = FALSE;
 else
 UNPREDICTABLE;

 return match || a_match;

Watchpoints

If invasive debug is enabled, the Debug_CheckDataAccess() function checks WRP matches for each data
access. If the implementation includes IMPLEMENTATION DEFINED support for watchpoint generation on
memory hint operations, or on cache maintenance operations, the function also checks for WRP matches on
the appropriate operations. If a match is found the function calls WatchpointDebugEvent(). If the debug event
is not permitted, it is ignored by the processor.

On a simple sequential execution model:

• for a synchronous watchpoint, the Debug_CheckDataAccess() test is made before the data access

• for an asynchronous watchpoint, the Debug_CheckDataAccess() test is made after the data access.

For more information see Synchronous and Asynchronous Watchpoint debug events on page C3-18.

The WRPMatch() function checks an individual WRP match. In ARMv7, it is IMPLEMENTATION DEFINED
whether WRP matches use eight byte lanes or four. The WRPUsesEightByteLanes() function returns TRUE if
they use eight byte lanes and FALSE if they use four. Using eight byte lanes is permitted only in ARMv7.

boolean WRPUsesEightByteLanes()

For these functions the parameters read, write, privileged and secure are determined at the point the access
is made, and not from the state of the processor at the point where WRPMatch() is executed. For swaps,
read = write = TRUE.

// Debug_CheckDataAccess()
// =======================

boolean Debug_CheckDataAccess(bits(32) address, integer size, boolean read,
 boolean write, boolean privileged, boolean secure)

 // Do nothing if debug disabled;
 if DBGDSCR<15:14> == ‘00’ then return;

 match = FALSE;
 // Each byte accessed by the data access is checked
 for byte = address to address + size - 1
 for N = 0 to UInt(DBGDIDR.WRPs)
 if WRPMatch(N, byte, read, write, privileged, secure) then match = TRUE;

 if match then WatchpointDebugEvent();
 return;
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C3-35

Debug Events
// WRPMatch()
// ==========

boolean WRPMatch(integer N, bits(32) address, boolean read, boolean write,
 boolean privileged, boolean secure)
 assert N <= UInt(DBGDIDR.WRPs);

 // If watchpoint is not enabled, return immediately.
 if DBGWCR[N]<0> == ‘0’ return FALSE;

 // Access privilege match
 case DBGWCR[N]<2:1> of
 when ‘00’ UNPREDICTABLE; // Reserved
 when ‘01’ privilege_match = privileged; // Only privileged accesses
 when ‘10’ privilege_match = !privileged; // Only unprivileged accesses
 when ‘11’ privilege_match = TRUE; // Any access

 // Load/Store access control match
 case DBGWCR[N]<4:3> of
 when ‘00’ UNPREDICTABLE; // Reserved
 when ‘01’ load_store_match = read; // Only load, load exclusive or swap
 when ‘10’ load_store_match = write; // Only store, store exclusive or swap
 when ‘11’ load_store_match = TRUE; // All accesses

 // Address match
 case DBGWCR[N]<28:24> of
 when ‘00000’ // No mask
 // If implementation uses 8 byte lanes, DBGWVR[N]<2> == ‘1’ selects 4 byte lane
 // behavior.
 if DBGWVR[N]<2> == ‘1’ then
 bits = 2;
 if DBGWCR[N]<12:9> != ‘0000’ then UNPREDICTABLE;
 else
 bits = if WRPUsesEightByteLanes() then 3 else 2;
 mask = ZeroExtend(Ones(bits), 32);
 if !IsZero(DBGWVR[N]<1:0>) then UNPREDICTABLE;
 byte = UInt(address<bits-1:0>);
 WVR_match = ((address AND NOT(mask)) == DBGWVR[N]) && (DBGWCR[N]<5+byte> == ‘1’);

 when ‘00001’, ‘00010’ // Reserved
 UNPREDICTABLE;

 otherwise // Masked address check
 mask = ZeroExtend(Ones(UInt(DBGWCR[N]<28:24>)), 32);
 if !IsZero(DBGWVR[N] AND mask) then UNPREDICTABLE;
 if DBGWCR[N]<8:5> != ‘1111’ then UNPREDICTABLE;
 if WRPUsesEightByteLanes() && (DBGWCR[N]<12:9> != ‘1111’) then UNPREDICTABLE;
 WVR_match = ((address AND NOT(mask)) == DBGWVR[N]);

 // Security state
 case DBGWCR[N]<15:14> of
 when ‘00’ secure_state_match = TRUE; // Any access (or no Security Extensions)
 when ‘01’ secure_state_match = !secure; // Only non-secure accesses
C3-36 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug Events
 when ‘10’ secure_state_match = secure; // Only secure accesses
 when ‘11’ UNPREDICTABLE; // Reserved

 match = privilege_match && load_store_match && WVR_match && secure_state_match;

 // Check for linking
 linked = (DBGWCR[N]<22> == ‘1’);
 if linked then match = match && BRPLinkMatch(UInt(DBGWCR[N]<19:16>));
 elsif DBGWCR[N]<19:16> != ‘0000’ then UNPREDICTABLE;

 return match;
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C3-37

Debug Events
C3.3 Halting debug events

A Halting debug event is one of the following:

• An External Debug Request debug event. This is a request from the system for the processor to enter
Debug state.

The method of generating an External Debug Request is IMPLEMENTATION DEFINED. Typically it is
by asserting an External Debug Request input to the processor.

• A Halt Request debug event. This occurs when the debug logic receives a Halt request command.

In v7 Debug, a debugger generates a Halt request command by writing 1 to the DBGDRCR Halt
request bit, see Debug Run Control Register (DBGDRCR), v7 Debug only on page C10-29.

• An OS Unlock Catch debug event. This occurs when both of the following are true:

— the OS Unlock Catch is enabled in the Event Catch Register

— the OS Lock transitions from the locked to the unlocked condition.

For details see Event Catch Register (DBGECR) on page C10-78 and OS Lock Access Register
(DBGOSLAR) on page C10-75.

If invasive debug is disabled when one of these events is detected, the request is ignored and no Halting
debug event occurs. Invasive debug is disabled when the external debug interface signal DBGEN is LOW.

If DBGEN is HIGH, meaning that invasive debug is enabled, and a Halting debug event occurs when it is
not permitted, the Halting debug event is pended. This means that the processor enters Debug state when it
transitions to a security state or processor mode where the Halting debug event is permitted.

However, if DBGEN goes LOW before the processor enters the security state or processor mode where the
Halting debug event is permitted, it is UNPREDICTABLE whether the event remains pended. If the debug logic
is reset before the processor enters the permitted security state or processor mode, the processor must
remove pending Halt Request and OS Unlock catch debug events. Whether a pending External Debug
Request debug event is removed is IMPLEMENTATION DEFINED.

Note
 The IMPLEMENTATION DEFINED details of External Debug Request might specify that it is pended externally
by the peripheral that is driving it until the processor acknowledges the request by entering Debug state. In
such a system the pending request is typically held over a debug logic reset.

If a Halting debug event occurs when debug is enabled and the event is permitted, or the Halting debug event
becomes permitted while it is pending, it is guaranteed that Debug state is entered by the end of the next
Instruction Synchronization Barrier (ISB) operation, exception entry, or exception return.

See Run-control and cross-triggering signals on page AppxA-5 for details of the recommended external
debug interface.
C3-38 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug Events
In v6 Debug and v6.1 Debug:

• if the processor implements the recommended ARM Debug Interface v4, the Halt request command
is issued through the JTAG interface, by placing the HALT instruction in the IR and taking the Debug
Test Access Port State Machine (Debug TAP State Machine) through the Run-Test/Idle state

• the OS Unlock Catch debug event is not supported.

In v6 Debug it is IMPLEMENTATION DEFINED whether Halting debug events cause entry to Debug state when
Halting debug-mode is not configured and enabled.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C3-39

Debug Events
C3.4 Generation of debug events

The generation of Breakpoint and Watchpoint debug events can be dependent on the context of the
processor, including:

• the current processor mode

• the contents of the CONTEXTIDR

• the Secure security state setting, if the processor implements Security Extensions.

The generation of debug events is also dependent on the state of the debug event generation logic:

• Breakpoint debug events are dependent on the contents of the relevant Breakpoint Register Pair
(BRP)

• Watchpoint debug events are dependent on the contents of the relevant Watchpoint Register Pair
(WRP)

• Linked Breakpoint or Watchpoint debug events are dependent on the settings of a second BRP

• Vector Catch debug events are dependent on the settings in the Vector Catch Register (DBGVCR)

• OS Unlock Catch debug events are dependent on the setting of the Event Catch Register (DBGECR).

In addition, as shown in Table C3-1 on page C3-2, the generation of debug events is dependent on:

• the invasive debug authentication settings, see Chapter C2 Invasive Debug Authentication

• the values of the DBGDSCR.HDBGen and DBGDSCR.MDBGen bits, see Debug Status and Control
Register (DBGDSCR) on page C10-10.

The following events are guaranteed to take effect on the debug event generation logic by the end of the next
ISB operation, exception entry, or exception return:

• Context changing operations, including:

— mode changes

— writes to the CONTEXTIDR

— security state changes.

• Operations that change the state of the debug event generation logic, including:

— writes to BRP registers, for Breakpoint debug events, or Linked Breakpoint or Watchpoint
debug events

— writes to WRP registers, for Watchpoint debug events

— writes to the DBGVCR, for Vector Catch debug events

— writes to the DBGECR, for OS Unlock Catch debug events

— changes to the authentication signals

— writes to the DBGDSCR.
C3-40 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug Events
Usually, exception return sequences are also context changing operations, and hence the context change
operation is guaranteed to take effect on the breakpoint matching logic by the end of that exception return
sequence.

To ensure a change in the debug event generation logic has completed before a particular event or piece of
code is debugged you must include an ISB, exception entry or exception return after the change in the Debug
settings. In the absence of an ISB, exception entry or exception return, it is UNPREDICTABLE when the
changes take place.

Between a context change operation and the end of the next ISB, exception entry or exception return it is
UNPREDICTABLE whether the processing of a debug event depends on the old or the new context.

Between operations that change the state of the debug event generation logic and the end of the next ISB,
exception entry or exception return, it is UNPREDICTABLE whether debug event generation depends on the
old or the new settings. Example C3-1 describes such a case.

Example C3-1 Unpredictability in debug event generation

A breakpoint is set at an address programmed in its Breakpoint Value Register (DBGBVR) and is configured
through its Breakpoint Control Register (DBGBCR). In this example:

• DBGBCR is programmed to only match in User, Supervisor or System modes

• the address in the DBGBVR is the address of an instruction in an abort handler routine normally
entered from the Prefetch Abort exception vector in Abort mode, but located after that handler
switches from Abort mode to Supervisor mode using a CPS instruction.

If there is no ISB, exception entry or exception return between the CPS instruction and the instruction at the
breakpoint address, it is UNPREDICTABLE whether the breakpoint matches, even though the instruction is
executed in Supervisor mode.

Such an ISB, exception entry or exception return is usually not required to ensure correct operation of the
program. In this example because the program is switching between two privileged modes it is not required
to ensure correct operation of the memory system.

ARMv7 does not require that such changes take effect on instruction fetches from the memory system, or
on memory accesses made by the processor, at the same point as they take effect on the debug logic. The
only architectural requirement is that such a change executed before an ISB operation must be visible to both
the memory system and the debug logic for all instructions executed after the ISB operation. This
requirement is described earlier in this section.

The processor must test for any possible:

• Watchpoint debug event before a memory access operation is observed.

• Breakpoint or Vector Catch debug event before the instruction is executed, that is, before the
instruction has any effect on the architectural state of the processor.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C3-41

ARM_2009_Q2
Inserted Text
, exception entry, or exception return

ARM_2009_Q2
Inserted Text
, exception entry, or exception return

Debug Events
As a result, for an instruction that modifies the context in which the processor tests for debug events, the
processor must test for all possible debug event in terms of the context before the memory access operation
is observed or the instruction executes. For example:

• In a v7 Debug implementation that uses the memory-mapped interface, a write to the DBGWCR to
enable a watchpoint on a Data Virtual Address (DVA) of the DBGWCR itself must not trigger the
watchpoint.

Conversely, a write to the DBGWCR to disable the same watchpoint must trigger the watchpoint. For
more information, see Debug events in the debug monitor on page C3-26.

• An instruction that writes to a Breakpoint Control Register (DBGBCR) or Vector Catch Register
(DBGVCR) to enable a debug event on the Instruction Virtual Address (IVA) of the instruction itself
must not trigger the debug event.

Conversely, a write to the DBGBCR or DBGVCR to disable the same debug event must trigger the
debug event.
C3-42 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug Events
C3.5 Debug event prioritization

Debug events can be synchronous or asynchronous:

• Breakpoint, Vector Catch, BKPT Instruction, and synchronous Watchpoint debug events are all
synchronous debug events

• asynchronous Watchpoints and all Halting debug events are all asynchronous debug events.

A single instruction can generate a number of synchronous debug events. It can also generate a number of
synchronous exceptions. The principles given in Exception priority order on page B1-33 apply to those
exceptions and debug events, in addition to the following:

• An instruction fetch that generates an MMU fault, MPU fault, or external abort does not generate a
Breakpoint or Vector Catch debug event.

• Breakpoint and Vector Catch debug events are associated with the instruction and are taken before
the instruction executes. Therefore, when a Breakpoint or Vector Catch debug event occurs no other
synchronous exception or debug event that would have occurred as a result of executing the
instruction is generated.

• If a single instruction has more than one of the following debug events associated with it, it is
UNPREDICTABLE which is taken:

— Breakpoint

— Vector Catch.

• No instruction is valid if it has a Prefetch Abort exception associated with it. Therefore, if an
instruction causes a Prefetch Abort exception no other synchronous exception or debug event that
would have occurred as a result of executing the instruction is generated.

• An instruction that generates an Undefined Instruction exception does not cause any memory access,
and therefore cannot cause a Data Abort exception or a Watchpoint debug event.

• A memory access that generates an MMU fault or an MPU fault must not generate a Watchpoint
debug event.

• A memory access that generates an MMU fault, an MPU fault, or a synchronous Watchpoint debug
event must not generate an external abort.

• All other synchronous exceptions and synchronous debug events are mutually exclusive, and are
derived from a decode of the instruction.

The ARM architecture does not define when asynchronous debug events other than asynchronous
Watchpoint debug events are taken. Therefore the prioritization of asynchronous debug events other than
asynchronous Watchpoint debug events is IMPLEMENTATION DEFINED.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C3-43

ARM_2008_Q4
Inserted Text
synchronous

Debug Events
Debug events must be taken in the execution order of the sequential execution model. This means that if an
instruction causes a debug event then that event must be taken before any debug event on any instruction
that would execute after that instruction, in the sequential execution model. In particular, if the execution of
an instruction generates an asynchronous Watchpoint debug event:

• the asynchronous Watchpoint debug event must not be taken if the instruction also generates any
synchronous debug event

• if the instruction does not generate any synchronous debug event, then the asynchronous Watchpoint
debug event must be taken before any subsequent:

— synchronous or asynchronous debug event

— synchronous or asynchronous precise exception.
C3-44 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q1
Inserted Text

If the execution of an instruction generates an asynchronous Watchpoint debug event but the processor takes an imprecise asynchronous Data Abort exception before taking the debug event, it is UNPREDICTABLE whether the debug event is taken.

--- Note -----
The definition of UNPREDICTABLE requires that, when SPIDEN is LOW, the debug event is not taken if, as a result of taking the imprecise exception, SCR.NS = 0. This is because taking the debug event would be a security hole.

Chapter C4
Debug Exceptions

This chapter describes debug exceptions, that are used to handle debug events when the processor is
configured for Monitor debug-mode. It contains the following sections:

• About debug exceptions on page C4-2

• Effects of debug exceptions on CP15 registers and the DBGWFAR on page C4-4.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C4-1

Debug Exceptions
C4.1 About debug exceptions

A debug exception is taken when:

• a permitted Software debug event occurs when invasive debug is enabled and Monitor debug-mode
is selected

• a BKPT instruction is executed when one of:

— invasive debug is disabled

— the debug event is not permitted

— no debug-mode is selected.

For more information, see Table C3-1 on page C3-2. You must be careful when programming certain events
because you might leave the processor in an unrecoverable state. See Unpredictable behavior on Software
debug events on page C3-24.

How the processor handles the debug exception depends on the cause of the exception, and is described in:

• Debug exception on Breakpoint, BKPT Instruction or Vector Catch debug events

• Debug exception on Watchpoint debug event on page C4-3.

Halting debug events never cause a debug exception. The Halting debug events are:

• External Debug Request debug event

• Halt Request debug event

• OS Unlock Catch debug event.

C4.1.1 Debug exception on Breakpoint, BKPT Instruction or Vector Catch debug events

If the cause of the debug exception is a Breakpoint, BKPT Instruction, or a Vector Catch debug event, the
processor performs the following actions:

• Sets the DBGDSCR.MOE bits according to Table C10-3 on page C10-26.

• Sets the IFSR and IFAR as described in Effects of debug exceptions on CP15 registers and the
DBGWFAR on page C4-4.

• Generates a Prefetch Abort exception, see Prefetch Abort exception on page B1-54

The Prefetch Abort handler is responsible for checking the IFSR bits to find out whether the exception entry
was caused by a debug exception. If it was, typically the handler branches to the debug monitor.
C4-2 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug Exceptions
C4.1.2 Debug exception on Watchpoint debug event

If the cause of the debug exception is a Watchpoint debug event, the processor performs the following
actions:

• Sets the DBGDSCR.MOE bits either to Asynchronous Watchpoint Occurred or to Synchronous
Watchpoint Occurred.

• Sets the DFSR, DFAR, and DBGWFAR as described in Effects of debug exceptions on CP15 registers
and the DBGWFAR on page C4-4.

• Generates a precise Data Abort exception, see Data Abort exception on page B1-55.

For more information, see Synchronous and Asynchronous Watchpoint debug events on page C3-18.

The Data Abort handler is responsible for checking the DFSR bits to find out whether the exception entry
was caused by a debug exception. If it was, typically the handler branches to the debug monitor:

• The DBGWFAR indicates the address of the instruction that caused the Watchpoint debug event. see
Watchpoint Fault Address Register (DBGWFAR) on page C10-28.

• LR_abt holds the address of (instruction to restart at + 8). If the watchpoint is synchronous, the
instruction to restart at is the instruction that triggered the watchpoint.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C4-3

Debug Exceptions
C4.2 Effects of debug exceptions on CP15 registers and the DBGWFAR

There are four CP15 registers that are used to record abort information:

DFAR Data Fault Address Register, see:

• c6, Data Fault Address Register (DFAR) on page B3-124 for a VMSA
implementation

• c6, Data Fault Address Register (DFAR) on page B4-57 for a PMSA implementation.

IFAR Instruction Fault Address Register, see:

• c6, Instruction Fault Address Register (IFAR) on page B3-125 for a VMSA
implementation

• c6, Instruction Fault Address Register (IFAR) on page B4-58 for a PMSA
implementation.

DFSR Data Fault Status Register, see:

• c5, Data Fault Status Register (DFSR) on page B3-121 for a VMSA implementation

• c5, Data Fault Status Register (DFSR) on page B4-55 for a PMSA implementation.

IFSR Instruction Fault Status Register, see:

• c5, Instruction Fault Status Register (IFSR) on page B3-122 for a VMSA
implementation

• c5, Instruction Fault Status Register (IFSR) on page B4-56 for a PMSA
implementation.

Their usage model for normal operation is described in:

• Fault Status and Fault Address registers in a VMSA implementation on page B3-48 for a VMSA
implementation

• Fault Status and Fault Address registers in a PMSA implementation on page B4-18 for a PMSA
implementation.

Additional registers might be used to return additional IMPLEMENTATION DEFINED fault status information,
see:

• c5, Auxiliary Data and Instruction Fault Status Registers (ADFSR and AIFSR) on page B3-123 for a
VMSA implementation

• c5, Auxiliary Data and Instruction Fault Status Registers (ADFSR and AIFSR) on page B4-56 for a
PMSA implementation.

Also, information can be returned in the Watchpoint Fault Address Register (DBGWFAR). The
implementation of the DBGWFAR depends on the Debug architecture version:

• In v6 Debug it is implemented as a register in CP15 c6.

• In v6.1 Debug it is implemented in CP14, and use of the CP15 alias is deprecated.

• In v7 Debug it can be implemented in the Extended CP14 interface, and has no alias in CP15.

For more information, see Watchpoint Fault Address Register (DBGWFAR) on page C10-28.
C4-4 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug Exceptions
In Monitor debug-mode the behavior on the exception generated as a result of a Breakpoint, BKPT
Instruction, or Vector Catch debug events is as follows:

• the IFSR is updated with the encoding for a debug event, IFSR[10,3:0] = 0b00010

• the IFAR is UNKNOWN following these debug exceptions

• the DFSR, DFAR and DBGWFAR are unchanged.

In Monitor debug-mode the behavior on the exception generated as a result of a Watchpoint debug event is
as follows:

• the IFSR and IFAR are unchanged.

• the DFSR is updated with the encoding for a debug event, DFSR[10,3:0] = 0b00010.

• the Domain and Write fields in the DFSR, DFSR[11,7:4], are UNKNOWN. However, an ARMv6
watchpoint sets the Domain field.

• the DFAR is UNKNOWN.

• the DBGWFAR is updated with the Instruction Virtual Address (IVA) of the instruction that accessed
the watchpointed address, plus an offset that depends on the instruction set state of the processor for
that instruction:

— 8 in ARM state

— 4 in Thumb and ThumbEE states

— IMPLEMENTATION DEFINED in Jazelle state.

See Memory addresses on page C3-23 for a definition of the IVA used to update the DBGWFAR.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C4-5

ARM_2008_Q4
Inserted Text
----- Note -----
If a watchpoint is synchronous:
• both LR_abt and DBGWFAR indicate the address of the instruction that triggered the watchpoint
• ARM deprecates using DBGWFAR to determine the address of the instruction that triggered the watchpoint.

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
WnR

Debug Exceptions
C4-6 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Chapter C5
Debug State

This chapter describes Debug state, that is entered if a debug event occurs when the processor is configured
for Halting debug-mode. It contains the following sections:

• About Debug state on page C5-2

• Entering Debug state on page C5-3

• Behavior of the PC and CPSR in Debug state on page C5-7

• Executing instructions in Debug state on page C5-9

• Privilege in Debug state on page C5-13

• Behavior of non-invasive debug in Debug state on page C5-19

• Exceptions in Debug state on page C5-20

• Memory system behavior in Debug state on page C5-24

• Leaving Debug state on page C5-28.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C5-1

Debug State
C5.1 About Debug state

When invasive debug is enabled, the processor switches to a special state called Debug state if one of:

• a permitted Software debug event occurs and Halting debug-mode is selected

• a permitted Halting debug event occurs

• a Halting debug event becomes permitted while it is pending.

For more information, see State on page B1-3. In Debug state, control passes to an external agent.

Note
 The external agent is usually a debugger. However it might be some other agent connecting to the debug
port of the processor. This could be another processor in the same System on Chip (SoC) device. In part C
of this manual this agent is often referred to as a debugger.

In v6 Debug, when debug is enabled and Halting debug-mode is not selected it is IMPLEMENTATION DEFINED
whether a Halting debug event causes entry to Debug state. For more information, see Table C3-1 on
page C3-2.

Halting debug-mode is configured by setting DBGDSCR[14] to 1, see Debug Status and Control Register
(DBGDSCR) on page C10-10.

Parts A and B of this manual describe how an ARMv7 processor behaves when it is not in Debug state, that
is, when it is in Non-debug state. In Debug state, the processor behavior changes as follows:

• The PC and CPSR behave as described in Behavior of the PC and CPSR in Debug state on page C5-7.

• Instructions are prefetched from the Instruction Transfer Register (DBGITR), see Executing
instructions in Debug state on page C5-9.

• The processor can execute only instructions from the ARM instruction set.

• The rules about modes and privileges are different to those in Non-debug state, see Privilege in Debug
state on page C5-13.

• Non-invasive debug features are disabled, see Behavior of non-invasive debug in Debug state on
page C5-19.

• Exceptions are treated as described in Exceptions in Debug state on page C5-20. Other software and
Halting debug events and interrupts are ignored.

• If the processor implements a DMA engine, its behavior is IMPLEMENTATION DEFINED.

• If the processor implements a cache or other local memory that it keeps coherent with other memories
in the system during normal operation, it must continue to service coherency requests from the other
memories.

Leaving Debug state on page C5-28 describes how to leave Debug state.
C5-2 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q2
Inserted Text
When a processor has entered Debug state it remains in Debug state until either it receives a signal to leave Debug state or a Reset exception occurs. For more information see

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Sticky Note
The changes in the last paragraph of this section are clarifications rather than a change in the architectural requirements.

Debug State
C5.2 Entering Debug state

When invasive debug is enabled, the processor switches to a special state called Debug state if one of:

• a permitted Software debug event occurs and Halting debug-mode is selected

• a permitted Halting debug event occurs

• a Halting debug event becomes permitted while it is pending.

In v6 Debug, when debug is enabled and Halting debug-mode is not selected it is IMPLEMENTATION DEFINED
whether a Halting debug event causes entry to Debug state. For more information, see Table C3-1 on
page C3-2.

Note
 Entering Debug state does not ensure that the effect of any context altering operation performed before
Debug state entry is visible to instructions executed in Debug state.

On entering Debug state the processor follows this sequence:

1. The processor signals to the system that it is entering Debug state. Details of the signalling method,
including whether it is implemented, are IMPLEMENTATION DEFINED.

2. Processing is halted, meaning:

• The instruction pipeline is flushed and no more instructions are prefetched from memory.

• The values of the following are not changed on entering Debug state:

— the PC and CPSR

— all general-purpose and program status registers, including SPSR_abt and LR_abt.

• The values of the PC and CPSR remain unchanged while the processor is in Debug state.

• Instructions can be executed in Debug state, see Executing instructions in Debug state on
page C5-9, but when the instruction is executed in this way the normal effects of incrementing
the PC and updating the CPSR are masked.

• The effect of Debug state entry on CP15 registers and debug registers is described in Effect of
entering Debug state on CP15 registers and the DBGWFAR on page C5-4.

• The processor signals to the system that it is in Debug state. Details of this signalling method,
including whether it is implemented, are IMPLEMENTATION DEFINED.

• The processor might:

— ensure that all Non-debug state memory operations complete and signal this to the
system

— set the DBGDSCR.ADAdiscard bit to 1.

However, processor behavior regarding memory accesses outstanding at Debug state entry is
IMPLEMENTATION DEFINED, see Asynchronous aborts and entry to Debug state on page C5-5.

Details of the method used to signal to the system that Non-debug state memory operations are
complete, including whether any such method is implemented, are IMPLEMENTATION DEFINED.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C5-3

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Sticky Note
This statement is not accurate. Processes that, in Non-debug state, have a side-effect of updating the PC or CPSR do not have that side-effect in Debug state. For example, executing an instruction does not increment the PC. However, the PC and CPSR can be updated explicitly in Debug state.

Debug State
3. The processor signals that it has entered Debug state and is ready for an external agent to take control:

• the DBGDSCR.HALTED bit is set to 1

• the DBGDSCR.MOE field is set according to Table C10-3 on page C10-26.

For details of the recommended external debug interface, see Run-control and cross-triggering signals on
page AppxA-5 and DBGACK and DBGCPUDONE on page AppxA-7.

C5.2.1 Effect of entering Debug state on CP15 registers and the DBGWFAR

The actions taken on entering Debug state depend on what caused the Debug state entry:

• If Debug state was entered following a Watchpoint debug event, then the DBGWFAR is updated with
the Instruction Virtual Address (IVA) of the instruction that accessed the watchpointed address, plus
an offset that depends on the instruction set state of the processor when the debug event was
generated:

— 8 in ARM state

— 4 in Thumb and ThumbEE states

— IMPLEMENTATION DEFINED in Jazelle state.

See Memory addresses on page C3-23 for a definition of the IVA used to update the DBGWFAR.

• Otherwise, the DBGWFAR is unchanged on entry to Debug state.

Note
 • The implementation of the DBGWFAR depends on the Debug architecture version:

— In v6 Debug it is implemented as a register in CP15 c6.

— In v6.1 Debug it is implemented in CP14, and use of the CP15 alias is deprecated.

— In v7 Debug it can be implemented in the Extended CP14 interface, and has no alias in CP15.

For more information, see Watchpoint Fault Address Register (DBGWFAR) on page C10-28.

• In all cases, on Debug state entry the DBGWFAR is set as described in this section.

In ARMv7, all CP15 registers are unchanged on entry to Debug state. In ARMv6, all CP15 registers except
for the DBGWFAR are unchanged on entry to Debug state. The unchanged registers include the IFSR,
DFSR, DFAR, and IFAR.

On a processor that implements the Security Extensions, the SCR.NS bit is not changed on entry to Debug
state.
C5-4 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2008_Q4
Inserted Text

• If a watchpoint is synchronous:
 - both LR_abt and DBGWFAR indicate the address of the instruction that triggered the watchpoint
 - ARM deprecates using DBGWFAR to determine the address of the instruction that triggered the watchpoint.

Debug State
C5.2.2 Asynchronous aborts and entry to Debug state

On entry to Debug state, it is IMPLEMENTATION DEFINED whether a processor ensures that all memory
operations complete and that all possible outstanding asynchronous aborts have been recognized before it
signals that it has entered Debug state.

Behavior in ARMv7

In ARMv7 the behavior on entry to Debug state is signaled by the value of the DBGDSCR.ADAdiscard bit:

If DBGDSCR.ADAdiscard == 1

The processor has already ensured that all possible outstanding asynchronous aborts have
been recognized, and the debugger has no additional action to take.

If the processor logic always automatically sets DBGDSCR.ADAdiscard to 1 on entry to
Debug state, then DBGDSCR.ADAdiscard is implemented as a read-only bit.

If DBGDSCR.ADAdiscard == 0

The following sequence must occur:

1. The debugger must execute an IMPLEMENTATION DEFINED sequence to determine
whether all possible outstanding asynchronous aborts have been recognized.

An asynchronous abort recognized as a result of this sequence is not acted on
immediately. Instead, the processor latches the abort event and its type. The
asynchronous abort is acted on when the processor leaves Debug state.

2. DBGDSCR.ADAdiscard is set to 1.

There are two ways this requirement can be implemented:

• The processor automatically sets this bit to 1 on detecting the execution of the
IMPLEMENTATION DEFINED sequence. In this case, DBGDSCR.ADAdiscard is
implemented as a read-only bit.

• The IMPLEMENTATION DEFINED sequence sets DBGDSCR.ADAdiscard to 1,
using the processor interface to the debug resources. In this case,
DBGDSCR.ADAdiscard is implemented as a read/write bit.

When the processor has completed all Non-debug state memory operations it signals this to the system. It
is IMPLEMENTATION DEFINED whether the processor ensures that all Non-debug state memory operations are
complete on entry to Debug state. If not, the processor does not signal the system until all Non-debug state
memory operations are complete. This might be linked to the debugger executing the IMPLEMENTATION
DEFINED sequence to determine whether all possible outstanding asynchronous aborts have been
recognized.

Details of the method used to signal to the system that Non-debug state memory operations are complete,
including whether any such method is implemented, are IMPLEMENTATION DEFINED.

While the processor is in Debug state and DBGDSCR.ADAdiscard is 1, any memory access that causes an
asynchronous abort has the effect of setting DBGDSCR.ADABORT_l, the Sticky Asynchronous Data
Abort bit, to 1, but has no other effect on the state of the processor. The cause and type of the abort are not
recorded. Because the abort is not pended, if the asynchronous abort is an external asynchronous abort and
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C5-5

Debug State
the Interrupt Status Register (ISR) is implemented, the ISR.A bit is not updated. For more information, see
c12, Interrupt Status Register (ISR) on page B3-150. The ISR is implemented only on processors that
include the Security Extensions.

Any asynchronous abort that is latched before or during the entry to Debug state sequence is not overwritten
by any new asynchronous abort. This means the latched abort is not discarded if the processor detects
another asynchronous abort while DBGDSCR.ADAdiscard is set to 1. The processor acts on the latched
abort on exit from Debug state. If the asynchronous abort is an external asynchronous abort and the ISR is
implemented, the ISR.A bit reads as 1 indicating that an external abort is pending.

If the debugger has executed any memory access instructions, before exiting Debug state it must issue an
IMPLEMENTATION DEFINED sequence of operations to ensure that any asynchronous aborts have been
recognized and discarded.

On exit from Debug state, the processor automatically clears DBGDSCR.ADAdiscard to 0.

If an asynchronous abort is signalled to the processor before entry to Debug state or between entry to Debug
state and DBGDSCR.ADAdiscard transitioning from 0 to 1, then the processor acts on the asynchronous
abort on exit from Debug state:

• if the CPSR.A bit is 1, the abort is pended, and is taken when the A bit is cleared to 0

• if the CPSR.A bit is 0, the abort is taken by the processor.

For details of the recommended external debug interface, see Run-control and cross-triggering signals on
page AppxA-5 and DBGACK and DBGCPUDONE on page AppxA-7.

Behavior in ARMv6

The behavior of asynchronous aborts on entry to Debug state differs between v6 Debug and v6.1 Debug:

v6 Debug DBGDSCR.ADAdiscard bit is not defined. A debugger must always perform a
Data Synchronization Barrier (DSB) following entry to Debug state.

If the CPSR.A bit is 0 and an asynchronous abort is signalled, the processor takes a Data
Abort exception as described in Undefined Instruction and Data Abort exceptions in Debug
state in v6 Debug on page C5-23. A subsequent read of the processor state by the debugger
returns the updated values of CPSR, LR_abt and SPSR_abt.

The value of DBGDSCR.ADABORT_l is UNKNOWN when in Non-debug state.

v6.1 Debug A debugger must always perform a DSB following entry to Debug state. This DSB causes
DBGDSCR.ADAdiscard to be set to 1.

DBGDSCR.ADABORT_l is set to 1 on any asynchronous abort detected while the
processor is in Debug state, regardless of the setting of DBGDSCR.ADAdiscard.
C5-6 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug State
C5.3 Behavior of the PC and CPSR in Debug state

Processing is halted on entry to Debug state, see Entering Debug state on page C5-3. After the processor
has entered Debug state, a read of the PC returns a return address plus an offset. The return address depends
on the type of debug event, and the offset depends on the instruction set state of the processor when Debug
state was entered. Table C5-1 shows the values returned by a read of the PC.

On entry to Debug state, the value of the CPSR is the value that the instruction at the return address would
have been executed with, if it had not been cancelled by the debug event.

Table C5-1 PC value while in Debug state

Debug event

PC value, for instruction set state on Debug entry
Meaning of return address
(RA)a obtained from PC read

ARM
Thumb or
ThumbEE Jazelleb

Breakpoint RA + 8 RA + 4 RA + Offset Breakpointed instruction address

Synchronous
Watchpoint

RA + 8 RA + 4 RA + Offset Address of the instruction that
triggered the watchpointc

Asynchronous
Watchpoint

RA + 8 RA + 4 RA + Offset Address of the instruction for the
execution to resumed

BKPT
instruction

RA + 8 RA + 4 RA + Offset BKPT instruction address

Vector Catch RA + 8 RA + 4 RA + Offset Vector address

External Debug
Request

RA + 8 RA + 4 RA + Offset Address of the instruction for the
execution to resume

Halt Request RA + 8 RA + 4 RA + Offset Address of the instruction for the
execution to resume

OS Unlock
Catch

RA + 8 RA + 4 RA + Offset Address of the instruction for the
execution to resume

a. Return address (RA) is the address of the first instruction that the processor must execute on exit from Debug state. This
enables program execution to continue from where it stopped.

b. Offset is an IMPLEMENTATION DEFINED value that is constant and documented.
c. Returning to RA has the effect of retrying the instruction. This can have implications under the memory order model.

See Synchronous and Asynchronous Watchpoint debug events on page C3-18.
d. RA is not the address of the instruction that triggered the watchpoint, but one that was executed some number of

instructions later. The address of the instruction that triggered the watchpoint can be discovered from the value in the
DBGWFAR. See Watchpoint Fault Address Register (DBGWFAR) on page C10-28.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C5-7

Debug State
Note
 This rule also applies to the CPSR.IT bits. On entry to Debug state these bits apply to the instruction at the
return address.

The behavior of the PC and CPSR registers in Debug state is:

• The PC does not increment on instruction execution.

• The CPSR.IT status bits do not change on instruction execution.

• Predictable instructions that explicitly modify the PC or CPSR operate normally, updating the PC or
CPSR.

• After the processor has entered Debug state, if 0b1111 (the PC) is specified as a source operand for
an instruction it returns a value as described in Table C5-1 on page C5-7. The value read from the PC
is aligned according to the rules of the instruction set state indicated by the CPSR.J and CPSR.T
execution state bits, regardless of the fact that the processor only executes the ARM instruction set in
Debug state. For more information, see Executing instructions in Debug state on page C5-9.

• If an instruction sequence for writing a particular value to the PC is executed while in Debug state,
and the processor is later forced to restart without any additional write to the PC or CPSR, the
execution starts at the address corresponding to the written value.

• If the CPSR is written to while in Debug state, subsequent reads of the PC return an UNKNOWN value,
and if the processor is later forced to restart without having performed a write to the PC, the restart
address is UNKNOWN. However, the CPSR can be read correctly while in Debug state.

Note
 In v6 Debug, the CPSR and PC can be written in a single instruction, for example, MOVS pc,lr. In this

case, the behavior is as if the CPSR is written first, followed by the PC. That is, if the processor is
later forced to restart the restart address is predictable. This does not apply to v6.1 Debug or
v7 Debug because in these versions of the Debug architecture such instructions are themselves
UNPREDICTABLE in Debug state.

• If the processor is forced to restart without having performed a write to the PC, the restart address is
UNKNOWN.

• If the PC is written to while in Debug state, later reads of the PC return an UNKNOWN value.

See also Executing instructions in Debug state on page C5-9, for more restrictions on instructions that might
be executed in Debug state, including those that access the PC and CPSR.
C5-8 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug State
C5.4 Executing instructions in Debug state

In Debug state the processor executes instructions issued through the Instruction Transfer Register, see
Instruction Transfer Register (DBGITR) on page C10-46. This mechanism is enabled through
DBGDSCR[13], see Debug Status and Control Register (DBGDSCR) on page C10-10.

The following rules and restrictions apply to instructions that can be executed in this manner in Debug state:

• The processor instruction set state always corresponds to the state indicated by the CPSR.J and
CPSR.T execution state bits. However, the processor always interprets the instructions issued through
the DBGITR as ARM instruction set opcodes, regardless of the setting of the CPSR.J and CPSR.T
execution state bits.

Some ARM instructions are UNPREDICTABLE if executed in Debug state. These instructions are
either:

— identified as UNPREDICTABLE in this list

— shown as UNPREDICTABLE in Table C5-2 on page C5-10.

Otherwise, except for the value read from the PC, instructions executed in Debug state operate as
specified for ARM state. Behavior of the PC and CPSR in Debug state on page C5-7 specifies the
value read from the PC.

• The CPSR.IT execution state bits are ignored. This means that instructions issued through the
DBGITR do not fail their condition tests unexpectedly. However, the condition code field in an ARM
instruction is honored.

The CPSR.IT execution state bits are preserved and do not change when instructions are executed,
unless an instruction that modifies those bits explicitly is executed.

• The branch instructions B, BL, BLX (immediate), and BLX (register) are UNPREDICTABLE in Debug state.

• The hint instructions WFI, WFE and YIELD are UNPREDICTABLE in Debug state.

• All memory read and memory write instructions with the PC as the base address register read an
UNKNOWN value for the base address.

• Certain instructions that normally update the CPSR can be UNPREDICTABLE in Debug state, see
Writing to the CPSR in Debug state on page C5-10.

• Instructions that load a value from memory into the PC are UNPREDICTABLE in Debug state.

• Conditional instructions that write explicitly to the PC are UNPREDICTABLE in Debug state.

• There are additional restrictions on data-processing instructions that write to the PC. See
Data-processing instructions with the PC as the target in Debug state on page C5-12.

• The exception-generating instructions SVC, SMC and BKPT are UNPREDICTABLE in Debug state.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C5-9

Debug State
• A coprocessor can impose additional constraints or usage guidelines for executing coprocessor
instructions in Debug state. For example a coprocessor that signals internal exception conditions
asynchronously using the Undefined Instruction exception, as described in Undefined Instruction
exception on page B1-49, might require particular sequences of instructions to avoid the corruption
of coprocessor state associated with the exception condition.

In the case of the VFP coprocessors, these sequences are defined by the VFP subarchitecture. Other
coprocessors must define any sequences that they require.

Note
 The definition of UNPREDICTABLE implies that an UNPREDICTABLE instruction executed in Debug state must
not put the processor into a state or mode in which debug is not permitted, or change the state of any register
that cannot be accessed from the current state and mode.

C5.4.1 Writing to the CPSR in Debug state

Table C5-2 lists all the instructions that normally update the CPSR, and shows their behavior in Debug state.
Which instructions are permitted in Debug state depends on the version of the Debug architecture.

Table C5-2 Instructions that modify the CPSR, and their behavior in Debug state

Instruction v6 Debug v6.1 Debug, v7 Debug

BX UNPREDICTABLE if CPSR.J is 1. Can be used
to set or clear the CPSR.T bit.

UNPREDICTABLE.

BXJ UNPREDICTABLE if either CPSR.J or CPSR.T
is 1. Can be used to set CPSR.J to 1.

UNPREDICTABLE.

SETEND UNPREDICTABLE. UNPREDICTABLE.

CPS UNPREDICTABLE. UNPREDICTABLE.

<op>S PC,<Rn>,<Rm>a Can be used to set the CPSR to any value by
copying it from the SPSR of the current mode.

UNPREDICTABLE.

<op> PC,<Rn>,<Rm>a Do not update the CPSR. See Data-processing instructions
with the PC as the target in Debug
state on page C5-12.

MSR CPSR_fsxc Use for setting the CPSR bits other than the
execution state bits.

Use for setting the CPSR to any
value.

MSR CPSR_<not fsxc> Use for setting the CPSR bits other than the
execution state bits.

UNPREDICTABLE.

LDM (exception return), RFE UNPREDICTABLE. UNPREDICTABLE.

a. <op> is one of ADC, ADD, AND, ASR, BIC, EOR, LSL, LSR, MOV, MVN, ORR, ROR, RRX, RSB, RSC, SBC, or SUB.
C5-10 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q2
Cross-Out
The current VFP subarchitecture does not explicitly define these sequences. Contact ARM if you need more information.

Debug State
Note
 Table C5-2 on page C5-10 does not:

• Include instructions that only update the CPSR bits that are available in the APSR, that is the N, Z,
C, V, Q, and GE[3:0] bits. These instructions have their normal behavior when executed in Debug
state.

• Include instructions that cause exceptions, such as SVC, SMC, and memory access instructions that
cause aborts. The behavior of these instructions is described in Exceptions in Debug state on
page C5-20.

• Show what values can be written to the CPSR. For more information, see Altering CPSR privileged
bits in Debug state on page C5-14.

MRS and MSR instructions in Debug state, in v6.1 Debug and v7 Debug

In v6.1 Debug and v7 Debug, if the debugger has to update bits in the CPSR that are not available in the
APSR then it must use the MSR instruction to do so, writing to CPSR_fsxc. The behavior of the CPSR forms
of the MSR and MRS instructions in Debug state differs from their behavior in Non-debug state. In the CPSR:

• in Non-debug state:

— the execution state bits, other than the E bit, are RAZ when read by an MRS instruction

— writes to the execution state bits, other than the E bit, by an MSR instruction are ignored

• in Debug state:

— the execution state bits return their correct values when read by an MRS instruction

— writes to the execution state bits by an MSR instruction update the execution state bits.

MRS and MSR instructions that read and write an SPSR behave as they do in Non-debug state.

In addition, in Debug state in v6.1 Debug and v7 Debug:

• if you use an MSR instruction to directly modify the execution state bits of the CPSR, you must then
perform an Instruction Synchronization Barrier (ISB) operation

• an MSR instruction that does not write to all fields of the CPSR is UNPREDICTABLE

• if an MRS instruction reads the CPSR after an MSR writes the execution state bits, and before an ISB,
the value returned is UNKNOWN

• if the processor leaves Debug state after an MSR writes the execution state bits, and before an ISB, the
behavior of the processor is UNPREDICTABLE.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C5-11

Debug State
C5.4.2 Data-processing instructions with the PC as the target in Debug state

The ARM encodings of the instructions ADC, ADD, AND, ASR, BIC, EOR, LSL, LSR, MOV, MVN, ORR, ROR, RRX, RSB, RSC,
SBC, and SUB write to the PC if their Rd field is 0b1111.

When in Non-debug state, these ARM instruction encodings can be executed only in the ARM instruction
set state, and their behavior is described in:

• SUBS PC, LR and related instructions on page B6-25, if the S bit of the instruction is 1.

• Chapter A8 Instruction Details, if the S bit of the instruction is 0. These ARM instructions cause
interworking branches in ARMv7, and simple branches in earlier versions of the architecture. The
ALUWritePC() pseudocode function describes this operation, see Pseudocode details of operations on
ARM core registers on page A2-12.

In Debug state, these ARM instruction encodings can be executed in any instruction set state, and the
following additional restrictions apply:

• If the S bit of the instruction is 1:

— in v7 Debug and v6.1 Debug, behavior is UNPREDICTABLE

— in v6 Debug, behavior is as in Non-debug state.

• If the S bit of the instruction is 0, the behavior is always either a simple branch without changing
instruction set state or UNPREDICTABLE. Table C5-3 shows how this behavior depends on the
instruction set state, the value alu<1:0> written to the PC, and the architecture version.

Table C5-3 Debug state rules for data-processing instructions that write to the PC

CPSR.J CPSR.T
Instruction
set state

Architecture version alu<1:0> Operationa

0 0 ARM ARMv7 00 BranchTo(alu<31:2>:'00')

x1 UNPREDICTABLEb

10 UNPREDICTABLE

ARMv6 xx BranchTo(alu<31:2>:'00')

X 1 Thumb or
ThumbEE

ARMv7 x0 UNPREDICTABLEb

x1 BranchTo(alu<31:1>:'0')

ARMv6 xx BranchTo(alu<31:1>:'0')

1 0 Jazelle ARMv7 or ARMv6 xx BranchTo(alu<31:0>)

a. Pseudocode description of behavior, when the behavior is not UNPREDICTABLE.
b. This behavior is changed from the behavior in Non-debug state. In all other rows, the behavior described is

unchanged from the behavior in Non-debug state.
C5-12 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug State
C5.5 Privilege in Debug state

In Debug state, instructions issued to the processor have the privileges to access and modify processor
registers, memory and coprocessor registers that they would have if issued in the same mode and security
state in Non-debug state.

In User mode and Debug state, instructions have additional privileges to access or modify some registers
and fields that cannot be accessed in User mode in Non-debug state. However, on processors that implement
the Security Extensions and support Secure User halting debug, these additional privileges are restricted
when all the following conditions are true:

• the processor is in Debug state

• the processor is in Secure User mode

• invasive debug is not permitted in Secure privileged modes, because either DBGEN or SPIDEN is
LOW, see Chapter C2 Invasive Debug Authentication.

The following sections describe the instruction privileges, and the restrictions on them when these
conditions are all true:

• Accessing registers and memory in Debug state

• Altering CPSR privileged bits in Debug state on page C5-14

• Changing the SCR.NS bit in Debug state on page C5-15

• Coprocessor and Advanced SIMD instructions in Debug state on page C5-16.

C5.5.1 Accessing registers and memory in Debug state

The rules for accessing ARM core registers and memory are the same in Debug state as in Non-debug state.
For example, if the CPSR mode bits indicate the processor is in Supervisor mode:

• reads of ARM core registers return the Supervisor mode registers

• normal load and store operations make privileged accesses to memory

• a load or store with User mode privilege operation, for example LDRT, makes a User mode privilege
access.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C5-13

ARM_2009_Q2
Inserted Text
----- Note -----
On a processor that implements the Security Extensions, the values of LR_mon and SPSR_mon are UNKNOWN when the processor is in Non-secure state. This means that if a processor in Debug state is in Non-secure state and the debugger sets CPSR.M to 0b10110, Monitor mode, subsequent reads of LR_mon and SPSR_mon return UNKNOWN values.

Debug State
C5.5.2 Altering CPSR privileged bits in Debug state

On processors that implement the Security Extensions, the processor:

• prevents attempts to set the CPSR.M field to a value that would place the processor in a mode or
security state where debug is not permitted

• prevents updates to the Privileged bits of the CPSR in cases where Secure User halting debug is
supported, the processor is in Secure User mode, and invasive debug is not permitted in Secure
privileged modes

• prevents attempts to set the CPSR.M field to 0b10001, FIQ mode, if NSACR.RFR == 1 and the
processor is in Non-secure state.

On processors that do not implement the Security Extensions, all CPSR updates that are permitted in a
privileged mode when in Non-debug state, are permitted in Debug state.

Table C5-4 defines the behavior on writes to the CPSR in Debug state.

Table C5-4 Permitted updates to the CPSR in Debug state

Mode Secure state
Logical
(DBGEN AND
SPIDEN)

SU halting
debuga
supported

Update privileged
CPSR bitsb

Modify CPSR.M to
Monitor mode

User Yes 0 Yes Update ignored UNPREDICTABLEc

No Permittedd Permitted

Privileged Yes 0 X Permittedd Permitted

Any No 0 X Permittedd UNPREDICTABLEe

Any X 1 X Permittedd Permitted

a. Secure User halting debug support.
b. This column does not apply to changing CPSR.M to Monitor mode. Apart from this, the CPSR bits are defined in

Program Status Registers (PSRs) on page B1-14, and this column does apply to changing CPSR.M to any other value.
c. The definition of UNPREDICTABLE implies the processor must not enter a privileged mode.
d. Except that, regardless of the state of SPIDEN:

The SCR.AW, SCR.FW and SCTLR.NMFI bits have the same effects on writes to CPSR.A and CPSR.F as they do
in Non-debug state, see Control of exception handling by the Security Extensions on page B1-41 and
Non-maskable fast interrupts on page B1-18.
The NSACR.RFR bit has the same effect on writes to CPSR.M as it does in Non-debug state, see
c1, Non-Secure Access Control Register (NSACR) on page B3-110.

e. The definition of UNPREDICTABLE implies the processor must not enter Monitor mode, and must not enter FIQ mode
when NSACR.RFR == 1.
C5-14 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2008_Q4
Inserted Text
The privileged bits of the CPSR are those bits that can only be written to in privileged modes. The CPSR bits are defined in Program Status Registers (PSRs) on page B1-14. [PDF page 1164]

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
UNPREDICTABLE

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
UNPREDICTABLE

ARM_2008_Q4
Inserted Text

f. Other than CPSR.M, ARM deprecates updating the values of privileged bits in User mode.

ARM_2008_Q4
Inserted Text
,f

ARM_2008_Q4
Inserted Text
,f

ARM_2008_Q4
Inserted Text
,f

Debug State
Being in Debug state when invasive halting debug is not permitted

A processor can be in a Secure privileged mode with SPIDEN LOW, see Generation of debug events on
page C3-40 and Changing the authentication signals on page AppxA-4. More generally, it is possible to be
in Debug state when the current mode, security state or debug authentication signals indicate that, in
Non-debug state, debug events would be ignored. There are two situations where this can occur:

• Between a change in the debug authentication signals and the end of the next Instruction
Synchronization Barrier operation, exception entry, or exception return. At this point it is it is
UNPREDICTABLE whether the behavior of debug events that are generated follows the old or the new
authentication signal settings.

• Because it is possible to change the authentication signals while in Debug state.

For example, the following sequence of events can occur:

1. The processor is in a Secure privileged mode. SPIDEN and DBGEN are both HIGH.

2. An instruction is prefetched that matches all the conditions for a breakpoint to occur.

3. That instruction is committed for execution.

4. At the same time, an external device writes to the peripheral that controls SPIDEN and DBGEN,
causing SPIDEN to be deasserted to LOW.

5. SPIDEN changes, but the processor is already committed to entering Debug state.

6. The processor enters Debug state and is in a Secure privileged mode, even though SPIDEN is LOW.

If this series of events occurs, the processor can change to other Secure privileged modes, including Monitor
mode, and update privileged bits in the CPSR, because it is in a privileged mode. However, if the processor
leaves Secure state or moves to Secure User mode, it might not be able to return to a Secure privileged mode.

C5.5.3 Changing the SCR.NS bit in Debug state

SCR.NS is the Non-secure state bit, see c1, Secure Configuration Register (SCR) on page B3-106. Because
this bit is part of a coprocessor register, the rules for executing coprocessor instructions in Debug state apply,
see Coprocessor and Advanced SIMD instructions in Debug state on page C5-16.

In Debug state, the SCR can be written to:

• when Secure User halting debug is supported:

— in any Secure privileged mode, including Monitor mode, regardless of the state of DBGEN
and SPIDEN

— in Secure User mode only if DBGEN and SPIDEN are both HIGH

• when Secure User halting debug is not supported, in any Secure mode, including Monitor mode,
regardless of the state of DBGEN and SPIDEN.

A write to the SCR in any other case is treated as an Undefined Instruction exception. For details of how
Undefined Instruction exceptions are handled in Debug state see Exceptions in Debug state on page C5-20.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C5-15

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
writes to CPSR to change to other Secure privileged modes, including Monitor mode, are UNPREDICTABLE, even though the processor is in a Secure privileged mode.

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
In addition,

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Inserted Text
 If this happens, the processor remains in Debug state, but the operations available to it might change.

Debug State
This is a particular case of the rules for accessing CP15 registers described in Coprocessor and Advanced
SIMD instructions in Debug state.

Note
 Normally, in Monitor mode, any exception automatically clears the SCR.NS bit to 0. However an exception
while in Debug state in Monitor mode does not have any effect on the value of the SCR.NS bit.

C5.5.4 Coprocessor and Advanced SIMD instructions in Debug state

The following sections describe the coprocessor and Advanced SIMD instructions in Debug state:

• Instructions for CP0 to CP13, and Advanced SIMD instructions

• Instructions for CP14 and CP15 on page C5-17.

Instructions for CP0 to CP13, and Advanced SIMD instructions

This subsection describes:

• Coprocessor instructions for CP0 to CP13. These include the VFP instructions.

• If the Advanced SIMD extension is implemented, the instruction encodings described in Advanced
SIMD data-processing instructions on page A7-10 and Advanced SIMD element or structure
load/store instructions on page A7-27.

Access controls for these instructions are determined:

• by the CPACR, see:

— c1, Coprocessor Access Control Register (CPACR) on page B3-104, for a VMSA
implementation

— c1, Coprocessor Access Control Register (CPACR) on page B4-51, for a PMSA
implementation.

• additionally, if the Security Extensions are implemented, by the NSACR, see c1, Non-Secure Access
Control Register (NSACR) on page B3-110.

In v6.1 Debug and v7 Debug, in Debug state the current mode and security state define the privilege and
access controls for these instructions.

In v6 Debug, in Debug state it is IMPLEMENTATION DEFINED whether these instructions are executed using
the privilege and access controls for the current mode and security state, or using the privilege and access
controls for a privileged mode in the current security state.
C5-16 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug State
Instructions for CP14 and CP15

This subsection describes the coprocessor instructions for the internal coprocessors CP14 and CP15.

The two groups of registers provided by CP14 are:

• The CP14 debug registers, accessed by MCR and MRC instructions with <opc1> == 0b000. Some of these
registers can also be accessed by CP14 LDC and STC instructions.

• The CP14 non-debug registers, accessed by MCR and MRC instructions with <opc1> != 0b000. These
include the trace registers.

Accesses to CP14 and CP15 are as follows:

• Instructions that access CP14 or CP15 registers that are permitted (not UNDEFINED) in User mode
when in Non-debug state, are always permitted in Debug state.

• Instructions that access CP14 debug registers that are permitted (not UNDEFINED) in privileged modes
when in Non-debug state are permitted in Debug state, regardless of the debug authentication and the
processor mode and security state.

• If Secure User halting debug is supported, ARM recommends that certain CP15 instructions that a
debugger requires to maintain memory coherency are permitted in Debug state regardless of debug
permissions and the processor mode, see Access to specific cache management functions in Debug
state on page C5-25.

• If the processor is in a privileged mode or the debugger can write to the CPSR.M bits to change to a
privileged mode, then instructions that access CP14 or CP15 registers that are permitted (not
UNDEFINED) in privileged modes when in Non-debug state are permitted in Debug state. If the
processor is in User mode there is no requirement to change to a privileged mode first.

Note
 — Two particular cases are where Security Extensions are not implemented and where Secure

User halting debug is not supported. In these cases the CPSR.M bits can always be changed to
a privileged mode and, therefore, the debugger is able to access all CP14 and CP15 registers
at all times.

— Except for accesses to the Baseline CP14 debug registers, ARM deprecates accessing any
CP14 or CP15 register from User mode in Debug state if that register cannot be accessed from
User mode in Non-debug state.

• In every case, permissions to access CP14 and CP15 registers while in Debug state are never greater
than the permissions granted to any privileged mode when in Non-debug state in the current security
state.

• If the processor is in Secure User mode and the debugger cannot write to the CPSR.M bits to change
to a privileged mode, then any instruction that accesses a CP14 non-debug register or a CP15 register
is not permitted (UNDEFINED) in Debug state if it is not permitted in Secure User mode in Non-debug
state.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C5-17

Debug State
• Any CP14 or CP15 register access that is not permitted generates an Undefined Instruction exception.
For details of how Undefined Instruction exceptions are handled in Debug state see Exceptions in
Debug state on page C5-20.

• If the processor is in a privileged mode or the debugger can write to the CPSR.M bits to change to a
privileged mode, then any CP14 or CP15 instruction is UNPREDICTABLE in Debug state if that
instruction is UNPREDICTABLE in Non-debug state.

• On processors that implement the Security Extensions, any access to a Banked CP15 register accesses
the copy for the current security state. If the processor is in Monitor mode, the Non-debug state rules
for accessing CP15 registers in Monitor mode apply.

This means that, for example:

• If the processor is stopped in Non-secure state and invasive debug is not permitted in Secure
privileged modes then the debugger has access only to those CP15 registers accessible in Non-secure
state in Non-debug mode.

• If the processor is stopped with invasive debug permitted in Secure privileged modes then the
debugger has access to all CP15 registers. If the processor is in Non-secure state, the debugger can
switch the processor to Monitor mode to access the SCR.NS bit, to give access to all CP15 registers.

Invasive debug is permitted in Secure privileged modes when both SPIDEN and DBGEN are HIGH.

In Debug state. the CP15SDISABLE input to the processor operates in exactly the same way as in
Non-debug state, see The CP15SDISABLE input on page B3-76:

• if CP15SDISABLE is HIGH, any operation affected by CP15SDISABLE in Non-debug state
results in an Undefined Instruction exception in Debug state

• if CP15SDISABLE is LOW, it has no effect on any register access.
C5-18 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug State
C5.6 Behavior of non-invasive debug in Debug state

If any non-invasive debug features exist, their behavior in Debug state is broadly the same as when
non-invasive debug is not permitted. For details see About non-invasive debug authentication on page C7-2.

Note
 When the DBGDSCR.DBGack bit, Force Debug Acknowledge, is set to 1 and the processor is in Non-debug
state, the behavior of non-invasive debug features is IMPLEMENTATION DEFINED. However, in this case
non-invasive debug features must behave either as if in Debug state or as if Non-debug state.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C5-19

Debug State
C5.7 Exceptions in Debug state

This section describes how exceptions are handled when the processor is in Debug state:

• exception handling is the same in Debug state in v7 Debug and v6.1 Debug, except for some slight
differences in when asynchronous aborts are recognized

• there are some differences in exception handling in Debug state in v6 Debug, and these are indicated.

Exceptions are handled as follows when the processor is in Debug state:

Reset On a Reset exception, the processor leaves Debug state. The reset handler runs in
Non-debug state, see Reset on page B1-48.

Note
 This only applies to a reset that in Non-debug state would cause a Reset exception. It does

not apply to a debug logic reset. For more information on debug logic reset, see
Recommended reset scheme for v7 Debug on page C6-16.

Prefetch Abort

A Prefetch Abort exception cannot be generated because no instructions are prefetched in
Debug state.

SVC The SVC instruction is UNPREDICTABLE.

SMC The SMC instruction is UNPREDICTABLE.

BKPT The BKPT instruction is UNPREDICTABLE.

Debug events Debug events are ignored in Debug state.

Interrupts IRQ and FIQ exceptions are disabled and not taken in Debug state.

Note
 This behavior does not depend on the values of the I and F bits in the CPSR, and the value

of these bits are not changed on entering Debug state.

However, if the Interrupt Status Register (ISR) is implemented, the ISR.I and ISR.F
bits continue to reflect the values of the IRQ and FIQ inputs to the processor. For more
information, see c12, Interrupt Status Register (ISR) on page B3-150.
C5-20 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug State
Undefined Instruction

Undefined Instruction exceptions are generated for the same reasons in Debug state as in
Non-debug state.

The behavior depends on the Debug architecture version:

v6.1 Debug, v7 Debug
When an Undefined Instruction exception is generated in Debug state, the
processor takes the exception as follows:

• PC, CPSR, SPSR_und, LR_und, SCR.NS, and DBGDSCR.MOE are
unchanged.

• The processor remains in Debug state.

• DBGDSCR.UND_l, the Sticky Undefined Instruction bit, is set to 1.

For more information, see the description of the UND_l bit in Debug Status and
Control Register (DBGDSCR) on page C10-10.

v6 Debug See Undefined Instruction and Data Abort exceptions in Debug state in
v6 Debug on page C5-23.

Synchronous data abort

Data Abort exceptions are generated by synchronous data aborts in Debug state. The
behavior depends on the Debug architecture version:

v6.1 Debug, v7 Debug

When a Data Abort exception is generated by a synchronous data abort in
Debug state, the processor takes the exception as follows:

• PC, CPSR, SPSR_abt, LR_abt, SCR.NS, and DBGDSCR.MOE are
unchanged.

• The processor remains in Debug state.

• DBGDSCR.SDABORT_l, the Sticky Synchronous Data Abort bit, is set
to 1.

• The DFSR and DFAR are updated if any of:

— Secure User halting debug is not supported

— the processor is not in Secure User mode

— invasive debug is permitted in Secure privileged modes.

Otherwise it is IMPLEMENTATION DEFINED whether the DFSR and DFAR
are updated.

• If the ISR is implemented, the ISR.A bit is not changed, because no abort
is pended.

See also the description of the SDABORT_l bit in Debug Status and Control
Register (DBGDSCR) on page C10-10.

v6 Debug See Undefined Instruction and Data Abort exceptions in Debug state in
v6 Debug on page C5-23.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C5-21

ARM_2010_Q3
Inserted Text

----- Note -----
In an implementation that includes the Security Extensions, updates are to the DFAR and DFSR of the current security state. For example, if the abort is an External abort and the processor is in Non-secure state with SCR.EA set to 1, the Non-secure DFSR and DFAR are updated.

Debug State
Asynchronous abort

The behavior depends on the Debug architecture version:

v6.1 Debug, v7 Debug

When an asynchronous abort is signalled in Debug state, no Data Abort
exception is generated and the processor behaves as follows:

• The setting of the CPSR.A bit is ignored.

• PC, CPSR, SPSR_abt, LR_abt, SCR.NS, and DBGDSCR.MOE are
unchanged.

• The processor remains in Debug state.

• The DFSR is unchanged.

• If DBGDSCR.ADAdiscard is 1:

— DBGDSCR.ADABORT_l, the Sticky Asynchronous Data Abort
bit, is set to 1.

— On exit from Debug state, this asynchronous abort is not acted on.

— If the ISR is implemented, the ISR.A bit is not changed, because
no abort is pended.

• If DBGDSCR.ADAdiscard is 0:

— In v7 Debug, DBGDSCR.ADABORT_l is unchanged.

— In v6.1 Debug, DBGDSCR.ADABORT_l is set to 1.

— On exit from Debug state, this asynchronous abort is acted on.

— If the asynchronous abort is an external asynchronous abort, and
the ISR is implemented, the ISR.A bit is set to 1 indicating that an
external abort is pending.

See also:

• Asynchronous aborts and entry to Debug state on page C5-5.

• the descriptions of the ADABORT_l and ADAdiscard bits in Debug
Status and Control Register (DBGDSCR) on page C10-10.

v6 Debug When an asynchronous abort is signalled in Debug state, then:

• if the CPSR.A bit is 0, the abort is generated when the CPSR.A bit is
cleared to 0

• if the CPSR.A bit is 1, a Data Abort exception is generated, see
Undefined Instruction and Data Abort exceptions in Debug state in
v6 Debug on page C5-23.
C5-22 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
1

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
0

Debug State
C5.7.1 Undefined Instruction and Data Abort exceptions in Debug state in v6 Debug

In v6 Debug, if an Undefined Instruction exception is generated when the processor is in Jazelle state and
Debug state, the result is UNPREDICTABLE.

Otherwise, in v6 Debug, Undefined Instruction and Data Abort exceptions generated in Debug state are
taken by the processor as follows:

• The PC, CPSR, and SPSR_<exception_mode> are set in the same way as in a normal Non-debug
state exception entry. In addition:

— if the exception is an asynchronous abort, and the PC has not yet been written, LR_abt is set
as for exception entry in Non-debug state

— in all other cases, LR_<exception_mode> is set to an UNKNOWN value.

• The processor remains in Debug state, and does not prefetch the exception vector.

In addition, for a Data Abort exception:

• The DFSR and DFAR are set in the same way as in a normal Non-debug state exception entry. The
DBGWFAR is set to an UNKNOWN value. The IFSR is not modified.

• DBGDSCR.ADABORT_l or DBGDSCR.SDABORT_l is set to 1.

• The DBGDSCR.MOE bits are set to 0b0110, D-side abort occurred.

For more information about asynchronous aborts in ARMv6 see Behavior in ARMv6 on page C5-6.

Debuggers must take care when processing a debug event that occurred when the processor was executing
an exception handler. The debugger must save the values of SPSR_und and LR_und before performing any
operation that might result in an Undefined Instruction exception being generated in Debug state. The
debugger must also save the values of SPSR_abt and LR_abt, and of the DFSR, DFAR and DBGWFAR
before performing an operation that might generate a Data Abort exception when in Debug state. If this is
not done, register values might be overwritten, resulting in UNPREDICTABLE software behavior.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C5-23

Debug State
C5.8 Memory system behavior in Debug state

The Debug architecture places requirements on the memory system. There are two general guidelines:

• Memory coherency has to be maintained during debugging.

• It is best if debugging is non-intrusive. This requires a way to preserve, for example, the contents of
memory caches and translation lookaside buffers (TLBs), so the state of the target application is not
altered.

In Debug state, it is strongly recommended that the caches and TLBs, where implemented, behave as
described here. For preservation purposes it is strongly recommended that it is possible to:

• disable cache evictions and linefills, so that cache accesses, on read or write, do not cause the contents
of caches to change.

• disable TLB evictions and replacements, so that translations do not cause the contents of TLBs to
change.

The mechanisms for disabling these operations:

• must be accessible by the external debugger

• are only required when in Debug state.

In v6.1 Debug and v7 Debug, the Debug State Cache Control Register (DBGDSCCR) and the Debug State
MMU Control Register (DBGDSMCR) are used for this purpose.

While the processor is in Debug state, no instruction fetches occur and therefore:

• if the system implements separate instruction and data caches then there might be no instruction
cache evictions or replacements

• if the system implements separate instruction and data TLBs then there might be no instruction TLB
evictions or replacements.

In Debug state, reads must behave as in Non-debug state:

• cache reads return data from the cache

• cache misses fetch from external memory.

A debugger must be able to maintain coherency between instruction and data memory, and maintain
coherency in a multiprocessor system. This means that in Debug state a debugger must be able to force all
writes to update all levels of memory to the point of coherency.

It must be possible to reset the memory system of the processor to a known safe and coherent state. Also, it
must be possible to reset any caches of meta-information, such as branch predictor arrays, to a safe and
coherent state.

For debugging purposes ARM recommends that TLBs can be disabled so that all TLB accesses are read
from the main translation tables, and not from the TLB. This enables a debugger to access memory without
using any virtual to physical memory mapping that is implemented for the application.
C5-24 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
hits

Debug State
C5.8.1 Access to specific cache management functions in Debug state

If a processor includes the Security Extensions and supports Secure User halting debug, it must implement
mechanisms that enable memory system requirements to be met when debugging in Secure User mode when
invasive debug is not permitted in Secure privileged modes. This is a situation where executing the CP15
cache and TLB control operations would otherwise be prohibited.

To meet these requirements, ARM recommends that, on a processor that implements the Security
Extensions and supports Secure User halting debug, when the processor is in Debug state:

• the rules for accessing CP15 registers do not apply for a certain set of register access operations

• the set of operations depends on the Debug architecture version, as shown in Table C5-5.

These instructions must be executable in Debug state regardless of any processor setting. However, use of
an operation can generate an abort if instruction cache lockdown is in use.

For more information about debug access to coprocessor instructions, see Coprocessor and Advanced SIMD
instructions in Debug state on page C5-16.

Table C5-5 CP15 operations permitted from User mode in Debug state

Versions Operation Description

v7 Debug MCR p15,0,<Rt>,c7,c5,0 Invalidate entire instruction cache and flush branch predictor arrays a

MCR p15,0,<Rt>,c7,c5,1 Invalidate instruction cache by MVAa

MCR p15,0,<Rt>,c7,c5,7 Invalidate MVA from branch predictor array

MCR p15,0,<Rt>,c7,c10,1 Clean data or unified cache line by MVA to point of coherencyb

MCR p15,0,<Rt>,c7,c10,2 Clean data or unified cache line by set/wayb

MCR p15,0,<Rt>,c7,c11,1 Clean data or unified cache line by MVA to point of unificationb

MCR p15,0,<Rt>,c7,c1,0 Invalidate entire instruction cache Inner Shareablec

MCR p15,0,<Rt>,c7,c1,6 Invalidate entire branch predictor array Inner Shareablec

v6.1 Debug MCRR p15,0,<Rt>,<Rn>,c5 Invalidate instruction cache by VA range

v6.1 Debug,
v7 Debug

MCR p15,0,<Rt>,c7,c5,6 Flush entire branch predictor array

a. See also v7 Debug restrictions on instruction cache invalidation in Secure User debug on page C5-26.
b. A debugger does not have to perform cache cleaning operations if DBGDSCCR.nWT is implemented and is set to 0,

see Debug State Cache Control Register (DBGDSCCR) on page C10-81. This is because when nWT is set to 0, writes
do not leave dirty data in the cache that is not coherent with outer levels of memory. However, the I-cache is not updated,
so I-cache invalidate operations are required.

c. These instructions are part of the Multiprocessing Extensions. See Multiprocessor effects on cache maintenance
operations on page B2-23.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C5-25

Debug State
For more information about the ARMv7 cache maintenance operations, see:

• CP15 c7, Cache and branch predictor maintenance functions on page B3-126 for a VMSA
implementation

• CP15 c7, Cache and branch predictor maintenance functions on page B4-68 for a PMSA
implementation.

In v6 Debug and on any processor that does not implement Security Extensions, or when debugging in a
state and mode where privileged CP15 operations can be executed, the debugger can use any CP15
operations. These include, but are not limited to, those operations listed in Table C5-5 on page C5-25.

v7 Debug restrictions on instruction cache invalidation in Secure User debug

An ARMv7 implementation that includes the Security Extensions and supports Secure User halting debug
must support Secure User debug access to at least one of these instruction cache invalidation operations:

• Invalidate entire instruction cache, and flush branch predictor arrays, MCR p15,0,<Rt>,c7,c5,0

• Invalidate instruction cache by MVA, MCR p15,0,<Rt>,c7,c5,1.

An implementation might support both of these operations.

If the DSCCR.nWT bit is not implemented, the implementation must also support Secure User debug access
to at least the operation to Clean data or unified cache line by MVA to point of coherency.

A debugger requires access to an instruction cache invalidation operations so that it can maintain coherency
between instruction memory and data memory, and between processors in a multiprocessor system.

However, the architecture imposes restrictions on the operation of these instructions in Debug state, that are
not required when the instructions are used in normal operation. In Secure User mode in Debug state when
invasive debug is not permitted in Secure privileged modes:

• If the Invalidate all instruction caches operation is supported it must:

— invalidate all unlocked lines in the cache

— leave any locked lines in the cache unchanged.

If there are locked lines in the cache the instruction can abort, but only after it has invalidated all
unlocked lines. However, there is no requirement for the operation to abort if there are locked lines.

• If the Invalidate instruction caches by MVA operation is supported, this operation must not invalidate
a locked line. If an instruction attempts to invalidate a locked line in Secure User mode debug the
implementation must either:

— ignore the instruction

— abort the instruction.

These requirements mean that these instructions might operate differently in Debug state to how they
operate in Non-debug state.

Note
 In ARMv7, it is IMPLEMENTATION DEFINED whether instruction cache locking is supported.
C5-26 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug State
C5.8.2 Debug state Cache and MMU Control Registers

In v6 Debug, the Debug state MMU Control Register (DBGDSMCR) and Debug state Cache Control
Register (DBGDSCCR) are not defined.

In v6.1 Debug, ARM recommends the debug registers DBGDSMCR and DBGDSCCR.

v7 Debug requires DBGDSMCR and DBGDSCCR, but there can be IMPLEMENTATION DEFINED limits on
their behavior.

For descriptions of these registers, see Memory system control registers on page C10-80.

In all debug implementations there can be IMPLEMENTATION DEFINED support for cache behavior override
and, on a VMSA implementation, for TLB debug control.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C5-27

Debug State
C5.9 Leaving Debug state

The processor leaves Debug state when a restart request command is received. A restart request can be one
of the following:

• An External Restart request. This is a request from the system for the processor to leave Debug state.
The External Restart request enables multiple processors to be restarted synchronously.

The External Restart request is generated by IMPLEMENTATION DEFINED means. Typically this is by
asserting an External Restart request input to the processor.

• A restart request command.

In v7 Debug, the restart request command is made by a debugger writing 1 to the DBGDRCR Restart
request bit, see Debug Run Control Register (DBGDRCR), v7 Debug only on page C10-29

A number of flags in the Debug Status and Control Register (DBGDSCR) must be set correctly before
leaving Debug state, see Debug Status and Control Register (DBGDSCR) on page C10-10. The flags that
must be set are:

• the sticky exception flags, DBGDSCR[8:6], must be set to 0b000

• the Execute ARM Instruction Enable bit, DBGDSCR.ITRen, must be set to 0

• the Latched Instruction Complete flag, DBGDSCR.InstrCompl_l, must be set to 1.

In v7 Debug the sticky exception flags are cleared to 0 by writing 1 to the Clear Sticky Exceptions bit of the
DBGDRCR. This operation can be combined with the restart request command. For more information see
Debug Run Control Register (DBGDRCR), v7 Debug only on page C10-29.

If the processor is signaled to leave Debug state without all of these flags set to the correct values the results
are UNPREDICTABLE.

On receipt of a restart request, the processor performs a sequence of operations to leave Debug state.

If DBGDSCR is read during the restart sequence, DBGDSCR.RESTARTED must read as 0 and
DBGDSCR.HALTED must read as 1. At all other times DBGDSCR.RESTARTED must read as 1.

On completion of the restart sequence, the processor leaves Debug state:

• DBGDSCR.HALTED is set to 0.

• The processor stops ignoring debug events and starts executing instructions from the address held in
the PC, in the mode and instruction set state indicated by the current value of the CPSR. The
execution state bits of the CPSR are honored, and the IT bits state machine is restarted, with the
current value applying to the first instruction executed.

• Unless the DBGDSCR.DBGack bit is set to 1, the processor signals to the system that it is in
Non-debug state. Details of this signalling method, including whether it is implemented, are
IMPLEMENTATION DEFINED.
C5-28 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug State
Note
 Leaving Debug state is not a memory barrier operation. This means that:

• If a debugger executes any context altering operations in Debug state, it must issue an Instruction
Synchronization Barrier (ISB) instruction before leaving Debug state

• If the debugger executes any memory access instructions in Debug state, it must execute a Data
Synchronization Barrier (DSB) instruction before leaving Debug state, to ensure those accesses are
complete. This DSB might form part of the IMPLEMENTATION DEFINED sequence of instructions
required to ensure that the processor has recognized any asynchronous aborts, as described in
Asynchronous aborts and entry to Debug state on page C5-5.

For details of the recommended external debug interface, see Run-control and cross-triggering signals on
page AppxA-5 and DBGACK and DBGCPUDONE on page AppxA-7.

In v6 Debug and v6.1 Debug:

• the DBGDRCR and External Restart request are not supported

• if the processor implements the recommended ARM Debug Interface v4, the restart request
command is issued through the JTAG interface by placing the RESTART instruction in the IR and
taking the Debug TAP State Machine through the Run-Test/Idle state. Connecting multiple JTAG
interfaces in series enables multiple processors to be restarted synchronously.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C5-29

Debug State
C5-30 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Chapter C6
Debug Register Interfaces

This chapter describes the debug register interfaces. It contains the following sections:

• About the debug register interfaces on page C6-2

• Reset and power-down support on page C6-4

• Debug register map on page C6-18

• Synchronization of debug register updates on page C6-24

• Access permissions on page C6-26

• The CP14 debug register interfaces on page C6-32

• The memory-mapped and recommended external debug interfaces on page C6-43.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C6-1

Debug Register Interfaces
C6.1 About the debug register interfaces

The Debug architecture defines a set of debug registers. The debug register interfaces provide access to these
registers. This chapter describes the different ways of implementing the debug register interfaces.

The debug register interfaces provide access to the debug registers from:

• software running on the processor, see Processor interface to the debug registers

• an external debugger, see External interface to the debug registers.

The debug register interfaces always include the Debug Communications Channel, see The Debug
Communications Channel (DCC) on page C6-3.

C6.1.1 Processor interface to the debug registers

Table C6-4 on page C6-32 lists the set of CP14 debug instructions for accessing the debug registers that
must be implemented.

The possible interfaces between the software running on the processor and the debug registers are:

• The Baseline CP14 interface. This provides access to a small set of the debug registers through a set
of coprocessor instructions. It must be implemented by all processors.

• The Extended CP14 interface. This provides access to the remaining debug registers through a
coprocessor interface. It is required in v6 Debug and v6.1 Debug, and is optional in v7 Debug.

• The memory-mapped interface. This provides memory-mapped access to the debug registers. It is
introduced in v7 Debug, and is an optional interface. When it is implemented:

— some of the registers that are accessed through the Baseline CP14 interface are not available
through the memory-mapped interface

— it is IMPLEMENTATION DEFINED whether the memory-mapped interface is visible only to the
processor in which the debug registers are implemented, or is also visible to other processors
in the system.

An ARMv7 implementation must include the Baseline CP14 interface and at least one of:

• the Extended CP14 interface

• the memory-mapped interface.

C6.1.2 External interface to the debug registers

Every ARMv6 and ARMv7 implementation must include an external debug interface. This interface
provides access to the debug registers from an external debugger through a Debug Access Port (DAP). This
interface is IMPLEMENTATION DEFINED. For details of the interface recommended by ARM:

• for an ARMv7 implementation, see the ARM Debug Interface v5 Architecture Specification

• for an ARMv6 implementation, contact ARM.
C6-2 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug Register Interfaces
The Debug architecture does not require implementation of the recommended interface. However:

• the ARM RealView tools require the recommended interface

• ARM recommends this interface for compatibility with other tool chains.

C6.1.3 The Debug Communications Channel (DCC)

The debug register interface includes the Debug Communications Channel (DCC). This is accessed through
two physical registers:

• DBGDTRTX, for data transfers from the processor to an external debugger

• DBGDTRRX, for data transfers from the external debugger to the processor.

In addition, there are four DCC status flags in the DBGDSCR:

• TXfull and TXfull_l, indicating the DBGDTRTX status

• RXfull and RXfull_l, indicating the DBGDTRRX status.

There are separate internal and external views of the DBGDSCR, and of the DBGDTRTX and DBGDTRRX
Registers:

• DBGDTRTXint, DBGDTRRXint and DBGDSCRint provide the internal view

• DBGDTRTXext, DBGDTRRXext and DBGDSCRext provide the external view.

For more information, see Internal and external views of the DBGDSCR and the DCC registers on
page C6-21.

Note
 In previous descriptions of the DCC, the term DTR (Data Transfer Register) is used to describe the DCC
data registers. In those descriptions, the DBGDTRTX Register is named wDTR, and the DBGDTRRX
Register is named rDTR.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C6-3

Debug Register Interfaces
C6.2 Reset and power-down support

This section contains the following subsections:

• Debug guidelines for systems with energy management capability

• Power domains and debug on page C6-5

• The OS Save and Restore mechanism on page C6-8

• Recommended reset scheme for v7 Debug on page C6-16.

C6.2.1 Debug guidelines for systems with energy management capability

ARMv7 processors can be built with energy management capabilities. This section describes how to use the
v7 Debug features to debug software running on these systems.

v7 Debug only permits debugging software that is running on a system where:

• energy-saving measures are taken only when the processor is in an idle state

• it is a function of the operating system, or other supervisor code, to take any implemented
energy-saving measures.

The measures that the OS can take to save energy during an idle state can be split in two groups:

Standby The OS takes some measures, including using IMPLEMENTATION DEFINED features, to
reduce energy consumption. The processor preserves the processor state, including the
debug logic state. Changing from standby to normal operation does not involve a reset of
the processor.

Power-down The OS takes some measures to reduce energy consumption. These measures mean the
processor cannot preserve the processor state, and therefore the measures taken must
include the OS saving any processor state it requires not to be lost. Changing from
power-down to normal operation must include:

• a reset of the processor, after the power level has been restored

• reinstallation of the processor state by the OS.

Standby is the least invasive OS energy saving state. It implies only that the processor is unavailable, and
does not clear any of the debug settings. For standby, v7 Debug prescribes only the following:

• If the processor is in standby and a Halting debug event is triggered the processor must leave standby
to handle the debug event. If the processor executed a WFI or WFE instruction to enter standby then that
instruction is retired.

• If the processor is in standby and the external debug or memory-mapped interface is accessed, the
processor must automatically:

— leave standby

— respond to the debug transaction

— go back to standby.

This is possible because the external debug and memory-mapped interface can insert wait states, for
example by holding PREADYDBG LOW, until the processor has left standby.
C6-4 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q2
Sticky Note
These changes are a clarification of the intended meaning. A system that does not meet these requirements might include IMPLEMENTATION DEFINED features that support debug of energy-saving software.

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
supports

ARM_2009_Q2
Cross-Out

Debug Register Interfaces
The protocol for communicating between the debug logic and the power controller, enabling the
processor to leave and return to standby automatically, is IMPLEMENTATION DEFINED.

v7 Debug includes features that can aid software debugging in a system that dynamically powers down the
processor. These techniques are described in greater detail in the following sections.

C6.2.2 Power domains and debug

This section does not apply to v6 Debug and v6.1 Debug, which support only a single power domain.

This section discusses how, in v7 Debug, some registers can be split between different power domains to
implement support for debug over power-down and re-powering of the processor.

In v7 Debug, it is IMPLEMENTATION DEFINED whether a processor supports debug over power-down:

• debug over power-down can be supported only if the processor implements the features summarized
in this section

• when a processor implements the features required for debug over power-down, it is
IMPLEMENTATION DEFINED whether a system that includes that processor supports debug over
power-down

• usually, a system that does not support debug over power-down implements a single power domain.

An ARMv7 processor with a single power domain cannot support debug over power-down.

This means that the number of power domains supported by an ARMv7 processor is IMPLEMENTATION
DEFINED. However, ARM recommends that at least two are implemented, to provide support for debug over
power-down. The two power domains required for this are:

• a debug power domain

• a core power domain.

The debug power domain contains the external debug interface control logic and a subset of the debug
resources. This subset is determined by physical placement constraints and other considerations that are
explained later in this chapter. Figure C6-1 on page C6-7 shows an example of such a system.

For example, this arrangement is useful for debugging systems where several processors are connected to
the same debug bus and where one or more of the processors can power-down at any time. It has two
advantages:

• The debug bus is not made unavailable by the core power domain powering down:

— if the debugger tries to access the processor with the core power domain powered-down, the
external debug interface can return a slave-generated error response instead of locking the
system

— if the debugger tries to access another processor, it can proceed normally.

The debug bus might be, for example, an APBv3 or internal debug bus.

• Some debug registers are unaffected by power-down. This means that a debugger can, for example,
identify the processor while the core power domain is powered-down.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C6-5

ARM_2009_Q2
Sticky Note
The changes in this section are a clarification of the intended meaning, not a change to the Debug architecture.

ARM_2009_Q2
Sticky Note
External debug over power-down, often shortened to debug over power-down, refers only to debug by an external debugger. This requires architectural support to keep the Debug Communications Channel (DCC) and other interfaces to the external debugger working over a power-down.

Self-hosted debug over power-down, meaning keeping the debug resources required by a self-hosted debug tool alive over power-down, does not require any specific support from the Debug architecture.

ARM_2009_Q2
Inserted Text
external

Debug Register Interfaces
To have full debug support for power-down and re-powering of the processor, the following registers and
individual bits need to be in the debug power domain:

DBGECR This enables the debugger to set the OS Unlock Catch bit to 1 any time and still break on
completion of the power-up sequence. If this register was in the core power domain, the
power-down event would clear this catch bit to 0. For more information, see Event Catch
Register (DBGECR) on page C10-78.

DBGDRCR[0] Halt request bit

This enables the debugger to request a Debug state entry even if the processor is powered
down. Also, if the debugger makes this request before powering-down but the request
cannot be satisfied, for example because the processor is in Secure state but
(DBGEN AND SPIDEN) = 0, the request remains pending through power-down.

Note
 The processor has to be powered up to respond to a pending DBGDRCR[0] Halt request or

External Debug request.

OS Lock Access Register

This enables the lock that the OS sets before saving the debug registers to remain set through
power-down. For details see OS Lock Access Register (DBGOSLAR) on page C10-75.

Device Power-down and Reset registers

These registers must be in the debug power domain because some of their functions are used
for debugging power-down events. See Device Power-down and Reset Control Register
(DBGPRCR), v7 Debug only on page C10-31, Device Power-down and Reset Status
Register (DBGPRSR), v7 Debug only on page C10-34.

Lock Access Register, if implemented

If implemented, this register must be in the debug power domain because it is used to enable
certain accesses by external debug interface, and this functionality is required when
debugging power-down events.

Identification registers and the DBGDIDR

The identification registers are at addresses 0xD00-0xDFC, and 0xFD0-0xFEC. For details of
these registers see Management registers, ARMv7 only on page C10-88.

Debugger operation only requires the above registers and bits to be in the debug power domain. However,
to rationalize the split between the debug and core power domains in the register map, ARMv7 requires an
implementation that supports debug over power-down to have all bits of the following registers in the debug
power domain:

DBGDIDR, DBGECR, and DBGDRCR

No error response is returned on read or write accesses when the core power domain is
powered down.
C6-6 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug Register Interfaces
OS Save and Restore registers, and Device Power-down and Reset registers

No error response returned on read or write accesses when the core power domain is
powered down. However, accesses to the OS Lock Access Register (DBGOSLAR) and OS
Save and Restore Register (DBGOSSRR) are UNPREDICTABLE when the core power domain
is powered-down.

All of the management registers, except for the IMPLEMENTATION DEFINED integration registers

The management registers are registers 823 - 1023, in the address range 0xD00-0xFFC.
Requiring all these registers to be in the debug power domain simplifies the decoding of
register addresses for the registers in the debug power domain.

Note
 The CP15 c0 registers (0xD00-0xDFC) are included in this category.

For all other registers, including any IMPLEMENTATION DEFINED registers, it is IMPLEMENTATION DEFINED
whether the register is implemented in the core or the debug power domain.

Figure C6-1 shows the recommended power domain split.

Figure C6-1 Recommended power domain split between core and debug power domains

The signals DBGNOPWRDWN and DBGPWRDUP shown in Figure C6-1 above form an interface
between the power controller and the processor debug logic that is in the debug power domain. With this
interface:

• the external debugger can request the power controller to emulate power-down, simplifying the
requirements on software by sacrificing entirely realistic behavior

Processor

External
debug

interface

All other
Debug registers

DBGDIDR, DBGECR, DBGDRCR,
OS Save and Restore registers,

DBGPRCR, DBGPRSR, and
Management registers

Power
controller

Core domain Vdd

Debug domain Vdd

DBGPWRDUP

DBGNOPWRDWN

Remainder of
processor logic

Power domain boundary

Debug
power domain

Core
power domain

Bridge
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C6-7

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
832

Debug Register Interfaces
• the external debug interface knows when the core power domain is powered down, and can
communicate this information to the external debugger.

For details of these signals see DBGNOPWRDWN on page AppxA-9 and DBGPWRDUP on
page AppxA-10.

If the core power domain is not being powered down at the same time as the debug power domain then the
authentication signal DBGEN must be pulled LOW before power is removed from the debug power domain.
The behavior of the debug logic, and in particular the generation of debug events, is UNPREDICTABLE when
the debug power domain is not powered if DBGEN is not LOW. Pulling DBGEN LOW ensures that debug
events are ignored by the processor. For more information, see Changing the authentication signals on
page AppxA-4.

Reads and writes of debug registers when the debug logic is powered down are UNPREDICTABLE.

The performance monitors must be implemented in the core power domain, and must continue to operate
when debug power is removed.

The rest of this part of this manual assumes that two power domains are implemented as described in this
section, and that therefore the implementation supports debug over power-down. Features that are not
required for an ARMv7 implementation with a single power domain are identified as SinglePower, with a
description of the differences in behavior. A SinglePower implementation cannot support debug over
power-down.

C6.2.3 The OS Save and Restore mechanism

The OS Save and Restore mechanism enables an operating system to save the debug registers before
power-down and restore them when power is restored. This extends the support for debug over power-down,
and permits debug tools to work at a higher level of abstraction when there are no power-down events.

In v7 Debug:

• If an implementation supports debug over power-down, then it must implement the OS Save and
Restore mechanism.

• On a SinglePower implementation, and on any other implementation that does not support debug over
power-down, it is IMPLEMENTATION DEFINED whether the OS Save and Restore mechanism is
implemented.

• If the OS Save and Restore mechanism is not implemented, the DBGOSLSR must be implemented
as RAZ, and the other OS Save and Restore mechanism register encodings must be RAZ/WI.

In v6 Debug and v6.1 Debug, these registers are not defined.

Two of the requirements for an implementation that supports debug over power-down are:

• An operating system must be able to save and restore the much of the debug logic state over a
power-down. This requirement is met by the OS Save and Restore mechanism.

• A debugger must be able to detect that a processor has powered-down. For more information, see
Permissions in relation to power-down on page C6-28.
C6-8 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Inserted Text
with bit[0]

ARM_2009_Q2
Inserted Text
accesses to

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Inserted Text
are UNPREDICTABLE

Debug Register Interfaces
The OS Save and Restore mechanism is provided by the following registers:

• OS Save and Restore Register (DBGOSSRR), see OS Save and Restore Register (DBGOSSRR) on
page C10-77

• OS Lock Access Register (DBGOSLAR), see OS Lock Access Register (DBGOSLAR) on
page C10-75

• OS Lock Status Register (DBGOSLSR), see OS Lock Status Register (DBGOSLSR) on page C10-76

• The Event Catch Register (DBGECR), see Event Catch Register (DBGECR) on page C10-78.

You can read the DBGOSLSR to detect whether the OS Save and Restore mechanism is implemented. If it
is not implemented the read of the DBGOSLSR returns zero.

The DBGOSSRR works in conjunction with an internal sequence counter, so that a series of reads or writes
of this register saves or restores the complete debug logic state of the processor that would be lost when the
processor is powered down. The internal sequence counter is reset to the start of the sequence by writing the
key, 0xC5ACCE55, to the DBGOSLAR.

The number of accesses required, and the order and interpretation of the data are IMPLEMENTATION
DEFINED.

The first access to the DBGOSSRR following the reset of the internal sequence counter must be a read:

• when performing an OS Save sequence this read returns the number of reads from the DBGOSSRR
that are needed to save the entire debug logic state

• when performing an OS Restore sequence the value returned by this read is UNKNOWN.

The result of issuing a write to the DBGOSSRR following a reset of the internal sequence counter is
UNPREDICTABLE.

Note
 • If the OS Save and Restore mechanism is not implemented, this first read returns zero, correctly

indicating to software that no registers are to be saved.

• An implementation that includes the OS Save and Restore mechanism might not provide access to
the DBGOSSRR through the external debug interface. In this case:

— the DBGOSLSR, DBGOSLAR, and DBGECR are accessible through the external debug
interface

— through the external debug interface, the DBGOSSRR is RAZ/WI

— because the first read of the DBGOSSRR through the external debug interface returns zero,
this indicates that the OS registers cannot be saved or restored through the external debug
interface.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C6-9

ARM_2008_Q4
Inserted Text
This write sets the OS Lock, preventing any changes to the debug registers during the save or restore operation.

It is IMPLEMENTATION DEFINED whether Software debug events are permitted when the OS Lock is set. See About invasive debug authentication on page C2-2 [pdf page 1602].

ARM_2009_Q2
Inserted Text
 for DBGOSLSR[0]

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Sticky Note
Software must not rely on this behavior.

Debug Register Interfaces
The subsequent accesses to the DBGOSSRR must be either all reads or all writes. UNPREDICTABLE behavior
results if:

• reads and writes are mixed

• more accesses are performed than the number of registers to be saved or restored, as returned by the
first read in the OS Save sequence.

• the subsequent accesses are writes, but the OS Lock is cleared with fewer writes performed than the
number of registers to be restored.

The debug logic state of the processor is unchanged if the OS Lock is cleared during or following an OS
Save sequence. The sequence is restarted the next time the OS Lock is set.

When the core power domain is powered down or when the OS Lock is not locked, reads of DBGOSSRR
return an UNKNOWN value and writes are UNPREDICTABLE.

See Example OS Save and Restore sequences on page C6-12 for software examples of the OS Save and
Restore processes.

The debug logic state preserved by the OS Save and Restore mechanism

If debug over power-down is supported, the OS Save and Restore mechanism permits the following debug
logic state to be preserved:

• The registers that must be in the debug power domain, see Power domains and debug on page C6-5.

• The DBGWFAR.

• The DBGBVRs, DBGBCRs, DBGWVRs, DBGWCRs, and DBGVCR.

• The DBGDSCCR and DBGDSMCR.

• The data transfer registers DBGDTRTX and DBGDTRRX, subject to the values of
DBGDSCR.TXfull and DBGDSCR.RXfull when the OS Save sequence is performed:

— If DBGDSCR.TXfull is set to 1 then the value of DBGDTRTX is guaranteed to be saved and
restored.

— If DBGDSCR.RXfull is set to 1 then the value of DBGDTRRX is guaranteed to be saved and
restored.

— If either of these flags is not set to 1 when the OS Save sequence is performed then the value
of the corresponding register is UNKNOWN after the OS Restore sequence.

Note
 The OS Save and Restore sequences must not stall reading the values of DBGDTRTX and

DBGDTRRX, and must not cause any instructions to be issued, regardless of the settings of the
DBGDSCR.ExtDCCmode access mode bits.
C6-10 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug Register Interfaces
• The DCC status flags themselves:

— DBGDSCR.TXfull, bit [29]

— DBGDSCR.TXfull_l, bit [26]

— DBGDSCR.RXfull, bit [30]

— DBGDSCR.RXfull_l, bit [27].

Note
 Reading DBGDSCR through the DBGOSSRR has no side-effects, that is, the values of TXfull_l and

RXfull_l are unchanged.

• All other writable flags in the DBGDSCR:

— Method of Debug Entry bits, MOE, bits [5:2]

— Force Debug Acknowledge bit, DBGack, bit [10]

— Interrupts Disable bit, INTdis, bit [11]

— User mode Access to Communication Channel Enable bit, UDCCdis, bit [12]

— Execute ARM Instruction Enable bit, ITRen, bit [13]

— Halting debug-mode Enable bit, HDBGen, bit [14]

— Monitor debug-mode Enable bit, MDBGen, bit [15]

— External DCC access mode field, ExtDCCmode, bits [21:20].

• If vectored interrupt support is implemented and enabled, all state required to ensure the correct
generation of Vector Catch debug events. For more information, see Vector catch debug events and
vectored interrupt support on page C3-22.

The OS Save sequence must preserve at least all of this debug logic state that is lost when the core power
domain is powered down. The OS Save sequence does not have to preserve any debug logic state that is not
lost when the core power domain is powered down. That is, it does not have to preserve any debug logic
state that is in the debug power domain.

The OS Save and Restore mechanism does not preserve:

• The sticky exception flags in the DBGDSCR, and the contents of the DBGITR.

• The read-only processor status flags in the DBGDSCR:

— HALTED, bit [0]

— RESTARTED, bit [1]

— SPIDdis, bit [16]

— SPNIDdis, bit [17]

— NS, bit [18]

— ADAdiscard, bit [19]

— InstrCompl_l, bit [24]

— PipeAdv, bit [25].
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C6-11

ARM_2008_Q4
Cross-Out

Debug Register Interfaces
• The performance monitor registers described in Chapter C9 Performance Monitors.

• The trace registers.

The OS Restore sequence always overwrites the debug registers with the values that were saved. In
particular, the values of the DBGDTRTX and DBGDTRRX Registers, and of the DCC status flags TXfull,
TXfull_l, RXfull, and RXfull_l after the OS Restore sequence are the saved values.

If there were valid values in the DBGDTRTX or DBGDTRRX Registers immediately before the OS Restore
sequence then those values are lost.

Example OS Save and Restore sequences

Example OS Save and Restore sequences are described in:

• Example OS Save and Restore sequences using the memory-mapped interface

• Example OS Save and Restore sequences using the Extended CP14 interface on page C6-14.

Example OS Save and Restore sequences using the memory-mapped interface

On an implementation that includes the OS Save and Restore mechanism and a memory-mapped interface:

• Example C6-1 shows the correct sequence for saving the debug logic state, using the
memory-mapped interface, before powering down

• Example C6-2 on page C6-13 shows the correct sequence for restoring the debug logic state, using
the memory-mapped interface, when the system is powered on again.

When the debug logic state is restored, if the OS Unlock Catch bit in the Event Catch Register is set to 1 a
debug event is triggered when the DBGOSLAR is cleared. This event might be used by an external debugger
to restart a debugging session. See Event Catch Register (DBGECR) on page C10-78.

Example C6-1 OS debug register save sequence, memory-mapped interface

; On entry, R0 points to a block to save the debug registers in.

SaveDebugRegisters
 PUSH {R4, LR}
 MOV R4, R0 ; Save pointer

 ; (1) Set OS Lock Access Register (DBGOSLAR). The architecture requires that DBGOSLAR
 ; and the other debug registers have at least the Device memory attribute.
 BL GetDebugRegisterBase ; Returns base in R0
 LDR R1, =0xC5ACCE55
 STR R1, [R0, #0x300] ; Write DBGOSLAR

 ; (2) Get the number of words to save.
 LDR R1, [R0, #0x308] ; DBGOSSRR returns size
 STR R1, [R4], #4 ; Push on to the save stack

 ; (3) Loop reading words from the DBGOSSRR.
C6-12 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug Register Interfaces
 CMP R1, #0 ; Check for zero
SaveDebugRegisters_Loop
 ITTT NE
 LDRNE R2, [R0, #0x308] ; Load a word of data
 STRNE R2, [R4], #4 ; Push on to the save stack
 SUBSNE R1, R1, #1
 BNE SaveDebugRegisters_Loop

 ; (4) Return the pointer to first word not written to. Leave DBGOSLAR set, because
 ; from now on we do not want any changes.
 MOV R0, R4
 POP {R4, PC}

Example C6-2 OS debug register restore sequence, memory-mapped interface

; On entry, R0 points to a block of saved debug registers.

RestoreDebugRegisters
 PUSH {R4, LR}
 MOV R4, R0 ; Save pointer

 ; (1) Set the OS Lock Access Register (DBGOSLAR) and reset pointer. The lock
 ; will already be set, but this write is needed to reset the pointer. The
 ; architecture requires that DBGOSLAR and the other debug registers have at
 ; least the Device memory attribute.
 BL GetDebugRegisterBase ; Returns base in R0
 LDR R1, =0xC5ACCE55
 STR R1, [R0, #0x300] ; Write DBGOSLAR

 ; (2) Clear the Sticky Power-down Status bit.
 LDR R1, [R0, #0x314] ; Read DBGPRSR to clear StickyPD

 ; (3) Get the number of words saved.
 LDR R1, [R0, #0x308] ; Dummy read of DBGOSSRR
 LDR R1, [R4], #4 ; Get register count from the save stack

 ; (4) Loop writing words from the DBGOSSRR.
 CMP R1, #0 ; Check for zero
RestoreDebugRegisters_Loop
 ITTT NE
 LDRNE R2, [R4], #4 ; Load a word from the save stack
 STRNE R2, [R0, #0x308] ; Store a word of data
 SUBSNE R1, R1, #1
 BNE RestoreDebugRegisters_Loop

 ; (5) Clear the DBGOSLAR. Writing any non-key value clears the lock, so use the
 ; zero value in R1.
 STR R1, [R0, #0x300] ; Write DBGOSLAR

 ; (6) A final DSB ensures the restore is complete and an ISB ensures
 ; the restored register values are visible to subsequent instructions.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C6-13

Debug Register Interfaces
 DSB
 ISB

 ; (7) Return the pointer to first word not read.
 MOV R0, R4
 POP {R4, PC}

Example OS Save and Restore sequences using the Extended CP14 interface

On an implementation that includes the OS Save and Restore mechanism and the Extended CP14 interface:

• Example C6-3 shows the correct sequence for saving the debug logic state, using the Extended CP14
interface, before powering down

• Example C6-4 on page C6-15 shows the correct sequence, using the Extended CP14 interface, for
restoring the debug logic state when the system is powered on again.

When the debug logic state is restored, if the OS Unlock Catch bit in the Event Catch Register is set to 1 a
debug event is triggered when the DBGOSLAR is cleared. This event might be used by an external debugger
to restart a debugging session. See Event Catch Register (DBGECR) on page C10-78.

Example C6-3 OS debug register save sequence, Extended CP14 interface

; On entry, R0 points to a block to save the debug registers in.

SaveDebugRegisters
 ; (1) Set OS Lock Access Register (DBGOSLAR).
 LDR R1, =0xC5ACCE55
 MCR p14, 0, R1, c1, c0, 4 ; Write DBGOSLAR
 ISB

 ; (2) Get the number of words to save.
 MRC p14, 0, R1, c1, c2, 4 ; DBGOSSRR returns size
 STR R1, [R0], #4 ; Push on to the save stack

 ; (3) Loop reading words from the DBGOSSRR.
 CMP R1, #0 ; Check for zero
SaveDebugRegisters_Loop
 ITTT NE
 MRCNE p14, 0, R2, c1, c2, 4 ; Load a word of data
 STRNE R2, [R0], #4 ; Push on to the save stack
 SUBSNE R1, R1, #1
 BNE SaveDebugRegisters_Loop

 ; (4) Return the pointer to first word not written to. This pointer is already in R0, so
 ; all that is needed is to return from this function.
 ;
 ; Leave DBGOSLAR set, because from now on we do not want any changes.
 BX LR
C6-14 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug Register Interfaces
Example C6-4 OS debug register restore sequence, Extended CP14 interface

; On entry, R0 points to a block of saved debug registers.

RestoreDebugRegisters
 ; (1) Set OS Lock Access Register (DBGOSLAR) and reset pointer. The lock
 ; will already be set, but this write is needed to reset the pointer.
 LDR R1, =0xC5ACCE55
 MCR p14, 0, R1, c1, c0, 4 ; Write DBGOSLAR
 ISB

 ; (2) Clear the Sticky Power-down Status bit.
 MRC p14, 0, R1, c1, c5, 4 ; Read DBGPRSR to clear StickyPD
 ISB

 ; (3) Get the number of words saved.
 MRC p14, 0, R1, c1, c2, 4 ; Dummy read of DBGOSSRR
 LDR R1, [R0], #4 ; Load size from the save stack

 ; (4) Loop writing words from the DBGOSSRR.
 CMP R1, #0 ; Check for zero
RestoreDebugRegisters_Loop
 ITTT NE
 LDRNE R2, [R0], #4 ; Load a word from the save stack
 MCRNE p14, 0, R2, c1, c2, 4 ; Store a word of data
 SUBSNE R1, R1, #1
 BNE RestoreDebugRegisters_Loop

 ; (5) Clear the OS Lock Access Register (DBGOSLAR). Writing any non-key value
 ; clears the lock, so use the zero value in R1.
 ISB
 MCR p14, 0, R1, c1, c0, 4 ; Write DBGOSLAR

 ; (6) A final ISB guarantees the restored register values are visible to subsequent
 ; instructions.
 ISB

 ; (7) Return the pointer to first word not read. This pointer is already in R0, so
 ; all that is needed is to return from this function.
 BX LR
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C6-15

Debug Register Interfaces
C6.2.4 Recommended reset scheme for v7 Debug

The processor reset scheme is IMPLEMENTATION DEFINED. The ARM architecture, described in parts A and
B of this manual, does not distinguish different levels of reset. However, in a typical system, there are a
number of reasons why multiple levels of reset might exist. In particular, for debug:

• It is desirable to be able to debug the reset sequence. This requires support for:

— setting the debug register values before performing a processor reset

— a processor reset not resetting the debug register values.

• Providing separate power domains means you might need to reset the debug logic independently from
the logic in the core power domain.

For these reasons, v7 Debug introduces a distinction between debug logic reset and non-debug logic reset.
These resets can be applied independently. The reset descriptions in parts A and B of this manual describe
the non-debug logic reset. Part C describes the debug logic reset and its interaction with the non-debug logic
reset. The non-debug logic reset is sometimes referred to as a core logic reset.

ARM recommends use of the following reset signals for an implementation that supports these independent
resets:

nSYSPORESET This signal must be driven LOW on power-up of both the core and debug power
domains. It sets parts of the processor logic, including debug logic, to a known state.

nCOREPORESET If the core power domain is powered down while the system is still powered up, this
signal must be driven LOW when the core power domain is powered back up. It sets
parts of the processor logic in the core power domain to a known state. Also, this
reset initializes the debug registers that are in the core power domain.

nRESET This signal is driven LOW to generate a warm reset, that is, when the system wants
to set the processor to a known state but the reset has nothing to do with any
power-down, for example a watchdog reset. It sets parts of the non-debug processor
logic to a known state. A debug session must be unaffected by this reset.

PRESETDBGn The debugger drives this signal LOW to set parts of the debug logic to a known state.
This signal must be driven LOW on power-up of the debug logic.

v6 Debug and v6.1 Debug systems do not support multiple power domains and therefore ARM recommends
a less flexible reset scheme, consisting of only nSYSPORESET and nRESET. The debug logic is reset
only on nSYSPORESET and has no independent reset signal.

In the v7 Debug recommended reset scheme, a separate PRESETDBGn reset signal can be asserted at any
time, not just at power-up. This new signal has similar effects to nSYSPORESET, that is, it clears all debug
registers, unless otherwise noted by the register definition. For more information, see Appendix A
Recommended External Debug Interface.

Asynchronously asserting PRESETDBGn can lead to UNPREDICTABLE behavior. For example, the reset
might change the values of debug registers that are in use or will be used by software.

For more information about this reset scheme, contact ARM.
C6-16 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug Register Interfaces
Table C6-1 summarizes the v7 Debug recommended reset scheme.

For ARMv7 SinglePower systems, ARM recommends only nSYSPORESET, nRESET, and
PRESETDBGn.

Debug behavior when the processor is in debug logic reset

The implementation of separate debug and core power domains with a separate debug logic reset signal
means that a processor can access debug registers and the DCC while in the debug logic reset state. When
in debug logic reset:

• The behavior of the DCC is UNPREDICTABLE. In particular, the values of the DBGDSCR.RXfull and
DBGDSCR.TXfull flags are UNKNOWN.

• It is UNPREDICTABLE whether a debug event that would have been generated by the state of the debug
logic immediately before the debug logic reset is generated.

• The debug logic must not generate any debug event that would not have been generated if the system
was not in debug logic reset.

• Accesses to the debug registers through the Extended CP14, memory-mapped and external debug
interfaces are UNPREDICTABLE.

Table C6-1 Recommended reset scheme, v7 Debug

Debug power domain Core power domain

Signal Debug logic Debug logic Non-debug logic

nSYSPORESET Reset Reseta

a. If the core power domain is not powered, or the Sticky Power-down status bit
DBGPRSR[1] is set to 1, it is UNPREDICTABLE whether the registers are reset. If power is
not applied to the core power domain, nCOREPORESET must be driven LOW when
power is restored to the core power domain. This resets these registers.

Reset

nCOREPORESET Not reset Reseta Reset

nRESET Not reset Not reset Reset

PRESETDBGn Reset Reseta Not reset
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C6-17

Debug Register Interfaces
C6.3 Debug register map

Table C6-2 lists all of the debug registers. Full details of each register can be found in the referenced section.

The number of DBGBVR/DBGBCR and DBGWVR/DBGWCR pairs is IMPLEMENTATION DEFINED, see the
BRPs and WRPs fields of the Debug ID Register (DBGDIDR) on page C10-3. An implementation can have
up to 16 of each.

The interpretation of the information in the Access column depends on whether the coprocessor or
memory-mapped interface is used to access the register.

Collectively, registers 832-1023 are known as the management registers.

Table C6-2 Debug register map

Register
number

Offset Accessa Versionsb Name and reference to description

0 0x000 Read-only All Debug ID Register (DBGDIDR) on page C10-3.

Not applicablec - Read-only v7 only Debug ROM Address Register (DBGDRAR) on
page C10-7.

Not applicablec - Read-only v7 only Debug Self Address Offset Register (DBGDSAR) on
page C10-8.

1-5 - - - Reserved.

6 0x018 Read/write v7 d Watchpoint Fault Address Register (DBGWFAR) on
page C10-28.

7 0x01C Read/write All Vector Catch Register (DBGVCR) on page C10-67.

8 - - - Reserved.

9 0x024 Read/write v7 only Event Catch Register (DBGECR) on page C10-78.

10 0x028 Read/write v6.1, v7 Debug State Cache Control Register (DBGDSCCR) on
page C10-81.

11 0x02C Read/write v6.1, v7 Debug State MMU Control Register (DBGDSMCR) on
page C10-84.

12-31 - - - Reserved.

32 0x080 Read/write v7 e DBGDTRRX external viewf. See Host to Target Data
Transfer Register (DBGDTRRX) on page C10-40.
C6-18 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q2
Inserted Text
v6.1,

Debug Register Interfaces
33 0x084 Write-only v7 e Instruction Transfer Register (DBGITR) on
page C10-46.

Read-only v7 e Program Counter Sampling Register (DBGPCSR) on
page C10-38.

34 0x088 Read/write v7 e DBGDSCR external viewf. See Debug Status and
Control Register (DBGDSCR) on page C10-10.

35 0x08C Read/write v7 e DBGDTRTX external viewf. See Target to Host Data
Transfer Register (DBGDTRTX) on page C10-43.

36 0x090 Write-only v7 only Debug Run Control Register (DBGDRCR), v7 Debug
only on page C10-29.

37-39 - - - Reserved.

40 0x0A0 Read-only v7 only Program Counter Sampling Register (DBGPCSR) on
page C10-38

41 0x0A4 Read-only v7 only Context ID Sampling Register (DBGCIDSR) on
page C10-39

42-63 - - - Reserved.

64-79 0x100-
0x13C

Read/write
or -

All Breakpoint Value Registers (DBGBVR) on page C10-48
or Reserved.

80-95 0x140-
0x17C

Read/write
or -

All Breakpoint Control Registers (DBGBCR) on
page C10-49 or Reserved.

96-111 0x180-
0x1BC

Read/write
or -

All Watchpoint Value Registers (DBGWVR) on
page C10-60 or Reserved.

112-127 0x1C0-
0x1FC

Read/write
or -

All Watchpoint Control Registers (DBGWCR) on
page C10-61 or Reserved.

128-191 - - - Reserved.

192 0x300 Write-only v7 only OS Lock Access Register (DBGOSLAR) on
page C10-75.

193 0x304 Read-only v7 only OS Lock Status Register (DBGOSLSR) on page C10-76.

194 0x308 Read/write v7 only OS Save and Restore Register (DBGOSSRR) on
page C10-77.

Table C6-2 Debug register map (continued)

Register
number

Offset Accessa Versionsb Name and reference to description
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C6-19

Debug Register Interfaces
195 - - - Reserved.

196 0x310 Read/write v7 only Device Power-down and Reset Control Register
(DBGPRCR), v7 Debug only on page C10-31.

197 0x314 Read-only v7 only Device Power-down and Reset Status Register
(DBGPRSR), v7 Debug only on page C10-34.

198-511 - - - Reserved.

512-575 0x800-
0x8FC

- v7 only IMPLEMENTATION DEFINED.

576-831 - - - Reserved.

832-895 0xD00-
0xDFC

Read-only v7 only Processor identification registers on page C10-88.

896-927 - - - Reserved.

928-959 0xE80-
0xEFC

- v7 only IMPLEMENTATION DEFINED integration registers. See the
CoreSight Architecture Specification.

960 0xF00 Read/write v7 only Integration Mode Control Register (DBGITCTRL) on
page C10-91.

961-999 0xF04-
0xF9C

- v7 only Reserved for management registers expansion.

1000 0xFA0 Read/write v7 only Claim Tag Set Register (DBGCLAIMSET) on
page C10-92.

1001 0xFA4 Read/write v7 only Claim Tag Clear Register (DBGCLAIMCLR) on
page C10-93.

1002-1003 - - - Reserved.

1004 0xFB0 Write-only v7 only Lock Access Register (DBGLAR) on page C10-94.

1005 0xFB4 Read-only v7 only Lock Status Register (DBGLSR) on page C10-95.

1006 0xFB8 Read-only v7 only Authentication Status Register (DBGAUTHSTATUS) on
page C10-96.

1007-1009 - - - Reserved.

Table C6-2 Debug register map (continued)

Register
number

Offset Accessa Versionsb Name and reference to description
C6-20 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug Register Interfaces
C6.3.1 Internal and external views of the DBGDSCR and the DCC registers

For each of the three registers DBGDSCR, DBGDTRTX and DBGDTRRX there are two views, denoted by
int and ext suffixes. The differences between these aliases relate to the handling of the Debug
Communications Channel (DCC), and in particular the TXfull and RXfull status flags. The nomenclature
internal and external derives from the intended usage model.

Accesses to DBGDSCRint, DBGDTRRXint or DBGDTRTXint are always made through the Baseline
CP14 interface described in The Baseline CP14 debug register interface on page C6-32. DBGDSCRint is
read-only in v7 Debug.

Accesses to DBGDSCRext, DBGDTRRXext or DBGDTRTXext can be made through:

• the Extended CP14 interface, if implemented

• the memory-mapped interface, if implemented

• the external debug interface.

However, if at any given time you attempt to access the DBGDSCRext, DBGDTRRXext and
DBGDTRTXext registers through more than one interface the behavior is UNPREDICTABLE. If an
implementation provides a single port to handle external debug interface and the memory-mapped interface

1010 0xFC8 Read-only v7 only Debug Device ID Register (DBGDEVID) on
page C10-6.

1011 0xFCC Read-only v7 only Device Type Register (DBGDEVTYPE) on
page C10-98.

1012-1019 0xFD0-
0xFEC

Read-only v7 only Debug Peripheral Identification Registers (DBGPID0 to
DBGPID4) on page C10-98.

1020-1023 0xFF0-
0xFFC

Read-only v7 only Debug Component Identification Registers (DBGCID0
to DBGCID3) on page C10-102.

a. For more information, see CP14 debug registers access permissions on page C6-36 and Permission summaries for
memory-mapped and external debug interfaces on page C6-45.

b. An entry of All in the Versions column indicates that the register is implemented in v6 Debug, v6.1 Debug, and
v7 Debug.

c. These registers are only implemented through the Baseline CP14 interface and do not have register numbers or offsets.
d. The method of accessing the DBGWFAR is different in v6 Debug, v6.1 Debug and v7 Debug. For details see

Watchpoint Fault Address Register (DBGWFAR) on page C10-28.
e. In v6 Debug and v6.1 Debug, ARM recommends these registers as part of the external debug interface, and are not

implemented through the Extended CP14 interface. In v7 Debug these registers are required.
f. Internal views of the DBGDTRRX, DBGDTRTX, and DBGDSCR are implemented through the Baseline CP14

interface. This is explained in Internal and external views of the DBGDSCR and the DCC registers.

Table C6-2 Debug register map (continued)

Register
number

Offset Accessa Versionsb Name and reference to description
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C6-21

Debug Register Interfaces
accesses, that port might serialize accesses to the registers from the two interfaces. However, the effects of
reads and writes to these registers are such that the behavior observed from either interface appears as
UNPREDICTABLE.

Figure C6-2 v7 Debug Internal (int) and External (ext) views of the DCC registers

Note
 • DBGDSCRint and DBGDSCRext only provide different views onto the underlying DBGDSCR

• DBGDTRRXint and DBGDTRRXext only provide different views onto the underlying
DBGDTRRX Register

• DBGDTRTXint and DBGDTRTXext only provide different views onto the underlying DBGDTRTX
Register.

See also:

• Debug Status and Control Register (DBGDSCR) on page C10-10

• Host to Target Data Transfer Register (DBGDTRRX) on page C10-40

• Target to Host Data Transfer Register (DBGDTRTX) on page C10-43.

�9K�@7@G�+&
17���P8�'&�2

�9K��<7�+&
17���P8�'&�2

�9K�@7@G

�9K�@77G

�9K��<7

@G($��

7G($��

7G($��A�

@G($��A�

�9K�@77G�+&
17���P8�'&�2

 �&�������'�8 :+&�������'�8

��1�������*2

@G
7���
3�.'�

7G
Q�'&�
3�.'�

��1���8�'&�*2

�9K�@7@G'�&
1Q�'&������2

�9K�@77G'�&
17��������2

<�%'����������*

�9K��<7'�&
17��������2

<�%'����������*
C6-22 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q1
Line
In this figure, the connection of the TX read logic and RX read logic blocks is incorrect. Double-click on the paper clip icon to see the corrected figure.

Figure C6-2 v7 Debug Internal (int) and External (ext) views of the DCC registers

DBGDSCR

RXfull_l

RXfull

Copy on read of
DBGSCRext

TXfull_l

TXfull

Copy on read of
DBGSCRext

RX
write

logic ‡

TX
read

logic ‡

DBGDTRTX DBGDTRTXext
read/write

DBGDTRRX DBGDTRRXext
read/write

DBGDTRTXint
write-only

DBGDTRRXint
read-only

1, on writes

0, on reads

DBGDSCRext
read/write

DBGDSCRint
read-only

Internal view External view

‡ Tx reads and Rx writes are possible only through the external view

ARM_2009_Q1
File Attachment
Figure_C6_2_correction.pdf

ARM_2009_Q1
Line

Debug Register Interfaces
C6.3.2 Effect of the Security Extensions on the debug registers

When the Security Extensions are implemented, all debug register are Common registers, meaning they are
common to the Secure and Non-secure states. For more information, see Common CP15 registers on
page B3-74.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C6-23

Debug Register Interfaces
C6.4 Synchronization of debug register updates

Software running on the processor can program the debug registers through at least one of:

• a CP14 coprocessor interface

• the memory-mapped interface, if it is implemented.

It is IMPLEMENTATION DEFINED which interfaces are implemented.

For the CP14 coprocessor interface, the following synchronization rules apply:

• All changes to CP14 debug registers that appear in program order after any explicit memory
operations are guaranteed not to affect those memory operations.

• Any change to CP14 debug registers is guaranteed to be visible to subsequent instructions only after
one of:

— performing an ISB operation

— taking an exception

— returning from an exception.

However, for CP14 coprocessor register accesses, all MRC and MCR instructions to the same register
using the same register number appear to occur in program order relative to each other without
context synchronization.

For the memory-mapped interface, the following synchronization rules apply:

• All memory-mapped debug registers must be mapped to Strongly-ordered or Device memory,
otherwise the effect of any access to the memory-mapped debug registers is UNPREDICTABLE.

• Changes to memory-mapped debug registers that appear in program order after an explicit memory
operation are guaranteed not to affect that previous memory operation only if the order is guaranteed
by the memory order model or by the use of a DMB or DSB operation between the memory operation
and the register change.

• A DSB operation causes all writes to memory-mapped debug registers appearing in program order
before the DSB to be completed.

• With respect to other accesses by the same processor to the memory-mapped debug registers, all
accesses to memory-mapped debug registers have their effect in the order in which the accesses
occur, as governed by the memory order model and the use of DSB and DMB operations.

• All accesses to memory-mapped debug registers that are completed are only guaranteed to affect
subsequent instructions after one of:

— performing an ISB operation

— taking an exception

— returning from an exception.

Some memory-mapped debug registers are not idempotent for reads or writes. Therefore, the region of
memory occupied by the debug registers must not be marked as Normal memory, because the memory order
model permits accesses to Normal memory locations that are not appropriate for such registers.
C6-24 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
• Any completed access to a memory-mapped debug registers is guaranteed to affect the generation of Software debug events and OS Unlock Catch debug events by subsequent instructions only after one of:
 — performing an ISB operation
 — taking an exception
 — returning from an exception.
 For more information see Generation of debug events on page C3-40 [PDF page 1644].
 Otherwise, reads and writes to memory-mapped debug registers have their effects on completion of the read or write operation.

ARM_2011_Q2
Sticky Note
To clarify the intended meaning of the replacement text:
The events listed can be described as context synchronization operations.
 • Without a context synchronization operation, the change becomes visible at some point after the instruction that changed the memory-mapped debug registers.
 • However, until a context synchronization operation has occurred, the architecture does not guarantee that the change is visible.

ARM_2011_Q2
Sticky Note
To clarify the intended meaning of this text:
The events listed can be described as context synchronization operations.
 • Without a context synchronization operation, the change becomes visible at some point after the instruction that changed the CP14 debug registers.
 • However, until a context synchronization operation has occurred, the architecture does not guarantee that the change is visible.

Debug Register Interfaces
Synchronization between register updates made through the external debug interface and updates made by
software running on the processor is IMPLEMENTATION DEFINED. However, if the external debug interface is
implemented through the same port as the memory-mapped interface, then updates made through the
external debug interface have the same properties as updates made through the memory-mapped interface.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C6-25

Debug Register Interfaces
C6.5 Access permissions

This section describes the basic concepts of the access permissions model for debug registers on ARMv7
processors. The actual rules for each interface, and for ARMv6 implementations, are given in the section
describing the register interface:

• CP14 debug registers access permissions on page C6-36

• Permission summaries for memory-mapped and external debug interfaces on page C6-45.

The restrictions for accessing the registers can be divided into three categories:

Privilege of the access

Accesses from processors in the system to the memory-mapped registers, and accesses to
coprocessor registers, can be required to be privileged.

Locks Can be used to lock out different parts of the register map so they cannot be accessed.

Power-down Access to registers in the core power domain is not possible when that domain is powered
down.

When permission to access a register is not granted, an error is returned. The nature of this error depends on
the interface:

• For coprocessor interfaces, the error is an Undefined Instruction exception

• For the memory-mapped interface, the error is a slave-generated error response, for example
PSLVERRDBG. The error is normally signaled to the processor as an external abort.

• For the external debug interface, the error is signaled to the debugger by the Debug Access Port.

Holding the processor in warm reset, whether by using an external warm reset signal or by using the Device
Power-down and Reset Control Register (DBGPRCR), does not affect the behavior of the memory-mapped
or external debug interface.

The Hold non-debug reset control bit of the DBGPRCR enables an external debugger to keep the processor
in warm reset while programming other debug registers. For details see Device Power-down and Reset
Control Register (DBGPRCR), v7 Debug only on page C10-31.

C6.5.1 Permissions in relation to the privilege of the access

The majority of debug registers can only be accessed by privileged code. The exception to this general
requirement is a small subset of the registers, defined in The Baseline CP14 debug register interface on
page C6-32. Using the coprocessor interface, privileged code can disable User mode access to this subset of
registers.

For the memory-mapped interface, it is IMPLEMENTATION DEFINED whether restricting debug register access
to privileged code is implemented by the processor or must be implemented by the system designer at the
system level. The behavior of an access that is not permitted is IMPLEMENTATION DEFINED, however it must
either be ignored or aborted.
C6-26 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug Register Interfaces
Note
 • The recommended memory-mapped interface port is based on the AMBA® Advanced Peripheral Bus

(APBv3), that does not support signaling of access privileges. Therefore in this case the system must
prevent the access.

• This access restriction applies to the privilege of the initiator of the access, not the current mode of
the processor being accessed. The privilege of accesses made by a Debug Access Port is
IMPLEMENTATION DEFINED.

The system designer can impose additional restrictions. However, ARM strongly recommends that
designers do not impose restrictions such as only permitting Secure privileged accesses, and does not
support such restrictions in its debug tools.

C6.5.2 Permissions in relation to locks

The registers can be locked by a debugger or by an operating system so that access to debug registers is
restricted.

There are three locks, although some of these locks only apply to certain interfaces:

Software Lock

The Software Lock only applies to accesses made through the memory-mapped interface.

By default, software is locked out so the debug registers settings cannot be modified. A
debug monitor must leave this lock set when not accessing the debug registers, to reduce the
chance of erratic code modifying debug settings. When this lock is set, writes to the debug
registers from the memory-mapped interface are ignored. For more information about this
lock, see Lock Access Register (DBGLAR) on page C10-94 and Lock Status Register
(DBGLSR) on page C10-95.

OS Lock An OS must set this lock on the debug registers before starting an OS Save or Restore
sequence, so that the debug registers cannot be read or written during the sequence. When
this lock is set, accesses to some registers return errors. Only the OS Save and Restore
mechanism registers can be accessed safely.

Note
 An external debugger can clear this lock at any time, even if an OS Save or Restore operation

is in progress.

For more information about this lock, see OS Lock Access Register (DBGOSLAR) on
page C10-75 and OS Lock Status Register (DBGOSLSR) on page C10-76.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C6-27

Debug Register Interfaces
Debug Software Enable

An external debugger can use the Debug Software Enable function to prevent modification
of the debug registers by a debug monitor or other software running on the system. The
Debug Software Enable is a required function of the Debug Access Port, and is implemented
as part of the ARM Debug Interface v5. For more information see the ARM Debug Interface
v5 Architecture Specification.

See also DBGSWENABLE on page AppxA-11.

Note
 • The states of the Software Lock and the OS Lock are held in the debug power domain, and the Debug

Software Enable is in the Debug Access Port. Therefore, these locks are unaffected by the core power
domain powering down. Also, all of these locks are set to their reset values only on reset of the debug
power domain, that is. on a PRESETDBGn or nSYSPORESET reset.

• On SinglePower systems, the Software Lock and OS Lock are lost over a power-down. It is
IMPLEMENTATION DEFINED whether the single processor power-domain also includes the Debug
Access Port, and therefore also whether the Debug Software Enable is lost over a power-down.

C6.5.3 Permissions in relation to power-down

Accesses cannot be made through the coprocessor interface when the core power domain is powered down.

Access to registers in the core power domain is not possible when the domain is powered down, and accesses
return an error response.

Note
 Returning this error response, rather than simply ignoring writes, means that the debugger and the debug
monitor detect the debug session interruption as soon as it occurs. This makes re-starting the session, after
power-up, considerably easier.

When the core power domain powers down, the Sticky Power-down status bit, bit [1] of the Device
Power-down and Reset Status Register, is set to 1. This bit remains set to 1 until it is cleared to 0 by a read
of this register after the core power domain has powered up. If the register is read while the core power
domain is still powered down, the bit remains set to 1. When this bit is 1 the behavior is as if the core power
domain is powered down, meaning the processor ignores accesses to registers inside the core power domain
and the system returns an error. This applies whether the register is accessed through the Extended CP14
interface, the memory-mapped interface, or the external debug interface.

This behavior is useful because when the external debugger tries to access a register whose contents might
have been lost by a power-down, it gets the same response regardless of whether the core power domain is
currently powered down or has powered back up. This means that, if the external debugger does not access
the external debug interface during the window where the core power domain is powered down, the
processor still reports the occurrence of the power-down event.
C6-28 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug Register Interfaces
Access to all debug registers is not possible if the debug logic is powered down. In this situation:

• the system must respond to any access made through the memory-mapped or external debug interface
when the debug power domain is powered down, and ARM recommends that the system generates
an error response

• accesses through the coprocessor interface are UNPREDICTABLE.

The debug logic is powered down:

• when the debug power domain is powered down, in an implementation with separate debug and core
power domains

• when the processor is powered down, in a SinglePower implementation.

C6.5.4 Access to IMPLEMENTATION DEFINED and reserved registers

The following subsections describe the responses to accesses to IMPLEMENTATION DEFINED and reserved
registers:

• Access to implementation defined registers

• Access to reserved registers on page C6-30.

Note
 There are no IMPLEMENTATION DEFINED or reserved registers in the Baseline CP14 interface and therefore
these sections do not say anything about accesses through the Baseline CP14 interface.

Any unused registers in the spaces for IMPLEMENTATION DEFINED registers must behave as reserved
registers. These spaces are register numbers 512-575 and 928-959.

Access to IMPLEMENTATION DEFINED registers

When the Debug Software Enable function, described in Permissions in relation to locks on page C6-27, is
disabling software access to the debug registers, Table C6-3 shows how the response to an accesses to an
IMPLEMENTATION DEFINED register depends on the debug interface used for the access.

Table C6-3 Accesses to IMPLEMENTATION DEFINED registers when
Debug Software Enable disables access

Debug interlace used for accessa

a. There are no IMPLEMENTATION DEFINED registers in the Baseline CP14
interface.

Response

Memory-mapped interface Error response

Extended CP14 interface Undefined Instruction exception

External debug interface IMPLEMENTATION DEFINED
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C6-29

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
f

Debug Register Interfaces
It the Debug Software Enable function is not disabling software access to the debug registers, the response
to any access to an IMPLEMENTATION DEFINED register is IMPLEMENTATION DEFINED. This means the
response is IMPLEMENTATION DEFINED if any of the following apply:

• the core power domain is powered-down

• the Sticky Powered-down Status bit is set to 1

• the OS Lock is implemented and is locked

• the attempted access is using the memory-mapped interface and the Software Lock is locked.

Note
 The IMPLEMENTATION DEFINED registers include the IMPLEMENTATION DEFINED integration registers,
register numbers 928-959.

Access to reserved registers

The response to an access to a reserved register depends on the interface you are using to attempt the access,
as follows:

Memory-mapped interface

When the Debug Software Enable function, described in Permissions in relation to locks on
page C6-27, is disabling software access to the debug registers, any access to a reserved
register through the memory-mapped interface returns an error response. This includes
accesses to reserved registers in the management registers space, register numbers
832-1023.

When the Debug Software Enable function is not disabling software access to the debug
registers:

• Reserved registers in the management registers space, except for reserved registers in
the IMPLEMENTATION DEFINED integration registers space, are UNK/SBZP.

• For all other reserved registers, it is UNPREDICTABLE whether a register access returns
an error response if any of the following applies:

— the core power domain is powered-down

— the Sticky Powered-Down Status bit is set to 1

— the OS Lock is implemented and is locked

— the Software Lock is locked.

If none of these applies then these reserved registers are UNK/SBZP.

Extended CP14 interface

In v6 Debug and v6.1 Debug, any attempt to access a reserved register causes an Undefined
Instruction exception.

In v7 Debug:

• When the Debug Software Enable function is disabling software access to the debug
registers, any attempt to access a reserved register causes an Undefined Instruction
exception.
C6-30 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
If

Debug Register Interfaces
• When the Debug Software Enable function enables software access to the debug
registers, any attempt to access a reserved register:

— causes an Undefined Instruction exception if the access is from User mode

— is UNPREDICTABLE if the access is from a privileged mode.

External debug interface

Reserved registers in the management registers space, except for reserved registers in the
IMPLEMENTATION DEFINED integration registers space, are UNK/SBZP.

For all other reserved registers:

• It is UNPREDICTABLE whether a register access returns an error response if any of the
following applies:

— the core power domain is powered-down

— the Sticky Powered-Down Status bit is set to 1

— the OS Lock is implemented and is locked.

• If none of these applies then these reserved registers are UNK/SBZP.

Note
 • There are no reserved registers in the Baseline CP14 interface.

• Unimplemented breakpoint and watchpoint registers are reserved registers.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C6-31

Debug Register Interfaces
C6.6 The CP14 debug register interfaces

This section contains the following subsections:

• The Baseline CP14 debug register interface

• Extended CP14 interface on page C6-33

• CP14 debug registers access permissions on page C6-36.

C6.6.1 The Baseline CP14 debug register interface

Table C6-4 lists the set of CP14 debug instructions for accessing the debug registers that must be
implemented.

All MRC and MCR instructions with <coproc> = 0b1110 and <opc1> = 0b000 are debug instructions:

• Some of these instructions are defined in Table C6-4.

• Additional instructions are defined in Extended CP14 interface on page C6-33

• All other instructions are reserved for use by the Debug architecture. The behavior of reserved
instructions is defined in CP14 debug registers access permissions on page C6-36.

All MRC and MCR instructions with <coproc> = 0b1110 and <opc1> = 0b001 are used by the trace extension.
Other values of <opc1> are not used by the Debug architecture.

All LDC and STC instructions with <coproc> = 0b1110 that are not listed below are reserved for use by the
Debug architecture and are currently UNDEFINED. All CDP, MRC2, MCR2, LDC2, STC2, LDCL, STCL, LDC2L, and STC2L
instructions with <coproc> = 0b1110 are UNDEFINED.

Instructions that access registers that are only available in v7 Debug are UNDEFINED in earlier versions of
the Debug architecture. For example, the read from DBGDRAR performed by MRC p14,0,<Rt>,c1,c0,0 is
UNDEFINED in v6 Debug and v6.1 Debug, but is permitted in v7 Debug.

<Rt> refers to any of the general-purpose registers R0-R14. Use of APSR_nzcv is UNPREDICTABLE except
where stated. Use of R13 is UNPREDICTABLE in Thumb and ThumbEE state, and is deprecated in ARM state.

Table C6-4 Baseline CP14 debug instructions

Instruction Mnemonic Version Name and reference to description

MRC p14,0,<Rt>,c0,c0,0 DBGDIDR All Debug ID Register (DBGDIDR) on page C10-3

MRC p14,0,<Rt>,c1,c0,0 DBGDRAR v7 only Debug ROM Address Register (DBGDRAR) on
page C10-7

MRC p14,0,<Rt>,c2,c0,0 DBGDSAR v7 only Debug Self Address Offset Register (DBGDSAR)
on page C10-8
C6-32 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug Register Interfaces
C6.6.2 Extended CP14 interface

The architectural requirements for the Extended CP14 interface depend on the Debug architecture version:

v6 Debug and v6.1 Debug

All debug registers can be accessed through CP14, and implementations must provide an
external access mechanism for debuggers. The details of this mechanism are not covered by
the architecture specification. See Features specific to v6 Debug and v6.1 Debug on
page C6-35.

v7 Debug The Extended CP14 interface to the debug registers is optional.

The Baseline CP14 interface is sufficient to boot-strap access to the register file, and enables
software to distinguish between the Extended CP14 and memory-mapped interfaces.

See Features specific to v7 Debug on page C6-34.

If the Extended CP14 interface is not implemented, the memory-mapped interface must be
implemented. See section The memory-mapped and recommended external debug
interfaces on page C6-43.

Note
 This section does not apply to a v7 Debug implementation that does not implement the Extended CP14
interface.

The full list of debug registers is given in Table C6-2 on page C6-18 and is not repeated here.

MRC p14,0,<Rt>,c0,c5,0

STC p14,c5,<addr_mode>

DBGDTRRXint Alla DBGDTRRX internal view. See Host to Target
Data Transfer Register (DBGDTRRX) on
page C10-40

MCR p14,0,<Rt>,c0,c5,0

LDC p14,c5,<addr_mode>

DBGDTRTXint Alla DBGDTRTX internal view. See Target to Host
Data Transfer Register (DBGDTRTX) on
page C10-43

MRC p14,0,<Rt>,c0,c1,0

MRC p14,0,APSR_nzcv,c0,c1,0b

DBGDSCRint Alla DBGDSCR internal view. See Debug Status and
Control Register (DBGDSCR) on page C10-10

a. For more information, see the register description.
b. DBGDSCR[31:28] are transferred to the N, Z, C and V condition flags. For more information, see Program Status

Registers (PSRs) on page B1-14.

Table C6-4 Baseline CP14 debug instructions (continued)

Instruction Mnemonic Version Name and reference to description
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C6-33

Debug Register Interfaces
With some exceptions, listed in Features specific to v7 Debug and Features specific to v6 Debug and v6.1
Debug on page C6-35, all the debug registers, including those in the IMPLEMENTATION DEFINED space, are
accessed by the following coprocessor instructions, with <CRn> <= 0b0111 and the mapping shown in
Figure C6-3:

• MRC p14,0,<Rt>,<CRn>,<CRm>,<opc2> ; Read

• MCR p14,0,<Rt>,<CRn>,<CRm>,<opc2> ; Write

Figure C6-3 Mapping from register number to CP14 instruction

For example, the instruction:

MRC p14,0,<Rt>,c0,c0,5

reads the value of DBGBCR0, that is register 80, 0b0001010000.

Features specific to v7 Debug

Table C6-5 lists the exceptions, in the v7 Debug Extended CP14 interface, to the standard mapping. In the
v7 Debug Extended CP14 interface, all the instructions are UNDEFINED in User mode and UNPREDICTABLE
in privileged modes.

9'&

���$�

�'���

7�.'*&����$,-��/�;�0�1������2

<7�/�;�0 <7,/�;�0�%�/�;�0

�� � �����	�

�

Table C6-5 Exceptions to the standard mapping, v7 Debug with Extended CP14 interface

Register number Name Access Standard mapping

33 Program Counter Sampling Register Read-only MRC p14,0,<Rt>,c0,c1,2

Instruction Transfer Register Write-only MCR p14,0,<Rt>,c0,c1,2

40 Program Counter Sampling Register Read-only MRC p14,0,<Rt>,c0,c8,2

41 Context ID Sampling Register Read-only MRC p14,0,<Rt>,c0,c9,2

832-895 Processor identification registers Read-only MRC p14,0,<Rt>,c6,c0,4 to
MRC p14,0,<Rt>,c6,c15,7

1004 Lock Access Register Write-only MCR p14,0,<Rt>,c7,c12,6

1005 Lock Status Register Read-only MRC p14,0,<Rt>,c7,c13,6
C6-34 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q3
Inserted Text
===
1011 Device Type Register Read-only MRC p14,0,<Rt>,c7,c3,7
===
1012-1019 Debug Peripheral Identification Read-only MRC p14,0,<Rt>,c7,c4,7 to
 Registers MRC p14,0,<Rt>,c7,c11,7
===
1020-1023 Debug Component Identification Read-only MRC p14,0,<Rt>,c7,c12,7 to
 Registers MRC p14,0,<Rt>,c7,c15,7
===

Debug Register Interfaces
Accesses to the external views DBGDSCRext, DBGDTRRXext and DBGDTRTXext can be made through
the standard mapping of these registers, in addition to the instructions to access the internal views
DBGDSCRint, DBGDTRRXint and DBGDTRTXint provided in the Baseline CP14 interface. See Internal
and external views of the DBGDSCR and the DCC registers on page C6-21.

Features specific to v6 Debug and v6.1 Debug

Table C6-6 lists the exceptions, in the Extended CP14 interface in v6 Debug and v6.1 Debug, to the standard
mapping. All the instructions listed are UNDEFINED in ARMv6.

See also footnote e on Table C6-2 on page C6-18, regarding registers 32, 33, 34, and 35.

In v6 Debug and v6.1 Debug, no debug registers map to CP14 instructions with <CRn> != 0b0000. All
instruction encodings with <CRn> != 0b0000 and <opc1> = 0 are UNDEFINED in User mode and
UNPREDICTABLE in privileged modes. All reserved encodings with <CRn> = 0b0000 are UNDEFINED in all
modes.

Table C6-7 defines an additional ARMv6 instruction for making an internal access write to the DBGDSCR.

Table C6-6 Exceptions to the standard mapping, v6 Debug and v6.1 Debug

Register number Name Access Standard mapping, all UNDEFINED

32 Host to Target Data Transfer
Register

Read/write MRC p14,0,<Rt>,c0,c0,2

MCR p14,0,<Rt>,c0,c0,2

33 Program Counter Sampling
Register

Read-only MRC p14,0,<Rt>,c0,c1,2

Instruction Transfer Register Write-only MCR p14,0,<Rt>,c0,c1,2

34 Debug Status and Control Register Read/write MRC p14,0,<Rt>,c0,c2,2

MCR p14,0,<Rt>,c0,c2,2

35 Target to Host Data Transfer
Register

Read/write MRC p14,0,<Rt>,c0,c3,2

MCR p14,0,<Rt>,c0,c3,2

Table C6-7 Additional ARMv6 CP14 debug instruction

Instruction Mnemonic Name

MCR p14,0,<Rt>,c0,c1,0 DBGDSCRint Debug Status and Control Register (DBGDSCR) on page C10-10
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C6-35

ARM_2009_Q3
Inserted Text

ARM deprecates using the Extended CP14 interface to access the following registers:
===
Register number Name Access Instructions
===
 9 Event Catch Register, DBGECR Read/Write MRC p14,0,<Rt>,c0,c9,0
 MCR p14,0,<Rt>,c0,c9,0
===
 36 Debug Run Control Register, DBGDRCR Read/Write MRC p14,0,<Rt>,c0,c4,2
 MCR p14,0,<Rt>,c0,c4,2
===

ARM also deprecates using the Extended CP14 interface to write to the following bits of the Debug
Power-down and Reset Control Register, DBGPRCR:
 • DBGPRCR[2], Hold non-debug logic reset
 • DBGPRCR[1], Warm reset request.

Debug Register Interfaces
C6.6.3 CP14 debug registers access permissions

By default, certain CP14 debug registers can be accessed from User mode. However, the processor can be
programmed to prevent User mode access to these CP14 debug registers. For more information, see the
description of the UDCCdis bit in Debug Status and Control Register (DBGDSCR) on page C10-10.

All CP14 debug registers can be accessed if the processor is in Debug state.

Note
 When the Software Lock (DBGLAR) is implemented for a memory-mapped interface, it does not affect the
behavior of CP14 instructions.

Baseline CP14 debug registers access permissions

Access to the Baseline CP14 debug registers is governed by the processor mode, Debug state and the value
of DBGDSCR.UDCCdis. In addition, when the OS Lock is set accesses to the baseline registers are
UNPREDICTABLE.

Note
 OS Lock is implemented only in v7 Debug.

These access permissions are shown:

• in Table C6-8 for v6 Debug and v6.1 Debug

• in Table C6-9 on page C6-37 for v7 Debug

Table C6-8 Access to Baseline CP14 debug registers in v6 Debug and v6.1 Debug

Conditions
Baseline CP14
instructionsa

DBGDSCRint
writes

Debug state Processor mode DBGDSCR.UDCCdisb

Yes X X Proceed Proceed

No User 0 Proceed UNDEFINED

No User 1 UNDEFINED UNDEFINED

No Privileged X Proceed Proceed

a. Read DBGDIDR, DBGDSCRint, DBGDTRRXint, or write DBGDTRTXint.
Attempting to use an MCR instruction to access the DBGDIDR always causes an Undefined Instruction exception.

b. DCC User mode accesses disable bit, see Debug Status and Control Register (DBGDSCR) on page C10-10.
C6-36 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug Register Interfaces
Note
 The Baseline CP14 instructions are not affected by:

• the recommended Debug Software Enable control in the Debug Access Port, see Permissions in
relation to locks on page C6-27

• the Sticky Power-down status bit in the Device Power-down and Reset Status Register (DBGPRSR),
see Device Power-down and Reset Status Register (DBGPRSR), v7 Debug only on page C10-34.

For more information on access permissions and restrictions see Access permissions on page C6-26.

In addition:

• if the debug power domain is powered down, instructions that access the debug registers are
UNPREDICTABLE

• when the processor is in debug logic reset, reads of the debug registers return UNKNOWN values.

Table C6-9 Access to Baseline CP14 debug registers in v7 Debug

Conditions
Baseline CP14
instructionsa

a. Read DBGDIDR, DBGDSAR, DBGDRAR, DBGDSCRint, DBGDTRRXint, or write DBGDTRTXint.
Attempting to use an MCR instruction to read DBGDIDR, DBGDSAR, DBGDRAR, or DBGDSCRint is
UNPREDICTABLE, except in the case shown by footnote d.

Debug state Processor mode DBGDSCR.UDCCdisb

b. DCC user accesses disable bit, see Debug Status and Control Register (DBGDSCR) on page C10-10.

OS Lock

Yes X X 0 Proceed

Yes X X 1 UNPREDICTABLEc

c. Apart from reads of DBGDIDR, which proceed.

No User 0 0 Proceed

No User 0 1 UNPREDICTABLEc

No User 1 X UNDEFINEDd

d. Under these conditions, attempting to use an MCR instruction to read DBGDIDR, DBGDSAR,
DBGDRAR, or DBGDSCRint always causes an Undefined Instruction exception.

No Privileged X 0 Proceed

No Privileged X 1 UNPREDICTABLEc
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C6-37

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
access

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
access

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
Apart from the following accesses, that proceed:
 • on all implementations, reads of DBGDIDR
 • on implementations that include the memory-mapped interface, reads of DBGDRAR and DBGDSAR.

Debug Register Interfaces
v7 Debug CP14 debug registers access permissions, Extended CP14 interface not
implemented

Table C6-10 summarizes the complete set of CP14 instructions if the Extended CP14 interface is not
implemented. In this situation, only the Baseline CP14 interface is implemented.

Table C6-10 Access to unallocated CP14 debug registers, v7 Debug with no Extended CP14
interface

Conditions
CP14 debug MCR and MRC instructions,
other than Baseline CP14 instructions

Debug state Processor mode

Yes X UNPREDICTABLE

No User UNDEFINED

No Privileged UNPREDICTABLE
C6-38 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug Register Interfaces
v7 Debug CP14 debug registers access permissions, Extended CP14 interface
implemented

If the Extended CP14 interface is implemented, the Debug Software Enable function can be used to prevent
access to registers other than the DBGDIDR, DBGDSCR, DBGDTRRX, DBGDTRTX, DBGDSAR,
DBGDRAR, DBGOSLAR, DBGOSLSR and DBGOSSRR. For more information, see Permissions in
relation to locks on page C6-27.

For a v7 Debug implementation with the Extended CP14 interface:

• Table C6-9 on page C6-37 shows the access permissions for the Baseline CP14 debug registers

• Table C6-11 summarizes the access permissions for the other CP14 debug registers

• Table C6-12 on page C6-40 gives more information about access to the Extended CP14 interface
debug registers.

Table C6-11 Access to CP14 debug registers, v7 Debug with Extended CP14 interface

Conditionsa Other CP14 debug instructionsb

Debug state Processor mode Enablec CRn <= 0b0111 d CRn >= 0b1000

Yes X 0 UNDEFINED e UNPREDICTABLE

Yes X 1 See Table C6-12 on page C6-40f UNPREDICTABLE

No User X UNDEFINED UNDEFINED

No Privileged 0 UNDEFINED e UNPREDICTABLE

No Privileged 1 See Table C6-12 on page C6-40 UNPREDICTABLE

a. The accesses in this table are not affected by the value of the DBGDSCR.UDCCdis bit.
b. All MRC and MCR instructions with <coproc> == 0b1110 and <opc1> == 0b000 except for read accesses to DBGDIDR,

DBGDSAR, DBGDRAR, DBGDSCRint, and DBGDTRRXint, and write accesses to DBGDTRTXint.
c. Debug Software Enable function is enabled.
d. Where indicated in this column, see Table C6-12 on page C6-40 for a more detailed description of access permissions

to the other registers defined by the Debug architecture. In addition, there is more information about access to reserved
and IMPLEMENTATION DEFINED registers in Access to implementation defined and reserved registers on page C6-29.

e. Except for the OS Save and Restore mechanism registers DBGOSLAR, DBGOSLSR, and DBGOSSRR, and the
DBGPRSR. The state of the Debug Software Enable function does not affect access to these registers. Access to these
registers must always be provided, even on implementations that do not support debug over power-down. If the
implementation does not support debug over power-down the DBGOSLAR, DBGOSLSR, and DBGOSSRR are
RAZ/WI.

f. ARM deprecates the use of these instructions from User mode in Debug state.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C6-39

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
DBGOSLSR

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
the OS Save and Restore mechanism.

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
the OS Save and Restore mechanism, accesses to

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
UNPREDICTABLE

ARM_2009_Q2
Cross-Out

ARM_2009_Q4
Inserted Text
DBGPRSR,

Debug Register Interfaces
In v7 Debug the behavior of Extended CP14 interface MRC and MCR instructions also depends on the access
type of the register, as shown in Table C6-2 on page C6-18. Table C6-13 summarizes the behavior of these
instructions, for:

• read accesses, using MRC p14,0,<Rt>,<CRn>,<CRm>,<opc2>

• write accesses, using MCR p14,0,<Rt>,<CRn>,<CRm>,<opc2>.

Some read/write registers include bits that are read-only. These bits ignore writes.

Table C6-12 Access to Extended CP14 interface debug registers

Conditions Registers:

Sticky
Power- down
set

OS Lock
set

DBGECR,
DBGDRCR,
DBGOSLARa,
DBGOSLSRa,
DBGPRCR,
DBGPRSR

DBGOSSRRa Other
debugb All reservedc Other

mgmtd

No No OK UNPREDICTABLE OK UNPREDICTABLE OK

No Yes OK OK UNDEFINED UNPREDICTABLE OK

Yes X OK UNPREDICTABLE UNDEFINED UNPREDICTABLE OK

a. If the OS Save and Restore mechanism is not implemented, these registers addresses behave as reserved locations.
b. Debug register numbers 0 to 127, except for the DBGECR, DBGDRCR, the registers defined as baseline registers, and

reserved registers. For details of the baseline registers see Table C6-4 on page C6-32.
c. See also Access to implementation defined and reserved registers on page C6-29.
d. Other management registers. This means debug register numbers 832 to 1023, except for the IMPLEMENTATION DEFINED

locations, see Access to implementation defined and reserved registers on page C6-29.

Table C6-13 Behavior of CP14 MRC and MCR instructions, v7 Debug
with Extended CP14 interface

Access typea

a. Register access type, as shown in Table C6-2 on page C6-18.

Read accessb

b. In a privileged mode, or in Debug state.

Write accessb

- (Reserved) UNPREDICTABLE UNPREDICTABLE

Read-only Returns register value in Rt UNPREDICTABLE

Write-only UNPREDICTABLE Writes value in Rt to register

Read/write Returns register value in Rt Writes value in Rt to register
C6-40 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
a read of DBGOSLSR returns a value of 0 for DBGOSLSR[0], and accesses to DBGOSLAR and DBGOSSRR are UNPREDICTABLE.

ARM_2009_Q3
Inserted Text
. The reserved registers include the registers shown in Table C6-5 on page C6-34 [PDF page 1718].

ARM_2009_Q3
Cross-Out

ARM_2009_Q3
Replacement Text
 and the DBGITCTRL register. The behavior of accesses to the DBGITCTRL register is IMPLEMENTATION DEFINED. For more information

Debug Register Interfaces
When the processor is in Non-debug state, all User mode accesses to the Extended CP14 interface registers
are UNDEFINED.

For example, in privileged modes the following instruction reads the value of DBGWVR7, register 103, if
at least 8 watchpoints are implemented, and is UNPREDICTABLE otherwise:

MRC p14,0,<Rt>,c0,c7,6

Note
 The access permissions in Table C6-11 on page C6-39 and Table C6-12 on page C6-40 have precedence
over the behavior in Table C6-13 on page C6-40. For example, even if at least 8 watchpoints are
implemented, the following instruction is UNDEFINED in all processor modes when the Debug Software
Enable function is disabled:

MRC p14,0,<Rt>,c0,c7,6

v6 Debug and v6.1 Debug CP14 debug registers access permissions

In v6 Debug and v6.1 Debug, access to registers other than the DBGDIDR, DBGDSCR, DBGDTRRX, and
DBGDTRTX is not permitted if Halting debug-mode is selected. The Debug Software Enable function, the
Sticky Power-down status bit and the OS Lock are not implemented, and there are fewer CP14 debug
registers than in the v7 Debug Extended CP14 interface.

For v6 Debug and v6.1 Debug:

• Table C6-8 on page C6-36 shows the access permissions for the Baseline CP14 debug registers

• Table C6-14 shows the access permissions for the other CP14 debug registers.

Table C6-14 Access to CP14 debug registers, v6 Debug and v6.1 Debug

Conditionsa

a. The accesses in this table are not affected by the value of the DBGDSCR.UDCCdis bit.

Other CP14 debug
instructionsb

b. All instructions with <opc1> == 0b000 and <CRn> == 0b0000, except for read accesses to DBGDIDR,
DBGDSAR, DBGDRAR, DBGDSCRint, and DBGDTRRXint, and write accesses to DBGDSCRint
and DBGDTRTXint. See also Table C6-15 on page C6-42.

Debug state Processor mode DBGDSCR[15:14]c

c. MDBGen and HDBGen bits, debug-mode enable and select bits.

Yes X XX Proceed

No User XX UNDEFINED

No Privileged 00 (None) UNDEFINED

No Privileged X1 (Halting) UNDEFINED

No Privileged 10 (Monitor) Proceed
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C6-41

Debug Register Interfaces
In v6 Debug and v6.1 Debug the behavior of CP14 MRC and MCR instructions also depends on access type of
the register, as shown in Table C6-2 on page C6-18. Table C6-15 summarizes the behavior, for:

• read accesses, using MRC p14,0,<Rt>,<CRn>,<CRm>,<opc2>

• write accesses, using MCR p14,0,<Rt>,<CRn>,<CRm>,<opc2>.

Some read/write registers include bits that are read-only. These bits ignore writes.

For example, the following instruction reads the value of DBGWVR7, register 103, if at least 8 watchpoints
are implemented, and is UNDEFINED otherwise:

MRC p14,0,<Rt>,c0,c7,6

Note
 The access permissions in Table C6-14 on page C6-41 have precedence over those in Table C6-15. For
example, even if at least 8 watchpoints are implemented, the following instruction is UNDEFINED in User
mode, and is also UNDEFINED in privileged modes when Halting debug-mode is enabled:

MRC p14,0,<Rt>,c0,c7,6

Table C6-15 Behavior of CP14 MRC and MCR instructions in v6 Debug and v6.1 Debug

Access typea

a. Register access type, as shown in Table C6-2 on page C6-18.

Read access Write access

- (Reserved) UNDEFINED UNDEFINED

Read-only (DBGDIDR b)

b. The DBGDIDR is the only read-only register in v6 Debug and v6.1 Debug.

Returns register value in Rt UNDEFINED

Write-onlyc

c. There are no write-only registers in v6 Debug and v6.1 Debug.

- -

Read/write Returns register value in Rt Writes value in Rt to register
C6-42 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug Register Interfaces
C6.7 The memory-mapped and recommended external debug interfaces

The external debug interface is IMPLEMENTATION DEFINED in all versions of the ARM Debug architecture.
This manual describes only the v7 Debug recommendations for this interface. For details of the external
debug interface recommendations for v6 Debug and v6.1 Debug, contact ARM.

The memory-mapped interface to the debug registers is optional in v7 Debug.

The Baseline CP14 interface is sufficient to boot-strap access to the register file, and permits software to
distinguish between the Extended CP14 and memory-mapped interfaces.

Both the memory-mapped interface and the recommended external debug interface are defined in terms of
an addressable register file mapped onto a region of memory.

This section describes:

• the view of the debug registers from the processor through the memory-mapped interface

• the recommended external debug interface.

If the memory-mapped interface is not implemented, the Extended CP14 interface must be implemented,
see Extended CP14 interface on page C6-33.

C6.7.1 Register map

The register map occupies 4KB of physical address space. The base address is IMPLEMENTATION DEFINED
and must be aligned to a 4KB boundary.

Note
 All memory-mapped debug registers must be mapped to Strongly-ordered or Device memory, see
Synchronization of debug register updates on page C6-24. In systems with the ARMv7 PMSA this
requirement applies even when the MPU is disabled.

Each register is mapped at an offset that is the register number multiplied by 4, the size of a word. For
example, DBGWVR7, register 103, is mapped at offset 0x19C (412).

The complete list of registers is defined in Debug register map on page C6-18, and is not repeated here.

C6.7.2 Shared interface port for the memory-mapped and external debug interfaces

What components in a system can access the memory-mapped interface is IMPLEMENTATION DEFINED.
Typically, the processor itself and other processors in the system can access this interface. An external
debugger might be able to access the debug registers through the memory-mapped interface, as well as
through the external debug interface.

Because the memory-mapped interface and external debug interface share the same memory map and many
of the same properties, both interfaces can be implemented as a single physical interface port to the
processor.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C6-43

Debug Register Interfaces
If the memory-mapped interface and external debug interface are implemented as a single physical interface
port, external debugger accesses must be distinguishable from those of software running on a processor,
including the ARM processor itself, in the target system. For example, accesses by an external debugger are
not affected by the Software Lock. For the recommended memory-mapped or external debug interface this
is achieved using the PADDRDBG[31] signal, see PADDRDBG on page AppxA-15.

C6.7.3 Endianness

The recommended memory-mapped and external debug interface port, referred to as the debug port, only
supports word accesses. The data presented or returned on the interface is always 32 bits and is in a fixed
byte order:

• bits [7:0] of the debug register are mapped to bits [7:0] of the connected data bus

• bits [15:8] of the debug register are mapped to bits [15:8] of the connected data bus

• bits [23:16] of the debug register are mapped to bits [23:16] of the connected data bus

• bits [31:24] of the debug register are mapped to bits [31:24] of the connected data bus.

The debug port ignores bits [1:0] of the address. These signals are not present in the debug port interface.

The Debug Access Port (DAP) and the interface between it and the debug port together form part of the
external debug interface, and must support word accesses from the external debugger to these registers. The
recommended ARM Debug Interface v5 (ADIv5) supports word accesses, see the ARM Debug Interface v5
Architecture Specification for more information. Where this interface is used the implementation must
ensure that a 32-bit access by the debugger through the Debug Access Port has the same 32-bit value, in the
same bit order, as the corresponding access to the debug registers. This is a requirement for tools support
using ADIv5.

If a memory-mapped interface is implemented, the debug port connects to the system interconnect fabric
either directly or through some form of bridge component. Such system interconnect fabrics normally
support byte accesses. The system must support word-sized accesses to the debug registers. When accessing
the debug registers, the behavior of an access that is smaller than word-sized is UNPREDICTABLE.

The detailed behavior of this bridge and of the system interconnect is outside the scope of the architecture.

Accesses to registers made through the debug port are not affected by the endianness configuration of the
processor in which the registers reside. However, they are affected by the endianness configuration of the
bus master making the access, and by the nature and configuration of the fabric that connects the two.

In an ARMv7 processor, the CPSR.E bit controls the endianness. With some assumptions, described later
in this section, the operation of the CPSR.E bit is:

CPSR.E bit set to 0, for little-endian operation

If the processor reads its own DBGDIDR with an LDR instruction, the system ensures that
the value returned in the destination register is in the same bit order as the DBGDIDR itself.

CPSR.E bit set to 1, for big-endian operation

If the processor reads its own DBGDIDR with an LDR instruction, the system ensures that:

• bits [7:0] of DBGDIDR are read into bits [31:24] of the destination register

• bits [15:8] of DBGDIDR are read into bits [23:16] of the destination register
C6-44 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug Register Interfaces
• bits [23:16] of DBGDIDR are read into bits [15:8] of the destination register

• bits [31:24] of DBGDIDR are read into bits [7:0] of the destination register.

Similarly the bytes of a data value written to a debug register, for example the DBGDSCR,
are reversed in big-endian configuration.

If an ARMv7 processor, with the E bit set for little-endian operation, reads the DBGDIDR of a second
ARMv7 processor with an LDR instruction, then bits [7:0] of the DBGDIDR of the second processor are read
into bits [7:0] of the destination register of the LDR, on the first processor. Similarly, the other bytes of the
DBGDIDR are copied to the corresponding bytes of the destination register. However, if the E bit of the first
processor is set for big-endian operation the bytes are reversed during the LDR operation, with bits [31:24]
of the DBGDIDR of the second processor being read to bits [7:0] of the destination register of the LDR.

Note
 The ordering of the bytes in the destination register on the first processor is not affected in any way by the
setting of the CPSR.E bit of the second processor.

These examples assume that no additional manipulation of the data occurs in the interconnect fabric of the
system. For example, an interconnect might perform byte transposition for accesses made across a boundary
between a little-endian subsystem and a big-endian subsystem. Such transformations are beyond the scope
of the architecture.

C6.7.4 Permission summaries for memory-mapped and external debug interfaces

This section gives summaries of the permission controls and their effects for different implementations of
v7 Debug systems. The following subsections describe the access permissions for the two interfaces:

• Access permissions for the external debug interface on page C6-47

• Access permissions for the memory-mapped interface on page C6-48.

Note
 For more information about access permissions in an implementation that includes the OS Save and Restore
mechanism but does not provide access to the DBGOSSRR through the external debug interface, see the
Note in The OS Save and Restore mechanism on page C6-8.

The remaining subsections apply to both interfaces:

• Meanings of terms and abbreviations used in this section on page C6-46

• Permissions summary for separate debug and core power domains on page C6-48

• Permissions summary for SinglePower (debug and core in single power domain) on page C6-50.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C6-45

Debug Register Interfaces
Meanings of terms and abbreviations used in this section

The following terms and abbreviations are used in the tables that summarize the access permissions:

X Don't care. The outcome does not depend on this condition.

0 The condition is false.

1 The condition is true. For more information, see Table C6-16.

IG/ABT The access is ignored or aborted.

Note
 The IG/ABT response might be implemented outside the processor, for example, by the

system or DAP.

Proceed The access must not be ignored, but the processor or system might return an error response.
For more information about the response returned, see:

• Permissions summary for separate debug and core power domains on page C6-48

• Permissions summary for SinglePower (debug and core in single power domain) on
page C6-50.

Not possible When the debug logic is powered down, accessing the debug registers is not possible. The
system must respond to the access, and the response is IMPLEMENTATION DEFINED. ARM
recommends that the system returns an error response.

Error Error response. Writes are ignored and reads return an UNKNOWN value.

OK Read or write access succeeds. Writes to read-only locations are ignored. Reads from RAZ
or write-only locations return zero.

Some read/write registers include bits that are read-only. Unless otherwise stated in the bit
description, these bits ignore writes.

UNP The access has UNPREDICTABLE results. Reads return UNKNOWN value.

DBGLAR Lock Access Register, see Lock Access Register (DBGLAR) on page C10-94. This is one of
the management registers.

Table C6-16 lists the control conditions used in this section, and tells you where you can find more
information about each of these controls. These conditions can be given an argument of X, 0 or 1, as defined
at the start of this section. The table gives more information about the meaning when the argument is 1 for
each condition.

Table C6-16 Meaning of (Argument = 1) for the control condition

Control condition Meaning of (Argument = 1) For details see

Debug logic powered The debug power domain is powered upa Permissions in relation to power-down on
page C6-28

Core logic powered The core power domain is powered upa

Processor powered The single power domain is powered upa

Sticky power-down DBGPRSR[1] = 1
C6-46 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug Register Interfaces
Access permissions for the external debug interface

Table C6-17 summarizes the access permissions for the external debug interface.

When the debug logic is not powered, external debug accesses must be prohibited. An implementation can
either ignore or abort these accesses.

OS Lock DBGOSLSR[1] = 1 Permissions in relation to locks on
page C6-27

Software Lock DBGLSR[1] = 1

Debug Software
Enable

The recommended function of the DAP is
enabled

a. On a SinglePower system, the Processor powered control condition is equivalent to having both Debug logic powered
and Core logic powered on a system with the recommended separate debug and core power domains.

Table C6-16 Meaning of (Argument = 1) for the control condition (continued)

Control condition Meaning of (Argument = 1) For details see

Table C6-17 Register access permissions for the external debug interfacea

a. See Meanings of terms and abbreviations used in this section on page C6-46 when
using this table.

Debug logic powered?b

b. Or Processor powered, on a SinglePower system.

Response Writes or has other side-effects?

No Not possible -

Yes Proceed Yes
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C6-47

Debug Register Interfaces
Access permissions for the memory-mapped interface

Table C6-17 on page C6-47 summarizes the access permissions for the memory-mapped interface.

At the system level, certain memory-mapped accesses must be prohibited. An implementation can either
ignore or abort these accesses.

Note
 If an implementation permits an external debugger to access the memory-mapped interface, it is
IMPLEMENTATION DEFINED whether those accesses are controlled by the Debug Software Enable control in
the debug access port.

Permissions summary for separate debug and core power domains

For implementations with separate debug and core power domains, the following tables show the effects of
permissions on access to memory-mapped debug registers:

• Table C6-19 on page C6-49 for access to debug and management registers

• Table C6-20 on page C6-49 for access to the OS Save and Restore and Power-down registers.

For more information about the conditions that control access to these registers, see Table C6-16 on
page C6-46.

Table C6-18 Register access permissions for the memory-mapped interfacea

a. See Meanings of terms and abbreviations used in this section on page C6-46 when using this table.

Conditions:

Response
Writes or has
other
side-effects?

Debug logic
powered?b

b. Or Processor powered, on a SinglePower system.

Debug Software
Enable

Access
privilege

Software
Lock

No X X X Not possible -

Yes 0 X X IG/ABT -

Yes X User X IG/ABT -

Yes 1 Privileged 0 Proceed Yes

Yes 1 Privileged 1 Proceed DBGLAR only c

c. Writes are ignored and reads, such as reads of DBGDSCRext, have no side-effects. Writes to the
DBGLAR are permitted.
C6-48 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug Register Interfaces
Table C6-19 Debug and management register access for separate debug and core power domainsa

Conditions Registers:

Core logic
powered?

Sticky
power-down

OS
Lock

DBGDIDR,
DBGECR,
DBGDRCR

Other
debugb, d Managementc, d Reservedd

No X X OK Error OK UNP

Yes 0 0 OK OK OK OK

Yes 0 1 OK Error OK UNP

Yes 1 X OK Error OK UNP

a. See Meanings of terms and abbreviations used in this section on page C6-46 when using this table.
b. Registers in the memory region 0x000 - 0x1FC, except for the DBGDIDR, DBGECR, and DBGDRCR, and reserved

locations.
c. Registers in the memory region 0xD00 - 0xFFC, except for IMPLEMENTATION DEFINED registers.
d. For details of the behavior of accesses to reserved and IMPLEMENTATION DEFINED registers see Access to

implementation defined and reserved registers on page C6-29.

Table C6-20 OS Save and Restore and Power-down register access for separate debug and
core power domainsa

Conditions Registers:

Core logic
powered?

Sticky
power-down

OS Lock
DBGOSLSRb
DBGPRCR,
DBGPRSR

DBGOSLARb DBGOSSRRb

No X X OK UNP UNP

Yes 0 0 OK OK UNP

Yes 0 1 OK OK OK

Yes 1 X OK OK UNP

a. See Meanings of terms and abbreviations used in this section on page C6-46 when using this table.
b. If the OS Save and Restore mechanism is not implemented, these registers behave as reserved locations.

For details of the behavior of accesses to reserved and IMPLEMENTATION DEFINED registers see Access
to implementation defined and reserved registers on page C6-29.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C6-49

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
a read of DBGOSLSR returns a value of 0 for DBGOSLSR[0], and accesses to DBGOSLAR and DBGOSSRR are UNPREDICTABLE.

Debug Register Interfaces
Permissions summary for SinglePower (debug and core in single power domain)

For implementations with a single debug and core power domain, when the processor is powered down the
system response is IMPLEMENTATION DEFINED. ARM recommends that the system returns an error response,
but the processor cannot generate any response. The Sticky Power-down status bit is RAZ.

Table C6-21 and Table C6-22 show the effects of permissions on access to memory-mapped debug registers.

For more information about the conditions that control access to these registers, see Table C6-16 on
page C6-46.

Table C6-21 Register accesses for single debug and core power domain, part 1a

Conditions Registers:

Processor powered? OS Lock
DBGDIDR, DBGECR,
DBGDRCR, DBGOSLSR b,
DBGPRCR, DBGPRSR

DBGOSLARb DBGOSSRRb

No X Not possible Not possible Not possible

Yes 0 OK OK UNP

Yes 1 OK OK OK

a. See Meanings of terms and abbreviations used in this section on page C6-46 when using this table.
b. If the OS Save and Restore mechanism is not implemented, these registers behave as reserved locations.

Table C6-22 Register accesses for single debug and core power domain, part 2a

Conditions Registers:

Processor powered? OS Lock Other debugb, d Managementc, d Reservedd

No X Not possible Not possible Not possible

Yes 0 OK OK OK

Yes 1 Error OK UNP

a. See Meanings of terms and abbreviations used in this section on page C6-46 when using this table.
b. Registers in the memory region 0x000 - 0x1FC, except for the DBGDIDR, DBGECR, and DBGDRCR,

and reserved locations.
c. Management registers, that is, registers in the memory region 0xD00 - 0xFFC, except for

IMPLEMENTATION DEFINED registers.
d. For details of the behavior of accesses to reserved and IMPLEMENTATION DEFINED registers see

Access to implementation defined and reserved registers on page C6-29.
C6-50 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
a read of DBGOSLSR returns a value of 0 for DBGOSLSR[0], and accesses to DBGOSLAR and DBGOSSRR are UNPREDICTABLE.

Debug Register Interfaces
C6.7.5 Registers not implemented in the memory-mapped or external debug interface

In any Debug architecture version, the following registers are not implemented through the
memory-mapped or external debug interfaces:

DBGDRAR Debug ROM Address Register (DBGDRAR) on page C10-7

DBGDSAR Debug Self Address Offset Register (DBGDSAR) on page C10-8.

These registers are not required by an external debugger.

In addition, there is no interface to access to DBGDSCRint, DBGDTRRXint or DBGDTRTXint through
the memory-mapped or external debug interface. These operations are only available through the Baseline
CP14 interface.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C6-51

Debug Register Interfaces
C6-52 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Chapter C7
Non-invasive Debug Authentication

This chapter describes the authentication controls on non-invasive debug operations. It contains the
following sections:

• About non-invasive debug authentication on page C7-2

• v7 Debug non-invasive debug authentication on page C7-4

• Effects of non-invasive debug authentication on page C7-6

• ARMv6 non-invasive debug authentication on page C7-8.

Note
 The recommended external debug interface provides an authentication interface that controls both invasive
debug and non-invasive debug, as described in Authentication signals on page AppxA-3. This chapter
describes how you can use this interface to control non-invasive debug. For information about using the
interface to control invasive debug see Chapter C2 Invasive Debug Authentication.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C7-1

Non-invasive Debug Authentication
C7.1 About non-invasive debug authentication

Non-invasive debug can be enabled or disabled though the external debug interface. In addition, if a
processor implements the Security Extensions, non-invasive debug operations can be permitted or not
permitted.

The difference between enabled and permitted is that the permitted non-invasive debug operations depend
on both the security state and the operating mode of the processor. The alternatives for when non-invasive
debug is permitted are:

• in all processor modes, in both Secure and Non-secure security states

• only in Non-secure state

• in Non-secure state and in Secure User mode.

Whether non-invasive debug operations are permitted in Secure User mode depends on the value of the
SDER.SUNIDEN bit, see c1, Secure Debug Enable Register (SDER) on page B3-108.

In v6.1 Debug and v7 Debug, non-invasive debug authentication can be controlled dynamically, meaning
that whether non-invasive debug is permitted can change while the processor is running, or while the
processor is in Debug state. However, for more information, see Generation of debug events on page C3-40.

In v6 Debug, non-invasive debug authentication can be changed only while the processor is in reset.

In the recommended external debug interface, the signals that control the enabling and permitting of
non-invasive debug are DBGEN, SPIDEN, NIDEN and SPNIDEN, see Authentication signals on
page AppxA-3.

Part C of this manual assumes that the recommended external debug interface is implemented.

SPIDEN and SPNIDEN are only implemented on processors that implement Security Extensions. NIDEN
is an optional signal in v6 Debug and v6.1 Debug.

Note
 • DBGEN and SPIDEN also control invasive debug, see About invasive debug authentication on

page C2-2.

• In v6 Debug and v6.1 Debug, NIDEN might be implemented on some non-invasive debug
components and not on others. For example, the performance monitoring unit for a processor might
implement NIDEN when the trace macrocell for the same processor does not.

• For more information about use of the authentication signals see Changing the authentication signals
on page AppxA-4.

• For more information about ARMv6 non-invasive debug see ARMv6 non-invasive debug
authentication on page C7-8.

If both DBGEN and NIDEN are LOW, no non-invasive debug is permitted.

Non-invasive debug authentication in v7 Debug is described in the section v7 Debug non-invasive debug
authentication on page C7-4.
C7-2 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Non-invasive Debug Authentication
The behavior of the non-invasive debug components when non-invasive debug is not enabled or not
permitted is described in the following sections. These sections also describe the behavior when the
processor is in Debug state:

• Performance monitors on page C7-6

• Trace on page C7-7

• Reads of the Program Counter sampling registers on page C8-3.

ARMv6 non-invasive debug authentication on page C7-8 describes the architectural requirements for an
v6 Debug or v6.1 Debug implementation.

Note
 Invasive and non-invasive debug authentication enable you to protect Secure processing from direct
observation or invasion by a debugger that you do not trust. If you are designing a system you must be aware
that security attacks can be aided by the invasive and non-invasive debug facilities. For example, Debug state
or the DBGDSCR.INTdis bit might be used for a denial of service attack, and the Non-secure performance
monitors might be used to measure the side-effects of Secure processing on Non-secure code. ARM
recommends that where you are concerned about such attacks you disable invasive and non-invasive debug
in all modes. However you must be aware of the limitations on the protection that debug authentication can
provide, because similar attacks can be made by running malicious code on the processor in Non-secure
state.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C7-3

Non-invasive Debug Authentication
C7.2 v7 Debug non-invasive debug authentication

On processors that do not implement Security Extensions, if NIDEN is asserted HIGH, non-invasive debug
is enabled and permitted in all modes.

If DBGEN is asserted HIGH the system behaves as if NIDEN is asserted HIGH, regardless of the actual
state of the NIDEN signal.

Table C7-1 shows the required behavior in v7 Debug when the Security Extensions are not implemented.

On a processor that implements the Security Extensions:

• If both NIDEN and SPNIDEN are asserted HIGH, non-invasive debug is enabled and permitted in
all modes and security states.

• If NIDEN is HIGH and SPNIDEN is LOW:

— non-invasive debug is enabled and permitted in Non-secure state

— non-invasive debug is not permitted in Secure privileged modes

— whether non-invasive debug is permitted in Secure User mode depends on the value of the
SDER.SUNIDEN bit.

If DBGEN is HIGH, the system behaves as if NIDEN is HIGH, regardless of the actual state of the NIDEN
signal

If SPIDEN is HIGH, the system behaves as if SPNIDEN is HIGH, regardless of the actual state of the
SPNIDEN signal.

Table C7-1 v7 Debug non-invasive debug authentication, Security Extensions not
implemented

DBGEN NIDEN Modes in which non-invasive debug is permitted

LOW LOW None. Non-invasive debug is disabled.

x HIGH All modes.

HIGH LOW All modes.
C7-4 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Non-invasive Debug Authentication
Table C7-2 shows the non-invasive debug authentication for ARMv7 processors that implement the Security
Extensions.

Note
 The value of the SDER.SUIDEN bit does not have any effect on non-invasive debug.

Table C7-2 v7 Debug non-invasive debug authentication, Security Extensions implemented

Signals
SDER.
SUNIDEN

Modes in which non-invasive
debug is permitted

DBGEN NIDEN SPIDEN SPNIDEN

LOW LOW x x x None. Non-invasive debug is disabled.

LOW HIGH LOW LOW 0 All modes in Non-secure state

LOW HIGH LOW LOW 1 All modes in Non-secure state,

Secure User mode.

LOW HIGH LOW HIGH x All modes in both security states.

LOW HIGH HIGH x x All modes in both security states.

HIGH x LOW LOW 0 All modes in Non-secure state.

HIGH x LOW LOW 1 All modes in Non-secure state,

Secure User mode.

HIGH x LOW HIGH x All modes in both security states.

HIGH x HIGH x x All modes in both security states.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C7-5

Non-invasive Debug Authentication
C7.3 Effects of non-invasive debug authentication

The following sections describe the effects of the non-invasive debug authentication on the non-invasive
debug components:

• Performance monitors

• Trace on page C7-7

• Reads of the Program Counter sampling registers on page C8-3.

C7.3.1 Performance monitors

Performance monitors provide a non-invasive debug feature, and are controlled by the non-invasive debug
authentication signals. For more information, see Chapter C9 Performance Monitors.

The cycle counter, PMCCNTR, is not controlled by the non-invasive debug authentication signals. However,
setting the PMCR.DP flag to 1 disables PMCCNTR counting in regions of code where the event counters
are disabled. For details see c9, Performance Monitor Control Register (PMCR) on page C10-105.

Table C7-3 describes the behavior of the performance monitors when non-invasive debug is disabled or not
permitted, and in Debug state.

The performance monitors are not intended to be completely accurate, see Accuracy of the performance
monitors on page C9-5. In particular, some inaccuracy is permitted at the point of changing security state.
However, to avoid the leaking of information from the Secure state, the permitted inaccuracy is that
non-prohibited transactions can be uncounted. Prohibited transactions must not be counted.

Entry to and exit from Debug state can also disturb the normal running of the processor, causing additional
inaccuracy in the performance monitors. Disabling the counters while in Debug state limits the extent of this
inaccuracy. Implementations can limit this inaccuracy to a greater extent, for example by disabling the
counters as soon as possible during the Debug state entry sequence.

Table C7-3 Behavior of performance monitors when non-invasive debug not permitted

Debug
state

Non-invasive debug
permitted and enabled PMCR.DPa

a. See c9, Performance Monitor Control Register (PMCR) on page C10-105.

Event counters enabled
and events exporteda, b

b. The events are exported only if the PMCR.X bit is set to 1.

PMCCNTR
enabled

Yes x x No No

No Yes x Yes Yes

No No 0 No Yes

No No 1 No No
C7-6 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Non-invasive Debug Authentication
C7.3.2 Trace

All instructions and data transfers are ignored by the trace device when:

• non-invasive debug is disabled

• the processor is in a mode or state where non-invasive debug is not permitted

• the processor is in Debug state.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C7-7

Non-invasive Debug Authentication
C7.4 ARMv6 non-invasive debug authentication

An ARMv6 processor might implement the v7 Debug non-invasive debug authentication signaling
described in v7 Debug non-invasive debug authentication on page C7-4.

In general, non-invasive debug authentication in ARMv6 Debug is IMPLEMENTATION DEFINED. For details
of the implemented authentication scheme you must see the appropriate product documentation. In
particular:

• it is IMPLEMENTATION DEFINED whether the NIDEN signal is implemented

• the exact roles of the following signals are IMPLEMENTATION DEFINED:

— DBGEN, SPIDEN, and SPNIDEN

— NIDEN, if it is implemented.

However, an ARMv6 non-invasive debug authentication scheme must obey the following rules:

• If NIDEN is implemented then tying NIDEN and DBGEN both LOW guarantees that non-invasive
debug is disabled.

• if NIDEN is not implemented then the mechanism for disabling non-invasive debug is
IMPLEMENTATION DEFINED. An implementation might not support any mechanism for disabling
non-invasive debug.

• When the Security Extensions are implemented, tying SPIDEN and SPNIDEN both LOW
guarantees that non-invasive debug is not permitted in Secure privileged modes.

In addition, if SPIDEN and SPNIDEN are both LOW then setting SDER.SUNIDEN to 0 guarantees
that non-invasive debug is not permitted in Secure User mode.

If non-invasive debug is enabled then if SDER.SUNIDEN is 1, non-invasive debug is permitted in
Secure User mode.

• If NIDEN is implemented then tying NIDEN and SPNIDEN both HIGH is guaranteed to enable and
permit non-invasive debug in all modes in both security states.

If NIDEN is not implemented then tying SPNIDEN HIGH is guaranteed to enable and permit
non-invasive debug in all modes in both security states.

Table C7-4 shows the architectural requirements for non-invasive debug behavior in an ARMv6 Debug
implementation that does not include the Security Extensions.

Table C7-4 ARMv6 non-invasive debug authentication requirements, Security Extensions
not implemented

NIDEN DBGEN Non-invasive debug behavior

Implemented and LOW LOW Disabled.

Implemented and HIGH x Enabled.
C7-8 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Non-invasive Debug Authentication
Table C7-5 shows the architectural requirements for non-invasive debug behavior in an ARMv6 Debug
implementation that includes the Security Extensions.

An ARMv6 Debug implementation that includes the Security Extensions might have other signal
combinations that permit non-invasive debug in Secure privileged modes. You must take care to avoid
unknowingly permitting non-invasive debug.

There is no mechanism that a debugger can use to determine the implemented mechanism for controlling
non-invasive debug on an ARMv6 processor. You must see the product documentation for this information.

Table C7-5 ARMv6 non-invasive debug authentication requirements, Security Extensions
implemented

Signals
SDER.
SUNIDEN

Non-invasive debug behavior
NIDEN DBGEN SPIDEN SPNIDEN

Implemented
and LOW

LOW x x x Disabled.

x x LOW LOW 0 Not permitted in all modes in Secure state.

x x LOW LOW 1 Not permitted in Secure privileged modes.
Permitted in Secure User mode if enabled.

Implemented
and HIGH

x x x x Permitted in all modes in Non-secure state.
Might also be permitted in Secure state.

Implemented
and HIGH

x x HIGH x Permitted in all modes and security states.

Not
implemented

x x HIGH x Permitted in all modes and security states.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C7-9

Non-invasive Debug Authentication
C7-10 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Chapter C8
Sample-based Profiling

This chapter describes sample-based profiling. Sample-based profiling is an optional non-invasive debug
component. It contains the following section:

• Program Counter sampling on page C8-2.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C8-1

Sample-based Profiling
C8.1 Program Counter sampling

In ARMv6, the Program Counter Sampling Register (DBGPCSR) is an optional part of the recommended
external debug interface. It is not defined by the architecture.

In v7 Debug, Program Counter sampling is an optional feature defined by the architecture. The following
sections describe this feature:

• Implemented Program Counter sampling registers

• Reads of the Program Counter sampling registers on page C8-3

C8.1.1 Implemented Program Counter sampling registers

In v7 Debug, it is IMPLEMENTATION DEFINED whether the DBGPCSR is implemented. It is an optional
extension to the Debug architecture, that provides a mechanism for coarse-grained profiling of code
executing on the processor without changing the behavior of that code. For details see Program Counter
Sampling Register (DBGPCSR) on page C10-38.

If the DBGPCSR is implemented, it is IMPLEMENTATION DEFINED whether a second sampling register is also
implemented. This register is the Context ID Sampling Register (DBGCIDSR) and is described in Context
ID Sampling Register (DBGCIDSR) on page C10-39.

If a processor does not implement DBGPCSR it does not implement DBGCIDSR.

If a processor implements only DBGPCSR, it is IMPLEMENTATION DEFINED whether it is implemented as
register 33, as register 40, or as both register 33 and register 40.

If a processor implements both DBGPCSR and DBGCIDSR:

• it must implement:

— DBGPCSR as register 40

— DBGCIDSR as register 41

• it is IMPLEMENTATION DEFINED whether it also implements DBGPCSR as register 33.

If a processor implements DBGPCSR as both register 33 and register 40, the two register numbers are
aliases of a single register. ARM deprecates reading DBGPCSR as register 33 on an implementation that
also implements it as register 40.

To determine which, if any, of the Program Counter sampling registers are implemented, and the register
numbers used for any implemented registers, read:

• the DEVID_imp and PCSR_imp bits of the DBGDIDR, see Debug ID Register (DBGDIDR) on
page C10-3

• the DBGDEVID.PCsample field, see Debug Device ID Register (DBGDEVID) on page C10-6.
C8-2 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Sample-based Profiling
Note
 ARM recommends that an implementation that supports sample-based profiling:

• implements both DBGPCSR and DBGCIDSR

• implements DBGPCSR as register 40

• also implements DBGPCSR as register 33, for backwards compatibility with implementations that
implement it only as register 33.

C8.1.2 Reads of the Program Counter sampling registers

A read of the DBGPCSR:

• Normally:

— returns the address of an instruction recently executed by the processor

— sets the DBGCIDSR, if implemented, to the current value of the CONTEXTIDR.

For more information about the CONTEXTIDR, see:

— c13, Context ID Register (CONTEXTIDR) on page B3-153, for a VMSA implementation

— c13, Context ID Register (CONTEXTIDR) on page B4-76, for a PMSA implementation.

• Alternatively, when any of the following is true, returns 0xFFFFFFFF and sets the DBGCIDSR, if
implemented, to an UNKNOWN value:

— non-invasive debug is disabled

— the processor is in a mode or state where non-invasive debug is not permitted

— the processor is in Debug state.

If the DBGCIDSR is implemented, reading it returns the last value to which it was set.

Note
 The ARM architecture does not define recently executed. The delay between an instruction being executed
by the processor and its address appearing in the DBGPCSR is not defined. For example, if a piece of code
reads the DBGPCSR of the processor it is running on, there is no guaranteed relationship between the
program counter for that piece of code and the value read. The DBGPCSR is intended only for use by an
external agent to provide statistical information for code profiling.

The value in the DBGPCSR always references a committed instruction. An implementation must not sample
values that reference instructions that are fetched but not committed for execution.

If DBGPCSR is implemented, it must be possible to sample references to branch targets. It is
IMPLEMENTATION DEFINED whether references to other instructions can be sampled. ARM recommends that
a reference to any instruction can be sampled.

The branch target for a conditional branch instruction that fails its condition code check is the instruction
that follows the conditional branch instruction. The branch target for an exception is the exception vector
address.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C8-3

Sample-based Profiling
If an instruction writes to the CONTEXTIDR, it is UNPREDICTABLE whether the DBGCIDSR is set to the
original or new value of CONTEXTIDR when a read of the DBGPCSR samples a subsequent instruction
that occurs before the earliest of:

• the execution of an ISB instruction or an ISB operation

• the taking of an exception

• the execution of an exception return instruction.
C8-4 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Chapter C9
Performance Monitors

This chapter describes the performance monitors, that are a non-invasive debug component. It contains the
following sections:

• About the performance monitors on page C9-2

• Status in the ARM architecture on page C9-4

• Accuracy of the performance monitors on page C9-5

• Behavior on overflow on page C9-6

• Interaction with Security Extensions on page C9-7

• Interaction with trace on page C9-8

• Interaction with power saving operations on page C9-9

• CP15 c9 register map on page C9-10

• Access permissions on page C9-12

• Event numbers on page C9-13.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C9-1

Performance Monitors
C9.1 About the performance monitors

The basic organization of the performance monitors is:

• A cycle counter. This can be programmed to increment either on every cycle, or once every 64 cycles.

• A number of event counters. Each counter is configured to select the event that increments the
counter. Space is provided in the architecture for up to 31 counters. The actual number of counters is
IMPLEMENTATION DEFINED, and there is an identification mechanism for the counters.

• Controls for enabling the counters, resetting the counters, flagging overflows, and enabling interrupts
on counter overflow.

The cycle counter can be enabled independently of the event counters.

The counters are held in a set of registers that can be accessed in coprocessor space. This means the counters
can be accessed from the operating system running on the processor, enabling a number of uses, including:

• dynamic compilation techniques

• energy management.

In addition, you can provide access to the counters from application code, if required. This enables
applications to monitor their own performance with fine grain control without requiring operating system
support. For example, an application might implement per-function performance monitoring.

There are many situations where performance monitoring features integrated into the processor are valuable
for applications and for application development. When an operating system does not use the performance
monitors itself, ARM recommends that it enables application code access to the performance monitors.
However an implementation can choose not to implement any performance monitors.

To enable interaction with external monitoring, an implementation might consider additional enhancements,
including:

• Providing a set of events, from which a selection can be exported onto a bus for use as external events.
For very high frequency operation, this might introduce unacceptable timing requirements, but the
bus could be interfaced to the trace macrocell or another closely coupled resource.

• Providing the ability to count external events. Here, again, there are clock frequency issues between
the processor and the system. A suitable approach might be to edge-detect changes in the signals and
to use those changes to increment a counter.

This enhancement requires the processor to implement a set of external event input pins.

• Providing memory-mapped and external debug access to the performance monitor registers, to enable
the counter resources to be used for system monitoring in systems where they are not used by the
software running on the processor.

Such access is not described in this manual. Contact ARM if you require more information about this
option.
C9-2 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Performance Monitors
The set of events that might be monitored splits into:

• events that are likely to be consistent across many microarchitectures

• implementation specific events.

Therefore, this architecture defines a common set of events to be used across many microarchitectures, and
a large space reserved for IMPLEMENTATION DEFINED events.

The full set of events for any given implementation is IMPLEMENTATION DEFINED, and there is no
requirement to implement any of the common set of events. ARM recommends that ARMv7 processors
implement as many of the events as are feasible given the architecture profile and microarchitecture of the
implementation.

The event numbers of the common set of events are reserved for the specified events. In this set, a particular
event number must either:

• be used for its assigned event

• not be used.

When an ARMv7 processor supports monitoring of an event that is assigned a number in the range allocated
to the common set of events range, if possible it must use that number for the event. However, ARM might
introduce additional event definitions in this range in future editions of this manual. Therefore software
might encounter implementations where an event assigned a number in this range is monitored using an
event number from the IMPLEMENTATION DEFINED range.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C9-3

Performance Monitors
C9.2 Status in the ARM architecture

The status of the architecturally-defined performance monitors block is that it is an IMPLEMENTATION
DEFINED space for ARMv7, but ARM recommends implementers to use the approach described here to
implement the performance monitors.
C9-4 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Performance Monitors
C9.3 Accuracy of the performance monitors

The performance monitors provide approximately accurate performance count information. To keep the
implementation and validation cost low, a reasonable degree of inaccuracy in the counts is acceptable. There
is no exact definition of reasonable degree of inaccuracy, but ARM recommends the following guidelines:

• Under normal operating conditions, the counters must present an accurate value of the count.

• In exceptional circumstances, such as changes in security state or other boundary conditions, it is
acceptable for the count to be inaccurate.

• Under very unusual non-repeating pathological cases counts can be inaccurate. These cases are likely
to occur as a result of asynchronous exceptions, such as interrupts, where the chance of a systematic
error in the count is vanishingly unlikely.

Note
 An implementation must not introduce inaccuracies that can be triggered systematically by normal pieces
of code that are running. For example, dropping a branch count in a loop due to the structure of the loop
gives a systematic error that makes the count of branch behavior very inaccurate, and this is not reasonable.
However, the dropping of a single branch count as the result of a rare interaction with an interrupt is
acceptable.

The permitted inaccuracy limits the possible uses of the performance monitors. In particular, the point in a
pipeline where the event counter is incremented is not defined relative to the point where a read of the event
counters is made. This means that pipelining effects can cause some imprecision. An implementation must
document any particular scenarios where significant inaccuracies are expected.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C9-5

Performance Monitors
C9.4 Behavior on overflow

On counter overflow:

• An overflow status flag is set to 1. See c9, Overflow Flag Status Register (PMOVSR) on
page C10-110.

• An interrupt request is generated if the processor is configured to generate counter overflow
interrupts. For details see c9, Interrupt Enable Set Register (PMINTENSET) on page C10-118 and
c9, Interrupt Enable Clear Register (PMINTENCLR) on page C10-119.

• The counter wraps to zero and continues counting events. Counting continues as long as the counters
are enabled, regardless of any overflows.

The counter always resets to zero and overflows after 32 bits of increment. To enable a more frequent
generation of interrupt requests, the counters can be written to. For example, an interrupt handler might reset
the overflowed counter to 0xFFFF0000 to generate another overflow interrupt after 16 bits of increment.

Note
 The mechanism by which an interrupt request from the performance monitors generates an FIQ or IRQ
exception is IMPLEMENTATION DEFINED.

The interrupt handler for the counter interrupt must cancel the interrupt by clearing the overflow flag.
C9-6 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Performance Monitors
C9.5 Interaction with Security Extensions

The performance monitors provide a non-invasive debug feature, and therefore are controlled by the
non-invasive debug authentication signals. About non-invasive debug authentication on page C7-2 describes
how non-invasive debug interacts with Security Extensions.

Performance monitors on page C7-6 describes the behavior of the performance monitors when:

• non-invasive debug is disabled

• the processor is in a mode or state where non-invasive debug is not permitted

• the processor is in Debug state.

Note
 Additional controls in the PMCR can also disable the event counters and the PMCCNTR. Disabling the
event counters and the PMCCNTR in the PMCR takes precedence over the authentication controls.

The performance monitor registers are Common registers, see Common CP15 registers on page B3-74.
They are always accessible regardless of the values of the authentication signals and SUNIDEN.
Authentication controls whether the counters count events, not to control access to the performance monitor
registers.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C9-7

Performance Monitors
C9.6 Interaction with trace

It is IMPLEMENTATION DEFINED whether counter events are exported to a trace macrocell or other external
monitoring agents to provide triggering information. The form of the exporting is also IMPLEMENTATION
DEFINED. If implemented, this exporting might be enabled as part of the performance monitoring control
functionality.

Similarly, ARM recommends system designers to include a mechanism for importing a set of external
events to be counted, but such a feature is IMPLEMENTATION DEFINED. When implemented, this feature
enables the trace module to pass in events to be counted.
C9-8 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Performance Monitors
C9.7 Interaction with power saving operations

All counters are subject to any changes in clock frequency, including clock stopping caused by the WFI and
WFE instructions.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C9-9

Performance Monitors
C9.8 CP15 c9 register map

The performance monitor registers are mapped into part of the CP15 register map. The registers are
described in Performance monitor registers on page C10-105.

Figure C9-1 shows the CP15 c9 encodings for the recommended performance monitor registers, and the
reserved encodings for IMPLEMENTATION DEFINED performance monitors:

Figure C9-1 Recommended CP15 performance monitor registers

Table C9-1 lists the instructions used to access the recommended performance monitor registers.

�� � ��� �
<7� �%�� <7, �%��

�!<76����(��,�����!��'&���<��&����7�.'*&��
�!<?@:?�:@6�<�$�&�:��-�����&�7�.'*&��
�!<?@:?<376�<�$�&�:��-���<�����7�.'*&��
�!=��76�=���(��8����.��&�&$*�7�.'*&��
�!�Q ?<6���(&8���� ����,��&�7�.'*&��
�!�:376�:���&�<�$�&��������&'���7�.'*&��

�
�
�
�
	

�!<<?@76�<�����<�$�&�7�.'*&��
�!G:�@F�:76�:���&�@�%�������&�7�.'*&��
�!G:�<?@76�:���&�<�$�&�7�.'*&��

��� �
�
�

7���PQ�'&�7�������� Q�'&������

����**���%���*����&)���%���&'��

�! ?@:?�:@6� �&���$%&�:��-�����&�7�.'*&��
�! ?@:?<376� �&���$%&�:��-���<�����7�.'*&��

���

�

�!"�:7:?76�"*���:��-���7�.'*&���
�

��	 4��
5 # 7�*������(��� !�3:!:?@�@ =?��:� ?:��%��(��,�����,��'&��*

Table C9-1 Recommended performance monitor registers

Instructiona Description or notes

MRC p15,0,<Rt>,c9,c12,0

MCR p15,0,<Rt>,c9,c12,0

c9, Performance Monitor Control Register (PMCR) on page C10-105.

MRC p15,0,<Rt>,c9,c12,1

MCR p15,0,<Rt>,c9,c12,1

c9, Count Enable Set Register (PMCNTENSET) on page C10-108.

MRC p15,0,<Rt>,c9,c12,2

MCR p15,0,<Rt>,c9,c12,2

c9, Count Enable Clear Register (PMCNTENCLR) on page C10-109.

MRC p15,0,<Rt>,c9,c12,3

MCR p15,0,<Rt>,c9,c12,3

c9, Overflow Flag Status Register (PMOVSR) on page C10-110.
C9-10 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2010_Q2
Sticky Note
In addition to the registers shown in this diagram, all CP15 registers with CRn == c9, opc1 == {1-7}, CRm == {c13-c15} are reserved for performance monitor registers, as shown correctly in Figure B3-21 on page B3-141 [PDF page 1415] and in Figure B4-74 on page B4-74 [PDF page 1510].

Performance Monitors
C9.8.1 Power domains and performance monitor registers reset

For ARMv7 implementations, ARM recommends that performance monitors are implemented as part of the
core power domain, not as part of a separate debug power domain. There is no interface to access the
performance monitor registers when the core power domain is powered down.

The performance monitor registers must be set to their reset values on a processor reset by
nSYSPORESET, nCOREPORESET or nRESET. Performance monitor registers are not changed by a
debug logic reset by PRESETDBGn.

For more information about the reset scheme recommended for a v7 Debug implementation see
Recommended reset scheme for v7 Debug on page C6-16.

MRC p15,0,<Rt>,c9,c12,4 UNPREDICTABLE. PMSWINC is a write-only register.

MCR p15,0,<Rt>,c9,c12,4 c9, Software Increment Register (PMSWINC) on page C10-112.

MRC p15,0,<Rt>,c9,c12,5

MCR p15,0,<Rt>,c9,c12,5

c9, Event Counter Selection Register (PMSELR) on page C10-113.

MRC p15,0,<Rt>,c9,c13,0

MCR p15,0,<Rt>,c9,c13,0

c9, Cycle Count Register (PMCCNTR) on page C10-114.

MRC p15,0,<Rt>,c9,c13,1

MCR p15,0,<Rt>,c9,c13,1

c9, Event Type Select Register (PMXEVTYPER) on page C10-115.

MRC p15,0,<Rt>,c9,c13,2

MCR p15,0,<Rt>,c9,c13,2

c9, Event Count Register (PMXEVCNTR) on page C10-116.

MRC p15,0,<Rt>,c9,c14,0

MCR p15,0,<Rt>,c9,c14,0

c9, User Enable Register (PMUSERENR) on page C10-117.

MRC p15,0,<Rt>,c9,c14,1

MCR p15,0,<Rt>,c9,c14,1

c9, Interrupt Enable Set Register (PMINTENSET) on page C10-118.

MRC p15,0,<Rt>,c9,c14,2

MCR p15,0,<Rt>,c9,c14,2

c9, Interrupt Enable Clear Register (PMINTENCLR) on page C10-119.

a. CP15 c9 encodings with CRm == {c12-c14} not listed in the table are reserved. For details of the
behavior of accesses to these encodings see Unallocated CP15 encodings on page B3-69.

Table C9-1 Recommended performance monitor registers (continued)

Instructiona Description or notes
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C9-11

Performance Monitors
C9.9 Access permissions

Normally the performance monitor registers are accessible from privileged modes only. Setting the
PMUSERENR.EN flag to 1 permits access from User mode code, for example for instrumentation and
profiling purposes, see c9, User Enable Register (PMUSERENR) on page C10-117. However, the
PMUSERENR does not provide access to the registers that control interrupt generation.

Table C9-2 Performance monitor access permissions

Register Operation
Access from a
privileged mode

Access from User modea

PMUSERENR.EN == 0 PMUSERENR.EN == 1

PMCR MRC or MCR Proceed UNDEFINED Proceed

PMCNTENSET MRC or MCR Proceed UNDEFINED Proceed

PMCNTENCLR MRC or MCR Proceed UNDEFINED Proceed

PMOVSR MRC or MCR Proceed UNDEFINED Proceed

PMSWINC MRC UNPREDICTABLE UNDEFINED UNPREDICTABLE

MCR Proceed UNDEFINED Proceed

PMSELR MRC or MCR Proceed UNDEFINED Proceed

PMCCNTR MRC or MCR Proceed UNDEFINED Proceed

PMXEVTYPER MRC or MCR Proceed UNDEFINED Proceed

PMXEVCNTR MRC or MCR Proceed UNDEFINED Proceed

PMUSERENRa MRC Proceed Proceed Proceed

MCR Proceed UNDEFINED UNDEFINED

PMINTENSET MRC or MCR Proceed UNDEFINED UNDEFINED

PMINTENCLR MRC or MCR Proceed UNDEFINED UNDEFINED

Reservedb MRC or MCR UNPREDICTABLE UNDEFINED UNDEFINED

a. For details of the EN flag see c9, User Enable Register (PMUSERENR) on page C10-117.
b. All the registers marked as reserved in Table C9-1 on page C9-10.
C9-12 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Performance Monitors
C9.10 Event numbers

The event numbers are described in the following subsections:

• Common feature event numbers

• Implementation defined feature event numbers on page C9-16.

C9.10.1 Common feature event numbers

For the common features, normally the counters must increment only once for each event. Exceptions to this
rule are stated in the individual definitions.

In these definitions, the term architecturally executed means that the instruction flow is such that the counted
instruction would have been executed in a simple sequential execution model.

Note
 An instruction is architecturally executed if the behavior of the program on the processor is consistent with
the instruction having been executed on a simple execution model of the architecture. Therefore an
instruction that has been executed and retired is defined to be architecturally executed. In processors that
perform speculative execution, an instruction is not architecturally executed if the results of the speculative
execution are discarded. Where an instruction has no visible effect, for example, a NOP, the point where the
instruction is retired is IMPLEMENTATION DEFINED.

The common feature event number assignments are:

0x00 Software increment. The register is incremented only on writes to the Software Increment
Register. For details see c9, Software Increment Register (PMSWINC) on page C10-112.

0x01 Instruction fetch that causes a refill of at least the level of instruction or unified cache closest
to the processor. Each instruction fetch that causes a refill from outside the cache is counted.
Accesses that do not cause a new cache refill, but are satisfied from refilling data of a
previous miss, are not counted. Where an instruction fetch fetches multiple instructions, the
fetch counts a single event.

CP15 cache maintenance operations do not count as events.

This counter increments on speculative instruction fetches as well as on fetches of
instructions that reach execution.

0x02 Instruction fetch that causes a TLB refill of at least the level of TLB closest to the processor.
Each instruction fetch that causes an access to a level of memory system due to a translation
table walk or an access to another level of TLB caching is counted.

CP15 TLB maintenance operations do not count as events.

This counter increments on speculative instruction fetches as well as on fetches of
instructions that reach execution.

0x03 Memory Read or Write operation that causes a refill of at least the level of data or unified
cache closest to the processor. Each memory read from or write to that causes a refill from
outside the cache is counted. Accesses that do not cause a new cache refill, but are satisfied
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C9-13

Performance Monitors
from refilling data of a previous miss are not counted. Each access to a cache line that causes
a new linefill is counted, including the multiple accesses of load or store multiples, including
PUSH and POP. Write-Through writes that hit in the cache do not cause a linefill and so are not
counted.

CP15 cache maintenance operations do not count as events.

This counter increments on speculative memory accesses as well as for memory accesses
that are explicitly made by instructions.

0x04 Memory Read or Write operation that causes a cache access to at least the level of data or
unified cache closest to the processor. Each access to a cache line is counted including the
multiple accesses of instructions such as LDM or STM.

CP15 cache maintenance operations do not count as events.

This counter increments on speculative memory accesses as well as for memory accesses
that are explicitly made by instructions.

0x05 Memory Read or Write operation that causes a TLB refill of at least the level of TLB closest
to the processor. Each memory read or write operation that causes a translation table walk
or an access to another level of TLB caching is counted.

CP15 TLB maintenance operations do not count as events.

This counter increments on speculative memory accesses as well as for memory accesses
that are explicitly made by instructions.

0x06 Memory-reading instruction architecturally executed. This counter increments for every
instruction that explicitly read data, including SWP.

This counter does not increment for a conditional instruction that fails its condition code
check.

0x07 Memory-writing instruction architecturally executed. The counter increments for every
instruction that explicitly wrote data, including SWP.

This counter does not increment for a Store-Exclusive instruction that fails, or for a
conditional instruction that fails its condition code check.

0x08 Instruction architecturally executed. This counter counts for all instructions, including
conditional instructions that fail their condition code check.

0x09 Exception taken. This counts for each exception taken.

Note
 This event number counts the processor exceptions described in Exceptions on page B1-30.

It does not count floating-point exceptions or ThumbEE null and index checks.

0x0A Exception return architecturally executed. This counts the exception return instructions
described in Exception return on page B1-38.

This counter does not increment for a conditional instruction that fails its condition code
check.
C9-14 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Performance Monitors
0x0B Instruction that writes to the CONTEXTIDR architecturally executed.

This counter does not increment for a conditional instruction that fails its condition code
check.

0x0C Software change of PC, except by an exception, architecturally executed.

This counter does not increment for a conditional instruction that fails its condition code
check.

0x0D Immediate branch architecturally executed:

• B{L} <label>

• BLX <label>

• CB{N}Z <Rn>,<label>

• HB{L} #HandlerId (ThumbEE state only)

• HB{L}P #<imm>, #HandlerId (ThumbEE state only).

This counter counts for all immediate branch instructions that are architecturally executed,
including conditional instructions that fail their condition code check.

0x0E Procedure return, other than exception return, architecturally executed:

• BX R14

• MOV PC,LR

• POP {…,PC}

• LDR PC,[SP],#offset

• LDMIA R9!,{…,PC} (ThumbEE state only)

• LDR PC,[R9],#offset (ThumbEE state only).

This counter does not increment for a conditional instruction that fails its condition code
check.

Note
 Only these instructions are counted as procedure returns. For example, the following are not

counted as procedure return instructions:

• BX R0 (Rm != R14)

• MOV PC,R0 (Rm != R14)

• LDM SP,{…,PC} (writeback not specified)

• LDR PC,[SP,#offset] (wrong addressing mode).

0x0F Unaligned access architecturally executed. This counts each instruction that is an access to
an unaligned address. That is, the instruction either triggered an unaligned fault, or would
have done so if the CPSR.A bit had been 1.

This counter does not increment for a conditional instruction that fails its condition code
check.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C9-15

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
SCTLR

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
alignment

Performance Monitors
0x10 Branch mispredicted or not predicted. This counts for each correction to the predicted
program flow that occurs because of a misprediction from, or no prediction from, the
program flow prediction resources and that relates to instructions that the program flow
prediction resources are capable of predicting.

0x11 Cycle count. The register is incremented on every cycle.

Note
 Unlike PMCCNTR, this count is not affected by PMCR.DP, PMCR.D or PMCR.C:

• The counter is not incremented in prohibited regions, so is not affected by PMCR.DP.

• The counter increments on every cycle, regardless of the setting of PMCR.D.

• The counter is reset when event counters are reset by PMCR.P, never by PMCR.C.

0x12 Branch or other change in program flow that could have been predicted by the branch
prediction resources of the processor.

0x13-0x3F Reserved.

C9.10.2 IMPLEMENTATION DEFINED feature event numbers

For IMPLEMENTATION DEFINED feature numbers, the counters are defined to either:

• increment only once for each event

• count the duration for which an event occurs

This property is defined individually for each feature.

ARM recommends implementers to establish house styles for the IMPLEMENTATION DEFINED events, with
common definitions, and common count numbers, applied to all the processors they implement. In general,
the recommended approach is for standardization across implementations with common features. However,
ARM recognizes that attempting to standardize the encoding of microarchitectural features across too wide
a range of implementations is not productive.

ARM strongly recommends that at least the following classes of event are identified in the IMPLEMENTATION
DEFINED events:

• Cumulative duration of stalls due to the holes in the instruction availability, separating out counts for
key buffering points that might exist.

• Cumulative duration of stalls due to data dependent stalling, separating out counts for key
dependency classes that might exist.

• Cumulative duration of stalls due to unavailability of execution resources (including write buffers, for
example), separating out counts for key resources that might exist.

• Missed superscalar issue opportunities, if relevant, separating out counts for key classes of issue that
might exist.

• Miss rates for different levels of caches and TLB.
C9-16 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Performance Monitors
• Transaction counts on external buses.

• External events passed into the processor via an IMPLEMENTATION DEFINED mechanism. Typically
this involves counting the number of cycles for which the signal is asserted using the duration count
option.

• Cumulative duration for which the CPSR.I and CPSR.F interrupt mask bits are set to 1.

• Any other microarchitectural features that the implementer considers it valuable to count.

IMPLEMENTATION DEFINED feature numbers are 0x40 to 0xFF.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C9-17

ARM_2009_Q2
Cross-Out
This example is unclear. Section C9.1 About the performance monitors on page C9-2 [PDF page 1752] includes a short description of how a performance monitor might count external events.

Performance Monitors
C9-18 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Chapter C10
Debug Registers Reference

This chapter gives a reference description of the debug registers. See Debug register map on page C6-18 for
a list of all the debug registers.

This chapter contains the following sections:

• Accessing the debug registers on page C10-2

• Debug identification registers on page C10-3

• Control and status registers on page C10-10

• Instruction and data transfer registers on page C10-40

• Software debug event registers on page C10-48

• OS Save and Restore registers, v7 Debug only on page C10-75

• Memory system control registers on page C10-80

• Management registers, ARMv7 only on page C10-88

• Performance monitor registers on page C10-105.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C10-1

Debug Registers Reference
C10.1 Accessing the debug registers

In this chapter:

• The debug registers are numbered sequentially from 0 to 1023.

• The register offsets refer to the offsets in the v7 Debug memory-mapped or external debug interface.
The locations of these registers in the ARMv6 external debug interface might differ.

There is a standard mapping from debug register number to coprocessor instructions in the Extended CP14
interface, see Extended CP14 interface on page C6-33. The register numbers and offsets for the DBGDSCR,
DBGDTRRX, and DBGDTRTX Registers apply only to the external view of that register. For more
information, see Internal and external views of the DBGDSCR and the DCC registers on page C6-21.

Note
 • The recommended v7 Debug external debug interface is described in ARM Debug Interface v5

Architecture Specification.

• Contact ARM if you require details of the ARMv6 recommended external debug interface.
C10-2 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug Registers Reference
C10.2 Debug identification registers

This section contains the following subsections:

• Debug ID Register (DBGDIDR)

• Debug Device ID Register (DBGDEVID) on page C10-6

• Debug ROM Address Register (DBGDRAR) on page C10-7

• Debug Self Address Offset Register (DBGDSAR) on page C10-8.

C10.2.1 Debug ID Register (DBGDIDR)

The Debug ID Register, DBGDIDR, specifies:

• which version of the Debug architecture is implemented

• some features of the debug implementation.

The DBGDIDR is:

• debug register 0, at offset 0x000

• a read-only register

• required on all versions of the Debug architecture from v6 Debug onwards

• when the Security Extensions are implemented, a Common register.

The format of the DBGDIDR is:

WRPs, bits [31:28]

The number of Watchpoint Register Pairs (WRPs) implemented. The meanings of the values
of this field are:

0b0000 1 WRP implemented

0b0001 2 WRPs implemented

0b0010 3 WRPs implemented

. .

. .

. .

0b1111 16 WRPs implemented.

The minimum number of WRPs is 1.

�� ��

,$�8
�� ��

�$�8
�� ��

�+�F�%�8
�� ��

���8�&�
�� �	 �
 ��

$�

�� �

�4��4��
� �

$�)�8�&�
��

��� "F�D?
�(F�D?
���$F�D?

"(��"F�D?
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C10-3

Debug Registers Reference
BRPs, bits [27:24]

The number of Breakpoint Register Pairs (BRPs) implemented. The meanings of the values
of this field are:

0b0000 Reserved

0b0001 2 BRPs implemented

0b0010 3 BRPs implemented

. .

. .

. .

0b1111 16 BRPs implemented.

The minimum number of BRPs is 2.

CTX_CMPs, bits [23:20]

The number of BRPs that can be used for Context ID comparison. The meanings of the
values of this field are:

0b0000 1 BRP can be used for Context ID comparison

0b0001 2 BRPs can be used for Context ID comparison

0b0010 3 BRPs can be used for Context ID comparison

. .

. .

. .

0b1111 16 BRPs can be used for Context ID comparison.

The minimum number of BRPs with Context ID comparison capability is 1. The value in
this field cannot be greater than the value in the BRPs field, bits [27:24].

The breakpoint comparators with Context ID comparison capability must be the highest
addressed comparators. For example, if six comparators are implemented and two have
Context ID comparison capability, the comparators with Context ID comparison capability
must be comparators 4 and 5.

Version, bits [19:16]

The Debug architecture version. The permitted values of this field are:

0b0001 ARMv6, v6 Debug architecture

0b0010 ARMv6, v6.1 Debug architecture

0b0011 ARMv7 Debug architecture - Extended CP14 interface implemented

0b0100 ARMv7 Debug architecture - No Extended CP14 interface implemented.

All other values are reserved.

DEVID_imp, bit [15]

Debug Device ID Register, DBGDEVID, implemented bit. The meanings of the values of
this bit are:

0 DBGDEVID is not implemented. Debug register 1010 is reserved.
C10-4 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug Registers Reference
1 DBGDEVID is implemented, see Debug Device ID Register (DBGDEVID) on
page C10-6.

This bit is always RAZ in ARMv6.

nSUHD_imp, bit [14]

Secure User halting debug not implemented bit. When the Security Extensions are
implemented, the meanings of the values of this bit are:

0 Secure User halting debug is implemented

1 Secure User halting debug is not implemented.

If the Security Extensions are not implemented:

• Secure User halting debug cannot be implemented

• this bit is RAZ.

A v6.1 Debug processor that implements the Security Extensions must support Secure User
halting debug. In v6.1 Debug this bit is always RAZ.

See also Chapter C2 Invasive Debug Authentication.

PCSR_imp, bit [13]

Program Counter Sampling Register (DBGPCSR) implemented as register 33 bit. The
meanings of the values of this bit are:

0 DBGPCSR is not implemented as register 33

1 DBGPCSR is implemented as register 33.

Note
 In v7 Debug, the DBGPCSR can be implemented as register 33, as register 40, or as both

register 33 and register 40, as described in Implemented Program Counter sampling
registers on page C8-2. The PCSR_imp bit only indicates whether it is implemented as
register 33. For details of how to determine whether it is implemented as register 40 see
Debug Device ID Register (DBGDEVID) on page C10-6.

In ARMv6, the Program Counter Sampling Register is an IMPLEMENTATION DEFINED
feature of the external debug interface and is not indicated in the DBGDIDR. This bit is
always RAZ in ARMv6.

See also Program Counter Sampling Register (DBGPCSR) on page C10-38.

SE_imp, bit [12]

Security Extensions implemented bit. The meanings of the values of this bit are:

0 Security Extensions are not implemented

1 Security Extensions are implemented.

v6 Debug is not a permitted option for an implementation that includes the Security
Extensions. This bit is RAZ on a v6 Debug implementation.

Bits [11:8] Reserved, RAZ.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C10-5

Debug Registers Reference
Variant, bits [7:4]

This field holds an IMPLEMENTATION DEFINED variant number. This number is incremented
on functional changes. The value must match bits [23:20] of the CP15 Main ID Register.

Revision, bits [3:0]

This field holds an IMPLEMENTATION DEFINED revision number. This number is incremented
on functional changes. The value must match bits [3:0] of the CP15 Main ID Register.

For details of the CP15 Main ID Register see:

• c0, Main ID Register (MIDR) on page B3-81, for a VMSA implementation

• c0, Main ID Register (MIDR) on page B4-32, for a PMSA implementation.

C10.2.2 Debug Device ID Register (DBGDEVID)

The Debug Device ID Register, DBGDEVID, extends the DBGDIDR by describing other features of the
debug implementation.

The DBGDEVID register is:

• debug register 1010, at offset 0xFC8

• a read-only register

• an optional register, that can be implemented only in v7 Debug

• when the Security Extensions are implemented, a Common register.

The DBGDIDR.DEVID_imp bit indicates whether the DBGDEVID register is implemented, see Debug ID
Register (DBGDIDR) on page C10-3.

If the DBGDEVID register is not implemented:

• the Program Counter Sampling Register (DBGPCSR) is not implemented as register 40

• the Context ID Sampling Register (DBGCIDSR) is not implemented.

The format of the DBGDEVID register is:

Bits [31:4] Reserved, RAZ.

PCsample, bits [3:0]

This field indicates the level of Program Counter sampling support using debug registers 40
and 41. The permitted values of this field are:

0b0000 Program Counter Sampling Register (DBGPCSR) is not implemented as
register 40, and Context ID Sampling Register (DBGCIDSR) is not
implemented.

0b0001 DBGPCSR is implemented as register 40, and DBGCIDSR is not implemented.

���

��84D?*�$�8��)��21$�

� �
C10-6 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug Registers Reference
0b0010 DBGPCSR is implemented as register 40, and DBGCIDSR is implemented as
register 41.

Other values are reserved.

Note
 The DBGPCSR can be implemented as register 33, as register 40, or as both register 33 and

register 40, as described in Implemented Program Counter sampling registers on page C8-2.
The PCsample field only indicates whether it is implemented as register 40. For details of
how to determine whether it is implemented as register 33 see Debug ID Register
(DBGDIDR) on page C10-3.

C10.2.3 Debug ROM Address Register (DBGDRAR)

The Debug ROM Address Register, DBGDRAR, defines the base address of a ROM Table, that locates and
describes the debug components in the system.

The DBGDRAR is:

• Only implemented through the Baseline CP14 interface, and therefore does not have a register
number and offset. For more information, see The CP14 debug register interfaces on page C6-32.

• A read-only register.

• Implemented as follows:

ARMv6 This register is not defined in ARMv6.

v7 Debug If no Memory-mapped debug components, including this processor, are implemented,
this register is RAZ.

Otherwise, the register defines the physical address in memory of a ROM Table.

• When the Security Extensions are implemented, a Common register.

It is IMPLEMENTATION DEFINED how the processor determines the value that is returned as the ROM Table
address. If the processor cannot determine the value, the Valid field in the register must be RAZ.

One implementation scheme is to provide inputs DBGROMADDR[31:12] and DBGROMADDRV that a
system designer must tie-off to the correct value. DBGROMADDRV must be tied HIGH only if
DBGROMADDR[31:12] is tied off to a valid value, otherwise DBGROMADDR[31:12] and
DBGROMADDRV must be tied LOW.

The format of the DBGDRAR is:

������	���
��
���
���� ��

�4*��
���

$�8��)��21$�

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C10-7

Debug Registers Reference
This register format applies regardless of the implementation scheme for identifying the ROM Table
address.

DBGROMADDR[31:12], bits [31:12]

Bits [31:12] of the ROM Table physical address. Bits [11:0] of the address are zero.

If the Valid field, bits [1:0], is zero the value of this field is UNKNOWN.

Bits [11:2] Reserved, RAZ.

Valid, bits [1:0]

This field indicates whether the ROM Table address is valid. In the recommended
implementation it reflects the value of the DBGROMADDRV signal, and the permitted
values of this field are:

0b00 DBGROMADDRV is LOW, ROM Table address is not valid

0b11 DBGROMADDRV is HIGH, ROM Table address is valid.

Other values are reserved.

The ROM Table contains a zero-terminated list of signed 32-bit offsets from the ROM Table base to other
Memory-mapped debug components in the system. All the debug components pointed to must contain a set
of debug component identification registers compatible with the format in Debug Component Identification
Registers (DBGCID0 to DBGCID3) on page C10-102. For more information, see the ARM Debug Interface
v5 Architecture Specification.

C10.2.4 Debug Self Address Offset Register (DBGDSAR)

The Debug Self Address Offset Register, DBGDSAR, defines the offset from the ROM Table physical
address to the physical address of the debug registers for the processor.

The DBGDSAR is:

• Only implemented through the Baseline CP14 interface, and therefore does not have a register
number and offset. For more information, see The CP14 debug register interfaces on page C6-32.

• A read-only register.

• Implemented as follows:

ARMv6 This register is not defined in ARMv6.

v7 Debug If no memory-mapped interface is provided, this register is RAZ.

Otherwise, the register gives the offset from the ROM Table physical address to the
physical address of the debug registers for the processor.

• When the Security Extensions are implemented, a Common register.

It is IMPLEMENTATION DEFINED how the processor determines the value that is returned as the debug self
address offset. If the processor cannot determine the value, the Valid field in the register must be RAZ.
C10-8 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug Registers Reference
One implementation scheme is to provide inputs DBGSELFADDR[31:12] and DBGSELFADDRV that a
system designer must tie-off to the correct value. DBGSELFADDRV must be tied HIGH only if
DBGSELFADDR[31:12] is tied off to a valid value, otherwise DBGSELFADDR[31:12] and
DBGSELFADDRV must be tied LOW.

The format of the DBGDSAR is:

This register format applies regardless of the implementation scheme for identifying the debug self address
offset.

DBGSELFADDR [31:12], bits [31:12]

Bits [31:12] of the two’s complement offset from the ROM Table physical address to the
physical address where the debug registers are mapped. Bits [11:0] of the address are zero.

If the Valid field, bits [1:0], is zero the value of this field is UNKNOWN.

Bits [11:2] Reserved, RAZ.

Valid, bits [1:0]

This field indicates whether the debug self address offset is valid. In the recommended
implementation it reflects the value of the DBGSELFADDRV signal, and the permitted
values of this field are:

0b00 DBGSELFADDRV is LOW, offset is not valid

0b11 DBGSELFADDRV is HIGH, offset is valid.

Other values are reserved.

�������	���
��
���
��

�4*��
����� ��

$�8��)��21$�

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C10-9

Debug Registers Reference
C10.3 Control and status registers

This section contains the following subsections:

• Debug Status and Control Register (DBGDSCR)

• Watchpoint Fault Address Register (DBGWFAR) on page C10-28

• Debug Run Control Register (DBGDRCR), v7 Debug only on page C10-29

• Device Power-down and Reset Control Register (DBGPRCR), v7 Debug only on page C10-31

• Device Power-down and Reset Status Register (DBGPRSR), v7 Debug only on page C10-34

• Program Counter Sampling Register (DBGPCSR) on page C10-38

• Context ID Sampling Register (DBGCIDSR) on page C10-39.

C10.3.1 Debug Status and Control Register (DBGDSCR)

The Debug Status and Control Register, DBGDSCR, provides the main control register for the debug
facilities in the ARM architecture. All debug implementations provide both internal and external views of
the DBGDSCR, and it is the external view that provides control of the debug facilities. These views are
referred to as:

DBGDSCRint the internal view

DBGDSCRext the external view.

For more information, see Internal and external views of the DBGDSCR and the DCC registers on
page C6-21.

The DBGDSCR:

• In its external view:

— is debug register 34 at offset 0x088.

— is a read/write register, with more restricted access to some bits.

• Has the following differences in different versions of the Debug architecture:

— v6.1 Debug and v7 Debug define additional bits in the register.

— DBGDSCR bit [9] is defined only in v6 Debug and v6.1 Debug. It is reserved in v7 Debug.

— Access to the register depends on the version of the Debug architecture, see Access to the
DBGDSCR on page C10-27.

— The behavior of RXfull and TXfull on reads of DBGDSCR through the internal and external
views is different, see Access controls on the external view of the DCC registers and DBGITR,
v7 Debug only on page C10-21.

• When the Security Extensions are implemented, is a Common register.
C10-10 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug Registers Reference
In v7 Debug, the format of the DBGDSCR is:

Bits [31,28,23:22]

Reserved, UNK/SBZP.

RXfull, bit [30]

The DBGDTRRX Register full bit. The possible values of this bit are:

0 DBGDTRRX Register empty

1 DBGDTRRX Register full.

Normally, RXfull is:

• set to 1 on writes to DBGDTRRXext

• cleared to 0 on reads of DBGDTRRXint.

For more information about the behavior of RXfull and the DBGDTRRX Register see Host
to Target Data Transfer Register (DBGDTRRX) on page C10-40.

TXfull, bit [29]

The DBGDTRTX Register full bit. The possible values of this bit are:

0 DBGDTRTX Register empty

1 DBGDTRTX Register full.

Normally, TXfull is:

• cleared to 0 on reads of DBGDTRTXext

• set to 1 on writes to DBGDTRTXint.

For more information about the behavior of TXfull and the DBGDTRTX Register see Target
to Host Data Transfer Register (DBGDTRTX) on page C10-43.

������� ��

$�@:**
+�@:**

31$�8��)��21������
�

�� �� �� �� �	 �
 �� �� �� �� �� �� �� �� �	 �
 �� ��

.�/

�� � � � 	

%'(

$
�8
<3

$�@:**F*
+�@:**F*
��?���)

��8���&D?*F*

��

�"���894��
(0�"��D&��

����"��8
���"��8
%"�G��
 "�G��

�"��'$+F*
�"��'$+F*
��"F*

�+$��
�"����8
��+��8
"�G49H

$(�+�$+("
 ��+("

.�/.�/.�/

��1�$%)	217��1A�C194�
7�1"�G�&�,$",�
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C10-11

Debug Registers Reference
RXfull_l, bit [27], v7 Debug only

The latched RXfull bit. This is a copy of the RXfull bit taken as a side-effect of a read of
DBGDSCRext. This means that RXfull_l holds the last value of RXfull read from
DBGDSCRext:

• On a read of DBGDSCRext that is permitted to have side-effects, the value of
RXfull_l is the same as the value of RXfull.

• On a read of DBGDSCRint, the value of RXfull_l is UNKNOWN.

Normally, RXfull_l is set to 1 on writes to DBGDTRRXext.

The RXfull_l bit controls the behavior of the processor on writes to DBGDTRRXext. For
more information about the behavior of RXfull_l and the DBGDTRRX Register, see Host
to Target Data Transfer Register (DBGDTRRX) on page C10-40.

TXfull_l, bit [26], v7 Debug only

The latched TXfull bit. This is a copy of the TXfull bit taken as a side-effect of a read of
DBGDSCRext. This means that TXfull_l holds the last value of TXfull read from
DBGDSCRext:

• On a read of DBGDSCRext that is permitted to have side-effects, the value of
TXfull_l is the same as the value of TXfull.

• On a read of DBGDSCRint, the value of TXfull_l is UNKNOWN.

Normally, TXfull_l is cleared to 0 on reads of DBGDTRTXext.

The TXfull_l bit controls the behavior of the processor on reads of DBGDTRTXext. For
more information about the behavior of TXfull_l and the DBGDTRTX Register see Target
to Host Data Transfer Register (DBGDTRTX) on page C10-43.

PipeAdv, bit [25], v7 Debug only

Sticky Pipeline Advance bit. This bit is set to 1 every time the processor pipeline retires one
instruction. It is cleared to 0 by a write to DBGDRCR[3], see Debug Run Control Register
(DBGDRCR), v7 Debug only on page C10-29.

This flag enables a debugger to detect that the processor is idle. In some situations this might
indicate that the processor is deadlocked.

InstrCompl_l, bit [24], v7 Debug only

The latched Instruction Complete bit. This is a copy of the Instruction Complete internal
flag, taken on each read of DBGDSCRext. InstrCompl signals whether the processor has
completed execution of an instruction issued through the Instruction Transfer Register
(DBGITR), see Instruction Transfer Register (DBGITR) on page C10-46. InstrCompl is not
visible directly in any register.
C10-12 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug Registers Reference
On a read of DBGDSCRext, InstrCompl_l always returns the current value of InstrCompl.
The meanings of the values of InstrCompl_l are:

0 an instruction previously issued through the DBGITR has not completed its
changes to the architectural state of the processor

1 all instructions previously issued through the DBGITR have completed their
changes to the architectural state of the processor.

Normally, InstrCompl:

• is cleared to 0 following issue of an instruction through DBGITR

• becomes 1 once the instruction completes.

The taking of an exception marks the completion of the instruction. InstrCompl is set to 1 if
an instruction generates an Undefined Instruction or Data Abort exception.

InstrCompl is set to 1 on entry to Debug state. For more information about the behavior of
InstrCompl, InstrCompl_l and the DBGITR, see:

• Instruction Transfer Register (DBGITR) on page C10-46

• Host to Target Data Transfer Register (DBGDTRRX) on page C10-40

• Target to Host Data Transfer Register (DBGDTRTX) on page C10-43.

Bits [27:24], v6 Debug and v6.1 Debug only

Reserved, UNK/SBZP.

ExtDCCmode, bits [21:20], v7 Debug only

The External DCC access mode field. This field controls the access mode for the external
views of the DCC registers and the Instruction Transfer Register (DBGITR). Possible values
are:

0b00 Non-blocking mode

0b01 Stall mode

0b10 Fast mode.

The values of 0b11 is reserved.

For details of the external DCC access modes see Access controls on the external view of the
DCC registers and DBGITR, v7 Debug only on page C10-21.

Bits [21:20], v6 Debug and v6.1 Debug only

Reserved, UNK/SBZP.

ADAdiscard, bit [19], v6.1 Debug and v7 Debug

Asynchronous Data Aborts Discarded bit. The possible values of this bit are:

0 Asynchronous aborts handled normally

1 On an asynchronous abort, the processor sets the Sticky Asynchronous Data
Abort bit, ADABORT_l, to 1 but otherwise discards the abort.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C10-13

Debug Registers Reference
Note
 The conditions for setting ADABORT_l to 1 are different in v7 Debug and

v6.1 Debug. For more information, see the description of the ADABORT_l bit,
bit [7].

It is IMPLEMENTATION DEFINED whether the hardware automatically sets this bit to 1 on
entry to Debug state, see Asynchronous aborts and entry to Debug state on page C5-5.

The processor clears this bit to 0 on exit from Debug state.

NS, bit [18], v6.1 Debug and v7 Debug

Non-secure state status bit. If the processor implements Security Extensions, this bit
indicates whether the processor is in the Secure state. The possible values of this bit are:

0 the processor is in the Secure state

1 the processor is in the Non-secure state.

If the processor does not implement Security Extensions, this bit is RAZ.

SPNIDdis, bit [17], v6.1 Debug and v7 Debug

Secure Privileged Non-Invasive Debug Disabled bit. The behavior of this bit depends on the
version of the Debug architecture:

v6.1 Debug

If the processor implements Security Extensions, this bit takes the value of the
inverse of the SPNIDEN input. Otherwise it is RAZ.

v7 Debug This bit is the inverse of bit [6] of the Authentication Status Register, see
Authentication Status Register (DBGAUTHSTATUS) on page C10-96.

SPIDdis, bit [16], v6.1 Debug and v7 Debug

Secure Privileged Invasive Debug Disabled bit. The behavior of this bit depends on the
version of the Debug architecture:

v6.1 Debug

If the processor implements Security Extensions, this bit takes the value of the
inverse of the SPIDEN input. Otherwise it is RAZ.

v7 Debug This bit is the inverse of bit [4] of the Authentication Status Register, see
Authentication Status Register (DBGAUTHSTATUS) on page C10-96.

Bits [19:16], v6 Debug only

Reserved, UNK/SBZP.

MDBGen, bit [15]

Monitor debug-mode enable bit. The possible values of this bit are:

0 Monitor debug-mode disabled

1 Monitor debug-mode enabled.
C10-14 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug Registers Reference
If the external interface input DBGEN is LOW, the MDBGen bit reads as 0. The
programmed value is masked until DBGEN is taken HIGH. When DBGEN goes HIGH, the
value read and the behavior of the processor correspond to the programmed value.

Note
 • If Halting debug-mode is enabled, by setting the HDBGen bit to 1, then the Monitor

debug-mode setting is disabled regardless of the setting of the MDBGen bit.

• It is the programmed value of the MDBGen bit, not the value returned by reads of the
DBGDSCR, that is saved by the OS Save and Restore Register in a power-down
sequence. For more information, see The OS Save and Restore mechanism on
page C6-8.

HDBGen, bit [14]

Halting debug-mode enable bit. The possible values of this bit are:

0 Halting debug-mode disabled

1 Halting debug-mode enabled.

If the external interface input DBGEN is LOW, the HDBGen bit reads as 0. The
programmed value is masked until DBGEN is taken HIGH. When DBGEN goes HIGH, the
value read and the behavior of the processor correspond to the programmed value.

Note
 It is the programmed value of the HDBGen bit, not the value returned by reads of the

DBGDSCR, that is saved by the OS Save and Restore Register in a power-down sequence.
For more information, see The OS Save and Restore mechanism on page C6-8.

ITRen, bit [13]

Execute ARM instruction enable bit. This bit enables the execution of ARM instructions
through the DBGITR, see Instruction Transfer Register (DBGITR) on page C10-46. The
possible values of this bit are:

0 ITR mechanism disabled

1 The ITR mechanism for forcing the processor to execute instructions in Debug
state via the external debug interface is enabled.

Setting this bit to 1 when the processor is in Non-debug state causes UNPREDICTABLE
behavior. The effect of writing to DBGITR when this bit is set to 0 is UNPREDICTABLE.

The implementation of this bit can depend on the Debug architecture version:

ARMv6 If the external debug interface does not have a mechanism for forcing the
processor to execute instructions in Debug state via the external debug interface,
this bit is RAZ/WI.

v7 Debug This bit, and the DBGITR, are required.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C10-15

Debug Registers Reference
UDCCdis, bit [12]

User mode access to Communications Channel disable bit. The possible values of this bit
are:

0 User mode access to Communication Channel enabled

1 User mode access to Communication Channel disabled.

When this bit is set to 1, if a User mode process tries to access the DBGDIDR,
DBGDSCRint, DBGDTRRXint, or DBGDTRTXint through CP14 operations, the
Undefined Instruction exception is taken. Setting this bit to 1 prevents User mode access to
any CP14 debug register.

INTdis, bit [11]

Interrupts Disable bit. This bit can be used to mask the taking of IRQs and FIQs. The
possible values of this bit are:

0 interrupts enabled

1 interrupts disabled.

If the external debugger needs to execute a piece of code in Non-debug state as part of the
debugging process, but that code must not be interrupted, the external debugger sets this bit
to 1.

For example, when single stepping code in a system with a periodic timer interrupt, the
period of the interrupt is likely to be more frequent than the stepping frequency of the
debugger. In this situation, if the debugger steps the target without setting the INTdis bit to 1
for the duration of the step, the interrupt is pending. This means that, if interrupts are
enabled in the CPSR, the interrupt is taken as soon as the processor leaves Debug state.

The INTdis bit is ignored when either:

• DBGDSCR[15:14] == 0b00

• DBGEN is LOW.

For more information about the debug authentication signals see Chapter C2 Invasive
Debug Authentication.

Note
 If implemented, the ISR always reflects the status of the IRQ and FIQ signals, regardless of

the value of the INTdis bit. For more information, see c12, Interrupt Status Register (ISR)
on page B3-150.

DBGack, bit [10]

Force Debug Acknowledge bit. A debugger can use this bit to force any implemented debug
acknowledge output signals to be asserted. The possible values of this bit are:

0 Debug acknowledge signals under normal processor control

1 Debug acknowledge signals asserted, regardless of the processor state.

For details of the recommended external debug interface, see Run-control and
cross-triggering signals on page AppxA-5 and DBGACK and DBGCPUDONE on
page AppxA-7.
C10-16 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug Registers Reference
If a debugger sets this bit to 1, it can then cause the processor to execute instructions in
Non-debug state, while the rest of the system behaves as if the processor is in Debug state.

Note
 The effect of setting DBGack to 1 takes no account of the DBGEN and SPIDEN signals.

This means it asserts the debug acknowledge signals regardless of the invasive debug
authentication settings.

Bit [9], v7 Debug

Reserved, UNK/SBZP.

DBGnoPWRDWN, bit [9], v6 Debug and v6.1 Debug only

Debug no power-down bit. This bit can be used to drive a debug no power-down output
signal, DBGNOPWRDWN. The possible values of this bit are:

0 DBGNOPWRDWN driven LOW

1 DBGNOPWRDWN driven HIGH.

Note
 • In v6 Debug and v6.1 Debug, this bit is not defined, but many implementations

define DBGDSCR[9] as the DBGnoPWRDWN bit. If this bit is not implemented,
DBGDSCR[9] is UNK/SBZP.

• In v7 Debug this use of this bit is replaced by the DBGnoPWRDWN bit in the
DBGPRCR, see Device Power-down and Reset Control Register (DBGPRCR),
v7 Debug only on page C10-31.

UND_l, bit [8], v6.1 Debug and v7 Debug

Sticky Undefined Instruction bit. This flag is set to 1 by any Undefined Instruction
exceptions generated by instructions issued to the processor while in Debug state. The
possible values of this bit are:

0 No Undefined Instruction exception has been generated since the last time this
bit was cleared to 0

1 An Undefined Instruction exception has been generated since the last time this
bit was cleared to 0.

The method of clearing this flag to 0, and the behavior of the flag, depends on the version
of the Debug architecture:

v6.1 Debug

This flag is cleared to 0 when the external debugger reads the DBGDSCR.

v7 Debug This flag is cleared to 0 only by writing to bit [2] of the DBGDRCR, see Debug
Run Control Register (DBGDRCR), v7 Debug only on page C10-29.

Leaving Debug state with this flag set to 1 causes UNPREDICTABLE behavior.

When the processor is in Non-debug state, this flag is not set to 1 by an Undefined
Instruction exception.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C10-17

Debug Registers Reference
For more information, see Exceptions in Debug state on page C5-20.

Bit [8], v6 Debug only

Reserved, UNK/SBZP.

ADABORT_l, bit [7], v7 Debug

Sticky Asynchronous Data Abort bit. This flag is set to 1 by any asynchronous abort that
occurs when the processor is in Debug state and is discarded because the ADAdiscard bit,
bit [19], is set to 1. The possible values of this bit are:

0 No asynchronous abort has been discarded since the last time this bit was
cleared to 0

1 An asynchronous abort has been discarded since the last time this bit was
cleared to 0.

This flag is cleared to 0 only by writing to bit [2] of the DBGDRCR, see Debug Run Control
Register (DBGDRCR), v7 Debug only on page C10-29.

Leaving Debug state with this flag set to 1 causes UNPREDICTABLE behavior.

When the processor is in Non-debug state this flag is never set to 1 when an asynchronous
abort occurs.

For more information, see Asynchronous aborts and entry to Debug state on page C5-5 and
Exceptions in Debug state on page C5-20.

ADABORT_l, bit [7], v6 Debug and v6.1 Debug

Sticky Asynchronous Data Abort bit. This flag is set to 1 by any asynchronous abort that
occurs when the processor is in Debug state. The possible values of this bit are:

0 No asynchronous abort has occurred since the last time this bit was cleared to 0

1 An asynchronous abort has occurred since the last time this bit was cleared to 0.

This flag is cleared to 0 when the external debugger reads the DBGDSCR.

Some aspects of the behavior of this flag depend on the version of the Debug architecture:

v6.1 Debug
If the processor is in Non-debug state this flag is not set to 1 on an asynchronous
abort.

v6 Debug The value of this flag is UNKNOWN when either the processor is in Non-debug
state, or the ITRen bit, bit [13], is not set to 1.

For more information, see Asynchronous aborts and entry to Debug state on page C5-5 and
Exceptions in Debug state on page C5-20.
C10-18 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug Registers Reference
SDABORT_l, bit [6]

Sticky Synchronous Data Abort bit. This flag is set to 1 by any Data Abort exception that is
generated by a synchronous data abort when the processor is in Debug state. The possible
values of this bit are:

0 No Data Abort exception has been generated by a synchronous data abort since
the last time this bit was cleared to 0

1 A Data Abort exception has been generated by a synchronous data abort since
the last time this bit was cleared to 0.

The behavior of the DBGITR depends on the value of the SDABORT_l bit, see Instruction
Transfer Register (DBGITR) on page C10-46.

The method of clearing this flag to 0 depends on the version of the Debug architecture:

v7 Debug This flag is cleared to 0 only by writing to bit [2] of the DBGDRCR, see Debug
Run Control Register (DBGDRCR), v7 Debug only on page C10-29.

ARMv6 This flag is cleared to 0 when the external debugger reads the DBGDSCR.

Some aspects of the behavior of this flag depend on the version of the Debug architecture:

v7 Debug If the processor is in Non-debug state this flag is not set to 1 on a synchronous
Data Abort exception.

Leaving Debug state with this flag set to 1 causes UNPREDICTABLE behavior.

v6.1 Debug
If the processor is in Non-debug state this flag is not set to 1 on a synchronous
Data Abort exception.

v6 Debug If the processor is in Non-debug state, the value of this flag is UNKNOWN.

For more information, see Exceptions in Debug state on page C5-20.

MOE, bits [5:2]

Method of Debug Entry field. The permitted values of this field depend on the Debug
architecture. For details of this field see Method of Debug entry on page C10-26.

RESTARTED, bit [1]

Processor Restarted bit. The possible values of this bit are:

0 The processor is exiting Debug state. This bit only reads as 0 between receiving
a restart request, and restarting Non-debug state operation.

1 The processor has exited Debug state. This bit remains set to 1 if the processor
re-enters Debug state.

After making a restart request, the debugger can poll this bit until it is set to 1. At that point
it knows that the restart request has taken effect and the processor has exited Debug state.

Note
 Polling the HALTED bit until it is set to 0 is not safe because the processor could re-enter

Debug state as a result of another debug event before the debugger samples the DBGDSCR.

See Chapter C5 Debug State for a definition of Debug state.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C10-19

Debug Registers Reference
HALTED, bit [0]

Processor Halted bit. The possible values of this bit are:

0 The processor is in Non-debug state.

1 The processor is in Debug state.

Note
 Between receiving a restart request and restarting Non-debug state operation,

the processor is in Debug state and this bit reads as 1

After programming a debug event, the external debugger can poll this bit until it is set to 1.
At that point it knows that the processor has entered Debug state.

See Chapter C5 Debug State for a definition of Debug state.

Table C10-1 shows the access to each field of the DBGDSCR, and the reset value of each field. It also shows
the Debug architecture versions in which each field is defined.

Table C10-1 DBGDSCR bit access and reset values

Bits Field name Version Accessa Reset valueb

[31] - - UNK/SBZP -

[30] RXfull All Read-only 0

[29] TXfull All Read-only 0

[28] - - UNK/SBZP -

[27] RXfull_l v7 Debug Read-only 0

[26] TXfull_l v7 Debug Read-only 0

[25] PipeAdv v7 Debug Read-only UNKNOWN

[24] InstrCompl_l v7 Debug Read-only UNKNOWN

[23:22] - - UNK/SBZP -

[21:20] ExtDCCmode v7 Debug Read/write 00

[19] ADAdiscard v6.1 Debug, v7 Debug Read-only or
Read/writec

0

[18] NS v6.1 Debug, v7 Debug Read-only f

[17] SPNIDdis v6.1 Debug, v7 Debug Read-only f

[16] SPIDdis v6.1 Debug, v7 Debug Read-only f

[15] MDBGen All RWInt 0
C10-20 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug Registers Reference
Access controls on the external view of the DCC registers and DBGITR,
v7 Debug only

In v7 Debug, the DBGDSCR.ExtDCCmode field determines the external DCC access mode. This access
mode, operating with flags in the DBGDSCR, controls all accesses made to DBGDTRRXext and
DBGDTRTXext, and also controls some accesses to the Instruction Transfer Register DBGITR.

The DBGDSCR includes a ready flag and a latched ready flag for each of the registers DBGDTRRXext and
DBGDTRTXext, and a latched ready flag for the DBGITR:

• RXfull and RXfull_l are the ready and latched ready flags for the DBGDTRRXext register

• TXfull and TXfull_l are the ready and latched ready flags for the DBGDTRTXext register

• InstrCompl_l is the latched ready flag for the DBGITR.

[14] HDBGen All RWExt 0

[13] ITRen All RWExt 0

[12] UDCCdis All RWInt 0

[11] INTdis All RWExt 0

[10] DBGack All RWExt 0

[9] DBGnoPWRDWN v6 Debug, v6.1 Debugd RWExt 0

[8] UND_l v6.1 Debug, v7 Debug Read-only e 0

[7] ADABORT_l All Read-only e 0

[6] SDABORT_l All Read-only e 0

[5:2] MOE All RWInt 0

[1] RESTARTED All Read-only f

[0] HALTED All Read-only f

a. For more information, including the meaning of RWInt and RWExt, see Access to the DBGDSCR on
page C10-27.

b. Debug logic reset value, the value after a debug logic reset.
c. The ADAdiscard bit can be read/write. This is IMPLEMENTATION DEFINED, see Asynchronous aborts and

entry to Debug state on page C5-5.
d. For more information, see the v6 Debug and v6.1 Debug description of this field.
e. For details of how these bits are cleared to 0 see the descriptions of the bits. The method depends on the

Debug architecture version.
f. These are read-only status bits that reflect the current state of the processor.

Table C10-1 DBGDSCR bit access and reset values (continued)

Bits Field name Version Accessa Reset valueb
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C10-21

Debug Registers Reference
The ready flag for the DBGITR, InstrCompl, is an internal flag that cannot be accessed through any
register.

For details of the ready state of each flag, and details of when the latched flags are updated, see the
descriptions of the DBGDSCR flag bits.

Different external DCC access modes require the debugger to execute different sequences of accesses to the
DBGDTRRXext and DBGDTRTXext registers, and to the DBGITR. This can affect the total number of
accesses required.

Table C10-2 shows the three external DCC access modes:

Note
 • Non-blocking mode is the default setting because improper use of the other modes can result in the

external debug interface becoming deadlocked.

• For information that applies to all access modes see Restrictions on accesses to DBGITR,
DBGDTRRXext and DBGDTRTXext on page C10-25.

See Instruction and data transfer registers on page C10-40. The external DCC access mode field has no
effect on accesses to DBGDTRRXint and DBGDTRTXint.

Non-blocking mode

When Non-blocking mode is selected, reads from DBGDTRTXext and writes to DBGDTRRXext and
DBGITR are ignored when the appropriate latched ready flag is not in the ready state:

• if RXfull_l is set to 1, writes to DBGDTRRXext are ignored

• if InstrCompl_l is set to 0, writes to DBGITR are ignored

• if TXfull_l is set to 0, reads from DBGDTRTXext are ignored and return an UNKNOWN value.

Following a successful write to DBGDTRRXext, RXfull and RXfull_l are set to 1.

Following a successful read from DBGDTRTXext, TXfull and TXfull_l are cleared to 0.

Following a successful write to DBGITR, InstrCompl and InstrCompl_l are cleared to 0.

Table C10-2 Meaning of the external DCC access mode values

DBGDSCR.ExtDCCmode External DCC access mode Description

0b00 Non-blocking mode Non-blocking mode

0b01 Stall mode Stall mode on page C10-23

0b10 Fast mode Fast mode on page C10-23
C10-22 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug Registers Reference
Debuggers accessing these registers must first read DBGDSCRext. This has the side-effect of copying
RXfull and TXfull to RXfull_l and TXfull_l, and setting InstrCompl_l. The debugger can then use the
returned value to determine whether a subsequent access to these registers will be ignored.

Stall mode

When Stall mode is selected, accesses to DBGDTRRXext, DBGDTRTXext, and DBGITR are modified
such that each access stalls under the following conditions:

• writes to DBGDTRRXext are not completed until RXfull is 0

• writes to DBGITR are not completed until InstrCompl is 1

• reads from DBGDTRTXext are not completed until TXfull is 1.

If an access is stalled in this way you cannot access any of the debug registers until the stalled
DBGDTRRXext, DBGDTRTXext, or DBGITR access completes. For more information about stalled
accesses see Stalling of accesses to the DCC registers on page C10-25.

Following a write to DBGDTRRXext or DBGITR, or a read from DBGDTRTXext, the flags InstrCompl,
InstrCompl_l, RXfull, RXfull_l, TXfull, and TXfull_l are set as in Non-blocking mode on page C10-22.

Note
 The rules used in Non-blocking mode for ignoring accesses based on the values of the latched flags
InstrCompl_l, RXfull_l and TXfull_l do not apply in Stall mode.

Stall mode can be selected when the processor is in Non-debug state. However, because Stall mode blocks
the interface to the debug registers until the processor issues the correct MCR or MRC instruction to unblock the
access, ARM recommends that you do not use Stall mode in cases where the external debugger does not
have complete control over the instructions executing on the processor.

Accesses to DBGDTRRXext and DBGDTRTXext through the Extended CP14 interface are
UNPREDICTABLE when Stall mode is selected.

Fast mode

If Fast mode is selected and the DBGDSCR.ITRen bit is 0, or the processor is in Non-debug state, the results
are UNPREDICTABLE.

When Fast mode is selected, a write to the DBGITR does not trigger an instruction for execution. Instead,
the instruction is latched. The latched value is retained until either a new value is written to the DBGITR,
or the access mode is changed.

For accesses through the external debug interface or the memory-mapped interface:

• when an instruction is latched, any read of DBGDTRTXext or write to DBGDTRRXext causes the
processor to execute the latched instruction

• when no instruction is latched, any access to DBGDTRRXext or DBGDTRTXext is UNPREDICTABLE.

Any access to DBGDTRRXext or DBGDTRTXext through the Extended CP14 interface is
UNPREDICTABLE.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C10-23

ARM_2009_Q4
Inserted Text

If the DBGDSCR.SDABORT_l bit is set to 1, the processor ignores writes to DBGITR. In this case the processor does not issue an instruction from the ITR, and the InstrCompl and InstrCompl_l flags are unchanged.

ARM_2009_Q4
Inserted Text

If the DBGDSCR.SDABORT_l bit is set to 1, the processor ignores writes to DBGITR. In this case the processor does not issue an instruction from the ITR, and the InstrCompl and InstrCompl_l flags are unchanged.

Debug Registers Reference
Fast mode enables a single instruction to be executed repeatedly, without reloading the DBGITR.

In Fast mode:

• Writes to DBGITR do not trigger an instruction to be executed. If a previously issued instruction is
executing, it must not be affected by the write to the DBGITR. Implementations can choose to stall
the write until InstrCompl is set to 1 to achieve this requirement.

• Writes to DBGDTRRXext:

— are not completed until InstrCompl is set to 1

— write the data to the DBGDTRRX Register

— issue the instruction last written to DBGITR. If the issued instruction reads from
DBGDTRRXint, the instruction reads the value written to DBGDTRRXext by this write.

If RXfull is set to 1 before the write, then after the write the values of DBGDTRRX and the RXfull
and RXfull_l flags in the DBGDSCR are UNKNOWN.

• Reads from DBGDTRTXext:

— Are not completed until InstrCompl is set to 1.

— Return the data from the DBGDTRTX.

— Issue the instruction last written to the DBGITR. If the issued instruction writes to
DBGDTRTXint, the instruction does not affect the value returned from this read of
DBGDTRTXext. That is, this instruction can write the next DBGDTRTXext value to be read.

If TXfull is set to 0 before the read, then after the read the values of DBGDTRTX and the TXfull and
TXfull_l flags in the DBGDSCR are UNKNOWN.

If a Fast mode access is stalled you cannot access any of the debug registers until the stalled
DBGDTRRXext, DBGDTRTXext, or DBGITR access completes. For more information about stalled
accesses see Stalling of accesses to the DCC registers on page C10-25.

Note
 The rules used in Non-blocking mode for ignoring accesses based on the values of the latched flags
InstrCompl_l, RXfull_l and TXfull_l do not apply in Fast mode.

If the DBGDSCR.SDABORT_l bit is set to 1, reads of DBGDTRTXext and writes to DBGDTRTXext do
not cause the latched instruction to be executed by the processor, and the access completes immediately. In
these cases:

• reading DBGDTRTXext returns an UNKNOWN value, and the values of DBGDTRTX and the TXfull
and TXfull_l flags become UNKNOWN

• if you write to DBGDTRRXext, the values of DBGDTRRX and the RXfull and RXfull_l flags in the
DBGDSCR become UNKNOWN.

Otherwise, following a write to DBGDTRRXext or DBGITR, or a read from DBGDTRTXext, the flags
InstrCompl, InstrCompl_l, RXfull, RXfull_l, TXfull, and TXfull_l are set as in Non-blocking mode on
page C10-22.
C10-24 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
R

Debug Registers Reference
Stalling of accesses to the DCC registers

In Stall mode and Fast mode, accesses to the DCC registers can stall:

• The mechanism by which an access is stalled by the external debug interface must be defined by the
external debug interface. For details of how accesses are stalled by the recommended ARM Debug
Interface v5, see the ARM Debug Interface v5 Architecture Specification.

• The mechanism by which an access is stalled by the memory-mapped interface must be defined by
the memory-mapped interface.

• A stall is a side-effect of an access. If the debug logic is in a state where an access has no side-effects,
the access does not stall. For more information about debug logic states in which accesses have no
side effects see Permission summaries for memory-mapped and external debug interfaces on
page C6-45.

Note
 When the selected DCC access mode is Stall mode or Fast mode, all accesses through the Extended CP14
interface are UNPREDICTABLE.

Restrictions on accesses to DBGITR, DBGDTRRXext and DBGDTRTXext

If an access is made when the OS Lock is set or when the Sticky Power-down status bit is set to 1, then:

• the access generates an error response

• register reads have no side-effects

• register writes are ignored

• the flags remain unchanged.

This applies both to accesses through the external debug interface and to accesses through the
memory-mapped interface.

If an access is made through the memory-mapped interface when the Software Lock is set then:

• register reads have no side-effects

• register writes are ignored

• the flags remain unchanged.

For more information, see Permission summaries for memory-mapped and external debug interfaces on
page C6-45.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C10-25

Debug Registers Reference
Method of Debug entry

The Method of Debug Entry is indicated by the DBGDSCR.MOE field. Table C10-3 shows the meanings
of the possible values of the DBGDSCR.MOE field, and also shows:

• the versions of the Debug architecture for which each value is permitted

• the section where the corresponding method of entry is described.

A Prefetch Abort or Data Abort handler can determine whether a debug event occurred by checking the
value of the relevant Fault Status Register, IFSR or DFSR. It then uses the DBGDSCR.MOE bits to
determine the specific debug event.

In v6 Debug, the DBGDSCR can be checked first to determine whether an abort has occurred, and hence
whether the abort handler jumps to the debug monitor or not. In v6.1 Debug and v7 Debug the D-side abort
occurred and I-side abort occurred encodings are reserved. Therefore, an abort handler must always check
the IFSR or DFSR first.

Table C10-3 Meaning of Method of Debug Entry values

MOE
bits

Debug
versions

Debug entry caused by: Section, notes

0000 All Halt Request debug event Halting debug events on page C3-38.

0001 All Breakpoint debug event. Breakpoint debug events on page C3-5.

0010 All Asynchronous Watchpoint debug event. Watchpoint debug events on page C3-15.

0011 All BKPT Instruction debug event. BKPT Instruction debug events on page C3-20.

0100 All External Debug Request debug event. Halting debug events on page C3-38.

0101 All Vector Catch debug event. Vector Catch debug events on page C3-20.

0110 v6 only D-side abort. This MOE value is reserved in v6.1 and v7.

0111 v6 only I-side abort. This MOE value is reserved in v6.1 and v7.

1000 v7 OS Unlock Catch debug event. Halting debug events on page C3-38.

This MOE value is reserved in v6 and v6.1.

1001 All Reserved. -

1010 v7 Synchronous Watchpoint debug event. Watchpoint debug events on page C3-15

This MOE value is reserved in v6 and v6.1.

1011-
1111

All Reserved. -
C10-26 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug Registers Reference
When debug is disabled, and when debug events are not permitted, the BKPT instruction generates a debug
exception rather than being ignored. The DBGDSCR, IFSR, and IFAR are set as if a BKPT Instruction
debug exception occurred. See Effects of debug exceptions on CP15 registers and the DBGWFAR on
page C4-4. For security reasons, monitor software might need to check that debug was enabled and that the
debug event was permitted before communicating with an external debugger.

In v7 Debug support for synchronous watchpoint events is added, see Synchronous and Asynchronous
Watchpoint debug events on page C3-18.

Access to the DBGDSCR

In the Access column of Table C10-1 on page C10-20, read/write bits in the DBGDSCR are indicated by
either RWInt or RWExt.

In v6 Debug and v6.1 Debug:

• the meanings of the RWInt and RWExt indications are:

RWInt The bit is read/write in the internal view of the register, and read-only in the external view.

RWExt The bit is read/write in the external view of the register, and read-only in the internal view.

• the internal view, DBGDSCRint, is accessed using coprocessor instructions

• the external view, DBGDSCRext, is accessed through the external debug interface.

In v7 Debug:

• all read/write bits, whether indicated by RWInt or RWExt, are read/write in DBGDSCRext

• DBGDSCRext can be accessed through the Extended CP14 interface, the memory-mapped interface,
and the external debug interface

• DBGDSCRint is read-only, and is accessed using coprocessor instructions.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C10-27

Debug Registers Reference
C10.3.2 Watchpoint Fault Address Register (DBGWFAR)

The Watchpoint Fault Address Register, DBGWFAR, returns information about the address of the
instruction that accessed a watchpointed address.

The DBGWFAR:

• is debug register 6 at offset 0x018

• is a read/write register

• is implemented differently in different versions of the Debug architecture:

v6 Debug In v6 Debug, the DBGWFAR can be accessed only through CP15.

v6.1 Debug
In v6.1 Debug, the DBGWFAR can be accessed through the debug register interfaces,
and using the CP15 access is deprecated.

 v7 Debug In v7 Debug, the CP15 encoding used for the DBGWFAR in v6 Debug is UNDEFINED in
User mode and UNPREDICTABLE in privileged modes. The DBGWFAR can be accessed
only through the debug register interfaces.

The format of the DBGWFAR is:

(Instruction address) + offset, bits [31:0]

When Watchpoint debug events are permitted, on every Watchpoint debug event the
DBGWFAR is updated with the address of the instruction that accessed the watchpointed
address plus an offset that depends on the processor instruction set state when the instruction
was executed:

• 8 if the processor was in ARM state

• 4 if the processor was in Thumb or ThumbEE state

• an IMPLEMENTATION DEFINED offset if the processor was in Jazelle state.

See Memory addresses on page C3-23 for a definition of the Instruction Virtual Address
(IVA) used to update the DBGWFAR.

The debug logic reset value of the DBGWFAR is UNKNOWN.

A processor with a trivial implementation of the Jazelle extension can implement DBGWFAR[0] as
RAZ/WI, see Trivial implementation of the Jazelle extension on page B1-81 for more information. In such
an implementation, software must use a SBZP policy when writing to DBGWFAR[0].

31 0

(Instruction address) + offset
C10-28 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2008_Q4
Inserted Text

ARM deprecates using DBGWFAR to determine the address of the instruction that triggered a synchronous Watchpoint debug event. For more information see:
 • Effects of debug exceptions on CP15 registers and the DBGWFAR on page C4-4 [PDF page 1652]
 • Effect of entering Debug state on CP15 registers and the DBGWFAR on page C5-4. [PDF page 1658]

ARM_2008_Q4
Inserted Text
• When the Security Extensions are implemented, is a Common register.

Debug Registers Reference
C10.3.3 Debug Run Control Register (DBGDRCR), v7 Debug only

The Debug Run Control Register, DBGDRCR, requests the processor to enter or leave Debug state. It is also
used to clear to 0 the sticky exception bits in the DBGDSCR.

The DBGDRCR is:

• debug register 36, at offset 0x090

• a write-only register

• implemented only in v7 Debug

• when the Security Extensions are implemented, a Common register.

In v6 Debug and v6.1 Debug, register 36 is not defined.

The format of the DBGDRCR is:

Bits [31:5] Reserved, SBZ.

Cancel BIU Requests, bit [4]

Cancel Bus Interface Unit Requests bit. The actions on writing to this bit are:

0 no action

1 cancel pending accesses.

See Cancel Bus Interface Unit (BIU) Requests on page C10-30. It is IMPLEMENTATION
DEFINED whether this feature is supported. If this feature is not implemented, writes to this
bit are ignored.

It is UNPREDICTABLE whether a write of 1 to this bit has any effect when the processor is
powered-down.

Clear Sticky Pipeline Advance flag, bit [3]

This bit is used to clear the DBGDSCR.PipeAdv bit, the Sticky Pipeline Advance bit, to 0.
The actions on writing to this bit are:

0 no action

1 clear the DBGDSCR.PipeAdv bit to 0.

When the processor is powered down, it is UNPREDICTABLE whether a write of 1 to this bit
clears DBGDSCR.PipeAdv to 0.

31 5 4 3 2 1 0

Reserved, SBZ

Cancel BIU Requests
Clear Sticky Pipeline Advance flag

Clear Sticky Exceptions flags
Restart request

Halt request
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C10-29

ARM_2009_Q3
Inserted Text

ARM deprecates using the Extended CP14 interface to access DBGDRCR.

Debug Registers Reference
Clear Sticky Exceptions flags, bit [2]

This bit is used to clear the sticky exceptions flags in the DBGDSCR to 0. The actions on
writing to this bit are:

0 no action

1 clear DBGDSCR[8:6] to 0b000.

Writing 1 to this bit clears the DBGDSCR.UND_l, DBGDSCR.ADABORT_l, and
DBGDSCR.SDABORT_l sticky exceptions flags, DBGDSCR[8:6], to 0b000.

When the processor is in Non-debug state, it is UNPREDICTABLE whether a write of 1 to this
bit clears DBGDSCR[8:6] to 0b000.

When the processor is in Debug state, it can leave Debug state by performing a a single write
to DBGDRCR with DBGDRCR[2:1] = 0b11. This:

• clears DBGDSCR[8:6] to 0b000

• requests exit from Debug state.

Restart request, bit [1]

Restart request bit. The actions on writing to this bit are:

0 no action

1 request exit from Debug state.

Writing 1 to this bit requests that the processor leaves Debug state. This request is held until
the processor exits Debug state.

Once the request has been made, the debugger can poll the DBGDSCR.RESTARTED bit
until it reads 1.

Writes to this bit are ignored if the processor is in Non-debug state.

Halt request, bit [0]

Halt request bit. The actions on writing to the this bit are:

0 no action

1 request entry to Debug state.

Writing 1 to this bit requests that the processor enters Debug state. This request is held until
the processor enters Debug state, see Halting debug events on page C3-38.

Once the request has been made, the debugger can poll the DBGDSCR.HALTED bit until
it reads 1.

Writes to this bit are ignored if the processor is already in Debug state.

Cancel Bus Interface Unit (BIU) Requests

When support for Cancel BIU Requests is implemented, if 1 is written to the Cancel BIU Requests bit, the
processor cancels any pending Bus Interface Unit Request accesses until Debug state is entered. This means
it cancels any pending accesses to the system bus. When this request is made an implementation must
abandon all data load and store accesses. It is IMPLEMENTATION DEFINED whether other accesses, including
instruction fetches and cache operations, are also abandoned.
C10-30 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug Registers Reference
Debug state entry is the acknowledge event that clears this request.

Abandoned accesses have the following behavior:

• an abandoned data store writes an UNKNOWN value to the target address

• an abandoned data load returns an UNKNOWN value to the register bank

• an abandoned instruction fetch returns an UNKNOWN instruction for execution

• an abandoned cache operation leaves the memory system in an UNPREDICTABLE state.

However, an abandoned access does not cause any exception.

Additional BIU requests, after Debug state has been entered, have UNPREDICTABLE behavior.

The number of ports on the processor and their protocols are implementation specific and, therefore, the
detailed behavior of this bit is IMPLEMENTATION DEFINED. It is also IMPLEMENTATION DEFINED whether this
behavior is supported on all ports of a processor. For example, an implementation can choose not to
implement this behavior on instruction fetches.

This control bit enables the debugger to release a deadlock on the system bus so Debug state can be entered.
This Debug state entry is imprecise, because the debugger only wants to know what the state of the processor
was at the time the deadlock occurred. At the point where the deadlock is released, one of the following must
be pending:

• a Halt request, made by also writing 1 to the Halt request bit of the DBGDRCR

• an External Debug request.

It might not be easy to infer the cause of the deadlock by reading the PC value after entering Debug state if,
for example, either:

• the processor has a non-blocking cache design or a write buffer

• the deadlocked access corresponded to a load to the PC.

The effect of this bit depends on the state of the external debug interface signals:

• If the processor implements Security Extensions, a write to this bit is ignored unless DBGEN and
SPIDEN are both HIGH, meaning that invasive debug is permitted in all processor states and modes.

• If the processor does not implement Security Extensions, a write to this bit is ignored unless DBGEN
is HIGH.

For details of invasive debug authentication see Chapter C2 Invasive Debug Authentication.

C10.3.4 Device Power-down and Reset Control Register (DBGPRCR), v7 Debug only

The Device Power-down and Reset Control Register, DBGPRCR, controls processor functionality related
to reset and power-down.

The DBGPRCR is:

• debug register 196, at offset 0x310

• a read/write register, with more restricted access to some bits

• implemented only in v7 Debug

• when the Security Extensions are implemented, a Common register.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C10-31

Debug Registers Reference
In v6 Debug and v6.1 Debug, register 196 is not defined.

The format of the DBGPRCR is:

Bits [31:3] Reserved, UNK/SBZP.

Hold non-debug logic reset, bit [2]

The effects of the possible values of this bit are:

0 Do not hold the non-debug logic reset on power-up or warm reset.

1 Hold the non-debug logic of the processor in reset on power-up or warm reset.
The processor is held in this state until this flag is cleared to 0.

Hold non-debug logic reset is an IMPLEMENTATION DEFINED feature. If it is implemented
writing 1 to this bit means the non-debug logic of the processor is held in reset after a
power-up or warm reset.

Note
 This bit never affects system power-up, because when implemented it resets to 0.

An external debugger can use this bit to prevent the processor running again before the
debugger has had the chance to detect a power-down occurrence and restore the state of the
debug registers inside the core power domain. Also, this bit can be used in conjunction with
an external reset controller to take the processor into reset and hold it there while the rest of
the system comes out of reset. This means a debugger can hold the processor in reset while
programming other debug registers.

The effect of this bit depends on the state of the external debug interface signals:

• If the processor implements the Security Extensions, the value of this bit is ignored
unless both the external debug interface signals DBGEN and SPIDEN are HIGH,
meaning that invasive debug is permitted in all processor states and modes.

• If the processor does not implement the Security Extensions, the value of this bit is
ignored unless DBGEN is HIGH.

For details of invasive debug authentication see Chapter C2 Invasive Debug Authentication.

If both features are supported, the bit can be written at the same time as the Warm reset
request bit to force the processor into reset and hold it there, for example while
programming other debug registers such as setting the Halt request bit of the DBGDRCR to
take the processor into Debug state on leaving Reset. For more information, see Debug Run
Control Register (DBGDRCR), v7 Debug only on page C10-29.

���

$�8��)��21������
�
���

"�G�&�,$",�

 &*�1�&�5��7:;1*&;�91��8��
1,4�D1��8��1��I:�8�
C10-32 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q3
Inserted Text

ARM deprecates using the Extended CP14 interface to write to DBGPRCR[2] or DBGPRCR[1].

Debug Registers Reference
Note
 When this bit is set to 1 the processor is not held in Debug state, and cannot enter Debug

state until released from reset. While the processor is held in reset it must not accept
instructions issued via the Instruction Transfer Register (DBGITR).

If Hold non-debug logic reset is not implemented this bit is RAZ/WI.

Warm reset request, bit [1]

The actions on writing to the Warm reset request bit are:

0 no action

1 request internal reset.

Warm reset request is an IMPLEMENTATION DEFINED feature. If it is implemented writing 1
to this bit issues a request for a warm reset. Typically the request is passed to an external
reset controller. This means that even when a processor implements Warm reset request,
whether a request causes a reset might be an IMPLEMENTATION DEFINED feature of the
system that contains the processor.

Note
 • This bit is always RAZ. Software must read the Sticky Reset status bit in the

DBGPRSR to determine the current reset status of the processor, see Device
Power-down and Reset Status Register (DBGPRSR), v7 Debug only on page C10-34.

• Warm reset request does not request the reset of any registers that are only reset on a
debug logic reset.

The external debugger can use this bit to force the processor into reset if it does not have
access to the nRESET input. The reset behavior is the same as warm reset driven by the
nRESET signal. A warm reset does not cause power-down.

The effect of this bit depends on the state of the external debug interface signals:

• If the processor implements the Security Extensions, a write to this bit is ignored
unless both the external debug interface signals DBGEN and SPIDEN are HIGH,
meaning that invasive debug is permitted in all processor states and modes.

• If the processor does not implement the Security Extensions, a write to this bit is
ignored unless DBGEN is HIGH.

For details of invasive debug authentication see Chapter C2 Invasive Debug Authentication.

Unless Hold non-debug logic reset, bit [2], is set to 1, the reset must be held only for long
enough to reset the processor. The processor then leaves the reset state.

Note
 If an implementation supports both features, both the Warm reset request and Hold

non-debug logic reset bits can be set to 1 in a single write to the DBGPRCR. In this case the
processor enters reset and is held there.

If Warm reset request is not implemented this bit is RAZ/WI.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C10-33

ARM_2008_Q4
Inserted Text

The debug logic reset value for the Hold non-debug logic reset bit is 0.

ARM_2008_Q4
Inserted Text

The debug logic reset value for the Warm reset request bit is 0.

Debug Registers Reference
DBGnoPWRDWN, bit [0]

No power-down bit, DBGnoPWRDWN. This bit controls the DBGNOPWRDWN signal,
if it is implemented. The possible values of this bit are:

0 drive DBGNOPWRDWN LOW

1 drive DBGNOPWRDWN HIGH.

DBGNOPWRDWN is an IMPLEMENTATION DEFINED feature. If it is implemented, setting
this bit drives the DBGNOPWRDWN signal HIGH, requesting the power controller to
work in an emulation mode where the processor is not actually powered down when
requested. For more information, see DBGNOPWRDWN on page AppxA-9.

If the DBGNOPWRDWN signal is not implemented this bit is RAZ/WI.

C10.3.5 Device Power-down and Reset Status Register (DBGPRSR), v7 Debug only

The Device Power-down and Reset Status Register, DBGPRSR, holds information about the reset and
power-down state of the processor.

The DBGPRSR is:

• debug register 197, at offset 0x314

• a read-only register, with reads of the register also resetting some register bits

• implemented only in v7 Debug

• when the Security Extensions are implemented, a Common register.

In v6 Debug and v6.1 Debug, register 197 is not defined.

The format of the DBGPRSR is:

Bits [31:4] Reserved, UNK.

Sticky Reset status, bit [3]

The meanings of the Sticky Reset status bit values are:

0 the non-debug logic of the processor has not been reset since the last time this
register was read

1 the non-debug logic of the processor has been reset since the last time this
register was read.

This bit is cleared to 0 on a read of the DBGPRSR when the non-debug logic of the
processor is not in reset state.

���

$�8��)��21���
��� �

���9H61�&>��5�&>�18�4�:8

���9H61$�8��18�4�:8
$�8��18�4�:8

�&>��5:?18�4�:8
C10-34 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2008_Q4
Inserted Text

The debug logic reset value for the DBGnoPWRDWN bit is 0.

Debug Registers Reference
When the non-debug logic of the processor is in reset state, the Sticky Reset status bit is set
to 1.

Reads of DBGPRSR made when the non-debug logic of the processor is in reset state return
1 for Sticky Reset status and do not change the value of Sticky Reset status.

Reads of DBGPRSR made when the non-debug logic of the processor is not in reset state
return the current value of Sticky Reset status, and then clear Sticky Reset status to 0.

Note
 • Reset state is defined in Reset state on page C10-37.

• On a read access, the Sticky Reset status bit can be cleared only as a side effect of the
read. When a read is made through the memory-mapped interface with the Software
Lock set, side-effects are not permitted, and therefore the bit is not cleared. For more
information, see Permission summaries for memory-mapped and external debug
interfaces on page C6-45.

• Bits [3:2] of DBGPRSR never read as 0b01.

The debug logic reset value for the Sticky Reset status bit is UNKNOWN.

Reset status, bit [2]

The meanings of the Reset status bit values are:

0 the non-debug logic of the processor is not currently held in reset state

1 the non-debug logic of the processor is currently held in reset state.

Note
 Reset state is defined in Reset state on page C10-37.

Reads of the DBGPRSR made when the non-debug logic of the processor is in reset state
return 1 for the Reset status.

Reads of the DBGPRSR made when the non-debug logic of the processor is not in reset state
return 0 for the Reset status.

Sticky Power-down status, bit [1]

The meanings of the Sticky Power-down status bit values are:

0 the processor has not powered down since the last time this register was read

1 the processor has powered down since the last time this register was read.

This bit is cleared to 0 on a read of the DBGPRSR when the processor is in the powered-up
state.

Note
 If the implementation supports separate core and debug power domains, the Sticky

Power-down status bit reflects the state of the core power domain. Powered-up and
powered-down are defined in Powered-up state on page C10-37.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C10-35

Debug Registers Reference
When the processor is in the powered-down state, the Sticky Power-down status bit is set
to 1.

Reads of DBGPRSR made when the processor is in the powered down state return 1 for
Sticky Power-down status and do not change the value of Sticky Power-down status.

Reads of DBGPRSR made when the processor is in the powered-up state return the current
value of Sticky Power-down status, and then clear Sticky Power-down status to 0.

Note
 • The value 0b00 for DBGPRSR[1:0], indicating certain of the debug registers cannot

be accessed but have not lost their value, is not permitted in v7 Debug.

• On a read access, the Sticky Power-down status bit can be cleared only as a side effect
of the read. When a read is made through the memory-mapped interface with the
Software Lock set, side-effects are not permitted, and therefore the bit is not cleared.
For more information, see Permission summaries for memory-mapped and external
debug interfaces on page C6-45.

If this bit is set to 1, accesses to certain registers return an error response. For more
information, see Permissions in relation to power-down on page C6-28.

The debug logic reset value for the Sticky Power-down status bit is UNKNOWN.

Power-up status, bit [0]

The meanings of the Power-up status bit values are:

0 The processor is powered-down. Certain debug registers cannot be accessed.

1 The processor is powered-up. All debug registers can be accessed.

Note
 If the implementation supports separate core and debug power domains, the Power-up status

bit reflects the state of the core power domain. Powered-up and powered-down are defined
in Powered-up state on page C10-37.

The Power-up status bit reads the value of the DBGPWRDUP input on the external debug
interface. For details of the DBGPWRDUP input see DBGPWRDUP on page AppxA-10.

Reads of DBGPRSR made when the processor is in the powered up state return 1 for
Power-up status.

Reads of DBGPRSR made when the processor is in the powered down state return 0 for
Power-up status.

For more information, see Power domains and debug on page C6-5.

Note
 If only a single power-domain is implemented:

• bit [0] of the DBGPRSR is RAO

• bit [1] of the DBGPRSR can be implemented as RAZ.
C10-36 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug Registers Reference
Reset state

In the reset scheme described in Recommended reset scheme for v7 Debug on page C6-16, the non-debug
logic of the processor enters reset state following the assertion of at least one of:

• the internal or warm reset input, nRESET

• The power-up reset inputs, nCOREPORESET and nSYSPORESET.

All of these reset signals are asserted LOW.

Also, writing 1 to the Warm reset request bit of the DBGPRCR might cause the non-debug logic of the
processor to enter reset state, see Device Power-down and Reset Control Register (DBGPRCR), v7 Debug
only on page C10-31.

The processor stops executing instructions before it enters reset state.

The non-debug logic of the processor remains in reset state until:

• all of the reset signals nRESET, nCOREPORESET, and nSYSPORESET, are deasserted HIGH

• the Hold warm reset bit in the Device Power-down and Reset Control Register (DBGPRCR) is 0.

Note
 One effect of asserting nSYSPORESET LOW is to place the debug logic into a reset state. In this state the
DBGPRSR is not accessible.

The processor then resumes execution of instructions with the Reset exception.

Powered-up state

The processor is in the powered-up state when DBGPWRDUP is HIGH, and is in the powered-down state
when DBGPWRDUP is LOW. Changing from powered-down state to powered-up state requires a reset of
the processor.

If the implementation supports separate core and debug power domains, powered-up and powered-down
state refer to the state of the core power domain.

Powered-up status is not affected by the reset state of the processor, whether that reset is:

• a power-up reset, nCOREPORESET or nSYSPORESET

• a warm reset, nRESET

• a reset occurring because the Hold non-debug logic reset bit in the Device Power-down and Reset
Control Register (DBGPRCR) is set to 1.

For more information, see Reset and power-down support on page C6-4.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C10-37

Debug Registers Reference
C10.3.6 Program Counter Sampling Register (DBGPCSR)

The Program Counter Sampling Register, DBGPCSR, enables a debugger to sample the Program Counter
(PC).

DBGPCSR is defined only in the v7 Debug architecture. However, an ARMv6 implementation might
implement DBGPCSR as part of the external debug interface.

In v7 Debug:

• It is IMPLEMENTATION DEFINED whether DBGPCSR is:

— not implemented

— implemented as debug register 33, at offset 0x084

— implemented as debug register 40, at offset 0x0A0

— implemented both as debug register 33 and as debug register 40.

• When DBGPCSR is implemented both as debug register 33 and as debug register 40, the two register
numbers are aliases of each other.

• You can determine whether, or how, DBGPCSR is implemented as follows:

— If DBGDIDR.PCSR_imp is 1, DBGPCSR is implemented as debug register 33. Otherwise,
reads of register 33 return an UNKNOWN value.

— If DBGDIDR.DEVID_imp is 1 and DBGDEVID.PCsample is non-zero, DBGPCSR is
implemented as debug register 40. Otherwise, debug register 40 is reserved.

When implemented, the DBGPCSR is:

• a read-only register

• when the Security Extensions are implemented, a Common register.

Any read through the Extended CP14 interface of a CP14 register that maps to the DBGPCSR is UNDEFINED
in User mode and UNPREDICTABLE in privileged modes.

ARM deprecates reading a PC sample through register 33 when the DBGPCSR is also implemented as
register 40.

The format of the DBGPCSR is:

Program Counter Sample value, bits [31:2]

The sampled value of bits [31:2] of the PC. The sampled value is an instruction address plus
an offset that depends on the processor instruction set state. See Memory addresses on
page C3-23 for a definition of the Instruction Virtual Address (IVA) read through the
DBGPCSR.

��

��&;�4D1�&:����1�4D?*�1)4*:�
���

%�4���;1&@1��1�4D?*�1�4*:�
C10-38 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug Registers Reference
Meaning of PC Sample Value, bits [1:0]

The permitted values of this field are:

0b00 ((DBGPCSR[31:2] << 2) - 8) references an ARM state instruction

0bx1 ((DBGPCSR[31:1] << 1) - 4) references a Thumb or ThumbEE state instruction

0b10 IMPLEMENTATION DEFINED.

This field encodes the processor instruction set state, so that the profiling tool can calculate
the true instruction address by subtracting the appropriate offset from the value sampled in
bits [31:2] of the register.

For more information about Program Counter sampling, see Program Counter sampling on page C8-2.

C10.3.7 Context ID Sampling Register (DBGCIDSR)

The Context ID Sampling Register, DBGCIDSR, samples the CONTEXTIDR whenever the Program
Counter Sampling Register, DBGPCSR, samples the Program Counter. This enables a debugger to associate
a Program Counter sample with the process running on the processor.

DBGCIDSR is defined only in the v7 Debug architecture. However, an ARMv6 implementation might
implement DBGCIDSR as part of the external debug interface.

In v7 Debug:

• It is IMPLEMENTATION DEFINED whether DBGCIDSR is implemented.

• If DBGDIDR.DEVID_imp is 1 and DBGDEVID.PCsample is 0b0010, DBGCIDSR is implemented
as debug register 41. Otherwise, debug register 41 is reserved.

When implemented, the DBGCIDSR is:

• debug register 41, at offset 0x0A4

• a read-only register

• when the Security Extensions are implemented, a Common register.

Any read through the Extended CP14 interface of the CP14 register that maps to the DBGCIDSR is
UNDEFINED in User mode and UNPREDICTABLE in privileged modes.

The format of the DBGCIDSR is:

CONTEXTIDR sample value, bits [31:0]

The value of the Context ID Register, CONTEXTIDR, associated with the last PC sample
read from DBGPCSR.

The core logic reset value of the DBGCIDSR is UNKNOWN.

For more information about Program Counter sampling, see Program Counter sampling on page C8-2.

�'�+(�+�"$184D?*�1)4*:�
���
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C10-39

Debug Registers Reference
C10.4 Instruction and data transfer registers

This section describes the registers that are used to transfer data between an external debugger and the ARM
processor. It contains the following subsections:

• Host to Target Data Transfer Register (DBGDTRRX)

• Target to Host Data Transfer Register (DBGDTRTX) on page C10-43

• Instruction Transfer Register (DBGITR) on page C10-46.

The following registers and flags form the Debug Communications Channel:

• the DBGDTRRX Register, see Host to Target Data Transfer Register (DBGDTRRX)

• the DBGDTRTX Register, see Target to Host Data Transfer Register (DBGDTRTX) on page C10-43

• the RXfull, TXfull, TXfull_l, and RXfull_l flags in the DBGDSCR, see:

— the flag descriptions in Debug Status and Control Register (DBGDSCR) on page C10-10

— Access controls on the external view of the DCC registers and DBGITR, v7 Debug only on
page C10-21.

C10.4.1 Host to Target Data Transfer Register (DBGDTRRX)

The Host to Target Data Transfer Register, DBGDTRRX, is used by an external host to transfer data to the
ARM processor. For example it is used by a debugger transferring commands and data to a debug target.

The DBGDTRRX Register is:

• Debug register 32, at offset 0x080.

• A component of the Debug Communication Channel (DCC).

• Accessed through two views:

— DBGDTRRXint, the internal view

— DBGDTRRXext, the external view.

See Internal and external views of the DBGDSCR and the DCC registers on page C6-21 for
definitions of the internal and external views.

• When the Security Extensions are implemented, a Common register.

The behavior of accesses to the DBGDTRRX Register depends on:

• which view is being accessed

• the values of flags in the DCC.

For more information, see Access to the DBGDTRRX Register on page C10-41.

The architectural status of the DBGDTRRX Register depends on the Debug architecture version:

ARMv6 DBGDTRRX was previously named rDTR. DBGDTRRXext is not defined in ARMv6.
However, the DBGDTRRXext functionality must be implemented as part of the external
debug interface.
C10-40 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug Registers Reference
v7 Debug The Extended CP14 interface instructions that access DBGDTRRXext, if implemented, are
UNPREDICTABLE in Debug state. For more information, see Internal and external views of
the DBGDSCR and the DCC registers on page C6-21 and Extended CP14 interface on
page C6-33.

The format of the DBGDTRRX Register is:

Host to target data, bits [31:0]

One word of data for transfer from the debug host to the debug target.

The debug logic reset value of the DBGDTRRX Register is UNKNOWN.

Access to the DBGDTRRX Register

The behavior on various accesses to the DBGDTRRX Register is described in the following tables:

• Table C10-4 shows the behavior of accesses to DBGDTRRXint

• Table C10-5 on page C10-42 shows the behavior of read accesses to DBGDTRRXext

• Table C10-6 on page C10-42 shows the behavior of write accesses to DBGDTRRXext.

To access the DBGDTRRXint Register you read the CP14 registers using either:

• an MRC instruction with <opc1> set to 0, <CRn> set to c0, <CRm> set to c5, and <opc2> set to 0

• an STC instruction with <CRd> set to c5.

Both instructions read only one word from the DBGDTRRXint Register. For example:

MCR p14,0,<Rd>,c0,c5,0 ; Read DBGDTRRXint Register
STC p14,c5,[<Rn>],#4 ; Read a word from the DBGDTRRXint Register and write it to memory

Note
 • If the STC instruction that reads DBGDTRRXint aborts, the contents of DBGDTRRX and the value

of the RXfull flag are UNKNOWN.

• The behavior on accesses to DBGDTRRXint does not depend on the value of RXfull_l,

31 0

Host to target data

Table C10-4 Behavior of accesses to DBGDTRRXint

Access RXfull Action New RXfull

Read 0 Returns an UNKNOWN value. Unchanged

1 Returns DBGDTRRX contents 0

Write X Not possible. There is no operation that writes to DBGDTRRXint -
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C10-41

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
MRC

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
.

Debug Registers Reference
• Accesses to DBGDTRRXint do not update the value of RXfull_l.

Accesses to DBGDTRRXext can be made through:

• the Extended CP14 interface, if implemented

• the memory-mapped interface, if implemented

• the external debug interface.

Table C10-5 Behavior of read accesses to DBGDTRRXext

Access modea Flagb Flag
value

Action New RXfull New RXfull_l

X RXfull 0 Returns an UNKNOWN value Unchanged Unchanged

1 Returns DBGDTRRX contents Unchanged Unchanged

a. For more information, see Access controls on the external view of the DCC registers and DBGITR,
v7 Debug only on page C10-21.

b. This column indicates which of the RXfull, RXfull_l and InstrCompl flags are used to control the access. The
access does not depend on the value of any other flags.

Table C10-6 Behavior of write accesses to DBGDTRRXext

Access
modea Flagb Flag

value
Action

New
RXfull

New
RXfull_l

Non-
blocking

RXfull_l 0 Writes to DBGDTRRXc 1c 1c

1 Write is ignored. Unchanged Unchanged

Stall RXfull 0 Writes to DBGDTRRXc 1c 1c

1 Stallsc until (RXfull = 0) - -

Fast InstrCompl 0 Stallsc until (InstrCompl = 1) - -

1 Writes to DBGDTRRXc, d and issues the
instruction from the DBGITRc, e

1c, d, e 1c, d, e

a. For more information, see Access controls on the external view of the DCC registers and DBGITR, v7 Debug only on
page C10-21.

b. This column indicates which of the RXfull, RXfull_l and InstrCompl flags are used to control the access. The access
does not depend on the value of any other flags.

c. If the write is made through the memory-mapped interface and the Software Lock is set, the registers are read-only and
accesses have no side-effects. This means that:

DBGDTRRX, RXfull, RXfull_l, InstrCompl and InstrCompl_l are unchanged
the access completes immediately
in Fast mode no instruction is issued.

For more information, see Permission summaries for memory-mapped and external debug interfaces on page C6-45.
C10-42 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug Registers Reference
C10.4.2 Target to Host Data Transfer Register (DBGDTRTX)

The Target to Host Data Transfer Register, DBGDTRTX, is used by the ARM processor to transfer data to
an external host. For example it is used by a debug target to transfer data to the debugger.

The DBGDTRTX Register is:

• Debug register 35, at offset 0x08C.

• A component of the Debug Communication Channel (DCC).

• Accessed through two views:

— DBGDTRTXint, the internal view

— DBGDTRTXext, the external view.

See Internal and external views of the DBGDSCR and the DCC registers on page C6-21 for
definitions of the internal and external views.

• When the Security Extensions are implemented, a Common register.

The behavior of accesses to the DBGDTRTX Register depends on:

• which view is being accessed

• the values of flags in the DCC.

For more information, see Access to the DBGDTRTX Register on page C10-44.

The architectural status of the DBGDTRRX Register depends on the Debug architecture version:

ARMv6 DBGDTRTX was previously named wDTR. DBGDTRTXext is not defined in ARMv6.
However, the DBGDTRTXext functionality must be implemented as part of the external
debug interface.

v7 Debug If implemented, the Extended CP14 interface instructions that access DBGDTRTXext are
UNPREDICTABLE in Debug state. For more information, see Internal and external views of
the DBGDSCR and the DCC registers on page C6-21 and Extended CP14 interface on
page C6-33.

The format of the DBGDTRTX Register is:

Target to host data, bits [31:0]

One word of data for transfer from the debug target to the debug host.

The debug logic reset value of the DBGDTRTX Register is UNKNOWN.

d. If RXfull is 1, the values of DBGDTRRX, RXfull, and RXfull_l become UNKNOWN.
e. If DBGDSCR.SDABORT_l, the Sticky Synchronous Data Abort bit, is set to 1, the instruction is not issued:

InstrCompl and InstrCompl_l are unchanged
the values of DBGDTRRX, RXfull and RXfull_l become UNKNOWN.

For a description of the DBGDSCR.SDABORT_l bit, see Debug Status and Control Register (DBGDSCR) on
page C10-10.
Otherwise, the instruction is issued and InstrCompl and InstrCompl_l are cleared to 0.

31 0

Target to host data
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C10-43

Debug Registers Reference
Access to the DBGDTRTX Register

The behavior on various accesses to the DBGDTRTX Register is described in the following tables:

• Table C10-7 shows the behavior of accesses to DBGDTRTXint

• Table C10-8 on page C10-45 shows the behavior of write accesses to DBGDTRTXext

• Table C10-9 on page C10-45 shows the behavior of read accesses to DBGDTRTXext.

To access the DBGDTRTXint Register you write the CP14 registers using either:

• an MCR instruction with <opc1> set to 0, <CRn> set to c0, <CRm> set to c5, and <opc2> set to 0

• an LDC instruction with <CRd> set to c5.

Both instructions write only one word to the DBGDTRTXint Register. For example:

MCR p14,0,<Rd>,c0,c5,0 ; Write DBGDTRTXint Register
LDC p14,c5,[<Rn>],#4 ; Read a word from memory and write it to the DBGDTRTXint Register

Note
 • If the LDC instruction that writes to DBGDTRTXint aborts, the contents of DBGDTRTX and the value

of the TXfull flag are UNKNOWN.

• The behavior on accesses to DBGDTRTXint does not depend on the value of TXfull_l

• Accesses to DBGDTRTXint do not update the value of TXfull_l.

Accesses to DBGDTRTXext can be made through:

• the Extended CP14 interface, if implemented

• the memory-mapped interface, if implemented

• the external debug interface.

Table C10-8 on page C10-45 shows the behavior of write accesses to DBGDTRTXext, and Table C10-9 on
page C10-45 shows the behavior of read accesses to DBGDTRTXext.

Table C10-7 Behavior of accesses to DBGDTRTXint

Access TXfull Action New TXfull

Read X Not possible. There is no operation that reads from DBGDTRTXint. -

Write 0 Writes value to DBGDTRTX. 1

1 UNPREDICTABLE. -
C10-44 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q4
Inserted Text
.

Debug Registers Reference
Table C10-8 Behavior of write accesses to DBGDTRTXext

Access modea Flagb Flag value Action New TXfull and TXfull_l

X X X Updates DBGDTRTX valuec Unchanged

a. For more information, see Access controls on the external view of the DCC registers and DBGITR,
v7 Debug only on page C10-21.

b. This column indicates which of the TXfull, TXfull_l and InstrCompl flags are used to control the access. The
access does not depend on the value of any other flags.

c. In the event of a race condition with writes to both DBGDTRTXint and DBGDTRTXext occurring, the result
is UNPREDICTABLE. Writes to DBGDTRTXext must only be performed under controlled circumstances, for
example when the processor is in Debug state.

Table C10-9 Behavior of read accesses to DBGDTRTXext

Access
modea Flagb Flag

value
Action

New
TXfull

New
TXfull_l

Non-blocking TXfull_l 0 Returns an UNKNOWN value. Unchanged Unchanged

1 Returns DBGDTRTX contents 0c 0c

Stall TXfull 0 Stallsc until (TXfull = 1) - -

1 Returns DBGDTRTX contents 0c 0c

Fast InstrCompl 0 Stallsc until (InstrCompl = 1) - -

1 Returns DBGDTRTX contentsd and
issues the instruction in the DBGITRc, e

0c, d, e 0c, d, e

a. For more information, see Access controls on the external view of the DCC registers and DBGITR, v7 Debug only on
page C10-21.

b. This column indicates which of the TXfull, TXfull_l and InstrCompl flags are used to control the access. The access
does not depend on the value of any other flags.

c. If the read is made through the memory-mapped interface and the Software Lock is set, the registers are read-only and
accesses have no side effects. This means that:

TXfull, TXfull_l, InstrCompl, and InstrCompl_l remain unchanged
the access completes immediately
if TXfull==1, the access returns the contents of DBGDTRTX, otherwise it returns an UNKNOWN value
in Fast mode no instruction is issued.

For more information, see Permission summaries for memory-mapped and external debug interfaces on page C6-45.
d. If TXfull is 0, this returns an UNKNOWN value and the values of DBGDTRTX, TXfull and TXfull_l become UNKNOWN.
e. The value returned is the value of DBGDTRTX before the instruction issued modifies the state of the processor.

If DBGDSCR.SDABORT_l, the Sticky Synchronous Data Abort bit, is set to 1, the instruction is not issued,
InstrCompl and InstrCompl_l remain unchanged, and the values of TXfull and TXfull_l become UNKNOWN. For a
description of the DBGDSCR.SDABORT_l bit, see Debug Status and Control Register (DBGDSCR) on page C10-10.
Otherwise, the instruction is issued and InstrCompl and InstrCompl_l are cleared to 0.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C10-45

Debug Registers Reference
C10.4.3 Instruction Transfer Register (DBGITR)

The Instruction Transfer Register, DBGITR, enables external debugger to transfer ARM instructions to the
processor for execution when the processor is in Debug state.

The DBGITR is:

• Debug register 33, at offset 0x084.

• A write-only register. However, accesses to the DBGITR also depend on:

— the processor state

— the values of the DBGDSCR.ExtDCCmode and DBGDSCR.ITRen fields, see Debug Status
and Control Register (DBGDSCR) on page C10-10

— the values of the DCC and InstrCompl_l flags.

For more information, see Accesses to the DBGITR.

• When the Security Extensions are implemented, a Common register.

The architectural status of the DBGITR depends on the Debug architecture version:

ARMv6 DBGITR is not defined in ARMv6. However, it might form part of the external debug
interface.

v7 Debug Writes through the Extended CP14 interface of the CP14 register that maps to the DBGITR
are UNDEFINED in User mode and UNPREDICTABLE in privileged modes.

The format of the DBGITR is:

ARM instruction to execute on the processor, bits [31:0]

The 32-bit encoding of an ARM instruction to execute on the processor.

The debug logic reset value of the DBGITR is UNKNOWN.

Accesses to the DBGITR

Writes to the DBGITR are UNPREDICTABLE when:

• the processor is in Non-debug state

• DBGDSCR.ITRen is set to 0.

Table C10-10 on page C10-47 shows the behavior of writes to the DBGITR when in Debug state with the
DBGDSCR.ITRen flag is set to 1.

31 0

ARM instruction to execute on the processor
C10-46 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug Registers Reference
If the write is made through the memory-mapped interface and the Software Lock is set to 1, writes to the
DBGITR are ignored and have no other side-effects. This means that:

• the DBGITR, and the InstrCompl and InstrCompl_l flags, remain unchanged

• no instruction is issued.

For more information, see Permission summaries for memory-mapped and external debug interfaces on
page C6-45.

Table C10-10 Behavior of write accesses to DBGITR

Access
modea Flagb Flag

value
Action

New
InstrCompl

New
InstrCompl_l

Non-
blocking

InstrCompl_l 0 Write is ignored Unchanged Unchanged

1 Issue instructionc 0c 0c

Stall InstrCompl 0 Stall until (InstrCompl = 0) - -

1 Issue instructionc 0c 0c

Fast Not applicable - Save instruction in DBGITRd - -

a. For more information, see Access controls on the external view of the DCC registers and DBGITR, v7 Debug only
on page C10-21.

b. This column indicates which flag controls the access. The access does not depend on the value of any other flag.
c. If DBGDSCR.SDABORT_l, the Sticky Synchronous Data Abort bit, is set to 1, the instruction is not issued and

InstrCompl remains unchanged. For a description of the DBGDSCR.SDABORT_l bit, see Debug Status and
Control Register (DBGDSCR) on page C10-10.

d. The instruction is saved in the DBGITR and is issued on a read of DBGDTRTXext or a write of DBGDTRRXext.
For more information, see Access controls on the external view of the DCC registers and DBGITR, v7 Debug only
on page C10-21.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C10-47

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Inserted Text
and InstrCompl_l

ARM_2009_Q4
Inserted Text
 processor ignores the write. This means the

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
1

Debug Registers Reference
C10.5 Software debug event registers

This section contains the following subsections:

• Breakpoint Value Registers (DBGBVR)

• Breakpoint Control Registers (DBGBCR) on page C10-49

• Watchpoint Value Registers (DBGWVR) on page C10-60

• Watchpoint Control Registers (DBGWCR) on page C10-61

• Vector Catch Register (DBGVCR) on page C10-67.

In addition, when the OS Save and Restore mechanism is implemented, the Event Catch Register can be
used to enable generation of a debug event when the OS Lock is unlocked, see Event Catch Register
(DBGECR) on page C10-78.

C10.5.1 Breakpoint Value Registers (DBGBVR)

A Breakpoint Value Register, DBGBVR, holds a value for use in breakpoint matching. The value is either
an Instruction Virtual Address (IVA) or a Context ID. Each DBGBVR is associated with a DBGBCR to form
a Breakpoint Register Pair (BRP). DBGBVRn is associated with DBGBCRn to form BRPn, where n takes
the values from 0 to 15. A debug event is generated when an instruction that matches the BRP is committed
for execution. For more information, see Breakpoint debug events on page C3-5.

A breakpoint can be set on any one of:

• an IVA match or mismatch

• a Context ID match

• an IVA match or mismatch occurring with a Context ID match.

For the third case:

• two BRPs must be linked, see Breakpoint Control Registers (DBGBCR) on page C10-49.

• a debug event is generated when, on the same instruction, both:

— the IVA matches or mismatches, as required

— the Context ID matches.

See Memory addresses on page C3-23 for a definition of the IVA used to program a DBGBVR.

Note
 Some BRPs might not support Context ID comparison. For more information, see the description of the
DBGDIDR.CTX_CMPs field in Debug ID Register (DBGDIDR) on page C10-3.

The DBGBVRs are:

• debug registers 64-79, at offsets 0x100-0x13C

• read/write registers

• when the Security Extensions are implemented, Common registers.
C10-48 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug Registers Reference
When used for IVA comparison the format of a DBGBVR is:

When used for Context ID comparison the format of a DBGBVR is:

Bits [31:2] Bits [31:2] of the value for comparison. Either IVA[31:2] or ContextID[31:2].

Bits [1:0], when register used for IVA comparison
Must be written as 0b00, otherwise the generation of Breakpoint debug events is
UNPREDICTABLE

Bits [1:0], when register used for Context ID comparison

Bits [1:0] of the value for comparison, ContextID[1:0].

If the BRP does not support Context ID comparison then bits [1:0] are UNK/SBZP.

The debug logic reset values of all bits of a DBGBVR are UNKNOWN.

C10.5.2 Breakpoint Control Registers (DBGBCR)

A Breakpoint Control Register, DBGBCR, holds control information for a breakpoint. Each DBGBCR is
associated with a DBGBVR to form a Breakpoint Register Pair (BRP). For more information about BRPs
and the possible breakpoints, see Breakpoint Value Registers (DBGBVR) on page C10-48.

The DBGBCRs are:

• debug registers 80-95, at offsets 0x140-0x17C

• read/write registers

• when the Security Extensions are implemented, Common registers.

The format of a DBGBCR, in v7 Debug, is:

See the bit descriptions for the differences in other Debug architecture versions.

Bits [31:29,23,13:9,4:3]

Reserved, UNK/SBZP.

31 2 1 0

Breakpoint address[31:2] 0 0

31 0

Context ID[31:0]

���

�����88
�4�;�1D48H

�� ��

"�G��$
D�4���;

�� ��

���H��
�$�1�:D<

�� �	

��9:���618�4��19&���&*

�
 ��

������
�

�� �

�6��14���<
8�*�9�

�

����
��
�

� � � �

���)�*�;��1D&��19&���&*
���4H?&���1��47*�

.�/ .�/.�/

�� ��
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C10-49

Debug Registers Reference
Address range mask, bits [28:24], v7 Debug

In v7 Debug, whether address range masking is supported is IMPLEMENTATION DEFINED. If
it is not supported these bits are RAZ/WI.

If address range masking is supported, this field can be used to break on a range of addresses
by masking lower order address bits out of the breakpoint comparison. The value of this
field is the number of low order bits of the address that are masked off, except that values of
1 and 2 are reserved. Therefore, the meaning of Breakpoint address range mask values are:

0b00000 No mask

0b00001 Reserved

0b00010 Reserved

0b00011 0x00000007 mask for instruction address, three bits masked

0b00100 0x0000000F mask for instruction address, four bits masked

0b00101 0x0000001F mask for instruction address, five bits masked

. .

. .

. .

0b11111 0x7FFFFFFF mask for instruction address, 31 bits masked.

This field must be programmed to 0b00000 if either:

• this BRP is programmed for Context ID comparison

• the Byte address select field is programmed to a value other than 0b1111.

If this is not done, the generation of Breakpoint debug events is UNPREDICTABLE.

If this field is not zero, the DBGBVR bits that are not included in the comparison must be
zero, otherwise the generation of Breakpoint debug events is UNPREDICTABLE.

For more information about the use of this field see Breakpoint address range masking
behavior, v7 Debug on page C3-9.

Bits [28:24], v6 Debug and v6.1 Debug

Reserved, UNK/SBZP.

DBGBVR meaning, bits [22:20]

This field controls the behavior of Breakpoint debug event generation. This includes the
meaning of the value held in the associated DBGBVR, whether it is an IVA or a Context ID.
Each bit of this field has particular significance, and there can be restrictions on the values
of bits [22:21]:

Bit [22], Match or mismatch
This bit is set to 1 for a mismatch comparison.

This bit is not supported and is UNK/SBZP in v6 Debug.

For more information about IVA mismatching see Additional considerations for
IVA mismatch breakpoints on page C3-13.

The Debug architecture does not support Context ID mismatch comparisons.
C10-50 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug Registers Reference
Bit [21], IVA or Context ID comparison

This bit is set to 1 for a Context ID comparison.

This bit is UNK/SBZP for BRPs that do not support Context ID comparison. In
this case field values of 0b010 and 0b011 are not supported.

Bit [20], Unlinked or Linked comparison

This bit is set to 1 if this BRP is linked to another BRP to set a breakpoint that
requires both IVA and Context ID comparison.

For more information about IVA matching and mismatching see:

• Byte address selection behavior on IVA match or mismatch on page C10-55

• Breakpoint address range masking behavior, v7 Debug on page C3-9

• IVA comparisons and instruction length on page C3-10.

The possible values of the DBGBVR meaning field are:

0b000 Unlinked Instruction Virtual Address match

Compare:

• the byte address select bits, bits [8:5], and the associated
DBGBVR[31:2], against the IVA of the instruction

• the security state control and privileged mode control bits,
bits [15:14,2:1], against the state of the processor.

Generate a Breakpoint debug event on a joint IVA match and state match.

DBGBCR[19:16] must be programmed to 0b0000, otherwise the generation of
Breakpoint debug events is UNPREDICTABLE.

0b001 Linked Instruction Virtual Address match

Compare:

• the byte address select bits, bits [8:5], and the associated
DBGBVR[31:2], against the IVA of the instruction

• the security state control and privileged mode control bits,
bits [15:14,2:1], against the state of the processor.

This BRP is linked with the BRP indicated by DBGBCR[19:16]. Generate a
Breakpoint debug event on a joint IVA match, Context ID match and state
match. For more information, see Linked comparisons on page C10-59.

0b010 Unlinked Context ID match
Compare:

• the associated DBGBVR[31:0] against the Context ID in the
CONTEXTIDR

• the security state control and privileged mode control bits,
bits [15:14,2:1], against the state of the processor.

This BRP is not linked with any other one. Generate a Breakpoint debug event
on a joint Context ID match and state match.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C10-51

Debug Registers Reference
DBGBCR[8:5] must be programmed to 0b1111 and DBGBCR[19:16] must be
programmed to 0b0000, otherwise the generation of Breakpoint debug events is
UNPREDICTABLE.

Note
 See Unpredictable behavior on Software debug events on page C3-24 for

additional restrictions for this type of breakpoint when using Monitor
debug-mode.

0b011 Linked Context ID match
Compare the associated DBGBVR[31:0] against the Context ID in the
CONTEXTIDR.

At least one other BRP or WRP is linked with this BRP. Generate a Breakpoint
or Watchpoint debug event jointly on:

• the IVA match or mismatch or DVA match, defined by the linked BRP or
WRP

• the Context ID match defined by this BRP.

If no BRP or WRP of the correct type is linked to this BRP, no Breakpoint or
Watchpoint debug events are generated for this BRP.

For more information about the programming required for a Linked Context ID
match see Linked comparisons on page C10-59.

0b100 Unlinked Instruction Virtual Address mismatch

Compare:

• the byte address select bits, bits [8:5], and the associated
DBGBVR[31:2], against the IVA of the instruction

• the security state control and privileged mode control bits,
bits [15:14,2:1], against the state of the processor.

Generate a Breakpoint debug event on a joint IVA mismatch (IVA not equal) and
state match.

DBGBCR[19:16] must be programmed to 0b0000, otherwise the generation of
Breakpoint debug events is UNPREDICTABLE.

Note
 • Unlinked IVA mismatch is not supported in v6 Debug.

• See Unpredictable behavior on Software debug events on page C3-24 for
additional restrictions for this type of breakpoint when using Monitor
debug-mode.
C10-52 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug Registers Reference
0b101 Linked Instruction Virtual Address mismatch

Compare:

• the byte address select bits, bits [8:5], and the associated
DBGBVR[31:2], against the IVA of the instruction

• the security state control and privileged mode control bits,
bits [15:14,2:1], against the state of the processor.

This BRP is linked with the BRP indicated by DBGBCR[19:16]. Generate a
Breakpoint debug event on a joint IVA mismatch (IVA not equal), state match
and Context ID match. For more information, see Linked comparisons on
page C10-59.

Note
 • Linked IVA mismatch is not supported in v6 Debug.

• See Unpredictable behavior on Software debug events on page C3-24 for
additional restrictions for this type of breakpoint when using Monitor
debug-mode.

0b11x Reserved

Generation of Breakpoint debug events is UNPREDICTABLE.

Summary of breakpoint generation options on page C10-58 shows what comparisons are
made for each permitted value of this field.

Linked BRP number, bits [19:16]

If this BRP is programmed for Linked IVA match or mismatch then this field must be
programmed with the number of the BRP that holds the Context ID to be used for the
combined IVA and Context ID comparison, otherwise, this field must be programmed to
0b0000.

If this field is programmed with a value other than zero or the number of a BRP that supports
Context ID comparison then reading this register returns an UNKNOWN value for this field.

The generation of Breakpoint debug events is UNPREDICTABLE if either:

• this BRP is not programmed for Linked IVA match or mismatch and this field is not
programmed to 0b0000

• this BRP is programmed for Linked IVA match or mismatch and the BRP indicated
by this field does not support Context ID comparison or is not programmed for
Linked Context ID match.

See also Generation of debug events on page C3-40.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C10-53

Debug Registers Reference
Security state control, bits [15:14], when the Security Extensions are implemented

Note
 The Security Extensions cannot be implemented with v6 Debug.

When a processor implements the Security Extensions, these bits enable the breakpoint to
be conditional on the security state of the processor:

0b00 breakpoint generated on match in both Non-secure state and Secure state

0b01 breakpoint generated on match only in Non-secure state

0b10 breakpoint generated on match only in Secure state

0b11 Reserved.

This field must be programmed to 0b00 if the DBGBVR meaning field, bits [22:20], is
programmed for Linked Context ID match.

For more information about breakpoint matching when this field is set to a value other than
0b00, see About security state control on page C10-66.

See also Generation of debug events on page C3-40.

Bits [15:14], when the Security Extensions are not implemented

Reserved, UNK/SBZP.

Byte address select, bits [8:5]

This field enables match or mismatch comparisons on only certain bytes of the word address
held in the DBGBVR. The operation of this field depends also on:

• the DBGBVR meaning field being programmed for IVA match or mismatch

• in v7 Debug, the Address range mask field being programmed to 0b00000, no mask

• the instruction set state of the processor, indicated by the CPSR.J and CPSR.T bits.

For details of the use of this field see Byte address selection behavior on IVA match or
mismatch on page C10-55.

This field must be programmed to 0b1111 if either:

• the DBGBVR meaning field, bits [22:20], is programmed for Linked or Unlinked
Context ID match

• in v7 Debug, the Address range mask field, bits [28:24], is programmed to a value
other than 0b00000.

If this is not done, the generation of Breakpoint debug events is UNPREDICTABLE.

Privileged mode control, bits [2:1]

This field enables breakpoint matching conditional on the mode of the processor. Possible
values of this field are:

0b00 Match any of User, System and Supervisor modes.

This value is supported in v7 Debug only.

0b01 Match in any privileged mode.

0b10 Match in User mode only.
C10-54 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug Registers Reference
0b11 Match in any mode.

This field must be programmed to 0b11 if the DBGBVR meaning field, bits [22:20], is
programmed for Linked Context ID match.

Breakpoint enable, bit [0]

This bit enables the BRP. The meaning of this bit is:

0 Breakpoint disabled

1 Breakpoint enabled.

A BRP never generates Breakpoint debug events when its DBGBCR is disabled.

The debug logic reset values of all bits of the DBGBCR are UNKNOWN.

Note
 • In v6 Debug and v6.1 Debug, the Breakpoint enable bit of the DBGBCR is set to 0 on a debug logic

reset, disabling the breakpoint.

• In v7 Debug, a debugger must ensure that DBGBCR[0] has a defined state before it programs
DBGDSCR[15:14] to enable debug.

Byte address selection behavior on IVA match or mismatch

The DBGBVR is programmed with a word address. If you have programmed the BRP for Linked or
Unlinked IVA match or mismatch, you can program the Byte address select field, DBGBCR[8:5], so that
the breakpoint hits only if certain byte addresses are accessed. The exact interpretation depends on the
processor instruction set state, as indicated by the CPSR.J and CPSR.T bits, and on the bottom two bits of
the IVA. Table C10-11 on page C10-56 shows the operation of byte address masking using the
DBGBCR[8:5] field.

Note
 In the following cases, you must program DBGBCR[8:5] to 0b1111:

• if you program the BRP for Linked or Unlinked Context ID match

• in v7 Debug, if you program the BRP for linked or unlinked IVA match or mismatch with a nonzero
Address range mask.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C10-55

Debug Registers Reference
Table C10-11 Effect of byte address selection on Breakpoint generation

This BRP programmed for:

Instruction seta Instruction addressb DBGBCR[8:5] IVA match IVA mismatch

Any Any address 0000 Miss Hit

ARM DBGBVR<31:2>:’00’ 1111 Hit Miss

0000 Miss Hit

Any other value UNPREDICTABLE

Any other address xxxx Miss Hit

Thumb or ThumbEE DBGBVR<31:2>:’00’ xx11 Hit Miss

xx10 UNPREDICTABLE

xx01 UNPREDICTABLE

xx00 Miss Hit

DBGBVR<31:2>:’10’ 11xx Hit Miss

10xx UNPREDICTABLE

01xx UNPREDICTABLE

00xx Miss Hit

Any other address xxxx Miss Hit

Jazelle DBGBVR<31:2>:’00’ xxx1 Hit Miss

xxx0 Miss Hit

DBGBVR<31:2>:’01’ xx1x Hit Miss

xx0x Miss Hit

DBGBVR<31:2>:’10’ x1xx Hit Miss

x0xx Miss Hit
C10-56 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug Registers Reference
In a processor with a trivial implementation of the Jazelle extension, generation of Breakpoint debug events
is UNPREDICTABLE, and the value of a subsequent read from DBGBCR[8:5] is UNKNOWN, if the value
written to DBGBCR[8:5] has either DBGBCR[8] != DBGBCR[7], or DBGBCR[6] != DBGBCR[5]. For a
description of the trivial implementation of the Jazelle extension see Trivial implementation of the Jazelle
extension on page B1-81.

Note
 • In Table C10-11 on page C10-56, the instruction address value is the address of the first unit of the

instruction. For more information, including what happens when the BRP hits the address of a unit
of the instruction other than the first unit, see IVA comparisons and instruction length on page C3-10.

• In the ARMv7-R profile, the value of the Instruction Endianness bit, SCTLR.IE, does not affect the
generation of breakpoint debug events. For more information about instruction endianness, see
Instruction endianness on page A3-8.

For examples of how to program a BRP using byte address selection see IVA comparison programming
examples on page C3-12.

Jazelle DBGBVR<31:2>:’11’ 1xxx Hit Miss

0xxx Miss Hit

Any other address xxxx Miss Hit

a. As indicated by the CPSR.J and CPSR.T bits.
b. For more information see the Note that follows this table.

Table C10-11 Effect of byte address selection on Breakpoint generation (continued)

This BRP programmed for:

Instruction seta Instruction addressb DBGBCR[8:5] IVA match IVA mismatch
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C10-57

Debug Registers Reference
Summary of breakpoint generation options

Table C10-12 shows which values are compared and which are not for each type of BRP. Table entries in
bold typewriter indicate an element of the comparison that is made. Reading across the Comparison
columns for a row of the table gives the comparison to be made. For example, for the Linked IVA mismatch
(0b001), the comparison is:

Not (Equals[IVA] AND Set[Byte lanes]) AND Match[State] AND Link[Linked Breakpoint]

Breakpoint generation is described by the BRPMatch() pseudocode function, see Breakpoints and Vector
Catches on page C3-28.

Table C10-12 DBGBVR meaning bits summary

BRP
type
bitsa

Description
Comparison

IVAb Byte lanesc Context IDd Statee Linked

000 IVA match Equals AND Set AND Match

001 Linked IVA matchf Equals AND Set AND Match AND Link

010 Context IDg, h Equals AND Match

011 Linked Context IDg, i Equals AND Link

100 IVA mismatchh Not (Equals AND Set) AND Match

101 Linked IVA mismatchf, h Not (Equals AND Set) AND Match AND Link

11x Reserved - - - - -

a. The DBGBVR meaning field, DBGBCR[22:20].
b. Matching IVA[31:2] against DBGBVR[31:2]. If the breakpoint Address range mask bits [28:24] are set to a value other

than 0b00000, a masked comparison is used. See Breakpoint address range masking behavior, v7 Debug on page C3-9.
c. IVA byte lanes. DBGBCR[8:5] indicate the byte lanes to be compared, see Byte address selection behavior on IVA

match or mismatch on page C10-55.
d. Matching CONTEXTIDR[31:0] against DBGBVR[31:0].
e. Processor state comparison made, according to value of DBGBCR[15:14, 2:1], see Breakpoint Control Registers

(DBGBCR) on page C10-49.
f. The Context ID is compared against the value of the linked breakpoint and a breakpoint event is only generated when

both conditions match. If the linked breakpoint is not capable of Context ID comparison, or is not configured for Linked
Context ID match, the generation of Breakpoint debug events is UNPREDICTABLE.

g. DBGBCR[8:5] for this BRP must be programmed to 0b1111; otherwise the generation of Breakpoint debug events is
UNPREDICTABLE.

h. When Monitor debug-mode is selected, take care when programming DBGBCR[2:1], Privileged access control. See
Unpredictable behavior on Software debug events on page C3-24 for more information.

i. See Linked comparisons on page C10-59.
C10-58 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug Registers Reference
Linked comparisons

For linked comparisons, a comparison includes a Context ID match, defined by a BRP, with one or more
address comparisons defined by other BRPs or WRPs linked to the Context ID match:

• Zero or more other BRPs, each programmed to define a linked IVA match.

• Zero or more other BRPs, each programmed to define a linked IVA mismatch.

Note
 Linked IVA mismatch is not supported in v6 Debug.

• Zero or more WRPs, each programmed to define a linked DVA match.

The Breakpoint or Watchpoint debug event is generated only if both:

• the Context ID match is true

• the IVA match or mismatch, or the DVA match, is true.

In this description:

• BRPm is used to define the Context ID match.

• BRPn is configured to define a linked IVA match or mismatch, and is linked to BRPm

• WRPn is configured to define a linked DVA match, and is linked to BRPm

If there are no BRPs and no WRPs linked to BRPm then BRPm cannot generate any debug events. The rest
of this description assumes at least one BRP or WRP is linked to BRPm.

To configure BRPm to define the Context ID match part of the linked Context ID matches:

• program DBGBVRm[31:0] with the Context ID to be matched

• program DBGBCRm[22:20] to 0b011, linked Context ID comparison

• generation of the debug events is UNPREDICTABLE unless all of these conditions are met:

— DBGBCRm[19:16] is programmed to 0b0000

— DBGBCRm[15:14] is programmed to 0b00

— DBGBCRm[8:5] is programmed to 0b1111

— DBGBCRm[2:1] is programmed to 0b11.

To configure BRPn to define the IVA match or mismatch part of a linked Context ID match:

• program DBGBVRn[31:2] with the address for comparison, and DBGBVRn[1:0] to b00

• program DBGBCRn[22:20] to either:

— 0b001, for linked IVA match

— 0b101, for linked IVA mismatch, in v6.1 Debug or v7 Debug

• program DBGBCRn[19:16] to m, the number of the BRP that defines the Context ID match

• if required, program DBGBCRn[15:14,2:1] to include the state of the processor in the comparison.

To configure WRPn to define the DVA match part of a linked Context ID match:

• program DBGWVRn[31:2] with the address for comparison, and DBGWVRn[1:0] to b00

• program DBGWCRn[20] to 1, to enable linking

• program DBGWCRn[19:16] to m, the number of the BRP that defines the Context ID match

• if required, program DBGWCRn[15:14,2:1] to include the state of the processor in the comparison.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C10-59

Debug Registers Reference
The generation of Breakpoint debug events is UNPREDICTABLE if:

• BRPn is linked to BRPm but is not configured for Linked IVA match or Linked IVA mismatch

• WRPn is linked to BRPm but is not configured to enable linking

• WRPn or BRPn is linked to BRPm and either:

— BRPm does not support Linked Context ID matching

— BRPm is not configured for Linked Context ID matching.

C10.5.3 Watchpoint Value Registers (DBGWVR)

A Watchpoint Value Register, DBGWVR, holds a Data Virtual Address (DVA) value for use in watchpoint
matching. Each DBGWVR is associated with a DBGWCR to form a Watchpoint Register Pair (WRP).
DBGWVRn is associated with DBGWCRn to form WRPn, where n takes the values from 0 to 15. A debug
event is generated when the WRP is matched. For more information, see Watchpoint debug events on
page C3-15.

A watchpoint can be set on either:

• a DVA match

• a DVA match occurring with a Context ID match.

For the second case:

• a WRP and a BRP with Context ID comparison capability have to be linked, see Watchpoint Control
Registers (DBGWCR) on page C10-61 and Linked comparisons on page C10-59.

• a debug event is generated when, on the same instruction, both:

— the DVA matches

— the Context ID matches.

See Memory addresses on page C3-23 for a definition of the DVA used to program a DBGWVR.

The DBGWVRs are:

• debug registers 96-111, at offsets 0x180-0x1BC

• read/write registers

• when the Security Extensions are implemented, Common registers.

The format of a DBGWVR is:

Bits [31:2] Bits [31:2] of the value for comparison, DVA[31:2].

Bits [1:0] Reserved. UNK/SBZP.

The debug logic reset value of a DBGWVR is UNKNOWN.

31 2 1 0

Watchpoint Address[31:2]
UNK/
SBZP
C10-60 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug Registers Reference
C10.5.4 Watchpoint Control Registers (DBGWCR)

A Watchpoint Control Register, DBGWCR, holds control information for a watchpoint. Each DBGWCR is
associated with a DBGWVR to form a Watchpoint Register Pair (WRP). For more information about WRPs
and the possible watchpoints see Watchpoint Value Registers (DBGWVR) on page C10-60.

The DBGWCRs are:

• debug registers 112-127, at offsets 0x1C0-0x1FC

• read/write registers

• when the Security Extensions are implemented, Common registers.

The format of a DBGWCR, in v7 Debug, is:

See the bit descriptions for the differences in other Debug architecture versions.

Bits [31:29, 23:21,13]

Reserved, UNK/SBZP.

Address range mask, bits [28:24], v7 Debug

In v7 Debug, support for watchpoint address range masking is optional. If it is not supported
these bits are RAZ/WI.

If watchpoint address range masking is supported, this field can be used to watch a range of
addresses by masking lower order address bits out of the watchpoint comparison. The value
of this field is the number of low order bits of the address that are masked off, except that
values of 1 and 2 are reserved. Therefore, the meaning of Watchpoint Address range mask
values are:

0b00000 No mask

0b00001 Reserved

0b00010 Reserved

0b00011 0x00000007 mask for data address, three bits masked

0b00100 0x0000000F mask for data address, four bits masked

0b00101 0x0000001F mask for data address, five bits masked

. .

. .

. .

0b11111 0x7FFFFFFF mask for data address, 31 bits masked.

�� ���

�����88
�4�;�1D48H

�� ��

����
��
�

��

���H��
�$�1�:D<

�� �	 �
 �� ��

�6��14����8818�*�9�

� � � �

���)�*�;��1D&��19&���&*
,4�9=?&���1��47*�

����
��
�

�� ��
��

��9:���618�4��19&���&*
(�47*�1*��H��; �&4����&��1499�8819&���&*

.�/
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C10-61

Debug Registers Reference
This field must be programmed to 0b00000 if either:

• DBGWCR[12:5] != 0b11111111, if an 8-bit Byte address select field is implemented

• DBGWCR[8:5] != 0b1111, if a 4-bit Byte address select field is implemented.

If this is not done, the generation of Watchpoint debug events is UNPREDICTABLE.

If this field is not zero, the DBGWVR bits that are not included in the comparison must be
zero, otherwise the generation of Watchpoint debug events is UNPREDICTABLE.

To watch for a write to any byte in an doubleword-aligned object of size 8 bytes, ARM
recommends that debuggers set DBGWCR[28:24] = 0x7, and
DBGWCR[12:5] = 0b11111111. This setting is compatible with both implementations with
an 8-bit Byte address select field and implementations with a 4-bit Byte address select field,
because implementations with a 4-bit Byte address select field ignore writes to
DBGWCR[12:9].

Bits [28:24], v6 Debug and v6.1 Debug

Reserved, UNK/SBZP.

Enable linking, bit [20]

This bit is set to 1 if this WRP is linked to a BRP to set a linked watchpoint that requires
both DVA and Context ID comparison. The possible values of this bit are

0 linking disabled

1 linking enabled.

When this bit is set to 1 the Linked BRP number field indicates the BRP to which this WRP
is linked. For more information, see Linked comparisons on page C10-59.

Linked BRP number, bits [19:16]

If this WRP is programmed with linking enabled then this field must be programmed with
the number of the BRP that holds the Context ID to be used for the combined DVA and
Context ID comparison, otherwise, this field must be programmed to 0b0000.

If this field is programmed with a value other than zero or the number of a BRP that supports
Context ID comparison then reading this register returns an UNKNOWN value for this field.

The generation of Watchpoint debug events is UNPREDICTABLE if either:

• this WRP does not have linking enabled and this field is not programmed to 0b0000

• this WRP has linking enabled and the BRP indicated by this field does not support
Context ID comparison or is not programmed for Linked Context ID match.

Security state control, bits [15:14], when the Security Extensions are implemented

Note
 The Security Extensions cannot be implemented with v6 Debug.

When a processor implements the Security Extensions, these bits enable the breakpoint to
be conditional on the security state of the processor:

0b00 watchpoint generated on match in both Non-secure state and Secure state
C10-62 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
watchpoint

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
0b00011, indicating an address range mask of 0x00000007,

Debug Registers Reference
0b01 watchpoint generated on match only in Non-secure state

0b10 watchpoint generated on match only in Secure state

0b11 Reserved.

For more information about watchpoint matching when this field is set to a value other than
0b00, see About security state control on page C10-66.

Bits [15:14], when the Security Extensions are not implemented

Reserved, UNK/SBZP.

Bit [12:9], v6 Debug and v6.1 Debug

Reserved, UNK/SBZP.

Byte address select, bits [12:5] or bits [8:5]

The width of this field can depend on the ARM Debug architecture version:

v6 Debug and v6.1 Debug

The Byte address select field is always 4 bits, DBGWCR[8:5]

v7 Debug
It is IMPLEMENTATION DEFINED whether a 4-bit or an 8-bit Byte address select
field is implemented:

• an 8-bit Byte address select field is DBGWCR[12:5]

• if a 4-bit Byte address select field is implemented then the Byte address
select field is DBGWCR[8:5] and DBGWCR[12:9] is RAZ/WI.

DBGWVRs are programmed with word-aligned addresses. This field enables the
watchpoint to hits only if certain byte addresses are accessed. The watchpoint hits if an
access hits any byte being watched, even if:

• the access size is larger than the size of the region being watched

• the access is unaligned, and the base address of the access is not in the same word of
memory as the address in the DBGWVR.

For details of the use of this field see Byte address masking behavior on DVA match on
page C10-65.

If the Address range mask field is implemented and programmed to a value other than
0b00000, no mask, then this field must be programmed to:

• 0b1111, if a 4-bit Byte address select field is implemented.

• 0b11111111, an 8-bit Byte address select field is implemented.

If this is not done, the generation of Watchpoint debug events is UNPREDICTABLE.

Load/store access control, bits [4:3]

This field enables watchpoint matching conditional on the type of access being made.
Possible values of this field are:

0b00 Reserved.

0b01 Match on any load, Load-Exclusive, or swap.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C10-63

Debug Registers Reference
0b10 Match on any store, Store-Exclusive or swap.

0b11 Match on any either type of access.

If an implementation supports watchpoint generation by:

• a memory hint instruction, then that instruction is treated as generating a load access

• a cache maintenance operation, then that operation is treated as generating a store
access.

Privileged mode control, bits [2:1]

This field enables watchpoint matching conditional on the mode of the processor. Possible
values of this field are:

0b00 Reserved.

0b01 Match privileged accesses.

0b10 Match unprivileged accesses.

0b11 Match all accesses.

Note
 • For all cases the match refers to the privilege of the access, not the mode of the

processor. For example, if the watchpoint is configured to match privileged accesses
only (0b01), and the processor executes an LDRT instruction in a privileged mode, the
watchpoint does not match.

• Permitted values of this field are not identical to those for the DBGBCR. In the
DBGBCR only, in v7 Debug, the value 0b00 is permitted.

Watchpoint enable, bit [0]

This bit enables the WRP. The meaning of this bit is:

0 Watchpoint disabled

1 Watchpoint enabled.

A WRP never generates Watchpoint debug events when its DBGWCR is disabled.

The debug logic reset values of all bits of the DBGWCR is UNKNOWN.

Note
 • In v6 Debug and v6.1 Debug, the Watchpoint enable bit of the DBGWCR is set to 0 on a debug logic

reset, disabling the watchpoint.

• In v7 Debug, a debugger must ensure that DBGWCR[0] has a defined state before it programs
DBGDSCR[15:14] to enable debug.
C10-64 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug Registers Reference
Byte address masking behavior on DVA match

For each WRP, the DBGWVR is programmed with a word-aligned address. The Byte address select bits of
the DBGWCR can be programmed so that the watchpoint hits if only certain bits of the watched address are
accessed:

• in all implementations, DBGWCR[8:5] can be programmed to enable the watchpoint to hit on any
access to one or more of the bytes of the word addressed by the associated DBGWVR

• in a v7 Debug implementation that supports an 8-bit Byte address select field, DBGWCR[12:5] can
be programmed to enable the watchpoint to hit on any access to one or more of the bytes of the
doubleword addressed by the associated DBGWVR.

In all cases, a Watchpoint debug event is generated if an access hits any byte being watched, even if:

• the access size is larger than the size of the region being watched

• the access is unaligned, and the base address of the access is not in the word of memory addressed
by DBGWVR.

Table C10-13 and Table C10-14 on page C10-66 show the meaning of the Byte address select values.
Table C10-13 shows the values that can be programmed in any implementation.

In v6 Debug and v6.1 Debug only a 4-bit Byte address select field is implemented and DBGWCR[12:9] is
UNK/SBZP.

In v7 Debug, it is IMPLEMENTATION DEFINED whether an implementation supports a 4-bit or an 8-bit Byte
address select field:

• If the processor implements a 4-bit Byte address select field, then DBGWCR[12:9] is RAZ/WI.

• If the processor implements an 8-bit Byte address select field, then DBGWCR[12:9] can also be
programmed, and, for a given watchpoint register pair:

— DBGWVR can be programmed with a doubleword-aligned address, with DBGWVR[2] = 0.
In this case DBGWCR[12:5] can be programmed to match any of the 8 bytes in that
doubleword value.

Table C10-13 Byte address select values, word-aligned address

DBGWCR[12:5] value Description

00000000 Watchpoint never hits

xxxxxxx1 Watchpoint hits if byte at address DBGWVR<31:2>:’00’ is accessed

xxxxxx1x Watchpoint hits if byte at address DBGWVR<31:2>:’01’ is accessed

xxxxx1xx Watchpoint hits if byte at address DBGWVR<31:2>:’10’ is accessed

xxxx1xxx Watchpoint hits if byte at address DBGWVR<31:2>:’11’ is accessed
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C10-65

Debug Registers Reference
— If DBGWVR[2] == 1, indicating a word-aligned address that is not doubleword-aligned, then
DBGWCR[12:9] must be programmed with zero.

If DBGWVR[2] == 1 and DBGWCR[12:9] != 0b0000, Watchpoint debug event generation is
UNPREDICTABLE.

Table C10-14 shows the additional Byte address select field encodings that are available, when
DBGWVR[2] == 0, on an implementation that supports an 8-bit Byte address select field.

The same programming model can be used on implementations that support:

• an 8-bit Byte address select field, DBGWCR[12:5]

• a 4-bit Byte address select field, DBGWCR[8:5].

This is because, on an implementation that supports only a 4-bit Byte address select field, writes to
DBGWCR[12:9] are ignored.

Note
 In ARMv6, when using the optional legacy BE-32 endianness model, the values of DBGWCR[8:5] shown
in Table C10-13 on page C10-65 have different meanings. For more information see BE-32 DBGWCR Byte
address select values on page AppxG-7.

About security state control

When the Security Extensions are implemented and the security state control bits of the DBGBCR or
DBGWCR are set to a value other than 0b00, the condition for matching refers to the security state of the
processor, not the security of the access. For example, the breakpoint or watchpoint does not match when
all of the following apply:

• the breakpoint or watchpoint is configured to match in Non-secure state only (0b01)

• the processor is executing code in the Secure state, either because the SCR.NS bit is 0 or because the
processor is in Monitor mode

• the address accessed is in a page marked as Non-secure in the translation tables.

For more information about the security of accesses see Chapter B3 Virtual Memory System Architecture
(VMSA).

Table C10-14 Additional Byte address select values, doubleword-aligned address

DBGWCR[12:5] value Description

xxx1xxxx Watchpoint hits if byte at address DBGWVR<31:3>:’100’ is accessed

xx1xxxxx Watchpoint hits if byte at address DBGWVR<31:3>:’101’ is accessed

x1xxxxxx Watchpoint hits if byte at address DBGWVR<31:3>:’110’ is accessed

1xxxxxxx Watchpoint hits if byte at address DBGWVR<31:3>:’111’ is accessed
C10-66 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug Registers Reference
Note
 This describes a VMSA access. In ARMv7 the Security Extensions can be implemented only in a system
that implements the VMSA.

C10.5.5 Vector Catch Register (DBGVCR)

The Vector Catch Register, DBGVCR, enables Vector Catch debug events. A Vector Catch debug event
occurs when:

• a bit in the DBGVCR is set to 1, to enable catches on a particular exception vector

• an IVA matches the corresponding exception vector address

• the instruction is committed for execution.

For more information, see Vector Catch debug events on page C3-20.

The DBGVCR is:

• debug register 7, at offset 0x01C.

• a read/write register

• when the Security Extensions are implemented, a Common register.

The format the DBGVCR depends on whether the Security Extensions are implemented, and can depend
on the ARM Debug architecture version:

Security Extensions not implemented

Only DBGVCR bits [7:6,4:0] are implemented. All other bits are reserved and UNK/SBZP.

Note
 The Security Extensions cannot be implemented with v6 Debug.

v6.1 Debug When the Security Extensions are implemented it is optional whether DBGVCR
bits [31,30,28:25,15,14,12:10] are implemented. If these bits are not implemented, they are
RAZ/WI. However, for forwards compatibility with v7 Debug, ARM recommends that
these bits are implemented.

DBGVCR bits [7:6,4:0] are always implemented. All other bits are reserved and
UNK/SBZP.

v7 Debug When the Security Extensions are implemented DBGVCR bits [31,30,28:25,15,14,12:10]
must be implemented.

DBGVCR bits [7:6,4:0] are also implemented. All other bits are reserved and UNK/SBZP.

When the Security Extensions are not implemented, and in any v6.1 Debug implementation that does not
implement DBGVCR[31,30,28:25,15,14,12:10], the format of the DBGVCR is:
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C10-67

Debug Registers Reference
Bits [31:8,5] Reserved. Normally UNK/SBZP, except that in v6.1 Debug bits [31,30,28:25,15,14,12:10]
are RAZ/WI, and the other bits are UNK/SBZP.

Bits [7:6,4:0] Vector catch enable bits. When one of these bits is set to 1, any instruction prefetched from
the corresponding exception vector generates a Vector Catch debug event when it is
committed for execution. Table C10-15 on page C10-71 shows the exception vectors. The
Vector Catch enable bits are:

Bit [7] FIQ vector catch enable.

Bit [6] IRQ vector catch enable.

Bit [4] Data Abort vector catch enable.

Bit [3] Prefetch Abort vector catch enable.

Bit [2] SVC vector catch enable.

Bit [1] Undefined Instruction vector catch enable.

Bit [0] Reset vector catch enable.

The debug logic reset value of the DBGVCR depends on the ARM Debug architecture version:

v7 Debug Debug logic reset values are UNKNOWN. Before programming DBGDSCR[15:14] to
enable debug, a debugger must ensure that the DBGVCR has a defined state.

v6 Debug and v6.1 Debug

All defined bits reset to 0.

If Monitor debug-mode is configured and enabled DBGVCR bits [4:3] must be programmed to 0b00, see
Unpredictable behavior on Software debug events on page C3-24

For more information about these vector catch operations see Vector catch operation when Security
Extensions are not implemented on page C10-71.

When the Security Extensions are implemented the format of the DBGVCR is:

�

$
�8
<

� � � �

�$
!

"
4�
41
�
7&
��

$�8��)��218��1��0�

#�
!

� 	�� �

��
�@
��
9=
1�
7&
��

��
�

�
��
�@
��
��
1��
8�
�:
9�
�&
�

$
�8
��

��9�&�194�9=1��47*�
C10-68 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug Registers Reference
Bits [29,24:14,13,9:8,5]

Reserved. UNK/SBZP.

Bits [31:30,28:25]

Vector catch enable bits for exceptions in the Non-secure state. When one of these bits is set
to 1 and the processor is in the Non-secure state, a Vector Catch debug event is generated
when an instruction prefetched from the corresponding exception vector is committed for
execution. Table C10-16 on page C10-73 shows the exception vectors. The Non-secure state
vector catch enable bits are:

Bit [31] FIQ vector catch enable in Non-secure state.

Bit [30] IRQ vector catch enable in Non-secure state.

Bit [28] Data Abort vector catch enable in Non-secure state.

Bit [27] Prefetch Abort vector catch enable in Non-secure state.

Bit [26] SVC vector catch enable in Non-secure state.

Bit [25] Undefined Instruction vector catch enable in Non-secure state.

Bits [15:14,12:10]

Vector catch enable bits for exceptions in the Secure state that are taken on the Monitor
mode exception vectors. When one of these bits is set to 1 and the processor is in the Secure
state, a Vector Catch debug event is generated when an instruction prefetched from the
corresponding exception vector is committed for execution. Table C10-16 on page C10-73
shows the exception vectors. The Monitor mode vector catch enable bits are:

Bit [15] FIQ vector catch enable, in Secure state on Monitor mode vector.

Bit [14] IRQ vector catch enable in Secure state on Monitor mode vector.

Bit [12] Data Abort vector catch enable in Secure state on Monitor mode vector.

Bit [11] Prefetch Abort vector catch enable in Secure state on Monitor mode vector.

Bit [10] SMC vector catch enable in Secure state.

�

$
�8
<

� � � �

�$
!

"
4�
41
�
7&
��

#�
!

�� �� �� �� �	 �
 �
 �� �� �� �� �� � 	��

��
�@
��
9=
1�
7&
��

��
�

�
��
�@
��
��
1��
8�
�:
9�
�&
�

$
�8
��
1)
�9
�&
�19
4�
9=
1�
�4
7*
�

$�8<

� �

�$
!

"
4�
41
�
7&
��

#�
!

��
�@
��
9=
1�
7&
��

�%
�

$�8��)��21������
�

�� �	

�$
!

"
4�
41
�
7&
��

#�
!

��
�@
��
9=
1�
7&
��

��
�

�
��
�@
��
��
1��
8�
�:
9�
�&
�

$
�8
<

$
�8
<

��9�&�194�9=1��47*�2
���$��

��9�&�194�9=1��47*�2
%���$

��9�&�194�9=1��47*�2
���$�
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C10-69

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
16

Debug Registers Reference
Bits [7:6,4:1] Vector catch enable bits for exceptions in the Secure state that are taken on the exception
mode vector. When one of these bits is set to 1 and the processor is in the Secure state, a
Vector Catch debug event is generated when an instruction prefetched from the
corresponding exception vector is committed for execution. Table C10-16 on page C10-73
shows the exception vectors. The Secure state vector catch enable bits are:

Bit [7] FIQ vector catch enable in Secure state.

Bit [6] IRQ vector catch enable in Secure state.

Bit [4] Data Abort vector catch enable in Secure state.

Bit [3] Prefetch Abort vector catch enable in Secure state.

Bit [2] SVC vector catch enable in Secure state.

Bit [1] Undefined Instruction vector catch enable in Secure state.

Bit [0] Reset vector catch enable.

When this bit is set to 1, a Vector Catch debug event is generated when an instruction
prefetched from the reset exception vector is committed for execution:

• In v7 Debug the debug event is generated regardless of the security state of the
processor

• In v6 Debug and v6.1 Debug the debug event is only generated if the processor is in
Secure state.

Table C10-16 on page C10-73 shows the exception vectors.

The debug logic reset value of the DBGVCR depends on the ARM Debug architecture version:

v7 Debug Debug logic reset values are UNKNOWN. Before programming DBGDSCR[15:14] to
enable debug, a debugger must ensure that the DBGVCR has a defined state.

v6 Debug and v6.1 Debug

All defined bits reset to 0.

If Monitor debug-mode is configured and enabled DBGVCR bits [28:27,12,4:3] must be programmed to
zero, see Unpredictable behavior on Software debug events on page C3-24

For more information about these vector catch operations see Vector catch operation when Security
Extensions are implemented on page C10-71.

Vector catch operation

The following subsections give more information about vector catch operation:

• Vector catch operation when Security Extensions are not implemented on page C10-71

• Vector catch operation when Security Extensions are implemented on page C10-71.

The pseudocode function VCRMatch() describes the vector catch operation, for both the Secure and the
Non-secure cases, and the function VCR_OnTakingInterrupt() tracks the most recent interrupt vectors. For
more information about these pseudocode functions and when they are called see Breakpoints and Vector
Catches on page C3-28.
C10-70 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug Registers Reference
Vector catch operation when Security Extensions are not implemented

For each bit of the DBGVCR, the vector addresses caught depends on the exception vector configuration in
the SCTLR:

• whether the SCTLR.V bit is programmed for Normal or High exception vectors

• for catches on the FIQ and IRQ exception vectors, on the programming of the SCTLR.VE bit.

Table C10-15 shows how the vector address that corresponds to each active bit of the DBGVCR depends on
these configuration settings:

Vector catch operation when Security Extensions are implemented

When the Security Extensions are implemented, for each bit of the DBGVCR, the vector addresses caught
depends:

• On the value programmed in the appropriate Vector Base Address Register:

— the Non-secure copy of the Vector Base Address Register (VBARNS) for the Non-secure state
vector catches

— the Monitor Vector Base Address Register (MVBAR) for the Secure state vector catches on
the Monitor mode vectors

— the Secure copy of the Vector Base Address Register (VBARS) for the Secure state vector
catches on the exception vectors.

Table C10-15 Vector catch addresses, for processors without Security Extensions

DBGVCR bit Vector catch enabled
Configured exception vectors

Normal (V == 0) High (V == 1)

[7] FIQ VE == 0 0x0000001C 0xFFFF001C

VE == 1 Most recent FIQ addressa

a. For more information see Vector catch debug events and vectored interrupt support on
page C3-22.

[6] IRQ VE == 0 0x00000018 0xFFFF0018

VE == 1 Most recent IRQ addressa

[4] Data Abort 0x00000010 0xFFFF0010

[3] Prefetch Abort 0x0000000C 0xFFFF000C

[2] SVC 0x00000008 0xFFFF0008

[1] Undefined Instruction 0x00000004 0xFFFF0004

[0] Reset 0x00000000 0xFFFF0000
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C10-71

ARM_2009_Q2
Sticky Note
For more information about Reset vector catch see the new subsection Reset vector catch added on page C10-74 [PDF page 1842]

Debug Registers Reference
For more information about these registers see:

— c12, Vector Base Address Register (VBAR) on page B3-148

— c12, Monitor Vector Base Address Register (MVBAR) on page B3-149.

Note
 The Reset exception vectors address never depends on the Vector Base Address values, and when

SCTLR.VE == 1 the IRQ and FIQ exception vector addresses do not depend on the Vector Base
Address values, see Table C10-16 on page C10-73 for more information.

• Except for the Secure state vector catches on the Monitor mode vectors, on the exception vector
configuration in the SCTLR:

— whether the SCTLR.V bit is programmed for Normal or High exception vectors

— for catches on the FIQ and IRQ exception vectors, on the programming of the SCTLR.VE bit.

Generation of Vector Catch debug events also depends on the security state of the processor:

• the Non-secure state vector catches are generated only in Non-secure state

• the Secure state vector catches are generated only in Secure state

• in v6 Debug and v6.1 Debug, Reset vector catches are generated only in Secure state.

In v7 Debug, if Reset vector catch is enabled the Reset vector catches are generated regardless of the security
state of the processor.

Generation of Vector Catch debug events takes no account of the values in the Secure Configuration
Register (SCR), except for SCR.NS. For example, if the DBGVCR is programmed to catch Secure state
IRQs on the Monitor mode vector, by setting bit [14] of the DBGVCR to 1, and the processor is in the Secure
state, a Vector Catch debug event is generated on any instruction prefetch from (MVBAR + 0x18). This
debug event is generated even if the SCR is programmed for IRQs to be handled in IRQ mode.

Table C10-15 on page C10-71 shows, for each active bit of the DBGVCR:

• the security state in which the Vector Catch debug event can occur

• how the corresponding vector address depends on the configuration settings.
C10-72 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug Registers Reference
Table C10-16 Vector catch operation, when Security Extensions are implemented

DBGVCR bit Vector catch enable Security state
Configured exception vectors

Normal (V == 0) High (V == 1)

Non-secure state vector catches

[31] FIQ VE == 0 Non-secure VBARNS + 0x0000001C 0xFFFF001C

VE == 1 Non-secure Most recent Non-secure FIQ addressa

[30] IRQ VE == 0 Non-secure VBARNS + 0x00000018 0xFFFF0018

VE == 1 Non-secure Most recent Non-secure IRQ addressa

[28] Data Abort Non-secure VBARNS + 0x00000010 0xFFFF0010

[27] Prefetch Abort Non-secure VBARNS + 0x0000000C 0xFFFF000C

[26] SVC Non-secure VBARNS + 0x00000008 0xFFFF0008

[25] Undefined Instruction Non-secure VBARNS + 0x00000004 0xFFFF0004

Secure state vector catches on Monitor mode vectors

[15] FIQ Secure MVBAR + 0x0000001C

[14] IRQ Secure MVBAR + 0x00000018

[12] Data Abort Secure MVBAR + 0x00000010

[11] Prefetch Abort Secure MVBAR + 0x0000000C

[10] SMC Secure MVBAR + 0x00000008
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C10-73

Debug Registers Reference
In a v6.1 Debug implementation on a processor that implements the Security Extensions but does not
implement DBGVCR bits [31, 30, 28:25, 15:14, 12:10]:

• in Non-secure state, bits [7:6, 4:1] apply to offsets from VBARNS.

• in Secure state, bits [7:6, 4:1] apply to offsets from VBARS and bits [7:6, 4:2] also apply to offsets
from MVBAR.

Secure state vector catches on exception mode vectors

[7] FIQ VE = 0 Secure VBARS + 0x0000001C 0xFFFF001C

VE = 1 Secure Most recent Secure FIQ addressa

[6] IRQ VE = 0 Secure VBARS + 0x00000018 0xFFFF0018

VE = 1 Secure Most recent Secure IRQ addressa

[4] Data Abort Secure VBARS + 0x00000010 0xFFFF0010

[3] Prefetch Abort Secure VBARS + 0x0000000C 0xFFFF000C

[2] SVC Secure VBARS + 0x00000008 0xFFFF0008

[1] Undefined Instruction Secure VBARS + 0x00000004 0xFFFF0004

Reset vector catchb

[0] Reset b 0x00000000 0xFFFF0000

a. For more information see Vector catch debug events and vectored interrupt support on page C3-22.
b. The value of the Reset vector is always independent of the Vector Base Address Register values. The security state

dependence of Reset vector catches depends on the Debug architecture version. In v7 Debug, Reset vector catches
are generated regardless of the security state of the processor. In v6 Debug and v6.1 Debug, Reset vector catches
are generated only in Secure state.

Table C10-16 Vector catch operation, when Security Extensions are implemented (continued)

DBGVCR bit Vector catch enable Security state
Configured exception vectors

Normal (V == 0) High (V == 1)
C10-74 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q2
Inserted Text
[New subsection]

Reset vector catch
If the processor implements the Security Extensions, the security state dependence of Reset vector catches depends on the Debug architecture version:
• in v7 Debug, the debug logic generates Reset vector catches regardless of the security state of the processor
• in v6 Debug and v6.1 Debug, the debug logic generates Reset vector catches only in Secure state.

The value of the vector addresses depends on the value of the SCTLR.V bit. An implementation can include a configuration input signal that determines the reset value of the SCTLR.V bit. For the Reset vector only, it is IMPLEMENTATION DEFINED whether the value of the Reset vector address depends on the reset value or on the current value of SCTLR.V.

If the processor implements the Security Extensions, the value of the Reset vector is always independent of the Vector Base Address Register values.

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
See the new subsection Reset vector catch added on this page.

Debug Registers Reference
C10.6 OS Save and Restore registers, v7 Debug only

Support for the OS Save and Restore mechanism registers depends on the Debug architecture version:

v6 Debug and v6.1 Debug

These registers are not defined.

v7 Debug If an implementation supports debug over power-down, then it must implement the OS Save
and Restore mechanism registers. On SinglePower systems, and on any other system that
does not support debug over power-down, it is IMPLEMENTATION DEFINED whether the OS
Save and Restore mechanism is implemented.

Any implementation that does not support the OS Save and Restore mechanism must
implement the DBGOSLSR as RAZ.

This section describes the registers that provide the OS Save and Restore mechanism in the following
subsections:

• OS Lock Access Register (DBGOSLAR)

• OS Lock Status Register (DBGOSLSR) on page C10-76

• OS Save and Restore Register (DBGOSSRR) on page C10-77.

In addition, the Event Catch Register enables the generation of a debug event when the OS Lock is unlocked.
This register is described in Event Catch Register (DBGECR) on page C10-78.

C10.6.1 OS Lock Access Register (DBGOSLAR)

The OS Lock Access Register, DBGOSLAR, provides a lock for the debug registers. When the registers
have been locked any access to the registers returns a slave-generated error response. Writing the key value
to the DBGOSLAR has the side effect of resetting the internal counter for the OS Save or Restore operation.

You must use the DBGOSLSR to check the current status of the lock, see OS Lock Status Register
(DBGOSLSR) on page C10-76.

The DBGOSLAR is:

• debug register 192, at offset 0x300

• a write-only register

• only defined in v7 Debug

• when the Security Extensions are implemented, a Common register.

Note
 In a v7 Debug implementation that does not implement the OS Save and Restore mechanism, register 192
ignores writes.

In v6 Debug and v6.1 Debug, register 192 is not defined.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C10-75

ARM_2008_Q4
Inserted Text
It is IMPLEMENTATION DEFINED whether Software debug events are permitted when the OS Lock is set. See About invasive debug authentication on page C2-2 [pdf page 1602].

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
with DBGOSLSR[0]

ARM_2009_Q2
Inserted Text
accesses to

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
are UNPREDICTABLE

Debug Registers Reference
The format of the DBGOSLAR is:

OS Lock Access, bits [31:0]

Writing the key value 0xC5ACCE55 to this field locks the debug registers, and resets the
internal counter for the OS Save or Restore operation.

Writing any other value to this register unlocks the debug registers if they are locked.

For details of error responses when accessing the debug registers, see Access permissions on page C6-26.

If bit [0] of the Event Catch Register is set to 1 at the point when the OS Lock is unlocked, an OS Unlock
Catch debug event is generated, see Event Catch Register (DBGECR) on page C10-78.

C10.6.2 OS Lock Status Register (DBGOSLSR)

The OS Lock Status Register, DBGOSLSR, provides status information for the OS Lock.

The DBGOSLSR is:

• debug register 193, at offset 0x304

• a read-only register

• only defined in v7 Debug

• when the Security Extensions are implemented, a Common register.

Note
 In any v7 Debug implementation you can read the DBGOSLSR to detect whether the OS Save and Restore
mechanism is implemented. If it is not implemented the read of the DBGOSLSR returns zero.

In v6 Debug and v6.1 Debug, register 193 is not defined.

The format of the DBGOSLSR is:

Bits [31:3] Reserved, UNK.

32-bit access, bit [2]

This bit is always RAZ. It indicates that a 32-bit access is needed to write the key to the OS
Lock Access Register.

31 0

OS Lock Access

�

$�8��)��21���
� �

�&9H��
�&9H1�D?*�D�����

��57��1499�88

�� �
C10-76 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q2
Inserted Text
 for DBGOSLSR[0]

Debug Registers Reference
Locked, bit [1]

This bit indicates the status of the OS Lock. The possible values are:

0 Lock not set.

1 Lock set. Writes to debug registers are ignored.

The OS Lock is set or cleared by writing to the DBGOSLAR, see OS Lock Access Register
(DBGOSLAR) on page C10-75.

On a debug logic reset the state of the OS Lock and the value of this bit are
IMPLEMENTATION DEFINED. If the implementation includes the recommended external
debug interface they are determined by the value of the DBGOSLOCKINIT signal:

DBGOSLOCKINIT LOW

The lock is not set, and the Locked bit is 0

DBGOSLOCKINIT HIGH
The lock is set, and the Locked bit is 1.

Lock implemented, bit [0]

This bit reads 1 if it is possible to set the OS Lock for this processor.

If this bit reads 0, OS Lock and the OS Save and Restore mechanism are not implemented
and the entire register is RAZ.

C10.6.3 OS Save and Restore Register (DBGOSSRR)

The OS Save and Restore Register, DBGOSSRR, enables the entire debug logic state of the processor to be
either saved or restored, by performing a series of reads or writes of the DBGOSSRR. The register works
in conjunction with an internal sequence counter to perform the OS Save or Restore operation.

The DBGOSSRR is:

• debug register 194, at offset 0x308

• a read/write register

• only defined in v7 Debug

• when the Security Extensions are implemented, a Common register.

Note
 • In a v7 Debug implementation that does not implement the OS Save and Restore mechanism, register

194 is RAZ/WI.

• For more information about access permissions in an implementation that includes the OS Save and
Restore mechanism but does not provide access to the DBGOSSRR through the external debug
interface, see the Note in The OS Save and Restore mechanism on page C6-8.

In v6 Debug and v6.1 Debug, register 194 is not defined.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C10-77

ARM_2009_Q1
Cross-Out

ARM_2009_Q1
Replacement Text
Setting the OS Lock restricts access to Debug registers. For more information see CP14 debug registers access permissions on page C6_36 [PDF page 1720] and Permission summaries for memory-mapped and external debug interfaces on page C6_45 [PDF page 1729].

ARM_2009_Q2
Inserted Text
accesses to

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
are UNPREDICTABLE

ARM_2009_Q2
Inserted Text

If the OS Save and Restore mechanism is not implemented, this bit is UNK.

ARM_2009_Q2
Cross-Out

Debug Registers Reference
The format of the DBGOSSRR is:

OS Save or Restore value, bits [31:0]

After a write to the DBGOSLAR to lock the debug registers, the first access to the
DBGOSSRR must be a read:

• when performing an OS Save sequence this read returns the number of reads from to
the DBGOSSRR that are needed to save the entire debug logic state

• when performing an OS Restore sequence the value of this read is UNKNOWN and
must be discarded.

After that first read access:

• a read of this register returns the next debug logic state value to be saved

• a write to this register restores the next debug logic state value.

Before accessing the DBGOSSRR, you must write to the DBGOSLAR to set the OS Lock, see OS Lock
Access Register (DBGOSLAR) on page C10-75. This write to the DBGOSLAR resets the internal counter
for the OS Save or Restore operation.

The result is UNPREDICTABLE if:

• you access the DBGOSSRR when the OS Lock is not set

• after setting the OS Lock, the first access to the DBGOSSRR is not a read.

See The OS Save and Restore mechanism on page C6-8 for a description of using the OS Save and Restore
mechanism registers.

C10.6.4 Event Catch Register (DBGECR)

The Event Catch Register, DBGECR, configures the debug logic to generate a debug event when the OS
Lock is unlocked.

The DBGECR is:

• debug register 9, at offset 0x024

• a read/write register

• only defined in v7 Debug

• when the Security Extensions are implemented, a Common register.

In v6 Debug and v6.1 Debug, register 9 is not defined.

31 0

OS Save or Restore value
C10-78 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q2
Cross-Out

ARM_2009_Q3
Inserted Text

ARM deprecates using the Extended CP14 interface to access DBGECR.

Debug Registers Reference
The format of the DBGECR is:

Bits [31:1] Reserved. UNK/SBZP.

OS Unlock Catch, bit [0]

When this bit is set to 1, an OS Unlock Catch debug event is generated when the OS Lock
is unlocked by writing to the DBGOSLAR, see OS Lock Access Register (DBGOSLAR) on
page C10-75. The possible values of this bit are:

0 OS Unlock Catch disabled

1 OS Unlock Catch enabled.

The debug logic reset value of this bit is 0.

The OS Unlock Catch bit is part of the OS Save and Restore mechanism. If an
implementation supports debug over power-down it must support the OS Save and Restore
mechanism, including the OS Unlock Catch debug event. If an implementation does not
support debug over power-down, it is IMPLEMENTATION DEFINED whether the OS Save and
Restore mechanism and the OS Unlock Catch debug event are supported. If the OS Unlock
Catch debug event is not supported then this bit is RAZ/WI.

The OS Unlock Catch debug event is a Halting debug event, see Halting debug events on page C3-38. If a
debugger is monitoring an application running on top of an OS with OS Save and Restore capability, this
event indicates the right time for the debug session to continue.

Note
 The OS Unlock Catch debug event is generated only on clearing of the OS Lock, that is, on the transition of
OS Lock from locked to unlocked.

�

$�8��)��21������
�
�� �

'�1��*&9H1�4�9=
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C10-79

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
UNK/SBZP

Debug Registers Reference
C10.7 Memory system control registers

Support for the Memory system control registers can depend on the Debug architecture version:

v6 Debug and v6.1 Debug

In some v6 Debug and v6.1 Debug implementations a Cache Behavior Override Register
(CBOR) is provided in an IMPLEMENTATION DEFINED region of the CP15 register space. In
addition, particularly in v6.1 Debug implementations, the Debug State MMU Control
Register (DBGDSMCR) and Debug State Cache Control Register (DBGDSCCR) might be
implemented as IMPLEMENTATION DEFINED extensions to CP14, as described below.

v6 Debug and v6.1 Debug do not require these registers. However, ARM recommends these
features to assist debuggers to maintaining memory coherency, avoiding costly explicit
coherency operations.

v7 Debug In v7 Debug, the DBGDSMCR and DBGDSCCR are required, but there can be
IMPLEMENTATION DEFINED limits on their behavior. The CP15 register CBOR remains
IMPLEMENTATION DEFINED.

The Memory system control registers are described in the subsections:

• Debug State Cache Control Register (DBGDSCCR) on page C10-81

• Debug State MMU Control Register (DBGDSMCR) on page C10-84.

The Debug State Cache Control Register (DBGDSCCR) and Debug State MMU Control Register
(DBGDSMCR) control cache and TLB behavior for memory operations issued by a debugger when the
processor is in Debug state. They enable a debugger to request the minimum amount of intrusion to the
processor caches, as permitted by the implementation. It is IMPLEMENTATION DEFINED what levels of cache
and TLB are controlled by these requests, and it is IMPLEMENTATION DEFINED to what extent the intrusion
is limited.

The DBGDSCCR also provides a mechanism for a debugger to force writes to memory through to the point
of coherency without the overhead of issuing additional operations.

The DBGDSCCR and DBGDSMCR controls must apply for all memory operations issued in Debug state
when DBGDSCR.ADAdiscard, the Asynchronous Data Aborts Discarded bit, is set to 1. It is
IMPLEMENTATION DEFINED whether memory operations issued in Debug state whilst this bit is not set to 1
are affected by the DBGDSCCR and DBGDSMCR.
C10-80 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug Registers Reference
C10.7.1 Debug State Cache Control Register (DBGDSCCR)

The Debug State Cache Control Register, DBGDSCCR, controls cache behavior when the processor is in
Debug state.

The DBGDSCCR is:

• debug register 10, at offset 0x028

• a read/write register, with some bits that might not be implemented and therefore are RAZ/WI

• required in v7 Debug

• when the Security Extensions are implemented, a Common register.

It is IMPLEMENTATION DEFINED whether the DBGDSCCR is included in a v6 Debug or v6.1 Debug
implementation.

The format of the DBGDSCCR is:

Bits [31:3] Reserved, UNK/SBZP.

Force Write-Through, nWT, bit [2]

The possible values of this bit are:

0 Force Write-Through behavior for memory operations issued by a debugger
when the processor is in Debug state

1 Normal operation for memory operations issued by a debugger when the
processor is in Debug state.

In Debug state, if the nWT bit is set to 0, when a write to memory completes the effect of
the write must be visible at all levels of memory to the point of coherency. This means a
debugger can write through to the point of coherency without having to perform any cache
clean operations.

If implemented, the nWT control must act at all levels of memory to the point of coherency.

If the nWT control is not implemented this bit is RAZ/WI.

Note
 nWT does not force the ordering of writes, and does not force writes to complete

immediately. A debugger might have to insert a barrier operations to ensure ordering.

�

$�8��)��21������
�
� �

��8��:9��&�1�49=�1*���@�**14��1�)�9��&�21���
"4�41�49=�1*���@�**14��1�)�9��&�21�"�

#&�9�1,����5�=�&:;=21�,+

�� �
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C10-81

ARM_2009_Q4 and ARM_2010_Q3
Cross-Out

ARM_2009_Q4 and ARM_2010_Q3
Replacement Text
RO. It is IMPLEMENTATION DEFINED whether it is RAZ or RAO, but the processor behaves as if the bit is set to 1.

ARM_2010_Q3
Sticky Note
This correction, and the similar correction for bits[1:0], is modified in the ARM_2010_Q3 errata release, to clarify the intended meaning.

Debug Registers Reference
Cache linefill and eviction bits, bits [1:0]

Either or both of these bits might not be implemented, in which case the bit is RAZ/WI. If
implemented these bits are:

nIL, bit [1] Instruction cache, where separate data and instruction caches are
implemented.

nDL, bit [0] Data or unified cache.

The possible values of an implemented bit are:

0 Request disabling of cache linefills and evictions for memory operations issued
by a debugger when the processor is in Debug state

1 Normal operation of cache linefills and evictions for memory operations issued
by a debugger when the processor is in Debug state.

When cache linefill and eviction is disabled, all memory accesses that would be checked
against a cache are checked against the cache. If a match is found, the cached result is used.
If no match is found the next level of memory is used, but the result is not cached, and no
cache entries are evicted.

The next level of memory can refer to looking in the next level of cache, or to accessing
external memory, depending on the numbers of levels of cache implemented.

When the processor is in Debug state, cache maintenance operations are not affected by the
nDL and nIL control bits, and have their normal architecturally-defined behavior.

The memory hint instructions PLD and PLI have UNPREDICTABLE behavior in Debug state
when the corresponding nDL or nIL control bit is set to 1.

The debug logic reset value of the DBGDSCCR depends on the ARM Debug architecture version:

v7 Debug Debug logic reset values are UNKNOWN. Before issuing operations through the
DBGITR with the processor in Debug state, a debugger must ensure that the
DBGDSCCR has a defined state.

ARMv6 All defined bits reset to 0.
C10-82 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q4 and ARM_2010_Q3
Cross-Out

ARM_2009_Q4 and ARM_2010_Q3
Replacement Text
RO. It is IMPLEMENTATION DEFINED whether an unimplemented bit is RAZ or RAO, but the processor behaves as if the bit is set to 1.

Debug Registers Reference
Permitted IMPLEMENTATION DEFINED limits

The DBGDSCCR is required. However, there can be IMPLEMENTATION DEFINED limits on its behavior.
Table C10-17 lists some examples of possible options for implementations.

Interaction with Cache Behavior Override Register

An IMPLEMENTATION DEFINED Cache Behavior Override Register (CBOR) might also be implemented in
CP15.

Table C10-18 on page C10-84 shows, for a processor that implements both the Debug state Cache Control
Register (DBGDSCCR) and the CBOR, the relative precedence of the CBOR and the DBGDSCCR
according to the state of the processor.

Table C10-17 Permitted IMPLEMENTATION DEFINED limits on DBGDSCCR behavior

Limit Description Notes

Full DBGDSCCR Bits [2:0]
implemented

-

No Write-Back
support

Bit [2] is RAZ/WI -

No
Write-Through
support

Bit [2] is RAZ/WI Force Write-Through feature not supported.

If Secure User halting debug is supported the implementation must
provide cache clean operations in Debug state, see Access to specific
cache management functions in Debug state on page C5-25.

No I-cache
control

Bit [1] is RAZ/WI Instruction cache linefill and eviction disable features not
implemented.

Instruction fetches are disabled in Debug state. For most
implementations no instruction cache accesses take place in Debug
state, and nIL is not required.

Unified cache Bit [1] is RAZ/WI -

Cache evictions
always enabled

- nIL and nDL disable cache linefills in Debug state. However cache
evictions might still take place even when these control bits are set
to 0.

No linefill control Bits [1:0] are RAZ/WI No cache linefill and eviction disable features are implemented.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C10-83

ARM_2009_Q4 and ARM_2010_Q3
Inserted Text

----- Note -----
Table C10-18 assumes that the processor supports the features controlled by the nWT, nDL, and nIL bits. If the processor does not support a feature:
 • the corresponding control bit is RO
 • it is IMPLEMENTATION DEFINED whether the bit is RAZ or RAO
 • the processor behaves as if the bit is set to 1.

ARM_2010_Q3
Cross-Out

ARM_2010_Q3
Replacement Text
RO

ARM_2010_Q3
Cross-Out

ARM_2010_Q3
Replacement Text
RO

ARM_2010_Q3
Cross-Out

ARM_2010_Q3
Replacement Text
RO

ARM_2010_Q3
Cross-Out

ARM_2010_Q3
Replacement Text
RO

ARM_2010_Q3
Cross-Out

ARM_2010_Q3
Replacement Text
RO

ARM_2010_Q3
Sticky Note
For more information about these changes, see the updated Note added to the subsection Interaction with Cache Behavior Override Register, at the bottom of this page.

Debug Registers Reference
A processor that does not implement Security Extensions has only WT, IL and DL settings in the CP15
Cache Behavior Override Register. Processors that implement Security Extensions can have separate
settings for, for example, NS_WT and S_WT in the CP15 Cache Behavior Override Register. For brevity
Table C10-18 does not show the full matrix of possibilities in this case. For the behavior on such a processor,
duplicate Table C10-18:

• once for the Non-secure case, for example NS_WT

• once for the Secure case, for example S_WT.

C10.7.2 Debug State MMU Control Register (DBGDSMCR)

The Debug State MMU Control Register, DBGDSMCR, controls TLB behavior when the processor is in
Debug state.

The DBGDSMCR is:

• debug register 11, at offset 0x02C

• a read/write register, with some bits that might not be implemented and therefore are RAZ/WI

• required in v7 Debug

• when the Security Extensions are implemented, a Common register.

Table C10-18 Interaction of CP15 Cache Behavior Override Register (CBOR) and DBGDSCCR

DBGDSCCR setting CBOR setting Debug state Behavior

nWT = 1 WT = 0 X Areas marked WB are Write-Back

nWT = X WT = 0 No Areas marked WB are Write-Back

nWT = X WT = 1 X Areas marked WB are Write-Through

nWT = 0 WT = X Yes Areas marked WB are Write-Through

nDL = 1 DL = 0 X Data or unified cache linefills are enabled

nDL = X DL = 0 No Data or unified cache linefills are enabled

nDL = X DL = 1 X Data or unified cache linefills are disabled

nDL = 0 DL = X Yes Data or unified cache linefills are disabled

nIL = 1 IL = 0 X Instruction cache linefills are enabled

nIL = X IL = 0 No Instruction cache linefills are enabled

nIL = X IL = 1 X Instruction cache linefills are disabled

nIL = 0 IL = X Yes Instruction cache linefills are disabled
C10-84 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug Registers Reference
It is IMPLEMENTATION DEFINED whether the DBGDSMCR is included in a v6 Debug or v6.1 Debug
implementation.

The format of the DBGDSMCR is:

Bits [31:4] Reserved, UNK/SBZP.

TLB matching bits, bits [3:2]

Either or both of these bits might not be implemented, in which case the bit is RAZ/WI. If
implemented these bits are:

nIUM, bit [3] Instruction TLB matching bit, where separate Data and Instruction
TLBs are implemented.

nDUM, bit [2] Data or Unified TLB matching bit.

The possible values of an implemented TLB matching bit are:

0 Request disabling of TLB matching for memory operations issued by a
debugger when the processor is in Debug state

1 Normal operation of TLB matching for memory operations issued by a
debugger when the processor is in Debug state.

When TLB matching is disabled, all memory accesses normally checked against a TLB are
not checked against the TLB. For every access the next level of translation is performed. The
results are not cached in the TLB, and no TLB entries are evicted. The next level of
translation is used for every access.

The next level of translation might mean looking in the next level TLB, or doing a
translation table walk, depending on the numbers of levels of TLB implemented.

Note
 If TLB matching is disabled, and TLB maintenance functions have not been correctly

performed by the system being debugged, for example, if the TLB has not been flushed
following a change to the translation tables, memory accesses made by the debugger might
not undergo the same virtual to physical memory mappings as the application being
debugged.

A debugger can create temporary alternative memory mappings by altering the contents of
the external translation tables and disabling all levels of TLB matching. However, for
normal debugging operations, ARM recommends that the TLB Matching bit is set to 1.

�

$�8��)��21������
�
� �

"4�41+��1D4�9=��;21�"�%
��8��:9��&�1+��1*&4���;21����

��8��:9��&�1+��1D4�9=��;21���%

��� �

"4�41+��1*&4���;21�"��
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C10-85

ARM_2009_Q4 and ARM_2010_Q3
Cross-Out

ARM_2009_Q4 and ARM_2010_Q3
Replacement Text
RO. It is IMPLEMENTATION DEFINED whether it is RAZ or RAO, but the processor behaves as if the bit is set to 1.

ARM_2010_Q3
Sticky Note
This correction, and the similar correction for bits[1:0], is modified in the ARM_2010_Q3 errata release, to clarify the intended meaning.

Debug Registers Reference
TLB loading bits, bits [1:0]

Either or both of these bits might not be implemented, in which case the bit is RAZ/WI. If
implemented these bits are:

nIUL, bit [1] Instruction TLB loading bit, where separate Data and Instruction
TLBs are implemented.

nDUL, bit [0] Data or Unified TLB loading bit.

The possible values of an implemented TLB loading bit are:

0 Request disabling of TLB load and flush for memory operations issued by a
debugger when the processor is in Debug state

1 Normal operation of TLB loading and flushing for memory operations issued
by a debugger when the processor is in Debug state.

When TLB load and flush is disabled, all memory accesses normally checked against a TLB
are checked against the TLB. If a match is found, the cached result is used. If no match is
found the next level of translation is performed, but the result is not cached in the TLB, and
no TLB entries are evicted.

The next level of translation might mean looking in the next level TLB, or doing a
translation table walk, depending on the numbers of levels of TLB implemented.

In Debug state, TLB maintenance operations are not affected by the nDUL and nIUL control
bits, and have their normal architecturally-defined behavior.

The debug logic reset value of the DBGDSMCR depends on the ARM Debug architecture version:

v7 Debug Debug logic reset values are UNKNOWN. Before issuing operations through the
DBGITR with the processor in Debug state, a debugger must ensure that the
DBGDSMCR has a defined state.

v6 Debug, v6.1 Debug

All defined bits reset to 0.
C10-86 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q4 and ARM_2010_Q3
Cross-Out

ARM_2009_Q4 and ARM_2010_Q3
Replacement Text
RO. It is IMPLEMENTATION DEFINED whether it is RAZ or RAO, but the processor behaves as if the bit is set to 1.

Debug Registers Reference
Permitted IMPLEMENTATION DEFINED limits

The DBGDSMCR is required. However, there can be IMPLEMENTATION DEFINED limits on its behavior.
Table C10-19 lists six permitted options for implementations. Some of these options are orthogonal.

Table C10-19 Permitted IMPLEMENTATION DEFINED limits on DBGDSCCR behavior

Limit Description Notes

Full
DBGDSMCR

Bits [3:0]
implemented

-

No I-TLB
controls

Bits [3,1] are
RAZ/WI

Instruction cache linefill and eviction disable features not implemented.

Instruction fetches disabled in Debug state. For most implementations no TLB
accesses take place in Debug state, and nIUL and nIUM are not required.

Unified TLB Bits [3,1] are
RAZ/WI

-

No matching
control

Bits [3:2] are
RAZ/WI

The TLB matching controls are not used to reduce the impact of debugging, only
for advanced debugging features. If not implemented, these bits are RAZ,
although the processor behaves as if they were set to 1.

TLB evictions
always enabled

- nIUL and nDUL disable TLB loading in Debug state. However TLB evictions
can still take place even when these control bits are set to 0.

No loading
control

Bits [1:0] are
RAZ/WI

-

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C10-87

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
M

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Inserted Text
instruction

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
cannot

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
but can be used

ARM_2009_Q4 and ARM_2010_Q3
Sticky Note
These changes are a clarification of the intended meaning of the description of the TLB matching controls. The ARM_2010_Q3 errata release provides additional clarification of the architectural requirements.

For bits[3:0], if a bit is unimplemented, it is RO, and it is IMPLEMENTATION DEFINED whether it bit is RAZ or RAO. However, the processor behaves as if the bit is set to 1. This means the corrected comment made in the table about bits[3:2] also applies to bits[1:0].

ARM_2010_Q3
Cross-Out

ARM_2010_Q3
Replacement Text
RO

ARM_2010_Q3
Cross-Out

ARM_2010_Q3
Replacement Text
RO

ARM_2010_Q3
Cross-Out

ARM_2010_Q3
Replacement Text
RO

ARM_2010_Q3
Cross-Out

ARM_2010_Q3
Replacement Text
RO

ARM_2010_Q3
Cross-Out

ARM_2010_Q3
Replacement Text
RO, and it is IMPLEMENTATION DEFINED whether they are RAZ or RAO,

Debug Registers Reference
C10.8 Management registers, ARMv7 only

Support for the management registers depends on the ARM architecture version:

ARMv6 These registers are not defined in ARMv6.

ARMv7 The processor identification registers are summarized in this section and are defined in one
or more of:

• CP15 registers for a VMSA implementation on page B3-64

• CP15 registers for a PMSA implementation on page B4-22

• Chapter B5 The CPUID Identification Scheme.

Additional management registers are defined in this section.

The layout of the management registers, registers 832-1023, complies with the CoreSight Architecture
Specification.

Processor identification registers summarizes the processor identification registers.

The following sections describe the remaining management registers:

• Integration Mode Control Register (DBGITCTRL) on page C10-91

• Claim Tag Set Register (DBGCLAIMSET) on page C10-92

• Claim Tag Clear Register (DBGCLAIMCLR) on page C10-93

• Lock Access Register (DBGLAR) on page C10-94

• Lock Status Register (DBGLSR) on page C10-95

• Authentication Status Register (DBGAUTHSTATUS) on page C10-96

• Device Type Register (DBGDEVTYPE) on page C10-98

• Debug Peripheral Identification Registers (DBGPID0 to DBGPID4) on page C10-98

• Debug Component Identification Registers (DBGCID0 to DBGCID3) on page C10-102

C10.8.1 Processor identification registers

The processor identification registers return the values stored in the Main ID and feature registers of the
processor.

The processor identification registers are:

• debug registers 832-895, at offsets 0xD00-0xDFC

• read-only registers.

Note
 The Extended CP14 interface MRC and MCR instructions that map to these registers are UNDEFINED in User
mode and UNPREDICTABLE in privileged modes. The CP15 interface must be used to access these registers.

Table C10-20 on page C10-89 lists the processor identification registers, in register number order.
C10-88 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug Registers Reference
Table C10-20 Processor identification registers

Register number Accessa

a. For more information, see CP14 debug registers access permissions on page C6-36 and
Permission summaries for memory-mapped and external debug interfaces on page C6-45.

Mnemonic Register

832 Read-only MIDR Main ID Registerb

b. Identification registers with register numbers 832-839 return the same value as an MRC
instruction MRC p15,0,<Rt>,c0,c0,<opc2>, where <opc2> = (register number - 832).

833 Read-only CTR Cache Type Registerb

834 Read-only TCMTR TCM Type Registerb

835 Read-only TLBTR TLB Type Registerb

836 Read-only MPUIR MPU Type Registerb

837 Read-only MPIDR Multiprocessor Affinity Registerb

838, 839 Read-only - Alias of Main ID Registerb

840 Read-only ID_PFR0 Processor Feature Register 0

841 Read-only ID_PFR1 Processor Feature Register 1

842 Read-only ID_DFR0 Debug Feature Register 0

843 Read-only ID_AFR0 Auxiliary Feature Register 0

844 Read-only ID_MMFR0 Memory Model Feature Register 0

845 Read-only ID_MMFR1 Memory Model Feature Register 1

846 Read-only ID_MMFR2 Memory Model Feature Register 2

847 Read-only ID_MMFR3 Memory Model Feature Register 3

848 Read-only ID_ISAR0 Instruction Set Attribute Register 0

849 Read-only ID_ISAR1 Instruction Set Attribute Register 1

850 Read-only ID_ISAR2 Instruction Set Attribute Register 2

851 Read-only ID_ISAR3 Instruction Set Attribute Register 3

852 Read-only ID_ISAR4 Instruction Set Attribute Register 4

853 Read-only ID_ISAR5 Instruction Set Attribute Register 5

854-895 - - Reserved, UNK/SBZP
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C10-89

Debug Registers Reference
Some of these registers form part of the CPUID scheme and are described in Chapter B5 The CPUID
Identification Scheme. The other ARMv7 registers are described in either or both of:

• CP15 registers for a VMSA implementation on page B3-64

• CP15 registers for a PMSA implementation on page B4-22.

Table C10-21 shows where each register is described

Table C10-21 Index to descriptions of the processor Identification registers

Register Description, VMSA Description, PMSA

Main ID Register c0, Main ID Register (MIDR) on
page B3-81

c0, Main ID Register (MIDR) on
page B4-32

Cache Type Register c0, Cache Type Register (CTR) on
page B3-83

c0, Cache Type Register (CTR) on
page B4-34

TCM Type Register c0, TCM Type Register (TCMTR)
on page B3-85

c0, TCM Type Register (TCMTR)
on page B4-35

TLB Type Register c0, TLB Type Register (TLBTR) on
page B3-86

VMSA only. Alias of Main ID
Register.

MPU Type Register PMSA only. Alias of Main ID
Register.

c0, MPU Type Register (MPUIR)
on page B4-36

Multiprocessor Affinity Register c0, Multiprocessor Affinity Register
(MPIDR) on page B3-87

c0, Multiprocessor Affinity Register
(MPIDR) on page B4-37

Processor Feature Register 0
CP15 c0, Processor Feature registers on page B5-4

Processor Feature Register 1

Debug Feature Register 0 c0, Debug Feature Register 0 (ID_DFR0) on page B5-6

Auxiliary Feature Register 0 c0, Auxiliary Feature Register 0 (ID_AFR0) on page B5-8

Memory Model Feature Register 0 to
Memory Model Feature Register 3

CP15 c0, Memory Model Feature registers on page B5-9

Instruction Set Attribute Register 0 to
Instruction Set Attribute Register 5

CP15 c0, Instruction Set Attribute registers on page B5-19
C10-90 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug Registers Reference
C10.8.2 Integration Mode Control Register (DBGITCTRL)

The Integration Mode Control Register, DBGITCTRL, enables the device to switch from its default
functional mode into integration mode, where the inputs and outputs of the device can be directly controlled
for integration testing or topology detection. When the processor is in integration mode, the
IMPLEMENTATION DEFINED integration registers can be used to drive output values and to read inputs.

The DBGITCTRL Register is:

• debug register 960, at offset 0xF00

• a read/write register

• when the Security Extensions are implemented, a Common register.

The format of the DBGITCTRL Register is:

Bits [31:1] Reserved, UNK/SBZP.

Integration mode enable, bit [0]

The possible values of this bit are:

0 Normal operation

1 Integration mode enabled.

When this bit is set to 1, the device reverts to an integration mode to enable integration
testing or topology detection. The integration mode behavior is IMPLEMENTATION DEFINED.

�

$�8��)��21������
�

����;�4��&�1D&��1��47*�

���
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C10-91

ARM_2009_Q3
Inserted Text

The behavior of accesses to
the DBGITCTRL register is IMPLEMENTATION DEFINED.

Debug Registers Reference
C10.8.3 Claim Tag Set Register (DBGCLAIMSET)

The Claim Tag Set Register, DBGCLAIMSET, enables the CLAIM bits, bits [7:0] of the register, to be set
to 1. CLAIM bits do not have any specific functionality. ARM expects the usage model to be that an external
debugger and a debug monitor can set specific bits to 1 to claim the corresponding debug resources.

The CLAIM bits are always RAO in the DBGCLAIMSET Register. This enables a debugger to identify the
number of CLAIM bits that are implemented. See Claim Tag Clear Register (DBGCLAIMCLR) on
page C10-93 for details of how to:

• clear CLAIM bits to 0

• read the current values of the CLAIM bits.

The DBGCLAIMSET Register is:

• debug register 1000, at offset 0xFA0

• a read/write register, in which:

— the CLAIM bits are always RAO

— writing 0 to a CLAIM bit has no effect

• when the Security Extensions are implemented, a Common register.

The format of the DBGCLAIMSET Register is:

Bits [31:8] Reserved, RAZ/SBZP.

CLAIM bits, bits [7:0]

Writing a 1 to one of these bits sets the corresponding CLAIM bit to 1. Multiple bits can be
set to 1 in a single write operation.

Writing 0 to one of these bits has no effect.

You must use the DBGCLAIMCLR Register to:

• read the values of the CLAIM bits

• clear a CLAIM bit to 0.

These bits are always RAO.

If a debugger reads this register, the bits that are set to 1 correspond to the implemented CLAIM bits.

31 8 7 0

Reserved, RAZ/SBZP CLAIM
C10-92 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug Registers Reference
C10.8.4 Claim Tag Clear Register (DBGCLAIMCLR)

The Claim Tag Clear Register, DBGCLAIMCLR, enables the values of the CLAIM bits, bits [7:0] of the
register, to be:

• read

• cleared to 0.

For more information about the CLAIM bits and how they might be used, see Claim Tag Set Register
(DBGCLAIMSET) on page C10-92.

The DBGCLAIMCLR Register is:

• debug register 1001, at offset 0xFA4

• a read/write register, in which:

— writing 0 to a CLAIM bit has no effect

— writing 1 to a CLAIM bit clears that bit to 0

— a read of the register returns the current values of the CLAIM bits

• when the Security Extensions are implemented, a Common register.

The format of the DBGCLAIMCLR Register is:

Bits [31:8] Reserved, RAZ/SBZP.

CLAIM bits, bits [7:0]

Writing a 1 to one of these bits clears the corresponding CLAIM bit to 0. Multiple bits can
be cleared to 0 in a single write operation.

Writing 0 to one of these bits has no effect.

Reading the register returns the current values of these bits.

The debug logic reset value of each of these bits is 0.

31 8 7 0

Reserved, RAZ/SBZP CLAIM
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C10-93

Debug Registers Reference
C10.8.5 Lock Access Register (DBGLAR)

The Lock Access Register, DBGLAR, provides a lock on writes to the debug registers through the
memory-mapped interface. Use of this lock mechanism reduces the risk of accidental damage to the
contents of the debug registers. It does not, and cannot, prevent all accidental or malicious damage.

You must use the DBGLSR to check the current status of the lock, see Lock Status Register (DBGLSR) on
page C10-95.

The DBGLAR is:

• debug register 1004, at offset 0xFB0

• a write-only register

• only defined in the memory-mapped interface

• when the Security Extensions are implemented, a Common register.

Note
 • Debug register 1004, at offset 0xFB0, is reserved in both the Extended CP14 interface and the external

debug interface.

• Do not confuse the Software Lock mechanism with the OS Lock described in The OS Save and
Restore mechanism on page C6-8.

The format of the DBGLAR is:

Lock Access control, bits [31:0]

Writing the key value 0xC5ACCE55 to this field clears the lock, enabling write accesses to the
debug registers through the memory-mapped interface.

Writing any other value to this register sets the lock, disabling write accesses to the debug
registers through the memory-mapped interface.

Note
 • In implementations with separate core and debug power-domains, this lock is maintained in the debug

power domain. Its state is unaffected by the core power domain powering down.

• This lock is set on debug logic reset, that is, on a PRESETDBGn or nSYSPORESET reset.

Accesses through the memory-mapped interface to locked debug registers are ignored. For more
information, see Permissions in relation to locks on page C6-27.

31 0

Lock Access control
C10-94 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
. Accesses to DBGLAR are UNPREDICTABLE in the external debug interface.

Debug Registers Reference
C10.8.6 Lock Status Register (DBGLSR)

The Lock Status Register, DBGLSR, provides status information for the debug registers lock. For more
information about this lock see Lock Access Register (DBGLAR) on page C10-94.

The DBGLSR is:

• debug register 1005, at offset 0xFB4

• a read-only register

• only defined in the memory-mapped interface

• when the Security Extensions are implemented, a Common register.

Note
 Debug register 1005, at offset 0xFB4, is reserved in both the Extended CP14 interface and the external debug
interface.

The format of the DBGLSR is:

Bits [31:3] Reserved, UNK.

32-bit access, bit [2]

This bit is always RAZ. It indicates that a 32-bit access is needed to write the key to the Lock
Access Register.

Locked, bit [1]

This bit indicates the status of the debug registers lock. The possible values are:

0 Lock clear. Debug register writes are permitted.

1 Lock set. Debug register writes are ignored.

The debug registers lock is set or cleared by writing to the DBGLAR, see Lock Access
Register (DBGLAR) on page C10-94.

The debug logic reset value of this bit is 1.

Lock implemented, bit [0]

This bit is RAO.

�

$�8��)��21���
� �

�&9H��
�&9H1�D?*�D�����

��57��1499�88

�� �

�

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C10-95

Debug Registers Reference
C10.8.7 Authentication Status Register (DBGAUTHSTATUS)

The Authentication Status Register, DBGAUTHSTATUS, indicates the implemented debug features and
provides the current values of the configuration inputs that determine the debug permissions. The value
returned depends on whether the processor implements the Security Extensions.

The DBGAUTHSTATUS Register is:

• debug register 1006, at offset 0xFB8

• a read-only register

• when the Security Extensions are implemented, a Common register.

When the Security Extensions are implemented, the format of the DBGAUTHSTATUS Register is:

Bits [31:8] Reserved, UNK.

Secure non-invasive debug features implemented, bit [7]

This bit is RAO, Secure non-invasive debug features are implemented.

Secure non-invasive debug enabled, bit [6]

This bit indicates the logical result of:

(DBGEN OR NIDEN) AND (SPIDEN OR SPNIDEN).

Secure invasive debug features implemented, bit [5]

This bit is RAO, Secure invasive debug features are implemented.

Secure invasive debug enabled, bit [4]

This bit indicates the logical result of (DBGEN AND SPIDEN).

Non-secure non-invasive debug features implemented, bit [3]

This bit is RAO, Non-secure non-invasive debug features are implemented.

Non-secure non-invasive debug enabled, bit [2]

This bit indicates the logical result of (DBGEN OR NIDEN)

�

$�8��)��21���
� �

��9:��1�&�5��)48�)�1��7:;1��47*��
��9:��1��)48�)�1��7:;1@�4�:��81�D?*�D�����

��9:��1�&�5��)48�)�1��7:;1@�4�:��81�D?*�D�����

��

��9:��1��)48�)�1��7:;1��47*��

� 	
�� �

�&�58�9:��1�&�5��)48�)�1��7:;1@�4�:��81�D?*�D�����
�&�58�9:��1�&�5��)48�)�1��7:;1��47*��

�&�58�9:��1��)48�)�1��7:;1@�4�:��81�D?*�D�����
�&�58�9:��1��)48�)�1��7:;1��47*��

� � � �
C10-96 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug Registers Reference
Non-secure invasive debug features implemented, bit [1]

This bit is RAO, Non-secure invasive debug features are implemented.

Non-secure invasive debug enabled, bit [0]

This bit indicates the logical state of the DBGEN signal.

When the Security Extensions are not implemented, the format of the DBGAUTHSTATUS Register is:

Bits [31:8] Reserved, UNK.

Secure non-invasive debug features implemented, bit [7]

This bit is RAO, Secure non-invasive debug features are implemented.

Secure non-invasive debug enabled, bit [6]

This bit indicates the logical result of (DBGEN OR NIDEN).

Secure invasive debug features implemented, bit [5]

This bit reads is RAO, Secure invasive debug features are implemented.

Secure invasive debug enabled, bit [4]

This bit indicates the logical state of the DBGEN signal.

Non-secure non-invasive debug features implemented, bit [3]

This bit is RAZ, Non-secure non-invasive debug features are not implemented.

Non-secure non-invasive debug enabled, bit [2]

This bit is RAZ.

Non-secure invasive debug features implemented, bit [1]

This bit is RAZ, Non-secure invasive debug features are not implemented.

Non-secure invasive debug enabled, bit [0]

This bit is RAZ.

�

$�8��)��21���
� �

��9:��1�&�5��)48�)�1��7:;1��47*��
��9:��1��)48�)�1��7:;1@�4�:��81�D?*�D�����

��9:��1�&�5��)48�)�1��7:;1@�4�:��81�D?*�D�����

��

��9:��1��)48�)�1��7:;1��47*��

� 	
�� �

�&�58�9:��1�&�5��)48�)�1��7:;1@�4�:��81�D?*�D�����
�&�58�9:��1�&�5��)48�)�1��7:;1��47*��

�&�58�9:��1��)48�)�1��7:;1@�4�:��81�D?*�D�����
�&�58�9:��1��)48�)�1��7:;1��47*��

� � � �� �
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C10-97

Debug Registers Reference
If a processor does not implement the Security Extensions, it does not implement any Non-secure debug
features.

C10.8.8 Device Type Register (DBGDEVTYPE)

The Device Type Register, DBGDEVTYPE, provides the CoreSight device type information for the Debug
architecture. The DBGDEVTYPE register must be implemented in all CoreSight components, and indicates
the type of debug component.

The DBGDEVTYPE Register is:

• debug register 1011, at offset 0xFCC

• a read-only register

• when the Security Extensions are implemented, a Common register.

The format of the DBGDEVTYPE Register is:

Bits [31:8] Reserved, RAZ.

Sub type, bits [7:4]

This field reads as 0x1, indicating a processor.

Main class, bits [3:0]

This field reads as 0x5, indicating Debug logic.

For more information about the CoreSight registers see the CoreSight Architecture Specification.

C10.8.9 Debug Peripheral Identification Registers (DBGPID0 to DBGPID4)

The Debug Peripheral Identification Registers provide standard information required by all components that
conform to the ARM Debug Interface v5 specification. They identify a peripheral in a particular namespace.
For more information, see the ARM Debug Interface v5 Architecture Specification.

The Debug Peripheral Identification Registers are:

• debug registers 1012-1019, at offsets 0xFD0-0xFEC

• read-only registers.

• when the Security Extensions are implemented, Common registers.

�

$�8��)��21$�

�:71�6?�

����� �

� � � �� �

%4��19*488

� �
C10-98 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q3
Inserted Text

Using the Extended CP14 interface to read register 1011 is UNDEFINED in User mode and UNPREDICTABLE in privileged modes.

ARM_2009_Q3
Inserted Text

Using the Extended CP14 interface to read any register in the range 1012-1019 is UNDEFINED in User mode and UNPREDICTABLE in privileged modes.

Debug Registers Reference
Note
 • ARMv7 only defines Debug Peripheral ID Registers 0 to 4, and reserves space for Debug Peripheral

ID Registers 5 to 7.

• The register number order of the Debug Peripheral ID Registers does not match the numerical order
ID0 to ID7, see Table C10-22.

Table C10-22 lists the Debug Peripheral Identification Registers in register number order.

Only bits [7:0] of each Debug Peripheral ID Register are used. This means that the format of each register is:

The eight Debug Peripheral ID Registers can be considered as defining a single 64-bit Peripheral ID, as
shown in Figure C10-1.

Figure C10-1 Mapping between Debug Peripheral ID Registers and a 64-bit Peripheral ID value

Table C10-22 Debug Peripheral Identification Registers

Register:
Description Reference

Number Offset

1012 0xFD0 Debug Peripheral ID4 DBGPID4 on page C10-102

1013 0xFD4 Reserved for Debug Peripheral ID5, DBGPID5 -

1014 0xFD8 Reserved for Debug Peripheral ID6, DBGPID6 -

1015 0xFDC Reserved for Debug Peripheral ID7, DBGPID7 -

1016 0xFE0 Debug Peripheral ID0 DBGPID0 on page C10-101

1017 0xFE4 Debug Peripheral ID1 DBGPID1 on page C10-101

1018 0xFE8 Debug Peripheral ID2 DBGPID2 on page C10-101

1019 0xFEC Debug Peripheral ID3 DBGPID0 on page C10-101

31 8 7 0

Reserved, RAZ Peripheral ID data

	�
	 ��� � �

� �

 �� �� �� �� �� �� �� �	 �

�9�:4*1����?=��4*1�"1$�;�8���1@��*�8
"�G��"�

�&�9�?�:4*1	�57��1����?=��4*1�"

"�G��"	 "�G��"
 "�G��"� "�G��"� "�G��"� "�G��"� "�G��"�

� � � � � � � � � � � � � �
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C10-99

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
3

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
2 [PDF page 1870]

Debug Registers Reference
Figure C10-2 shows the fields in the 64-bit Peripheral ID value, and includes the field values for fields that:

• have fixed values, including the bits that are reserved, RAZ

• have fixed values in a device that is designed by ARM.

For more information about the fields and their values see Table C10-23.

Figure C10-2 Peripheral ID fields, with values for a design by ARM

Table C10-23 shows the fields in the Peripheral ID.

	�
	 ���

� �

 �� �� �� �� �� �� �� �� ��

"�G��"�

�&�9�?�:4*1	�57��1����?=��4*1�"

"�G��"	 "�G��"
 "�G��"� "�G��"� "�G��"� "�G��"� "�G��"�
� � � � � � � � � � � � � �

� �
�
�	

� � � �

���
9&:��

J(�1��	
9&����:4��&�

9&��

����

$�)���

�:8�&D��
D&��@���

�� �� ��

� � � � � � � �

$�)�8&� J(�1��	
�"19&��

$�8��)��21$�
 �4��1�:D7��

�8�81J(�1��	1�"19&��

���81>��=1�&1)4*:�18=&>�14��1�%��(%(�+�+�'�1"(#��("
�&D�17��1)4*:�818=&>�14��1@&�141��)�9�1��8�;���1761�$%1��D����<1���1��0�1@&�1���4�*8<

Table C10-23 Fields in the Debug Peripheral Identification Registers

Name Size Description Register

4KB count 4 bits Log2 of the number of 4KB blocks occupied by the device. In v7 Debug,
the debug registers occupy a single 4KB block, so this field is always 0x0.

DBGPID4

JEP 106 code 4+7
bits

Identifies the designer of the device. This value consists of:

a 4-bit continuation code, also described as the bank number

a 7-bit identity code.

For implementations designed by ARM, the continuation code is 0x4
(bank 5), and the identity code is 0x3B.

For more information, see JEP106, Standard Manufacturers
Identification Code.

DBGPID1,
DBGPID2,
DBGPID4

RevAnd 4 bits Manufacturing Revision Number. Indicates a late modification to the
device, usually as a result of an Engineering Change Order.

This field starts at 0x0 and is incremented by the integrated circuit
manufacturer on metal fixes.

DBGPID3

Customer
modified

4 bits Indicates an endorsed modification to the device.

If the system designer cannot modify the RTL supplied by the processor
designer then this field is RAZ.

DBGPID3
C10-100 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug Registers Reference
For more information about these fields, see the ARM Debug Interface v5 Architecture Specification.

The following subsections describe the formats of each of the implemented Debug Peripheral ID Registers.

DBGPID0

DBGPID0 is debug register 1016 at offset 0xFE0. Its format is:

Bits [31:8] Reserved, RAZ.

Part number[7:0], bits [7:0]

Bits [7:0] of the IMPLEMENTATION DEFINED Part number.

DBGPID1

DBGPID1 is debug register 1017 at offset 0xFE4. Its format is:

Bits [31:8] Reserved, RAZ.

JEP Identity Code[3:0], bits [7:4]

Bits [3:0] of the IMPLEMENTATION DEFINED JEP Identity Code.

For a device designed by ARM the JEP Identity Code is 0x3B and therefore this field is 0xB.

Part number[11:8], bits [3:0]

Bits [11:8] of the IMPLEMENTATION DEFINED Part number.

DBGPID2

DBGPID2 is debug register 1018 at offset 0xFE8. Its format is:

Bits [31:8] Reserved, RAZ.

Revision, bits [7:4]

The IMPLEMENTATION DEFINED revision number for the device.

Revision 4 bits Revision number for the device.

Starts at 0x0 and increments by 1 at both major and minor revisions.

DBGPID2

Uses JEP 106
ID code

1 bit This bit is set to 1 when a JEP 106 Identity Code is used.

This bit must be 1 on all ARMv7 implementations.

DBGPID2

Part Number 12 bits Part number for the device. Each organization designing devices to the
ARM Debug architecture specification keeps its own part number list.

DBGPID0,
DBGPID1

Table C10-23 Fields in the Debug Peripheral Identification Registers (continued)

Name Size Description Register
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C10-101

Debug Registers Reference
Uses JEP Code, bit [3]

For an ARMv7 implementation this bit must be one, indicating that the Peripheral ID uses
a JEP 106 Identity Code.

JEP Identity Code[6:4], bits [2:0]

Bits [6:4] of the IMPLEMENTATION DEFINED JEP Identity Code.

For a device designed by ARM the JEP Identity Code is 0x3B and therefore this field is
0b011.

DBGPID3

DBGPID3 is debug register 1019 at offset 0xFEC. Its format is:

Bits [31:8] Reserved, RAZ.

RevAnd, bits [7:4]

The IMPLEMENTATION DEFINED manufacturing revision number for the device.

Customer modified, bits [3:0]

An IMPLEMENTATION DEFINED value that indicates an endorsed modification to the device.

If the system designer cannot modify the RTL supplied by the processor designer then this
field is RAZ.

DBGPID4

DBGPID4 is debug register 1012 at offset 0xFD0. Its format is:

Bits [31:8] Reserved, RAZ.

4KB count, bits [7:4]

This field is RAZ for all ARMv7 implementations.

JEP 106 Continuation code, bits [3:0]

The IMPLEMENTATION DEFINED JEP 106 Continuation code.

For a device designed by ARM this field is 0x4.

C10.8.10 Debug Component Identification Registers (DBGCID0 to DBGCID3)

The Debug Component Identification Registers identify the processor as an ARM Debug Interface v5
Component. For more information, see the ARM Debug Interface v5 Architecture Specification.

The Debug Component Identification Registers:

• are debug registers 1020-1023, at offsets 0xFF0-0xFFC

• are read-only registers
C10-102 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug Registers Reference
• occupy the last four words of the 4KB block of debug registers

• when the Security Extensions are implemented, are Common registers.

Table C10-24 lists the Debug Component Identification Registers.

Only bits [7:0] of each Debug Component ID Register are used. This means that the format of each register
is:

The four Debug Component ID Registers can be considered as defining a single 32-bit Component ID, as
shown in Figure C10-3. The value of this Component ID is fixed.

Figure C10-3 Mapping between Debug Component ID Registers and the 32-bit Component ID value

The following subsections describe the formats of each of the Debug Component ID Registers.

DBGCID0

DBGCID0 is debug register 1020 at offset 0xFF0. Its format is:

Bits [31:8] Reserved, RAZ.

Table C10-24 Debug Component Identification Registers

Register:
Description Reference

Number Offset

1020 0xFF0 Debug Component ID0 DBGCID0

1021 0xFF4 Debug Component ID1 DBGCID1 on page C10-104

1022 0xFF8 Debug Component ID2 DBGCID2 on page C10-104

1023 0xFFC Debug Component ID3 DBGCID3 on page C10-104

31 8 7 0

Reserved, RAZ Component ID data

�9�:4*1�&D?&����1�"1$�;�8���1@��*�8

"�G��"�

�&�9�?�:4*1��57��1�&D?&����1�"

���4D7*�

�� ��	 �
 �� ��

�� �� �� ��

"�G��"� "�G��"� "�G��"�

���4D7*��&D?&����
9*488

� �

�&D?&����1�"
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C10-103

ARM_2009_Q3
Inserted Text

Using the Extended CP14 interface to read any register in the range 1020-1023 is UNDEFINED in User mode and UNPREDICTABLE in privileged modes.

Debug Registers Reference
Preamble byte 0, bits [7:0]

This byte has the value 0x0D.

DBGCID1

DBGCID1 is debug register 1021 at offset 0xFF4. Its format is:

Bits [31:8] Reserved, RAZ.

Component class, bits [7:4]

This field has the value 0x9, indicating an ARM Debug component.

Preamble, bits [3:0]

This field has the value 0x0.

DBGCID2

DBGCID2 is debug register 1022 at offset 0xFF8. Its format is:

Bits [31:8] Reserved, RAZ.

Preamble byte 2, bits [7:0]

This field has the value 0x05.

DBGCID3

DBGCID3 is debug register 1023 at offset 0xFFC. Its format is:

Bits [31:8] Reserved, RAZ.

Preamble byte 3, bits [7:0]

This field has the value 0xB1.
C10-104 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug Registers Reference
C10.9 Performance monitor registers

v6 Debug and v6.1 Debug

These registers are not defined in v6 Debug and v6.1 Debug.

v7 Debug The performance monitors are an optional feature in v7 Debug. If implemented, they are
registers in CP15 c9, see CP15 c9 register map on page C9-10.

The following subsections describe the performance monitor registers:

• c9, Performance Monitor Control Register (PMCR)

• c9, Count Enable Set Register (PMCNTENSET) on page C10-108

• c9, Count Enable Clear Register (PMCNTENCLR) on page C10-109

• c9, Overflow Flag Status Register (PMOVSR) on page C10-110

• c9, Software Increment Register (PMSWINC) on page C10-112

• c9, Event Counter Selection Register (PMSELR) on page C10-113

• c9, Cycle Count Register (PMCCNTR) on page C10-114

• c9, Event Type Select Register (PMXEVTYPER) on page C10-115

• c9, Event Count Register (PMXEVCNTR) on page C10-116

• c9, User Enable Register (PMUSERENR) on page C10-117

• c9, Interrupt Enable Set Register (PMINTENSET) on page C10-118

• c9, Interrupt Enable Clear Register (PMINTENCLR) on page C10-119.

C10.9.1 c9, Performance Monitor Control Register (PMCR)

The Performance Monitor Control Register, PMCR:

• provides details of the performance monitor implementation, including the number of counters
implemented

• configures and controls the counters.

The PMCR:

• is a 32-bit read/write CP15 register, with more restricted access to some bits

• is accessible in:

— privileged modes

— User mode only when the PMUSERENR.EN bit is set to 1

• when the Security Extensions are implemented, is a Common register

• is accessed using an MRC or MCR command with <CRn> set to c9, <opc1> set to 0, <CRm> set to c12, and
<opc2> set to 0

• has defined core logic reset values for its read/write bits.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C10-105

Debug Registers Reference
The format of the PMCR is:

IMP, bits [31:24]

Implementer code. This is a read-only field with an IMPLEMENTATION DEFINED value.

The Implementer codes are allocated by ARM. Values have the same interpretation as bits
[31:24] of the CP15 Main ID Register, see:

• c0, Main ID Register (MIDR) on page B3-81 for a VMSA implementation

• c0, Main ID Register (MIDR) on page B4-32 for a PMSA implementation.

IDCODE, bits [23:16]

Identification code. This is a read-only field with an IMPLEMENTATION DEFINED value.

Each implementer must maintain a list of identification codes that is specific to the
implementer. A specific implementation is identified by the combination of the implementer
code and the identification code.

N, bits [15:11]

Number of event counters. This is a read-only field with an IMPLEMENTATION DEFINED value
that indicates the number of counters implemented.

The value of this field is the number of counters implemented, from 0b00000 for no counters
to 0b11111 for 31 counters.

An implementation can implement only the Clock Counter (PMCCNTR) Register. This is
indicated by a value of 0b00000 for the N field.

Bits [10:6] Reserved, UNK/SBZP.

DP, bit [5] Disable PMCCNTR when prohibited. The possible values of this bit are:

0 Count is enabled in prohibited regions

1 Count is disabled in prohibited regions.

Prohibited regions are defined as regions where event counting would be prohibited. For
example, if non-invasive debug is disabled in all Secure modes, the Secure state is a
prohibited region. For details of non-invasive debug authentication see Chapter C7
Non-invasive Debug Authentication.

Note
 This bit permits a Non-secure process to discard cycle counts that might be accumulated

during periods when the other counts are prohibited because of security prohibitions. It is
not a control to enhance security. The function of this bit is to avoid corruption of the count.
See also Interaction with Security Extensions on page C9-7.

This is a read/write bit. Its core logic reset value is 0.

31 24 23 16 15 11 10 6 5 4 3 2 1 0

IMP IDCODE N UNK/SBZP DP X D C P E
C10-106 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug Registers Reference
X, bit [4] Export enable. The possible values of this bit are:

0 Export of events is disabled

1 Export of events is enabled.

This bit is used to permit events to be exported to another debug device, such as a trace
macrocell, over an event bus. If the implementation does not include such an event bus, this
bit is RAZ/WI.

This bit does not affect the generation of performance monitor interrupts, that can be
implemented as a signal exported from the processor to an interrupt controller.

This is a read/write bit. Its core logic reset value is 0.

D, bit [3] Clock divider. The possible values of this bit are:

0 When enabled, PMCCNTR counts every clock cycle

1 When enabled, PMCCNTR counts once every 64 clock cycles.

This is a read/write bit. Its core logic reset value is 0.

C, bit [2] Clock counter reset. This is a write-only bit. The effects of writing to this bit are:

0 No action

1 Reset PMCCNTR to zero.

Note
 Resetting PMCCNTR does not clear the PMCCNTR overflow flag to 0. For details see c9,

Overflow Flag Status Register (PMOVSR) on page C10-110.

This bit is always RAZ.

P, bit [1] Event counter reset. This is a write-only bit. The effects of writing to this bit are:

0 No action

1 Reset all event counters, not including PMCCNTR, to zero.

Note
 Resetting the event counters does not clear any overflow flags to 0. For details see c9,

Overflow Flag Status Register (PMOVSR) on page C10-110.

This bit is always RAZ.

E, bit [0] Enable. The possible values of this bit are:

0 All counters, including PMCCNTR, are disabled

1 All counters are enabled.

Performance monitor overflow IRQs are only signaled when the enable bit is set to 1.

This is a read/write bit. Its core logic reset value is 0.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C10-107

Debug Registers Reference
C10.9.2 c9, Count Enable Set Register (PMCNTENSET)

The Count Enable Set Register, PMCNTENSET, is used to enable:

• the Cycle Count Register, PMCCNTR

• any implemented event counters, PMNx.

Reading the PMCNTENSET Register shows which counters are enabled. Counters are disabled using the
Count Enable Clear Register, see c9, Count Enable Clear Register (PMCNTENCLR) on page C10-109.

The PMCNTENSET Register is:

• a 32-bit read/write CP15 register:

— reading the register shows which counters are enabled

— writing a 1 to a bit of the register enables the corresponding counter

— writing a 0 to a bit of the register has no effect

• accessible in:

— privileged modes

— User mode only when the PMUSERENR.EN bit is set to 1

• accessed using an MRC or MCR command with <CRn> set to c9, <opc1> set to 0, <CRm> set to c12, and
<opc2> set to 1.

The format of the PMCNTENSET Register is:

Note
 In the description of the PMCNTENSET Register:

• N is the number of event counters implemented, as defined by the PMCR.N field, see c9,
Performance Monitor Control Register (PMCR) on page C10-105

• x refers to a single event counter, and takes values from 0 to (N-1).

C, bit [31] PMCCNTR enable bit.

See Table C10-25 on page C10-109 for the behavior of this bit on reads and writes.

Bits [30:N] RAZ/WI.

Px, bit [x], for x = 0 to (N-1)

Event counter x, PMNx, enable bit.

31 30 N N-1 0

C RAZ/WI Event counter enable bits, Px, for x = 0 to (N-1)
C10-108 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2010_Q2
Inserted Text

• when the Security Extensions are implemented, a Common register

Debug Registers Reference
Table C10-25 shows the behavior of this bit on reads and writes.

The contents of the PMCNTENSET Register are UNKNOWN on a core logic reset.

C10.9.3 c9, Count Enable Clear Register (PMCNTENCLR)

The Count Enable Clear Register, PMCNTENCLR, is used to disable:

• the Cycle Count Register, PMCCNTR

• any implemented event counters, PMNx.

Reading the PMCNTENCLR Register shows which counters are enabled. Counters are enabled using the
Count Enable Set Register, see c9, Count Enable Set Register (PMCNTENSET) on page C10-108.

The PMCNTENCLR Register is:

• a 32-bit read/write CP15 register:

— reading the register shows which counters are enabled

— writing a 1 to a bit of the register disables the corresponding counter

— writing a 0 to a bit of the register has no effect

• accessible in:

— privileged modes

— User mode only when the PMUSERENR.EN bit is set to 1

• when the Security Extensions are implemented, a Common register

• accessed using an MRC or MCR command with <CRn> set to c9, <opc1> set to 0, <CRm> set to c12, and
<opc2> set to 2.

The format of the PMCNTENCLR Register is:

Note
 In the description of the PMCNTENCLR Register, N and x have the meanings used in the description of the
PMCNTENSET Register, see c9, Count Enable Set Register (PMCNTENSET) on page C10-108.

C, bit [31] PMCCNTR disable bit.

See Table C10-26 on page C10-110 for the behavior of this bit on reads and writes.

Table C10-25 Read and write bit values for the PMCNTENSET Register

Value Meaning on read Action on write

0 Counter disabled No action, write is ignored

1 Counter enabled Enable counter

31 30 N N-1 0

C RAZ/WI Event counter disable bits, Px, for x = 0 to (N-1)
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C10-109

Debug Registers Reference
Bits [30:N] RAZ/WI.

Px, bit [x], for x = 0 to (N-1)

Event counter x, PMNx, disable bit.

Table C10-26 shows the behavior of this bit on reads and writes.

The contents of the PMCNTENCLR Register are UNKNOWN on a core logic reset.

Note
 The PMCR.E Enable bit can be used to override the settings in this register and disable all counters including
PMCCNTR, see c9, Performance Monitor Control Register (PMCR) on page C10-105. The counter enable
register retains its value when the Enable bit is 0, even though its settings are ignored.

C10.9.4 c9, Overflow Flag Status Register (PMOVSR)

The Overflow Flag Status Register, PMOVSR, holds the state of the overflow flags for:

• the Cycle Count Register, PMCCNTR

• each of the implemented event counters, PMNx.

To clear those flags you must write to the PMOVSR.

The PMOVSR is:

• a 32-bit read/write CP15 register:

— reading the register shows the state of the overflow flags

— writing a 1 to a bit of the register clears the corresponding flag

— writing a 0 to a bit of the register has no effect

• accessible in:

— privileged modes

— User mode only when the PMUSERENR.EN bit is set to 1

• when the Security Extensions are implemented, a Common register

• accessed using an MRC or MCR command with <CRn> set to c9, <opc1> set to 0, <CRm> set to c12, and
<opc2> set to 3.

Table C10-26 Read and write bit values for the PMCNTENCLR Register

Value Meaning on read Action on write

0 Counter disabled No action, write is ignored

1 Counter enabled Disable counter
C10-110 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug Registers Reference
The format of the PMOVSR is:

Note
 In the description of the PMOVSR, N and x have the meanings used in the description of the
PMCNTENSET Register, see c9, Count Enable Set Register (PMCNTENSET) on page C10-108.

C, bit [31] PMCCNTR overflow flag.

Table C10-27 shows the behavior of this bit on reads and writes.

Bits [30:N] RAZ/WI.

Px, bit [x], for x = 0 to (N-1)

Event counter x, PMNx, overflow flag.

Table C10-27 shows the behavior of this bit on reads and writes.

The contents of the PMOVSR are UNKNOWN on a core logic reset.

Note
 The overflow flag values for individual counters are retained until cleared to 0 by a write to the PMOVSR
or processor reset, even if the counter is later disabled by writing to the PMCNTENCLR register or through
the PMCR.E Enable bit. The overflow flags are also not cleared to 0 when the counters are reset through the
Event counter reset or Clock counter reset bits in the PMCR.

31 30 N N-1 0

C RAZ/WI Event counter overflow flags, Px, for x = 0 to (N-1)

Table C10-27 Read and write bit values for the PMOVSR

Value Meaning on read Action on write

0 Counter has not overflowed No action, write is ignored

1 Counter has overflowed Clear flag to 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C10-111

Debug Registers Reference
C10.9.5 c9, Software Increment Register (PMSWINC)

The Software Increment Register, PMSWINC, increments a counter that is configured to count the Software
count event, event 0x00.

The PMSWINC Register is:

• a 32-bit write-only CP15 register

• accessible in:

— privileged modes

— User mode only when the PMUSERENR.EN bit is set to 1

• when the Security Extensions are implemented, a Common register

• accessed using an MCR command with <CRn> set to c9, <opc1> set to 0, <CRm> set to c12, and <opc2> set
to 4.

The format of the PMSWINC Register is:

Note
 In the description of the PMSWINC Register, N and x have the meanings used in the description of the
PMCNTENSET Register, see c9, Count Enable Set Register (PMCNTENSET) on page C10-108.

Bits [31:N] Reserved, SBZ.

Px, bit [x], for x = 0 to (N-1)

Event counter x, PMNx, software increment bit. This is a write-only bit. The effects of
writing to this bit are:

0 No action, the write is ignored

1, if PMNx is configured to count the Software count event

Increment PMNx Register by 1

1, if PMNx is not configured to count the Software count event
UNPREDICTABLE.

31 N N-1 0

SBZ Event counter software increment bits, Px, for x = 0 to (N-1)
C10-112 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug Registers Reference
C10.9.6 c9, Event Counter Selection Register (PMSELR)

The Event Counter Selection Register, PMSELR, selects the current event counter, PMNx. When a
particular event counter is selected:

• the PMXEVTYPER can be used to set the event that increments that counter, or to read the current
configuration, see c9, Event Type Select Register (PMXEVTYPER) on page C10-115

• the PMXEVCNTR can be used to read the current value of that counter, or to write a value to that
counter, see c9, Event Count Register (PMXEVCNTR) on page C10-116

The PMSELR is:

• a 32-bit read/write CP15 register

• accessible in:

— privileged modes

— User mode only when the PMUSERENR.EN bit is set to 1

• when the Security Extensions are implemented, a Common register

• accessed using an MRC or MCR command with <CRn> set to c9, <opc1> set to 0, <CRm> set to c12, and
<opc2> set to 5.

The format of the PMSELR is:

Bits [31:5] Reserved, UNK/SBZP.

SEL, bits [4:0]

Selection value of the current event counter, PMNx, where x is the value held in this field.
This field can take any value from 0 (0b00000) to 30 (0b11110).

If this field is set to a value greater than or equal to the number of implemented counters the
results are UNPREDICTABLE. The number of implemented counters is defined by the
PMCR.N field, see c9, Performance Monitor Control Register (PMCR) on page C10-105.

The value of 0b11111 is Reserved and must not be used.

The contents of the PMSELR are UNKNOWN on a core logic reset.

The SEL field identifies which event counter, PMNSEL, is accessed by PMXEVTYPER and PMXEVCNTR,
see c9, Event Type Select Register (PMXEVTYPER) on page C10-115 and c9, Event Count Register
(PMXEVCNTR) on page C10-116.

31 5 4 0

Reserved, UNK/SBZP SEL
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C10-113

Debug Registers Reference
C10.9.7 c9, Cycle Count Register (PMCCNTR)

The Cycle Count Register, PMCCNTR, counts processor clock cycles. Depending on the value of the
PMCR.D bit, PMCCNTR increments either on every processor clock cycle or on every 64th processor clock
cycle. See c9, Performance Monitor Control Register (PMCR) on page C10-105.

The PMCCNTR is:

• a 32-bit read/write CP15 register

• accessible in:

— privileged modes

— User mode only when the PMUSERENR.EN bit is set to 1

• when the Security Extensions are implemented, a Common register

• accessed using an MRC or MCR command with <CRn> set to c9, <opc1> set to 0, <CRm> set to c13, and
<opc2> set to 0.

The format of the PMCCNTR is:

CCNT, bits [31:0]

Cycle count. Depending on the value of the PMCR.D bit, this field increments either:

• every processor clock cycle

• every 64th processor clock cycle.

The contents of the PMCCNTR are UNKNOWN on a core logic reset.

The PMCCNTR.CCNT value can be reset to zero by writing a 1 to the PMCR.C bit, see c9, Performance
Monitor Control Register (PMCR) on page C10-105.

31 0

CCNT
C10-114 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug Registers Reference
C10.9.8 c9, Event Type Select Register (PMXEVTYPER)

The Event Type Select Register, PMXEVTYPER, configures which event increments the current event
counter, PMNx, or to read the current configuration. PMSELR selects the current event counter, see c9,
Event Counter Selection Register (PMSELR) on page C10-113.

The PMXEVTYPER is:

• a 32-bit read/write CP15 register

• accessible in:

— privileged modes

— User mode only when the PMUSERENR.EN bit is set to 1

• when the Security Extensions are implemented, a Common register

• accessed using an MRC or MCR command with <CRn> set to c9, <opc1> set to 0, <CRm> set to c13, and
<opc2> set to 1.

The format of the PMXEVTYPER is:

Bits [31:8] Reserved, UNK/SBZP.

evtCount, bits [7:0]

Event to count. The Event number of the event that is counted by the current event counter,
PMNx. For more information, see Event numbers.

The contents of each of the Event Type Select Registers are UNKNOWN on a core logic reset.

Event numbers

Event numbers are used in the PMXEVTYPER to determine the event that causes an event counter to
increment. These event numbers are split into two ranges:

0x00-0x3F Common features. Reserved for the specified events. When an ARMv7 processor supports
monitoring of an event that is assigned a number in this range, if possible it must use that
number for the event. Unassigned values are reserved and might be used to define additional
common events in future editions of this manual.

0x40-0xFF IMPLEMENTATION DEFINED features.

For more information, including the assigned values in the common features range, see Event numbers on
page C9-13.

31 8 7 0

Reserved, UNK/SBZP evtCount
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C10-115

Debug Registers Reference
C10.9.9 c9, Event Count Register (PMXEVCNTR)

The Event Count Register, PMXEVCNTR, is used to read or write the value of the current event counter,
PMNx. PMSELR selects the current event counter, see c9, Event Counter Selection Register (PMSELR) on
page C10-113.

The PMXEVCNTR is:

• a 32-bit read/write CP15 register

• accessible in:

— privileged modes

— User mode only when the PMUSERENR.EN bit is set to 1

• when the Security Extensions are implemented, a Common register

• accessed using an MRC or MCR command with <CRn> set to c9, <opc1> set to 0, <CRm> set to c13, and
<opc2> set to 2.

The format of the PMXEVCNTR is:

PMNX, bits [31:0]

Value of the current event counter, PMNx.

A read of the PMXEVCNTR always returns the current value of the register.

The contents of each of the Event Count Registers are UNKNOWN on a core logic reset.

Note
 You can write to the PMXEVCNTR even when the counter is disabled. This is true regardless of why the
counter is disabled, which can be any of:

• because 1 has been written to the appropriate bit in the PMCNTENCLR

• because the PMCR.E bit is set to 0

• by the non-invasive debug authentication.

31 0

PMNX
C10-116 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug Registers Reference
C10.9.10 c9, User Enable Register (PMUSERENR)

The User Enable Register, PMUSERENR, enables or disables User mode access to the performance
monitors.

The PMUSERENR is:

• a 32-bit read/write CP15 register, with access that depends on the current mode:

— in a privileged mode, the PMUSERENR is a read/write register

— in User mode, the PMUSERENR is a read-only register

• when the Security Extensions are implemented, a Common register

• accessed using an MRC or MCR command with <CRn> set to c9, <opc1> set to 0, <CRm> set to c14, and
<opc2> set to 0.

The format of the PMUSERENR is:

Bits [31:1] Reserved, UNK/SBZP.

EN, bit [0] User mode access enable bit. The possible values of this bit are:

0 User mode access to performance monitors disabled

1 User mode access to performance monitors enabled.

Some MCR and MRC instructions used to access the performance monitors are UNDEFINED in User mode when
User mode access to the performance monitors is disabled. For more information, see Access permissions
on page C9-12.

The PMUSERENR.EN bit is set to 0 on a core logic reset.

31 1 0

Reserved, UNK/SBZP
E
N

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C10-117

Debug Registers Reference
C10.9.11 c9, Interrupt Enable Set Register (PMINTENSET)

The Interrupt Enable Set Register, PMINTENSET, enables the generation of interrupt requests on overflows
from:

• the Cycle Count Register, PMCCNTR

• each implemented event counter, PMNx.

Reading the PMINTENSET Register shows which overflow interrupts are enabled. Counter overflow
interrupts must be disabled using the PMINTENCLR Register, see c9, Interrupt Enable Clear Register
(PMINTENCLR) on page C10-119.

The PMINTENSET Register is:

• A 32-bit read/write CP15 register:

— reading the register shows which overflow interrupts are enabled

— writing a 1 to a bit of the register enables the corresponding overflow interrupt

— writing a 0 to a bit of the register has no effect.

• Accessible only in privileged modes.

The instructions that access the PMINTENSET Register are always UNDEFINED in User mode, even
if the PMUSERENR.EN flag is set to 1, see c9, User Enable Register (PMUSERENR) on
page C10-117.

• When the Security Extensions are implemented, a Common register.

• Accessed using an MRC or MCR command with <CRn> set to c9, <opc1> set to 0, <CRm> set to c14, and
<opc2> set to 1.

The format of the PMINTENSET Register is:

Note
 In the description of the PMINTENSET Register, N and x have the meanings used in the description of the
PMCNTENSET Register, see c9, Count Enable Set Register (PMCNTENSET) on page C10-108.

C, bit [31] PMCCNTR overflow interrupt enable bit.

See Table C10-28 on page C10-119 for the behavior of this bit on reads and writes.

Bits [30:N] RAZ/WI.

Px, bit [x], for x = 0 to (N-1)

Event counter x, PMNx, overflow interrupt enable bit.

31 30 N N-1 0

C RAZ/WI Event counter overflow interrupt enable bits, Px, for x = 0 to (N-1)
C10-118 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Debug Registers Reference
Table C10-28 shows the behavior of this bit on reads and writes.

The contents of the PMINTENSET Register are UNKNOWN on a core logic reset. To avoid spurious
interrupts being generated, software must set the interrupt enable values before enabling any of the counters.
Interrupts are not signaled if the PMCR.E Enable bit is set to 0.

When an interrupt is signaled, it can be removed by clearing the overflow flag for the counter in the
PMOVSR Register, see c9, Overflow Flag Status Register (PMOVSR) on page C10-110.

Note
 ARM expects that the interrupt request that can be generated on a counter overflow is also exported from
the processor, meaning it can be factored into a system interrupt controller if applicable. This means that
normally the system will have more levels of control of the interrupt generated.

C10.9.12 c9, Interrupt Enable Clear Register (PMINTENCLR)

The Interrupt Enable Clear Register, PMINTENCLR, disables the generation of interrupt requests on
overflows from:

• the Cycle Count Register, PMCCNTR

• each implemented event counter, PMNx.

Reading the PMINTENCLR Register shows which overflow interrupts are enabled. Counter overflow
interrupts must be enabled using the PMINTENSET Register, see c9, Interrupt Enable Set Register
(PMINTENSET) on page C10-118.

The PMINTENCLR Register is:

• A 32-bit read/write CP15 register:

— reading the register shows which overflow interrupts are enabled

— writing a 1 to a bit of the register disables the corresponding overflow interrupt

— writing a 0 to a bit of the register has no effect.

• Accessible only in privileged modes.

The instructions that access the PMINTENCLR Register are always UNDEFINED in User mode, even
if the PMUSERENR.EN flag is set to 1, see c9, User Enable Register (PMUSERENR) on
page C10-117.

• When the Security Extensions are implemented, a Common register.

• Accessed using an MRC or MCR command with <CRn> set to c9, <opc1> set to 0, <CRm> set to c14, and
<opc2> set to 2.

Table C10-28 Read and write bit values for the PMINTENSET Register

Value Meaning on read Action on write

0 Interrupt disabled No action, write is ignored

1 Interrupt enabled Enable interrupt
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. C10-119

Debug Registers Reference
The format of the PMINTENCLR Register is:

Note
 In the description of the PMINTENCLR Register, N and x have the meanings used in the description of the
PMINTENSET Register, see c9, Interrupt Enable Set Register (PMINTENSET) on page C10-118.

C, bit [31] PMCCNTR overflow interrupt disable bit.

See Table C10-29 for the behavior of this bit on reads and writes.

Bits [30:N] RAZ/WI.

Pm, bit [x], for x = 0 to (N-1)

Event counter x, PMNx, overflow interrupt disable bit.

Table C10-29 shows the behavior of this bit on reads and writes.

The contents of the PMINTENCLR Register are UNKNOWN on a core logic reset.

For more information about counter overflow interrupts see c9, Interrupt Enable Set Register
(PMINTENSET) on page C10-118.

31 30 N N-1 0

C RAZ/WI Event counter overflow interrupt disable bits, Px, for x = 0 to (N-1)

Table C10-29 Read and write bit values for the PMINTENCLR Register

Value Meaning on read Action on write

0 Interrupt disabled No action, write is ignored

1 Interrupt enabled Disable interrupt
C10-120 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Part D
Appendices

Appendix A
Recommended External Debug Interface

This chapter describes the recommended external debug interface. It contains the following sections:

• System integration signals on page AppxA-2

• Recommended debug slave port on page AppxA-13.

Note
 This recommended external debug interface specification is not part of the ARM architecture specification.
Implementers and users of the ARMv7 architecture must not consider this appendix as a requirement of the
architecture. It is included as an appendix to this manual only:

• as reference material for users of ARM products that implement this interface

• as an example of how an external debug interface might be implemented.

The inclusion of this appendix is no indication of whether any ARM products might, or might not,
implement this external debug interface. For details of the implemented external debug interface you must
always see the appropriate product documentation.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxA-1

Recommended External Debug Interface
A.1 System integration signals

Table A-1 shows the signals recommended in v7 Debug.

Table A-1 Miscellaneous debug signals

Name Direction Versions Description Section

DBGEN In v6, v6.1, v7 Debug Enable Authentication signals
on page AppxA-3

NIDEN In v6, v6.1:
optional
v7: required

Non-Invasive Debug Enable

SPIDEN In v6.1, v7 Secure Privileged Invasive
Debug Enable

SPNIDEN In v6.1, v7 Secure Privileged
Non-Invasive Debug Enable

DBGRESTART In v7 only External restart request Run-control and
cross-triggering
signals on
page AppxA-5

DBGRESTARTED In v7 only Handshake for
DBGRESTART

DBGTRIGGER Out v7 only,
optional

Debug Acknowledge signal

EDBGRQ In v6, v6.1, v7 External Debug Request

DBGACK Out v6, v6.1, v7 Debug Acknowledge signal DBGACK and
DBGCPUDONE on
page AppxA-7DBGCPUDONE Out v7 only,

optional
Debug Acknowledge signal

COMMRX Out v6, v6.1, v7 DBGDTRRX full signal COMMRX and
COMMTX on
page AppxA-9COMMTX Out v6, v6.1, v7 DBGDTRTX empty signal

DBGOSLOCKINIT In v7 only Initialize OS Lock on reset DBGOSLOCKINIT on
page AppxA-9

DBGNOPWRDWN Out v6, v6.1:
optional
v7: required

No power-down request
signal

DBGNOPWRDWN on
page AppxA-9

DBGPWRDUP In v7 only Processor powered up DBGPWRDUP on
page AppxA-10
AppxA-2 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Inserted Text
Out

Recommended External Debug Interface
A.1.1 Authentication signals

DBGEN, NIDEN, SPIDEN and SPNIDEN are the authentication signals.

NIDEN and SPNIDEN can be omitted if no non-invasive debug features are implemented.

SPIDEN and SPNIDEN can be omitted if Security Extensions are not implemented.

When DBGEN is LOW, indicating that debug is disabled:

• Halting debug events are ignored

• except for ignoring Halting debug events, the processor behaves as if DBGDSCR[15:14] == 0b00,
meaning that Monitor debug-mode and Halting debug-mode are both disabled. For more information,
see Debug Status and Control Register (DBGDSCR) on page C10-10.

For details of how these signals control enabling of invasive and non-invasive debug see Chapter C2
Invasive Debug Authentication and Chapter C7 Non-invasive Debug Authentication.

Note
 The v7 Debug architecture authentication signal interface described here is compatible with the CoreSight
architecture requirements for the authentication interface of a debug component. However the CoreSight
architecture places additional requirements on other components in the system. For more information, see
the CoreSight Architecture Specification.

SPIDEN also controls permissions in Debug state. For details see Privilege in Debug state on page C5-13.

See also Authentication Status Register (DBGAUTHSTATUS) on page C10-96.

DBGROMADDR[31:12] In v7 only ROM Table physical address DBGROMADDR and
DBGROMADDRV on
page AppxA-10DBGROMADDRV In v7 only ROM Table physical address

valid

DBGSELFADDR[31:12] In v7 only Debug self-address offset DBGSELFADDR and
DBGSELFADDRV on
page AppxA-10DBGSELFADDRV In v7 only Debug self-address offset

valid

DBGSWENABLE In v7 only Debug software access enable DBGSWENABLE on
page AppxA-11

PRESETDBGn In v7 only Debug logic reset PRESETDBGn on
page AppxA-12

Table A-1 Miscellaneous debug signals (continued)

Name Direction Versions Description Section
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxA-3

Recommended External Debug Interface
Changing the authentication signals

In v6.1 Debug and v7 Debug, the NIDEN, DBGEN, SPIDEN, and SPNIDEN authentication signals can
be controlled dynamically, meaning that they might change while the processor is running, or while the
processor is in Debug state.

Note
 In v6 Debug DBGEN is a static signal and can be changed only while the processor is in reset.

Normally, these signals are driven by the system, meaning that they are driven by a peripheral connected to
the ARM processor. If the software running on the ARM processor has to change any of these signals it must
follow this procedure:

1. Execute an implementation specific sequence of instructions to change the signal value. For example,
this might be an instruction to write a value to a control register in a system peripheral.

2. If step 1 involves any memory operation, perform a Data Synchronization Barrier (DSB).

3. Poll the debug registers to check the signal values seen by the processor. This is required because the
processor might not see the signal change until several cycles after the DSB completes.

4. Perform an Instruction Synchronization Barrier (ISB), exception entry or exception return.

The software cannot perform debug or analysis operations that rely on the new value until this procedure
has been completed. The same rules apply for instructions executed through the DBGITR while in Debug
state. The processor view of the authentication signals can be polled through DBGDSCR[17:16] and, in v7
Debug, the DBGAUTHSTATUS register.

Note
 Exceptionally, the processor might be in Debug state even though the mode, security state and authentication
signal settings are such that, in Non-debug state, debug events would be ignored. This can occur because:

• it is UNPREDICTABLE whether the behavior of debug events that are generated between a change in
the authentication signals and the next Instruction Synchronization Barrier, exception entry or
exception return follow the behavior of the old or new settings

• it is possible to change the authentication signals while the processor is in Debug state.

See also Generation of debug events on page C3-40 and Altering CPSR privileged bits in Debug state on
page C5-14.
AppxA-4 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q2
Inserted Text
 If this happens, the processor remains in Debug state, but the operations available to it might change.

Recommended External Debug Interface
A.1.2 Run-control and cross-triggering signals

ARM recommends implementation of the run-control and cross-triggering signals EDBGRQ,
DBGTRIGGER, DBGRESTART, and DBGRESTARTED. These signals are particularly useful in a
multiprocessor system, because using them:

• A debugger can signal a group of processors to enter Debug state.

• A debugger can signal a group of processors to leave Debug state.

• A system component can signal a group of processors to enter Debug state when any one of them
enters Debug state because of a debug event on that processor. This is known as cross-triggering.

If you implement the recommended signalling in your system hardware, this signalling means all of the
processors in the group enter or leave Debug state nearly simultaneously.

These signals can also be used in a uniprocessor implementation. For example, debug events not defined by
the debug architecture might be generated externally to the processor. When one of these events occurs the
external system can use these signals to cause the processor to enter Debug state. A trace macrocell might
use these signals in this way.

Contact ARM for details of a recommended Embedded Cross Trigger (ECT) peripheral that you can use in
a multiprocessor system to implement this signalling.

The following subsections describe each of the recommended signals:

• EDBGRQ

• DBGTRIGGER on page AppxA-6

• DBGRESTART and DBGRESTARTED on page AppxA-6.

EDBGRQ

EDBGRQ is the recommended implementation of the External Debug Request mechanism, see Halting
debug events on page C3-38.

EDBGRQ is active-HIGH.

Once EDBGRQ is asserted it must be held HIGH until it is acknowledged:

• An implementation can use either DBGACK or DBGTRIGGER to acknowledge EDBGRQ, see:

— DBGACK and DBGCPUDONE on page AppxA-7

— DBGTRIGGER on page AppxA-6.

• Alternatively, debugger software might use an IMPLEMENTATION DEFINED method to acknowledge
EDBGRQ. For example, once the processor has entered Debug state the debugger might reprogram
the peripheral that is driving EDBGRQ.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxA-5

Recommended External Debug Interface
DBGTRIGGER

The processor asserts DBGTRIGGER to indicate that it is committed to entering Debug state. Therefore,
the system can use DBGTRIGGER to acknowledge EDBGRQ. See Chapter C5 Debug State for the
definition of Debug state.

DBGTRIGGER is active-HIGH.

The processor must assert DBGTRIGGER as early as possible, so that the system can use its rising edge
to signal to other devices that the processor is entering Debug state. DBGTRIGGER can be used for
cross-triggering. For example, in a multiprocessor system, when one processor halts, the DBGTRIGGER
signal from that processor can be used to generate an External Debug Request for the other processors.

See DBGACK and DBGCPUDONE on page AppxA-7 for details of the recommended External Debug
Request handshaking between EDBGRQ and DBGTRIGGER.

In addition, the processor asserts DBGTRIGGER whenever the DBGDSCR.DBGack bit is set to 1, see
Debug Status and Control Register (DBGDSCR) on page C10-10.

If the DBGDSCR.DBGack bit is 0, the processor deasserts DBGTRIGGER on exit from Debug state.

Note
 Setting DBGDSCR.DBGack to 1 takes no account of the DBGEN and SPIDEN signals. Setting
DBGDSCR.DBGack to 1 asserts DBGTRIGGER regardless of the security settings.

A v7 Debug implementation of these recommendations might not implement DBGTRIGGER if it would
have identical behavior to DBGACK.

Before v7 Debug, DBGTRIGGER is not part of the recommended external debug interface.

DBGRESTART and DBGRESTARTED

DBGRESTART is the recommended implementation of the External Restart request, see Leaving Debug
state on page C5-28. DBGRESTARTED is a handshake signal for DBGRESTART.

DBGRESTART and DBGRESTARTED are active-HIGH.

Once DBGRESTART is asserted, it must be held HIGH until DBGRESTARTED is deasserted. The
processor ignores DBGRESTART if it is not in Debug state.

Figure A-1 on page AppxA-7 shows the four-phase handshake of DBGRESTART and
DBGRESTARTED. It is diagrammatic only, and does not imply any timings.
AppxA-6 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Recommended External Debug Interface
Figure A-1 DBGRESTART / DBGRESTARTED handshake

The numbers in Figure A-1 have the following meanings:

1. If DBGRESTARTED is asserted HIGH the peripheral asserts DBGRESTART HIGH and waits for
DBGRESTARTED to go LOW

2. The processor drives DBGRESTARTED LOW to deassert the signal and waits for DBGRESTART
to go LOW

3. The peripheral drives DBGRESTART LOW to deassert the signal. This event indicates to the
processor that it can start the transition from Debug state to Non-debug state.

4. The processor leaves Debug state and asserts DBGRESTARTED HIGH.

In the process of leaving Debug state the processor normally deasserts the DBGACK, DBGTRIGGER,
and DBGCPUDONE signals. It is IMPLEMENTATION DEFINED when this change occurs relative to the
changes in DBGRESTART and DBGRESTARTED.

A.1.3 DBGACK and DBGCPUDONE

DBGACK and DBGCPUDONE are active-HIGH.

The processor asserts DBGACK to indicate that it is in Debug state. Therefore, the system can use
DBGACK as a handshake for EDBGRQ, instead of using DBGTRIGGER.

In v6 Debug and v6.1 Debug, the system can use DBGACK for cross-triggering.

The processor asserts DBGCPUDONE only after it has completed all Non-debug state memory accesses.
Therefore the system can use DBGCPUDONE as an indicator that all memory accesses issued by the
processor result from operations performed by a debugger.

Figure A-2 on page AppxA-8 shows the signalling sequence for entry to Debug state. It is diagrammatic
only, and does not imply any timings.

��-$.�*&�&� ?�����-$.�*&�&�

#',���-��-

� �

#',���-��-�#

��
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxA-7

Recommended External Debug Interface
Figure A-2 Signalling for Debug state entry on an External Debug Request

In Figure A-2 these events must occur in order:

1 The peripheral asserts EBDGRQ and waits for it to be acknowledged.

2 The processor takes the debug event and starts the Debug state entry sequence. The
processor asserts DBGTRIGGER.

3 The processor completes the Debug state entry sequence and asserts DBGACK.

4 The processor completes all Non-debug state memory accesses and asserts
DBGCPUDONE. It might do this only after intervention by an external debugger, see
Asynchronous aborts and entry to Debug state on page C5-5.

Event a, the peripheral deasserting EDBGRQ, can occur at any time after the assertion of EDBGRQ is
acknowledged. In the example shown in Figure A-2, the system is using DBGTRIGGER to acknowledge
EDBGRQ, and therefore event a is not ordered relative to events 3 and 4.

In addition, the processor asserts DBGCPUDONE and DBGACK when the DBGDSCR.DBGack bit is set
to 1, see Debug Status and Control Register (DBGDSCR) on page C10-10.

If the DBGDSCR.DBGack bit is 0, the processor deasserts DBGCPUDONE and DBGACK on exit from
Debug state.

Note
 Setting DBGDSCR.DBGack to 1 takes no account of the DBGEN and SPIDEN signals. Setting
DBGDSCR.DBGack to 1 asserts DBGCPUDONE and DBGACK regardless of the security settings.

A v7 Debug implementation of these recommendations might not implement DBGCPUDONE if it would
have identical behavior to DBGACK.

Before v7 Debug, DBGCPUDONE was not part of the recommended external debug interface.

��-$.�*&�&����&��?��,���*&�&�

�#',�

#',-��,,��

� �

#',�$.

#',$��#/0�

�

��-$.�*&�&�

����&)��&�+&��-�$&�&)�������'�.��(�&���*'&'�����

� �
AppxA-8 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Recommended External Debug Interface
A.1.4 COMMRX and COMMTX

COMMRX and COMMTX reflect the state of DBGDSCR[30:29] through the external debug interface:

• COMMTX is the inverse of DBGDSCR[29], TXfull. The processor is ready to transmit.

• COMMRX is equivalent to DBGDSCR[30], RXfull.

See Debug Status and Control Register (DBGDSCR) on page C10-10 for descriptions of the TXfull and
RXfull bits.

These signals are active HIGH indicators of when the Debug Communications Channel (DCC) requires
processing by the target system. They permit interrupt-driven communications over the DCC. By
connecting these signals to an interrupt controller, software using the DCC can be interrupted whenever
there is new data on the channel or when the channel is clear for transmission.

Note
 There can be race conditions between reading the DCC flags through a read of DBGDSCRext and a read of
the DBGDTRTXint Register or a write to the DBGDTRRXint Register through the Baseline CP14 interface.
However the timing of these signals with respect to the DCC registers must be such that target code
executing off an interrupt triggered by either of these signals must be able to write to DBGDTRTXint and
read DBGDTRRXint without race conditions.

A.1.5 DBGOSLOCKINIT

DBGOSLOCKINIT is not required in v6 Debug and v6.1 Debug.

In v7 Debug, DBGOSLOCKINIT is a configuration signal that determines the state of the OS Lock
immediately after a debug registers reset. On a debug registers reset:

• if DBGOSLOCKINIT is HIGH then the OS Lock is set from the reset

• if DBGOSLOCKINIT is LOW then the OS Lock is clear from the reset.

Normally, DBGOSLOCKINIT is tied off LOW.

For a description of debug registers reset see Recommended reset scheme for v7 Debug on page C6-16. For
details of the OS Lock see OS Save and Restore registers, v7 Debug only on page C10-75.

See also Permissions in relation to locks on page C6-27.

A.1.6 DBGNOPWRDWN

DBGNOPWRDWN is optional in v6 Debug and v6.1 Debug.

DBGNOPWRDWN is equivalent to the value of bit [0] of the Device Power-Down and Reset Control
Register. The processor power controller must work in emulate mode when this signal is HIGH.

For more information, see Device Power-down and Reset Control Register (DBGPRCR), v7 Debug only on
page C10-31.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxA-9

Recommended External Debug Interface
A.1.7 DBGPWRDUP

DBGPWRDUP is not required in v6 Debug and v6.1 Debug.

DBGPWRDUP is not required in a SinglePower system, that is, it is not required in a design that has only
one power domain.

The DBGPWRDUP input signal is HIGH when the processor is powered up, and LOW otherwise. The
DBGPWRDUP signal is reflected in bit [0] of the Device Power-Down and Reset Status Register.

See also Device Power-down and Reset Status Register (DBGPRSR), v7 Debug only on page C10-34 and
Permissions in relation to power-down on page C6-28.

A.1.8 DBGROMADDR and DBGROMADDRV

DBGROMADDR and DBGROMADDRV are not required in v6 Debug and v6.1 Debug. They are
required in v7 Debug if the memory-mapped interface is implemented.

DBGROMADDR specifies bits [31:12] of the ROM Table table physical address. This is a configuration
input. It must be either:

• be a tie-off

• change only while the processor is in reset.

In a system with multiple ROM Tables, this address must be tied off to the top-level ROM Table address.

In a system with no ROM Table this address must be tied off with the physical address where the debug
registers are memory-mapped. Debug software can use the debug component identification registers at the
end of the 4KB block addressed by DBGROMADDR to distinguish a ROM table from a processor.

Note
 If the system implements more than one debug component, for example a processor and a trace macrocell,
a ROM Table must be provided.

DBGROMADDRV is the valid signal for DBGROMADDR. If the address cannot be determined,
DBGROMADDR must be tied off to zero and DBGROMADDRV tied LOW.

The format of ROM Tables is defined in the ARM Debug Interface v5 Architecture Specification.

A.1.9 DBGSELFADDR and DBGSELFADDRV

DBGSELFADDR and DBGSELFADDRV are not required in v6 Debug and v6.1 Debug.

In v7 Debug, DBGSELFADDR and DBGSELFDDRV are required if the memory-mapped interface is
implemented. If DBGROMADDR and DBGROMADDRV are not implemented, DBGSELFADDR and
DBGSELFADDRV must not be implemented.
AppxA-10 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Recommended External Debug Interface
DBGSELFADDR specifies bits [31:12] of the two’s complement signed offset from the ROM Table
physical address to the physical address where the debug registers are Memory-mapped. This is a
configuration input. It must either:

• be a tie-off

• change only while the processor is in reset.

If there is no ROM Table, DBGROMADDR must be configured as described in the section
DBGROMADDR and DBGROMADDRV on page AppxA-10, and DBGSELFADDR must be tied off to
zero with DBGSELFADDRV tied HIGH.

DBGSELFADDRV is the valid signal for DBGSELFADDR. If the offset cannot be determined,
DBGSELFADDR must be tied off to zero and DBGSELFADDRV tied LOW.

A.1.10 DBGSWENABLE

DBGSWENABLE is not required in v6 Debug and v6.1 Debug.

In v7 Debug, DBGSWENABLE is driven by the Debug Access Port. For details see the ARM Debug
Interface v5 Architecture Specification.

DBGSWENABLE is an active-HIGH signal that must be asserted to enable system access to the debug
register file. That is, if deasserted it prevents access through the memory-mapped and Extended CP14
interfaces. This gives the debugger full control over the debug registers in the processor.

When this signal is deasserted by the debugger by a means that is IMPLEMENTATION DEFINED,
memory-mapped interface accesses return an error response and most Extended CP14 operations become
UNDEFINED instructions. See CP14 debug registers access permissions on page C6-36 and Permission
summaries for memory-mapped and external debug interfaces on page C6-45.

In the ARM Debug Interface v5, DBGSWENABLE is asserted by setting the DbgSwEnable control bit in
the access port Control Status Word Register (CSW) to 1. For the memory-mapped interface, when the
DbgSwEnable control bit is set to 0 the generation of slave-generated errors is a function of the ADIv5
Debug Access Port, and therefore the processor ignores the DBGSWENABLE signal for the
memory-mapped interface. For details see the ARM Debug Interface v5 Architecture Specification.

The DBGSWENABLE signal has no effect on accesses through the external debug interface.

Normally, the DBGSWENABLE signal must be asserted at debug logic reset and deasserted under
debugger control.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxA-11

Recommended External Debug Interface
A.1.11 PRESETDBGn

PRESETDBGn is not required in v6 Debug and v6.1 Debug. The debug logic is only reset on system
power-up reset.

The reset signal resets all debug registers. See also Recommended reset scheme for v7 Debug on
page C6-16.

Note
 Do not use the PRESETDBGn signal to reset the debug registers if the debug system is connected to a
debug monitor that uses the CP14 debug interface.
AppxA-12 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Recommended External Debug Interface
A.2 Recommended debug slave port

This slave port is not required in v6 Debug and v6.1 Debug.

The memory-mapped interface is optional on v7 Debug. This section describes the recommended APBv3
slave port. It provides both the memory-mapped and external debug interfaces.

A valid external debug interface for v7 Debug is any access mechanism that enables the external debugger
to complete reads or writes to the memory-mapped registers described in The memory-mapped and
recommended external debug interfaces on page C6-43.

In v7 Debug a memory-mapped interface can be implemented to provide access to the debug registers using
load and store operations. Such an interface is sufficient for the requirements of the external debug interface,
and therefore it is possible to implement both the memory-mapped and external debug interfaces using a
single memory slave port on the processor.

This section describes the v7 Debug recommendations for an APBv3 memory slave port APBv3 as part of
the external debug interface. In addition, ARM recommends a Debug Access Port capable of mastering an
APBv3 bus and compatible with the ARM Debug Interface v5 (ADIv5). Figure A-3 shows the
recommendations.

Figure A-3 Recommended external debug interface, including APBv3 slave port

In Figure A-3, signals with a lower-case n suffix are active LOW and all other signals are active HIGH.

ARM recommends that the debug registers are accessible through an ARM AMBA 3 Peripheral Bus version
1 (APBv3) external debug interface. This APBv3 interface:

• is 32 bits wide

• supports only 32-bit reads and writes

DBGEN
SPIDEN
NIDEN
SPNIDEN

Processor

Authentication
interface

COMMTX
COMMRX

DCC
handshake

DBGTRIGGER
DBGCPUDONE
DBGACK
EDBGRQ

DBGRESTARTED
DBGRESTART

Cross-trigger
interface

DBGNOPWRDWN
DBGPWRDUP

Power
controller
interface

PSELDBG
PADDRDBG
PRDATADBG
PWDATADBG
PENABLEDBG
PREADYDBG
PSLVERRDBG
PWRITEDBG
PCLKDBG
PCLKENDBG
PRESETDBGn

Debug bus
interface, APBv3

DBGROMADDR
DBGROMADDRV
DBGSELFADDR
DBGSELFADDRV
DBGOSLOCKINIT
DBGSWENABLE

Configuration
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxA-13

Recommended External Debug Interface
• has stallable accesses

• has slave-generated aborts

• has 10 address bits ([11:2]) mapping 4KB of memory.

An extra signal, PADDRDBG[31], informs the debug slave port of the source of the access, as shown in
Table A-2.

Table A-2 lists the external debug interface signals.

Table A-2 Recommended external debug interface signals

Name Direction Description

PSELDBG In Selects the external debug interface

PADDRDBG[31,11:2] In Address. see PADDRDBG on page AppxA-15

PRDATADBG[31:0] Out Read data

PWDATADBG[31:0] In Write data

PENABLEDBG In Indicates a second and subsequent cycle of a transfer

PREADYDBG Out Used to extend a transfer, by inserting wait states

PSLVERRDBG Out Slave-generated error response, see PSLVERRDBG on
page AppxA-15

PWRITEDBG In Distinguishes between a read (LOW) and a write (HIGH)

PCLKDBG In Clock

PCLKENDBG In Clock enable for PCLKDBG
AppxA-14 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Recommended External Debug Interface
A.2.1 PADDRDBG

PADDRDBG selects the register to read or write.

In the recommended debug slave port that implements both the external debug interface and the
memory-mapped interface, the complete register set is aliased twice:

• the first view, the memory-mapped interface view, starts at 0x0

• the second view, the external debug interface view, starts at 0x80000000.

This means that PADDRDBG[31] is used to distinguish the source of an access:

PADDRDBG[31] == 0 Access from system

PADDRDBG[31] == 1 Access from external debugger.

Note
 The only bits of PADDRDBG that are specified are PADDRDBG[31, 11:2]. Bits [1:0] are not required
because all registers are word-sized, and bit [31] is used as described to indicate the source of the access.
Because some HDL languages do not permit partial buses to be specified in this way an actual
implementation might use a different name for PADDRDBG[31], such as PADDRDBG31.

A.2.2 PSLVERRDBG

PSLVERRDBG is used to signal an aborted access.

PSLVERRDBG has the same timing as the ready response, PREADYDBG. Under the v7 Debug model,
accesses are only aborted, by asserting PSLVERRDBG HIGH, in a situation related to power-down. See
also Permission summaries for memory-mapped and external debug interfaces on page C6-45.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxA-15

Recommended External Debug Interface
AppxA-16 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Appendix B
Common VFP Subarchitecture Specification

This appendix describes version 2 of the Common VFP subarchitecture. It contains the following sections:

• Scope of this appendix on page AppxB-2

• Introduction to the Common VFP subarchitecture on page AppxB-3

• Exception processing on page AppxB-6

• Support code requirements on page AppxB-11

• Context switching on page AppxB-14

• Subarchitecture additions to the VFP system registers on page AppxB-15

• Version 1 of the Common VFP subarchitecture on page AppxB-23.

Note
 This VFP subarchitecture specification is not part of the ARM architecture specification. Implementers and
users of the ARMv7 architecture must not consider this appendix as a requirement of the architecture. It is
included as an appendix to this manual only:

• as reference material for users of ARM VFP products that implement this subarchitecture

• as an example of how a VFP subarchitecture might be implemented.

The inclusion of this appendix is no indication of whether any ARMv7 VFP implementations by ARM
might, or might not, implement this Common VFP subarchitecture. For details of the implemented VFP
subarchitecture you must always see the appropriate product documentation.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxB-1

Common VFP Subarchitecture Specification
B.1 Scope of this appendix

This specification describes the Common VFP subarchitecture. This is not part of the ARMv7 architecture
specification, see the Note on the cover page of this appendix.

The Common VFP subarchitecture is an interface provided by VFP coprocessor hardware to support code
in an operating system.

This appendix is for engineers implementing and validating a VFP coprocessor, and for engineers
implementing support code in an operating system.

The main sections of this appendix describe version 3 of the Common VFP subarchitecture. Version 3 is an
extension to the previously-published version 2 of the subarchitecture. Version 3 of the Common VFP
subarchitecture includes more support for synchronous exception reporting.

Support code for version 1 of the subarchitecture differs from version 2 only when trapped exception
handling of the Inexact exception is enabled. The differences from version 1 of the subarchitecture are
described in Version 1 of the Common VFP subarchitecture on page AppxB-23.

The differences between versions 2 and 3 of the subarchitecture are described in Version 2 of the Common
VFP subarchitecture on page AppxB-24.
AppxB-2 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Common VFP Subarchitecture Specification
B.2 Introduction to the Common VFP subarchitecture

The VFP architecture describes the interface provided by a VFP implementation to application software. A
complete implementation of the VFP architecture might include both a hardware coprocessor and a software
component, known as the support code. Support code must signal trapped floating-point exceptions to
application software, and provide other implementation-dependent functions. The Common VFP
subarchitecture describes an interface between VFP coprocessor hardware and support code.

B.2.1 VFP support code and bounced instructions

Support code is entered through the ARM Undefined Instruction exception vector, when the VFP hardware
does not respond to a VFP instruction. This software entry is known as a bounce.

The bounce mechanism supports trapped floating-point exceptions. Trapped floating-point exceptions,
known as traps, are floating-point exceptions that an implementation must pass back for application
software to resolve. See Trapped floating-point exception handling on page AppxB-10.

Support code might perform other tasks, in addition to trap handler calls. These tasks are determined by the
implementation. Typically, additional support code functions might handle rare conditions that are either
difficult to implement in hardware, or gate-intensive in hardware. This approach permits software behavior
to be consistent across implementations with varying degrees of hardware support.

B.2.2 Exception processing terminology

A condition that causes a VFP instruction to call support code is called an exceptional condition.

The VFP instruction that contains the floating-point operation requiring support code is known as the
exception-generating instruction.

The VFP instruction that causes a bounce to occur is known as the trigger instruction.

An implementation can use both synchronous and asynchronous exception signaling:

• if an exception is signaled synchronously, the exception-generating instruction is also the trigger
instruction.

• if an exception is signaled asynchronously, the trigger instruction is a VFP instruction that occurs
after the exception-generating instruction.

An implementation can issue and complete additional VFP instructions before bouncing the trigger
instruction.

An implementation can issue a maximum of one additional VFP instruction that it cannot complete. This
instruction is known as the bypassed instruction. This instruction is retired in the ARM processor and cannot
be reissued. Therefore, it must be executed by the VFP support code.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxB-3

Common VFP Subarchitecture Specification
B.2.3 Hardware and software implementation

The Common VFP subarchitecture requires the VFP hardware implementation to perform completely all
load, store and register transfer instructions. These instructions cannot generate floating-point exceptions.

The division of labor between the hardware and software components of a VFP implementation for CDP
operations is IMPLEMENTATION DEFINED.

Typically, the hardware handles all common cases, to optimize performance. When the hardware encounters
a case that it cannot handle on its own it calls the software component, the support code for the hardware,
to deal with it.

For more information, see Advanced SIMD and VFP extensions on page A2-20.

B.2.4 VFP subarchitecture system registers

The Common VFP subarchitecture adds two instruction registers:

• for asynchronous exceptions, the FPINST register contains the exception-generating instruction

• the FPINST2 register contains the bypassed instruction, if there is one.

Both instruction registers are optional:

• The FPINST register is required only if at least one supported configuration can bounce instructions
asynchronously.

• The FPINST2 register is required only if the processor can commit to issuing a VFP instruction
before an exceptional case is detected in an earlier VFP instruction.

The Common VFP subarchitecture adds new fields to the FPEXC Register:

• the FPEXC.VECITR field contains an encoding that gives the remaining vector length of the
exception-generating instruction

• the FPEXC.FP2V bit indicates if the FPINST2 register contains an instruction that the support code
must execute

• the FPEXC.DEX bit is set when a synchronous bounce is caused by a floating-point exception,
indicating that the support code must execute the bounced instruction

• the FPEXC.VV bit is set when a synchronous bounce is caused by a floating-point exception, and the
FPEXC.VECITR field is valid

• an IMPLEMENTATION DEFINED field, for the implementation to give more information about the
exceptional condition that caused the bounce.

See The Floating-Point Exception Register (FPEXC) on page B1-68 for a description of the minimum
implementation of the FPEXC required by the VFP architecture.
AppxB-4 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q3
Inserted Text
, and Additions to the Floating-Point Exception Register (FPEXC) on page AppxB-15 [PDF page 1921] for more information about the Common VFP subarchitecture additions to the register.

Common VFP Subarchitecture Specification
Note
 In version 2 of the Common VFP subarchitecture the FPEXC.EX bit is set to 1 only when an asynchronous
bounce occurs.

Software can detect the presence of the instruction registers by testing the FPEXC.EX and FPEXC.FP2V
bits, as described in Detecting which VFP Common subarchitecture registers are implemented on
page AppxB-22.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxB-5

Common VFP Subarchitecture Specification
B.3 Exception processing

The following sections describe exception processing in the Common VFP subarchitecture:

• Asynchronous exceptions

• Synchronous exceptions on page AppxB-8

• VFP Access Permission faults on page AppxB-10

• Unallocated VFP instruction encodings on page AppxB-10

• Trapped floating-point exception handling on page AppxB-10.

B.3.1 Asynchronous exceptions

In the Common VFP subarchitecture, an exceptional condition can be detected after executing the
exceptional instruction. This means an implementation can detect an exceptional condition after an
instruction has passed the point for exception handling in the ARM processor pipeline.

Handling this condition is known as asynchronous exception handling, because the exceptional condition
can be detected some time after it is generated. In this case the exception handling:

• is signaled synchronously with respect to the trigger instruction

• is not signaled synchronously with respect to the instruction that generated the exceptional condition.

When an exceptional condition is detected the VFP coprocessor enters the asynchronous exceptional state,
setting the FPEXC.EX bit to 1. At the application level, subsequent VFP instructions are rejected. This
causes an Undefined Instruction exception, and information about the exceptional instruction is copied to:

• the FPINST register, see The Floating-Point Instruction Registers, FPINST and FPINST2 on
page AppxB-20

• the FPEXC.VECITR field.

For details of the FPEXC see:

• The Floating-Point Exception Register (FPEXC) on page B1-68 for the VFPv3 architectural
requirements for the register

• Additions to the Floating-Point Exception Register (FPEXC) on page AppxB-15 for the Common
VFP subarchitecture extensions to the register.

In some implementations it is possible for two VFP instructions to issue before an exceptional condition is
detected in the first instruction. In this case the second instruction is copied to FPINST2, see The
Floating-Point Instruction Registers, FPINST and FPINST2 on page AppxB-20. This instruction must be
executed by the support code. If there is a dependency between the instructions copied into FPINST and
FPINST2 then the instruction in FPINST must be executed before the instruction in FPINST2.
AppxB-6 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Common VFP Subarchitecture Specification
The trigger instruction might not be the VFP instruction immediately following the exceptional instruction,
and depending on the instruction sequence, the bounce can occur many instructions later. An
implementation can continue to execute some VFP instructions before detecting the exceptional condition,
provided:

• these instructions are not themselves exceptional

• these instructions are independent of the exceptional instruction

• the operands for the exceptional instruction are still available after the execution of the instructions.

Determination of the trigger instruction

VMSR and VMRS instructions that access the FPEXC, FPSID, FPINST or FPINST2 registers do not trigger
exception processing.

These system registers are not used in normal VFP application code, but are designed for use by support
code and the operating system. Accesses to these registers do not bounce when the processor is in an
asynchronous exceptional state, indicated by FPEXC.EX == 1. This means the support code can read
information out of these registers, before clearing the exceptional condition by setting FPEXC.EX to 0.

All other VFP instructions, including VMSR and VMRS instructions that access the FPSCR, trigger exception
processing if there is an outstanding exceptional condition. For more information, see VFP support code on
page B1-70.

Exception processing for scalar instructions

When an exceptional condition is detected in a scalar CDP instruction:

• the exception-generating instruction is copied to the FPINST Register, see The Floating-Point
Instruction Registers, FPINST and FPINST2 on page AppxB-20

• the FPEXC.VECITR field is set to 0b111 to indicate that no short vector iterations are required

• the FPEXC.EX bit is set to 1

• all the operand registers to the instruction are restored to their original values, so that the instruction
can be re-executed in support code

• If the execution of the instruction would set the cumulative exception flags for any exception,
hardware might or might not set these flags.

Note
 Because the cumulative exception flags are cumulative, it is always acceptable for the support code

to set the exception flags to 1 as a result of emulating the instruction, even if the hardware has set
them.

If there is a bypassed instruction then this is copied to the FPINST2 Register, and the FPEXC.FP2V bit is
set to 1.

The next VFP instruction issued becomes the trigger instruction and causes entry to the operating system.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxB-7

Common VFP Subarchitecture Specification
Exception processing for short vector instructions

With a short vector instruction, any iteration might be exceptional. When an exceptional condition is
detected for a vector iteration, previous iterations can complete. For the exceptional iteration:

• The exception-generating instruction is copied to the FPINST register, see The Floating-Point
Instruction Registers, FPINST and FPINST2 on page AppxB-20. The source and destination
registers are modified to point to the exceptional iteration.

• The FPEXC.VECITR field is written with the number of iterations remaining after the exceptional
iteration.

• The FPEXC.EX bit is set to 1.

• The input operand registers to that iteration, and subsequent iterations, are restored to their original
values.

• If the execution of the exception iteration, or subsequent iterations, would set the cumulative
exception flags for any exception, hardware might or might not set these flags.

Note
 Because the cumulative exception flags are cumulative, it is always acceptable for the support code

to set the exception flags to 1 as a result of emulating the iterations of the instruction, even if the
hardware has set them.

If there is a bypassed instruction then this is copied to the FPINST2 Register, and the FPEXC.FP2V bit is
set to 1.

The next VFP instruction issued becomes the trigger instruction and causes entry to the operating system.

B.3.2 Synchronous exceptions

In the Common VFP subarchitecture, an implementation can signal a floating-point exception
synchronously.

When an exceptional condition is detected in a CDP instruction, and the implementation chooses to signal the
condition synchronously:

• if the exceptional condition is a trapped floating-point exception the FPEXC.DEX bit is set to 1

• if the reason for the exceptional condition is IMPLEMENTATION DEFINED then the value of the
FPEXC.DEX bit is IMPLEMENTATION DEFINED

• the instruction is bounced, causing an Undefined Instruction exception

• FPEXC.EX is not set to 1.

The FPINST and FPINST2 registers are not used in this case.
AppxB-8 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Common VFP Subarchitecture Specification
For scalar CDP instructions:

• All the operand registers to the instruction are restored to their original values, so that the instruction
can be re-executed in support code.

• It is IMPLEMENTATION DEFINED whether the FPEXC.VV bit is set to 1. If it is, the FPEXC.VECITR
field will contain 0b111.

• If the execution of the instruction would set the cumulative exception flags for any exception,
hardware might or might not set these flags.

Note
 Because the cumulative exception flags are cumulative, it is always acceptable for the support code

to set the exception flags to 1 as a result of emulating the instruction, even if the hardware has set
them.

For short vector instructions, any iteration might be exceptional. When an exceptional condition is detected
for a vector iteration, previous iterations can complete. For the exceptional iteration:

• The FPEXC.VECITR field is written with a value that encodes the number of iterations remaining
after the exceptional iteration. For details of the encoding see Subarchitecture additions to the VFP
system registers on page AppxB-15.

• The FPEXC.VV bit is set to 1.

• The input operand registers to that iteration, and subsequent iterations, are restored to their original
values.

• If the execution of the exception iteration, or subsequent iterations, would set the cumulative
exception flags for any exception, hardware might or might not set these flags.

Note
 Because the cumulative exception flags are cumulative, it is always acceptable for the support code

to set the exception flags to 1 as a result of emulating the iterations of the instruction, even if the
hardware has set them.

Note
 • In version 1 of the Common VFP subarchitecture, all exceptions are signaled synchronously when

the FPSCR.IXE bit is set to 1, see Floating-point Status and Control Register (FPSCR) on
page A2-28. The FPEXC.DEX bit is RAZ/WI. For more information, see Subarchitecture v1
exception handling when FPSCR.IXE == 1 on page AppxB-23.

• In version 2 of the Common VFP subarchitecture, exceptional conditions that cause synchronous
exceptions are signaled by setting FPEXC.DEX to 1. For more information, see Version 2 of the
Common VFP subarchitecture on page AppxB-24.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxB-9

Common VFP Subarchitecture Specification
B.3.3 VFP Access Permission faults

When the VFP register bank is disabled by disabling coprocessors 10 and 11 in a coprocessor access control
register, any attempt to use a VFP instruction will bounce. When the VFP register bank is disabled by
clearing the FPEXC.EN bit to 0, any attempt to access a VFP registers, except the FPEXC or FPINST
register, will bounce.

In a system where the VFP can be disabled, handler code must check that the VFP is enabled before
processing a VFP exception.

B.3.4 Unallocated VFP instruction encodings

Unallocated VFP instruction encodings are those coprocessor 10 and 11 instruction encodings that are not
allocated for VFP instructions by ARM.

An unallocated VFP instruction encoding bounces synchronously to the VFP Undefined Instruction handler
code. In this case the VFP state is not modified, the FPEXC.EX bit is set to 0, and the FPEXC.DEX bit is
set to 0. Unallocated instruction exception handling is synchronous.

The VFP exception handler code can check the FPEXC.EX bit, to find out if the VFP is using asynchronous
exception handling to handle a previous exceptional condition.

If FPEXC.EX=1, the support code is called to process a previous exceptional instruction. On return from
the support code the trigger instruction is reissued, and if the trigger instruction is an unallocated instruction
the Undefined Instruction handler is re-entered, with FPEXC.EX=0.

If FPEXC.EN == 1, FPEXC.EX == 0 and FPEXC.DEX == 0, the handler code might have been called as a
result of an unallocated instruction encoding or as a result of an allocated instruction encoding which has
not been implemented:

• If the instruction is not a CDP instruction, the instruction is an unallocated instruction encoding and
execution can jump to the unallocated instructions handler provided by the system.

• If the instruction is a CDP instruction, the support code must identify whether the instruction is one
that it can handle. If it is not, then execution can jump to the unallocated instructions handler provided
by the system.

B.3.5 Trapped floating-point exception handling

Trapped floating-point exceptions are never handled by hardware. When a trapped exception is detected by
hardware the exception-generating instruction must be re-executed by the support code. The support code
must re-detect and signal the exception.
AppxB-10 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Common VFP Subarchitecture Specification
B.4 Support code requirements

When an instruction is bounced, control passes to the Undefined Instruction exception handler provided by
the operating system.

The operating system is expected to:

1. Perform a standard exception entry sequence, preserving process state and re-enabling interrupts.

2. Decode the bounced instruction sufficiently to determine whether it is a coprocessor instruction, and
if so, for which coprocessor.

3. Check whether the bounced instruction is conditional, and if it is conditional, check whether the
condition was passed. This ensures correct execution on implementations that perform the bounce
even for an instructions that would fail its condition code check.

4. Check whether the coprocessor is enabled in the access control register, and take appropriate action
if not. For example, in the lazy context switch case described in Context switching with the Advanced
SIMD and VFP extensions on page B1-69, the operating system context switches the VFP state.

5. Call an appropriate second-level handler for the coprocessor, passing in:

• the instruction that bounced

• the state of the associated process.

6. The second-level handler must indicate whether the bounced instruction is to be retried or skipped.
It can also signal an additional exception that must be passed on to the application.

7. Restore the original process, transferring control to an exception handler in the application context if
necessary.

If the bounced instruction is a VFP instruction, control is passed to a second-level handler for VFP
coprocessor instructions. For the Common VFP subarchitecture this:

1. Uses the FPEXC.EX and FPEXC.DEX bits to determine the bounced instruction and associated
handling. The three possible cases are:

FPEXC.EX == 0, FPEXC.DEX == 0

The bounce was synchronous. The exception-generating instruction is the instruction that
bounced:

• If the exception-generating instruction is not a CDP instruction, or the version of the
subarchitecture is before version 3, the bounce was caused by an unallocated
instruction encoding or a VFP access permission fault. Branch to operating system
specific code that takes appropriate action.

• If the exception-generating instruction is a CDP instruction, check whether the
bounce was caused by a VFP access permission fault:

— If it is a VFP access permission fault, branch to operating system specific
code that takes appropriate action.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxB-11

Common VFP Subarchitecture Specification
— If it is a not a VFP access permission fault, determine the iteration count
from FPSCR.LEN, and set the return address to the instruction following
the bounced instruction. Then continue processing from step 2.

FPEXC.EX == 0, FPEXC.DEX == 1

The bounced instruction was executed as a valid floating-point operation, and it bounced
because of an exceptional condition.

The exception-generating instruction is the instruction that bounced.

The iteration count is determined from either FPSCR.LEN or FPEXC.VECITR,
depending on the value of FPEXC.VV:

• if FPEXC.VV is set to 0, the iteration count is determined from FPSCR.LEN

• if FPEXC.VV is set to 1, the iteration count is determined from FPEXC.VECITR.

Clear the FPEXC.DEX bit to 0, and set the return address to the instruction following the
bounced instruction.

Continue processing from step 2.

FPEXC.EX == 1
The VFP bounce resulted from an asynchronous exception.

Collect information about the exceptional instruction, and any other instructions that are
to be executed by support code. Clear the exceptional condition. For each instruction the
data collected include the instruction encoding and the number of vector iterations.

This involves:

• Read the FPINST Register to find the exception-generating instruction.

Read the FPEXC.VECITR field to find the remaining iteration count for this
instruction.

• Check FPEXC.FP2V. If it is set to 1 there is a bypassed instruction:

— Read the FPINST2 Register to find the bypassed instruction

— Clear the FPEXC.EX and FPEXC.FP2V bits to 0.

— Read the FPSCR.LEN field to find the iteration count for the bypassed
instruction.

The FPSCR can be read-only when FPEXC.EX == 0.

Otherwise there is no bypassed instruction:

— Clear FPEXC.EX to 0.

FPEXC.EX == 0 indicates there is no subarchitecture state to context switch.

Set the return address to re-execute the trigger instruction.
AppxB-12 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Common VFP Subarchitecture Specification
Note
 In version 1 of the Common VFP subarchitecture, the meaning of the FPEXC.EX bit

changes when the FPSCR.IXE bit is set to 1. The FPSCR.IXE bit can be checked only
after the FPEXC.EX bit is cleared to 0. If FPSCR.IXE is 0, go to step 2 below. If
FPSCR.IXE is set to 1:

• the information collected from the VFP registers and the calculated return address
are ignored

• the exception-generating instruction is the instruction that bounced, and the
iteration count is the FPSCR.LEN value, as for the FPEXC.DEX == 1 case.

• set the return address to the instruction following the bounced instruction.

2. Packages up the information about the VFP instruction and iteration count into pairs in a form
suitable to pass to the Computation Engine, described in step 3.

At this point the packaged information can be sent as a signal to another exception handler in the application,
where the support code continues. Continuing in the application context makes it possible for the support
code to call trap handlers directly, in the application.

3. Executes in software the instruction iterations described in step 2. All configuration information
except vector length is read from the FPSCR.

In previous support code implementations by ARM, this execution is performed by the VFP
Computation Engine function.

If trapped floating-point exceptions are enabled, the Computation Engine calls trap handlers as
required.

If the exceptional condition is an unallocated instruction, the Computation Engine will call a suitable
error routine.

4. Returns to the appropriate return address.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxB-13

Common VFP Subarchitecture Specification
B.5 Context switching

Context switch code must check the FPEXC.EX bit when saving or restoring VFP state.

If the FPEXC.EX bit is set to 1 then additional subarchitecture information must be saved. Any attempt to
access other registers while the FPEXC.EX bit is set to 1 might bounce.

For the Common VFP subarchitecture, if the FPEXC.EX bit is set to 1:

• the FPINST register contains a bounced instruction and must be saved

• if the FPEXC.FP2V bit is set, the FPINST2 register must be saved.

The FPEXC register must always be saved.

When the subarchitecture specific information has been saved, context switch code must clear the
FPEXC.EX bit to 0 before saving other registers.

When restoring state, check the saved values of the FPEXC.EX bit and FPEXC.FP2V bit to determine
whether the extra registers must be restored.

Note
 Context switch code can be written to always save and restore the subarchitecture registers. In this case
appropriate context switch code must be chosen based on the registers implemented, using the detection
mechanism described in Detecting which VFP Common subarchitecture registers are implemented on
page AppxB-22.
AppxB-14 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Common VFP Subarchitecture Specification
B.6 Subarchitecture additions to the VFP system registers

The Common VFP subarchitecture requires additions to the VFP system register implementation:

• extra fields are defined in the FPEXC, see Additions to the Floating-Point Exception Register
(FPEXC)

• additional VFP registers might be defined, see The Floating-Point Instruction Registers, FPINST and
FPINST2 on page AppxB-20.

Also, the Subarchitecture field of the FPSID must identify the Common VFP subarchitecture version, see
Floating-point System ID Register (FPSID) on page B5-34.

For more information about the VFP register implementation for the Common VFP subarchitecture see:

• Detecting which VFP Common subarchitecture registers are implemented on page AppxB-22

• Accessing the VFP Common subarchitecture registers on page AppxB-22.

B.6.1 Additions to the Floating-Point Exception Register (FPEXC)

See The Floating-Point Exception Register (FPEXC) on page B1-68 for the architectural definition of the
FPEXC, including its purpose and accessibility.

The format of the FPEXC when version 3 of the Common VFP subarchitecture is implemented
is:

EX, bit [31] See The Floating-Point Exception Register (FPEXC) on page B1-68 for the definition of
this bit.

On an implementation that does not require asynchronous exception handling this bit is
RAZ/WI. In this case the FPINST and FPINST2 registers are not implemented.

For details of how, in Common VFP subarchitecture v1, the meaning of the EX bit changes
when the FPSR.IEX bit is set to 1, see Subarchitecture v1 exception handling when
FPSCR.IXE == 1 on page AppxB-23.

EN, bit [30] See The Floating-Point Exception Register (FPEXC) on page B1-68 for the definition of
this bit.

��� �� �� �� �� �� � �

(� (�

�%��(%(�+�+�'�1"(#��("

������
� �(��+$

�	 	
 � � � �

"(�
#���
��
+#�

�
 ��

�%��(%(�+�+�'�1"(#��("

����

�"#

��#
�##
'##
"
#
�'#
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxB-15

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Replacement Text
FPSCR

Common VFP Subarchitecture Specification
DEX, bit [29] Defined synchronous instruction exceptional flag. This field is valid only if
FPEXC.EX == 0.

When a VFP exception has occurred, the meaning of this bit is:

0 A synchronous exception has occurred when processing an instruction in CP10
or CP 11. This is either:

• an allocated floating-point instruction that is not implemented in
hardware

• an unallocated instruction in CP10 or CP11.

1 A synchronous exception has occurred on an allocated floating-point
instruction. This is either:

• an allocated floating-point instruction that is not implemented in
hardware

• an allocated floating-point instruction that has encountered an
exceptional condition.

DEX must be cleared to 0 by the exception handling routine.

On an implementation that does not require synchronous exception handling this bit is
RAZ/WI.

FP2V, bit [28] FPINST2 instruction valid flag. This field is valid only if FPEXC.EX == 1.

When an asynchronous VFP exception has occurred, the meaning of this bit is:

0 The FPINST2 Register does not contain a valid instruction.

1 The FPINST2 Register contains a valid instruction.

FP2V must be cleared to 0 by the exception handling routine.

If the FPINST2 Register is not implemented this bit is RAZ/WI.

VV, bit [27] VECITR valid flag. This field is valid only if FPEXC.DEX == 1.

When a synchronous VFP exception has occurred, the meaning of this bit is:

0 FPEXC.VECITR field is not valid, and the number of remaining vector steps
can be determined from FPSCR.LEN.

1 FPEXC.VECITR field is valid, and the number of remaining vector steps can be
determined from FPEXC.VECITR.

VV must be cleared to 0 by the exception handling routine.

If the VV field s not implemented this bit is RAZ/WI.
AppxB-16 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
When a VFP synchronous exception has occurred:
• if the exception was cased by an allocated floating-point instruction that is not implemented in hardware then it is implementation defined whether DEX is set to 0 or 1
• otherwise, the meaning of this bit is:
 0 A synchronous exception occurred when processing
 an unallocated instruction in CP10 or CP 11.
 1 A synchronous exception occurred on an allocated
 floating-point instruction that encountered an exceptional condition.

ARM_2008_Q4
Sticky Note
This change is a clarification of the intended meaning of this section. It is not a change to the subarchitecture specification.

Common VFP Subarchitecture Specification
TFV, bit [26] Trapped Fault flag Valid flag. Indicates whether FPEXC bits [7,4:0] act as flags to indicate
trapped exceptions or have an IMPLEMENTATION DEFINED meaning:

0 FPEXC bits[7,4:0] have an IMPLEMENTATION DEFINED meaning

1 FPEXC bits[7,4:0] indicate the presence of trapped exceptions that have
occurred at the time of the exception. All trapped exceptions that occurred at the
time of the exception have their flags set.

This bit has a fixed value and ignores writes.

Bits [25:21] Reserved. UNK/SBZP.

Bits [20:11, 6:5]

IMPLEMENTATION DEFINED.

These bits are IMPLEMENTATION DEFINED. They can contain IMPLEMENTATION DEFINED
information about the cause of an exception. They might be used by the implementation to
indicate why an instruction was bounced to support code.

These bits must be cleared to zero by the exception handling routine.

VECITR, bits [10:8]

Vector iteration count for the VFP instruction with the exceptional condition. This field is
valid only if either:

• FPEXC.EX == 1

• FPEXC.DEX == 1 and FPEXC.VV == 1.

This field contains the number of short vector iterations remaining after the iteration in
which a potential exception was detected. Possible values are:

0b000 1 iteration

0b001 2 iterations

0b010 3 iterations

0b011 4 iterations

0b100 5 iterations

0b101 6 iterations

0b110 7 iterations

0b111 0 iterations.

The count held in this field does not include the iteration in which the exception occurred.
This field reads as 0b111 if:

• the final iteration of an instruction is bounced to the support code

• the instruction is a scalar operation.

VECITR must be cleared to 0b000 by the exception handling routine.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxB-17

Common VFP Subarchitecture Specification
IDF, bit [7] Input Denormal trapped exception flag, or IMPLEMENTATION DEFINED. The meaning of this
bit depends on the value of FPEXC.TFV:

FPEXC.TFV == 0
This bit is IMPLEMENTATION DEFINED. It can contain IMPLEMENTATION DEFINED
information about the cause of an exception. It might be used by the
implementation to indicate why an instruction was bounced to support code.

FPEXC.TFV == 1

This bit is the Input Denormal trapped exception flag. It indicates whether an
Input Denormal exception occurred while FPSCR.IDE was 1.

In this case, the meaning of this bit is:

0 Input denormal exception has not occurred.

1 Input denormal exception has occurred.

Input Denormal exceptions can occur only when FPSCR.FZ is 1.

In both cases this bit must be cleared to 0 by the exception handling routine.

IXF, bit [4] Inexact trapped exception flag, or IMPLEMENTATION DEFINED. The meaning of this bit
depends on the value of FPEXC.TFV:

FPEXC.TFV == 0
This bit is IMPLEMENTATION DEFINED. It can contain IMPLEMENTATION DEFINED
information about the cause of an exception. It might be used by the
implementation to indicate why an instruction was bounced to support code.

FPEXC.TFV == 1

This bit is the Inexact trapped exception flag. It indicates whether an Inexact
exception occurred while FPSCR.IXE was 1.

In this case, the meaning of this bit is:

0 Inexact exception has not occurred.

1 Inexact exception has occurred.

In both cases this bit must be cleared to 0 by the exception handling routine.

UFF, bit [3] Underflow trapped exception flag, or IMPLEMENTATION DEFINED. The meaning of this bit
depends on the value of FPEXC.TFV:

FPEXC.TFV == 0

This bit is IMPLEMENTATION DEFINED. It can contain IMPLEMENTATION DEFINED
information about the cause of an exception. It might be used by the
implementation to indicate why an instruction was bounced to support code.

FPEXC.TFV == 1

This bit is the Underflow trapped exception flag. It indicates whether an
Underflow exception occurred while FPSCR.UFE was 1.

In this case, the meaning of this bit is:

0 Underflow exception has not occurred.

1 Underflow exception has occurred.
AppxB-18 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Common VFP Subarchitecture Specification
Note
 An Underflow trapped exception can occur only when FPSCR.FZ is 0, because

when FPSCR.FZ is 1, FPSCR.UFE is ignored and treated as 0.

In both cases this bit must be cleared to 0 by the exception handling routine.

OFF, bit [2] Overflow trapped exception flag, or IMPLEMENTATION DEFINED. The meaning of this bit
depends on the value of FPEXC.TFV:

FPEXC.TFV == 0

This bit is IMPLEMENTATION DEFINED. It can contain IMPLEMENTATION DEFINED
information about the cause of an exception. It might be used by the
implementation to indicate why an instruction was bounced to support code.

FPEXC.TFV == 1

This bit is the Overflow trapped exception flag. It indicates whether an
Overflow exception occurred while FPSCR.OFE was 1.

In this case, the meaning of this bit is:

0 Overflow exception has not occurred.

1 Overflow exception has occurred.

In both cases this bit must be cleared to 0 by the exception handling routine.

DZF, bit [1] Divide-by-zero trapped exception flag, or IMPLEMENTATION DEFINED. The meaning of this
bit depends on the value of FPEXC.TFV:

FPEXC.TFV == 0

This bit is IMPLEMENTATION DEFINED. It can contain IMPLEMENTATION DEFINED
information about the cause of an exception. It might be used by the
implementation to indicate why an instruction was bounced to support code.

FPEXC.TFV == 1
This bit is the Divide-by-zero trapped exception flag. It indicates whether a
Divide-by-zero exception occurred while FPSCR.DZE was 1.

In this case, the meaning of this bit is:

0 Divide-by-zero exception has not occurred.

1 Divide-by-zero exception has occurred.

In both cases this bit must be cleared to 0 by the exception handling routine.

IOF, bit [0] Invalid Operation trapped exception flag, or IMPLEMENTATION DEFINED. The meaning of
this bit depends on the value of FPEXC.TFV:

FPEXC.TFV == 0
This bit is IMPLEMENTATION DEFINED. It can contain IMPLEMENTATION DEFINED
information about the cause of an exception. It might be used by the
implementation to indicate why an instruction was bounced to support code.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxB-19

Common VFP Subarchitecture Specification
FPEXC.TFV == 1

This bit is the Invalid Operation trapped exception flag. It indicates whether an
Invalid Operation exception occurred while FPSCR.IOE was 1.

In this case, the meaning of this bit is:

0 Invalid Operation exception has not occurred.

1 Invalid Operation exception has occurred.

In both cases this bit must be cleared to 0 by the exception handling routine.

B.6.2 The Floating-Point Instruction Registers, FPINST and FPINST2

The Floating-Point Instruction Registers hold floating-point instructions relating to floating-point exception
handling in a system that implements the Common VFP subarchitecture:

• FPINST contains the exception-generating instruction

• FPINST2 contains the bypassed instruction.

FPINST and FPINST2 are:

• In the CP10 and CP11 register space.

• Present only when the Common VFP subarchitecture is implemented. A Common VFP
subarchitecture implementation can support:

— both FPINST and FPINST2

— FPINST but not FPINST2

— neither of the Floating-Point Instruction Registers.

• 32-bit read/write registers.

• If the Security Extensions are implemented, Configurable access registers. FPINST and FPINST2 are
only accessible in the Non-secure state if the CP10 and CP11 bits in the NSACR are set to 1, see c1,
Non-Secure Access Control Register (NSACR) on page B3-110.

• Accessible only in privileged modes, and only if both:

— access to coprocessors CP10 and CP11 is enabled in the Coprocessor Access Control Register,
see c1, Coprocessor Access Control Register (CPACR) on page B3-104 (VMSA
implementation), or c1, Coprocessor Access Control Register (CPACR) on page B4-51
(PMSA implementation)

— the VFP coprocessor is enabled by setting the FPEXC.EN bit to 1.
AppxB-20 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Common VFP Subarchitecture Specification
The format of an instruction in FPINST or FPINST2 is:

The format is the same as the format of the issued instruction, with a number of modifications. For more
information, see VFP data-processing instructions on page A7-24. The modifications from the issued
instruction are:

• In the Thumb encoding, bits [15:8] of the first halfword and bit [4] of the second halfword are
reserved. In the ARM encoding, bits [31:24, 4] are reserved:

— software must ignore these bits when reading this register, and must not modify these bits
when writing to this register

— hardware must set these bits to the values shown in the encoding diagrams, that map to the
encoding of an ARM CDP instruction with the AL (always) condition.

• If the instruction is a short vector instruction:

— for the FPINST Register, the source and destination registers that reference vectors are updated
to point to the source and destination registers of the exceptional iteration. The
FPEXC.VECITR field contains the number of iterations remaining. For more information, see
Exception processing for short vector instructions on page AppxB-8.

— for the FPINST Register, the full vector must be processed by support code, using the current
vector length from the FPSCR. Source and destination registers that reference vectors are
unchanged from the issued instruction.

Both MRS register read and MSR register write instructions are provided for the FPINST and FPINST2
registers, see Accessing the VFP Common subarchitecture registers on page AppxB-22.

When an exceptional instruction is bounced to support code and placed in the FPINST Register, the
FPEXC.EX bit is set to 1. This indicates that valid information is available in the FPINST Register. In
addition. when a second issued instruction is copied to the FPINST2 Register, the FPEXC.FP2V bit is set
to 1. This indicates that valid information is available in the FPINST2 Register.

When the FPEXC.EX bit is 0, indicating the VFP is not in an asynchronous exceptional state, reads of the
FPINST and FPINST2 Registers are UNPREDICTABLE and the values returned might change.

When the FPEXC.FP2V bit is 0, indicating that no second instruction was issued, reads of the FPINST2
Register are UNPREDICTABLE and the value returned might change.

Thumb encoding

15 8 7 6 5 4 3 2 1 0 15 14 13 12 11 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 D Vn Vd cp_num N Q M 0 Vm

ARM encoding

31 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 D Vn Vd cp_num N Q M 0 Vm
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxB-21

Common VFP Subarchitecture Specification
Any value read from a Floating-Point Instruction Register can be written back to the same register. This
means context switch and debugger software can save and restore Floating-Point Instruction Register
values. Writing a value that has not been read from the same register writes an UNKNOWN value to the
Floating-Point Instruction Register. For example, attempting to write an instruction with coprocessor
number 0 writes an UNKNOWN value to the Floating-Point Instruction Register.

B.6.3 Accessing the VFP Common subarchitecture registers

Use the VMRS and VMSR instructions to access the registers for the VFP Common subarchitecture
implementation, see:

• VMRS on page B6-27

• VMSR on page B6-29.

The additional registers in the VFP Common subarchitecture are accessed using:

• reg = 0b1001 for FPINST

• reg = 0b1010 for FPINST2

If FPINST or FPINST2 is not defined, the corresponding VMRS and VMSR instructions are UNPREDICTABLE.

The VMRS and VMSR instructions with reg = 0b1011 and reg = 0b11xx are UNPREDICTABLE.

B.6.4 Detecting which VFP Common subarchitecture registers are implemented

An implementation can choose not to implement FPINST and FPINST2, if these registers are not required.

System software can detect which registers are present as follows:

Set FPEXC.EX=1 and FPEXC.FP2V=1
Read back the FPEXC register
if FPEXC.EX == 0 then

Neither FPINST nor FPINST2 are implemented
else

if FPEXC.FP2V == 0 then
FPINST is implemented, FPINST2 is not implemented.

else
Both FPINST and FPINST2 are implemented.

Clean up
AppxB-22 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Common VFP Subarchitecture Specification
B.7 Version 1 of the Common VFP subarchitecture

Version 1 of the Common VFP subarchitecture has special behavior when the FPSCR.IXE bit is set to 1.
The Common VFP subarchitecture version can be identified by checking FPSID bits [22:16]. This field is
0b0000001 for version 1. In version 1 of the Common VFP subarchitecture the FPEXC.DEX bit is RAZ/WI.

B.7.1 Subarchitecture v1 exception handling when FPSCR.IXE == 1

In version 1 of the Common VFP subarchitecture, the mechanism for bouncing instructions changes when
the FPSCR.IXE bit, the Inexact exception enable bit, is set to 1.

When FPSCR.IXE is set to 1, the FPEXC.EX bit signals a synchronous exception, in the same way as the
FPEXC.DEX bit. In this case:

• the exceptional instruction is the instruction that caused the Undefined Instruction exception

• the FPINST Register and the FPEXC.VECITR field are not valid.

When FPSCR.IXE is 0 the FPEXC.EX bit signals an asynchronous exception, as for later versions of the
subarchitecture.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxB-23

Common VFP Subarchitecture Specification
B.8 Version 2 of the Common VFP subarchitecture

Version 2 of the Common VFP subarchitecture can be identified by checking FPSID bits [22:16]. This field
is 0b0000010 for version 2.

Version 2 of the Common VFP subarchitecture has three differences from version 3 of the subarchitecture.
Before version 3 of the Common VFP subarchitecture:

• The FPEXC.EX == 0, FPEXC.DEX == 0 encoding is used only for unallocated instructions or
permission faults. As a result, the determination that an instruction should be passed to the
Computation Engine is simpler than it is for version 3 of the Common VFP subarchitecture.

• Bounces are not handled synchronously on short vector instructions unless all iterations of the vector
are to be handled in software. This means that the FPEXC.VV bit is always 0 before version 3.

• The FPEXC.TFV bit is set to 0, so the additional information bits [7, 4:0] of FPEXC is
IMPLEMENTATION DEFINED.
AppxB-24 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Appendix C
Legacy Instruction Mnemonics

This appendix provides information about the Unified Assembler Language equivalents of older assembler
language instruction mnemonics.

It contains the following sections:

• Thumb instruction mnemonics on page AppxC-2

• Pre-UAL pseudo-instruction NOP on page AppxC-3.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxC-1

Legacy Instruction Mnemonics
C.1 Thumb instruction mnemonics

Table C-1 lists the UAL equivalents of the mnemonics used in pre-UAL Thumb assembly language. Except
where noted, the Thumb mnemonics conflict with UAL and cannot be supported by assemblers as
synonyms. Thumb code cannot be correctly assembled by a UAL assembler unless these changes are made.

All other Thumb instructions are the same in UAL as in Thumb assembler language, or can be supported as
synonyms.

Table C-1 Thumb instruction mnemonics

Former Thumb assembler mnemonic UAL equivalent

ADC ADCS

ADD ADDS a

a. If either or both of the operands is R8-R15, ADD not ADDS.

AND ANDS

ASR ASRS

BIC BICS

EOR EORS

LSL LSLS

MOV <Rd>,#<imm> MOVS <Rd>,#<imm>

MOV <Rd>,<Rn> ADDS <Rd>,<Rn>,#0 b

b. If either or both of the operands is R8-R15, MOV <Rd>,<Rn> not ADDS <Rd>,<Rn>,#0.

MUL MULS

MVN MVNS

ORR ORRS

ROR RORS

SBC SBCS

SUB SUBS c

c. If the operand register is SP, SUB not SUBS.
AppxC-2 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Legacy Instruction Mnemonics
C.2 Pre-UAL pseudo-instruction NOP

In pre-UAL assembler code, NOP is a pseudo-instruction, equivalent to:

• MOV R0,R0 in ARM code

• MOV R8,R8 in Thumb code.

Assembling the NOP mnemonic as UAL will not change the functionality of the code, but will change:

• the instruction encoding selected

• the architecture variants on which the resulting binary will execute successfully, because the NOP
instruction was introduced in ARMv6K and ARMv6T2.

To avoid these changes, replace NOP in the assembler source code with the appropriate one of MOV R0,R0 and
MOV R8,R8, before assembling as UAL.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxC-3

Legacy Instruction Mnemonics
AppxC-4 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Appendix D
Deprecated and Obsolete Features

This appendix contains the following sections:

• Deprecated features on page AppxD-2

• Deprecated terminology on page AppxD-5

• Obsolete features on page AppxD-6

• Semaphore instructions on page AppxD-7

• Use of the SP as a general-purpose register on page AppxD-8

• Explicit use of the PC in ARM instructions on page AppxD-9

• Deprecated Thumb instructions on page AppxD-10.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxD-1

Deprecated and Obsolete Features
D.1 Deprecated features

The features described in this section are present in ARMv7 for backwards compatibility. You must avoid
using them in new applications where possible. They might not be present in future versions of the ARM
architecture.

See also Semaphore instructions on page AppxD-7, Use of the SP as a general-purpose register on
page AppxD-8, and Explicit use of the PC in ARM instructions on page AppxD-9.

D.1.1 VFP vector mode

The use of VFP vector mode is deprecated in ARMv7. For details see Appendix F VFP Vector Operation
Support.

D.1.2 VFP FLDMX and FSTMX instructions

The use of VLDM.64 and VSTM.64 instruction encodings with an odd immediate offset is deprecated from
ARMv6. The use of their pre-UAL mnemonics FLDMX and FSTMX is deprecated, except for disassembly
purposes. For details see FLDMX, FSTMX on page A8-101.

D.1.3 Fast context switch extension

Use of the Fast Context Switch Extension (FCSE) is deprecated from ARMv6, and in ARMv7
implementation of the FCSE is optional. For details of the FCSE see Appendix E Fast Context Switch
Extension (FCSE).

D.1.4 Direct manipulation of the Endianness bit

The use of the MSR instruction to write the Endianness bit in User mode is deprecated. Use the SETEND
instruction.

D.1.5 Strongly-ordered memory accesses and interrupt masks

Any ARMv5 instruction that implicitly or explicitly changes the interrupt masks in the CPSR, and appears
in program order after a Strongly-ordered access, waits for the Strongly-ordered memory access to
complete. Dependence on this behavior is deprecated in ARMv6 and ARMv7, and code must not rely on
this behavior. Use an explicit memory barrier instead. For details see Strongly-ordered memory on
page A3-34.

D.1.6 Unaligned exception returns

ARM deprecates any dependence on the requirements that the hardware ignores bits of the address
transferred to the PC on an exception return. See Alignment of exception returns on page B1-39.
AppxD-2 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
not supported in the ARMv7 Multiprocessing Extensions. In

ARM_2009_Q2
Inserted Text
 See also the new section D.3.4 Implementation of the Fast Context Switch Extension added as a markup on page AppxD-7 [PDF page 1940].

ARM_2010_Q2
Inserted Text
[new section]
Shareability of Device memory regions

ARM deprecates the marking of Device memory with a shareability attribute other than Outer Shareable or Shareable. See Shareable attribute for Device memory regions on page A3-34 [PDF page 148].

Deprecated and Obsolete Features
D.1.7 Use of AP[2] = 1, AP[1:0] = 0b10 in MMU access permissions

This encoding means read-only for both privileged mode and User mode accesses, but its use is deprecated
in VMSAv7. Use AP[2] = 1, AP[1:0] = 0b11. For details see Memory access control on page B3-28.

D.1.8 The Domain field in the DFSR

Use of the Domain field in the DFSR is deprecated. For details see c6, Data Fault Address Register (DFAR)
on page B3-124.

D.1.9 Watchpoint Fault Address Register in CP15

Use of the CP15 alias of the Watchpoint Fault Address Register (DBGWFAR) is deprecated. Use the CP14
DBGWFAR instead. For details see Extended CP14 interface on page C6-33.

D.1.10 CP15 memory barrier operations

Use of the CP15 c7 memory barrier operations is deprecated. The ARM and Thumb instruction sets include
instructions that perform these operations. Table D-1 shows the deprecated CP15 encodings and the
replacement ARMv7 instructions.

D.1.11 Use of Hivecs exception base address in PMSA implementations

Use of the high vector exception base address (Hivecs) of 0xFFFF0000 is deprecated in PMSA
implementations. ARM recommends that Hivecs is used only in VMSA implementations. For more
information, see Exception vectors and the exception base address on page B1-30.

D.1.12 Use of Secure User halting debug

From v7 Debug, the use of Secure User halting debug is deprecated. For more information, see About
invasive debug authentication on page C2-2.

Table D-1 Deprecated CP15 c7 memory barrier operations

Deprecated CP15 encoding
Operation Instruction description

CRn opc1 CRm opc2

c7 0 c5 4 Instruction Synchronization Barrier See ISB on page A8-102

c7 0 c10 4 Data Synchronization Barrier See DSB on page A8-92

c7 0 c10 5 Data Memory Barrier See DMB on page A8-90
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxD-3

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
The Domain field in the DFSR on page B3-52 [PDF page 1326].

Deprecated and Obsolete Features
D.1.13 Escalation of privilege on CP14 and CP15 accesses in Debug state

Except for the Baseline CP14 debug registers, ARM deprecates accessing any CP14 or CP15 register from
User mode in Debug state if that register cannot be accessed from User mode in Non-debug state. For more
information, see Coprocessor and Advanced SIMD instructions in Debug state on page C5-16.

D.1.14 Interrupts or asynchronous aborts in a sequence of memory transactions

ARM deprecates any reliance by software on the behavior that an interrupt or asynchronous abort cannot
occur in a sequence of single-copy atomic memory transactions generated by a single load/store instruction
to Normal memory. For more information, see Low interrupt latency configuration on page B1-43.

D.1.15 Reading the Debug Program Counter Sampling Registers as register 33

ARM deprecates reading the DBGPCSR as debug register 33 when it is also implemented as debug register
40. For more information see Program Counter sampling on page C8-2.

D.1.16 Old mnemonics for CP15 c8 operations to invalidate entries in a unified TLB

The ARMv7-A base architecture defines three CP15 c8 operations to invalidate entries in a unified TLB.
The original mnemonics for these are changed, each dropping the initial U. The original mnemonics remain
synonyms for the operations, but ARM deprecates using the old mnemonics. Table D-2 shows the changed
mnemonics and the encodings of the operations.

For more information about these operations see CP15 c8, TLB maintenance operations on page B3-138.

Table D-2 Changed mnemonics for CP15 c8 unified TLB operations

Encoding Mnemonic

CRn opc1 CRm opc2 New Deprecated

c8 0 c7 0 TLBIALL UTLBIALL

1 TLBIMVA UTLBIMVA

2 TLBIMVA UTLBIMVA
AppxD-4 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2008_Q4, ARM_2009_Q3, and ARM_2011_Q2
Inserted Text
[new section, ARM_2008_Q4]
Escalation of privilege on CPSR accesses in Debug state

Except for the Mode field, ARM deprecates updating any CPSR bits from User mode in Debug state if those bits can only be written to from a privileged mode in Non-debug state. For more information, see Altering CPSR privileged bits in Debug state on page C5-14. [PDF page 1668]

[new section, ARM_2008_Q4]
Use of DBGWFAR for synchronous Watchpoint debug events

ARM deprecates using DBGWFAR to determine the address of the instruction that triggered a synchronous
Watchpoint debug event. For more information about DBGWFAR see:
 • Effects of debug exceptions on CP15 registers and the DBGWFAR on page C4-4 [PDF page 1652]
 • Effect of entering Debug state on CP15 registers and the DBGWFAR on page C5-4 [PDF page 1658]
 • Watchpoint Fault Address Register (DBGWFAR) on page C10-28. [PDF page 1796]

[new section, ARM_2009_Q3]
Use of Extended CP14 interface to access certain registers and register bits

ARM deprecates using the Extended CP14 interface to:
 • access the Event Catch Register, DBGECR, see Event Catch Register (DBGECR) on page C10-78 [PDF page 1846]
 • access the Debug Run Control Register, DBGDRCR, see Debug Run Control Register (DBGDRCR), v7 Debug only on page C10-29 [PDF page 1797]
 • write to the following bits of the Debug Power-down and Reset Control Register, DBGPRCR, see Device Power-down and Reset Control Register (DBGPRCR), v7 Debug only on pate C10-31 [PDF page 1799]:
 - DBGPRCR[2], Hold non-debug logic reset
 - DBGPRCR[1], Warm reset request.
For more information see the information added at the end of Features specific to v7 Debug, page C6-35 [PDF page 1719].

[new section, ARM_2011_Q2]
Use of ThumbEE instructions

From the publication of the ARM_2011_Q2 release of this errata document, ARM deprecates any use of ThumbEE instructions.
This deprecation applies to all implementations of ARMv7.

ARM_2011_Q2
Sticky Note
Note the insertion at the end of this line, that adds further deprecations.

Deprecated and Obsolete Features
D.2 Deprecated terminology

Table D-3 shows terms that were used in earlier editions of the ARM Architecture Reference Manual, and
the supplements to it, that are no longer used. The replacement terms are not in general exact synonyms, but
might reflect altered behavior more accurately.

Table D-3 Deprecated terminology

Old terminology Replaced by

Drain Write Buffer, Data Write Barrier (DWB) Data Synchronization Barrier

Prefetch Flush (PFF) Instruction Synchronization Barrier
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxD-5

Deprecated and Obsolete Features
D.3 Obsolete features

The features described in the following sections were deprecated in ARMv6, and are no longer supported
in ARMv7.

D.3.1 Rotated aligned accesses

Unaligned accesses, where permitted, were treated as rotated aligned accesses before ARMv6. This
behavior was configurable, but deprecated, in ARMv6. It is obsolete in ARMv7. For more information, see
Alignment on page AppxG-6.

D.3.2 Ordering of instructions that change the CPSR interrupt masks

Any ARMv6 instruction that implicitly or explicitly changes the interrupt masks in the CPSR and appears
in program order after a Strongly-ordered access must wait for the Strongly-ordered memory access to
complete, see Ordering of instructions that change the CPSR interrupt masks on page AppxG-8 for more
information.

ARMv6 deprecated any reliance on this behavior, and this behavior is obsoleted in ARMv7.

D.3.3 ARM LDM and POP instructions that both write back and load their base registers

LDM instructions and multi-register POP instructions that specify base register writeback and load their
base register are permitted but deprecated before ARMv7, as described in Different definition of some LDM
and POP instructions on page AppxG-15. Use of such instructions is obsolete in ARMv7.
AppxD-6 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q2
Inserted Text

D.3.4 Fast Context Switch Extension

ARMv6 and ARMv7 deprecate use of the Fast Context Switch Extension (FCSE), and the FCSE is optional in ARMv7. It is obsolete from the ARMv7 Multiprocessing Extensions.

For details of the FCSE see Appendix E Fast Context Switch Extension (FCSE) [PDF page 1945].

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
are obsolete.

ARM_2009_Q2
Sticky Note
Each description gives information about when the feature was deprecated and when it was obsoleted.

Deprecated and Obsolete Features
D.4 Semaphore instructions

The ARM instruction set has two semaphore instructions:

• Swap (SWP)

• Swap Byte (SWPB).

These instructions are provided for process synchronization. Both instructions generate a load access and a
store access to the same memory location, such that no other access to that location is permitted between
the load access and the store access. This enables a memory semaphore to be loaded and altered without
interruption.

SWP and SWPB have a single addressing mode, whose address is the contents of a register. Separate registers
are used to specify the value to store and the destination of the load. If the same register is specified for both
of these, SWP exchanges the value in the register and the value in memory.

The semaphore instructions do not provide a compare and conditional write facility. If wanted, this must be
done explicitly.

Use of the swap and swap byte instructions is deprecated from ARMv6. ARM recommends that all software
uses the LDREX and STREX synchronization primitives. For details see:

• LDREX on page A8-142

• LDREXB on page A8-144

• LDREXD on page A8-146

• LDREXH on page A8-148

• STREX on page A8-400

• STREXB on page A8-402

• STREXD on page A8-404

• STREXH on page A8-406.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxD-7

Deprecated and Obsolete Features
D.5 Use of the SP as a general-purpose register

In the Thumb instruction set, you can only use the SP (R13) in a restricted set of instructions. This set covers
all the legitimate uses of the SP as a stack pointer. An attempt to encode any other instruction with SP in
place of a legitimate register results in either UNPREDICTABLE behavior, or a different instruction.

In addition, the use of SP (R13) as Rm in the high register forms of the 16-bit CMP and ADD instructions is
deprecated. Also, some forms of MOV (register) that use SP are deprecated, see MOV (register) on
page A8-196.

Most ARM instructions, unlike Thumb instructions, provide exactly the same access to the SP as to R0-R12.
This means that it is possible to use the SP as a general-purpose register. However, the use of the SP in an
ARM instruction, in any way that is not possible in the corresponding Thumb instruction, is deprecated.

See ARM instructions where SP use is not deprecated for a list of instructions that you can use for SP
manipulation.

D.5.1 ARM instructions where SP use is not deprecated

The use of the SP is deprecated in any ARM instruction that is not specified in this section.

Some uses of the SP are not deprecated in the following ARM data-processing instructions:

• ADD (SP plus immediate) on page A8-28

• ADD (SP plus register) on page A8-30

• CMN (immediate) on page A8-74

• CMN (register) on page A8-76

• CMP (immediate) on page A8-80

• CMP (register) on page A8-82

• MOV (register) on page A8-196

• SUB (SP minus immediate) on page A8-426

• SUB (SP minus register) on page A8-428.

In these ARM instructions, the uses of the SP that are not deprecated are the same as those uses listed in
32-bit Thumb instruction support for R13 on page A6-4.

The use of the SP as the base register in load/store/preload instructions is not deprecated. In addition, the
use of the SP as destination or source register is not deprecated in the following instructions:

• LDR (immediate, ARM) on page A8-120

• LDR (literal) on page A8-122

• LDR (register) on page A8-124

• STR (immediate, ARM) on page A8-384

• STR (register) on page A8-386.
AppxD-8 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
 ARM deprecates the use of SP (R13) in some 16-bit Thumb instructions, as described in Deprecated Thumb instructions on page AppxD-10 [PDF page 1944]

ARM_2008_Q4
Inserted Text
deprecated, not permitted, or

ARM_2008_Q4
Sticky Note
These changes are clarifications, and the first change removes duplicated information.

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Replacement Text
Earlier issues of this manual deprecated

ARM_2011_Q2
Inserted Text
 However, user feedback indicates a number of cases where these instructions are useful. Therefore, ARM no longer deprecates these instruction uses.

ARM_2011_Q2
Sticky Note
The insertion at the end of this line removes the earlier deprecation.

ARM_2011_Q2
Cross-Out

Deprecated and Obsolete Features
D.6 Explicit use of the PC in ARM instructions

Most ARM instructions, unlike Thumb instructions, provide exactly the same access to the PC as to
general-purpose registers. However, the explicit use of the PC in an ARM instruction is not usually useful,
and except for specific instances that are useful, such use is deprecated.

Note
 Implicit use of the PC, for example in branch instructions or load (literal) instructions, is never deprecated.

Table D-4 shows where ARM instructions can explicitly use the PC. All other explicit use of the PC is
deprecated.

Table D-4 Non-deprecated uses of the PC in ARM instructions

Instruction Non-deprecated use of PC

All load and preload instructions As destination register or base register. a

ADD (immediate, ARM) on page A8-22 As destination register.

ADD (register) on page A8-24 As destination register, source register, or both.

ADD (SP plus immediate) on page A8-28 As destination register.

ADR on page A8-32 As destination register.

MOV (register) on page A8-196 As destination register or source register, but not both.b

SUB (immediate, ARM) on page A8-420 As destination register.

SUB (register) on page A8-422 As destination register.

SUB (SP minus immediate) on page A8-426 As destination register.

SUB (SP minus register) on page A8-428 As destination register.

SUBS PC, LR and related instructions on page B6-25 As destination register.

a. Only if the instruction description permits the register to be the PC.
b. Transfer of the PC to or update of the PC from the SP is deprecated.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxD-9

ARM_2009_Q2 and ARM_2011_Q2
Inserted Text
, including MOVS and SUBS instructions with the PC as the destination register.

ARM_2009_Q2 and ARM_2011_Q2
Sticky Note
This is the only row of this table that describes MOVS and SUBS instructions that have the PC as the destination register.

The ARM_2011_Q2 release of this errata document corrects the fact that the ARM_2009_Q2 errata release included ADDS as an instruction for which use of the PC as a destination register is not deprecated. In fact, ARM deprecates ADDS using the PC as a destination register, and this inclusion was an error in the ARM_2009_Q2 errata release.

Deprecated and Obsolete Features
D.7 Deprecated Thumb instructions

Most deprecated instructions are in the ARM instruction set. Deprecated Thumb instructions are:

• use of PC as <Rd> or <Rm> in a 16-bit ADD (SP plus register) instruction

• use of SP as <Rm> in a 16-bit ADD (SP plus register) instruction

• use of SP as <Rm> in a 16-bit CMP (register) instruction

• use of MOV (register) instructions in which both <Rd> and <Rm> are the SP or PC

• use of Rn as the lowest-numbered register in the register list of a 16-bit STM instruction with base
register writeback.
AppxD-10 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2008_Q4
Inserted Text

• use of SP as <Rm> in a 16-bit BLX (register) or BX instruction

Appendix E
Fast Context Switch Extension (FCSE)

This appendix describes the Fast Context Switch Extension (FCSE). It contains the following sections:

• About the FCSE on page AppxE-2

• Modified virtual addresses on page AppxE-3

• Debug and trace on page AppxE-5.

Note
 • From ARMv6, use of the FCSE mechanism is deprecated. The FCSE is optional in ARMv7.

• Use of both the FCSE and the ASID based memory attribute results in UNPREDICTABLE behavior.
Either the FCSE must be cleared, or all memory declared as global.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxE-1

Fast Context Switch Extension (FCSE)
E.1 About the FCSE

The Fast Context Switch Extension (FCSE) modifies the behavior of an ARM memory system. This
modification permits multiple programs running on the ARM processor to use identical address ranges,
while ensuring that the addresses they present to the rest of the memory system differ.

Normally, a swap between two software processes whose address ranges overlap requires changes to be
made to the virtual-to-physical address mapping defined by the MMU translation tables, see Translation
tables on page B3-7. It also typically causes cache and TLB contents to become invalid (because they relate
to the old virtual-to-physical address mapping), and so requires caches and TLBs to be flushed. As a result,
each process swap has a considerable overhead, both directly because of the cost of changing the translation
tables and indirectly because of the cost of subsequently reloading caches and TLBs.

By presenting different addresses to the rest of the memory system for different software processes even
when they are using identical addresses, the FCSE avoids this overhead. It also permits software processes
to use identical address ranges even when the rest of the memory system does not support virtual-to-physical
address mapping.
AppxE-2 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Fast Context Switch Extension (FCSE)
E.2 Modified virtual addresses

The 4GB virtual address space is divided into 128 process blocks, each of size 32MB. Each process block
can contain a program that has been compiled to use the address range 0x00000000 to 0x01FFFFFF. For each
of i=0 to 127, process block i runs from address (i × 0x02000000) to address (i × 0x02000000 + 0x01FFFFFF).

The FCSE processes each virtual address for a memory access generated by the ARM processor to produce
a modified virtual address, that is sent to the rest of the memory system to be used in place of the normal
virtual address. For an MMU-based memory system, the process is illustrated in Figure E-1:

Figure E-1 Address flow in MMU memory system with FCSE

When the ARM processor generates a memory access, the translation of the Virtual Address (VA) into the
Modified Virtual Address (MVA) is described by the FCSETranslate() function in FCSE translation on
page B3-156.

When the top seven bits of the address are zero, the translation replaces these bits by the value of
FCSEIDR.PID when they are zero, and otherwise the translation leaves the address unchanged. When
FCSEIDR.PID has its reset value of 0b0000000, the translation leaves the address unchanged, meaning that
the FCSE is effectively disabled.

The value of FCSEIDR.PID is also known as the FCSE process ID of the current process. For more
information, see c13, FCSE Process ID Register (FCSEIDR) on page B3-152.

The effect of setting the FCSEIDR to a nonzero value at a time when any translation table entries have
enabled the alternative Context ID, ASID-based support (nG bit == 1) is UNPREDICTABLE. For more
information about ASIDs see About the VMSA on page B3-2.

Note
 Virtual addresses are sometimes passed to the memory system as data. For these operations, no address
modification occurs, and MVA = VA.

�����**��
����

!��'('��
�'�&$��

�����**
1!��2�<�: !!"

<��)�

!�'�
,�,���

�)�*'���
�����**

1��2

�'�&$��
�����**

1��2
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxE-3

ARM_2010_Q2
Cross-Out

ARM_2010_Q2
Sticky Note
This deletion is a clarification of the intended meaning.

Fast Context Switch Extension (FCSE)
Each process is compiled to use the address range 0x00000000 to 0x01FFFFFF. When referring to its own
instructions and data, therefore, the program generates VAs whose top seven bits are all zero. The resulting
MVAs have their top seven bits replaced by FCSEIDR.PID, and so lie in the process block of the current
process.

The program can also generate VAs whose top seven bits are not all zero. When this happens, the MVA is
equal to the VA. This enables the program to address the process block of another process, provided the
other process does not have process ID 0. Provided access permissions are set correctly, this can be used for
inter-process communication.

Note
 ARM recommends that only process IDs 1 and above are used for general-purpose processes, because the
process with process ID 0 cannot be communicated with in this fashion.

Use of the FCSE therefore reduces the cost of a process swap to:

• The cost of a write of the FCSEIDR.PID.

• The cost of changing access permissions if they need changing for the new process. In an
MMU-based system, this might involve changing the translation table entries individually, or
pointing to a new translation table by changing one or more of TTBR0, TTBR1, and TTBCR. Any
change to the translation tables is likely to involve invalidation of the TLB entries affected. However,
this is usually significantly cheaper than the cache flush that would be required without the FCSE.
Also, in some cases, changes to the translation table, and the associated explicit TLB management,
can be avoided by the use of domains. This reduces the cost to that of a write to the Domain Access
Control Register, see Domains on page B3-31.

The FCSE is deprecated. The use of cache, branch predictor and TLB operations with MVA based addresses
that, as a result of the Multiprocessing Extensions, would affect other processors as described in section 3.2
is UNPREDICTABLE if FCSEIDR.PID is not zero.
AppxE-4 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2010_Q2
Cross-Out

ARM_2010_Q2
Replacement Text
 from ARMv6, optional in ARMv7, and obsolete from the introduction of the ARMv7 Multiprocessing Extensions.

ARM_2010_Q2
Sticky Note
Since a processor that includes the Multiprocessing Extensions cannot include the FCSE, FCSEIDR.PID is RAZ on such a processor. Therefore the described UNPREDICTABLE cases cannot occur, and there is no section 3.2 in this document.

Fast Context Switch Extension (FCSE)
E.3 Debug and trace

It is IMPLEMENTATION DEFINED whether a VA or MVA is used by breakpoint and watchpoint mechanisms.
However, ARM strongly recommends that any implementation that includes the FCSE uses MVAs, to avoid
trigger aliasing.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxE-5

Fast Context Switch Extension (FCSE)
AppxE-6 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Appendix F
VFP Vector Operation Support

This appendix provides reference information about VFP vector operation.

This appendix contains the following sections:

• About VFP vector mode on page AppxF-2

• Vector length and stride control on page AppxF-3

• VFP register banks on page AppxF-5

• VFP instruction type selection on page AppxF-7.

Note
 The use of VFP vector mode is deprecated. This information is provided for backwards compatibility only.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxF-1

VFP Vector Operation Support
F.1 About VFP vector mode

The single-precision registers can be used to hold short vectors of up to 8 single-precision values. Arithmetic
operations on all the elements of such a vector can be specified by just one single-precision arithmetic
instruction.

Similarly, the double-precision registers can be used to hold short vectors of up to 4 double-precision values,
and double-precision arithmetic instructions can specify operations on these vectors.

A vector consists of 2-8 registers from a single bank. VFP register banks on page AppxF-5 describes the
division of the VFP register set into banks.

The FPSCR.LEN field controls the number of elements in a vector. The register number in the instruction
specifies the register that contains the first element of the vector. The FPSCR.STRIDE field controls the
increment between the register numbers of the elements of the vector. If the total increment causes the
register number to overflow the top of a register bank, the register number wraps around to the bottom of
the bank, as shown in VFP register banks on page AppxF-5.

For details of the FPSCR.LEN and FPSCR.STRIDE fields see Vector length and stride control on
page AppxF-3.

A VFP instruction can operate on:

• operand vectors with LEN elements, producing a result vector with LEN elements

• an operand vector with LEN elements and a scalar operand, producing a result vector with LEN
elements

• scalar operands, producing a scalar result.

These three operation types are identical if LEN == 1.

To control which type of operation an instruction performs, you choose the registers for the instruction from
different register banks. VFP instruction type selection on page AppxF-7 describes how to select the
instruction type.

F.1.1 Affected instructions

The following VFP instructions are affected by VFP vector mode:

All other VFP instructions behave as described in their instruction descriptions regardless of the values of
FPSCR.LEN and FPSCR.STRIDE.

VABS VADD VDIV VMLA VMLS

VMOV (immediate) VMOV (register) VMUL VNEG VNMLA

VNMLS VNMUL VSQRT VSUB
AppxF-2 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

VFP Vector Operation Support
F.2 Vector length and stride control

The FPSCR.LEN field, bits [18:16], controls the vector length for VFP instructions that operate on short
vectors, that is, how many registers are in a vector operand. Similarly, the FPSCR.STRIDE field,
bits [21:20], controls the vector stride, that is, how far apart the registers in a vector lie in the register bank.
For information about the FPSCR see Floating-point Status and Control Register (FPSCR) on page A2-28.

The permitted combinations of LEN and STRIDE are shown in Table F-1. All other combinations of LEN
and STRIDE produce UNPREDICTABLE results.

The combination LEN == 0b000, STRIDE == 0b00 is called scalar mode. When it is in effect, all arithmetic
instructions specify scalar operations. Otherwise, most arithmetic instructions specify a scalar operation if
their destination is in the range:

• S0-S7 for a single-precision operation

• D0-D3 or D16-D19 for a double-precision operation.

The full rules used to determine which operands are vectors and full details of how vector operands are
specified can be found in VFP instruction type selection on page AppxF-7.

The rules for vector operands do not permit the same register to appear twice or more in a vector. The
permitted LEN and STRIDE combinations listed in Table F-1 never cause this to happen for
single-precision instructions, so single-precision scalar and vector instructions can be used with all of these
LEN and STRIDE combinations.

For double-precision vector instructions, some of the permitted LEN and STRIDE combinations would
cause the same register to appear twice in a vector. If a double-precision vector instruction is executed with
such a LEN and STRIDE combination in effect, the instruction is UNPREDICTABLE. The last column of Table
2-2 indicates which LEN and STRIDE combinations this applies to. Double-precision scalar instructions
work normally with all of the permitted LEN and STRIDE combinations.

Table F-1 Vector length and stride combinations

LEN STRIDE Vector length Vector stride Double-precision vector instructions

0b000 0b00 1 - All instructions are scalar

0b001 0b00 2 1 Work as described in this appendix

0b001 0b11 2 2 Work as described in this appendix

0b010 0b00 3 1 Work as described in this appendix

0b010 0b11 3 2 UNPREDICTABLE

0b011 0b00 4 1 Work as described in this appendix

0b011 0b11 4 2 UNPREDICTABLE

0b100 0b00 5 1 UNPREDICTABLE
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxF-3

VFP Vector Operation Support
0b101 0b00 6 1 UNPREDICTABLE

0b110 0b00 7 1 UNPREDICTABLE

0b111 0b00 8 1 UNPREDICTABLE

Table F-1 Vector length and stride combinations (continued)

LEN STRIDE Vector length Vector stride Double-precision vector instructions
AppxF-4 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

VFP Vector Operation Support
F.3 VFP register banks

The Advanced SIMD and VFP registers are divided into banks as follows:

• The single-precision registers are divided into four banks of eight. This is shown in Figure F-1. The
first bank is a scalar bank, and the other three are vector banks.

• In a processor with 32 double-precision registers, the double-precision registers are divided into eight
banks of four. This is shown in Figure F-2. The first and fifth banks are scalar banks, and the other
six are vector banks.

• In a processor with 16 double-precision registers, the double-precision registers are divided into four
banks of four. This is shown in Figure F-3 on page AppxF-6. The first bank is a scalar bank, and the
other three are vector banks.

Figure F-1 Single-precision register banks

Figure F-2 Register banks, 32 double-precision register VFP

���������	
 ���
�����	
 ���
�����	
 ���
�����	

���

���

���

���

���

��	

�
�

�
�

��

��

��

�

��

��

��

��

��

�	

���

���

���

��

���

���

���

���

���

���

���

���

���

��

������
��	

���
��
��	

���
��
��	

���
��
��	

��

�

��

��

�

�

�

�

�

�

�

�

	

��

��

������
��	

���
��
��	

���
��
��	

���
��
��	

��

�	

�

�

��

��

��

�	

��

��

��

�

��

��

��

��
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxF-5

VFP Vector Operation Support
Figure F-3 Register banks, 16 double-precision register VFP

���������	
 ���
�����	
 ���
�����	
 ���
�����	

��

�

��

��

�

�

�

�

�

�

�

�

	

��

��
AppxF-6 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

VFP Vector Operation Support
F.4 VFP instruction type selection

Table F-2 shows how the selection of registers in an instruction controls the operation of the instruction.

• If the instruction has two operands:

— If the destination register is in a scalar register bank, the operands and result are all scalars.

— If the destination register is in a vector register bank and the second operand is in a scalar bank,
the second operand is a scalar, but both the destination and the first operand are vectors. Each
element of the result is produced by an operation on the corresponding element of the first
operand and the same scalar.

— If the destination register and the second operand are both in vector register banks, the
operands and result are all vectors. Each element of the result is produced by an operation on
corresponding elements of both operands.

• If the instruction has one operand:

— If the destination register is in a scalar register bank, the operand and result are both scalars.

— If the destination register is in a vector register bank and the operand is in a scalar bank, the
result is a vector and the operand is a scalar. The result is duplicated to each element of the
destination vector.

— If the destination register and the operand are both in vector register banks, the operand and
result are both vectors. Each element of the result is produced by an operation on the
corresponding element of the operand.

Some VFP instructions have three operands, but in these cases one of the operand vectors is also the result
vector. They operate in the same way as two operand instructions.

Table F-2

Destination
register bank

1st operand
bank

2nd operand
bank

Destination
type

1st operand
type

2nd operand
type

Scalar Any Any Scalar Scalar Scalar

Vector Any Scalar Vector Vector Scalar

Vector Any Vector Vector Vector Vector

Scalar Any None Scalar Scalar -

Vector Scalar None Vector Scalar -

Vector Vector None Vector Vector -
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxF-7

VFP Vector Operation Support
AppxF-8 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Appendix G
ARMv6 Differences

This appendix describes how ARMv6 differs from ARMv7. The appendix contains the following sections:

• Introduction to ARMv6 on page AppxG-2

• Application level register support on page AppxG-3

• Application level memory support on page AppxG-6

• Instruction set support on page AppxG-10

• System level register support on page AppxG-16

• System level memory model on page AppxG-20

• System Control coprocessor (CP15) support on page AppxG-29.

Note
 In this appendix, the description ARMvN refers to all architecture variants of ARM architecture vN
described in this manual. In particular, ARMv6 refers to ARMv6, ARMv6K, and ARMv6T2, including
ARMv6K with the Security Extensions. Where the description ARMvN also describes a specific
architecture variant, this variant is sometimes described as the base architecture, for example the ARMv6
base architecture.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxG-1

ARMv6 Differences
G.1 Introduction to ARMv6

This appendix describes the differences in the ARMv6 architecture, compared to the description of ARMv7
given in parts A and B of this manual. Key changes introduced in ARMv7 are:

• Introduction of hierarchical cache support.

• Formalizing the alternative memory system architectures into different architecture profiles:

— the Virtual Memory System Architecture (VMSA) is formalized into the ARMv7-A profile

— the Protected Memory System Architecture (PMSA) is formalized into the ARMv7-R profile.

• Introduction of the Advanced SIMD extensions.

• Introduction of the Thumb Execution Environment (ThumbEE). ThumbEE is required in ARMv7-A,
and optional in ARMv7-R.

This appendix summarizes the features supported in ARMv6, highlighting:

• the similarities and differences with respect to ARMv7, including the following architecture variants
and extensions:

— the Security Extensions

— the extension of the Thumb instruction set using Thumb-2 technology, introduced in
ARMv6T2

— the enhanced kernel support introduced in ARMv6K.

• legacy support for ARMv4 and ARMv5.

G.1.1 Debug

Part C of this manual describes ARMv6 Debug, ARMv7 Debug, and the differences between them.
AppxG-2 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARMv6 Differences
G.2 Application level register support

The ARMv6 core registers are the same as the ARMv7 core registers. For more information, see ARM core
registers on page A2-11. The following sections give more information about ARMv6 application level
register support:

• APSR support

• Instruction set state.

G.2.1 APSR support

Application Program Status Register (APSR) support in ARMv6 is identical to ARMv7. Program status is
reported in the 32-bit APSR. The format of the APSR is:

See The Application Program Status Register (APSR) on page A2-14 for the APSR bit definitions.

Earlier versions of this manual do not use the term APSR. They refer to the APSR as the CPSR
with restrictions on reserved fields determined by whether the access to the register was privileged or not.

G.2.2 Instruction set state

Instruction set state support in ARMv6 is in general the same as the support available in ARMv7. The only
differences are that:

• ThumbEE state is not supported in ARMv6. It is introduced in ARMv7.

• In ARMv6 and ARMv6K, but not in ARMv6T2, when the processor is in a privileged mode you must
take care not to attempt to change the instruction set state by writing nonzero values to CPSR.J and
CPSR.T with an MSR instruction. For more information, see Format of the CPSR and SPSRs on
page AppxG-17.

All ARMv6 implementations support the ARM instruction set. The ARMv6 base architecture and ARMv6K
also support a subset of the Thumb instruction set that can be executed entirely as 16-bit instructions. The
only 32-bit instructions in this subset are restricted-range versions of the BL and BLX (immediate)
instructions. See BL and BLX (immediate) instructions, before ARMv6T2 on page AppxG-4 for a
description of how these instructions can be executed as 16-bit instructions.

The supported ARM and Thumb instructions in the ARMv6 base architecture and ARMv6K are
summarized in Instruction set support on page AppxG-10, and the instruction descriptions in Chapter A8
Instruction Details give details of the architecture variants that support each instruction encoding.

Jazelle state is supported as in ARMv7. For more information, see:

• Jazelle direct bytecode execution support on page A2-73, for application level information

• Jazelle direct bytecode execution on page B1-74, for system level information.

31 30 29 28 27 26 24 23 20 19 16 15 0

N Z C V Q
RAZ/
SBZP

Reserved GE[3:0] Reserved
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxG-3

ARMv6 Differences
ARMv6T2 supports the full Thumb instruction set, apart from a few instructions that are introduced in
ARMv7.

Interworking

In ARMv6, the instructions that provide interworking branches between ARM and Thumb states are:

• BL and BLX

• LDR, LDM, and POP instructions that load the PC.

In ARMv7, the following ARM instructions also perform interworking branches if their destination register
is the PC and the ’S’ option is not specified:

• ADC, ADD, AND, ASR, BIC, EOR, LSL, LSR, MOV, MVN, ORR, ROR, RRX, RSB, RSC, SBC, and SUB.

The instructions do not perform interworking branches in ARMv6, and the corresponding Thumb
instructions do not perform interworking branches in either ARMv6 or ARMv7. This functionality is
described by the ALUWritePC() pseudocode function. See Pseudocode details of operations on ARM core
registers on page A2-12.

BL and BLX (immediate) instructions, before ARMv6T2

In ARMv4T, ARMv5T, ARMv5TE, ARMv5TEJ, ARMv6, and ARMv6K, the BL and BLX (immediate)
instructions are the only 32-bit Thumb instructions, and the maximum range of the branches that they
specify is restricted to approximately +/-4MB. This means that each of the two halfwords of these
instructions has top five bits 0b11101, 0b11110, or 0b11111, and makes it possible to execute the two
halfwords as separate 16-bit instructions.

The following descriptions use the format described in Instruction encodings on page A8-2, except that
they:

• name the encodings H1, H2 and H3

• have pseudocode that defines the entire operation of the instruction, instead of separate
encoding-specific pseudocode and Operation pseudocode.

When the two halfwords of a BL or BLX (immediate) instruction are executed separately, their behavior is as
follows:

LR = PC + SignExtend(imm11:Zeros(12), 32);

Encoding H1 ARMv4T, ARMv5T*, ARMv6, ARMv6K Used for BL and BLX
BL{X} <label> First of two 16-bit instructions

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 imm11
AppxG-4 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARMv6 Differences
next_instr_addr = PC - 2;
BranchWritePC(LR + ZeroExtend(imm11:’0’, 32));
LR = next_instr_addr<31:1> : ‘1’;

if op == ‘0’ then
 next_instr_addr = PC - 2;
 SelectInstrSet(InstrSet_ARM);
 BranchWritePC(Align(LR,4) + ZeroExtend(imm10:’00’, 32));
 LR = next_instr_addr;
else
 UNDEFINED;

An encoding H1 instruction must be followed by an encoding H2 or encoding H3 instruction. Similarly, an
encoding H2 or encoding H3 instruction must be preceded by an encoding H1 instruction. Otherwise, the
behavior is UNPREDICTABLE.

It is IMPLEMENTATION DEFINED whether processor exceptions can occur between the two instructions of a
BL or BLX pair. If they can, the ARM exception return instructions must be able to return correctly to the
second instruction of the pair. The exception handler does not have to take special precautions. See
Exception return on page B1-38 for the definition of exception return instructions.

Note
 There are no Thumb exception return instructions in the architecture versions that support separate
execution of the two halfwords of BL and BLX (immediate) instructions. Also, the ARM RFE instruction is only
defined from ARMv6 onwards.

Encoding H2 ARMv4T, ARMv5T*, ARMv6, ARMv6K Used for BL
BL <label> Second of two 16-bit instructions

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 imm11

Encoding H3 ARMv5T*, ARMv6, ARMv6K Used for BLX
BLX <label> Second of two 16-bit instructions

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 imm10 op
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxG-5

ARMv6 Differences
G.3 Application level memory support

Memory support covers address alignment, endian support, semaphore support, memory order model,
caches, and write buffers. The following sections give an application level description of ARMv6 memory
support:

• Alignment

• Endian support on page AppxG-7

• Semaphore support on page AppxG-8

• Memory model and memory ordering on page AppxG-8.

G.3.1 Alignment

ARMv6 supports:

• a legacy alignment configuration compatible with ARMv5

• the ARMv7 alignment configuration that supports unaligned loads and stores of 16-bit halfwords and
32-bit words.

The alignment configuration is controlled by the SCTLR.U bit, see c1, System Control Register (SCTLR) on
page AppxG-34:

SCTLR.U == 0

ARMv5 compatible alignment support, see Alignment on page AppxH-6, except for the
LDRD and STRD instructions. LDRD and STRD must be doubleword-aligned, otherwise:

• if SCTLR.A == 0, the instruction is UNPREDICTABLE

• if SCTLR.A == 1, the instruction causes an Alignment fault.

Note
 The behavior of LDRD and STRD with SCTLR.A == 0 is compatible with ARMv5. When

SCTLR.A == 1, whether the alignment check is for word or doubleword alignment is:

• IMPLEMENTATION DEFINED in ARMv5

• required to be for doubleword alignment in ARMv6.

SCTLR.U == 1

Unaligned access support for loads and stores of single 16-bit halfwords and 32-bit words,
using the LDR, LDRH, LDRHT, LDRSH, LDRSHT, LDRT, STRH, STRHT, STR, and STRT instructions. Some
of these instructions were introduced in ARMv6T2.

The following requirements also apply:

• LDREX and STREX exclusive access instructions must be word-aligned, otherwise the
instruction generates an abort.

• In ARMv6K, an abort is generated if:

— an LDREXH or STREXH exclusive access instruction is not halfword-aligned

— an LDREXD or STREXD exclusive access instruction is not doubleword-aligned.
AppxG-6 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARMv6 Differences
• SWP must be word-aligned, otherwise the instruction generates an abort. From
ARMv6, use of the SWP instruction is deprecated.

• All multi-word load/store instructions must be word-aligned, otherwise the
instruction generates an abort.

• Unaligned access support only applies to Normal memory. Unaligned accesses to
Strongly-ordered or Device memory are UNPREDICTABLE.

In both configurations, setting the SCTLR.A bit forces an abort on an unaligned access.

Note
 In ARMv7, SCTLR.U is always set to 1. ARMv7 alignment support is the same as ARMv6K in this
configuration.

In common with ARMv7, all instruction fetches must be aligned.

G.3.2 Endian support

ARMv6 supports the same Big Endian (BE) and Little Endian (LE) support model as ARMv7, see Endian
support on page A3-7. It is IMPLEMENTATION DEFINED if the legacy big endian model (BE-32) defined for
ARMv4 and ARMv5 is also supported. For more information about BE-32 see Endian support on
page AppxH-7.

For configuration and control information, see Endian configuration and control on page AppxG-20.

BE-32 DBGWCR Byte address select values

Using the BE-32 endian model changes the meaning of the Byte address select values in DBGWCR[8:5],
described in Watchpoint Control Registers (DBGWCR) on page C10-61. When using BE-32 endianness, use
Table G-1 to interpret these values. Do not use Table C10-13 on page C10-65.

Table G-1 Byte address select values, word-aligned address, ARMv6 BE-32 endianness

DBGWCR[8:5] value Description

0000 Watchpoint never hits

xxx1 Watchpoint hits if byte at address DBGWVR<31:2>:’11’ is accessed

xx1x Watchpoint hits if byte at address DBGWVR<31:2>:’10’ is accessed

x1xx Watchpoint hits if byte at address DBGWVR<31:2>:’01’ is accessed

1xxx Watchpoint hits if byte at address DBGWVR<31:2>:’00’ is accessed
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxG-7

ARMv6 Differences
G.3.3 Semaphore support

ARM deprecates the use of the ARM semaphore instructions SWP and SWPB, in favour of the exclusive access
mechanism described in Synchronization and semaphores on page A3-12:

• ARMv6 and ARMv6T2 support the LDREX and STREX instructions

• ARMv6K and ARMv7 add the CLREX, LDREXB, LDREXD, LDREXH, STREXB, STREXD, and STREXH instructions.

All Load-Exclusive and Store-Exclusive access instructions must be naturally aligned. An unaligned
Exclusive access instruction generates an unaligned access Data Abort exception.

G.3.4 Memory model and memory ordering

The memory model was formalized in ARMv6. This included:

• defining Normal, Device, and Strongly-ordered memory types

• adding a Shareable memory attribute

• extending the memory attributes to support two cache policies, associated with Inner and Outer levels
of cache and including a write allocation hint capability

• adding Data Memory Barrier (DMB) and Data Synchronization Barrier (DSB) operations, to
support the formalized memory ordering requirements

• adding an Instruction Synchronization Barrier (ISB) operation, to guarantee that instructions
complete before any instructions that come after them in program order are executed.

ARMv6 provided barrier operations as CP15 c7 operations. These migrated to the ARM and Thumb
instruction sets as follows:

• ARMv6 required DMB, DSB, and ISB operations in CP15, see c7, Miscellaneous functions on
page AppxH-51. The functionality of these operations is the same as that described for ARMv7 in
Memory barriers on page A3-47.

• ARMv7 adds DMB, DSB, and ISB instructions to the ARM and Thumb instruction sets.

ARM deprecates use of the CP15 barrier operations.

Ordering of instructions that change the CPSR interrupt masks

In ARMv6, any instruction that implicitly or explicitly changes the interrupt masks in the CPSR and appears
in program order after a Strongly-ordered access must wait for the Strongly-ordered memory access to
complete. These instructions are:

• An MSR with the control field mask bit set.

• The flag-setting variants of arithmetic and logical instructions with the PC as the destination register.
These instructions copy the SPSR to CPSR.
AppxG-8 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARMv6 Differences
ARM deprecates any reliance on this behavior, and this behavior is obsolete from ARMv7. Instead, when
synchronization is required, include an explicit memory barrier between the memory access and the
following instruction, see Data Synchronization Barrier (DSB) on page A3-49.

Caches and write buffers

For details of cache support in ARMv6, see Cache support on page AppxG-21.

Tightly Coupled Memory (TCM) support

TCM provides low latency memory that the processor can use without the unpredictability of caches. TCM
can hold critical routines, scratchpad data, or data types with locality properties that are not suitable for
caching. An implementation can use TCM at the application or at the system level. For more information
about ARMv6 TCM support see Tightly Coupled Memory (TCM) support on page AppxG-23.

DMA support

Direct Memory Access (DMA) enables a peripheral to read and write data directly from and to main
memory. In ARMv6, the coherency of DMA and processor memory accesses is IMPLEMENTATION DEFINED.
DMA support for TCM is IMPLEMENTATION DEFINED.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxG-9

ARMv6 Differences
G.4 Instruction set support

Two instruction sets are supported in ARMv6:

• the ARM instruction set

• the Thumb instruction set.

ARMv6 floating-point support, known as VFPv2, is the same as that supported in ARMv5. The instructions
use coprocessors 10 and 11 and are documented with all other instructions in Alphabetical list of
instructions on page A8-14. The following VFP instructions are not supported in ARMv6. These
instructions are introduced in ARMv7 (VFPv3):

• VMOV (immediate)

• VCVT (between floating-point and fixed-point).

Note
 • VFP instruction mnemonics traditionally started with an F. However this has been changed to a V

prefix in the Unified Assembler Language introduced in ARMv6T2, and in many cases the rest of the
mnemonic has been changed to be more compatible with other instructions mnemonics. This aligns
the scalar floating-point support with the ARMv7 Advanced SIMD support, which shares some
load/store and move operations to a common register file.

• The VFPv2 instructions are summarized in F* (former VFP instruction mnemonics) on page A8-100.
This includes the two deprecated instructions in VFPv2 that do not have UAL mnemonics, the FLDMX
and FSTMX instructions.

ARMv6 introduces new instructions in addition to supporting all the ARM and Thumb instructions available
in ARMv5TEJ. For more information, see Instruction set support on page AppxH-11, ARM instruction set
support on page AppxG-11, and Thumb instruction set support on page AppxG-14.

The ARM and Thumb instruction sets grew significantly in ARMv6 and ARMv6T2, compared with
ARMv5TEJ, mainly because of:

• the development of ARMv6 SIMD

• the addition of many 32-bit Thumb instructions in ARMv6T2.

ARMv6K adds some kernel support instructions. It also permits the use of the optional Security Extensions
and the SMC instruction.

ARMv7 extends the instruction sets as defined for ARMv6 and the ARMv6 architecture variants and
extensions as follows:

• the introduction of barrier instructions to the ARM and Thumb instruction sets

• the ThumbEE extension in ARMv7

• the new instructions added in VFPv3

• the Advanced SIMD extension in ARMv7.
AppxG-10 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARMv6 Differences
Note
 This appendix describes the instructions included as a mnemonic in ARMv6. For any mnemonic, to
determine which associated instruction encodings appear in a particular architecture variant, see the
subsections of Alphabetical list of instructions on page A8-14 that describe the mnemonic. Each encoding
diagram shows the architecture variants or extensions that include the encoding.

The following sections give more information about ARMv6 instruction set support:

• ARM instruction set support

• Thumb instruction set support on page AppxG-14

• System level instruction set support on page AppxG-14.

G.4.1 ARM instruction set support

ARMv6 includes all the ARM instructions present in ARMv5TEJ, see ARM instruction set support on
page AppxH-12. Table G-2 shows the ARM instruction changes in the ARMv6 base architecture.

Table G-2 ARM instruction changes in ARMv6

Instruction ARMv6 change

CPS Introduced

LDREX Introduced

MCRR2 Introduced

MRRC2 Introduced

PKH Introduced

QADD16 Introduced

QADD8 Introduced

QASX Introduced

QSUB16 Introduced

QSUB8 Introduced

QSAX Introduced

REV, REV16, REVSH Introduced

RFE Introduced

SADD8, SADD16, SASX Introduced

SEL Introduced
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxG-11

ARMv6 Differences
SETEND Introduced

SHADD8, SHADD16 Introduced

SHSUB8, SHSUB16 Introduced

SMLAD Introduced

SMLALD Introduced

SMLSD Introduced

SMLSLD Introduced

SMMLA Introduced

SMMLS Introduced

SMMUL Introduced

SMUAD Introduced

SMUSD Introduced

SRS Introduced

SSAT, SSAT16 Introduced

SSUB8, SSUB16, SSAX Introduced

STREX Introduced

SWP Deprecated

SWPB Deprecated

SXTAB, SXTAB16, SXTAH Introduced

SXTB, SXTB16, SXTH Introduced

UADD8, UADD16, UASX Introduced

UHADD8, UHADD16, UHASX Introduced

UHSUB8, UHSUB16, UHSAX Introduced

UMAAL Introduced

UQADD8, UQADD16, UQASX Introduced

Table G-2 ARM instruction changes in ARMv6 (continued)

Instruction ARMv6 change
AppxG-12 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARMv6 Differences
The SMC instruction is added as part of the Security Extensions.

The CLREX, LDREXB, LDREXD, LDREXH, NOP, SEV, STREXB, STREXD, STREXH, WFE, WFI, and YIELD instructions are added
with the enhanced kernel support as part of ARMv6K.

New ARM instructions in ARMv6T2

ARMv6T2 adds the following ARM instructions:

BFC, BFI, LDRHT, LDRSBT, LDRSHT, MLS, MOVT, RBIT, SBFX, STRHT, and UBFX.

Instructions that are only in the ARM instruction set in ARMv6T2

The following ARM instructions have no Thumb equivalents in ARMv6T2:

• register-shifted forms of the ADC, ADD, AND, BIC, CMN, CMP, EOR, MVN, ORR, RSB, SBC, SUB, TEQ, and TST
instructions

• all forms of the RSC instruction

• LDMDA, LDMIB, STMDA, and STMIB

• SWP and SWPB.

ARM instructions introduced in ARMv7

The DMB, DSB, ISB, PLI, SDIV, and UDIV instructions are added in ARMv7 and are not present in any form in
ARMv6. The SDIV and UDIV instructions are not present in ARMv7-A.

The DBG hint instruction is added in ARMv7. It is UNDEFINED in the ARMv6 base architecture, and executes
as a NOP instruction in ARMv6K and ARMv6T2.

UQSUB8, UQSUB16, UQSAX Introduced

USAD8, USADA8 Introduced

USAT, USAT16 Introduced

USUB8, USUB16, USAX Introduced

UXTAB, UXTAB16, UXTAH Introduced

UXTB, UXTB16, UXTH Introduced

Table G-2 ARM instruction changes in ARMv6 (continued)

Instruction ARMv6 change
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxG-13

ARMv6 Differences
G.4.2 Thumb instruction set support

ARMv6 includes all the Thumb instructions present in ARMv5TE, see Thumb instruction set support on
page AppxH-15. the 16-bit Thumb instructions added in the ARMv6 base architecture are:

• CPS

• CPY

• REV, REV16, REVSH

• SETEND

• SXTB, SXTH

• UXTB, UXTH.

Thumb instruction set and ARMv6T2

From the ARMv6T2 version of the Thumb instruction set:

• The Thumb instruction set provides 16-bit and 32-bit instructions that are executed in Thumb state.

• Most forms of ARM instructions have an equivalent Thumb encoding. Instructions that are only in
the ARM instruction set in ARMv6T2 on page AppxG-13 lists the exceptions to this in ARMv6T2.

The CBZ, CBNZ, and IT instructions are only in the Thumb instruction set and are introduced in ARMv6T2.

Before ARMv6T2, a BL or BLX (immediate) Thumb instruction can be executed as a pair of 16-bit
instructions, rather than as a single 32-bit instruction. For more information, see BL and BLX (immediate)
instructions, before ARMv6T2 on page AppxG-4. From ARMv6T2 these instructions are always executed
as a single 32-bit instruction.

From ARMv6T2, the branch range of the BL and BLX (immediate) instructions is increased from
approximately ±4MB to approximately ±16MB.

Thumb instructions introduced in ARMv7

The CLREX, LDREXB, LDREXD, LDREXH, STREXB, STREXD, and STREXH instructions are added to the Thumb instruction
set in ARMv7. They are Thumb equivalents to the ARM instructions added in ARMv6K. These instructions
are UNDEFINED in ARMv6T2.

The DBG, SEV, WFE, WFI, and YIELD hint instructions are added in ARMv7. They execute as NOP instructions in
ARMv6T2. The 16-bit encodings of the SEV, WFE, WFI, and YIELD instructions are UNDEFINED in the ARMv6
base architecture and in ARMv6K.

G.4.3 System level instruction set support

The system instructions supported in ARMv6 are the same as those listed for ARMv7 in Alphabetical list
of instructions on page B6-2:

• the SMC instruction only applies to the Security Extensions

• the VMRS and VMSR instructions only apply to VFP.
AppxG-14 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARMv6 Differences
G.4.4 Different definition of some LDM and POP instructions

This difference applies to:

• LDM instructions that have the base register in the register list and specify base register writeback

• POP instructions that load at least two registers, including the base register SP.

In ARMv6, ARM instructions of these types made the value of the base register UNKNOWN, and Thumb
instructions of these types were UNPREDICTABLE. Use of ARM instructions of these types is deprecated.

In ARMv7, all instructions of these types are UNPREDICTABLE.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxG-15

ARMv6 Differences
G.5 System level register support

The general registers and processor modes are the same as ARMv7, except that the Security Extensions and
Monitor mode are permitted only in ARMv6K. For more information, see Figure B1-1 on page B1-9. The
following sections give information about ARMv6 system level register support:

• Program Status Registers (PSRs)

• The exception model on page AppxG-18

• Execution environment support on page AppxG-19.

G.5.1 Program Status Registers (PSRs)

The application level programmers’ model provides the Application Program Status Register, see APSR
support on page AppxG-3. This is an application level alias for the Current Program Status Register
(CPSR). The system level view of the CPSR extends the register, adding state that:

• is used by exceptions

• controls the processor mode.

Each of the exception modes has its own saved copy of the CPSR, the Saved Program Status Register
(SPSR), as shown in Figure B1-1 on page B1-9. For example, the SPSR for Monitor mode is called
SPSR_mon.

The Current Program Status Register (CPSR)

The CPSR holds the following processor status and control information:

• The APSR, see APSR support on page AppxG-3.

• The current instruction set state. See ISETSTATE on page A2-15, except that ThumbEE state is not
supported in ARMv6.

• The current endianness, see ENDIANSTATE on page A2-19.

• The current processor mode.

• Interrupt and asynchronous abort disable bits.

• In ARMv6T2, the execution state bits for the Thumb If-Then instruction, see ITSTATE on
page A2-17.

The non-APSR bits of the CPSR have defined reset values. These are shown in the TakeReset() pseudocode
function described in Reset on page B1-48, except that before ARMv6T2:

• CPSR.IT[7:0] are not defined and so do not have reset values

• the reset value of CPSR.T is 0.

The rules described in The Current Program Status Register (CPSR) on page B1-14 about when mode
changes take effect apply with the modification that the ISB can only be the ISB operation described in c7,
Miscellaneous functions on page AppxG-44.
AppxG-16 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARMv6 Differences
The Saved Program Status Registers (SPSRs)

The SPSRs are defined as they are in ARMv7, see The Saved Program Status Registers (SPSRs) on
page B1-15, except that the IT[7:0] bits are not implemented before ARMv6T2.

Format of the CPSR and SPSRs

The format of the CPSR and SPSRs is the same as ARMv7:

In ARMv6T2, the definitions and general rules for PSR bits and support of Non-Maskable Fast Interrupts
(NMFI) are the same as ARMv7. For more information, see Format of the CPSR and SPSRs on page B1-16
and Non-maskable fast interrupts on page B1-18.

ARMv6 and ARMv6K have the following differences:

• Bits[26:25] are RAZ/WI.

• Bits[15:10] are reserved.

• The J and T bits of the CPSR must not be changed when the CPSR is written by an MSR instruction,
or else the behavior is UNPREDICTABLE. MSR instructions exist only in ARM state in these architecture
variants, so this is equivalent to saying the MSR instructions in privileged modes must treat these bits
as SBZP. MSR instructions in User mode still ignore writes to these bits.

31 30 29 28 27 26 25 24 23 20 19 16 15 10 9 8 7 6 5 4 0

N Z C V Q
IT

[1:0]
J Reserved GE[3:0] IT[7:2] E A I F T M[4:0]
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxG-17

ARMv6 Differences
G.5.2 The exception model

The exception vector offsets and priorities as stated in Offsets from exception base addresses on page B1-31
and Exception priority order on page B1-33 are the same for ARMv6 and ARMv7.

See Exception return on page B1-38 for the definition of exception return instructions.

The ARM abort model

ARMv6 and ARMv7 use a Base Restored Abort Model (BRAM), as defined in The ARM abort model on
page AppxH-20.

Exception entry

Entry to exceptions in ARMv6 is generally as described in the sections:

• Reset on page B1-48

• Undefined Instruction exception on page B1-49

• Supervisor Call (SVC) exception on page B1-52

• Secure Monitor Call (SMC) exception on page B1-53

• Prefetch Abort exception on page B1-54

• Data Abort exception on page B1-55

• IRQ exception on page B1-58

• FIQ exception on page B1-60.

These ARMv7 descriptions are modified as follows:

• pseudocode statements that set registers, bits and fields that do not exist in the ARMv6 architecture
variant are ignored

• CPSR.T is set to SCTLR.TE in ARMv6T2, as described by the pseudocode, but to 0 in ARMv6 and
ARMv6K.

Fault reporting

In previous ARM documentation, in descriptions of exceptions associated with memory system faults, the
terms precise and imprecise are used instead of synchronous and asynchronous. For details of the
terminology used to describe exceptions in ARMv7, see Terminology for describing exceptions on
page B1-4.

ARMv6 only supports synchronous reporting of external aborts on instruction fetches and translation table
walks. In ARMv7, these faults can be reported as synchronous or asynchronous aborts. Asynchronous
aborts are always reported as Data Abort exceptions.
AppxG-18 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARMv6 Differences
Two fault status encodings are deprecated in ARMv6:

• 0b00011 was assigned as an alignment error encoding and is re-assigned as an Access Flag section
fault in ARMv6K and ARMv7

• 0b01010 was assigned as an external abort encoding and is a reserved value in ARMv7.

ARMv6 and ARMv7 provide alternative alignment and synchronous external abort error encodings that are
common to both versions of the architecture.

G.5.3 Execution environment support

In ARMv6, the JOSCR.CV bit is not changed on exception entry in any implementation of Jazelle.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxG-19

ARMv6 Differences
G.6 System level memory model

The pseudocode listed in Aligned memory accesses on page B2-31 and Unaligned memory accesses on
page B2-32 covers the alignment behavior of all architecture variants from ARMv4. ARMv6 supports two
alignment models, and the SCTLR.U bit controls the alignment configuration. For more information, see
Alignment on page AppxG-6.

Note
 • ARMv4 and ARMv5 only support the SCTLR.U = 0 alignment model.

• ARMv7 only supports the SCTLR.U = 1 alignment model.

The following sections describe the system level memory model:

• Endian configuration and control

• Cache support on page AppxG-21

• Tightly Coupled Memory (TCM) support on page AppxG-23

• Virtual memory support on page AppxG-24

• Protected Memory System Architecture (PMSA) on page AppxG-28.

G.6.1 Endian configuration and control

Endian control and configuration is supported by two bits in the CP15 SCTlR, and a PSR flag bit:

SCTLR.B BE-32 configuration bit. This bit must be RAZ/WI when BE-32 is not supported. BE-32 is
the legacy big endian model. See Endian support on page AppxG-7.

SCTLR.EE This bit is used to update CPSR.E on exception entry and provide endian model information
for translation table walks.

CPSR.E The flag is updated on exception entry to the value of the SCTLR.EE bit. Otherwise it is
controlled by the SETEND instruction. Writing the bit using an MSR instruction is deprecated in
ARMv6.

Note
 BE and BE-32 are mutually exclusive. When SCTLR.B is set, SCTLR.EE and CPSR.E must be clear,
otherwise the endian behavior is UNPREDICTABLE.

Endian behavior can be configured on reset using the CFGEND[1:0] pins. Table G-3 on page AppxG-21
defines the CFGEND[1:0] encoding and associated configurations.
AppxG-20 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARMv6 Differences
Note
 When an implementation does not include the CFGEND[1:0] signal, a value of 0b00 is assumed.

ARMv6 does not support the static instruction endianness configuration feature described in Instruction
endianness static configuration, ARMv7-R only on page A3-9.

G.6.2 Cache support

ARMv7 can detect and manage a multi-level cache topology. ARMv6 only detects and manages level 1
caches, and the cache type is stored in the Cache Type Register. See c0, Cache Type Register (CTR) on
page AppxH-35.

In ARMv6, the L1 cache must appear to software to behave as follows:

• the entries in the cache do not need to be cleaned, invalidated, or cleaned and invalidated by software
for different virtual to physical mappings

• for memory regions that are described in the page tables as being Cacheable, aliases to the same
physical address can exist, subject to the restrictions for 4KB small pages described in Virtual to
physical translation mapping restrictions on page AppxG-26.

Note
 These requirements are different from the required ARMv7 cache behavior described in Address mapping
restrictions on page B3-23.

Table G-3 Configuration options on reset

CFGEND[1:0]
CP15 System Control Register, SCTLR PSR

EE bit U bit A bit B bit E bit

00 0 0 0 0 0

01a

a. This configuration is reserved in implementations that do not support BE-32. In
this case, the B bit is RAZ.

0 0 0 1 0

10 0 1 0 0 0

11 1 1 0 0 1
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxG-21

ARMv6 Differences
ARMv6 defines a standard set of cache operations for level 1 instruction, data, and unified caches. The cache
operations required are:

• for an instruction cache:

— invalidate all entries

— invalidate entries by Modified Virtual Address (MVA)

— invalidate entries by set/way

• for a data cache:

— invalidate all entries, clean all entries

— invalidate entries by MVA, clean entries by MVA

— invalidate entries by set/way, clean entries by set/way

• for a unified cache:

— invalidate all entries

— invalidate entries by MVA, clean entries by MVA

— invalidate entries by set/way, clean entries by set/way

Note
 In ARMv7:

• cache operations are defined as affecting the caches when the caches are disabled.

• address based cache maintenance operations are defined as affecting all memory types.

Before ARMv7 these features of the cache operations are IMPLEMENTATION DEFINED.

ARMv6 defines a number of optional cache range operations. The defined range operations are:

• for an instruction cache:

— invalidate range by VA

• for a data cache:

— invalidate range by VA

— clean range by VA

— clean and invalidate range by VA

• prefetch related operations:

— prefetch instruction range by VA

— prefetch data range by VA

— stop prefetch range.

For more information, see Block transfer operations on page AppxG-41.

CP15 also supports configuration and control of cache lockdown. For details of the CP15 cache operation
and lockdown support in ARMv6, see:

• c7, Cache operations on page AppxG-38

• c9, Cache lockdown support on page AppxG-45.
AppxG-22 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARMv6 Differences
Cache behavior at reset

In ARMv6, all cache lines in a cache, and all cached entries associated with branch prediction support, are
invalidated by a reset. This is different to the ARMv7 behavior described in Behavior of the caches at reset
on page B2-6.

G.6.3 Tightly Coupled Memory (TCM) support

Tightly Coupled Memory (TCM) support on page AppxG-9 introduced TCMs and their use at the
application level. In addition, TCMs can be used to hold critical system-level routines such as interrupt
handlers, and critical data structures such as interrupt stacks. Using TCMs can avoid indeterminate cache
accesses.

ARMv6 supports up to four banks of data TCM and up to four banks of instruction TCM. You must program
each bank to be in a different location in the physical memory map.

ARMv6 expects TCM to be used as part of the physical memory map of the system, and not to be backed
by a level of external memory with the same physical addresses. For this reason, TCM behaves differently
from a cache for regions of memory that are marked as being Write-Through Cacheable. In such regions, a
write to a memory locations in the TCM never causes an external write.

A particular memory location must be contained either in the TCM or in the cache, and cannot be in both.
In particular, no coherency mechanisms are supported between the TCM and the cache. This means that it
is important when allocating the TCM base addresses to ensure that the same address ranges are not
contained in the cache.

TCM support and VMSA

TCMs are supported in ARMv6 with VMSA support. However, there are some usage restrictions.

Restriction on translation table mappings

In a VMSA implementation, the TCM must appear to be implemented as Physically-Indexed,
Physically-Addressed memory. This means it must behave as follows:

• Entries in the TCM do not have to be cleaned or invalidated by software for different virtual to
physical address mappings.

• Aliases to the same physical address can exist in memory regions that are held in the TCM. This
means the translation table mapping restrictions for TCM are less restrictive than for cache memory.
See Virtual to physical translation mapping restrictions on page AppxG-26 for cache memory
restrictions.

Restriction on translation table attributes

In a VMSA implementation, the translation table entries that describe areas of memory that are handled by
the TCM can be Cacheable or Non-cacheable, but must not be marked as Shareable. If they are marked as
either Device or Strongly-ordered, or have the Shareable attribute set, the locations that are contained in the
TCM are treated as being Non-shareable, Non-cacheable.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxG-23

ARMv6 Differences
TCM CP15 configuration and control

In ARMv7, a TCM Type Register is required. However, its format can be compatible with ARMv6 or
IMPLEMENTATION DEFINED. For more information, see c0, TCM Type Register (TCMTR) on page B3-85.

In ARMv6, CP15 c0 and c9 registers configure and control the TCMs in a system. For more information,
see:

• c0, TCM Type Register (TCMTR) on page AppxG-33

• c9, TCM support on page AppxG-46.

Note
 In addition to the basic TCM support model in ARMv6, a set of range operations that can operate on caches
and TCMs are documented. Range operations are considered optional in ARMv6. See Block transfer
operations on page AppxG-41.

The ARM Architecture Reference Manual (DDI 0100) described an ARMv6 feature known as SmartCache,
and a level 1 DMA model associated with TCM support. Both of these features are considered as
IMPLEMENTATION DEFINED, and are not described in this manual.

In some implementations of ARMv4 and ARMv5, bits in the CP15 System Control Register, SCTLR[19:16]
or a subset, are used for TCM control. From ARMv6 these bits have fixed values, and no SCTLR bits are
used for TCM control.

G.6.4 Virtual memory support

A key component of the Virtual Memory System Architecture (VMSA) is the use of translation tables.
ARMv6 supports two formats of virtual memory translation table:

• a legacy format for ARMv4 and ARMv5 compatibility

• a revised format, called the VMSAv6 format, that is also used in ARMv7.

Both table formats support use of the Fast Context Switch Extension (FCSE), but ARM deprecates use of
the FCSE, and the FCSE is optional in ARMv7. For the differences in VMSAv6 format support between
ARMv6 and ARMv6K, see VMSAv6 translation table format on page AppxG-26.

Note
 • ARMv7 does not support the legacy format.

• ARMv7 VMSA support is the same as that supported by the revised format in ARMv6K, except for
the address mapping restrictions described:

— for ARMv6 in Virtual to physical translation mapping restrictions on page AppxG-26

— for ARMv7 in Address mapping restrictions on page B3-23.

• For more information about the FCSE see Appendix E Fast Context Switch Extension (FCSE).
AppxG-24 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARMv6 Differences
Execute Never (XN)

The ARMv7 requirement that instruction prefetches are not made from read-sensitive devices also applies
to earlier versions of the architecture:

• ARMv7 requires you to mark all read-sensitive devices with the Execute-never (XN) to ensure that
this requirement is met, see The Execute Never (XN) attribute and instruction prefetching on
page B3-30

• before ARMv7, how this requirement is met is IMPLEMENTATION DEFINED.

Legacy translation table format

ARMv6 legacy support only includes the coarse translation table type as described in Second level Coarse
page table descriptor format on page AppxH-25. ARMv6 does not support the fine level 2 Page table
format. Therefore the legacy translation table format includes subpage access permissions but does not
support 1KB Tiny pages. Table G-4 shows the legacy first level translation table entry formats.

Note
 ARMv5TE includes optional support for Supersections, Shareable memory, and the TEX bitfield. See
Virtual memory support on page AppxH-21.

Use of the SCTLR.S and SCTLR.R bits described in Table H-6 on page AppxH-23 is deprecated. They are
implemented for use only with the legacy format translation tables, and their use is not supported in
VMSAv6 or VMSAv7.

Table G-4 Legacy first level descriptor format

31 20 19 14 12 11 10 9 8 5 4 3 2 1 0

Fault IGN 0 0

Coarse
page table

Coarse page table base address
I

M
P

Domain SBZ 0 1

Section Section base address SBZ TEX AP
I

M
P

Domain
S
B
Z

C B 1 0

Reserved 1 1
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxG-25

ARMv6 Differences
VMSAv6 translation table format

The VMSAv6 translation table format is fully compatible with the virtual memory support in ARMv7-A. It
includes the following features:

• the ability to mark a virtual address as either global or context-specific

• the ability to encode the Normal, Device, or Strongly-ordered memory type into the translation tables

• the Shareable attribute

• the XN execute never access permission attribute

• a third AP bit

• a TEX bitfield used with the C and B bits to define the cache attributes for each page of memory

• support for an application specific (ASID) or global identifier

• 16MB Supersections, and the ability to map a Supersection to a 16MB range.

Related to this new translation table format, VMSAv6 provides:

• support for two translation table base registers and an associated control register

• independent fault status and fault address registers for reporting Prefetch Abort exceptions and Data
Abort exceptions

• a Context ID Register, CONTEXTIDR.

ARMv6K added the following features to VMSAv6:

• An additional access permission encoding, AP[2:0] == 0b111, and an associated simplified access
permissions model. See Access permissions on page B3-28, and Simplified access permissions model
on page B3-29.

• The access flag feature. See The access flag on page B3-21.

• TEX remapping. See Memory region attribute descriptions when TEX remap is enabled on
page B3-34.

Virtual to physical translation mapping restrictions

An ARMv6 implementation can restrict the mapping of pages that remap virtual address bits [13:12]. This
restriction, called page coloring, supports the handling of aliases by an implementation that uses VIPT
caches. On an implementation that imposes this restriction, the most significant bit of the cache size fields
for the instruction and data caches in the CTR is Read-As-One, see c0, Cache Type Register (CTR) on
page AppxH-35.

To avoid alias problems, this restriction enables these bits of the virtual address to be used to index into the
cache without requiring hardware support. The restriction supports virtual indexing on caches where a cache
way has a maximum size of 16KB. There is no restriction on the number of ways supported. Cache ways of
AppxG-26 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2008_Q4
Cross-Out

ARM_2008_Q4
Replacement Text
a process-specific identifier

ARM_2008_Q4
Inserted Text
a

ARMv6 Differences
4KB or less do not suffer from this restriction, because any address (virtual or physical) can only be assigned
to a single cache set. Where NSETS is the number of sets, and LINELEN is the cache line length, the ARMv6
cache policy associated with virtual indexing is:

Log2(NSETS×LINELEN) =< 12 ; no VI restriction
12 < Log2(NSETS×LINELEN) =< 14 ; VI restrictions apply
Log2(NSETS×LINELEN) > 14 ; PI only, VI not supported

If a page is marked as Non-shareable, then if the most significant bits of the cache size fields are RAO, the
implementation requires the remapping restriction and the following restrictions apply:

• If multiple virtual addresses are mapped onto the same physical addresses, then for all mappings bits
[13:12] of the virtual address must be equal, and must also be equal to bits [13:12] of the physical
address. The same physical address can be mapped by TLB entries of different page sizes. These can
be 4KB, 64KB, or sections.

• If all mappings to a physical address are of a page size equal to 4KB, the restriction that bits [13:12]
of the virtual address must equal bits [13:12] of the physical address is not required. Bits [13:12] of
all virtual address aliases must still be equal.

There is no restriction on the more significant bits in the virtual address.

If a page is marked as Shareable and Cacheable, memory coherency must be maintained across the
shareability domain. In ARMv7, software manages instruction coherency, and data caches must be
transparent. See Shareable, Inner Shareable, and Outer Shareable Normal memory on page A3-30 for more
information.

Note
 In some implementations, marking areas of memory as Shareable can have substantial performance effects,
because those areas might not be held in caches.

ARMv6 and the Security Extensions

The Security Extensions provide virtual memory support for two physical address spaces as described in
Secure and Non-secure address spaces on page B3-26 and are supported from ARMv6K. Support is the
same as in ARMv7 with the following exceptions:

• ARMv6 only supports CP15 operations for virtual to physical address translation as part of the
Security Extensions. ARMv7 includes support in the base architecture. For details see Virtual
Address to Physical Address translation operations on page B3-63.

• Additional bits are allocated in the NSACR register. See c1, VMSA Security Extensions support on
page AppxG-35.

• When implemented, the Cache Dirty Status Register is a Banked register. See c7, Cache Dirty Status
Register (CDSR) on page AppxG-39.

• A Cache Behavior Override Register is defined. See c9, Cache Behavior Override Register (CBOR)
on page AppxG-49.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxG-27

ARMv6 Differences
• TCM access support registers are defined. See c9, TCM Non-Secure Access Control Registers,
DTCM-NSACR and ITCM-NSACR on page AppxG-51.

CP15 support for the Security Extensions in ARMv7 is defined in Effect of the Security Extensions on the
CP15 registers on page B3-71.

CP15SDISABLE input

The effect of this input is described for ARMv7 in The CP15SDISABLE input on page B3-76. In ARMv6K,
TCM support is affected as follows:

• the DTCM_NSAC and ITM_NSAC registers are added to the controlled register list

• any TCM region registers restricted to Secure access only by the NSACR register settings are added
to the controlled register list.

G.6.5 Protected Memory System Architecture (PMSA)

PMSA in ARMv5 is IMPLEMENTATION DEFINED. The method described in Protected memory support on
page AppxH-28 is only supported in ARMv4 and ARMv5. PMSA is formalized in ARMv6 under a different
CP15 support model.

The PMSA support in ARMv6 (PMSAv6) differs from PMSAv7 in the following ways:

• PMSAv6 does not support subregions as defined in Subregions on page B4-3.

• The default memory map shown in Table B4-1 on page B4-6 and Table B4-2 on page B4-7 does not
support the XN bit for restricting instruction fetches. The affected addresses are treated as Normal,
Non-cacheable in PMSAv6.

• The default memory map applies only when the MPU is disabled. The SCTLR.BR bit is not
supported in PMSAv6.

• TCM memory behaves as normal when the TCM region is enabled and the MPU is disabled.

In all other respects, PMSAv6 is as described for ARMv7 in Chapter B4 Protected Memory System
Architecture (PMSA).

Execute Never (XN)

The ARMv7 requirement that instruction prefetches are not made from read-sensitive devices also applies
to earlier versions of the architecture:

• ARMv7 requires you to mark all read-sensitive devices with the Execute-never (XN) to ensure that
this requirement is met, see The Execute Never (XN) attribute and instruction prefetching on
page B3-30

• before ARMv7, how this requirement is met is IMPLEMENTATION DEFINED.
AppxG-28 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARMv6 Differences
G.7 System Control coprocessor (CP15) support

Much of the CP15 support is common to VMSAv6 and PMSAv6. However:

• some registers are unique to each memory system architecture

• some registers have different functionality in the two memory system architectures, for example the
SCTLR.

The following sections summarize the ARMv6 implementations of the CP15 registers:

• Organization of CP15 registers for an ARMv6 VMSA implementation

• Organization of CP15 registers for an ARMv6 PMSA implementation on page AppxG-31.

The rest of this section describes the ARMv6 CP15 support in order of the CRn value. The description of
each register:

• indicates if the register is unique to VMSA or PMSA

• indicates any differences between the two implementations if the register is included in both VMSA
and PMSA implementations.

Note
 This approach is different from that taken in Part B of this manual, where:

• CP15 registers for a VMSA implementation on page B3-64 is a complete description of CP15 support
in a VMSAv7 implementation

• CP15 registers for a PMSA implementation on page B4-22 is a complete description of CP15 support
in a PMSAv7 implementation.

The convention used for fixed bitfields in the CP15 register definitions is defined in Meaning of fixed bit
values in register diagrams on page B3-78.

In ARMv6 the execution of an MCR or MRC instruction with an unallocated CP15 register encoding is
UNPREDICTABLE.

ARMv6 provides some MCRR instructions to support block transfers, see Block transfer operations on
page AppxG-41.

G.7.1 Organization of CP15 registers for an ARMv6 VMSA implementation

Figure G-1 on page AppxG-30 shows the CP15 registers in an ARMv6 VMSA implementation:
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxG-29

ARMv6 Differences
Figure G-1 CP15 registers in an ARMv6 VMSA implementation

����**���%���*�����%���&'��

��� <��)��,�'�&��������%���&'��*

��� '���1���"��
���!��������
�"�����6��%&'����
<��)��%��(�&�)��%���&'��6��%&'�������

4���5

4�6	5
�

#

#

@39�3��>��8���%���&'��*�������.'*&��*6��%&'����
��� 4��
5 4����
6��	5

N�@:G���,�%���.'*&��*�1�7776�?!772
@39�3��>��8��7�.'*&��*��� � ��

4��6�
5
4��
5

4�6�5

4�6�5

�
 � 4�	��
5 @39�,�'�&��������%���&'��*
�� � 4��6��5 <��)��3��>��8��1(��,�&�<2�����@<!�7�.'�����.'*&��*

@<!�76�@<!������&'���7�.'*&��

4���5
4�6�5

��
4�	6��5 <��)�����>��8��1(��,�&��2��%���&'��*

�
4�6�5

O�@<!�?���*��$�������**�<��&����7�.'*&��*N4�6�5N��

O�<9=76�<��)��9�)��'���=����'���7�.'*&��N�
 N�

N�� N4�6�5
#

7�*������(����!��*$%%��&�(���@<!��%���&'��*#
O����$�'&��:+&��*'��*���.'*&��*
O� �76� �&���$%&��&�&$*�7�.'*&��

��� � N�� N4�6�5
N�� N�

��� � �� �<�: �76��<�:�� ��7�.'*&��
<=?@:G@ �76�<��&�+&� ��7�.'*&��

�
�

N��(&8����@)����� ����.'*&��*N4���5
 !�3:!:?@�@ =?��:� ?:����.'*&��*��	 4��
5 4�����	5 4��
5 #

'��	��
���)����
�����
������
����	
7���PQ�'&�7�������� Q�'&������

 (����$�'&��:+&��*'��*�',%��,��&��O?�&����'��-���'���������*'��*��(��7!��N

<7� �%�� <7, �%��

<��)��,�'�&��������%���&'��*��� 4���5
<��76�<��)���'�&���&�&$*�7�.'*&���

��*&�,�<��&������.'*&��*�� � ��
O����$�'&��:+&��*'��*���.'*&��*

4���5
N4���5N��

�� � �� @���*��&'���@�-���9�*��7�.'*&��*
��<76���,�'������**�<��&����7�.'*&���� � ��

��$�&������**�7�.'*&��*�� � ��
�	 � �� ��$�&��&�&$*�7�.'*&��*

�
 �
<��)������-����)�%���'�&���,�'�&��������%���&'��*�	

�� <��	Q� 6�Q�'&�(���'�&���$%&��%���&'��

���
4��6�
5

#"�"��"���
����
�"�����

<��)��,�'�&��������%���&'��*
<��)��,�'�&��������%���&'��*

$�%&��'(������!�������"���
����
�"����

4���5
�

4���5
4�6�5

4���6�6
5
�

4���5
4�6	5

4���5
�

��'�*�*��(�!�'�� ��7�.'*&��4�6N	6��
5

<@76�<��)��@�%��7�.'*&��
��

@39@76�@39�@�%��7�.'*&��

� ��

@<!@76�@<!�@�%��7�.'*&��

! �76�!�'�� ��7�.'*&��
�

�
�

�

N	 N�!� �76�!$�&'%����**����(('�'&��7�.'*&��

N<�" ��7�.'*&��*6��%&'����N4����
5 N4��
5
AppxG-30 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARMv6 Differences
G.7.2 Organization of CP15 registers for an ARMv6 PMSA implementation

Figure G-2 shows the CP15 registers in an ARMv6 PMSA implementation:

Figure G-2 CP15 registers in an ARMv6 PMSA implementation

�
 �
<��)��,�'�&��������%���&'��*�	

�� <��	Q� 6�Q�'&�(���'�&���$%&��%���&'��
4���5

�

��$�&������**�7�.'*&��*�� � ��
�	 � �� ��$�&��&�&$*�7�.'*&��*

4���5
4�6�5

!�,����7�.'���9�*�������**���.'*&��*�� 4�6�5
!�,����7�.'����'E������:��-�����.'*&��*4�6�5

4�6	5 !�,����7�.'�������**�<��&������.'*&��*
�� � 7K?76�!�"�7�.'���?$,-���7�.'*&��

�<@376���*&�,�<��&����7�.'*&���� � ��

��'�*�*��(�!�'�� ��7�.'*&��

�<@376��$+'�'����<��&����7�.'*&��6� !�3:!:?@�@ =?��:� ?:�

<��<76�<�%����**�������**�<��&����7�.'*&��

�

4�6	�
5

�
�

N<�" ��7�.'*&��*6��%&'����N4����
5 N4��
5

@<!�76�@<!������&'���7�.'*&����
4�	6��5 <��)��3��>��8��1(��,�&��2��%���&'��*

�
4�6�5

��� 4��
5 4����
6��	5 4��
5 7�*������(����!��*$%%��&�(���@<!��%���&'��*#

�� � �� <��)��3��>��8��1(��,�&�<2��%���&'��*4�6�5
��� <��)��,�'�&��������%���&'��*
��� '���1���"��
����
�"�����6��%&'����

4���5
4�6	5 #

#

<��)��,�'�&��������%���&'��*��� 4���5

���
4��6�
5

#"�"��"���
����
�"�����

<��)��,�'�&��������%���&'��*
<��)��,�'�&��������%���&'��*

$�%&��'(������!�������"���
����
�"����

4���5
4�6	5

4���5

�

<��76�<��)���'�&���&�&$*�7�.'*&���

9����)�%���'�&���,�'�&��������%���&'��*4�6
5

@<!�7�.'�����.'*&��*�� 4�6�5

<7� �%�� <7, �%��

<@76�<��)��@�%��7�.'*&��
�� � ��

@<!@76�@<!�@�%��7�.'*&��

! �76�!�'�� ��7�.'*&��
�
�

�

!�" 76�!�"�@�%��7�.'*&���

����**���%���*�����%���&'��

'��	��
���)����
�����
������
����	
Q�'&������

?�&����'��-���'���������*'��*��(��7!��N

7���PQ�'&�7��������

 !�3:!:?@�@ =?��:� ?:����.'*&��*��	 4��
5 4�����	5 4��
5 #
<=?@:G@ �76�<��&�+&� ��7�.'*&����� � �� �
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxG-31

ARMv6 Differences
G.7.3 c0, ID support

ARMv6 implementations include a Main ID Register, see c0, Main ID Register (MIDR) on page B3-81. In
this register, the architecture variant field either takes the assigned ARMv6 value or indicates support for an
identification scheme based on a set of CPUID registers. The CPUID identification scheme is required in
ARMv7 and recommended for ARMv6, and is described in Chapter B5 The CPUID Identification Scheme.

Three other ID registers provide information about cache, TCM, and TLB provisions. From ARMv6K, there
is also a Multiprocessor Affinity Register.

All of the CP15 c0 ID registers are read-only registers, They are accessed using MRC instructions, as shown
in Table G-5.

The Cache Type Register is as defined for ARMv4 and ARMv5, see c0, Cache Type Register (CTR) on
page AppxH-35. In ARMv6, the CType values of 0b0110, and 0b0111 are reserved and must not be used.

Note
 The ARMv6 format of the Cache Type Register is significantly different from the ARMv7 implementation
described in c0, Cache Type Register (CTR) on page B3-83. However, the general properties described by
the register, and the access rights for the register, are unchanged.

The TCM Type Register is defined in c0, TCM Type Register (TCMTR) on page AppxG-33.

Table G-5 ID register support

Register CRn opc1 CRm opc2

MIDR, Main ID Register c0 0 c0 0

CTR, Cache Type ID Register c0 0 c0 1

TCMTR, TCM Type Register c0 0 c0 2

TLBTR, TLB Type Registera

a. VMSA processors only.

c0 0 c0 3

MPUIR, MPU Type Registerc c0 0 c0 4

MPIDR, Multiprocessor Affinity Registerb

b. ARMv6K processors with VMSA only.

c0 0 c0 5

Aliases of MIDR c0 0 c0 3c, 4a, 5d, 6, 7

c. PMSA processors only.
d. All ARMv6 processors except ARMv6K VMSA implementations.

CPUID registers, if implemented c0 0 c1 0-7

c0 0 c2 0-5
AppxG-32 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARMv6 Differences
The TLB Type ID Register and the Multiprocessor Affinity Register are as defined for ARMv7, see:

• c0, TLB Type ID Register (TLBTR)

• c0, Multiprocessor Affinity Register (MPIDR) on page B3-87.

The MPU Type Register is as defined for ARMv7, see c0, MPU Type Register (MPUIR) on page B4-36. In
an ARMv6 PMSA implementation, if the MPU is not implemented use of the default memory map is
optional.

c0, TCM Type Register (TCMTR)

The TCMTR must be implemented in ARMv6 and ARMv7. In ARMv7, the register can have a different
format from that given here, see c0, TCM Type Register (TCMTR) on page B3-85.

In ARMv7, TCM support is IMPLEMENTATION DEFINED. For ARMv6, see c9, TCM support on
page AppxG-46 and c9, TCM Non-Secure Access Control Registers, DTCM-NSACR and ITCM-NSACR on
page AppxG-51 where the Security Extensions are supported.

Bits [31:29] Set to 0b000 before ARMv7.

Bits [28:19,15:3]

Reserved.

DTCM, Bits [18:16] Indicate the number of Data TCMs implemented. This value lies in the range 0 to 4,
0b000 to 0b100. All other values are reserved.

ITCM, Bits [2:0] Indicate the number of Instruction or Unified TCMs implemented. This value lies
in the range 0 to 4, 0b000 to 0b100. All other values are reserved.

Instruction TCMs are accessible to both instruction and data sides.

c0, TLB Type ID Register (TLBTR)

In an ARMv6 VMSA implementation the TLB Type Register, TLBTR, is a read-only register that defines
whether the implementation provides separate instruction and data TLBs, or a unified TLB. It also defines
the number of lockable TLB entries. The ARMv7-A description of the register describes the general features
of the register and how to access it. See c0, TLB Type Register (TLBTR) on page B3-86. However, the
register format is different in ARMv6. The ARMv6 format of the TLBTR is:

Bits [31:24, 7:1] Reserved, UNK.

I_nlock, bits [23:16] Number of lockable entries in the instruction TLB. The value of this field gives the
number of lockable entries, between 0b00000000 for no lockable entries, and
0b11111111 for 255 lockable entries.

31 29 28 19 18 16 15 3 2 0

0 0 0 Reserved DTCM Reserved ITCM

31 24 23 16 15 8 7 1 0

Reserved I_nlock D_nlock Reserved nU
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxG-33

ARMv6 Differences
When nU == 0 this field is reserved, UNK.

D_nlock, bits [15:8] Number of lockable entries in the data TLB. The value of this field gives the number
of lockable entries, between 0b00000000 for no lockable entries, and 0b11111111
for 255 lockable entries.

nU, bit [0] Not Unified TLB. Indicates whether the implementation has a unified TLB:

nU == 0 Unified TLB.

nU == 1 Separate instruction and data TLBs.

G.7.4 c1, System control support

ARMv6 implements the same system control registers as ARMv7:

• for a VMSA implementation, see CP15 c1, System control registers on page B3-96

• for a PMSA implementation, see CP15 c1, System control registers on page B4-44.

c1, System Control Register (SCTLR)

This register is the primary system configuration register in CP15. It is defined differently for VMSA and
PMSA.

In a VMSAv6 implementation, the format of the SCTLR is:

In an ARMv6K VMSA implementation, the format of the SCTLR is:

Note
 Where the Security Extensions are implemented, some SCTLR bits are banked as described in c1, System
Control Register (SCTLR) on page B3-96.

�� �� ��� �� �� �	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� � 	 � � �

� � %.�/
 $ � � � � � ,������

$$#�

�

�(
((�%#�

+(

.�/ .�/ .�/

��
��

.�/

��

� � �

�� �� ��� �� �� �	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� � 	 � � �

� � %.�/
 $ � � � � � ,������

$$ �#�

�

�(
((

�%#�
�#(

+(

.�/
� � �

��+$(
�� ��
AppxG-34 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARMv6 Differences
In a PMSAv6 implementation, the format of the SCTLR is:

The differences from ARMv7 are:

• ARMv6 does not support the SCTLR.IE and SCTLR.BR, bits 31 and 17.

• ARMv7 does not support:

— The L2, L4, R, S, B, and W bits. These bits provide legacy support with ARMv4 and ARMv5.
See c1, System Control Register (SCTLR) on page AppxH-39 for their definition.

The B bit must also meet the requirements defined in Endian support on page AppxG-7.

— The U bit. This bit is always 1 in ARMv7. It selects the ARMv4 and ARMv5 or the ARMv6
and ARMv7 alignment model. For details see Alignment on page AppxG-6.

— The XP bit. This bit is always 1 in ARMv7. The bit selects the virtual memory support model
of ARMv6 and ARMv7 when SCTLR.XP = 1, and the legacy support for ARMv4 and ARMv5
when SCTLRR.XP = 0. For ARMv6 and ARMv7 support, see VMSAv6 translation table
format on page AppxG-26 and Chapter B3 Virtual Memory System Architecture (VMSA), and
for ARMv4 and ARMv5 support, see Legacy translation table format on page AppxG-25 and
Virtual memory support on page AppxH-21.

• The TE bit is defined for ARMv6T2 only. In ARMv6T2 it is the same as in ARMv7.

For the definition of bits supported in ARMv6 and ARMv7, see:

• c1, System Control Register (SCTLR) on page B3-96 for a VMSA implementation

• c1, System Control Register (SCTLR) on page B4-45 for a PMSA implementation.

G.7.5 c1, VMSA Security Extensions support

An ARMv6 implementation that includes the Security Extensions provides:

• the banking of bits in SCTLR, see c1, System Control Register (SCTLR) on page AppxG-34

• features that are include in an ARMv7 implementation of the Security Extensions, see:

— c1, Secure Configuration Register (SCR) on page B3-106

— c1, Secure Debug Enable Register (SDER) on page B3-108

— c1, Non-Secure Access Control Register (NSACR) on page B3-110

In addition, ARMv6 defines the following additional bits in the NSACR:

Bit [18], DMA DMA control register access for support in CP15 c11 in the Non-secure address space. For
more information, see c11, DMA support on page AppxG-54.

�� �� ��� �� �� �	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� � 	 � � �

� � %.�/
 .�/ .�/ � � � � ,������

$$#�

�

�(
((�%#�

+(

.�/ .�/ .�/

��

.�/

��

� � �

.�/
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxG-35

ARMv6 Differences
Bit [17], TL TLB Lockdown Register access for support in CP15 c10 in the Non-secure address space.
For information on TLB lockdown support in ARMv6 see c10, VMSA TLB lockdown
support on page AppxG-53.

Bit [16], CL Cache Lockdown Register access for support in CP15 c9 in the Non-secure address space.
For information on cache lockdown support in ARMv6 see c9, Cache lockdown support on
page AppxG-45.

In all cases:

• a value of 0 in the bit position specifies that the associated registers cannot be accessed in the
Non-secure address space

• a value of 1 in the bit position specifies that the associated registers can be accessed in the Secure and
Non-secure address spaces.

Support of these additional bits and more details on how DMA support for TCMs, TLB lockdown, and cache
lockdown are inhibited in the Non-secure address space is IMPLEMENTATION DEFINED.

G.7.6 c2 and c3, VMSA memory protection and control registers

ARMv6 and ARMv7 provide the same CP15 support:

• two Translation Table Base Registers, TTBR0 and TTBR1

• a Translation Table Base Control Register, TTBCR

• a Domain Access Control Register, DACR.

The translation table registers are defined in CP15 c2, Translation table support registers on page B3-113.

The Domain Access Control Register (DACR) is as defined in c3, Domain Access Control Register (DACR)
on page B3-119.

Note
 When the Security Extensions are implemented, these registers are Banked registers.

G.7.7 c5 and c6, VMSA memory system support

The support in ARMv6 is the same as ARMv7 with the following exceptions:

• Bit 12 of the data and instruction fault status registers is not defined in ARMv6. See c5, Data Fault
Status Register (DFSR) on page B3-121 and c5, Instruction Fault Status Register (IFSR) on
page B3-122.

• The Auxiliary Data Fault Status Register (ADFSR) and the Auxiliary Instruction Fault Status
Register (AIFSR) are not defined in ARMv6. See c5, Auxiliary Data and Instruction Fault Status
Registers (ADFSR and AIFSR) on page B3-123.

• The Access Flag faults shown in Table B3-11 on page B3-50 and Table B3-12 on page B3-51 are
only supported in ARMv6K.
AppxG-36 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARMv6 Differences
Note
 • Before ARMv7, the DFAR was called the Fault Address Register (FAR).

• If the Security Extensions are implemented, these registers are Banked registers.

• In ARMv6 variants other than ARMv6T2, the IFAR is optional.

G.7.8 c5 and c6, PMSA memory system support

The support in ARMv6 is the same as ARMv7 with the following exceptions:

• The SCTLR.BR bit, bit [17], is not supported in ARMv6, see c1, System Control Register (SCTLR)
on page B4-45.

• Bit 12 of the data and instruction fault status registers is not defined in ARMv6. See c5, Data Fault
Status Register (DFSR) on page B4-55 and c5, Instruction Fault Status Register (IFSR) on
page B4-56.

• The ADFSR and the AIFSR are not defined in ARMv6. See c5, Auxiliary Data and Instruction Fault
Status Registers (ADFSR and AIFSR) on page B4-56.

• Subregions are not supported. This means that DRSR[15:8] and IRSR[15:8] are not defined in
ARMv6. See c6, Data Region Size and Enable Register (DRSR) on page B4-62 and c6, Instruction
Region Size and Enable Register (IRSR) on page B4-63.

Note
 • Before ARMv7, the DFAR was called the Fault Address Register (FAR).

• In ARMv6 variants other than ARMv6T2, the IFAR is optional.

G.7.9 c6, Watchpoint Fault Address Register (DBGWFAR)

From v6.1 of the Debug architecture, this register is also implemented as DBGWFAR in CP14, and the use
of CP15 DBGWFAR is deprecated.

In an ARMv6 implementation that includes the Security Extensions, CP15 DBGWFAR is a Secure register,
and can be accessed only from Secure privileged modes. For more information, see Restricted access CP15
registers on page B3-73.

For more information about this register see Effects of debug exceptions on CP15 registers and the
DBGWFAR on page C4-4 and Effect of entering Debug state on CP15 registers and the DBGWFAR on
page C5-4.

Table G-6 Debug fault address support

Register CRn opc1 CRm opc2

Watchpoint Fault Address Register, DBGWFAR c6 0 c0 1
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxG-37

ARMv6 Differences
G.7.10 c7, Cache operations

Table G-7 shows the cache operations defined for ARMv6. They are performed as MCR instructions and only
operate on a level 1 cache associated with a specific processor. The equivalent operations in ARMv7 operate
on multiple levels of cache. See CP15 c7, Cache maintenance and other functions on page B3-126. For a
list of required operations in ARMv6, see Cache support on page AppxG-21. Support of additional
operations is IMPLEMENTATION DEFINED.

Table G-7 Cache operation support

Operation CRn opc1 CRm opc2

Invalidate instruction cachea c7 0 c5 0

Invalidate instruction cache line by MVAa c7 0 c5 1

Invalidate instruction cache line by set/way c7 0 c5 2

Flush entire branch predictor arraya c7 0 c5 6

Flush branch predictor array entry by MVA a c7 0 c5 7

Invalidate data cache c7 0 c6 0

Invalidate data cache line by MVAa c7 0 c6 1

Invalidate data cache line by set/waya c7 0 c6 2

Invalidate unified cache, or instruction cache and data cache c7 0 c7 0

Invalidate unified cache line by MVA c7 0 c7 1

Invalidate unified cache line by set/way c7 0 c7 2

Clean data cache c7 0 c10 0

Clean data cache line by MVAa c7 0 c10 1

Clean data cache line by set/waya c7 0 c10 2

Test and Clean data cacheb c7 0 c10 3

Cache Dirty Status Registerc c7 0 c10 6

Clean entire unified cache c7 0 c11 0

Clean unified cache line by MVAa c7 0 c11 1

Clean unified cache line by set/way c7 0 c11 2

Prefetch instruction cache line by MVAd c7 0 c13 1
AppxG-38 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARMv6 Differences
c7, Cache Dirty Status Register (CDSR)

The Cache Dirty Status Register, CDSR, indicates whether the data or unified cache has been written to
since the last successful cache clean. For more information, see Cleaning and invalidating operations for
the entire data cache on page AppxG-40.

The Cache Dirty Status Register is:

• a 32-bit read-only register

• accessible only in privileged modes

• when the Security Extensions are implemented, a Banked register.

The format of the Cache Dirty Status Register is:

Bits [31:1] Reserved, UNK/SBZP.

C, bit [0] Cache Dirty Status. The meaning of this bit is:

0 Cache clean. No write has hit the cache since the last cache clean or reset
successfully cleaned the cache.

1 The cache might contain dirty data.

Clean and Invalidate data cache c7 0 c14 0

Clean and Invalidate data cache line by MVAa c7 0 c14 1

Clean and Invalidate data cache line by set/waya c7 0 c14 2

Test and Clean and Invalidate data cacheb c7 0 c14 3

Clean and Invalidate unified cache line by MVA c7 0 c15 1

Clean and Invalidate unified cache line by set/way c7 0 c15 2

a. These are the only cache operations available in ARMv7. The corresponding ARMv7 operations
are multi-level operations, and the data cache operations are defined as data or unified cache
operations.

b. For more information about these cache operations see Test and clean operations on
page AppxH-50.

c. Used with the Clean or Clean and Invalidate entire data cache and entire unified cache operations.
d. VMSA implementations only, used with TLB lockdown. See The TLB lock by entry model on

page AppxH-60.

31 1 0

Reserved C

Table G-7 Cache operation support (continued)

Operation CRn opc1 CRm opc2
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxG-39

ARMv6 Differences
Accessing the Cache Dirty Status Register

To access the Cache Dirty Status Register you read the CP15 registers with <opc1> set to 0, <CRn> set to c7,
<CRm> set to c10, and <opc2> set to 6. For example:

MRC p15, 0, <Rt>, c7, c10, 6

Cleaning and invalidating operations for the entire data cache

The CP15 c7 encodings include operations for cleaning the entire data cache, and for performing a clean
and invalidate of the entire data cache. If these operations are interrupted, the LR value that is captured on
the interrupt is (address of instruction that launched the cache operation + 4). This permits the standard
return mechanism for interrupts to restart the operation.

If a particular operation requires that the cache is clean, or clean and invalid, then it is essential that the
sequence of instructions for cleaning or cleaning and invalidating the cache can cope with the arrival of an
interrupt at any time when interrupts are not disabled. This is because interrupts might write to a previously
cleaned cache block. For this reason, the Cache Dirty Status Register indicates whether the cache has been
written to since the last successful cache clean.

You can interrogate the Cache Dirty Status Register to determine whether the cache is clean, and if you do
this while interrupts are disabled, a subsequent operation can rely on having a clean cache. The following
sequence illustrates this approach.

; The following code assumes interrupts are enabled at this point.
Loop1
 MOV R1, #0
 MCR p15, 0, R1, c7, c10, 0 ; Clean data cache. For Clean and Invalidate,
 ; use MCR p15, 0, R1, c7, c14, 0 instead
 MRS R2, CPSR ; Save PSR context
 CPSID iaf ; Disable interrupts
 MRC p15, 0, R1, c7, c10, 6 ; Read Cache Dirty Status Register
 TST R1, #1 ; Check if it is clean
 BEQ UseClean
 MSR CPSR_xc, R2 ; Re-enable interrupts
 B Loop1 ; Clean the cache again
UseClean
 Do_Clean_Operations ; Perform whatever operation relies on
 ; the cache being clean or clean & invalid.
 ; To reduce impact on interrupt latency,
 ; this sequence should be short.
 MCR p15, 0, R1, c7, c6, 0 ; Optional. Can use this Invalidate all command
 ; to invalidate a Clean loop.
 MSR CPSR_xc, R2 ; Re-enable interrupts

Note
 The long cache clean operation is performed with interrupts enabled throughout this routine.
AppxG-40 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARMv6 Differences
Block transfer operations

ARMv7 does not support CP15 register block transfer operations, and they are optional in ARMv6.
Table G-8 summarizes block transfer operations. Permitted combinations of the block transfer operations
are:

• all four operations

• clean, clean and invalidate, and invalidate operations

• none of the operations.

If an operation is not implemented, then it must cause an Undefined Instruction exception.

An MCRR instruction starts each of the range operations. The data of the two registers specifies the Block start
address and the Block end address. All block operations are performed on the cachelines that include the
range of addresses between the Block start address and Block end address inclusive. If the Block start
address is greater than the Block end address the effect is UNPREDICTABLE.

ARMv6 supports only one block transfer at a time. Attempting to start a second block transfer while a block
transfer is in progress causes the first block transfer to be abandoned and starts the second block transfer.
The Block Transfer Status Register indicates whether a block transfer is in progress. The register can be
polled before starting a block transfer, to ensure any previous block transfer operation has completed.

All block transfers are interruptible. When blocking transfers are interrupted, the LR value that is captured
is (address of instruction that launched the block operation + 4). This enables the standard return mechanism
for interrupts to restart the operation.

For performance reasons, ARM recommends that implementations permit the following instructions to be
executed while a non-blocking prefetch range instruction is being executed. In such an implementation, the
LR value captured on an interrupt is determined by the instruction set state presented to the interrupt in the
following instruction stream. However, implementations that treat a prefetch range instruction as a blocking
operation must capture the LR value as described in the previous paragraph.

If the FCSE PID is changed while a prefetch range operation is running, it is UNPREDICTABLE at which point
this change is seen by the prefetch range. For information about changing the FCSE PID see c13, FCSE
Process ID Register (FCSEIDR) on page B3-152.

Table G-8 Block transfer operations

Operation Blockinga or
non-blocking

a. See Blocking and non-blocking behavior on page AppxG-42

Instruction or
data

User or
privileged

Exception
Behavior

Prefetch range Non-blocking Instruction or data User or privileged None

Clean range Blocking Data only User or privileged Data Abort

Clean and Invalidate range Blocking Data only Privileged Data Abort

Invalidate range Blocking Instruction or data Privileged Data Abort
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxG-41

ARMv6 Differences
Blocking and non-blocking behavior

The cache block transfer operations for cleaning, invalidating, or clean and invalidating a range of addresses
from the cache are blocking operations. Following instructions must not be executed until the block transfer
operation has completed. The prefetch range operation is non-blocking and can permit following
instructions to be executed before the operation is complete. If an exception occurs a non-blocking operation
does not signal an exception to the processor. This enables implementations to retire following instructions
while the non-blocking operation is executing, without the requirement to retain precise processor state.

The blocking operations generate a Data Abort exception on a Translation fault if a valid translation table
entry cannot be fetched. The DFAR indicates the address that caused the fault, and the DFSR indicates the
reason for the fault.

Any fault on a prefetch range operation results in the operation failing without signaling an error.

Register encodings

Table G-9 shows the block operations supported using CP15. The operations are performed using an MCRR
instruction. See MCRR, MCRR2 on page A8-188.

The instruction format for block operations is:

MCRR p15, <Opc>, <Rt>, <Rn>, <CRm>

Note
 The ARMv6 MCRR encodings that support block operations are UNDEFINED in ARMv7.

Table G-9 Enhanced cache control operations using MCRR

CRm Opc Function Rn Data, VA a

a. The true virtual address, before any modification by the FCSE. See Appendix E Fast Context Switch
Extension (FCSE). This address is translated by the FCSE logic.

Rt Data, VA a

c5 0 Invalidate instruction cache range b

b. Accessible only in privileged modes. Results in an UNDEFINED instruction exception if the operation is
attempted in user mode.

Start address End address

c6 0 Invalidate data cache range b Start address End address

c12 0 Clean data cache range c

c. Accessible in both unprivileged and privileged modes.

Start address End address

c12 1 Prefetch instruction range c Start address End address

c12 2 Prefetch data range c Start address End address

c14 0 Clean and invalidate data cache range b Start address End address
AppxG-42 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARMv6 Differences
The range operations operate on cache lines. The first cache line operated on is the line that contains the
start address. The operation is then applied to every cache line up to and including the line that contains the
end address.

The format of the start address and end address data values passed by the MCRR instructions is:

Start address Virtual Address bits [31:L]
The first virtual address of the block transfer.

End address Virtual Address bits [31:L]

The virtual address at which the block transfer stops. This address is at
the start of the line containing the last address to be handled by the block
transfer.

L is Log2(LINELEN), where LINELEN is the cache line length parameter. Because the least significant
address bits are ignored, the transfer automatically adjusts to a line length multiple spanning the
programmed addresses.

Note
 The block operations use virtual addresses, not modified virtual addresses. All other address-based cache
operations use MVAs.

CP15 c7 operations for block transfer management

Two CP15 c7 operations support block transfer management. These operations must be implemented when
the block transfer operations are implemented:

StopPrefetchRange MCR p15, 0, <Rt>, c7, c12, 5; Write-only, <Rt> Should-Be-Zero

PrefetchStatus MRC p15, 0, <Rt>, c7, c12, 4; Read Block Transfer Status Register

Both operations are accessible in unprivileged and privileged modes. Because all block operations are
mutually exclusive, that is, only one operation can be active at any time, the PrefetchStatus operation returns
the status of the last issued Prefetch request, instruction, or data. This status is held in the Block Transfer
Status Register.

c7, Block Transfer Status Register

The Block Transfer Status Register indicates whether a block transfer is in progress.

The format of the Block Transfer Status Register is:

Bits [31:1] Reserved.

31 L L-1 0

Virtual address Ignored

31 1 0

UNK R
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxG-43

ARMv6 Differences
R, bit [0] Block Prefetch Running

0 No prefetch in operation

1 Prefetch in operation.

G.7.11 c7, Miscellaneous functions

The Wait For Interrupt operation is used in some implementations as part of a power management support
scheme. The operation is deprecated in ARMv6 and not supported in ARMv7, where it behaves as a NOP
instruction.

Barrier operations are used for system correctness to ensure visibility of memory accesses to other agents
in a system. Barrier functionality was formally defined as part of the memory architecture enhancements
introduced in ARMv6. The definitions are the same as for ARMv7. For details see Memory barriers on
page A3-47.

Table G-10 summarizes the MCR instruction encoding details.

G.7.12 c7, VMSA virtual to physical address translation support

If the Security Extensions are implemented in ARMv6K, virtual to physical address translation support is
provided as described in CP15 c7, Virtual Address to Physical Address translation operations on
page B3-130.

G.7.13 c8, VMSA TLB support

CP15 TLB operation provision in ARMv6 is the same as for ARMv7-A. For details see TLB maintenance
on page B3-56 and CP15 c8, TLB maintenance operations on page B3-138.

Table G-10 memory barrier register support

Operation CRn opc1 CRm opc2

Wait For Interrupt (CP15WFI) c7 0 c0 4

Instruction Synchronization Barrier (CP15ISB)a

a. This operation was previously known as Prefetch Flush (PF or PFF).

c7 0 c5 4

Data Synchronization Barrier (CP15DSB)b

b. This operation was previously known as Data Write Barrier or Drain Write Buffer (DWB).

c7 0 c10 4

Data Memory Barrier (CP15DMB) c7 0 c10 5
AppxG-44 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARMv6 Differences
G.7.14 c9, Cache lockdown support

One problem with caches is that although they normally improve average access time to data and
instructions, they usually increase the worst-case access time. This occurs for a number of reasons,
including:

• There is a delay before the system determines that a cache miss has occurred and starts the main
memory access.

• If a Write-Back cache is being used, there might be an extra delay because of the requirement to store
the contents of the cache line that is being reallocated.

• A whole cache line is loaded from main memory, not only the data requested by the ARM processor.

In real-time applications, this increase in the worst-case access time can be significant.

Cache lockdown is an optional feature designed to alleviate this. It enables critical code and data, for
example high priority interrupt routines and the data they access, to be loaded into the cache in such a way
that the cache lines containing them are not subsequently reallocated. This ensures that all subsequent
accesses to the code and data concerned are cache hits and therefore complete as quickly as possible.

From ARMv7, cache lockdown is IMPLEMENTATION DEFINED with no recommended formats or
mechanisms on how it is achieved other than reserved CP15 register space. See Cache lockdown on
page B2-8 and CP15 c9, Cache and TCM lockdown registers and performance monitors on page B3-141.

ARMv4 and ARMv5 specify four formats for the cache lockdown mechanism, known as Format A, Format
B, Format C, and Format D. The Cache Type Register contains information on the lockdown mechanism
adopted. See c0, Cache Type Register (CTR) on page AppxH-35. Formats A, B, and C all operate on cache
ways. Format D is a cache entry locking mechanism.

ARMv6 cache lockdown support must comply with Format C or Format D. For more information, see c9,
cache lockdown support on page AppxH-52.

Note
 A Format D implementation must use the CP15 lockdown operations with the CRm == {c5,c6} encodings,
and not the alternative encodings with CRm == {c1,c2}.

Interaction with CP15 c7 operations

Cache lockdown only prevents the normal replacement strategy used on cache misses from choosing to
reallocate cache lines in the locked-down region. CP15 c7 operations that invalidate, clean, or clean and
invalidate cache contents affect locked-down cache lines as normal. If invalidate operations are used, you
must ensure that they do not use virtual addresses or cache set/way combinations that affect the locked-down
cache lines. Otherwise, if it is difficult to avoid affecting the locked-down cache lines, repeat the cache
lockdown procedure afterwards.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxG-45

ARMv6 Differences
G.7.15 c9, TCM support

In ARMv7, CP15 c9 encodings with CRm == {c0-c2,c5-c8} are reserved for IMPLEMENTATION DEFINED
branch predictor, cache, and TCM operations. In ARMv6, the TCM Type Register can determine the TCM
support the processor provides. See c0, TCM Type Register (TCMTR) on page AppxG-33. Table G-11
summarizes the additional register support for TCMs in ARMv6.

Each implemented TCM has its own Region register that is banked onto either the Data TCM Region
Register or the Instruction or unified TCM Region Register. The TCM Selection Register supplies the index
for region register access.

Changing the TCM Region Register while a prefetch range or DMA operation is running has
UNPREDICTABLE effects.

c9, TCM Selection Register (TCMSR)

The TCM Selection Register selects the current TCM Region Registers. Where separate data and instruction
TCMs are implemented, the value in the TCM Selection Register defined the current region for accesses to
both the Data TCM Region Register and the Instruction TCM Region Register, see Table G-11.

The TCM Selection Register is:

• a 32-bit read/write register

• accessible only in privileged modes

• when the Security Extensions are implemented, a Banked register.

The format of the TCM Selection Register is:

Bits [31:2] Reserved, UNK/SBZP.

TCM, bits [1:0]

TCM number, the index used to access a region register. TCM region registers can be
accessed to read or change the details of the selected TCM.

This value resets to 0.

If this field is written with a value greater than or equal to the maximum number of
implemented TCMs then the write is ignored.

Table G-11 TCM register support

Instruction TCM Register

MRC|MCR p15, 0, <Rt>, c9, c1, 0 Data TCM Region Register, DTCMRR

MRC|MCR p15, 0, <Rt>, c9, c1, 1 Instruction or unified TCM Region Register, ITCMRR

MRC|MCR p15, 0, <Rt>, c9, c2, 0 TCM Selection Register, TCMSR

31 2 1 0

Reserved TCM
AppxG-46 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARMv6 Differences
c9, TCM Region Registers (DTCMRR and ITCMRR)

The TCM Region Registers provide control and configuration information for each TCM region.

Each TCM Region Register is:

• A 32-bit read/write register with some bits that are read-only.

• Accessible only in privileged modes.

• When the Security Extensions are implemented, a Configurable access register with Non-secure
access controlled by the DTCM-NSACR. See c9, TCM Non-Secure Access Control Registers,
DTCM-NSACR and ITCM-NSACR on page AppxG-51.

• Accessed by reading or writing the CP15 registers with <opc1> set to 0, <CRn> set to c9, <CRm> set to
c1, and <opc2> set to:

— 0 for the current Data TCM Region Register

— 1 for the current Instruction or unified Region Register.

For example:

MRC p15,0,<Rt>,c9,c1,0 ; Read current Data TCM Region Register
MCR p15,0,<Rt>,c9,c1,0 ; Write current Data TCM Region Register
MRC p15,0,<Rt>,c9,c1,1 ; Read current Instruction or unified TCM Region Register
MCR p15,0,<Rt>,c9,c1,1 ; Write current Instruction or unified TCM Region Register

The format of the TCM region registers is:

BaseAddress, bits [31:12]

The base address of the TCM, given as the physical address of the TCM in the memory map.
BaseAddress is assumed to be aligned to the size of the TCM. Any address bits in the range
[(log2(RAMSize)-1):12] are ignored.

BaseAddress is 0 at reset.

Bits [11:7] Reserved

Size, bits [6:2]

Indicates the size of the TCM. See Table G-12 on page AppxG-48 for encoding of this field.

This field is read-only and ignores writes.

En, bit [0] TCM enable bit:

En == 0 Disabled. This is the reset value.

En == 1 Enabled.

31 12 11 7 6 2 1 0

BaseAddress Reserved Size (0) En
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxG-47

ARMv6 Differences
Note
 Bit [1] was defined as a SmartCache enable bit in the previous version of the ARM architecture. SmartCache
is now considered to be IMPLEMENTATION DEFINED and not documented in this manual.

Table G-12 shows the encoding of the Size field in the TCM Region Registers:

Table G-12 TCM size field encoding

Size field Memory size

0b00000 0KByte

0b00001, 0b00010 Reserved

0b00011 4KByte

0b00100 8KByte

0b00101 16KByte

0b00110 32KByte

0b00111 64KByte

0b01000 128KByte

0b01001 256KByte

0b01010 512KByte

0b01011 1MByte

0b01100 2MByte

0b01101 4MByte

0b01110 8MByte

0b01111 16MByte

0b10000 32MByte

0b10001 64MByte

0b10010 128MByte

0b10011 256MByte

0b10100 512MByte

0b10101 1GByte
AppxG-48 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARMv6 Differences
An attempt to access a TCM region that is not implemented is UNPREDICTABLE. This can occur if the number
of data and instruction TCMs supported is not the same.

The base address of each TCM must be different, and chosen so that no location in memory is contained in
more than one TCM. If a location in memory is contained in more than one TCM, it is UNPREDICTABLE
which memory location the instruction or data is returned from. Implementations must ensure that this
situation cannot result in physical damage to the TCM.

G.7.16 c9, VMSA support for the Security Extensions

ARMv6K with VMSA support and the Security Extensions provides the following CP15 c9 support in
addition to that defined for the Security Extensions in ARMv7-A:

• a Cache Behavior Override Register, CBOR

• where instruction TCM support is implemented, an ITCM Non-secure Access Control Register,
ITCM_NSAC

• where data TCM support is implemented, a DTCM Non-secure Access Control Register,
DTCM_NSAC.

c9, Cache Behavior Override Register (CBOR)

The Cache Behavior Override Register, CBOR, overrides some aspects of the normal cache behavior.
Typically, these overrides are used for system debugging.

Note
 Architecturally, the CBOR is defined only as part of the Security Extensions in ARMv6. It is
IMPLEMENTATION DEFINED whether an ARMv7-A implementation includes the CBOR. An implementation
that does not include the Security Extensions might implement the CBOR, but can implement only bits [2:0]
of the register.

The CBOR is:

• a 32-bit read/write register

• accessible only in privileged modes

0b10110 2GByte

0b10111 4GByte

0b11xxx Reserved

Table G-12 TCM size field encoding (continued)

Size field Memory size
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxG-49

ARMv6 Differences
• when the Security Extensions are implemented, a Common register, with some bits that can be
accessed only in Secure state.

The format of the CBOR is:

The CBOR resets to 0x00000000.

Register bits [5:3] are accessible only in Secure state. In Non-secure state they are RAZ/WI.

Bits [31:6] Reserved. UNK/SBZP.

S_WT, bit [5] Secure Write-Through. Controls whether Write-Through is forced for regions marked as
Secure and Write-Back. The possible values of this bit are:

0 Do not force Write-Through. This corresponds to normal cache operation.

1 Force Write-Through for regions marked as Secure and Write-Back.

S_IL, bit [4] Secure instruction cache linefill. Can be used to disable instruction cache linefill for Secure
regions. The possible values of this bit are:

0 Instruction cache linefill enabled. This corresponds to normal cache operation.

1 Instruction cache linefill disabled for regions marked as Secure.

S_DL, bit [3] Secure data cache linefill. Can be used to disable data cache linefill for Secure regions. The
possible values of this bit are:

0 Data cache linefill enabled. This corresponds to normal cache operation.

1 Data cache linefill disabled for regions marked as Secure.

NS_WT, bit [2]

Non-secure Write-Through. Controls whether Write-Through is forced for regions marked
as Non-secure and Write-Back. The possible values of this bit are:

0 Do not force Write-Through. This corresponds to normal cache operation.

1 Force Write-Through for regions marked as Non-secure and Write-Back.

NS_IL, bit [1] Non-secure instruction cache linefill. Can be used to disable instruction cache linefill for
Non-secure regions. The possible values of this bit are:

0 Instruction cache linefill enabled. This corresponds to normal cache operation.

1 Instruction cache linefill disabled for regions marked as Non-secure.

�� � �

������

�F,+

 �

�F��
�F"�

��F,+
��F��
��F"�

�� 	
AppxG-50 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARMv6 Differences
NS_DL, bit [0]

Non-secure data cache linefill. Can be used to disable data cache linefill for Non-secure
regions. The possible values of this bit are:

0 Data cache linefill enabled. This corresponds to normal cache operation.

1 Data cache linefill disabled for regions marked as Non-secure.

It might be necessary to ensure that cache contents are not changed, for example when debugging or when
processing an interruptible cache operation. The CBOR provides this option.

For example, Clean All, and Clean and Invalidate All operations in Non-secure state might not prevent fast
interrupts to the Secure side if the FW bit in the SCR is set to 0. In this case, operations in the Secure state
can read or write Non-secure locations in the cache. Such operations might cause the cache to contain valid
or dirty Non-secure entries after the Non-secure Clean All and Clean and Invalidate All operation has
completed. To prevent this problem, the Secure state must be:

• prevented from allocating Non-secure entries into the cache by disabling Non-secure linefill

• made to treat all writes to Non-secure regions that hit in the cache as being write-though by forcing
Non-secure Write-Through.

The CBOR provides separate controls for Secure and Non-secure memory regions, and can be used to
prevent cache linefill, or to force Write-Through operation, while leaving the caches enabled. The controls
for Secure memory regions can be accessed only when the processor is in the Secure state.

Accessing the CBOR

To access the CBOR you read or write the CP15 registers with <opc1> set to 0, <CRn> set to c9, <CRm> set to
c8, and <opc2> set to 0. For example:

MRC p15, 0, <Rt>, c9, c8, 0 ; Read CP15 Cache Behavior Override Register
MCR p15, 0, <Rt>, c9, c8, 0 ; Write CP15 Cache Behavior Override Register

c9, TCM Non-Secure Access Control Registers, DTCM-NSACR and ITCM-NSACR

The Data TCM Non-Secure Access Control Register (DTCM-NSACR) defines the accessibility of the Data
TCM Region Register when the processor is in Non-secure state.

The Instruction TCM Non-Secure Access Control Register (ITCM-NSACR) defines the accessibility of the
current Instruction or Unified TCM Region Register when the processor is in Non-secure state.

For information on TCM support, see Tightly Coupled Memory (TCM) support on page AppxG-23.

The TCM-NSACR registers are:

• 32-bit read/write registers

• accessible only in privileged modes

• implemented only in a VMSAv6 implementation that includes the Security Extensions

• Secure registers, see Restricted access CP15 registers on page B3-73.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxG-51

ARMv6 Differences
The format of a TCM-NSACR register is:

Bits [31:1] Reserved, UNK/SBZP.

NS_access, bit [0]

Non-secure access. Defines the accessibility of the corresponding current TCM Region
Register from the Non-secure state. The possible values of this bit are:

0 The corresponding TCM Region Register is accessible only in Secure privileged
modes.

The information stored in the corresponding TCM is Secure, and the TCM is
visible only if the processor is in the Secure state and the translation table is
marked as Secure.

1 The corresponding TCM Region Register is accessible in privileged modes in
both Secure and Non-secure state.

The information stored in the corresponding TCM is Non-secure. The TCM is
visible in the Non-secure state. It is visible in the Secure state only if the
translation table is marked correctly as Non-secure.

The value of the TCM-NSACR.NS_access bit and the processor security state determine whether the TCM
is visible. The value of the NS bit for the translation table entry determines what data is visible in the TCM.
Table G-13 shows when the TCM is visible, and what data is visible.

Table G-13 Visibility of TCM and TCM data

Processor
security state

TCM-NSACR
NS_access bit

Translation table
NS value

TCM visibility Data visible

Secure 0 0 Visible Secure

Secure 0 1 Not visible -

Secure 1 0 Not visible -

Secure 1 1 Visible Non-secure

Non-secure 0 x Not visible -

Non-secure 1 x Visible Non-secure

�� ��

$�8��)��

��F499�88
AppxG-52 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARMv6 Differences
Table G-14 shows when the TCM Region Register can be accessed, permitting control of the TCM.

Accessing the TCM-NSACR registers

To access the TCM-NSACR registers you read or write the CP15 registers with <opc1> set to 0, <CRn> set to
c9, <CRm> set to c1, and <opc2> set to:

• 2 to access the DTCM-NSACR register

• 3 to access the ITCM-NSACR register.

For example

MRC p15,0,<Rt>,c9,c1,2 ; Read CP15 Data TCM Non-secure Access Control Register
MCR p15,0,<Rt>,c9,c1,2 ; Write CP15 Data TCM Non-secure Access Control Register
MRC p15,0,<Rt>,c9,c1,3 ; Read CP15 Instruction TCM Non-secure Access Control Register
MCR p15,0,<Rt>,c9,c1,3 ; Write CP15 Instruction TCM Non-secure Access Control Register

G.7.17 c10, VMSA memory remapping support

ARMv7-A memory remapping is supported from ARMv6K with the addition of the SCTLR.TRE enable
bit and two registers:

• the c10, Primary Region Remap Register (PRRR) on page B3-143

• the c10, Normal Memory Remap Register (NMRR) on page B3-146.

G.7.18 c10, VMSA TLB lockdown support

TLB lockdown is an optional feature that enables the results of specified translation table walks to be loaded
into the TLB, in such a way that they are not overwritten by the results of subsequent translation table walks.

Translation table walks can take a long time, especially as they involve potentially slow main memory
accesses. In real-time interrupt handlers, translation table walks caused by the TLB not containing
translations for the handler or the data it accesses can increase interrupt latency significantly.

Two basic lockdown models are supported:

• a TLB lock by entry model

• a translate and lock model introduced as an alternative model in ARMv5TE.

From ARMv7-A, TLB lockdown is IMPLEMENTATION DEFINED with no recommended formats or
mechanisms on how it is achieved other than reserved CP15 register space. See TLB lockdown on
page B3-56 and CP15 c10, Memory remapping and TLB control registers on page B3-142.

Table G-14 Accessibility of TCM Region Register

Processor security state TCM-NSACR NS_access bit TCM Region Register access

Secure x In privileged modes only

Non-secure 0 No access

Non-secure 1 In privileged modes only
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxG-53

ARMv6 Differences
For ARMv6, TLB lockdown must comply with one of the lockdown models described in c10, VMSA TLB
lockdown support on page AppxH-59.

G.7.19 c11, DMA support

The ARMv6 DMA support for TCMs described in The ARM Architecture Reference Manual (DDI 0100) is
considered IMPLEMENTATION DEFINED and not included in this manual. ARMv6 is therefore the same as
ARMv7. See CP15 c11, Reserved for TCM DMA registers on page B3-147.

G.7.20 c12, VMSA support for the Security Extensions

CP15 c12 support for the Security Extensions in ARMv6 is the same as in ARMv7:

• the Vector Base Address Register, VBAR

• the Monitor Base Address Register, MVBAR

• the Interrupt Status Register, ISR.

For details see CP15 c12, Security Extensions registers on page B3-148.

G.7.21 c13, Context ID support

Both PMSAv6 and VMSAv6 require the CONTEXTIDR described in:

• c13, Context ID Register (CONTEXTIDR) on page B3-153, for a VMSA implementation

• c13, Context ID Register (CONTEXTIDR) on page B4-76, for a PMSA implementation.

In addition:

• A VMSAv6 implementation requires the FCSEIDR, described in c13, FCSE Process ID Register
(FCSEIDR) on page B3-152. In ARMv6 the FCSE must be implemented. For more information, see
Appendix E Fast Context Switch Extension (FCSE).

• An ARMv6K implementation requires the Software Thread ID registers described in CP15 c13
Software Thread ID registers on page B3-154.

Note
 In ARMv6, after any change to the CONTEXTIDR or FCSEIDR, software must use the CP15 branch
predictor maintenance operations to flush the virtual addresses affected by the change. If the branch
predictor is not invalidated in this way, attempting to execute an old branch might cause UNPREDICTABLE
behavior. ARMv7 does not require branch predictors to be invalidated after a change to the CONTEXTIDR
or FCSEIDR.

G.7.22 c15, IMPLEMENTATION DEFINED

As in ARMv7, CP15 c15 is reserved for IMPLEMENTATION DEFINED use. Typically, it is used for
processor-specific runtime and test features.
AppxG-54 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Appendix H
ARMv4 and ARMv5 Differences

This appendix describes how the ARMv4 and ARMv5 architectures differ from the ARMv6 and ARMv7
architectures. It contains the following sections:

• Introduction to ARMv4 and ARMv5 on page AppxH-2

• Application level register support on page AppxH-4

• Application level memory support on page AppxH-6

• Instruction set support on page AppxH-11

• System level register support on page AppxH-18

• System level memory model on page AppxH-21

• System Control coprocessor (CP15) support on page AppxH-31.

Note
 In this appendix, the description ARMvN refers to all architecture variants of ARM architecture vN. For
example, ARMv4 refers to all architecture variants of ARMv4, including ARMv4 and ARMv4T.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxH-1

ARMv4 and ARMv5 Differences
H.1 Introduction to ARMv4 and ARMv5

ARMv4 and ARMv5 defined the instruction set support and the programmers’ model that applies to the
general-purpose registers and the associated exception model. These architecture versions are fully
described in the ARM Architecture Reference Manual (DDI 0100).

Note
 This appendix is a summary of the ARMv4 and ARMv5 architecture variants. It is expected that the majority
of requirements for architecture information on ARMv4 and ARMv5 are satisfied by this appendix and the
rest of this manual. However the ARM Architecture Reference Manual (DDI 0100) might be required for
more information specific to ARMv4 or ARMv5.

Memory support is IMPLEMENTATION DEFINED in ARMv4 and ARMv5. In practice, use of CP15 to support
the Virtual Memory System Architecture (VMSA) or Protected Memory System Architecture (PMSA) is
standard in ARMv4 and ARMv5 implementations, but this is not an architectural requirement. For this
reason, the datasheet or Technical Reference Manual for a particular ARM processor is the definitive source
for its memory and system control facilities. This appendix does not specify absolute requirements on the
functionality of CP15 or other memory system components. Instead, it contains guidelines designed to
maximize compatibility with current and future ARM software.

This appendix concentrates on the features supported in ARMv4 and ARMv5, highlighting:

• features common across all architecture variants

• features supported for legacy reasons in ARMv6, but not in ARMv7

• features unique to the ARMv4 and ARMv5 variants.

H.1.1 Debug

Debug is not architecturally-defined in ARMv4 or ARMv5. ARM implementations have traditionally
supported halting debug through a JTAG port. While the support of debug features is similar across ARM
implementations, the timing and control sequencing required for access varies. Debug support in ARMv4
and ARMv5 is microarchitecture dependent and so in architectural terms is IMPLEMENTATION DEFINED.

H.1.2 ARMv6 and ARMv7

The ARM architecture was extended considerably in ARMv6. This means that a large proportion of this
manual does not apply to earlier architecture variants and can be ignored with respect to ARMv4 and
ARMv5.

The key changes in ARMv6:

• add:

— the ARM SIMD instructions to improve execution of multimedia and other DSP applications

— instructions for improved context switching.
AppxH-2 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARMv4 and ARMv5 Differences
• introduce:

— a formal memory model, including level 1 cache support and revisions to alignment and endian
support

— a requirement to provide either a VMSA or a PMSA for memory management

— a formal debug model

— a requirement to support the CP15 System Control coprocessor

— enhanced kernel support, in ARMv6K

— the optional Security Extensions

— 32-bit Thumb instructions, in ARMv6T2.

For information about the changes between ARMv6 and ARMv7 see Appendix G ARMv6 Differences.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxH-3

ARMv4 and ARMv5 Differences
H.2 Application level register support

The ARMv4 and ARMv5 core registers are the same as ARMv7. For more information, see ARM core
registers on page A2-11. The following sections give more information about ARMv4 and ARMv5
application level register support:

• APSR support

• Instruction set state.

H.2.1 APSR support

Program status is reported in the 32-bit Application Program Status Register (APSR). The format of the
APSR is:

For details of the bit definitions, see The Application Program Status Register (APSR) on page A2-14. In
the APSR descriptions:

• the GE[3:0] field is only defined from ARMv6, and is reserved in ARMv4 and ARMv5

• the Q bit is only defined from ARMv5TE, and is RAZ/WI in ARMv4, ARMv4T and ARMv5T.

Earlier versions of this manual do not use the term APSR. They refer to the APSR as the CPSR with the
restriction on reserved fields governed by whether the register access was privileged.

H.2.2 Instruction set state

The instruction set states available in ARMv4 and ARMv5 are a subset of the states supported in ARMv7.
All implementations support the ARM instruction set that executes in ARM state. All ARM instructions are
32-bit instructions. T variants of the architecture also support a 16-bit instruction set that executes in Thumb
state. The supported ARM and Thumb instructions are summarized in Instruction set support on
page AppxH-11.

Instruction set state support in ARMv4 and ARMv5 differs from the support available in ARMv7 as follows:

• ThumbEE state is not supported

• Jazelle state is supported only in ARMv5TEJ

• In privileged modes, you must take care not to attempt to change the instruction set state by writing
nonzero values to CPSR.J and CPSR.T with an MSR instruction. For more information, see Format of
the CPSR and SPSRs on page AppxG-17.

All ARMv4 and ARMv5 implementations support the ARM instruction set. ARMv4T, ARMv5T,
ARMv5TE, and ARMv5TEJ also support a subset of the Thumb instruction set that can be executed entirely
as 16-bit instructions. The only 32-bit instructions in this subset are restricted-range versions of the BL and
BLX (immediate) instructions. See BL and BLX (immediate) instructions, before ARMv6T2 on page AppxG-4
for a description of how these instructions can be executed as 16-bit instructions.

31 30 29 28 27 26 24 23 0

N Z C V Q
RAZ/
SBZP

Reserved
AppxH-4 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARMv4 and ARMv5 Differences
Instruction set support on page AppxH-11 summarizes the ARM and Thumb instructions supported in
ARMv4 and ARMv5, and the instruction descriptions in Chapter A8 Instruction Details give details of the
architecture variants that support each instruction encoding.

Interworking

In ARMv4T, the only instruction that supports interworking branches between ARM and Thumb states is BX.

In ARMv5T, the BLX instruction was added to provide interworking procedure calls. The LDR, LDM and POP
instructions were modified to perform interworking branches if they load a value into the PC. This is
described by the LoadWritePC() pseudocode function. See Pseudocode details of operations on ARM core
registers on page A2-12.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxH-5

ARMv4 and ARMv5 Differences
H.3 Application level memory support

Memory support covers address alignment, endian support, semaphore support, memory type, memory
order model, caches, and write buffers.

H.3.1 Alignment

ARMv4 and ARMv5 behave differently from ARMv7 for unaligned memory accesses. The behavior is the
same as ARMv6 legacy mode except for forcing alignment checks with SCTLR.A == 1.

For more information about the SCTLR see c1, System Control Register (SCTLR) on page AppxH-39.

For ARM instructions when SCTLR.A == 0:

• Non halfword-aligned LDRH, LDRSH, and STRH are UNPREDICTABLE.

• Non word-aligned LDR, LDRT, and the load access of a SWP rotate right the word-aligned data transferred
by a non word-aligned address one, two, or three bytes depending on the value of address[1:0].

• Non word-aligned STR, STRT, and the store access of a SWP ignore address[1:0].

• From ARMv5TE, it is IMPLEMENTATION DEFINED whether LDRD and STRD must be
doubleword-aligned or word-aligned. LDRD and STRD instructions that do not meet the alignment
requirement are UNPREDICTABLE.

• Non word-aligned LDM, LDC, LDC2, and POP ignore address[1:0].

• Non word-aligned STM, STC, STC2, and PUSH ignore address[1:0].

For Thumb instructions when SCTLR.A == 0:

• Non halfword-aligned LDRH, LDRSH, and STRH are UNPREDICTABLE.

• Non word-aligned LDR, and STR are UNPREDICTABLE.

• Non word-aligned LDMIA, and POP ignore address[1:0].

• Non word-aligned STMIA, and PUSH ignore address[1:0].

For ARM and Thumb instructions, alignment checking is defined for implementations supporting CP15,
specifically the SCTLR.A bit. When this bit is set, a Data Abort exception indicating an Alignment fault is
generated for unaligned accesses. When SCTLR.A = 1, whether the alignment check for an LDRD or STRD
instruction is for doubleword-alignment or word-alignment depends on the implementation choice of which
alignments are supported for these instructions when SCTLR.A = 0.

Note
 The option of word alignment for LDRD and STRD instructions is not permitted in the ARMv6 legacy
configuration where SCTLR.U == 0 and SCTLR.A == 1. For more information, see legacy alignment
support in Alignment on page AppxG-6.
AppxH-6 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARMv4 and ARMv5 Differences
H.3.2 Endian support

ARMv4 and ARMv5 support big and little endian operation. Little endian support is consistent with
ARMv7. Big endian control, configuration, and the connectivity of data bytes between the ARM register
file and memory is different. However, the difference is only visible when communicating between big
endian and little endian agents using memory. The agents can be different processors or programs running
with different endianness settings on the same processor.

For ARMv4 and ARMv5, the distinction between big endian memory and little endian memory is managed
by changing the addresses of the bytes in a word. For ARMv7, the distinction between big endian memory
and little endian memory is managed by keeping the byte addresses the same, and reordering the bytes in
the halfword or word. The endian formats are:

LE Little endian format used by ARMv4, ARMv5, ARMv6, and ARMv7

BE Big endian format used by ARMv6 (endianness controlled by the SETEND instruction) and
ARMv7

BE-32 Big endian format used by ARMv4, ARMv5, and ARMv6 (legacy format, endianness
controlled by the SCTLR.B bit).

Table H-1 shows how the addresses of bytes are changed in the BE-32 endian format. In this table, A is a
doubleword-aligned address and S, T, U, V, W, X, Y, Z are the bytes at addresses A to A+7 in the ARMv7
memory map.

Aligned memory accesses are performed using these byte addresses as shown in Table A3-4 on page A3-8
for the LE endian format and in Table A3-3 on page A3-7 for the BE and BE-32 formats, in each case
extended consistently to doubleword accesses. Table H-2 on page AppxH-8 shows which bytes are accessed
by each type of aligned memory access and the significance order in which they are accessed.

Table H-1 Addresses of bytes in endian formats

Byte Address in format BE or LE Address in format BE-32

S A A+3

T A+1 A+2

U A+2 A+1

V A+3 A

W A+4 A+7

X A+5 A+6

Y A+6 A+5

Z A+7 A+4
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxH-7

ARMv4 and ARMv5 Differences
Note
 If the ARMv4 and ARMv5 endian model was extended to unaligned word and halfword accesses, for
example loading a word from byte addresses 0x1001, 0x1002, 0x1003, and 0x1004, it would not return the same
bytes of data to a big endian and little endian agent. However, ARMv4 and ARMv5 do not support unaligned
memory access and therefore this cannot occur. In ARMv4 and ARMv5 where use of an unaligned address
is permitted, the actual memory access is naturally aligned. See Alignment on page AppxH-6.

In ARMv7, all big endian accesses return the same bytes of data from memory as the corresponding little
endian accesses. It is only the byte order in the returned value that is different.

For an ARMv4 or ARMv5 implementation, whether the endianness of the memory access is fixed, defined
by an input pin on reset, or controlled by the SCTLR.B bit is IMPLEMENTATION DEFINED.

Table H-2 Bytes accessed by aligned accesses in endian formats

Memory access: Bytes accessed in endian format:

Size Address LE BE BE-32

Doubleword A ZYXWVUTS STUVWXYZ VUTSZYXW

Word A VUTS STUV VUTS

Word A+4 ZYXW WXYZ ZYXW

Halfword A TS ST VU

Halfword A+2 VU UV TS

Halfword A+4 XW WX ZY

Halfword A+6 ZY YZ XW

Byte A S S V

Byte A+1 T T U

Byte A+2 U U T

Byte A+3 V V S

Byte A+4 W W Z

Byte A+5 X X Y

Byte A+6 Y Y X

Byte A+7 Z Z W
AppxH-8 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARMv4 and ARMv5 Differences
Examples

The distinction between BE and BE-32 is not visible if all agents use the same endian format, because a
given memory address always accesses the same location in memory. However, if there are two agents with
different endianness the effect is as shown in Example H-1 and Example H-2.

Example H-1 Distinction between BE and BE-32 word stores observed by an LE agent

In this example:

• Agent1 is big endian, R1=0x1000, R2=0x11223344

• Agent2 is little endian, R1=0x1000.

Agent1:

 STR R2, [R1]

Agent2:

LDR R2, [R1] // If Agent1 uses BE-32 endian format: R2 = 0x11223344
// If Agent1 uses BE endian format: R2 = 0x44332211

Example H-2 Distinction between BE and BE-32 byte stores observed by an LE agent

In this example:

• Agent1 is big endian, R1=0x1000, R2=0x44, R3=0x11

• Agent2 is little endian, R1=0x1000.

Agent1:

 STRB R2, [R1]
STRB R3, [R1, #3]

Agent2:

 LDRB R2, [R1] // If Agent1 uses BE-32 endian format: R2 = 0x11
// If Agent1 uses BE endian format: R2 = 0x44

H.3.3 Semaphore support

The only semaphore support in ARMv4 and ARMv5 is provided by the SWP and SWPB ARM instructions. Use
of these instructions is deprecated in ARMv6 and ARMv7 in favour of the exclusive access mechanism
provided by LDREX, STREX, and related instructions.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxH-9

ARMv4 and ARMv5 Differences
H.3.4 Memory model and memory ordering

There is no formal definition of the memory model in ARMv4 and ARMv5. ARM implementations
generally adopted a Strongly-ordered approach. However the memory order model is IMPLEMENTATION
DEFINED.

Memory type support

In ARMv4 and ARMv5 where CP15 is implemented, memory can be tagged using two control bits:

• the B bit (Bufferable), to indicate whether write buffering between the processor and memory is
permitted

• the C bit (Cacheable).

Table H-3 shows the ARMv4 and ARMv5 definitions of the C bit and B bit that are interpreted as the formal
memory types defined in ARMv6 and ARMv7.

Table H-3 Interpretation of Cacheable and Bufferable bits

C B Memory type

0 0 Strongly-ordered

0 1 Device

1 0 Normal, Write-Through Cacheable

1 1 Normal, Write-Back Cacheable
AppxH-10 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARMv4 and ARMv5 Differences
H.4 Instruction set support

Two instruction sets are supported in ARMv4 and ARMv5:

• the ARM instruction set is supported by all variants of ARMv4 and ARMv5

• the Thumb instruction set is supported by ARMv4T, ARMv5T, ARMv5TE, and ARMv5TEJ.

Floating-point support, identified as VFPv2, was added as an option in ARMv5TE. The VFP instructions
are a subset of the coprocessor support in the ARM instruction set, and use coprocessor numbers 10 and 11.
The following instructions are not supported in VFPv2, and are specific to ARMv7 VFP support (VFPv3):

• VMOV (immediate)

• VCVT (between floating-point and fixed-point).

Note
 • VFP instruction mnemonics traditionally started with an F. However this has been changed to a V

prefix in the Unified Assembler Language introduced in ARMv6T2, and in many cases the rest of the
mnemonic has been changed to be more compatible with other instructions mnemonics. This aligns
the scalar floating-point support with the ARMv7 Advanced SIMD support, which shares some
load/store and move operations to a common register file.

• The VFPv2 instructions are summarized in F* (former VFP instruction mnemonics) on page A8-100.
This includes the two deprecated instructions in VFPv2 that do not have UAL mnemonics, the FLDMX
and FSTMX instructions.

The instruction sets have grown significantly in ARMv6 and ARMv7 because of:

• the introduction of ARMv6 SIMD

• improved context switching in ARMv6

• the addition of many 32-bit Thumb instructions in ARMv6T2 and ARMv7

• the ThumbEE extension in ARMv7

• addition of the SMC instruction with the Security Extensions

• the Advanced SIMD extension in ARMv7.

The ARM and Thumb instruction encodings including the VFP instructions are defined in Alphabetical list
of instructions on page A8-14.

Note
 This appendix describes the instructions included as a mnemonic in ARMv4 and ARMv5. For any
mnemonic, to determine which associated instruction encodings appear in a particular architecture variant,
see the subsections of Alphabetical list of instructions on page A8-14 that describe the mnemonic. Each
encoding diagram shows the architecture variants or extensions that include the encoding.

The following sections give more information about ARMv4 and ARMv5 instruction set support:

• ARM instruction set support on page AppxH-12

• Thumb instruction set support on page AppxH-15

• System level instruction set support on page AppxH-17.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxH-11

ARMv4 and ARMv5 Differences
H.4.1 ARM instruction set support

Table H-4 shows the ARM instructions supported in ARMv4 and ARMv5, excluding VFP instructions.

Table H-4 ARM instructions - ARMv4 and ARMv5

Instruction v4, v4T, v5T v5TE, v5TEJ

ADC Yes Yes

ADD Yes Yes

AND Yes Yes

B Yes Yes

BIC Yes Yes

BKPT v5T only Yes

BL Yes Yes

BLX v5T only Yes

BX v4T and v5T only Yes

BXJ No v5TEJ only

CDP Yes Yes

CDP2 v5T only Yes

CLZ v5T only Yes

CMN Yes Yes

CMP Yes Yes

EOR Yes Yes

LDC Yes Yes

LDC2 v5T only Yes

LDM Yes Yes

LDR Yes Yes

LDRB Yes Yes

LDRD No Yes
AppxH-12 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2010_Q3
Sticky Note
Restriction on LDM (User registers) before ARMv6
Before ARMv6, the Load Multiple (User registers) form of LDM, described in LDM (User registers) on page B6-7 [PDF page 1565], must not be followed by an instruction that accesses banked registers. Software can ensure
this condition is met by inserting a NOP instruction after the LDM (User registers) instruction.

ARMv4 and ARMv5 Differences
LDRBT Yes Yes

LDRH Yes Yes

LDRSB Yes Yes

LDRSH Yes Yes

LDRT Yes Yes

MCR Yes Yes

MCR2 v5T only Yes

MCRR No Yes

MLAa Yes Yes

MOV Yes Yes

MRC Yes Yes

MRC2 v5T only Yes

MRRC No Yes

MRS Yes Yes

MSR Yes Yes

MULa Yes Yes

MVN Yes Yes

ORR Yes Yes

PLD No Yes

QADD No Yes

QDADD No Yes

QDSUB No Yes

QSUB No Yes

RSB Yes Yes

Table H-4 ARM instructions - ARMv4 and ARMv5 (continued)

Instruction v4, v4T, v5T v5TE, v5TEJ
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxH-13

ARMv4 and ARMv5 Differences
RSC Yes Yes

SBC Yes Yes

SMLALb Yes Yes

SMLABB, SMLABT, SMLATB, SMLATT No Yes

SMLALBB, SMLALBT, SMLALTB, SMLALTT No Yes

SMLAWB, SMLAWT No Yes

SMULBB, SMULBT, SMULTB, SMULTT No Yes

SMULLb Yes Yes

SMULWB, SMULWT No Yes

STC Yes Yes

STC2 v5T only Yes

STM Yes Yes

STR Yes Yes

STRB Yes Yes

STRBT Yes Yes

STRD No Yes

STRH Yes Yes

STRT Yes Yes

SUB Yes Yes

SVC (previously SWI) Yes Yes

SWP Yes Yes

SWPB Yes Yes

TEQ Yes Yes

Table H-4 ARM instructions - ARMv4 and ARMv5 (continued)

Instruction v4, v4T, v5T v5TE, v5TEJ
AppxH-14 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARMv4 and ARMv5 Differences
H.4.2 Thumb instruction set support

Table H-5 shows the 16-bit Thumb instructions supported in ARMv4 and ARMv5. ARMv4 before
ARMv4T does not support any Thumb instructions.

TST Yes Yes

UMLALb Yes Yes

UMULLb Yes Yes

a. The value of APSR.C generated by flag-setting versions of these
instructions is UNKNOWN in ARMv4 and is unchanged from ARMv5.

b. The values of APSR.C and APSR.V generated by flag-setting versions
of these instructions are UNKNOWN in ARMv4 and are unchanged from
ARMv5.

Table H-4 ARM instructions - ARMv4 and ARMv5 (continued)

Instruction v4, v4T, v5T v5TE, v5TEJ

Table H-5 ARMv4 and ARMv5 support for Thumb instructions

Instruction v4T v5T, v5TE, v5TEJ

ADC Yes Yes

ADD Yes Yes

AND Yes Yes

ASR Yes Yes

B Yes Yes

BIC Yes Yes

BKPT No Yes

BL Yes Yes

BLX No Yes

BX Yes Yes

CMN Yes Yes

CMP Yes Yes

EOR Yes Yes
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxH-15

ARMv4 and ARMv5 Differences
LDMIA Yes Yes

LDR Yes Yes

LDRB Yes Yes

LDRH Yes Yes

LDRSB Yes Yes

LDRSH Yes Yes

LSL Yes Yes

LSR Yes Yes

MOV Yes Yes

MUL Yes Yes

MVN Yes Yes

NEG Yes Yes

ORR Yes Yes

POP Yes Yes

PUSH Yes Yes

ROR Yes Yes

SBC Yes Yes

STMIA Yes Yes

STR Yes Yes

STRB Yes Yes

STRH Yes Yes

SUB Yes Yes

SVC (previously SWI) Yes Yes

TST Yes Yes

Table H-5 ARMv4 and ARMv5 support for Thumb instructions (continued)

Instruction v4T v5T, v5TE, v5TEJ
AppxH-16 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARMv4 and ARMv5 Differences
H.4.3 System level instruction set support

The register and immediate forms of the MRS and MSR instructions are used to manage the CPSR and SPSR
as applicable. Other system level instructions are:

• LDM (exception return) and LDM (user registers)

• LDRBT and LDRT

• STM (user registers)

• STRBT and STRT

• SUBS PC, LR and related instructions

• VMRS and VMSR where VFP is supported.

All system level support is from ARM state.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxH-17

ARMv4 and ARMv5 Differences
H.5 System level register support

The general registers and programming modes are the same as ARMv7, except that the Security Extensions
and Monitor mode are not supported. For more information, see Figure B1-1 on page B1-9. The following
sections give information about ARMv4 and ARMv5 system level register support:

• Program Status Registers (PSRs)

• The exception model on page AppxH-19

• Execution environment support on page AppxH-20.

H.5.1 Program Status Registers (PSRs)

The application level programmers’ model provides the Application Program Status Register (APSR). See
The Application Program Status Register (APSR) on page A2-14. This is an application level alias for the
CPSR. The system level view of the CPSR extends the register, adding state that:

• is used by exceptions

• controls the processor mode.

Each of the exception modes has its own saved copy of the CPSR, the Saved Program Status Register
(SPSR), as shown in Figure B1-1 on page B1-9. For example, the SPSR for Abort mode is called SPSR_abt.

Note
 ARMv4 and ARMv5 do not support Monitor mode and the Security Extensions.

The Current Program Status Register (CPSR)

The CPSR holds the following processor status and control information:

• The APSR, see APSR support on page AppxH-4

• The current instruction set state. See ISETSTATE on page A2-15, except that:

— ThumbEE state is not supported

— Jazelle state is supported only in ARMv5TEJ.

• The current processor mode

• Interrupt disable bits.

The non-APSR bits of the CPSR have defined reset values. These are shown in the TakeReset() pseudocode
function described in Reset on page B1-48, except that:

• the CPSR.IT[7:0], CPSR.E and CPSR.A bits are not defined and so do not have reset values

• before ARMv5TEJ, the CPSR.J bit is not defined and so does not have a reset value

• the reset value of CPSR.T is 0.

The rules described in The Current Program Status Register (CPSR) on page B1-14 about when mode
changes take effect apply with the modification that the ISB can only be the ISB operation described in c7,
Miscellaneous functions on page AppxH-51.
AppxH-18 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARMv4 and ARMv5 Differences
The Saved Program Status Registers (SPSRs)

The SPSRs are defined as they are in ARMv7, see The Saved Program Status Registers (SPSRs) on
page B1-15, except that:

• the GE[3:0], IT[7:0], E and A bits are not implemented

• before ARMv5TEJ, the J bit is not implemented.

Format of the CPSR and SPSRs

The format of the CPSR and SPSRs is:

The definitions and general rules for the defined PSR bits are the same as ARMv7, see Format of the CPSR
and SPSRs on page B1-16, except that:

• Before ARMv5TEJ, the J bit is RAZ/WI.

• The T bit of the CPSR, and in ARMv5TEJ the J bit of the CPSR, must not be changed when the CPSR
is written by an MSR instruction, or else the behavior is UNPREDICTABLE. MSR instructions exist only in
ARM state in these architecture variants, so this is equivalent to saying the MSR instructions in
privileged modes must treat these bits as SBZP. MSR instructions in User mode still ignore writes to
these bits.

• The IT[7:0], GE[3:0], E, and A bitfield definitions for ARMv7 do not apply to ARMv4 and ARMv5.

• Monitor mode is not supported. The associated M[4:0] encoding is a reserved value in ARMv4 and
ARMv5.

H.5.2 The exception model

The exception vector offsets and priorities are consistent across all variants of the ARM architecture that use
the exception model as stated in Exceptions on page B1-30. The Security Extensions and low interrupt
latency configuration do not apply to ARMv4 and ARMv5.

In ARMv4 and ARMv5, it is IMPLEMENTATION DEFINED whether high vectors are supported. If they are
supported, a hardware configuration input selects whether the normal vectors or the high vectors are used
from reset. If high vectors are not supported then SCTLR.V, bit [13], is reserved, RAZ.

31 30 29 28 27 26 25 24 23 8 7 6 5 4 0

N Z C V Q
RAZ
/WI

J Reserved I F T M[4:0]
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxH-19

ARMv4 and ARMv5 Differences
The ARM abort model

ARMv6 and ARMv7 use a Base Restored Abort Model (BRAM). However, in ARMv5 and ARMv4 it is
IMPLEMENTATION DEFINED whether this model, or a Base Updated Abort Model (BUAM) is used. These
two abort models are defined as:

Base Restored Abort Model

The base register of any valid load/store instruction that causes a memory system abort is
always restored to the value it had immediately before that instruction.

Base Updated Abort Model

After an abort, the base register of any valid load/store instruction that causes a memory
system abort is modified by the base register writeback, if any, of that instruction.

The implemented abort model applies uniformly across all instructions.

Exception entry

Entry to exceptions in ARMv4 and ARMv5 is generally as described in the sections:

• Reset on page B1-48

• Undefined Instruction exception on page B1-49

• Supervisor Call (SVC) exception on page B1-52

• Secure Monitor Call (SMC) exception on page B1-53

• Prefetch Abort exception on page B1-54

• Data Abort exception on page B1-55

• IRQ exception on page B1-58

• FIQ exception on page B1-60.

These ARMv7 descriptions are modified as follows:

• pseudocode statements that set registers, bits and fields that do not exist in the ARMv4 or ARMv5
architecture variant are ignored

• CPSR.T is set to 0, not to SCTLR.TE.

H.5.3 Execution environment support

In ARMv5TEJ, the JOSCR.CV bit is not changed on exception entry in any implementation of Jazelle.
AppxH-20 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARMv4 and ARMv5 Differences
H.6 System level memory model

The pseudocode listed in Aligned memory accesses on page B2-31 and Unaligned memory accesses on
page B2-32 covers the alignment behavior of all architecture variants from ARMv4. For ARMv4 and
ARMv5, SCTLR.U is zero, see Alignment on page AppxG-6.

The following sections describe the system level memory model:

• Cache support

• Tightly Coupled Memory (TCM) support

• Virtual memory support

• Protected memory support on page AppxH-28.

H.6.1 Cache support

CP15 operations are defined that provide cache operations for managing level 1 instruction, data, or unified
caches. Caches can be direct mapped or N-way associative. ARMv4 and ARMv5 define a Cache Type ID
Register, to enable software to determine the level 1 cache topology.

ARMv4 and ARMv5 support virtual (virtually indexed, virtually tagged) or physical caches. In a virtual
memory system that supports virtual cache or caches, there is no coherence support for virtual aliases that
map to the same physical address. When a virtual to physical address mapping changes, caches must be
cleaned and invalidated accordingly.

Cache management and flushing of any write buffer in the processor is IMPLEMENTATION DEFINED and
managed by CP15. CP15 also supports configuration and control of cache lockdown. For more information
on cache management support see System Control coprocessor (CP15) support on page AppxH-31, and c7,
Cache operations on page AppxH-49 and c9, cache lockdown support on page AppxH-52.

H.6.2 Tightly Coupled Memory (TCM) support

TCM support in ARMv4 and ARMv5 is IMPLEMENTATION DEFINED.

H.6.3 Virtual memory support

The ARMv4 and ARMv5 translation tables support a similar two level translation table format to the
ARMv7 tables. However, there are significant differences in the translation table format because of the
following:

• ARMv6 introduced additional bits for encoding memory types, attributes, and extended cache
attributes.

• The new translation table format in ARMv6 does not support subpage access permissions.

• ARMv4 does not support 16MB Supersections.

• Only ARMv4 and ARMv5 support tiny (1KB) pages. The fine second level page format is not
supported from ARMv6.

For general information about address translation in a VMSA, see About the VMSA on page B3-2
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxH-21

ARMv4 and ARMv5 Differences
The Fast Context Switch Extension (FCSE) is an implementation option in ARMv4 and ARMv5 VMSA
implementations. For more information, see FCSE translation on page B3-4 and Appendix E Fast Context
Switch Extension (FCSE).

Note
 ARMv7 only supports the new translation table format. ARMv6 supports both old and new formats and uses
SCTLR[23] to select which format to use. For more information, see c1, System Control Register (SCTLR)
on page AppxG-34.

The Virtual Memory System Architecture (VMSA) in ARMv4 and ARMv5 supports the following:

• 16MB Supersections, optional support from ARMv5TE

• 1MB Sections

• 64KB Large pages

• 4KB Small pages

• 1KB Tiny pages.

Section virtual to physical address translation is supported by a single level translation table walk. Page
address translation requires a two level translation table walk. Each level involves an aligned word read from
a translation table in memory with the first level translation table base address held in a CP15 register,
TTBR0. Translation table entries are typically cached in a Translation Lookaside Buffer (TLB) in the
Memory Management Unit (MMU) of a given implementation. CP15 operations are used to manage the
TLB. For more information, see c8, VMSA TLB support on page AppxH-51.

Note
 ARMv4 and ARMv5 support a single translation table base address register. TTBR1 and TTBCR were
introduced in ARMv6.

Second level translation table accesses are derived from the additional information provided by the first level
translation table entry. Two sizes of second level translation table are supported:

• a Coarse page table, where each entry translates a 4KB address space

• a Fine page table, where each entry translates a 1KB address space.

Translation tables are always naturally aligned in memory to the address space they occupy. This means that
the least significant n bits of the translation table base address are zero, where n = log2(SIZE), and SIZE is
the size of the table in bytes.

Translation attributes

ARMv4 and ARMv5 support the following translation table attributes:

• domain access as described in Domains on page B3-31

• cacheability with the C and B bits, see Interpretation of Cacheable and Bufferable bits on
page AppxH-10
AppxH-22 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARMv4 and ARMv5 Differences
• access permissions using the AP[1:0], SCTLR.S and SCTLR.R bits as defined in Table H-6 on
page AppxH-23

• from ARMv5TE, the option of marking sections as Shareable and support for extended cache
attributes using the TEX bitfield with the C and B bits. See Table H-7 and Table H-8 on
page AppxH-25.

Note
 Changes to the S and R bits do not affect the access permissions of entries already in the TLB. The TLB
must be flushed for the updated S and R bit values to take effect.

Table H-6 VMSA access permissions in ARMv4 and ARMv5

SCTLRa

AP[1:0]
Privileged
permissions

User
permissions

Description
S R

0 0 00 No access No access All accesses generate Permission faults

x x 01 Read/write No access Privileged access only

x x 10 Read/write Read-only Writes in User mode generate Permission faults

x x 11 Read/write Read/write Full access

0 1 00 Read-only Read-only Read-only in privileged and User modes

1 0 00 Read-only No access Privileged read-only

1 1 00 - - Reserved

a. For more information, see c1, System Control Register (SCTLR) on page AppxH-39.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxH-23

ARMv4 and ARMv5 Differences
First level descriptor formats

Table H-7 shows the translation table first level descriptor formats:

• Supersection support, the TEX field, and the S bit are only permitted from ARMv5TE. Where these
features are not supported, the corresponding bits must be zero.

• Supersections can support address translation from a 32-bit virtual address to a physical address of
up to 40 bits.

Bits [1:0] of the descriptor identify the descriptor type:

0b00 Invalid or fault entry.

0b01 Coarse page table descriptor. Bits [31:10] of the descriptor give the physical address of a
second level translation table.

0b10 Section or Supersection descriptor for the associated Modified Virtual Address (MVA).
Bits [31:20] of the descriptor give the Section address, bits [31:24] provide the Supersection
address. Bit [18] indicates which to use when both are supported.

0b11 Fine page table descriptor. Bits [31:12] of the descriptor give the physical address of a
second level translation table.

Table H-7 ARMv4 and ARMv5 first level descriptor format

31 24 23 20 19 15 14 12 11 10 9 8 5 4 3 2 1 0

Fault Ignore 0 0

Coarse page
table

Coarse page table base address P Domain SBZ 0 1

Section Section base address
S
B
Z

0
S
B
Z

Sa
S
B
Z

TEXb AP P Domain
S
B
Z

C B 1 0

Supersection
Supersection

base address
PA[35:32]
optional

S
B
Z

1
S
B
Z

S
S
B
Z

TEX AP P
PA[39:36]
optional

S
B
Z

C B 1 0

Fine page
table

Fine page table base address SBZ P Domain SBZ 1 1

a. S=1 indicates Shareable memory. For more information, see Summary of ARMv7 memory attributes on page A3-25.
b. From ARMv5TE, the TEX bits can be used with the C and B bits as described in C, B, and TEX[2:0] encodings without

TEX remap on page B3-33.
AppxH-24 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARMv4 and ARMv5 Differences
Second level Coarse page table descriptor format

In a Coarse page table, each entry provides translation information for 4KB of memory. Large page table
entries must be repeated 16 times to ensure translation of all addresses in the page. Tiny pages are not
supported. Coarse page tables are 1KB in size and must be aligned on a 1KB boundary.

Table H-8 shows the translation table second level descriptor formats for a second level Coarse page table.

Table H-8 Second level Coarse page descriptor formats

31 16 15 14 12 11 10 9 8 7 6 5 4 3 2 1 0

Fault Ignore 0 0

Large page Large page base address
S
B
Z

TEX AP3 AP2 AP1 AP0 C B 0 1

Small page Small page base address AP3 AP2 AP1 AP0 C B 1 0

Extended
small page

Extended small page base address optional in ARMv5TE,
otherwise reserved

SBZ TEX AP C B 1 1
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxH-25

ARMv4 and ARMv5 Differences
Second level Fine page table descriptor format

In a Fine page table, each entry provides translation information for 1KB of memory. Large page table
entries must be repeated 64 times and Small page entries four times to ensure translation of all addresses.
Fine tables are 4KB in size and must be aligned on a 4KB boundary.

Table H-9 shows the translation table second level descriptor format for a second level Fine page table.

Bits [1:0] of the descriptor identify the descriptor type:

0b00 Invalid or fault entry. The associated MVA is unmapped, and attempting to access it
generates a Translation fault.

0b01 Large page descriptor. Bits [31:16] of the descriptor give the base address of the Large page.

0b10 Small page descriptor. Bits [31:12] of the descriptor give the base address of the Small page.

0b11 Tiny page descriptor. Bits [31:10] of the descriptor give the base address of the Tiny page.

Subpage support

In the Large page and Small page formats in Table H-9, the page is divided into four equal sized subpages.
The AP0, AP1, AP2, and AP3 fields are the AP bits for subpages 0, 1, 2, and 3 respectively. Subpage 0,
controlled by the AP0 field, is the subpage with the lowest base address.

Table H-9 Second level Fine page table descriptor format

31 16 15 12 11 10 9 8 7 6 5 4 3 2 1 0

Fault Ignore 0 0

Large page Large page base address SBZ AP3 AP2 AP1 AP0 C B 0 1

Small page Small page base address AP3 AP2 AP1 AP0 C B 1 0

Tiny page Tiny page base address SBZ AP C B 1 1
AppxH-26 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARMv4 and ARMv5 Differences
Translation table walks

An MVA and TTBR0 are used to access translation table information as follows:

• For a Section translation. See Figure B3-4 on page B3-17 with N == 0.

• For a Large page translation using a Coarse page table access. See Figure B3-7 on page B3-20 with
N == 0.

• For a Small page translation using a Coarse page table access. See Figure B3-6 on page B3-19 with
N == 0.

• For a Tiny page translation using a Fine page table access. See Figure H-1.

Note
 A Large page table or Small page table translation is performed on a Fine page table access by reducing the
second level page table base address to bits [31:12] and extending the second level table index to
MVA[19:10].

Figure H-1 Tiny page address translation, VMSAv5 and VMSAv4 only

�� ��

�'�*&������
&�-���'���+!��

����(�('�*&������
��*��'%&��

��

�'�*&������
�����'�*&������

��*��'%&��

�� �

������������
&�-���'���+

� � �

����(�*�����������
��*��'%&��

��.��'���+

������������
����������������

��*��'%&��

��

�

���

� � ��� ���

����**
���&����('���*@'���%�.��-�*�������**

��� ���

@'���%�.��-�*�������** ��.��'���+

�

���

��� �

�'�*&������
&�-���'���+

�� �� ��

@���*��&'���-�*� �9D
�

@���*��&'���@�-��
9�*��7�.'*&��

�� ��

@���*��&'���-�*�

�

���

����

������������
&�-���'���+

�� ��

��.��&�-���-�*�������**

���

��

����**
���&����('���*

�� ��

��.��&�-���-�*�������**
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxH-27

ARMv4 and ARMv5 Differences
H.6.4 Protected memory support

The MPU based Protected Memory System Architecture (PMSA) is a much simpler memory protection
scheme than the MMU-based VMSA model described in Virtual memory support on page AppxH-21. The
simplification applies to both the hardware and the software. PMSA in ARMv4 and ARMv5 differs from
that supported in ARMv6 and ARMv7 in the following ways:

• the programming model is unique to ARMv4 and ARMv5

• the supported number of memory regions is fixed

• background memory support requires use of a region resource

• there is no architecturally-defined recovery mechanism from memory aborts

• there is no default memory map definition.

Control and configuration

CP15 registers are used to fully define protection regions, eliminating the VMSA requirements for hardware
to do translation table walks, and for software to set up and maintain the translation tables. This makes
memory checking fully deterministic. However, the level of control is now region based rather than page
based. This means the control is not as fine-grained.

The following features apply:

• The memory is divided into regions. CP15 registers are used to define the region size, base address,
and memory attributes. For example, cacheability, bufferability, and access permissions of a region.

• Memory region control (read and write access) is permitted only from privileged modes.

• If an address is defined in multiple regions, a fixed priority scheme (highest region number) is used
to define the properties of the address being accessed.

• An access to an address that is not defined in any region causes a memory abort.

• All addresses are physical addresses. Address translation is not supported.

• PMSA supports unified (von Neumann) and separate (Harvard) instruction and data address spaces.

Eight regions can be configured, with C, B, and AP[1:0] attribute bits associated with each region. The
supported region sizes are 2NKB, where 2 =< N =< 32. It is IMPLEMENTATION DEFINED if the regions are
configurable or fixed in an implementation:

• as eight unified regions supporting data accesses and instruction fetches

• as eight data regions and eight instruction regions each with independent memory region attributes.

CP15 provides the following support:

• a global MPU enable bit, SCTLR.M

• cacheability register support, a C bit for each region

• bufferability register support, a B bit for each region
AppxH-28 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARMv4 and ARMv5 Differences
• access permission register support that provides AP7[1:0] to AP0[1:0] 2-bit permission fields, an AP
bitfield for each region

• optional extended access permission register support for 4-bit AP fields

• region registers providing a base address, size field, and an enable bit for each region.

For details of the PMSA support in CP15 see c2, c3, c5, and c6, PMSA support on page AppxH-43.

The C and B bits are configured according to the type of memory that is to be accessed. For more
information, see Memory type support on page AppxH-10. Table H-10 defines the standard AP bit behavior.

Some implementations also include support for read-only access permission. Table H-11 defines the
extended AP bit behavior.

Table H-10 PMSA access permissions in ARMv4 and ARMv5

AP[1:0]
Privileged
permissions

User
permissions

Description

00 No access No access All accesses generate Permission faults

01 Read/write No access Privileged access only

10 Read/write Read-only Writes in User mode generate Permission faults

11 Read/write Read/write Full access

Table H-11 PMSA extended access permissions in ARMv4 and ARMv5

AP[3:0]
Privileged
permissions

User
permissions

Description

0000 No access No access All accesses generate a Permission fault

0001 Read/write No access Privileged access only

0010 Read/write Read-only Writes in User mode generate a Permission fault

0011 Read/write Read/write Full access

0100 UNPREDICTABLE UNPREDICTABLE -

0101 Read-only No access Privileged read-only access

0110 Read-only Read-only Read-only access

0111 UNPREDICTABLE UNPREDICTABLE -

1xxx UNPREDICTABLE UNPREDICTABLE -
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxH-29

ARMv4 and ARMv5 Differences
Memory access sequence

When the ARM processor generates a memory access, the MPU compares the memory address with the
programmed memory regions as follows:

• If a matching memory region is not found, a memory abort is signaled to the processor.

• If a matching memory region is found, the region information is used as follows:

— The access permission bits are used to determine whether the access is permitted. If the access
is not permitted, the MPU signals a memory abort. Otherwise, the access can proceed.

— The memory region attributes are used to determine the access attributes, for example cached
or non-cached, as described in Memory type support on page AppxH-10.

Note
 When a Permission fault occurs, there is no fault status information provision for PMSA in ARMv4 or
ARMv5. The CP15 registers FSR and FAR are only available in implementations with VMSA support.

Overlapping regions

The Protection Unit can be programmed with two or more overlapping regions. When overlapping regions
are programmed, a fixed priority scheme is applied to determine the region whose attributes are applied to
the memory access.

Attributes for region 7 take highest priority and those for region 0 take lowest priority. For example:

• Data region 2 is programmed to be 4KB in size, starting from address 0x3000 with AP == 0b010
(privileged modes full access, User mode read-only).

• Data region 1 is programmed to be 16KB in size, starting from address 0x0 with AP == 0b001
(privileged mode access only).

When the processor performs a data load from address 0x3010 while in User mode, the address falls into both
region 1 and region 2. Because there is a clash, the attributes associated with region 2 are applied. In this
case, the load would not abort.

Background region

Overlapping regions increase the flexibility of how regions can be mapped onto physical memory devices
in the system. The overlapping properties can also be used to specify a background region. For example,
assume a number of physical memory areas sparsely distributed across the 4GB address space. If only these
regions are configured, any access outside the defined sparse address space aborts. You can override this
behavior by programming region 0 to be a 4GB background region. In this case, if the address does not fall
into any of the other regions, the access is controlled by the attributes specified for region 0.
AppxH-30 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARMv4 and ARMv5 Differences
H.7 System Control coprocessor (CP15) support

Before ARMv6, it is IMPLEMENTATION DEFINED whether a System Control coprocessor, CP15, is
implemented. However, support of ID registers, control registers, cache support, and memory management
with virtual or protected memory support resulted in the widespread adoption of a standard for control and
configuration of these features. That standard is described here. With the exception of a small number of
operations and supporting registers, for example the memory barrier operations described in c7,
Miscellaneous functions on page AppxH-51, all CP15 accesses require privileged access.

The following sections summarize the CP15 registers known to have been supported in ARMv4 or ARMv5
implementations:

• Organization of CP15 registers in an ARMv4 or ARMv5 VMSA implementation on page AppxH-32

• Organization of CP15 registers in an ARMv4 or ARMv5 PMSA implementation on page AppxH-33.

For details of the registers provided by a particular implementation see the appropriate Technical Reference
Manual, or other product documentation.

The rest of this section describes the ARMv4 and ARMv5 CP15 support in order of the CRn value.

Note
 Definitions of CP15 registers in this appendix apply to both VMSA and PMSA implementations unless
otherwise indicated.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxH-31

ARMv4 and ARMv5 Differences
H.7.1 Organization of CP15 registers in an ARMv4 or ARMv5 VMSA implementation

Figure H-2 shows the CP15 registers in an ARMv4 or ARMv5 VMSA implementation:

Figure H-2 CP15 registers in a VMSAv4 or VMSAv5 implementation

<7� �%�� <7, �%��

<��)��,�'�&��������%���&'��*�	
<��	 �96� �*&�$�&'�������)���'E�&'���9���'����%���&'��

4���5
�

�
 � �� <��	Q� 6�Q�'&�(���'�&���$%&��%���&'���

��<76���,�'������**�<��&����7�.'*&���� � ��

��76���$�&������**�7�.'*&���� � ��
�	 � �� ��76���$�&��&�&$*�7�.'*&��

�

�
�

�� � �� @@976�@���*��&'���@�-���9�*��7�.'*&��
�<@376���*&�,�<��&����7�.'*&���� � ��
��'�*�*��(�!�'�� ��7�.'*&��

�
�

4��
5

<@76�<��)��@�%��7�.'*&��
�� � ��

@<!@76�@<!�@�%��7�.'*&��

! �76�!�'�� ��7�.'*&��
�
�

�

@39@76�@39�@�%��7�.'*&���

�� <��)��,�'�&��������%���&'��	

���
4��6�
5

<��	��96���&������)���'E�&'���9���'����%���&'��

<��)��,�'�&��������%���&'��*
<��)��,�'�&��������%���&'��*4���5

�

4���5
#

9����)�%���'�&���,�'�&��������%���&'��*4�6
5

�� @<!�7�.'�����.'*&��*4�6�5

<��)��,�'�&��������%���&'��*��� 4���5

��� <��)��,�'�&��������%���&'��*

�
 � 4�	��
5 @39�,�'�&��������%���&'��*
�� � ��

<��)��%��(�&�)��%���&'�����

<��)��,�'�&��������%���&'����	

<��)��3��>��8��1(��,�&�<2��%���&'��*

4���5

4�6�5
4�6�5

�

4���5
#

��� � �� �<�: �76��<�:�� ��7�.'*&���
 !�3:!:?@�@ =?��:� ?:����.'*&��*��	 4��
5 4�����	5 4��
5 #

4�	6��5 <��)��3��>��8��1(��,�&��2��%���&'��*4�6�5
@39�3��>��8��7�.'*&��*��� � 4��6��6�
5 4�6�5 #

@<!�76�@<!������&'���7�.'*&���� �

<��	�!96���&��!�,����9���'����%���&'��	

7���PQ�'&�7�������� Q�'&������

����**���%���*�����%���&'��
AppxH-32 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARMv4 and ARMv5 Differences
H.7.2 Organization of CP15 registers in an ARMv4 or ARMv5 PMSA implementation

Figure H-3 shows the CP15 registers in an ARMv4 or ARMv5 PMSA implementation:

Figure H-3 CP15 registers in a PMSAv4 or PMSAv5 implementation

�!77���!77
6���&�����$�'('���!�,����7�.'���7�.'*&��*
 !77�� !77
6� �*&�$�&'���!�,����7�.'���7�.'*&��*

���76���&�����$�'('���7�.'�������**����,'**'��*�7�.'*&��
 ��76� �*&�$�&'���7�.'�������**����,'**'��*�7�.'*&��

�976���&�����$�'('���7�.'���9$((���-'�'&��7�.'*&��

�<@376���*&�,�<��&����7�.'*&��
��'�*�*��(�!�'�� ��7�.'*&��

<@76�<��)��@�%��7�.'*&��
@<!@76�@<!�@�%��7�.'*&��

! �76�!�'�� ��7�.'*&��

�<76���&�����$�'('���7�.'���<��)��-'�'&��7�.'*&��
 <76� �*&�$�&'���7�.'���<��)��-'�'&��7�.'*&��

�:��76���&��7�.'���:+&����������**����,'**'��*�7�.'*&��
 :��76� �*&�$�&'���7�.'���:+&����������**����,'**'��*�7�.'*&��

��

�	

��

��

��

��
<7� �%�� <7, �%��

�
�

�
�
�

�

�
�

�

�
�

�
�

4����
5

��
��

��

��

��

�

�
�

�

�

�

4��
5

<��)��,�'�&��������%���&'��*
<��	 �96� �*&�$�&'�������)���'E�&'���9���'����%���&'��

�
 <��	Q� 6�Q�'&�(���'�&���$%&��%���&'��
<��)��,�'�&��������%���&'��

4���5
�

�
	

�	

��
��

�

<��	��96���&������)���'E�&'���9���'����%���&'��

<��)��,�'�&��������%���&'��*
<��)��,�'�&��������%���&'��*#4���5

�

4���5
���

4��6�
5
9����)�%���'�&���,�'�&��������%���&'��*4�6
5

@<!�7�.'�����.'*&��*4�6�5��

<��)��,�'�&��������%���&'��*4���5���

�� <��)��3��>��8��1(��,�&�<2��%���&'��*

<��)��,�'�&��������%���&'��*
<��)��,�'�&��������%���&'��

#

4�6�5

4���5
4���5

��

���
��	

�

@<!�76�@<!������&'���7�.'*&���� �

 !�3:!:?@�@ =?��:� ?:����.'*&��*��	 #
<��)�����>��8��1(��,�&��2��%���&'��*

4��
5
4�6�5

4�����	5
4�	6��5

4��
5

	 <��	�!96���&��!�,����9���'����%���&'��

7�������� 7���PQ�'&� Q�'&������

����**���%���*�����%���&'��
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxH-33

ARMv4 and ARMv5 Differences
H.7.3 c0, ID support

ARMv4 and ARMv5 implementations support the following ID registers:

• Main ID Register (MIDR). See c0, Main ID Register (MIDR).

• Cache Type Register (CTR). See c0, Cache Type Register (CTR) on page AppxH-35.

• Optionally, the TCM Type Register (TCMTR). See c0, TCM Type Register (TCMTR) on
page AppxH-38.

Table H-12 shows how these read-only registers are accessed using the MRC instruction.

c0, Main ID Register (MIDR)

This register is as described for ARMv7 if either:

• the implementer code in MIDR bits [31:24] is not 0x41

• the top four bits of the primary part number in MIDR bits [15:4] are neither 0x0 nor 0x7.

If the implementer code is 0x41 and the top four bits of the primary part number are 0x0, the processor is an
obsolete ARMv2 or ARMv3 processor.

If the implementer code is 0x41 and the top four bits of the primary part number are 0x7, then:

• If bit[23] is 0, the processor is an obsolete ARMv3 processor.

• If bit[23] is 1, the processor is an ARMv4T processor and bits[22:16] are an IMPLEMENTATION
DEFINED variant number. Bits[31:24,15:0] are as described for ARMv7.

For the ARMv7 descriptions of the MIDR see:

• c0, Main ID Register (MIDR) on page B3-81 for a VMSA implementation

• c0, Main ID Register (MIDR) on page B4-32 for a PMSA implementation.

Table H-12 ID register support

Register CRn opc1 CRm opc2

Main ID Register, MIDR c0 0 c0 0

Cache Type ID Register, CTR, c0 0 c0 1

TCM Type Register, TCMTR c0 0 c0 2

Aliases of MIDR c0 0 c0 3, 4, 5, 6, 7
AppxH-34 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARMv4 and ARMv5 Differences
c0, Cache Type Register (CTR)

The format of the Cache Type Register is significantly different from the ARMv7 definition described in c0,
Cache Type Register (CTR) on page B3-83. However, the general properties described by the register, and
the access rights for the register, are unchanged.

This section describes the implementation of the CP15 c0 Cache Type Register and is applicable to a VMSA
or PMSA implementation.

The Cache Type Register supplies the following details about the level 1 cache implementation:

• whether there is a unified cache or separate instruction and data caches

• the cache size, line length, and associativity

• whether it is a Write-Through cache or a Write-Back cache

• the cache cleaning and lockdown capabilities.

The format of the Cache Type Register is:

Ctype, bits [28:25]

Cache type field. Specifies details of the cache not indicated by the S bit and the Dsize and
Isize fields. Table H-13 shows the encoding of this field. All values not specified in the table
are reserved.

S, bit [24] Separate caches bit. The meaning of this bit is:

0 Unified cache

1 Separate instruction and data caches.

If S == 0, the Isize and Dsize fields both describe the unified cache, and must be identical.

Dsize, bits [23:12]

Specifies the size, line length and associativity of the data cache, or of the unified cache if
S == 0. For details of the encoding see Cache size fields on page AppxH-36.

Isize, bits [11:0]

Specifies the size, line length and associativity of the instruction cache, or of the unified
cache if S == 0. For details of the encoding see Cache size fields on page AppxH-36.

Table H-13 shows the Ctype values that can be used in the CTR:

31 29 28 25 24 23 12 11 0

0 0 0 Ctype S DSize ISize

Table H-13 Cache type values

Ctypea Cache method Cache lockdownb

0b0000 Write-Through Not supported

0b0010 Write-Back Not supported
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxH-35

ARMv4 and ARMv5 Differences
For details of the CP15 c7 operations used for cleaning Write-Back caches see c7, Cache operations on
page AppxH-49.

Cache size fields

The Dsize and Isize fields in the CTR have the same format:

P For a VMSA implementation, indicates whether the allocation of bits [13:12] of the virtual
address is restricted, imposing the page coloring restriction. The meaning of this field is:

0 No restriction, or PMSA implementation

1 Page coloring restriction applies, see Virtual to physical translation mapping
restrictions on page AppxG-26.

Size Indicates the size of the cache, but is qualified by the M bit, see Table H-14 on
page AppxH-37.

Assoc Indicates the associativity of the cache, but is qualified by the M bit, see Cache associativity
on page AppxH-37.

M Qualifies the values in the Size and Assoc subfields.

Len Specifies the line length of the cache. The possible values of this field are:

0b00 Line length is 2 words (8 bytes)

0b01 Line length is 4 words (16 bytes)

0b10 Line length is 8 words (32 bytes)

0b11 Line length is 16 words (64 bytes).

0b0101 Write-Back Format D

0b0110c Write-Back Format A

0b0111c Write-Back Format B

0b1110 Write-Back Format C

a. CType values not shown are reserved and must not be used.
b. For details see c9, cache lockdown support on page AppxH-52.
c. In ARMv6 this Ctype value is reserved and must not be used.

23
11

22
10

21
9

18
6

17
5

15
3

14
2

13
1

12
0

P 0 Size Assoc M Len

Table H-13 Cache type values (continued)

Ctypea Cache method Cache lockdownb
AppxH-36 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARMv4 and ARMv5 Differences
Table H-14 shows how the size of the cache is determined by the Size field and M bit.

Cache associativity

Table H-15 show how the associativity of the cache is determined by the Assoc field and the M bit.

The Cache absent encoding overrides all other data in the cache size field.

Table H-14 Cache sizes

Size field Size if M == 0 Size if M == 1

0b0000 0.5KB 0.75KB

0b0001 1KB 1.5KB

0b0010 2KB 3KB

0b0011 4KB 6KB

0b0100 8KB 12KB

0b0101 16KB 24KB

0b0110 32KB 48KB

0b0111 64KB 96KB

0b1000 128KB 192KB

Table H-15 Cache associativity

Assoc field
Associativity if:

M == 0 M == 1

0b000 1 way (direct mapped) Cache absent

0b001 2 way 3 way

0b010 4 way 6 way

0b011 8 way 12 way

0b100 16 way 24 way

0b101 32 way 48 way

0b110 64 way 96 way

0b111 128 way 192 way
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxH-37

ARMv4 and ARMv5 Differences
Excluding the cache absent case (Assoc == 0b000, M == 1) you can use the following formulae to
determine the values LINELEN, ASSOCIATIVITY, and NSETS (number of sets) from the Size, Assoc and
Len fields of the CTR. These formulae give the associativity values shown in Table H-15 on
page AppxH-37:

LINELEN = 1 << (Len+3) /* In bytes */
MULTIPLIER = 2 + M
NSETS = 1 << (Size + 6 - Assoc - Len)
ASSOCIATIVITY = MULTIPLIER << (Assoc - 1)

Multiplying these together gives the overall cache size as:

CACHE_SIZE = MULTIPLIER << (Size+8) /* In bytes */

Note
 Cache length fields with (Size + 6 - Assoc - Len) < 0 are invalid, because they correspond to impossible
combinations of line length, associativity, and overall cache size. So the formula for NSETS never involves
a negative shift value.

c0, TCM Type Register (TCMTR)

In an ARMv4 or ARMv5 implementation that supports CP15 and TCM, the TCMTR is an optional register.
For details of the TCMTR implementation see c0, TCM Type Register (TCMTR) on page AppxG-33.

H.7.4 c1, System control register support

ARMv4 and ARMv5 implementations support the following system control registers:

• a System Control Register (SCTLR)

• an IMPLEMENTATION DEFINED Auxiliary Control Register (ACTLR).

Table H-16 shows how the registers are accessed using the MCR and MRC instructions.

SCTLR is the primary system configuration register in CP15.

Table H-16 System control register support

Register CRn opc1 CRm opc2

System Control Register, SCTLR c1 0 c0 0

Auxiliary Control Register, ACTLR c1 0 c0 1
AppxH-38 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARMv4 and ARMv5 Differences
c1, System Control Register (SCTLR)

This section describes the implementation of the System Control Register, SCTLR, for ARMv4 and
ARMv5. The format of the SCTLR is:

Bits [31:16] Reserved.

These reserved bits in the SCTLR are allocated in some circumstances:

• bits [19:16] have been associated with TCM support

• bit [26], described as the L2 bit, has been used to indicate level 2 cache support, see
Level 2 cache support on page AppxH-51.

These usage models are not compatible with ARMv7.

L4, Bit [15] This bit inhibits ARMv5T Thumb interworking behavior when set. It stops bit [0] updating
the CPSR.T bit. Use of the feature is deprecated in ARMv6 and the feature is not supported
in ARMv7.

RR, bit [14] Round Robin bit. This bit selects an alternative replacement strategy with a more easily
predictable worst-case performance if the cache implementation supports this functionality:

0 Normal replacement strategy, for example random replacement

1 Predictable strategy, for example round robin replacement.

The replacement strategy associated with each value of the RR bit is IMPLEMENTATION
DEFINED.

V, bit [13] Vectors bit. This bit selects the base address of the exception vectors:

0 Normal exception vectors, base address 0x00000000

1 High exception vectors (Hivecs), base address 0xFFFF0000.

This base address is never remapped.

Support of the V bit is IMPLEMENTATION DEFINED. An implementation can include a
configuration input signal that determines the reset value of the V bit. If there is no
configuration input signal to determine the reset value of this bit, it resets to 0.

I, bit [12] Instruction cache enable bit. This is a global enable bit for instruction caches:

0 Instruction caches disabled

1 Instruction caches enabled.

If the system does not implement any instruction caches that can be accessed by the
processor at any level of the memory hierarchy, this bit is RAZ/WI.

If the system implements any instruction caches that can be accessed by the processor then
it must be possible to disable them by setting this bit to 0.

31 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved L4 RR V I Z F R S B L D P W C A M
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxH-39

ARMv4 and ARMv5 Differences
Z, bit [11] Branch prediction enable bit. This bit is used to enable branch prediction, also called
program flow prediction:

0 program flow prediction disabled

1 program flow prediction enabled.

If program flow prediction cannot be disabled, this bit is RAO/WI. Program flow prediction
includes all possible forms of speculative change of instruction stream prediction. Examples
include static prediction, dynamic prediction, and return stacks.

If the implementation does not support program flow prediction this bit is RAZ/WI.

F (bit [10]) The meaning of this bit is IMPLEMENTATION DEFINED.

R (bit [9]) ROM protection bit, supported for backwards compatibility. The effect of this bit is
described in Table H-6 on page AppxH-23. Use of this feature is deprecated in ARMv6 and
the feature is not supported in ARMv7.

S (bit [8]) System protection bit, supported for backwards compatibility. The effect of this bit is
described in Table H-6 on page AppxH-23. Use of this feature is deprecated in ARMv6 and
the feature is not supported in ARMv7.

B (bit [7]) This bit configures the ARM processor to the endianness of the memory system:

0 Little-endian memory system (LE)

1 Big-endian memory system (BE-32).

ARM processors that support both little-endian and big-endian memory systems use this bit
to configure the ARM processor to rename the four byte addresses in a 32-bit word.

Endian support changed in ARMv6. Use of this feature is deprecated in ARMv6 and the
feature is not supported in ARMv7.

An implementation can include a configuration input signal that determines the reset value
of the B bit. If there is no configuration input signal to determine the reset value of this bit
then it resets to 0.

Bits [6:4] RAO/SBOP.

W (bit [3]) This is the enable bit for the write buffer:

0 Write buffer disabled

1 Write buffer enabled.

If the write buffer is not implemented, this bit is RAZ/WI. If the write buffer cannot be
disabled, this bit is RAO and ignores writes. Use of this feature is deprecated in ARMv6 and
the feature is not supported in ARMv7

C, bit [2] Cache enable bit. This is a global enable bit for data and unified caches:

0 Data and unified caches disabled

1 Data and unified caches enabled.

If the system does not implement any data or unified caches that can be accessed by the
processor at any level of the memory hierarchy, this bit is RAZ/WI.
AppxH-40 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARMv4 and ARMv5 Differences
If the system implements any data or unified caches that can be accessed by the processor
then it must be possible to disable them by setting this bit to 0.

A, bit [1] Alignment bit. This is the enable bit for Alignment fault checking:

0 Alignment fault checking disabled

1 Alignment fault checking enabled.

For more information, see Alignment on page AppxH-6.

M, bit [0] Memory control bit. This is a global enable bit to enable an MMU where VMSA is
supported, or an MPU where PMSA is supported:

0 memory management (MMU or MPU) disabled

1 memory management (MMU or MPU) enabled.

H.7.5 c2 and c3, VMSA memory protection and control registers

ARMv4 and ARMv5 support a single Translation Table Base Register (TTBR) that is compatible with
TTBR0, and the Domain Access Control Register (DACR).

The TTBR is as defined for TTBR0 in CP15 c2, Translation table support registers on page B3-113 except
that:

• The base address bitfield is a fixed-length field, bits [31:14] (N=0)

• Bit [5] is reserved.

The DACR is as defined in c3, Domain Access Control Register (DACR) on page B3-119.

H.7.6 c5 and c6, VMSA memory system support

ARMv4 and ARMv5 support a Fault Status Register (FSR) and a Fault Address Register (FAR). These
registers are accessed using MCR and MRC instructions. Table H-17 summarizes them.

The FSR is updated on Prefetch Abort exceptions and Data Abort exceptions. The FAR is only updated with
the MVA on Data Abort exceptions.

Table H-17 VMSA fault support

Register CRn opc1 CRm opc2

Fault Status Register, FSR c5 0 c0 0

Fault Address Register, FAR c6 0 c0 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxH-41

ARMv4 and ARMv5 Differences
In ARMv5 and ARMv4 implementations the format of the FSR is:

Bits [31:11, 9:8]

Reserved, UNK/SBZP.

Bit [10] FS[4] where defined, otherwise UNK/SBZP.

Domain, bits [7:4]

The domain of the fault address.

FS, bits [3:0] Fault status bits. Indicate the cause of the fault.

Table H-18 lists the base level of fault status encodings returned in the FSR

31 10 9 8 7 4 3 0

Reserved a

a. It is IMPLEMENTATION DEFINED whether bit [10] is reserved or supports an additional fault status bit, FS[4].

Domain FS[3:0]

Table H-18 VMSAv5 and VMSAv4 FSR encodings

FSR[10] FSR[3:0] Source of fault Domain

0 00x1 Alignment fault Invalid

0 0101

0111
Translation fault

Section

Page

Invalid

Valid

0 1001

1011
Domain fault

Section

Page

Valid

Valid

0 1100

1110
Translation table walk External Abort

1st level

2nd level

Invalid

Valid

0 1101

1111
Permission fault

Section

Page

Valid

Valid

0 0xx0

10x0
IMPLEMENTATION DEFINEDa

a. ARM recommends that any additional codes are compatible with those defined for ARMv6 and
ARMv7 as described in Table B3-11 on page B3-50 and Table B3-12 on page B3-51.

-

1 xxxx IMPLEMENTATION DEFINEDa -
AppxH-42 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARMv4 and ARMv5 Differences
H.7.7 c2, c3, c5, and c6, PMSA support

While the general principles for memory protection in ARMv4 and ARMv5 are the same, CP15 support for
protected memory is different from the programming model of ARMv6 and ARMv7. Memory regions have
configurable base address and size attributes. There are also registers for describing cacheability,
bufferability, and access permissions across the regions. For more information, see Memory model and
memory ordering on page AppxH-10.

ARMv4 and ARMv5 support a fixed number of memory regions, either:

• eight unified memory regions

• eight data and eight instruction regions.

Table H-19 shows the PMSA register support.

If an implementation has a single set of protection regions that apply to both instruction and data accesses,
only the registers that are accessed using even values of <opc2> exist. Where separate data and instruction
regions are supported, with the exception of the extended access permission registers, registers associated
with data have <opc2> == 0 and those associated with instructions have <opc2> == 1. All PMSA registers are
32-bit registers and only accessible in privileged modes.

Table H-19 PMSA register support

Register CRn opc1 CRm opc2

Data or unified Cacheability Register, DCR c2 0 c0 0

Instruction Cacheability Register, ICR c2 0 c0 1

Data or unified Bufferability Register, DBR c3 0 c0 0

Data or unified Access Permission Register, DAPR c5 0 c0 0

Instruction Access Permission Register, IAPR c5 0 c0 1

Data or unified Extended Access Permission Register, DEAPR c5 0 c0 2

Instruction Extended Access Permission Register, IEAPR c5 0 c0 3

Data or unified Memory Region Registers, DMRR0-DMRR7 c6 0 c0-c7a 0

Instruction Memory Region Registers, IMRR0-IMRR7 c6 0 c0-c7a 1

a. <CRm> selects the region, for example <CRm> == 6 selects the region register for region 6, DMRR6 or IMRR6.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxH-43

ARMv4 and ARMv5 Differences
c2, Memory Region Cacheability Registers (DCR and ICR)

The two Memory Region Cacheability Registers are:

• The Data or unified Cacheability Register, DCR.

• The Instruction Cacheability Register, ICR. The ICR is implemented only when the processor
implements separate data and instruction memory protection region definitions.

A Memory Region Cacheability Registers holds a Cacheability bit, C, for each of the eight memory
protection regions.

The format of a Memory Region Cacheability Register is:

Bits [31:8] Reserved. UNK/SBZP.

Cn, bit [n], for n = 0 to 7

Cacheability bit, C, for memory protection region n.

Accessing the Memory Region Cacheability Registers

To access the Memory Region Cacheability Registers you read or write the CP15 registers with <opc1> set
to 0, <CRn> set to c2, <CRm> set to c0, and <opc2> set to:

• 0 for the DCR

• 1 for the IPR.

For example:

MRC p15,0,<Rt>,c2,c0,0 ; Read CP15 Data or unified Region Cacheability Register
MCR p15,0,<Rt>,c2,c0,0 ; Write CP15 Data or unified Region Cacheability Register
MRC p15,0,<Rt>,c2,c0,1 ; Read CP15 Instruction Region Cacheability Register
MCR p15,0,<Rt>,c2,c0,1 ; Write CP15 Instruction Region Cacheability Register

c3, Memory Region Bufferability Register (DBR)

The Memory Region Bufferability Register, DBR, holds Bufferability bit, B, for each of the eight data or
unified memory protection regions.

Only data accesses are bufferable and therefore there is only a single Memory Region Bufferability Register,
regardless of whether the implementation has a single set of protection regions, or separate protection region
definitions for instruction and data accesses.

The format of the Memory Region Bufferability Register is:

Bits [31:8] Reserved. UNK/SBZP.

31 8 7 6 5 4 3 2 1 0

Reserved C7 C6 C5 C4 C3 C2 C1 C0

31 8 7 6 5 4 3 2 1 0

Reserved B7 B6 B5 B4 B3 B2 B1 B0
AppxH-44 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARMv4 and ARMv5 Differences
Bn, bit [n], for n = 0 to 7

Bufferability bit, B, for memory protection region n.

Accessing the Memory Region Bufferability Register

To access the Memory Region Bufferability Register you read or write the CP15 registers with <opc1> set to
0, <CRn> set to c3, <CRm> set to c0, and <opc2> set to 0. For example:

MRC p15,0,<Rt>,c3,c0,0 ; Read CP15 Data or unified Region Bufferability Register
MCR p15,0,<Rt>,c3,c0,0 ; Write CP15 Data or unified Region Bufferability Register

c5, Memory Region Access Permissions Registers (DAPR and IAPR)

The two Memory Region Access Permissions Registers are:

• The Data or unified Access Permissions Register, DAPR.

• The Instruction Access Permissions Register, IAPR. The IAPR is implemented only when the
processor implements separate data and instruction memory protection region definitions.

A Memory Region Access Permissions Register hold the access permission bits AP[1:0] for each of the
eight memory protection regions.

The format of a Memory Region Access Permissions Register is:

Bits [31:16] Reserved. UNK/SBZP.

APn, bits [2n+1:2n], for n = 0 to 7

Access permission bits AP[1:0] for memory protection region n.

For details of the significance and encoding of these bits see Table H-10 on page AppxH-29.

If the implementation does not permit the requested type of access, it signals an abort to the processor.

Accessing the Memory Region Access Permissions Registers

To access the Memory Region Access Permissions Registers you read or write the CP15 registers with
<opc1> set to 0, <CRn> set to c5, <CRm> set to c0, and <opc2> set as follows:

• 0 if there is only a single set of protection regions

• when there are separate memory protection regions for data and instructions:

— 0 to access the Data Region Access Permissions Register

— 1 to access the Instruction Region Access Permissions Register.

For example:

MRC p15,0,<Rt>,c5,c0,0 ; Read CP15 Data or unified Region Access Permissions Register
MCR p15,0,<Rt>,c5,c0,0 ; Write CP15 Data or unified Region Access Permissions Register

31 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved AP7 AP6 AP5 AP4 AP3 AP2 AP1 AP0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxH-45

ARMv4 and ARMv5 Differences
MRC p15,0,<Rt>,c5,c0,1 ; Read CP15 Instruction Region Access Permissions Register
MCR p15,0,<Rt>,c5,c0,1 ; Write CP15 Instruction Region Access Permissions Register

c5, Memory Region Extended Access Permissions Registers (DEAPR and IEAPR)

The two Memory Region Extended Access Permissions Registers are:

• The Data or unified Extended Access Permissions Register, DEAPR.

• The Instruction Extended Access Permissions Register, IEAPR. The IEAPR is implemented only
when the processor implements separate data and instruction memory protection region definitions.

Whether an implementation includes Extended Access Permissions Registers is IMPLEMENTATION DEFINED.

A Memory Region Extended Access Permissions Registers hold the access permission bits AP[3:0] for each
of the eight memory protection regions.

The format of a Memory Region Access Permissions Register is:

APn, bits [4n+3:4n], for n = 0 to 7

Access permission bits AP[3:0] for memory protection region n.

For details of the significance of these bits see Table H-11 on page AppxH-29.

If the implementation does not permit the requested type of access, it signals an abort to the processor.

Accessing the Memory Region Extended Access Permissions Registers

To access the Memory Region Extended Access Permissions Registers you read or write the CP15 registers
with <opc1> set to 0, <CRn> set to c5, <CRm> set to c0, and <opc2> set as follows:

• 2 if there is only a single set of protection regions

• when there are separate memory protection regions for data and instructions:

— 2 to access the Data Region Extended Access Permissions Register

— 3 to access the Instruction Region Extended Access Permissions Register.

For example:

MRC p15,0,<Rt>,c5,c0,2 ; Read CP15 Data or unified Region Extended Access Permissions Register
MCR p15,0,<Rt>,c5,c0,2 ; Write CP15 Data or unified Region Extended Access Permissions Register
MRC p15,0,<Rt>,c5,c0,3 ; Read CP15 Instruction Region Extended Access Permissions Register
MCR p15,0,<Rt>,c5,c0,3 ; Write CP15 Instruction Region Extended Access Permissions Register

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

AP7 AP6 AP5 AP4 AP3 AP2 AP1 AP0
AppxH-46 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARMv4 and ARMv5 Differences
c6, Memory Region registers (DMRR0-DMRR7 and IMRR0-IMRR7)

The Memory Region registers define the MPU memory regions as follows:

• If an implementation supports only a single set of memory region definitions that apply to both data
and instruction accesses, it must provide a single set of eight Data or unified Memory Region
Registers, DMRR0-DMRR7.

• If an implementation supports separate memory region definitions for data and instruction accesses,
it must provide two sets of eight Memory Region Registers:

— eight Data or unified Memory Region Registers, DMRR0-DMRR7

— eight Instruction Memory Region Registers, IMRR0-IMRR7.

Each Memory Region register:

• defines a single memory region by specifying its base address and size

• includes an enable bit for the associated memory region.

The format of a Memory Region register is:

Region base address, bits [31:12]

Bits [31:12] of the base address for the region. Bits [11:0] of the address must be zero.
Therefore, the smallest region that can be defined is 4KB. Regions must be aligned
appropriately, and so for regions larger than 4KB the least significant bits of this field must
be zero. For more information, see the description of the Size field.

Bits [11:6] Reserved. UNK/SBZP.

Size, bits [5:1]

Encodes the size of the region. Table H-20 shows the permitted encodings for this field.

31 12 11 6 5 1 0

Region base address Reserved Size En

Table H-20 MPU Region size encoding

Encoding Region size Base address constraints

0b01011 4KB None

0b01100 8KB Register bit [12] must be zero

0b01101 16KB Register bits [13:12] must be zero

0b01110 32KB Register bits [14:12] must be zero

0b01111 64KB Register bits [15:12] must be zero

0b10000 128KB Register bits [16:12] must be zero

0b10001 256KB Register bits [17:12] must be zero
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxH-47

ARMv4 and ARMv5 Differences
Encodings not shown in the table are reserved. The effect of using a reserved value in this
field is UNPREDICTABLE.

En, bit [0] Enable bit for the region:

0 Region is disabled

1 Region is enabled.

This field resets to zero. Therefore all MPU regions are disabled on reset.

The base address constraints given in Table H-20 on page AppxH-47 ensure that the specified region is
correctly aligned in memory, so that its alignment is a multiple of the region size. If a base address is entered
that does not follow these alignment constraints, behavior is UNPREDICTABLE.

Accessing the Region Access Permissions registers

To access the Region Access Permissions registers you read or write the CP15 registers with <opc1> set to
0, <CRn> set to c5, and:

• <CRm> set to indicate the region number, from <CRm> == c0 for memory region 0, to <CRm> == c7 for
memory region 7

0b10010 512KB Register bits [18:12] must be zero

0b10011 1MB Register bits [19:12] must be zero

0b10100 2MB Register bit [20:12] must be zero

0b10101 4MB Register bits [21:12] must be zero

0b10110 8MB Register bits [22:12] must be zero

0b10111 16MB Register bits [23:12] must be zero

0b11000 32MB Register bits [24:12] must be zero

0b11001 64MB Register bits [25:12] must be zero

0b11010 128MB Register bits [26:12] must be zero

0b11011 256MB Register bits [27:12] must be zero

0b11100 512MB Register bits [28:12] must be zero

0b11101 1G Register bits [29:12] must be zero

0b11110 2GB Register bits [30:12] must be zero

0b11111 4GB Register bits [31:12] must be zero

Table H-20 MPU Region size encoding (continued)

Encoding Region size Base address constraints
AppxH-48 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARMv4 and ARMv5 Differences
• <opc2> set to:

— 0 if there is only a single set of protection region definitions

— 0 to access the Data Region Access Permissions Register when the data and instruction
memory regions are defined separately

— 1 to access the Instruction Region Access Permissions Register when the data and instruction
memory regions are defined separately.

For example:

MRC p15,0,<Rt>,c6,c0,0 ; Read CP15 Data or unified Region Register, Region 0
MCR p15,0,<Rt>,c6,c0,0 ; Write CP15 Data or unified Region Register, Region 0
MRC p15,0,<Rt>,c6,c1,0 ; Read CP15 Data or unified Region Register, Region 1
MCR p15,0,<Rt>,c6,c1,0 ; Write CP15 Data or unified Region Register, Region 1
MRC p15,0,<Rt>,c6,c2,1 ; Read CP15 Instruction Memory Region Register, Region 2
MCR p15,0,<Rt>,c6,c2,1 ; Write CP15 Instruction Memory Region Register, Region 2

H.7.8 c7, Cache operations

Table H-21 shows the cache operation provision in ARMv4 and ARMv5. All cache operations are
performed as MCR instructions and only operate on a level 1 cache associated with a specific processor. The
equivalent operations in ARMv7 operate on multiple levels of cache. See CP15 c7, Cache and branch
predictor maintenance functions on page B3-126.

Table H-21 Cache operation support

Operation CRn opc1 CRm opc2

Invalidate instruction cachea c7 0 c5 0

Invalidate instruction cache line by MVAa c7 0 c5 1

Invalidate instruction cache line by set/way c7 0 c5 2

Flush entire branch predictor arraya c7 0 c5 6

Flush branch predictor array entry by MVAa c7 0 c5 7

Invalidate data cache c7 0 c6 0

Invalidate data cache line by MVAa c7 0 c6 1

Invalidate data cache line by set/waya c7 0 c6 2

Invalidate unified cache, or instruction cache and data cache c7 0 c7 0

Invalidate unified cache line by MVA c7 0 c7 1

Invalidate unified cache line by set/way c7 0 c7 2

Clean data cache line by MVAa c7 0 c10 1
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxH-49

ARMv4 and ARMv5 Differences
Test and clean operations

This scheme provides an efficient way to clean, or clean and invalidate, a complete data cache by executing
an MRC instruction with the condition code flags as the destination. A global cache dirty status bit is written
to the Z flag. How many lines are tested in each iteration of the instruction is IMPLEMENTATION DEFINED.

To clean an entire data cache with this method the following code loop can be used:

tc_loop MRC p15, 0, APSR_nzcv, c7, c10, 3 ; test and clean
BNE tc_loop

To clean and invalidate an entire data cache with this method, the following code loop can be used:

tci_loop MRC p15, 0, APSR_nzcv, c7, c14, 3 ; test, clean and invalidate
BNE tci_loop

Clean data cache line by set/waya c7 0 c10 2

Clean entire unified cache c7 0 c11 0

Clean unified cache line by MVAa c7 0 c11 1

Clean unified cache line by set/way c7 0 c11 2

Prefetch instruction cache line by MVAb c7 0 c13 1

Clean and Invalidate data cache line by MVAa c7 0 c14 1

Clean and Invalidate data cache line by set/waya c7 0 c14 2

Clean and Invalidate unified cache line by MVA c7 0 c15 1

Clean and Invalidate unified cache line by set/way c7 0 c15 2

Test and Clean data cache c7 0 c10 3

Test and Clean and Invalidate data cache c7 0 c14 3

a. These are the only cache operations available in ARMv7. The corresponding ARMv7 operations
are multi-level operations, and the data cache operations are defined as data or unified cache
operations.

b. Used with TLB lockdown. See TLB lockdown procedure, using the by entry model on
page AppxH-61.

Table H-21 Cache operation support (continued)

Operation CRn opc1 CRm opc2
AppxH-50 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARMv4 and ARMv5 Differences
Level 2 cache support

The recommended method for adding closely coupled level 2 cache support from ARMv5TE is to define
equivalent operations to the level 1 support with <opc1> == 1 in the appropriate MCR instructions. The
operations in Table H-21 on page AppxH-49 that are supported are IMPLEMENTATION DEFINED.

H.7.9 c7, Miscellaneous functions

The Wait For Interrupt operation is used in some implementations as part of a power management support
scheme. The operation is deprecated in ARMv6 and not supported in ARMv7 (it behaves as a NOP
instruction).

Barrier operations are used for system correctness to ensure visibility of memory accesses to other agents
in a system. For ARMv4 and ARMv5 the requirement for and use of barrier operations is IMPLEMENTATION
DEFINED. Barrier functionality is formally defined as part of the memory architecture enhancements
introduced in ARMv6.

Table H-22 summarizes the MCR instruction encoding details.

H.7.10 c8, VMSA TLB support

Table H-23 illustrates TLB operation provision in ARMv4 and ARMv5. All TLB operations are performed
as MCR instructions and are a subset of the operations available in ARMv7. See CP15 c8, TLB maintenance
operations on page B3-138.

Table H-22 Memory barrier register support

Operation CRn opc1 CRm opc2

Wait For Interrupt (CP15WFI) c7 0 c0 4

Instruction Synchronization Barrier (CP15ISB)a

a. This operation was previously known as Prefetch Flush (PF or PFF).

c7 0 c5 4

Data Synchronization Barrier (CP15DSB)b

b. This operation was previously known as Data Write Barrier or Drain Write Buffer (DWB).

c7 0 c10 4

Data Memory Barrier (CP15DMB) c7 0 c10 5

Table H-23 TLB operation support

Operation CRn opc1 CRm opc2

Invalidate Instruction TLB c8 0 c5 0

Invalidate Instruction TLB Entry (by MVA) c8 0 c5 1

Invalidate Data TLB c8 0 c6 0
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxH-51

ARMv4 and ARMv5 Differences
H.7.11 c9, cache lockdown support

One problem with caches is that although they normally improve average access time to data and
instructions, they usually increase the worst-case access time. This is because:

• There is a delay before the system determines that a cache miss has occurred and starts the main
memory access.

• If a Write-Back cache is being used, there might be more delay because of the requirement to store
the contents of the cache line that is being reallocated.

• A whole cache line is loaded from main memory, not only the data requested by the ARM processor.

In real-time applications, this increase in the worst-case access time can be significant.

Cache lockdown is an optional feature designed to alleviate this. It enables critical code and data, for
example high priority interrupt routines and the data they access, to be loaded into the cache in such a way
that the cache lines containing them are not subsequently reallocated. This ensures that all subsequent
accesses to this code and data are cache hits and therefore complete as quickly as possible.

The ARM architecture specifies four formats for the cache lockdown mechanism. These are known as
Format A, Format B, Format C, and Format D. The Cache Type Register contains information on the
lockdown mechanism adopted. See c0, Cache Type Register (CTR) on page AppxH-35.

Formats A, B, and C all operate on cache ways. Format D is a cache entry locking mechanism. Table H-24
summarizes the CP15 provisions for format A, B, C, and D lockdown mechanisms.

From ARMv7, cache lockdown is IMPLEMENTATION DEFINED with no recommended formats or
mechanisms on how it is achieved other than reserved CP15 register space. See Cache lockdown on
page B2-8 and CP15 c9, Cache and TCM lockdown registers and performance monitors on page B3-141.

Invalidate Data TLB Entry (by MVA) c8 0 c6 1

Invalidate Unified TLB c8 0 c7 0

Invalidate Unified TLB Entry (by MVA) c8 0 c7 1

Table H-23 TLB operation support (continued)

Operation CRn opc1 CRm opc2

Table H-24 cache lockdown register support

Register or operation
Lockdown
formats

CRn opc1 CRm opc2

Data or unified Cache Lockdown Register, DCLR A, B, and C c9 0 c0 0

Instruction Cache Lockdown Register, ICLR A, B, and C c9 0 c0 1

Fetch and lock instruction cache line D c9 0 c5 0
AppxH-52 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARMv4 and ARMv5 Differences
General conditions applying to Format A, B, and C lockdown

The instructions used to access the CP15 c9 lockdown registers are as follows:

MCR p15, 0, <Rt>, c9, c0, 0 ; write Data or unified Cache Lockdown Register
MRC p15, 0, <Rt>, c9, c0, 0 ; read Data or unified Cache Lockdown Register
MCR p15, 0, <Rt>, c9, c0, 1 ; write Instruction Cache Lockdown Register
MRC p15, 0, <Rt>, c9, c0, 1 ; read Instruction Cache Lockdown Register

Formats A, B, and C all use cache ways for lockdown granularity. Granularity is defined by the lockdown
block, and a cache locking scheme can use any number of lockdown blocks from 1 to (ASSOCIATIVITY-1).

If N lockdown blocks are locked down, they have indices 0 to N-1, and lockdown blocks N to
(ASSOCIATIVITY-1) are available for normal cache operation.

A cache way based lockdown implementation must not lock down the entire cache. At least one cache way
must be left for normal cache operation, otherwise behavior is UNPREDICTABLE.

The lockdown blocks are indexed from 0 to (ASSOCIATIVITY-1). The cache lines in a lockdown block are
chosen to have the same WAY number as the lockdown block index value. So lockdown block n consists of
the cache line with index n from each cache set, and n takes the values from n == 0 to
n == (ASSOCIATIVITY-1).

Where NSETS is the number of sets, and LINELEN is the cache line length, each lockdown block can hold
NSETS memory cache lines, provided each of the memory cache lines is associated with a different cache
set. ARM recommends that systems are designed so that each lockdown block contains a set of NSETS
consecutive memory cache lines. This is NSETS × LINELEN consecutive memory locations, starting at a
cache line boundary. Such sets are easily identified and are guaranteed to consist of one cache line associated
with each cache set.

Formats A and B lockdown

Formats A and B use a WAY field that is chosen to be wide enough to hold the way number of any lockdown
block. Its width, W, is given by W = log2(ASSOCIATIVITY), rounded up to the nearest integer if necessary.

The format of a Format A lockdown register is:

Unlock instruction cache D c9 0 c5 1

Format D Data or unified Cache Lockdown Register, DCLR2 D c9 0 c6 0

Unlock data cache D c9 0 c6 1

Table H-24 cache lockdown register support (continued)

Register or operation
Lockdown
formats

CRn opc1 CRm opc2

31 32–W 31–W 0

WAY UNK/SBZ
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxH-53

ARMv4 and ARMv5 Differences
Reading a Format A register returns the value last written to it.

Writing a Format A register has the following effects:

• The next cache miss in each cache set replaces the cache line with the specified WAY in that cache set.

• The replacement strategy for the cache is constrained so that it can only select cache lines with the
specified WAY and higher until the register is written again.

The format of a Format B lockdown register is:

Reading a Format B register returns the value last written to it.

Writing a Format B register has the following effects:

• If L == 1, all cache misses replace the cache line with the specified WAY in the relevant cache set
until the register is written again.

• If L == 0:

— If the previous value of L was 0, and the previous value of WAY is smaller than the new value,
the behavior is UNPREDICTABLE.

— If the previous value of L was not 0, the replacement strategy for the cache is constrained so
that it can only select cache lines with the specified WAY and higher until the register is written
again.

Format A and B cache lockdown procedure

The procedure for locking down N lockdown blocks is as follows:

1. Ensure that no processor exceptions can occur during the execution of this procedure, for example by
disabling interrupts. If for some reason this is not possible, all code and data used by any exception
handlers that can get called must be treated as code and data used by this procedure for the purpose
of steps 2 and 3.

2. If an instruction cache or a unified cache is being locked down, ensure that all the code executed by
this procedure is in an Non-cacheable area of memory.

3. If a data cache or a unified cache is being locked down, ensure that all data used by the following
code is in an Non-cacheable area of memory, apart from the data that is to be locked down.

4. Ensure that the data or instructions that are to be locked down are in a Cacheable area of memory.

5. Ensure that the data or instructions that are to be locked down are not already in the cache, using
cache clean, invalidate, or clean and invalidate instructions as appropriate.

6. For each value of i from 0 to N-1:

a. Write to the CP15 c9 register with:

• WAY == i, for Formats A and B

• L == 1, for Format B only.

b. For each of the cache lines to be locked down in lockdown block i:

31 30 W W–1 0

L UNK/SBZ WAY
AppxH-54 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARMv4 and ARMv5 Differences
If a data cache or a unified cache is being locked down, use an LDR instruction to load a word
from the memory cache line. This ensures that the memory cache line is loaded into the cache.

If an instruction cache is being locked down, use the CP15 c7 prefetch instruction cache line
operation to fetch the memory cache line into the cache.

7. Write to the CP15 c9 register with:

• WAY == N, for Formats A and B

• L == 0, for Format B only.

Note
 If the FCSE described in Appendix E Fast Context Switch Extension (FCSE) is being used, care must be
taken in step 6b because:

• If a data cache or a unified cache is being locked down, the address used for the LDR instruction is
subject to modification by the FCSE.

• If an instruction cache is being locked down, the address used for the CP15 c7 operation is treated as
data and so is not subject to modification by the FCSE.

To minimize the possible confusion caused by this, ARM recommends that the lockdown procedure:

• starts by disabling the FCSE (by setting the PID to zero)

• where appropriate, generates modified virtual addresses itself by ORing the appropriate PID value
into the top seven bits of the virtual addresses it uses.

Format A and B cache unlock procedure

To unlock the locked down portion of the cache, write to the CP15 c9 register with:

• WAY == 0, for Formats A and B

• L == 0, for Format B only.

Format C lockdown

Cache lockdown Format C is a different form of cache way based locking. It enables the allocation to each
cache way to be disabled or enabled. This provides some additional control over the cache pollution caused
by particular applications, in addition to a traditional lockdown function for locking critical regions into the
cache.

A locking bit for each cache way determines whether the normal cache allocation mechanisms can access
that cache way.

For caches of higher associativity, only cache ways 0 to 31 can be locked.

A maximum of N-1 ways of an N-way cache can be locked. This ensures that a normal cache line
replacement can be performed. Handling a cache miss is UNPREDICTABLE if there are no cache ways that
have L==0.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxH-55

ARMv4 and ARMv5 Differences
The 32 bits of the lockdown register determine the L bit for the associated cache way. The value of <opc2>
determines whether the instruction lockdown register or data lockdown register is accessed.

The cache lockdown register is normally modified in a read, modify, write sequence. For example, the
following sequence sets the L bit to 1 for way 0 of the instruction cache:

; In the following code, <Rn> can be any register whose value does not need to be kept.
 MRC p15, 0, <Rn>, c9, c0, 1
 ORR <Rn>, <Rn>, #0x01
 MCR p15, 0, <Rn>, c9, c0, 1 ; Set way 0 L bit for the instruction cache

The format of the Format C lockdown register is:

Bits [31:0] The L bits for each cache way. If a cache way is not implemented, the L bit for that way is
RAO/WI. Each bit relates to its corresponding cache way, that is bit N refers to way N.

0 Allocation to the cache way is determined by the standard replacement
algorithm (reset state)

1 No Allocation is performed to this cache way.

The Format C lockdown register must only be changed when it is certain that all outstanding accesses that
can cause a cache linefill have completed. For this reason, a Data Synchronization Barrier instruction must
be executed before the lockdown register is changed.

Format C cache lock procedure

The procedure for locking down into a cache way i with N cache ways using Format C involves making it
impossible to allocate to any cache way other than the target cache way i. The architecture defines the
following method for locking data into the caches:

1. Ensure that no processor exceptions can occur during the execution of this procedure, for example by
disabling interrupts. If for some reason this is not possible, all code and data used by any exception
handlers that can get called must be treated as code and data used by this procedure for the purpose
of steps 2 and 3.

2. If an instruction cache or a unified cache is being locked down, ensure that all the code executed by
this procedure is in an Non-cacheable area of memory, including the Tightly Coupled Memory, or in
an already locked cache way.

3. If a data cache or a unified cache is being locked down, ensure that all data used by the following
code (apart from the data that is to be locked down) is in an Non-cacheable area of memory, including
the Tightly Coupled Memory, or is in an already locked cache way.

4. Ensure that the data or instructions that are to be locked down are in a Cacheable area of memory.

5. Ensure that the data or instructions that are to be locked down are not already in the cache, using
cache clean, invalidate, or clean and invalidate instructions as appropriate.

31 0

One L bit for each cache way
AppxH-56 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARMv4 and ARMv5 Differences
6. Write to the CP15 c9 register with CRm == 0, setting L=0 for bit i and L=1 for all other bits. This
enables allocation to the target cache way i.

7. For each of the cache lines to be locked down in cache way i:

• If a data cache or a unified cache is being locked down, use an LDR instruction to load a word
from the memory cache line. This ensures that the memory cache line is loaded into the cache.

• If an instruction cache is being locked down, use the CP15 c7 prefetch instruction cache line
operation to fetch the memory cache line into the cache.

8. Write to the CP15 c9 register with CRm == 0, setting L = 1 for bit i and restoring all the other bits to
the values they had before this routine was started.

Format C cache unlock procedure

To unlock the locked down portion of the cache, write to the CP15 c9 register, setting L == 0 for each bit.

Format D lockdown

This format locks individual L1 cache line entries rather than using a cache way scheme. The methods differ
for the instruction and data caches.

The instructions used to access the CP15 c9 Format D Cache Lockdown Registers and operations are as
follows:

MCR p15, 0, <Rt>, c9, c5, 0 ; fetch and lock instruction cache line,
; Rt = MVA

MCR p15, 0, <Rt>, c9, c5, 1 ; unlock instruction cache,
; Rt ignored

MCR p15, 0, <Rt>, c9, c6, 0 ; write Format D Data Cache Lockdown Register,
; Rt = set or clear lockdown mode

MRC p15, 0, <Rt>, c9, c6, 0 ; read Format D Data Cache Lockdown Register,
; Rt = lockdown mode status

MCR p15, 0, <Rt>, c9, c6, 1 ; unlock data cache,
; Rt ignored

Note
 Some format D implementations use CRm == {c1, c2} instead of CRm == {c5, c6}. You must check the
Technical Reference Manual to find the encoding uses. The architecture did not require the implementation
of CP15, and the Architecture Reference Manual only gave a recommended implementation. The actual
CP15 implementation is IMPLEMENTATION DEFINED in ARMv4 and ARMv5.

The following rules determine how many entries in a cache set can be locked:

• At least one entry per cache set must be left for normal cache operation, otherwise behavior is
UNPREDICTABLE.

• How many ways in each cache set can be locked is IMPLEMENTATION DEFINED.
MAX_CACHESET_ENTRIES_LOCKED < NWAYS.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxH-57

ARMv4 and ARMv5 Differences
• Whether attempts to lock additional entries in Format D are allocated as an unlocked entry or ignored
is IMPLEMENTATION DEFINED.

For the instruction cache, a fetch and lock operation fetches and locks individual cache lines. Each cache
line is specified by its MVA. To lock code into the instruction cache, the following rules apply:

• The routine used to lock lines into the instruction cache must be executed from Non-cacheable
memory.

• The code being locked into the instruction cache must be Cacheable.

• The instruction cache must be enabled and invalidated before locking down cache lines.

If these rules are not applied, results are UNPREDICTABLE. Entries must be unlocked using the global
instruction cache unlock command.

Cache lines must be locked into the data cache by first setting a global lock control bit. Data cache linefills
occurring while the global lock control bit is set are locked into the data cache. To lock data into the data
cache, the following rules apply:

• The data being locked must not exist in the cache. Cache clean and invalidate operations might be
necessary to meet this condition.

• The data to be locked must be Cacheable.

• The data cache must be enabled.

c9, Format D Data or unified Cache Lockdown Register, DCLR2

The format of the format D Data or unified Cache Lockdown Register is:

L (bit [0]) Lock bit

0 no locking occurs

1 all data fills are locked while this bit is set.

Interaction with CP15 c7 operations

Cache lockdown only prevents the normal replacement strategy used on cache misses choosing to reallocate
cache lines in the locked down region. CP15 c7 operations that invalidate, clean, or clean and invalidate
cache contents affect locked down cache lines as normal. If invalidate operations are used, you must ensure
that they do not use virtual addresses or cache set/way combinations that affect the locked down cache lines.
Otherwise, if it is difficult to avoid affecting the locked down cache lines, repeat the cache lockdown
procedure afterwards.

31 1 0

UNK/SBZ L
AppxH-58 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARMv4 and ARMv5 Differences
H.7.12 c9, TCM support

TCM register support is optional when CP15 and TCM are supported in ARMv4 and ARMv5. For details
see c9, TCM support on page AppxG-46.

H.7.13 c10, VMSA TLB lockdown support

TLB lockdown is an optional feature that enables the results of specified translation table walks to load into
the TLB in a way that prevents them being overwritten by the results of subsequent translation table walks.

Translation table walks can take a long time because they involve potentially slow main memory accesses.
In real-time interrupt handlers, translation table walks caused by the TLB that do not contain translations
for the handler or the data it accesses can increase interrupt latency significantly.

Two basic lockdown models are supported:

• a TLB lock by entry model

• a translate and lock model introduced as an alternative model in ARMv5TE.

In an ARMv6 implementation that includes the Security Extensions, c10 TLB Lockdown registers are
Configurable access registers, with access controlled by the NSACR. For more information, see:

• Configurable access CP15 registers on page B3-74 for general information

• c1, Non-Secure Access Control Register (NSACR) on page B3-110 and c1, VMSA Security Extensions
support on page AppxG-35 for details of the NSACR.

From ARMv7, TLB lockdown is IMPLEMENTATION DEFINED with no recommended formats or mechanisms
on how it is achieved other than reserved CP15 register space. See TLB lockdown on page B3-56 and CP15
c10, Memory remapping and TLB control registers on page B3-142.

Table H-25 shows the TLB operations used to support the different mechanisms.

Table H-25 TLB lockdown register support

Register or operation Mechanism CRn opc1 CRm opc2

Data or unified TLB Lockdown Register, DTLBLR By entry c10 0 c0a 0

Instruction TLB Lockdown Register, ITLBLR By entry c10 0 c0a 1

Lock instruction TLB Translate and lock c10 0 c4b 0

Unlock instruction TLB Translate and lock c10 0 c4b 1

Lock data TLB Translate and lock c10 0 c8b 0

Unlock data TLB Translate and lock c10 0 c8b 1

a. Read/write register that can be accessed using MCR and MRC instructions.
b. Write-only operation that is accessed only using the MCR instruction.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxH-59

ARMv4 and ARMv5 Differences
The TLB lock by entry model

When a new entry is written to the TLB as the result of a translation table walk following a TLB miss, the
Victim field of the appropriate TLB Lockdown Register is incremented. When the value of the Victim field
reaches the maximum number of TLB entries, the incremented Victim field wraps to the value of the Base
field.

The architecture permits a modified form of this where the Base field is fixed as zero. It is particularly
appropriate where an implementation provides dedicated lockable entries (unified or Harvard) as a separate
resource from the general TLB provision. To determine which form of the locking model is provided, write
the Base field with all bits nonzero, read it back and check whether it is a nonzero value.

TLB Lockdown Register format, for the lockdown by entry mechanism

The format of the CP15 register used for the lockdown by entry form is:

If the implementation has separate instruction and data TLBs, there are two variants of this register, selected
by the <opc2> field of the MCR or MRC instruction used to access the CP15 c10 register:

<opc2> == 0 Selects the data TLB lockdown register.

<opc2> == 1 Selects the instruction TLB lockdown register.

If the implementation has a unified TLB, only one variant of this register exists, and <opc2> must be zero.

CRm must be c0 for MCR and MRC instructions that access the CP15 c10 register.

Writing the appropriate TLB lockdown by entry register has the following effects:

• The victim field specifies which TLB entry is replaced by the translation table walk result generated
by the next TLB miss.

• The Base field constrains the TLB replacement strategy to only use the TLB entries numbered from
(Base) to ((number of TLB entries)-1), provided the victim field is already in that range.

• Any translation table walk results written to TLB entries while P == 1 are protected from being
invalidated by the CP15 c8 invalidate entire TLB operations. Ones written while P == 0 are
invalidated normally by these operations.

Note
 If the number of TLB entries is not a power of two, writing a value to either the Base or Victim fields that
is greater than or equal to the number of TLB entries has UNPREDICTABLE results.

Reading the appropriate TLB lockdown by entry register returns the last values written to the Base field and
the P bit, and the number of the next TLB entry to be replaced in the victim field.

31 32-Wa

a. W = log2(n), rounded up to an integer if necessary, where n is the number of TLB entries.

31-W 32-2W 31-2W 1 0

Base Victim Reserved P
AppxH-60 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARMv4 and ARMv5 Differences
TLB lockdown procedure, using the by entry model

The normal procedure for locking down N TLB entries where the Base field can be modified is as follows:

1. Ensure that no processor exceptions can occur during the execution of this procedure, for example by
disabling interrupts.

2. If an instruction TLB or unified TLB is being locked down, write the appropriate version of
register c10 with Base == N, Victim == N, and P == 0. If appropriate, turn off facilities like branch
prediction that make instruction prefetching harder to understand.

3. Invalidate the entire TLB to be locked down.

4. If an instruction TLB is being locked down, ensure that all TLB entries are loaded that relate to any
instruction that could be prefetched by the rest of the lockdown procedure. Provided care is taken
about where the lockdown procedure starts, one TLB entry can usually cover all of these. This means
that the first instruction prefetch after the TLB is invalidated can do this job.

If a data TLB is being locked down, ensure that all TLB entries are loaded that relate to any data
accessed by the rest of the lockdown procedure, including any inline literals used by its code. Usually
the best way to do this is to avoid using inline literals in the lockdown procedure, and to put all other
data used by it in an area covered by a single TLB entry, and then to load one data item.

If a unified TLB is being locked down, do both of the above.

5. For each of value of i from 0 to N-1:

a. Write to the CP15 c10 register with Base == i, Victim == i, and P == 1.

b. Force a translation table walk to occur for the area of memory whose translation table walk
result is to be locked into TLB entry i as follows:

• If a data TLB or unified TLB is being locked down, load an item of data from the area
of memory.

• If an instruction TLB is being locked down, use the CP15 c7 prefetch instruction cache
line operation defined in Table H-21 on page AppxH-49 to prefetch an instruction from
the area of memory.

6. Write to the CP15 c10 register with Base == N, Victim == N, and P == 0.

Note
 If the FCSE is being used, care is required in step 5b because:

• If a data TLB or a unified TLB is being locked down, the address used for the load instruction is
subject to modification by the FCSE.

• If an instruction TLB is being locked down, the address used for the CP15 c7 operation is being
treated as data and so is not subject to modification by the FCSE.

To minimize the possible confusion caused by this, ARM recommends that the lockdown procedure:

• starts by disabling the FCSE, by setting the PID to zero
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxH-61

ARMv4 and ARMv5 Differences
• where appropriate, generates modified virtual addresses itself by ORing the appropriate PID value
into the top 7 bits of the virtual addresses it uses.

Where the Base field is fixed at zero, the algorithm can be simplified as follows:

1. Ensure that no processor exceptions can occur during the execution of this procedure, for example by
disabling interrupts.

2. If any current locked entries must be removed, an appropriate sequence of invalidate single entry
operations is required.

3. Turn off branch prediction.

4. If an instruction TLB is being locked down, ensure that all TLB entries are loaded that relate to any
instruction that could be prefetched by the rest of the lockdown procedure. Provided care is taken
about where the lockdown procedure starts, one TLB entry can usually cover all of these. This means
that the first instruction prefetch after the TLB is invalidated can do this job.

If a data TLB is being locked down, ensure that all TLB entries are loaded that relate to any data
accessed by the rest of the lockdown procedure, including any inline literals used by its code. Usually
the best way to do this is to avoid using inline literals in the lockdown procedure, and to put all other
data used by it in an area covered by a single TLB entry, and then to load one data item.

If a unified TLB is being locked down, do both of the above.

5. For each value of i from 0 to N-1:

a. Write to the CP15 c10 register with Base == 0, Victim == i, and P == 1.

b. Force a translation table walk to occur for the area of memory whose translation table walk
result is to be locked into TLB entry i as follows:

• If a data TLB or unified TLB is being locked down, load an item of data from the area
of memory.

• If an instruction TLB is being locked down, use the CP15 c7 prefetch instruction cache
line operation defined in Table H-21 on page AppxH-49 to cause an instruction to be
prefetched from the area of memory.

6. Clear the appropriate lockdown register.

TLB unlock procedure, using the by entry model

To unlock the locked down portion of the TLB after it has been locked down using the above procedure:

1. Use CP15 c8 operations to invalidate each single entry that was locked down.

2. Write to the CP15 c10 register with Base == 0, Victim == 0, and P == 0.

Note
 Step 1 ensures that P == 1 entries are not left in the TLB. If they are left in the TLB, the entire TLB
invalidation step of a subsequent TLB lockdown procedure does not have the required effect.
AppxH-62 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARMv4 and ARMv5 Differences
The translate and lock model

This mechanism uses explicit TLB operations to translate and lock specific addresses into the TLB. Entries
are unlocked on a global basis using the unlock operations. Addresses are loaded using their MVA. The
following actions are UNPREDICTABLE:

• accessing these functions with read (MRC) commands

• using functions when the MMU is disabled

• trying to translate and lock an address that is already present in the TLB.

Any abort generated during the translation is reported as a lock abort in the FSR. Only external aborts and
Translation faults are guaranteed to be detected. Any access permission, domain, or alignment checks on
these functions are IMPLEMENTATION DEFINED. Operations that generate an abort do not affect the target
TLB.

Where this model is applied to a unified TLB, the data TLB operations must be used.

Invalidate_all (I,D, or I and D) operations have no effect on locked entries.

TLB lockdown procedure, using the translate and lock model

All previously locked entries can be unlocked by issuing the appropriate unlock operation, I or D side.
Explicit lockdown operations are then issued with the required MVA in register Rt.

TLB unlock procedure, using the translate and lock model

Issuing the appropriate unlock (I or D) TLB operation unlocks all locked entries. It is IMPLEMENTATION
DEFINED whether an invalidate by MVA TLB operation removes the lock condition.

Note
 The invalidate behavior is different in the TLB locking by entry model, where the invalidate by MVA
operation is guaranteed to occur.

H.7.14 c13, VMSA FCSE support

The FCSE described in Appendix E Fast Context Switch Extension (FCSE) is an IMPLEMENTATION DEFINED
option in ARMv4 and ARMv5. The feature is supported by the FCSEIDR as described in c13, FCSE
Process ID Register (FCSEIDR) on page B3-152. The Context ID and Software Thread ID registers listed
for ARMv7 are not supported in ARMv4 and ARMv5.

H.7.15 c15, IMPLEMENTATION DEFINED

CP15 c15 is reserved for IMPLEMENTATION DEFINED use. It is typically used for processor-specific runtime
and test features.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxH-63

ARMv4 and ARMv5 Differences
AppxH-64 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Appendix I
Pseudocode Definition

This appendix provides a definition of the pseudocode used in this manual, and lists the helper procedures
and functions used by pseudocode to perform useful architecture-specific jobs. It contains the following
sections:

• Instruction encoding diagrams and pseudocode on page AppxI-2

• Limitations of pseudocode on page AppxI-4

• Data types on page AppxI-5

• Expressions on page AppxI-9

• Operators and built-in functions on page AppxI-11

• Statements and program structure on page AppxI-17

• Miscellaneous helper procedures and functions on page AppxI-22.

Note
 The pseudocode in this manual describes ARMv7. Where it can reasonably also describe the differences in
earlier versions of the architecture, it does so. However, it does not always do so. For details of the
differences in earlier architectures, see Appendix G ARMv6 Differences and Appendix H ARMv4 and
ARMv5 Differences.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxI-1

Pseudocode Definition
I.1 Instruction encoding diagrams and pseudocode

Instruction descriptions in this manual contain:

• An Encoding section, containing one or more encoding diagrams, each followed by some
encoding-specific pseudocode that translates the fields of the encoding into inputs for the common
pseudocode of the instruction, and picks out any encoding-specific special cases.

• An Operation section, containing common pseudocode that applies to all of the encodings being
described. The Operation section pseudocode contains a call to the EncodingSpecificOperations()
function, either at its start or after only a condition check performed by if ConditionPassed() then.

An encoding diagram specifies each bit of the instruction as one of the following:

• An obligatory 0 or 1, represented in the diagram as 0 or 1. If this bit does not have this value, the
encoding corresponds to a different instruction.

• A should be 0 or 1, represented in the diagram as (0) or (1). If this bit does not have this value, the
instruction is UNPREDICTABLE.

• A named single bit or a bit in a named multi-bit field. The cond field in bits [31:28] of many ARM
instructions has some special rules associated with it.

An encoding diagram matches an instruction if all obligatory bits are identical in the encoding diagram and
the instruction, and one of the following is true:

• the encoding diagram is not for an ARM instruction

• the encoding diagram is for an ARM instruction that does not have a cond field in bits [31:28]

• the encoding diagram is for an ARM instruction that has a cond field in bits [31:28], and bits [31:28]
of the instruction are not 0b1111.

The execution model for an instruction is:

1. Find all encoding diagrams that match the instruction. It is possible that no encoding diagrams match.
In that case, abandon this execution model and consult the relevant instruction set chapter instead to
find out how the instruction is to be treated. The bit pattern of such an instruction is usually reserved
and UNDEFINED, though there are some other possibilities. For example, unallocated hint instructions
are documented as being reserved and to be executed as NOPs.

2. If the operation pseudocode for the matching encoding diagrams starts with a condition check,
perform that condition check. If the condition check fails, abandon this execution model and treat the
instruction as a NOP. If there are multiple matching encoding diagrams, either all or none of their
corresponding pieces of common pseudocode start with a condition check.

3. Perform the encoding-specific pseudocode for each of the matching encoding diagrams
independently and in parallel. Each such piece of encoding-specific pseudocode starts with a bitstring
variable for each named bit or multi-bit field in its corresponding encoding diagram, named the same
as the bit or multi-bit field and initialized with the values of the corresponding bit(s) from the bit
pattern of the instruction.
AppxI-2 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Pseudocode Definition
In a few cases, the encoding diagram contains more than one bit or field with same name. In these
cases, the values of all of those bits or fields must be identical. The encoding-specific pseudocode
contains a special case using the Consistent() function to specify what happens if they are not
identical. Consistent() returns TRUE if all instruction bits or fields with the same name as its argument
have the same value, and FALSE otherwise.

If there are multiple matching encoding diagrams, all but one of the corresponding pieces of
pseudocode must contain a special case that indicates that it does not apply. Discard the results of all
such pieces of pseudocode and their corresponding encoding diagrams.

There is now one remaining piece of pseudocode and its corresponding encoding diagram left to
consider. This pseudocode might also contain a special case, most commonly one indicating that it is
UNPREDICTABLE. If so, abandon this execution model and treat the instruction according to the special
case.

4. Check the should be bits of the encoding diagram against the corresponding bits of the bit pattern of
the instruction. If any of them do not match, abandon this execution model and treat the instruction
as UNPREDICTABLE.

5. Perform the rest of the operation pseudocode for the instruction description that contains the
encoding diagram. That pseudocode starts with all variables set to the values they were left with by
the encoding-specific pseudocode.

The ConditionPassed() call in the common pseudocode (if present) performs step 2, and the
EncodingSpecificOperations() call performs steps 3 and 4.

I.1.1 Pseudocode

The pseudocode provides precise descriptions of what instructions do, subject to the limitations described
in Limitations of pseudocode on page AppxI-4. Instruction fields are referred to by the names shown in the
encoding diagram for the instruction. The pseudocode is described in detail in the sections:

• Data types on page AppxI-5

• Expressions on page AppxI-9

• Operators and built-in functions on page AppxI-11

• Statements and program structure on page AppxI-17

Some pseudocode helper functions are described in Miscellaneous helper procedures and functions on
page AppxI-22.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxI-3

Pseudocode Definition
I.2 Limitations of pseudocode

The pseudocode descriptions of instruction functionality have a number of limitations. These are mainly due
to the fact that, for clarity and brevity, the pseudocode is a sequential and mostly deterministic language.

These limitations include:

• Pseudocode does not describe the ordering requirements when an instruction generates multiple
memory accesses, except in the case of SWP and SWPB instructions where the two accesses are to the
same memory location. For a description of the ordering requirements on memory accesses see
Memory access order on page A3-41.

• Pseudocode does not describe the exact rules when an UNDEFINED instruction fails its condition
check. In such cases, the UNDEFINED pseudocode statement lies inside the if ConditionPassed()
then ... structure, either directly or in the EncodingSpecificOperations() function call, and so the
pseudocode indicates that the instruction executes as a NOP. Conditional execution of undefined
instructions on page B1-51 describes the exact rules.

• Pseudocode does not describe the exact ordering requirements when one VFP instruction generates
more than one floating-point exception. The exact rules are described in Combinations of exceptions
on page A2-44.

• The pseudocode statements UNDEFINED, UNPREDICTABLE and SEE indicate behavior that differs from that
indicated by the pseudocode being executed. If one of them is encountered:

— Earlier behavior indicated by the pseudocode is only specified as occurring to the extent
required to determine that the statement is executed.

— No subsequent behavior indicated by the pseudocode occurs. This means that these statements
terminate pseudocode execution.

For more information, see Simple statements on page AppxI-17.

• A processor exception can be taken during execution of the pseudocode for an instruction, either
explicitly as a result of the execution of a pseudocode function such as DataAbort(), or implicitly, for
example if an interrupt is taken during execution of an LDM instruction. If this happens, the pseudocode
does not describe the extent to which the normal behavior of the instruction occurs. To determine that,
see the descriptions of the processor exceptions in Exceptions on page B1-30.
AppxI-4 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q2
Inserted Text
, SUBARCHITECTURE_DEFINED, IMPLEMENTATION_DEFINED,

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Replacement Text
 and one or more of those floating-point exceptions is trapped.

---------Note -------------
There is no limitation in the case where all the floating-point exceptions are untrapped, because the pseudocode specifies the same behaviour as the cross-referenced section.

Pseudocode Definition
I.3 Data types

This section describes:

• General data type rules

• Bitstrings

• Integers on page AppxI-6

• Reals on page AppxI-6

• Booleans on page AppxI-6

• Enumerations on page AppxI-6

• Lists on page AppxI-7

• Arrays on page AppxI-8.

I.3.1 General data type rules

ARM architecture pseudocode is a strongly-typed language. Every constant and variable is of one of the
following types:

• bitstring

• integer

• boolean

• real

• enumeration

• list

• array.

The type of a constant is determined by its syntax. The type of a variable is normally determined by
assignment to the variable, with the variable being implicitly declared to be of the same type as whatever is
assigned to it. For example, the assignments x = 1, y = '1', and z = TRUE implicitly declare the variables
x, y and z to have types integer, length-1 bitstring and boolean respectively.

Variables can also have their types declared explicitly by preceding the variable name with the name of the
type. This is most often done in function definitions for the arguments and the result of the function.

These data types are described in more detail in the following sections.

I.3.2 Bitstrings

A bitstring is a finite-length string of 0s and 1s. Each length of bitstring is a different type. The minimum
permitted length of a bitstring is 1.

The type name for bitstrings of length N is bits(N). A synonym of bits(1) is bit.

Bitstring constants are written as a single quotation mark, followed by the string of 0s and 1s, followed by
another single quotation mark. For example, the two constants of type bit are '0' and '1'. Spaces can be
included in bitstrings for clarity.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxI-5

Pseudocode Definition
A special form of bitstring constant with 'x' bits is permitted in bitstring comparisons. For details see
Equality and non-equality testing on page AppxI-11.

Every bitstring value has a left-to-right order, with the bits being numbered in standard little-endian order.
That is, the leftmost bit of a bitstring of length N is bit N–1 and its right-most bit is bit 0. This order is used
as the most-significant-to-least-significant bit order in conversions to and from integers. For bitstring
constants and bitstrings derived from encoding diagrams, this order matches the way they are printed.

Bitstrings are the only concrete data type in pseudocode, in the sense that they correspond directly to the
contents of registers, memory locations, instructions, and so on. All of the remaining data types are abstract.

I.3.3 Integers

Pseudocode integers are unbounded in size and can be either positive or negative. That is, they are
mathematical integers rather than what computer languages and architectures commonly call integers.
Computer integers are represented in pseudocode as bitstrings of the appropriate length, associated with
suitable functions to interpret those bitstrings as integers.

The type name for integers is integer.

Integer constants are normally written in decimal, such as 0, 15, -1234. They can also be written in C-style
hexadecimal, such as 0x55 or 0x80000000. Hexadecimal integer constants are treated as positive unless they
have a preceding minus sign. For example, 0x80000000 is the integer +231. If -231 needs to be written in
hexadecimal, it must be written as -0x80000000.

I.3.4 Reals

Pseudocode reals are unbounded in size and precision. That is, they are mathematical real numbers, not
computer floating-point numbers. Computer floating-point numbers are represented in pseudocode as
bitstrings of the appropriate length, associated with suitable functions to interpret those bitstrings as reals.

The type name for reals is real.

Real constants are written in decimal with a decimal point (so 0 is an integer constant, but 0.0 is a real
constant).

I.3.5 Booleans

A boolean is a logical true or false value.

The type name for booleans is boolean. This is not the same type as bit, which is a length-1 bitstring.
Boolean constants are TRUE and FALSE.

I.3.6 Enumerations

An enumeration is a defined set of symbolic constants, such as:

enumeration InstrSet {InstrSet_ARM, InstrSet_Thumb, InstrSet_Jazelle, InstrSet_ThumbEE};
AppxI-6 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Pseudocode Definition
An enumeration always contains at least one symbolic constant, and symbolic constants are not permitted
to be shared between enumerations.

Enumerations must be declared explicitly, though a variable of an enumeration type can be declared
implicitly as usual by assigning one of the symbolic constants to it. By convention, each of the symbolic
constants starts with the name of the enumeration followed by an underscore. The name of the enumeration
is its type name, and the symbolic constants are its possible constants.

Note
 Booleans are basically a pre-declared enumeration:

enumeration boolean {FALSE, TRUE};

that does not follow the normal naming convention and that has a special role in some pseudocode
constructs, such as if statements.

I.3.7 Lists

A list is an ordered set of other data items, separated by commas and enclosed in parentheses, such as:

(bits(32) shifter_result, bit shifter_carry_out)

A list always contains at least one data item.

Lists are often used as the return type for a function that returns multiple results. For example, this particular
list is the return type of the function Shift_C() that performs a standard ARM shift or rotation, when its first
operand is of type bits(32).

Some specific pseudocode operators use lists surrounded by other forms of bracketing than parentheses.
These are:

• Bitstring extraction operators, that use lists of bit numbers or ranges of bit numbers surrounded by
angle brackets "<…>".

• Array indexing, that uses lists of array indexes surrounded by square brackets "[…]".

• Array-like function argument passing, that uses lists of function arguments surrounded by square
brackets "[…]".

Each combination of data types in a list is a separate type, with type name given by just listing the data types
(that is, (bits(32),bit) in the above example). The general principle that types can be declared by
assignment extends to the types of the individual list items in a list. For example:

(shift_t, shift_n) = ('00', 0);

implicitly declares shift_t, shift_n and (shift_t,shift_n) to be of types bits(2), integer and
(bits(2),integer) respectively.

A list type can also be explicitly named, with explicitly named elements in the list. For example:

type ShiftSpec is (bits(2) shift, integer amount);
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxI-7

Pseudocode Definition
After this definition and the declaration:

ShiftSpec abc;

the elements of the resulting list can then be referred to as "abc.shift" and "abc.amount". This sort of
qualified naming of list elements is only permitted for variables that have been explicitly declared, not for
those that have been declared by assignment only.

Explicitly naming a type does not alter what type it is. For example, after the above definition of ShiftSpec,
ShiftSpec and (bits(2),integer) are two different names for the same type, not the names of two different
types. To avoid ambiguity in references to list elements, it is an error to declare a list variable multiple times
using different names of its type or to qualify it with list element names not associated with the name by
which it was declared.

An item in a list that is being assigned to can be written as "-" to indicate that the corresponding item of the
assigned list value is discarded. For example:

(shifted, -) = LSL_C(operand, amount);

List constants are written as a list of constants of the appropriate types, like ('00', 0) in the above example.

I.3.8 Arrays

Pseudocode arrays are indexed by either enumerations or integer ranges (represented by the lower inclusive
end of the range, then "..", then the upper inclusive end of the range). For example:

enumeration PhysReg {
PhysReg_R0, PhysReg_R1, PhysReg_R2, PhysReg_R3,
PhysReg_R4, PhysReg_R5, PhysReg_R6, PhysReg_R7,
PhysReg_R8, PhysReg_R8fiq, PhysReg_R9, PhysReg_R9fiq,
PhysReg_R10, PhysReg_R10fiq, PhysReg_R11, PhysReg_R11fiq,
PhysReg_R12, PhysReg_R12fiq,
PhysReg_SP, PhysReg_SPfiq, PhysReg_SPirq, PhysReg_SPsvc, PhysReg_SPabt,
PhysReg_SPund, PhysReg_SPmon,
PhysReg_LR, PhysReg_LRfiq, PhysReg_LRirq, PhysReg_LRsvc, PhysReg_LRabt,
PhysReg_LRund, PhysReg_LRmon,
PhysReg_PC};

array bits(32) _R[PhysReg];
array bits(8) _Memory[0..0xFFFFFFFF];

Arrays are always explicitly declared, and there is no notation for a constant array. Arrays always contain at
least one element, because enumerations always contain at least one symbolic constant and integer ranges
always contain at least one integer.

Arrays do not usually appear directly in pseudocode. The items that syntactically look like arrays in
pseudocode are usually array-like functions such as R[i], MemU[address,size] or Elem[vector,i,size].
These functions package up and abstract additional operations normally performed on accesses to the
underlying arrays, such as register banking, memory protection, endian-dependent byte ordering,
exclusive-access housekeeping and Advanced SIMD element processing.
AppxI-8 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Pseudocode Definition
I.4 Expressions

This section describes:

• General expression syntax

• Operators and functions - polymorphism and prototypes on page AppxI-10

• Precedence rules on page AppxI-10.

I.4.1 General expression syntax

An expression is one of the following:

• a constant

• a variable, optionally preceded by a data type name to declare its type

• the word UNKNOWN preceded by a data type name to declare its type

• the result of applying a language-defined operator to other expressions

• the result of applying a function to other expressions.

Variable names normally consist of alphanumeric and underscore characters, starting with an alphabetic or
underscore character.

Each register described in the text is to be regarded as declaring a correspondingly named bitstring variable,
and that variable has the stated behavior of the register. For example, if a bit of a register is defined as
RAZ/WI, then the corresponding bit of its variable reads as 0 and ignore writes.

An expression like bits(32) UNKNOWN indicates that the result of the expression is a value of the given type,
but the architecture does not specify what value it is and software must not rely on such values. The value
produced must not constitute a security hole and must not be promoted as providing any useful information
to software. (This was called an UNPREDICTABLE value in previous ARM architecture documentation. It is
related to but not the same as UNPREDICTABLE, which says that the entire architectural state becomes
similarly unspecified.)

A subset of expressions are assignable. That is, they can be placed on the left-hand side of an assignment.
This subset consists of:

• Variables

• The results of applying some operators to other expressions. The description of each
language-defined operator that can generate an assignable expression specifies the circumstances
under which it does so. (For example, those circumstances might include one or more of the
expressions the operator operates on themselves being assignable expressions.)

• The results of applying array-like functions to other expressions. The description of an array-like
function specifies the circumstances under which it can generate an assignable expression.

Every expression has a data type. This is determined by:

• For a constant, the syntax of the constant.

• For a variable, there are three possible sources for the type

— its optional preceding data type name
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxI-9

Pseudocode Definition
— a data type it was given earlier in the pseudocode by recursive application of this rule

— a data type it is being given by assignment (either by direct assignment to it, or by assignment
to a list of which it is a member).

It is a pseudocode error if none of these data type sources exists for a variable, or if more than one of
them exists and they do not agree about the type.

• For a language-defined operator, the definition of the operator.

• For a function, the definition of the function.

I.4.2 Operators and functions - polymorphism and prototypes

Operators and functions in pseudocode can be polymorphic, producing different functionality when applied
to different data types. Each of the resulting forms of an operator or function has a different prototype
definition. For example, the operator + has forms that act on various combinations of integers, reals and
bitstrings.

One particularly common form of polymorphism is between bitstrings of different lengths. This is
represented by using bits(N), bits(M), and so on, in the prototype definition.

I.4.3 Precedence rules

The precedence rules for expressions are:

1. Constants, variables and function invocations are evaluated with higher priority than any operators
using their results.

2. Expressions on integers follow the normal exponentiation before multiply/divide before add/subtract
operator precedence rules, with sequences of multiply/divides or add/subtracts evaluated left-to-right.

3. Other expressions must be parenthesized to indicate operator precedence if ambiguity is possible, but
need not be if all permitted precedence orders under the type rules necessarily lead to the same result.
For example, if i, j and k are integer variables, i > 0 && j > 0 && k > 0 is acceptable, but i > 0 &&
j > 0 || k > 0 is not.
AppxI-10 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Pseudocode Definition
I.5 Operators and built-in functions

This section describes:

• Operations on generic types

• Operations on booleans

• Bitstring manipulation on page AppxI-12

• Arithmetic on page AppxI-14.

I.5.1 Operations on generic types

The following operations are defined for all types.

Equality and non-equality testing

Any two values x and y of the same type can be tested for equality by the expression x == y and for
non-equality by the expression x != y. In both cases, the result is of type boolean.

A special form of comparison with a bitstring constant that includes 'x' bits as well as '0' and '1' bits is
permitted. The bits corresponding to the 'x' bits are ignored in determining the result of the comparison.
For example, if opcode is a 4-bit bitstring, opcode == '1x0x' is equivalent to opcode<3> == '1' && opcode<1>

== '0'. This special form is also permitted in the implied equality comparisons in when parts of
case ... of ... structures.

Conditional selection

If x and y are two values of the same type and t is a value of type boolean, then if t then x else y is an
expression of the same type as x and y that produces x if t is TRUE and y if t is FALSE.

I.5.2 Operations on booleans

If x is a boolean, then !x is its logical inverse.

If x and y are booleans, then x && y is the result of ANDing them together. As in the C language, if x is FALSE,
the result is determined to be FALSE without evaluating y.

If x and y are booleans, then x || y is the result of ORing them together. As in the C language, if x is TRUE,
the result is determined to be TRUE without evaluating y.

If x and y are booleans, then x ^ y is the result of exclusive-ORing them together.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxI-11

Pseudocode Definition
I.5.3 Bitstring manipulation

The following bitstring manipulation functions are defined:

Bitstring length and most significant bit

If x is a bitstring, the bitstring length function Len(x) returns its length as an integer, and TopBit(x) is the
leftmost bit of x (= x<Len(x)-1> using bitstring extraction).

Bitstring concatenation and replication

If x and y are bitstrings of lengths N and M respectively, then x:y is the bitstring of length N+M constructed by
concatenating x and y in left-to-right order.

If x is a bitstring and n is an integer with n > 0, Replicate(x,n) is the bitstring of length n*Len(x) consisting
of n copies of x concatenated together, and Zeros(n) = Replicate(’0’,n), Ones(n) = Replicate(’1’,n).

Bitstring extraction

The bitstring extraction operator extracts a bitstring from either another bitstring or an integer. Its syntax is
x<integer_list>, where x is the integer or bitstring being extracted from, and <integer_list> is a list of
integers enclosed in angle brackets rather than the usual parentheses. The length of the resulting bitstring is
equal to the number of integers in <integer_list>. In x<integer_list>, each of the integers in <integer_list>
must be:

• >= 0

• < Len(x) if x is a bitstring.

The definition of x<integer_list> depends on whether integer_list contains more than one integer. If it
does, x<i,j,k,...,n> is defined to be the concatenation:

x<i> : x<j> : x<k> : ... : x<n>

If integer_list consists of just one integer i, x<i> is defined to be:

• if x is a bitstring, '0' if bit i of x is a zero and '1' if bit i of x is a one.

• if x is an integer, let y be the unique integer in the range 0 to 2^(i+1)-1 that is congruent to x modulo
2^(i+1). Then x<i> is '0' if y < 2^i and '1' if y >= 2^i.

Loosely, this second definition treats an integer as equivalent to a sufficiently long two’s complement
representation of it as a bitstring.

In <integer_list>, the notation i:j with i >= j is shorthand for the integers in order from i down to j, both
ends inclusive. For example, instr<31:28> is shorthand for instr<31,30,29,28>.

The expression x<integer_list> is assignable provided x is an assignable bitstring and no integer appears
more than once in <integer_list>. In particular, x<i> is assignable if x is an assignable bitstring and 0 <= i

< Len(x).
AppxI-12 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Pseudocode Definition
Encoding diagrams for registers frequently show named bits or multi-bit fields. For example, the encoding
diagram for the APSR shows its bit<31> as N. In such cases, the syntax APSR.N is used as a more readable
synonym for APSR<31>.

Logical operations on bitstrings

If x is a bitstring, NOT(x) is the bitstring of the same length obtained by logically inverting every bit of x.

If x and y are bitstrings of the same length, x AND y, x OR y, and x EOR y are the bitstrings of that same length
obtained by logically ANDing, ORing, and exclusive-ORing corresponding bits of x and y together.

Bitstring count

If x is a bitstring, BitCount(x) produces an integer result equal to the number of bits of x that are ones.

Testing a bitstring for being all zero or all ones

If x is a bitstring, IsZero(x) produces TRUE if all of the bits of x are zeros and FALSE if any of them are ones,
and IsZeroBit(x) produces '1' if all of the bits of x are zeros and '0' if any of them are ones. IsOnes(x) and
IsOnesBit(x) work in the corresponding way. So:

IsZero(x) = (BitCount(x) == 0)
IsOnes(x) = (BitCount(x) == Len(x))
IsZeroBit(x) = if IsZero(x) then '1' else '0'
IsOnesBit(x) = if IsOnes(x) then '1' else '0'

Lowest and highest set bits of a bitstring

If x is a bitstring, and N = Len(x):

• LowestSetBit(x) is the minimum bit number of any of its bits that are ones. If all of its bits are zeros,
LowestSetBit(x) = N.

• HighestSetBit(x) is the maximum bit number of any of its bits that are ones. If all of its bits are zeros,
HighestSetBit(x) = -1.

• CountLeadingZeroBits(x) = N - 1 - HighestSetBit(x) is the number of zero bits at the left end of x,
in the range 0 to N.

• CountLeadingSignBits(x) = CountLeadingZeroBits(x<N-1:1> EOR x<N-2:0>) is the number of copies of
the sign bit of x at the left end of x, excluding the sign bit itself, and is in the range 0 to N-1.

Zero-extension and sign-extension of bitstrings

If x is a bitstring and i is an integer, then ZeroExtend(x,i) is x extended to a length of i bits, by adding
sufficient zero bits to its left. That is, if i == Len(x), then ZeroExtend(x,i) = x, and if i > Len(x), then:

ZeroExtend(x,i) = Replicate('0', i-Len(x)) : x
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxI-13

Pseudocode Definition
If x is a bitstring and i is an integer, then SignExtend(x,i) is x extended to a length of i bits, by adding
sufficient copies of its leftmost bit to its left. That is, if i == Len(x), then SignExtend(x,i) = x, and if i >
Len(x), then:

SignExtend(x,i) = Replicate(TopBit(x), i-Len(x)) : x

It is a pseudocode error to use either ZeroExtend(x,i) or SignExtend(x,i) in a context where it is possible
that i < Len(x).

Converting bitstrings to integers

If x is a bitstring, SInt(x) is the integer whose two’s complement representation is x:

// SInt()
// ======

integer SInt(bits(N) x)
 result = 0;
 for i = 0 to N-1
 if x<i> == ‘1’ then result = result + 2^i;
 if x<N-1> == ‘1’ then result = result - 2^N;
 return result;

UInt(x) is the integer whose unsigned representation is x:

// UInt()
// ======

integer UInt(bits(N) x)
 result = 0;
 for i = 0 to N-1
 if x<i> == ‘1’ then result = result + 2^i;
 return result;

Int(x, unsigned) returns either SInt(x) or UInt(x) depending on the value of its second argument:

// Int()
// =====

integer Int(bits(N) x, boolean unsigned)
 result = if unsigned then UInt(x) else SInt(x);
 return result;

I.5.4 Arithmetic

Most pseudocode arithmetic is performed on integer or real values, with operands being obtained by
conversions from bitstrings and results converted back to bitstrings afterwards. As these data types are the
unbounded mathematical types, no issues arise about overflow or similar errors.
AppxI-14 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Pseudocode Definition
Unary plus, minus and absolute value

If x is an integer or real, then +x is x unchanged, -x is x with its sign reversed, and Abs(x) is the absolute value
of x. All three are of the same type as x.

Addition and subtraction

If x and y are integers or reals, x+y and x-y are their sum and difference. Both are of type integer if x and y
are both of type integer, and real otherwise.

Addition and subtraction are particularly common arithmetic operations in pseudocode, and so it is also
convenient to have definitions of addition and subtraction acting directly on bitstring operands.

If x and y are bitstrings of the same length N = Len(x) = Len(y), then x+y and x-y are the least significant N
bits of the results of converting them to integers and adding or subtracting them. Signed and unsigned
conversions produce the same result:

x+y = (SInt(x) + SInt(y))<N-1:0>
= (UInt(x) + UInt(y))<N-1:0>

x-y = (SInt(x) - SInt(y))<N-1:0>
= (UInt(x) - UInt(y))<N-1:0>

If x is a bitstring of length N and y is an integer, x+y and x-y are the bitstrings of length N defined by x+y = x

+ y<N-1:0> and x-y = x - y<N-1:0>. Similarly, if x is an integer and y is a bitstring of length M, x+y and x-y
are the bitstrings of length M defined by x+y = x<M-1:0> + y and x-y = x<M-1:0> - y.

Comparisons

If x and y are integers or reals, then x == y, x != y, x < y, x <= y, x > y, and x >= y are equal, not equal,
less than, less than or equal, greater than, and greater than or equal comparisons between them, producing
boolean results. In the case of == and !=, this extends the generic definition applying to any two values of
the same type to also act between integers and reals.

Multiplication

If x and y are integers or reals, then x * y is the product of x and y, of type integer if both x and y are of type
integer and otherwise of type real.

Division and modulo

If x and y are integers or reals, then x / y is the result of dividing x by y, and is always of type real.

If x and y are integers, then x DIV y and x MOD y are defined by:

x DIV y = RoundDown(x / y)
x MOD y = x - y * (x DIV y)

It is a pseudocode error to use any x / y, x MOD y, or x DIV y in any context where y can be zero.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxI-15

Pseudocode Definition
Square Root

If x is an integer or a real, Sqrt(x) is its square root, and is always of type real.

Rounding and aligning

If x is a real:

• RoundDown(x) produces the largest integer n such that n <= x.

• RoundUp(x) produces the smallest integer n such that n >= x.

• RoundTowardsZero(x) produces RoundDown(x) if x > 0.0, 0 if x == 0.0, and RoundUp(x) if x < 0.0.

If x and y are integers, Align(x,y) = y * (x DIV y) is an integer.

If x is a bitstring and y is an integer, Align(x,y) = (Align(UInt(x),y))<Len(x)-1:0> is a bitstring of the same
length as x.

It is a pseudocode error to use either form of Align(x,y) in any context where y can be 0. In practice,
Align(x,y) is only used with y a constant power of two, and the bitstring form used with y = 2^n has the
effect of producing its argument with its n low-order bits forced to zero.

Scaling

If n is an integer, 2^n is the result of raising 2 to the power n and is of type real.

If x and n are integers, then:

• x << n = RoundDown(x * 2^n)

• x >> n = RoundDown(x * 2^(-n)).

Maximum and minimum

If x and y are integers or reals, then Max(x,y) and Min(x,y) are their maximum and minimum respectively.
Both are of type integer if both x and y are of type integer and of type real otherwise.
AppxI-16 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Pseudocode Definition
I.6 Statements and program structure

This section describes the control statements used in the pseudocode.

I.6.1 Simple statements

The following simple statements must all be terminated with a semicolon, as shown.

Assignments

An assignment statement takes the form:

<assignable_expression> = <expression>;

Procedure calls

A procedure call takes the form:

<procedure_name>(<arguments>);

Return statements

A procedure return takes the form:

return;

and a function return takes the form:

return <expression>;

where <expression> is of the type the function prototype line declared.

UNDEFINED

The statement:

UNDEFINED;

indicates a special case that replaces the behavior defined by the current pseudocode (apart from behavior
required to determine that the special case applies). The replacement behavior is that the Undefined
Instruction exception is taken.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxI-17

Pseudocode Definition
UNPREDICTABLE

The statement:

UNPREDICTABLE;

indicates a special case that replaces the behavior defined by the current pseudocode (apart from behavior
required to determine that the special case applies). The replacement behavior is not architecturally defined
and must not be relied upon by software. It must not constitute a security hole or halt or hang the system,
and must not be promoted as providing any useful information to software.

SEE…

The statement:

SEE <reference>;

indicates a special case that replaces the behavior defined by the current pseudocode (apart from behavior
required to determine that the special case applies). The replacement behavior is that nothing occurs as a
result of the current pseudocode because some other piece of pseudocode defines the required behavior. The
<reference> indicates where that other pseudocode can be found.

It usually refers to another instruction, but can also refer to another encoding or note of the same instruction.

IMPLEMENTATION_DEFINED

The statement:

IMPLEMENTATION_DEFINED <text>;

indicates a special case that specifies that the behavior is IMPLEMENTATION DEFINED. Following text can
give more information.

SUBARCHITECTURE_DEFINED

The statement:

SUBARCHITECTURE_DEFINED <text>;

indicates a special case that specifies that the behavior is SUBARCHITECTURE DEFINED. Following text can
give more information.
AppxI-18 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Pseudocode Definition
I.6.2 Compound statements

Indentation is normally used to indicate structure in compound statements. The statements contained in
structures such as if ... then ... else ... or procedure and function definitions are indented more deeply
than the statement itself, and their end is indicated by returning to the original indentation level or less.

Indentation is normally done by four spaces for each level.

if … then … else …

A multi-line if ... then ... else ... structure takes the form:

if <boolean_expression> then
<statement 1>
<statement 2>
...
<statement n>

elsif <boolean_expression> then
<statement a>
<statement b>
...
<statement z>

else
<statement A>
<statement B>
...
<statement Z>

The block of lines consisting of elsif and its indented statements is optional, and multiple such blocks can
be used.

The block of lines consisting of else and its indented statements is optional.

Abbreviated one-line forms can be used when there are only simple statements in the then part and (if
present) the else part, such as:

if <boolean_expression> then <statement 1>
if <boolean_expression> then <statement 1> else <statement A>
if <boolean_expression> then <statement 1> <statement 2> else <statement A>

Note
 In these forms, <statement 1>, <statement 2> and <statement A> must be terminated by semicolons. This and
the fact that the else part is optional are differences from the if ... then ... else ... expression.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxI-19

Pseudocode Definition
repeat ... until ...

A repeat ... until ... structure takes the form:

repeat
<statement 1>
<statement 2>
...
<statement n>

until <boolean_expression>;

while ... do

A while ... do structure takes the form:

while <boolean_expression>
<statement 1>
<statement 2>
...
<statement n>

for ...

A for ... structure takes the form:

for <assignable_expression> = <integer_expr1> to <integer_expr2>
<statement 1>
<statement 2>
...
<statement n>

case ... of ...

A case ... of ... structure takes the form:

case <expression> of
when <constant values>

<statement 1>
<statement 2>
...
<statement n>

... more "when" groups ...
otherwise

<statement A>
<statement B>
...
<statement Z>

where <constant values> consists of one or more constant values of the same type as <expression>, separated
by commas. Abbreviated one line forms of when and otherwise parts can be used when they contain only
simple statements.
AppxI-20 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Pseudocode Definition
If <expression> has a bitstring type, <constant values> can also include bitstring constants containing 'x'
bits. For details see Equality and non-equality testing on page AppxI-11.

Procedure and function definitions

A procedure definition takes the form:

<procedure name>(<argument prototypes>)
<statement 1>
<statement 2>
...
<statement n>

where the <argument prototypes> consists of zero or more argument definitions, separated by commas. Each
argument definition consists of a type name followed by the name of the argument.

Note
 This first prototype line is not terminated by a semicolon. This helps to distinguish it from a procedure call.

A function definition is similar, but also declares the return type of the function:

<return type> <function name>(<argument prototypes>)
<statement 1>
<statement 2>
...
<statement n>

An array-like function is similar, but with square brackets:

<return type> <function name>[<argument prototypes>]
<statement 1>
<statement 2>
...
<statement n>

An array-like function also usually has an assignment prototype:

<function name>[<argument prototypes>] = <value prototypes>
<statement 1>
<statement 2>
...
<statement n>

I.6.3 Comments

Two styles of pseudocode comment exist:

• // starts a comment that is terminated by the end of the line.

• /* starts a comment that is terminated by */.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxI-21

Pseudocode Definition
I.7 Miscellaneous helper procedures and functions

The functions described in this section are not part of the pseudocode specification. They are miscellaneous
helper procedures and functions used by pseudocode that are not described elsewhere in this manual. Each
has a brief description and a pseudocode prototype, except that the prototype is omitted where it is identical
to the section title.

I.7.1 ArchVersion()

This function returns the major version number of the architecture.

integer ArchVersion()

I.7.2 BadReg()

This function performs the check for the register numbers 13 and 15 that are not permitted for many Thumb
register specifiers.

// BadReg()
// ========

boolean BadReg(integer n)
 return n == 13 || n == 15;

I.7.3 Breakpoint()

This procedure causes a debug breakpoint to occur.

I.7.4 CallSupervisor()

This procedure causes the appropriate exception to occur to call a privileged supervisor.

In all architecture variants and profiles described in this manual, CallSupervisor() causes a Supervisor Call
exception.

I.7.5 Coproc_Accepted()

This function determines, for a coprocessor and one of its coprocessor instructions:

• Whether access to the coprocessor is permitted by the CPACR and, if the Security Extensions are
implemented, the NSACR.

• If access is permitted, whether the instruction is accepted by the coprocessor. The coprocessor
architecture definition specifies which instructions it accepts and in what circumstances.

It returns TRUE if access is permitted and the coprocessor accepts the instruction, and FALSE otherwise.

boolean Coproc_Accepted(integer cp_num, bits(32) instr)
AppxI-22 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Pseudocode Definition
I.7.6 Coproc_DoneLoading()

This function determines for an LDC instruction whether enough words have been loaded.

boolean Coproc_DoneLoading(integer cp_num, bits(32) instr)

I.7.7 Coproc_DoneStoring()

This function determines for an STC instruction whether enough words have been stored.

boolean Coproc_DoneStoring(integer cp_num, bits(32) instr)

I.7.8 Coproc_GetOneWord()

This function obtains the word for an MRC instruction from the coprocessor.

bits(32) Coproc_GetOneWord(integer cp_num, bits(32) instr)

I.7.9 Coproc_GetTwoWords()

This function obtains the two words for an MRRC instruction from the coprocessor.

(bits(32), bits(32)) Coproc_GetTwoWords(integer cp_num, bits(32) instr)

I.7.10 Coproc_GetWordToStore()

This function obtains the next word to store for an STC instruction from the coprocessor

bits(32) Coproc_GetWordToStore(integer cp_num, bits(32) instr)

I.7.11 Coproc_InternalOperation()

This procedure instructs a coprocessor to perform the internal operation requested by a CDP instruction.

Coproc_InternalOperation(integer cp_num, bits(32) instr)

I.7.12 Coproc_SendLoadedWord()

This procedure sends a loaded word for an LDC instruction to the coprocessor.

Coproc_SendLoadedWord(bits(32) word, integer cp_num, bits(32) instr)

I.7.13 Coproc_SendOneWord()

This procedure sends the word for an MCR instruction to the coprocessor.

Coproc_SendOneWord(bits(32) word, integer cp_num, bits(32) instr)
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxI-23

Pseudocode Definition
I.7.14 Coproc_SendTwoWords()

This procedure sends the two words for an MCRR instruction to the coprocessor.

Coproc_SendTwoWords(bits(32) word1, bits(32) word2, integer cp_num, bits(32) instr)

I.7.15 EndOfInstruction()

This procedure terminates processing of the current instruction.

I.7.16 GenerateAlignmentException()

This procedure generates the appropriate exception for an alignment error.

In all architecture variants and profiles described in this manual, GenerateAlignmentException() generates a
Data Abort exception.

I.7.17 GenerateCoprocessorException()

This procedure generates the appropriate exception for a rejected coprocessor instruction.

In all architecture variants and profiles described in this manual, GenerateCoprocessorException() generates
an Undefined Instruction exception.

I.7.18 GenerateIntegerZeroDivide()

This procedure generates the appropriate exception for a division by zero in the integer division instructions
SDIV and UDIV.

In the ARMv7-R profile, GenerateIntegerZeroDivide() generates an Undefined Instruction exception. The
integer division instructions do not exist in any other architecture variant or profile described in this manual,
so the GenerateIntegerZeroDivide() procedure is never called in those variants and profiles.

I.7.19 HaveMPExt()

This procedure returns true if the MP Extensions are implemented.

boolean HaveMPExt()

I.7.20 Hint_Debug()

This procedure supplies a hint to the debug system.

Hint_Debug(bits(4) option)
AppxI-24 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Pseudocode Definition
I.7.21 Hint_PreloadData()

This procedure performs a preload data hint.

Hint_PreloadData(bits(32) address)

I.7.22 Hint_PreloadDataForWrite()

This procedure performs a preload data hint with a probability that the use will be for a write.

Hint_PreloadDataForWrite(bits(32) address

I.7.23 Hint_PreloadInstr()

This procedure performs a preload instructions hint.

Hint_PreloadInstr(bits(32) address)

I.7.24 Hint_Yield()

This procedure performs a Yield hint.

I.7.25 IntegerZeroDivideTrappingEnabled()

This function returns TRUE if the trapping of divisions by zero in the integer division instructions SDIV and
UDIV is enabled, and FALSE otherwise.

In the ARMv7-R profile, this is controlled by the SCTLR.DZ bit, see c1, System Control Register (SCTLR)
on page B4-45. TRUE is returned if the bit is 1 and FALSE if it is 0. This function is never called in the A
profile.

boolean IntegerZeroDivideTrappingEnabled()

I.7.26 IsExternalAbort()

This function returns TRUE if the abort currently being processed is an external abort and FALSE otherwise.
It is only used in abort exception entry pseudocode.

boolean IsExternalAbort()

I.7.27 JazelleAcceptsExecution()

This function indicates whether Jazelle hardware will take over execution when a BXJ instruction is executed.

boolean JazelleAcceptsExecution()
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxI-25

ARM_2009_Q1
Inserted Text
)

Pseudocode Definition
I.7.28 MemorySystemArchitecture()

This function returns a value indicating which memory system architecture is in use on the system.

enumeration MemArch {MemArch_VMSA, MemArch_PMSA};

MemArch MemorySystemArchitecture()

I.7.29 ProcessorID()

This function returns an integer that uniquely identifies the executing processor in the system.

integer ProcessorID()

I.7.30 RemapRegsHaveResetValues()

This function returns TRUE if the remap registers PRRR and NMRR have their IMPLEMENTATION DEFINED
reset values, and FALSE otherwise.

boolean RemapRegsHaveResetValues()

I.7.31 SwitchToJazelleExecution()

This procedure passes control of execution to Jazelle hardware (for a BXJ instruction).

I.7.32 ThisInstr()

This function returns the currently-executing instruction. It is only used on 32-bit instruction encodings at
present.

bits(32) ThisInstr()

I.7.33 UnalignedSupport()

This function returns TRUE if the processor currently provides support for unaligned memory accesses, or
FALSE otherwise. This is always TRUE in ARMv7, controllable by the SCTLR.U bit in ARMv6, and
always FALSE before ARMv6.

boolean UnalignedSupport()
AppxI-26 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Appendix J
Pseudocode Index

This appendix provides an index to pseudocode operators and functions that occur elsewhere in this manual.
It contains the following sections:

• Pseudocode operators and keywords on page AppxJ-2

• Pseudocode functions and procedures on page AppxJ-6.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxJ-1

Pseudocode Index
J.1 Pseudocode operators and keywords

Table J-1 lists the pseudocode operators and keywords, and is an index to their descriptions:

Table J-1 Pseudocode operators and keywords

Operator Meaning See

- Unary minus on integers or reals Unary plus, minus and absolute value on
page AppxI-15

- Subtraction of integers, reals and
bitstrings

Addition and subtraction on page AppxI-15

+ Unary plus on integers or reals Unary plus, minus and absolute value on
page AppxI-15

+ Addition of integers, reals and
bitstrings

Addition and subtraction on page AppxI-15

(...) Around arguments of procedure Procedure calls on page AppxI-17, Procedure
and function definitions on page AppxI-21

(...) Around arguments of function General expression syntax on page AppxI-9,
Procedure and function definitions on
page AppxI-21

. Extract named member from a list Lists on page AppxI-7

. Extract named bit or field from a
register

Bitstring extraction on page AppxI-12

! Boolean NOT Operations on booleans on page AppxI-11

!= Compare for non-equality (any
type)

Equality and non-equality testing on
page AppxI-11

!= Compare for non-equality
(between integers and reals)

Comparisons on page AppxI-15

&& Boolean AND Operations on booleans on page AppxI-11

* Multiplication of integers and reals Multiplication on page AppxI-15

/ Division of integers and reals (real
result)

Division and modulo on page AppxI-15

/*...*/ Comment delimiters Comments on page AppxI-21

// Introduces comment terminated by
end of line

Comments on page AppxI-21
AppxJ-2 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Pseudocode Index
: Bitstring concatenation Bitstring concatenation and replication on
page AppxI-12

: Integer range in bitstring extraction
operator

Bitstring extraction on page AppxI-12

[...] Around array index Arrays on page AppxI-8

[...] Around arguments of array-like
function

General expression syntax on page AppxI-9,
Procedure and function definitions on
page AppxI-21

^ Boolean exclusive-OR Operations on booleans on page AppxI-11

|| Boolean OR Operations on booleans on page AppxI-11

< Less than comparison of integers
and reals

Comparisons on page AppxI-15

<...> Extraction of specified bits of
bitstring or integer

Bitstring extraction on page AppxI-12

<< Multiply integer by power of 2
(with rounding towards -infinity)

Scaling on page AppxI-16

<= Less than or equal comparison of
integers and reals

Comparisons on page AppxI-15

= Assignment Assignments on page AppxI-17

== Compare for equality (any type) Equality and non-equality testing on
page AppxI-11

== Compare for equality (between
integers and reals)

Comparisons on page AppxI-15

> Greater than comparison of
integers and reals

Comparisons on page AppxI-15

>= Greater than or equal comparison
of integers and reals

Comparisons on page AppxI-15

>> Divide integer by power of 2 (with
rounding towards -infinity)

Scaling on page AppxI-16

2^N Power of two (real result) Scaling on page AppxI-16

Table J-1 Pseudocode operators and keywords (continued)

Operator Meaning See
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxJ-3

Pseudocode Index
AND Bitwise AND of bitstrings Logical operations on bitstrings on
page AppxI-13

array Keyword introducing array type
definition

Arrays on page AppxI-8

bit Bitstring type of length 1 Bitstrings on page AppxI-5

bits(N) Bitstring type of length N Bitstrings on page AppxI-5

boolean Boolean type Booleans on page AppxI-6

case ... of ... Control structure case ... of ... on page AppxI-20

DIV Quotient from integer division Division and modulo on page AppxI-15

enumeration Keyword introducing enumeration
type definition

Enumerations on page AppxI-6

EOR Bitwise EOR of bitstrings Logical operations on bitstrings on
page AppxI-13

FALSE Boolean constant Booleans on page AppxI-6

for ... Control structure for ... on page AppxI-20

if ... then ...

else ...

Expression selecting between two
values

Conditional selection on page AppxI-11

if ... then ...

else ...

Control structure if … then … else … on page AppxI-19

IMPLEMENTATION_DEFINED Describes IMPLEMENTATION
DEFINED behavior

IMPLEMENTATION_DEFINED on
page AppxI-18

integer Unbounded integer type Integers on page AppxI-6

MOD Remainder from integer division Division and modulo on page AppxI-15

OR Bitwise OR of bitstrings Logical operations on bitstrings on
page AppxI-13

otherwise Introduces default case in case ...

of ... control structure
case ... of ... on page AppxI-20

real Real number type Reals on page AppxI-6

repeat ... until ... Control structure repeat ... until ... on page AppxI-20

Table J-1 Pseudocode operators and keywords (continued)

Operator Meaning See
AppxJ-4 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Pseudocode Index
return Procedure or function return Return statements on page AppxI-17

SEE Points to other pseudocode to use
instead

SEE… on page AppxI-18

SUBARCHITECTURE_DEFINED Describes SUBARCHITECTURE
DEFINED behavior

SUBARCHITECTURE_DEFINED on
page AppxI-18

TRUE Boolean constant Booleans on page AppxI-6

UNDEFINED Cause Undefined Instruction
exception

UNDEFINED on page AppxI-17

UNKNOWN Unspecified value General expression syntax on page AppxI-9

UNPREDICTABLE Unspecified behavior UNPREDICTABLE on page AppxI-18

when Introduces specific case in
case ... of ... control structure

case ... of ... on page AppxI-20

while ... do ... Control structure while ... do on page AppxI-20

Table J-1 Pseudocode operators and keywords (continued)

Operator Meaning See
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxJ-5

Pseudocode Index
J.2 Pseudocode functions and procedures

Table J-2 lists the pseudocode functions and procedures used in this manual, and is an index to their
descriptions:

Table J-2 Pseudocode functions and procedures

Function Meaning See

_Mem[] Basic memory accesses Basic memory accesses on
page B2-30

Abs() Absolute value of an integer or real Unary plus, minus and absolute
value on page AppxI-15

AddWithCarry() Addition of bitstrings, with carry input
and carry/overflow outputs

Pseudocode details of addition and
subtraction on page A2-8

AdvancedSIMDExpandImm() Expansion of immediates for Advanced
SIMD instructions

Operation on page A7-23

Align() Align integer or bitstring to multiple of
an integer

Rounding and aligning on
page AppxI-16

AlignmentFault() Generate an Alignment fault on the
memory system in use

Interfaces to memory system specific
pseudocode on page B2-30

AlignmentFaultP() Generate an Alignment fault on the
PMSA memory system

Alignment fault on page B4-79

AlignmentFaultV() Generate an Alignment fault on the
VMSA memory system

Alignment fault on page B3-156

ALUWritePC() Write value to PC, with interworking for
ARM only from ARMv7

Pseudocode details of operations on
ARM core registers on page A2-12

ArchVersion() Major version number of the architecture ArchVersion() on page AppxI-22

ARMExpandImm() Expansion of immediates for ARM
instructions

Operation on page A5-10

ARMExpandImm_C() Expansion of immediates for ARM
instructions, with carry output

ASR() Arithmetic shift right of a bitstring Shift and rotate operations on
page A2-5

ASR_C() Arithmetic shift right of a bitstring, with
carry output

AssignToTLB() Allocate new TLB entry TLB operations on page B3-158
AppxJ-6 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Pseudocode Index
BadMode() Test whether mode number is valid Pseudocode details of mode
operations on page B1-8

BadReg() Test for register number 13 or 15 BadReg() on page AppxI-22

BigEndian() Returns TRUE if big-endian memory
accesses selected

ENDIANSTATE on page A2-19

BigEndianReverse() Endian-reverse the bytes of a bitstring Reverse endianness on page B2-34

BitCount() Count number of ones in a bitstring Bitstring count on page AppxI-13

BKPTInstrDebugEvent() Generate a debug event for a BKPT
instruction

Debug events on page C3-27

BranchTo() Continue execution at specified address Pseudocode details of ARM core
register operations on page B1-12

BranchWritePC() Write value to PC, without interworking Pseudocode details of operations on
ARM core registers on page A2-12

BreakpointDebugEvent() Generate a debug event for a breakpoint Debug events on page C3-27

BRPLinkMatch() Check whether an access matches a
linked Breakpoint Register Pair

Breakpoints and Vector Catches on
page C3-28

BRPMatch() Check whether an instruction unit access
matches a Breakpoint Register Pair

BXWritePC() Write value to PC, with interworking Pseudocode details of operations on
ARM core registers on page A2-12

CallSupervisor() Generate exception for SVC instruction CallSupervisor() on page AppxI-22

CheckAdvSIMDEnabled() Undefined Instruction exception if the
Advanced SIMD extension is not enabled

Pseudocode details of enabling the
Advanced SIMD and VFP extensions
on page B1-65

CheckAdvSIMDOrVFPEnabled() Undefined Instruction exception if the
specified one of the Advanced SIMD and
VFP extensions is not enabled

Pseudocode details of enabling the
Advanced SIMD and VFP extensions
on page B1-65

CheckDomain() VMSA check for Domain fault Domain checking on page B3-157

CheckPermissions() Memory system check of access
permissions

Access permission checking on
page B2-37

Table J-2 Pseudocode functions and procedures (continued)

Function Meaning See
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxJ-7

ARM_2010_Q3
Cross-Out

Pseudocode Index
CheckTLB() Check whether TLB entry exists for an
address

TLB operations on page B3-158

CheckVFPEnabled() Undefined Instruction exception if the
VFP extension is not enabled

Pseudocode details of enabling the
Advanced SIMD and VFP extensions
on page B1-65

ClearEventRegister() Clear the Event Register of the current
processor

Pseudocode details of the Wait For
Event lock mechanism on
page B1-46

ClearExclusiveByAddress() Clear global exclusive monitor records
for an address range

Exclusive monitors operations on
page B2-35

ClearExclusiveLocal() Clear local exclusive monitor record of a
processor

ConditionPassed() Returns TRUE if the current instruction
passes its condition check

Pseudocode details of conditional
execution on page A8-9

Consistent() Test identically-named instruction bits or
fields are identical

Instruction encoding diagrams and
pseudocode on page AppxI-2

Coproc_Accepted() Determine whether a coprocessor
accepts an instruction

Coproc_Accepted() on
page AppxI-22

Coproc_DoneLoading() Returns TRUE if enough words have
been loaded, for an LDC or LDC2
instruction

Coproc_DoneLoading() on
page AppxI-23

Coproc_DoneStoring() Returns TRUE if enough words have
been stored, for an STC or STC2
instruction

Coproc_DoneStoring() on
page AppxI-23

Coproc_GetOneWord() Get word from coprocessor, for an MRC
or MRC2 instruction

Coproc_GetOneWord() on
page AppxI-23

Coproc_GetTwoWords() Get two words from coprocessor, for an
MRRC or MRRC2 instruction

Coproc_GetTwoWords() on
page AppxI-23

Coproc_GetWordToStore() Get next word to store from coprocessor,
for STC or STC2 instruction

Coproc_GetWordToStore() on
page AppxI-23

Coproc_InternalOperation() Instruct coprocessor to perform an
internal operation, for a CDP or CDP2
instruction

Coproc_InternalOperation() on
page AppxI-23

Table J-2 Pseudocode functions and procedures (continued)

Function Meaning See
AppxJ-8 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Pseudocode Index
Coproc_SendLoadedWord() Send next loaded word to coprocessor,
for LDC or LDC2 instruction

Coproc_SendLoadedWord() on
page AppxI-23

Coproc_SendOneWord() Send word to coprocessor, for an MCR or
MCR2 instruction

Coproc_SendOneWord() on
page AppxI-23

Coproc_SendTwoWords() Send two words to coprocessor, for an
MCRR or MCRR2 instruction

Coproc_SendTwoWords() on
page AppxI-24

CountLeadingSignBits() Number of identical sign bits at left end
of bitstring, excluding the leftmost bit
itself

Lowest and highest set bits of a
bitstring on page AppxI-13

CountLeadingZeroBits() Number of zeros at left end of bitstring

CPSRWriteByInstr() CPSR write by an instruction Pseudocode details of PSR
operations on page B1-20

CurrentCond() Returns condition for current instruction Pseudocode details of conditional
execution on page A8-9

CurrentInstrSet() Returns the instruction set currently in
use

ISETSTATE on page A2-15

CurrentModeIsPrivileged() Returns TRUE if current mode is
privileged

Pseudocode details of mode
operations on page B1-8

CurrentModeIsUserOrSystem() Returns TRUE if current mode is User or
System mode

D[] Doubleword / double-precision view of
the Advanced SIMD and VFP registers

Advanced SIMD and VFP extension
registers on page A2-21

DataAbort() Cause a Data Abort exception of a
specified type

Data Abort exception on page B2-39

DataMemoryBarrier() Perform a Data Memory Barrier
operation

Pseudocode details of memory
barriers on page A3-50

DataSynchronizationBarrier() Perform a Data Synchronization Barrier
operation

Debug_CheckDataAccess() Check a data access for watchpoints Watchpoints on page C3-35

Debug_CheckInstruction() Check an instruction access for
breakpoints and vector catches

Breakpoints and Vector Catches on
page C3-28

Table J-2 Pseudocode functions and procedures (continued)

Function Meaning See
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxJ-9

Pseudocode Index
DecodeImmShift() Decode shift type and amount for an
immediate shift

Pseudocode details of
instruction-specified shifts and
rotates on page A8-11

DecodeRegShift() Decode shift type for a
register-controlled shift

DefaultAttrs() Determine memory attributes for an
address in the PMSA default memory
map

Default memory map attributes on
page B4-81

DefaultTEXDecode() Determine default memory attributes for
a set of TEX[2:0], C, B bits

Default memory access decode on
page B2-37

Elem[] Access element of a vector Advanced SIMD vectors on
page A2-26

EncodingSpecificOperations() Invoke encoding-specific pseudocode
and should be checks

Instruction encoding diagrams and
pseudocode on page AppxI-2

EndOfInstruction() Terminate processing of current
instruction

EndOfInstruction() on
page AppxI-24

EventRegistered() Determine whether the Event Register of
the current processor is set

Pseudocode details of the Wait For
Event lock mechanism on
page B1-46

ExclusiveMonitorsPass() Check whether Store-Exclusive
operation has control of exclusive
monitors

Exclusive monitors operations on
page B2-35

ExcVectorBase() Return non-Monitor mode exception
base address for current security state

Operation on page B1-33

FixedToFP() Convert integer or fixed-point to
floating-point

Conversions on page A2-64

FPAbs() Floating-point absolute value Negation and absolute value on
page A2-47

FPAdd() Floating-point addition Addition and subtraction on
page A2-55

FPCompare() Floating-point comparison, producing
NZCV flag result

Comparisons on page A2-53

FPCompareEQ() Floating-point test for equality

Table J-2 Pseudocode functions and procedures (continued)

Function Meaning See
AppxJ-10 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Pseudocode Index
FPCompareGE() Floating-point test for greater than or
equal

Comparisons on page A2-53

FPCompareGT() Floating-point test for greater than

FPDefaultNaN() Generate floating-point default NaN Generation of specific floating-point
values on page A2-46

FPDiv() Floating-point division Multiplication and division on
page A2-57

FPDoubleToSingle() Convert double-precision floating-point
to single-precision floating-point

Conversions on page A2-64

FPHalfToSingle() Convert half-precision floating-point to
single-precision floating-point

FPInfinity() Generate floating-point infinity Generation of specific floating-point
values on page A2-46

FPMax() Floating-point maximum Maximum and minimum on
page A2-55

FPMaxNormal() Generate maximum normalized
floating-point value

Generation of specific floating-point
values on page A2-46

FPMin() Floating-point minimum Maximum and minimum on
page A2-55

FPMul() Floating-point multiplication Multiplication and division on
page A2-57

FPNeg() Floating-point negation Negation and absolute value on
page A2-47

FPProcessException() Process a floating-point exception Floating-point exception and NaN
handling on page A2-49

FPProcessNaN() Generate correct result and exceptions
for a NaN operand

FPProcessNaNs() Perform NaN operand checks and
processing for a 2-operand floating-point
operation

Table J-2 Pseudocode functions and procedures (continued)

Function Meaning See
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxJ-11

Pseudocode Index
FPRecipEstimate() Floating-point reciprocal estimate Reciprocal estimate and step on
page A2-58

FPRecipStep() Floating-point 2-xy operation for
Newton-Raphson reciprocal iteration

FPRound() Floating-point rounding Floating-point rounding on
page A2-51

FPSingleToDouble() Convert single-precision floating-point
to double-precision floating-point

Conversions on page A2-64

FPSingleToHalf() Convert single-precision floating-point
to half-precision floating-point

FPRSqrtEstimate() Floating-point reciprocal square root
estimate

Reciprocal square root on
page A2-61

FPRSqrtStep() Floating-point (3-xy)/2 operation for
Newton-Raphson reciprocal square root
iteration

FPSqrt() Floating-point square root Square root on page A2-60

FPSub() Floating-point subtraction Addition and subtraction on
page A2-55

FPThree() Generate floating-point value 3.0 Generation of specific floating-point
values on page A2-46

FPToFixed() Convert floating-point to integer or
fixed-point

Conversions on page A2-64

FPTwo() Generate floating-point value 2.0 Generation of specific floating-point
values on page A2-46

FPUnpack() Produce type, sign bit and real value of a
floating-point number

Floating-point value unpacking on
page A2-48

FPZero() Generate floating-point zero Generation of specific floating-point
values on page A2-46

GenerateAlignmentException() Generate the exception for a failed
address alignment check

GenerateAlignmentException() on
page AppxI-24

GenerateCoprocessorException() Generate the exception for an
unclaimed coprocessor
instruction

GenerateCoprocessorException()
on page AppxI-24

Table J-2 Pseudocode functions and procedures (continued)

Function Meaning See
AppxJ-12 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Pseudocode Index
GenerateIntegerZeroDivide() Generate the exception for a trapped
divide-by-zero for an integer divide
instruction

GenerateIntegerZeroDivide() on
page AppxI-24

HaveMPExt() Returns TRUE if the MP Extensions are
implemented

HaveMPExt() on page AppxI-24

HaveSecurityExt() Returns TRUE if the Security Extensions
are implemented

Pseudocode details of Secure state
operations on page B1-28

HighestSetBit() Position of leftmost 1 in a bitstring Lowest and highest set bits of a
bitstring on page AppxI-13

Hint_Debug() Perform function of DBG hint instruction Hint_Debug() on page AppxI-24

Hint_PreloadData() Perform function of PLD memory hint
instruction

Hint_PreloadData() on
page AppxI-25

Hint_PreloadDataForWrite() Perform function of PLDW Memory hint
instruction

Hint_PreloadDataForWrite() on
page AppxI-25

Hint_PreloadInstr() Perform function of PLI memory hint
instruction

Hint_PreloadInstr() on
page AppxI-25

Hint_Yield() Perform function of YIELD hint
instruction

Hint_Yield() on page AppxI-25

InITBlock() Return TRUE if current instruction is in
an IT block

ITSTATE on page A2-17

InstructionSynchronizationBarrier() Perform an Instruction
Synchronization Barrier operation

Pseudocode details of memory
barriers on page A3-50

Int() Convert bitstring to integer in
argument-specified fashion

Converting bitstrings to integers on
page AppxI-14

IntegerZeroDivideTrappingEnabled() Check whether divide-by-zero
trapping is enabled for integer
divide instructions

IntegerZeroDivideTrappingEnabled
() on page AppxI-25

IsExclusiveGlobal() Check a global exclusive access record Exclusive monitors operations on
page B2-35

IsExclusiveLocal() Check a local exclusive access record

IsExternalAbort() Returns TRUE if abort being processed is
an external abort

IsExternalAbort() on page AppxI-25

Table J-2 Pseudocode functions and procedures (continued)

Function Meaning See
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxJ-13

Pseudocode Index
IsOnes() Test for all-ones bitstring (Boolean
result)

Testing a bitstring for being all zero
or all ones on page AppxI-13

IsOnesBit() Test for all-ones bitstring (bit result)

IsSecure() Returns TRUE in Secure state or if no
Security Extensions

Pseudocode details of Secure state
operations on page B1-28

IsZero() Test for all-zeros bitstring (Boolean
result)

Testing a bitstring for being all zero
or all ones on page AppxI-13

IsZeroBit() Test for all-zeros bitstring (bit result)

ITAdvance() Advance the ITSTATE bits to their values
for the next instruction

ITSTATE on page A2-17

JazelleAcceptsExecution() Returns TRUE if the Jazelle extension
can start bytecode execution

JazelleAcceptsExecution() on
page AppxI-25

LastInITBlock() Return TRUE if current instruction is the
last instruction of an IT block

ITSTATE on page A2-17

Len() Bitstring length Bitstring length and most significant
bit on page AppxI-12

LoadWritePC() Write value to PC, with
interworking (without it before
ARMv5T)

Pseudocode details of operations on
ARM core registers on page A2-12

LookUpRName() Find banked register for specified
register number and mode

Pseudocode details of ARM core
register operations on page B1-12

LowestSetBit() Position of rightmost 1 in a bitstring Lowest and highest set bits of a
bitstring on page AppxI-13

LSL() Logical shift left of a bitstring Shift and rotate operations on
page A2-5

LSL_C() Logical shift left of a bitstring, with carry
output

LSR() Logical shift right of a bitstring

LSR_C() Logical shift right of a bitstring, with
carry output

MarkExclusiveGlobal() Set a global exclusive access record Exclusive monitors operations on
page B2-35

MarkExclusiveLocal() Set a local exclusive access record

Table J-2 Pseudocode functions and procedures (continued)

Function Meaning See
AppxJ-14 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Pseudocode Index
Max() Maximum of integers or reals Maximum and minimum on
page AppxI-16

MemA[] Memory access that must be aligned, at
current privilege level

Aligned memory accesses on
page B2-31

MemA_unpriv[] Memory access that must be aligned,
unprivileged

MemA_with_priv[] Memory access that must be aligned, at
specified privilege level

MemorySystemArchitecture() Return memory architecture of system
(VMSA or PMSA)

MemorySystemArchitecture() on
page AppxI-26

MemU[] Memory access without alignment
requirement, at current privilege level

Unaligned memory accesses on
page B2-32

MemU_unpriv[] Memory access without alignment
requirement, unprivileged

MemU_with_priv[] Memory access without alignment
requirement, at specified privilege level

Min() Minimum of integers or reals Maximum and minimum on
page AppxI-16

NOT() Bitwise inversion of a bitstring Logical operations on bitstrings on
page AppxI-13

NullCheckIfThumbEE() Perform base register null check if a
ThumbEE instruction

Null checking on page A9-3

Ones() All-ones bitstring Bitstring concatenation and
replication on page AppxI-12

PCStoreValue() Value stored when an ARM instruction
stores the PC

Pseudocode details of operations on
ARM core registers on page A2-12

PolynomialMult() Multiplication of polynomials over {0,
1}

Pseudocode details of polynomial
multiplication on page A2-67

ProcessorID() Return integer identifying the processor ProcessorID() on page AppxI-26

Q[] Quadword view of the Advanced SIMD
and VFP registers

Advanced SIMD and VFP extension
registers on page A2-21

Table J-2 Pseudocode functions and procedures (continued)

Function Meaning See
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxJ-15

Pseudocode Index
R[] Access the main ARM core register
bank, using current mode

Pseudocode details of ARM core
register operations on page B1-12

RBankSelect() Evaluate register banking for R13, R14

RemapRegsHaveResetValues() Check PRRR and NMRR for reset values RemapRegsHaveResetValues() on
page AppxI-26

Replicate() Bitstring replication Bitstring concatenation and
replication on page AppxI-12

RfiqBankSelect() Evaluate register banking for R8-R12 Pseudocode details of ARM core
register operations on page B1-12

Rmode[] Access the main ARM core register
bank, using specified mode

ROR() Rotate right of a bitstring Shift and rotate operations on
page A2-5

ROR_C() Rotate right of a bitstring, with carry
output

RoundDown() Round real to integer (rounding towards
–infinity)

Rounding and aligning on
page AppxI-16

RoundTowardsZero() Round real to integer (rounding towards
zero)

RoundUp() Round real to integer (rounding towards
+infinity)

RRX() Rotate right with extend of a bitstring Shift and rotate operations on
page A2-5

RRX_C() Rotate right with extend of a bitstring,
with carry output

S[] Single word / single-precision view of
the Advanced SIMD and VFP registers

Advanced SIMD and VFP extension
registers on page A2-21

Sat() Convert integer to bitstring with specified
saturation

Pseudocode details of saturation on
page A2-9

SatQ() Convert integer to bitstring with specified
saturation, with saturated flag output

SelectInstrSet() Sets the instruction set currently in use ISETSTATE on page A2-15

Table J-2 Pseudocode functions and procedures (continued)

Function Meaning See
AppxJ-16 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
R8-

ARM_2009_Q4
Sticky Note
This is a clarification of the extent of the use of this function. In evaluating the banking of R8-R12, RfiqBankSelect() calls this function.

Pseudocode Index
SendEvent() Perform function of SEV hint instruction Pseudocode details of the Wait For
Event lock mechanism on
page B1-46

SerializeVFP() Ensure exceptional conditions in
preceding VFP instructions have been
detected

Asynchronous bounces,
serialization, and VFP exception
barriers on page B1-70

SetExclusiveMonitors() Set exclusive monitors for a
Load-Exclusive operation

Exclusive monitors operations on
page B2-35

Shift() Perform a specified shift by a specified
amount on a bitstring

Pseudocode details of
instruction-specified shifts and
rotates on page A8-11

Shift_C() Perform a specified shift by a specified
amount on a bitstring, with carry output

SignedSat() Convert integer to bitstring with signed
saturation

Pseudocode details of saturation on
page A2-9

SignedSatQ() Convert integer to bitstring with signed
saturation, with saturated flag output

SignExtend() Extend bitstring to left with copies of its
leftmost bit

Zero-extension and sign-extension of
bitstrings on page AppxI-13

SInt() Convert bitstring to integer in signed
(two's complement) fashion

Converting bitstrings to integers on
page AppxI-14

SPSR[] Access the SPSR of the current mode Pseudocode details of PSR
operations on page B1-20

SPSRWriteByInstr() SPSR write by an instruction

SwitchToJazelleExecution() Start Jazelle extension execution of
bytecodes

SwitchToJazelleExecution() on
page AppxI-26

TakeDataAbortException() Perform a Data Abort exception entry Data Abort exception on page B1-55

TakeFIQException() Perform an FIQ interrupt exception entry FIQ exception on page B1-60

TakeIRQException() Perform an IRQ interrupt exception entry IRQ exception on page B1-58

TakePrefetchAbortException() Perform a Prefetch Abort exception entry Prefetch Abort exception on
page B1-54

TakeReset() Perform a Reset exception entry Reset on page B1-48

Table J-2 Pseudocode functions and procedures (continued)

Function Meaning See
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxJ-17

Pseudocode Index
TakeSMCException() Perform a Secure Monitor Call exception
entry

Secure Monitor Call (SMC)
exception on page B1-53

TakeSVCException() Perform a Supervisor Call exception
entry

Supervisor Call (SVC) exception on
page B1-52

TakeUndefInstrException() Perform an Undefined Instruction
exception entry

Undefined Instruction exception on
page B1-49

ThisInstr() Returns the bitstring encoding of the
current instruction

ThisInstr() on page AppxI-26

ThumbExpandImm() Expansion of immediates for Thumb
instructions

Operation on page A6-18

ThumbExpandImm_C() Expansion of immediates for Thumb
instructions, with carry output

TopBit() Leftmost bit of a bitstring Bitstring length and most significant
bit on page AppxI-12

TranslateAddress() Perform address translation and obtain
memory attributes for a memory access

Interfaces to memory system specific
pseudocode on page B2-30

TranslateAddressP() Perform address translation and obtain
memory attributes for a PMSA memory
access

Address translation on page B4-79

TranslateAddressV() Perform address translation and obtain
memory attributes for a VMSA memory
access

TranslateVAtoMVA() Fast Context Switch Extension virtual
address to modified virtual address
translation

Modified virtual addresses on
page AppxE-3

TranslationTableWalk() Perform VMSA translation table walk Translation table walk on
page B3-158

UInt() Convert bitstring to integer in unsigned
fashion

Converting bitstrings to integers on
page AppxI-14

UnalignedSupport() Check whether unaligned memory
access support (introduced in ARMv6) is
in use

UnalignedSupport() on
page AppxI-26

Table J-2 Pseudocode functions and procedures (continued)

Function Meaning See
AppxJ-18 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2010_Q3
Line

ARM_2010_Q3
Inserted Text
 Address translation on page B3-157 [PDF page 1431]

ARM_2010_Q3
Sticky Note
This cross-reference applies only to the TranslateAddressP() function. See the insertion on next entry for the correct reference for TranslateAddressV()

Pseudocode Index
UnsignedRecipEstimate() Unsigned fixed-point reciprocal estimate Reciprocal estimate and step on
page A2-58

UnsignedRSqrtEstimate() Unsigned fixed-point reciprocal square
root estimate

Reciprocal square root on
page A2-61

UnsignedSat() Convert integer to bitstring with
unsigned saturation

Pseudocode details of saturation on
page A2-9

UnsignedSatQ() Convert integer to bitstring with
unsigned saturation, with saturated flag
output

VCR_OnTakingInterrupt() Track most recently used interrupt
vectors for vector catch purposes

Breakpoints and Vector Catches on
page C3-28

VCRMatch() Check whether a vector catch occurs for
an instruction unit access

VCRVectorMatch() Check whether an instruction unit access
matches a vector

VectorCatchDebugEvent() Generate a debug event for a vector catch Debug events on page C3-27

VFPExcBarrier() Ensure all outstanding VFP exception
processing has occurred

Asynchronous bounces,
serialization, and VFP exception
barriers on page B1-70

VFPExpandImm() Expansion of immediates for VFP
extension instructions

Operation on page A7-25

VFPSmallRegisterBank() Returns TRUE if 16-doubleword VFP
extension register bank implemented

Pseudocode details of Advanced
SIMD and VFP extension registers
on page A2-23

WaitForEvent() Wait until WFE instruction completes Pseudocode details of the Wait For
Event lock mechanism on
page B1-46

WaitForInterrupt() Wait until WFI instruction completes Pseudocode details of Wait For
Interrupt on page B1-48

WatchpointDebugEvent() Generate a debug event for a watchpoint Debug events on page C3-27

Table J-2 Pseudocode functions and procedures (continued)

Function Meaning See
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxJ-19

Pseudocode Index
WRPMatch() Check whether a data access matches a
Watchpoint Register Pair

Watchpoints on page C3-35

ZeroExtend() Extend bitstring to left with zero bits Zero-extension and sign-extension of
bitstrings on page AppxI-13

Zeros() All-zeros bitstring Bitstring concatenation and
replication on page AppxI-12

Table J-2 Pseudocode functions and procedures (continued)

Function Meaning See
AppxJ-20 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Appendix K
Register Index

This appendix provides an index to the descriptions of the ARM registers in this manual. It contains the
following section:

• Register index on page AppxK-2.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxK-1

Register Index
K.1 Register index

Table K-1 shows the main description of each register. The CP15 control coprocessor registers are described
separately for VMSA and PMSA implementations, in the sections:

• CP15 registers for a VMSA implementation on page B3-64

• CP15 registers for a PMSA implementation on page B4-22.

Table K-1 lists both descriptions of these registers. The PMSA and VMSA implementations of a register
can differ.

Some CP15 registers are only present in a PMSA implementation, or only in a VMSA implementation. This
is shown in Table K-1.

Table K-1 Register index

Register Ina Description, see

Access Permissions, pre-ARMv6 c5, Memory Region Access Permissions Registers (DAPR and IAPR) on
page AppxH-45

ACTLR PMSA c1, Implementation defined Auxiliary Control Register (ACTLR) on
page B4-50

VMSA c1, Implementation defined Auxiliary Control Register (ACTLR) on
page B3-103

ADFSR PMSA c5, Auxiliary Data and Instruction Fault Status Registers (ADFSR and
AIFSR) on page B4-56

VMSA c5, Auxiliary Data and Instruction Fault Status Registers (ADFSR and
AIFSR) on page B3-123

AIDR PMSA c0, Implementation defined Auxiliary ID Register (AIDR) on page B4-43

VMSA c0, Implementation defined Auxiliary ID Register (AIDR) on page B3-94

AIFSR PMSA c5, Auxiliary Data and Instruction Fault Status Registers (ADFSR and
AIFSR) on page B4-56

VMSA c5, Auxiliary Data and Instruction Fault Status Registers (ADFSR and
AIFSR) on page B3-123

APSR The Application Program Status Register (APSR) on page A2-14

Authentication Status, Debug Authentication Status Register (DBGAUTHSTATUS) on page C10-96

Auxiliary Control PMSA c1, Implementation defined Auxiliary Control Register (ACTLR) on
page B4-50

VMSA c1, Implementation defined Auxiliary Control Register (ACTLR) on
page B3-103
AppxK-2 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Register Index
Auxiliary Fault Status PMSA c5, Auxiliary Data and Instruction Fault Status Registers (ADFSR and
AIFSR) on page B4-56

VMSA c5, Auxiliary Data and Instruction Fault Status Registers (ADFSR and
AIFSR) on page B3-123

Auxiliary Feature 0 c0, Auxiliary Feature Register 0 (ID_AFR0) on page B5-8

Auxiliary ID PMSA c0, Implementation defined Auxiliary ID Register (AIDR) on page B4-43

VMSA c0, Implementation defined Auxiliary ID Register (AIDR) on page B3-94

Block Transfer Status, ARMv6 c7, Block Transfer Status Register on page AppxG-43

BPIALL PMSA CP15 c7, Cache and branch predictor maintenance functions on
page B4-68

VMSA CP15 c7, Cache and branch predictor maintenance functions on
page B3-126

BPIALLIS PMSA CP15 c7, Cache and branch predictor maintenance functions on
page B4-68

VMSA CP15 c7, Cache and branch predictor maintenance functions on
page B3-126

BPIMVA PMSA CP15 c7, Cache and branch predictor maintenance functions on
page B4-68

VMSA CP15 c7, Cache and branch predictor maintenance functions on
page B3-126

Breakpoint Control Breakpoint Control Registers (DBGBCR) on page C10-49

Breakpoint value Breakpoint Value Registers (DBGBVR) on page C10-48

c0 - c15 Generic Instruction descriptions of the CDP, CDP2, LDC, LDC2, MCR, MCR2, MCRR, MCRR2,
MRC, MRC2, MRRC, MRRC2, STC, and STC2 generic coprocessor instructions.

PMSA Summary of CP15 register descriptions in a PMSA implementation on
page B4-24

VMSA Summary of CP15 register descriptions in a VMSA implementation on
page B3-66

Cache Behavior Override, ARMv6
Security Extensions

c9, Cache Behavior Override Register (CBOR) on page AppxG-49

Table K-1 Register index (continued)

Register Ina Description, see
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxK-3

Register Index
Cache Dirty Status, ARMv6 c7, Cache Dirty Status Register (CDSR) on page AppxG-39

Cache Level ID PMSA c0, Cache Level ID Register (CLIDR) on page B4-41

VMSA c0, Cache Level ID Register (CLIDR) on page B3-92

Cache Lockdown, pre-ARMv7 c9, cache lockdown support on page AppxH-52

Cache Size ID PMSA c0, Cache Size ID Registers (CCSIDR) on page B4-40

VMSA c0, Cache Size ID Registers (CCSIDR) on page B3-91

Cache Type PMSA c0, Cache Type Register (CTR) on page B4-34

VMSA c0, Cache Type Register (CTR) on page B3-83

Cacheability, pre-ARMv6 c2, Memory Region Cacheability Registers (DCR and ICR) on
page AppxH-44

CBOR, ARMv6 Security Extensions c9, Cache Behavior Override Register (CBOR) on page AppxG-49

CCSIDR PMSA c0, Cache Size ID Registers (CCSIDR) on page B4-40

VMSA c0, Cache Size ID Registers (CCSIDR) on page B3-91

CDSR, ARMv6 c7, Cache Dirty Status Register (CDSR) on page AppxG-39

Claim Tag Clear Claim Tag Clear Register (DBGCLAIMCLR) on page C10-93

Claim Tag Set Claim Tag Set Register (DBGCLAIMSET) on page C10-92

CLIDR PMSA c0, Cache Level ID Register (CLIDR) on page B4-41

VMSA c0, Cache Level ID Register (CLIDR) on page B3-92

Component ID Debug Component Identification Registers (DBGCID0 to DBGCID3)
on page C10-102

Context ID PMSA c13, Context ID Register (CONTEXTIDR) on page B4-76

VMSA c13, Context ID Register (CONTEXTIDR) on page B3-153

Context ID Sampling, Debug Context ID Sampling Register (DBGCIDSR) on page C10-39

CONTEXTIDR PMSA c13, Context ID Register (CONTEXTIDR) on page B4-76

VMSA c13, Context ID Register (CONTEXTIDR) on page B3-153

Table K-1 Register index (continued)

Register Ina Description, see
AppxK-4 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Register Index
Control PMSA c1, System Control Register (SCTLR) on page B4-45

VMSA c1, System Control Register (SCTLR) on page B3-96

Coprocessor Access Control PMSA c1, Coprocessor Access Control Register (CPACR) on page B4-51

VMSA c1, Coprocessor Access Control Register (CPACR) on page B3-104

Count Enable Clear c9, Count Enable Clear Register (PMCNTENCLR) on page C10-109

Count Enable Set c9, Count Enable Set Register (PMCNTENSET) on page C10-108

CPACR PMSA c1, Coprocessor Access Control Register (CPACR) on page B4-51

VMSA c1, Coprocessor Access Control Register (CPACR) on page B3-104

CPSR The Current Program Status Register (CPSR) on page B1-14

CSSELR PMSA c0, Cache Size Selection Register (CSSELR) on page B4-43

VMSA c0, Cache Size Selection Register (CSSELR) on page B3-95

CTR PMSA c0, Cache Type Register (CTR) on page B4-34

VMSA c0, Cache Type Register (CTR) on page B3-83

Cycle Count c9, Cycle Count Register (PMCCNTR) on page C10-114

D0 - D31 Advanced SIMD and VFP extension registers on page A2-21

DACR VMSA c3, Domain Access Control Register (DACR) on page B3-119

DAPR, pre-ARMv6 c5, Memory Region Access Permissions Registers (DAPR and IAPR) on
page AppxH-45

Data Fault Address PMSA c6, Data Fault Address Register (DFAR) on page B4-57

VMSA c6, Data Fault Address Register (DFAR) on page B3-124

Data Fault Status PMSA c5, Data Fault Status Register (DFSR) on page B4-55

VMSA c5, Data Fault Status Register (DFSR) on page B3-121

Data Memory Region Access
Permissions, pre-ARMv6

c5, Memory Region Access Permissions Registers (DAPR and IAPR) on
page AppxH-45

Data Memory Region Bufferability,
pre-ARMv6

c3, Memory Region Bufferability Register (DBR) on page AppxH-44

Table K-1 Register index (continued)

Register Ina Description, see
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxK-5

Register Index
Data Memory Region Cacheability,
pre-ARMv6

c2, Memory Region Cacheability Registers (DCR and ICR) on
page AppxH-44

Data Memory Region Extended Access
Permissions, pre-ARMv6

c5, Memory Region Extended Access Permissions Registers (DEAPR
and IEAPR) on page AppxH-46

Data or unified Cache Lockdown,
pre-ARMv7

c9, cache lockdown support on page AppxH-52

Data or unified Memory Region,
pre-ARMv6

c6, Memory Region registers (DMRR0-DMRR7 and IMRR0-IMRR7) on
page AppxH-47

Data or unified TLB Lockdown,
pre-ARMv7

c10, VMSA TLB lockdown support on page AppxH-59

Data Region Access Control PMSA c6, Data Region Access Control Register (DRACR) on page B4-64

Data Region Base Address PMSA c6, Data Region Base Address Register (DRBAR) on page B4-60

Data Region Size and Enable PMSA c6, Data Region Size and Enable Register (DRSR) on page B4-62

Data TCM Non-Secure Access Control,
ARMv6

c9, TCM Non-Secure Access Control Registers, DTCM-NSACR and
ITCM-NSACR on page AppxG-51

Data TCM Region, ARMv6 c9, TCM Region Registers (DTCMRR and ITCMRR) on page AppxG-47

Data Transfer, Debug Host to Target Data Transfer Register (DBGDTRRX) on page C10-40

Target to Host Data Transfer Register (DBGDTRTX) on page C10-43

DBGAUTHSTATUS Authentication Status Register (DBGAUTHSTATUS) on page C10-96

DBGBCR0 - DBGBCR15 Breakpoint Control Registers (DBGBCR) on page C10-49

DBGBVR0 - DBGBVR15 Breakpoint Value Registers (DBGBVR) on page C10-48

DBGCID0 - DBGCID3 Debug Component Identification Registers (DBGCID0 to DBGCID3)
on page C10-102

DBGCIDSR Context ID Sampling Register (DBGCIDSR) on page C10-39

DBGCLAIMCLR Claim Tag Clear Register (DBGCLAIMCLR) on page C10-93

DBGCLAIMSET Claim Tag Set Register (DBGCLAIMSET) on page C10-92

DBGDEVID Debug Device ID Register (DBGDEVID) on page C10-6.

DBGDEVTYPE Device Type Register (DBGDEVTYPE) on page C10-98

Table K-1 Register index (continued)

Register Ina Description, see
AppxK-6 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Register Index
DBGDIDR Debug ID Register (DBGDIDR) on page C10-3

DBGDRAR Debug ROM Address Register (DBGDRAR) on page C10-7

DBGDRCR Debug Run Control Register (DBGDRCR), v7 Debug only on
page C10-29

DBGDSAR Debug Self Address Offset Register (DBGDSAR) on page C10-8

DBGDSCCR Debug State Cache Control Register (DBGDSCCR) on page C10-81

DBGDSCR Debug Status and Control Register (DBGDSCR) on page C10-10

DBGDSCRext Internal and external views of the DBGDSCR and the DCC registers on
page C6-21

DBGDSCRint Internal and external views of the DBGDSCR and the DCC registers on
page C6-21

DBGDSMCR Debug State MMU Control Register (DBGDSMCR) on page C10-84

DBGDTRRX Host to Target Data Transfer Register (DBGDTRRX) on page C10-40

DBGDTRRXext Internal and external views of the DBGDSCR and the DCC registers on
page C6-21

DBGDTRRXint Internal and external views of the DBGDSCR and the DCC registers on
page C6-21

DBGDTRTX Target to Host Data Transfer Register (DBGDTRTX) on page C10-43

DBGDTRTXext Internal and external views of the DBGDSCR and the DCC registers on
page C6-21

DBGDTRTXint Internal and external views of the DBGDSCR and the DCC registers on
page C6-21

DBGECR Event Catch Register (DBGECR) on page C10-78

DBGITCTRL Integration Mode Control Register (DBGITCTRL) on page C10-91

DBGITR Instruction Transfer Register (DBGITR) on page C10-46

DBGLAR Lock Access Register (DBGLAR) on page C10-94

DBGLSR Lock Status Register (DBGLSR) on page C10-95

DBGOSLAR OS Lock Access Register (DBGOSLAR) on page C10-75

Table K-1 Register index (continued)

Register Ina Description, see
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxK-7

Register Index
DBGOSLSR OS Lock Status Register (DBGOSLSR) on page C10-76

DBGOSSRR OS Save and Restore Register (DBGOSSRR) on page C10-77

DBGPCSR Program Counter Sampling Register (DBGPCSR) on page C10-38

DBGPID0 - DBGPID4 Debug Peripheral Identification Registers (DBGPID0 to DBGPID4) on
page C10-98

DBGPRCR Device Power-down and Reset Control Register (DBGPRCR), v7 Debug
only on page C10-31

DBGPRSR Device Power-down and Reset Status Register (DBGPRSR), v7 Debug
only on page C10-34

DBGVCR Vector Catch Register (DBGVCR) on page C10-67

DBGWCR0 - DBGWCR15 Watchpoint Control Registers (DBGWCR) on page C10-61

DBGWFAR, CP14 Watchpoint Fault Address Register (DBGWFAR) on page C10-28

DBGWFAR, CP15, ARMv6 c6, Watchpoint Fault Address Register (DBGWFAR) on page AppxG-37

DBGWVR0 - DBGWVR15 Watchpoint Value Registers (DBGWVR) on page C10-60

DBR, pre-ARMv6 c3, Memory Region Bufferability Register (DBR) on page AppxH-44

DCC Internal and external views of the DBGDSCR and the DCC registers on
page C6-21

DCCIMVAC PMSA CP15 c7, Cache and branch predictor maintenance functions on
page B4-68

VMSA CP15 c7, Cache and branch predictor maintenance functions on
page B3-126

DCCISW PMSA CP15 c7, Cache and branch predictor maintenance functions on
page B4-68

VMSA CP15 c7, Cache and branch predictor maintenance functions on
page B3-126

DCCMVAC PMSA CP15 c7, Cache and branch predictor maintenance functions on
page B4-68

VMSA CP15 c7, Cache and branch predictor maintenance functions on
page B3-126

Table K-1 Register index (continued)

Register Ina Description, see
AppxK-8 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Register Index
DCCMVAU PMSA CP15 c7, Cache and branch predictor maintenance functions on
page B4-68

VMSA CP15 c7, Cache and branch predictor maintenance functions on
page B3-126

DCCSW PMSA CP15 c7, Cache and branch predictor maintenance functions on
page B4-68

VMSA CP15 c7, Cache and branch predictor maintenance functions on
page B3-126

DCIMVAC PMSA CP15 c7, Cache and branch predictor maintenance functions on
page B4-68

VMSA CP15 c7, Cache and branch predictor maintenance functions on
page B3-126

DCISW PMSA CP15 c7, Cache and branch predictor maintenance functions on
page B4-68

VMSA CP15 c7, Cache and branch predictor maintenance functions on
page B3-126

DCLR, pre-ARMv7 c9, cache lockdown support on page AppxH-52

DCLR2, pre-ARMv7 c9, Format D Data or unified Cache Lockdown Register, DCLR2 on
page AppxH-58

DCR, pre-ARMv6 c2, Memory Region Cacheability Registers (DCR and ICR) on
page AppxH-44

DEAPR, pre-ARMv6 c5, Memory Region Extended Access Permissions Registers (DEAPR
and IEAPR) on page AppxH-46

Debug Component ID Debug Component Identification Registers (DBGCID0 to DBGCID3)
on page C10-102

Debug Context ID Sampling Context ID Sampling Register (DBGCIDSR) on page C10-39

Debug Device ID Debug Device ID Register (DBGDEVID) on page C10-6.

Debug Feature 0 c0, Debug Feature Register 0 (ID_DFR0) on page B5-6

Debug ID Debug ID Register (DBGDIDR) on page C10-3

Table K-1 Register index (continued)

Register Ina Description, see
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxK-9

Register Index
Debug Peripheral ID Debug Peripheral Identification Registers (DBGPID0 to DBGPID4) on
page C10-98

Debug Program Counter Sampling Program Counter Sampling Register (DBGPCSR) on page C10-38

Debug ROM Address Debug ROM Address Register (DBGDRAR) on page C10-7

Debug Run Control Debug Run Control Register (DBGDRCR), v7 Debug only on
page C10-29

Debug Self Address Offset Debug Self Address Offset Register (DBGDSAR) on page C10-8

Debug State Cache Control Debug State Cache Control Register (DBGDSCCR) on page C10-81

Debug State MMU Control Debug State MMU Control Register (DBGDSMCR) on page C10-84

Debug Status and Control Debug Status and Control Register (DBGDSCR) on page C10-10

Device ID, Debug Debug Device ID Register (DBGDEVID) on page C10-6

Device Power-down and Reset Control Device Power-down and Reset Control Register (DBGPRCR), v7 Debug
only on page C10-31

Device Power-down and Reset Status Device Power-down and Reset Status Register (DBGPRSR), v7 Debug
only on page C10-34

Device Type, Debug Device Type Register (DBGDEVTYPE) on page C10-98

DFAR PMSA c6, Data Fault Address Register (DFAR) on page B4-57

VMSA c6, Data Fault Address Register (DFAR) on page B3-124

DFSR PMSA c5, Data Fault Status Register (DFSR) on page B4-55

VMSA c5, Data Fault Status Register (DFSR) on page B3-121

DMRR0-DMRR7, pre-ARMv6 c6, Memory Region registers (DMRR0-DMRR7 and IMRR0-IMRR7) on
page AppxH-47

Domain Access Control VMSA c3, Domain Access Control Register (DACR) on page B3-119

DRACR PMSA c6, Data Region Access Control Register (DRACR) on page B4-64

DRBAR PMSA c6, Data Region Base Address Register (DRBAR) on page B4-60

DRSR PMSA c6, Data Region Size and Enable Register (DRSR) on page B4-62

DTCM-NSACR, ARMv6 c9, TCM Non-Secure Access Control Registers, DTCM-NSACR and
ITCM-NSACR on page AppxG-51

Table K-1 Register index (continued)

Register Ina Description, see
AppxK-10 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Register Index
DTCMRR, ARMv6 c9, TCM Region Registers (DTCMRR and ITCMRR) on page AppxG-47

DTLBIALL VMSA CP15 c8, TLB maintenance operations on page B3-138

DTLBIASID VMSA CP15 c8, TLB maintenance operations on page B3-138

DTLBIMVA VMSA CP15 c8, TLB maintenance operations on page B3-138

DTLBLR, pre-ARMv7 c10, VMSA TLB lockdown support on page AppxH-59

ENDIANSTATE ENDIANSTATE on page A2-19

Event The Event Register on page B1-46

Event Catch Event Catch Register (DBGECR) on page C10-78

Event Count c9, Event Count Register (PMXEVCNTR) on page C10-116

Event Counter Selection c9, Event Counter Selection Register (PMSELR) on page C10-113

Event Select c9, Event Type Select Register (PMXEVTYPER) on page C10-115

Extended Access Permissions,
pre-ARMv6

c5, Memory Region Extended Access Permissions Registers (DEAPR
and IEAPR) on page AppxH-46

FAR See Fault Address

Fault Address c6, Data Fault Address Register (DFAR) on page B4-57 (PMSA)

c6, Data Fault Address Register (DFAR) on page B3-124 (VMSA)

c6, Instruction Fault Address Register (IFAR) on page B4-58 (PMSA)

c6, Instruction Fault Address Register (IFAR) on page B3-125 (VMSA)

Watchpoint Fault Address Register (DBGWFAR) on page C10-28

c6, Watchpoint Fault Address Register (DBGWFAR) on page AppxG-37
(ARMv6)

Fault Status PMSA c5, Data Fault Status Register (DFSR) on page B4-55

c5, Instruction Fault Status Register (IFSR) on page B4-56

VMSA c5, Data Fault Status Register (DFSR) on page B3-121

c5, Instruction Fault Status Register (IFSR) on page B3-122

FCSE Process ID VMSA c13, FCSE Process ID Register (FCSEIDR) on page B3-152

FCSEIDR VMSA c13, FCSE Process ID Register (FCSEIDR) on page B3-152

Floating-point Exception The Floating-Point Exception Register (FPEXC) on page B1-68

Table K-1 Register index (continued)

Register Ina Description, see
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxK-11

Register Index
Floating-point Instruction The Floating-Point Instruction Registers, FPINST and FPINST2 on
page AppxB-20

Floating-point System ID Floating-point System ID Register (FPSID) on page B5-34

Format D Data Cache Lockdown,
pre-ARMv7

c9, Format D Data or unified Cache Lockdown Register, DCLR2 on
page AppxH-58

FPEXC The Floating-Point Exception Register (FPEXC) on page B1-68

FPINST The Floating-Point Instruction Registers, FPINST and FPINST2 on
page AppxB-20

FPINST2 The Floating-Point Instruction Registers, FPINST and FPINST2 on
page AppxB-20

FPSCR Floating-point Status and Control Register (FPSCR) on page A2-28

FPSID Floating-point System ID Register (FPSID) on page B5-34

FSR See Fault Status

Host to Target Data Transfer Host to Target Data Transfer Register (DBGDTRRX) on page C10-40

IAPR, pre-ARMv6 c5, Memory Region Access Permissions Registers (DAPR and IAPR) on
page AppxH-45

ICIALLU PMSA CP15 c7, Cache and branch predictor maintenance functions on
page B4-68

VMSA CP15 c7, Cache and branch predictor maintenance functions on
page B3-126

ICIALLUIS PMSA CP15 c7, Cache and branch predictor maintenance functions on
page B4-68

VMSA CP15 c7, Cache and branch predictor maintenance functions on
page B3-126

ICIMVAU PMSA CP15 c7, Cache and branch predictor maintenance functions on
page B4-68

VMSA CP15 c7, Cache and branch predictor maintenance functions on
page B3-126

ICLR, pre-ARMv7 c9, cache lockdown support on page AppxH-52

Table K-1 Register index (continued)

Register Ina Description, see
AppxK-12 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Register Index
ICR, pre-ARMv6 c2, Memory Region Cacheability Registers (DCR and ICR) on
page AppxH-44

ID_AFR0 c0, Auxiliary Feature Register 0 (ID_AFR0) on page B5-8

ID_DFR0 c0, Debug Feature Register 0 (ID_DFR0) on page B5-6

ID_ISAR0 c0, Instruction Set Attribute Register 0 (ID_ISAR0) on page B5-24

ID_ISAR1 c0, Instruction Set Attribute Register 1 (ID_ISAR1) on page B5-25

ID_ISAR2 c0, Instruction Set Attribute Register 2 (ID_ISAR2) on page B5-27

ID_ISAR3 c0, Instruction Set Attribute Register 3 (ID_ISAR3) on page B5-29

ID_ISAR4 c0, Instruction Set Attribute Register 4 (ID_ISAR4) on page B5-31

ID_ISAR5 c0, Instruction Set Attribute Register 5 (ID_ISAR5) on page B5-33

ID_MMFR0 c0, Memory Model Feature Register 0 (ID_MMFR0) on page B5-9

ID_MMFR1 c0, Memory Model Feature Register 1 (ID_MMFR1) on page B5-11

ID_MMFR2 c0, Memory Model Feature Register 2 (ID_MMFR2) on page B5-14

ID_MMFR3 c0, Memory Model Feature Register 3 (ID_MMFR3) on page B5-17

ID_PFR0 c0, Processor Feature Register 0 (ID_PFR0) on page B5-4

ID_PFR1 c0, Processor Feature Register 1 (ID_PFR1) on page B5-5

ID, Debug Debug ID Register (DBGDIDR) on page C10-3

IEAPR, pre-ARMv6 c5, Memory Region Extended Access Permissions Registers (DEAPR
and IEAPR) on page AppxH-46

IFAR PMSA c6, Instruction Fault Address Register (IFAR) on page B4-58

VMSA c6, Instruction Fault Address Register (IFAR) on page B3-125

IFSR PMSA c5, Instruction Fault Status Register (IFSR) on page B4-56

VMSA c5, Instruction Fault Status Register (IFSR) on page B3-122

IMRR0-IMRR7, pre-ARMv6 c6, Memory Region registers (DMRR0-DMRR7 and IMRR0-IMRR7) on
page AppxH-47

Instruction Cache Lockdown,
pre-ARMv7

c9, cache lockdown support on page AppxH-52

Table K-1 Register index (continued)

Register Ina Description, see
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxK-13

Register Index
Instruction Fault Address PMSA c6, Instruction Fault Address Register (IFAR) on page B4-58

VMSA c6, Instruction Fault Address Register (IFAR) on page B3-125

Instruction Fault Status PMSA c5, Instruction Fault Status Register (IFSR) on page B4-56

VMSA c5, Instruction Fault Status Register (IFSR) on page B3-122

Instruction Memory Region
Cacheability, pre-ARMv6

c2, Memory Region Cacheability Registers (DCR and ICR) on
page AppxH-44

Instruction Memory Region Extended
Access Permissions, pre-ARMv6

c5, Memory Region Extended Access Permissions Registers (DEAPR
and IEAPR) on page AppxH-46

Instruction Memory Region,
pre-ARMv6

c6, Memory Region registers (DMRR0-DMRR7 and IMRR0-IMRR7) on
page AppxH-47

Instruction Memory Region Access
Permissions, pre-ARMv6

c5, Memory Region Access Permissions Registers (DAPR and IAPR) on
page AppxH-45

Instruction Region Access
Control

PMSA c6, Instruction Region Access Control Register (IRACR) on page B4-65

Instruction Region Base
Address

PMSA c6, Instruction Region Base Address Register (IRBAR) on page B4-61

Instruction Region Size and
Enable

PMSA c6, Instruction Region Size and Enable Register (IRSR) on page B4-63

Instruction Set Attribute CP15 c0, Instruction Set Attribute registers on page B5-19

Instruction TCM Non-Secure Access
Control, ARMv6

c9, TCM Non-Secure Access Control Registers, DTCM-NSACR and
ITCM-NSACR on page AppxG-51

Instruction TCM Region, ARMv6 c9, TCM Region Registers (DTCMRR and ITCMRR) on page AppxG-47

Instruction TLB Lockdown Register,
pre-ARMv7

c10, VMSA TLB lockdown support on page AppxH-59

Instruction Transfer Register, Debug Instruction Transfer Register (DBGITR) on page C10-46

Integration Mode Control Integration Mode Control Register (DBGITCTRL) on page C10-91

Interrupt Enable Clear c9, Interrupt Enable Clear Register (PMINTENCLR) on page C10-119

Interrupt Enable Set c9, Interrupt Enable Set Register (PMINTENSET) on page C10-118

Interrupt Status VMSA c12, Interrupt Status Register (ISR) on page B3-150

Table K-1 Register index (continued)

Register Ina Description, see
AppxK-14 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Register Index
IRACR PMSA c6, Instruction Region Access Control Register (IRACR) on page B4-65

IRBAR PMSA c6, Instruction Region Base Address Register (IRBAR) on page B4-61

IRSR PMSA c6, Instruction Region Size and Enable Register (IRSR) on page B4-63

ISETSTATE ISETSTATE on page A2-15

ISR VMSA c12, Interrupt Status Register (ISR) on page B3-150

ITCM-NSACR, ARMv6 c9, TCM Non-Secure Access Control Registers, DTCM-NSACR and
ITCM-NSACR on page AppxG-51

ITCMRR, ARMv6 c9, TCM Region Registers (DTCMRR and ITCMRR) on page AppxG-47

ITLBIALL VMSA CP15 c8, TLB maintenance operations on page B3-138

ITLBIASID VMSA CP15 c8, TLB maintenance operations on page B3-138

ITLBIMVA VMSA CP15 c8, TLB maintenance operations on page B3-138

ITLBLR, pre-ARMv7 c10, VMSA TLB lockdown support on page AppxH-59

ITSTATE ITSTATE on page A2-17

Jazelle ID Jazelle ID Register (JIDR) on page A2-76

Jazelle Main Configuration Jazelle Main Configuration Register (JMCR) on page A2-77

Jazelle OS Control Jazelle OS Control Register (JOSCR) on page B1-77

JIDR Jazelle ID Register (JIDR) on page A2-76

JMCR Jazelle Main Configuration Register (JMCR) on page A2-77

JOSCR Jazelle OS Control Register (JOSCR) on page B1-77

Lock Access Lock Access Register (DBGLAR) on page C10-94

Lock Status Lock Status Register (DBGLSR) on page C10-95

LR ARM core registers on page A2-11 for application-level description

ARM core registers on page B1-9 for system-level description

LR_abt, LR_fiq, LR_irq, LR_mon,
LR-_svc, LR-_und, LR_usr

ARM core registers on page B1-9

Table K-1 Register index (continued)

Register Ina Description, see
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxK-15

Register Index
Main ID PMSA c0, Main ID Register (MIDR) on page B4-32

VMSA c0, Main ID Register (MIDR) on page B3-81

Media and VFP Feature Media and VFP Feature registers on page B5-36

Memory Model Feature CP15 c0, Memory Model Feature registers on page B5-9

Memory Region Access Permissions,
pre-ARMv6

c5, Memory Region Access Permissions Registers (DAPR and IAPR) on
page AppxH-45

Memory Region Bufferability,
pre-ARMv6

c3, Memory Region Bufferability Register (DBR) on page AppxH-44

Memory Region Cacheability,
pre-ARMv6

c2, Memory Region Cacheability Registers (DCR and ICR) on
page AppxH-44

Memory Region, pre-ARMv6 c6, Memory Region registers (DMRR0-DMRR7 and IMRR0-IMRR7) on
page AppxH-47

Memory Remap VMSA CP15 c10, Memory Remap Registers on page B3-143

MIDR PMSA c0, Main ID Register (MIDR) on page B4-32

VMSA c0, Main ID Register (MIDR) on page B3-81

Monitor Vector Base
Address

VMSA c12, Monitor Vector Base Address Register (MVBAR) on page B3-149

MPIDR PMSA c0, Multiprocessor Affinity Register (MPIDR) on page B4-37

VMSA c0, Multiprocessor Affinity Register (MPIDR) on page B3-87

MPU Region Number PMSA c6, MPU Region Number Register (RGNR) on page B4-66

MPU Type PMSA c0, MPU Type Register (MPUIR) on page B4-36

MPUIR PMSA c0, MPU Type Register (MPUIR) on page B4-36

Multiprocessor affinity PMSA c0, Multiprocessor Affinity Register (MPIDR) on page B4-37

VMSA c0, Multiprocessor Affinity Register (MPIDR) on page B3-87

MVBAR VMSA c12, Monitor Vector Base Address Register (MVBAR) on page B3-149

MVFR0 Media and VFP Feature Register 0 (MVFR0) on page B5-36

MVFR1 Media and VFP Feature Register 1 (MVFR1) on page B5-38

Table K-1 Register index (continued)

Register Ina Description, see
AppxK-16 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Register Index
NMRR VMSA c10, Normal Memory Remap Register (NMRR) on page B3-146

Non-secure Access Control VMSA c1, Non-Secure Access Control Register (NSACR) on page B3-110

Non-Secure Access Control, ARMv6
differences

c1, VMSA Security Extensions support on page AppxG-35

Normal Memory Remap VMSA c10, Normal Memory Remap Register (NMRR) on page B3-146

NSACR VMSA c1, Non-Secure Access Control Register (NSACR) on page B3-110

ARMv6 c9, TCM Non-Secure Access Control Registers, DTCM-NSACR and
ITCM-NSACR on page AppxG-51

OS Lock Access OS Lock Access Register (DBGOSLAR) on page C10-75

OS Lock Status OS Lock Status Register (DBGOSLSR) on page C10-76

OS Save and Restore OS Save and Restore Register (DBGOSSRR) on page C10-77

Overflow Flag Status c9, Overflow Flag Status Register (PMOVSR) on page C10-110

PAR VMSA c7, Physical Address Register (PAR) and VA to PA translations on
page B3-133

PC ARM core registers on page A2-11 for application-level description

ARM core registers on page B1-9 for system-level description

Performance Monitor Control c9, Performance Monitor Control Register (PMCR) on page C10-105

Peripheral ID Debug Peripheral Identification Registers (DBGPID0 to DBGPID4) on
page C10-98

PFF PMSA Instruction Synchronization Barrier operation on page B4-73

VMSA Instruction Synchronization Barrier operation on page B3-137

Physical Address VMSA c7, Physical Address Register (PAR) and VA to PA translations on
page B3-133

PMCCNTR c9, Cycle Count Register (PMCCNTR) on page C10-114

PMCNTENCLR c9, Count Enable Clear Register (PMCNTENCLR) on page C10-109

PMCNTENSET c9, Count Enable Set Register (PMCNTENSET) on page C10-108

PMCR c9, Performance Monitor Control Register (PMCR) on page C10-105

Table K-1 Register index (continued)

Register Ina Description, see
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxK-17

Register Index
PMINTENCLR c9, Interrupt Enable Clear Register (PMINTENCLR) on page C10-119

PMINTENSET c9, Interrupt Enable Set Register (PMINTENSET) on page C10-118

PMOVSR c9, Overflow Flag Status Register (PMOVSR) on page C10-110

PMSELR c9, Event Counter Selection Register (PMSELR) on page C10-113

PMSWINC c9, Software Increment Register (PMSWINC) on page C10-112

PMUSERENR c9, User Enable Register (PMUSERENR) on page C10-117

PMXEVCNTR c9, Event Count Register (PMXEVCNTR) on page C10-116

PMXEVTYPER c9, Event Type Select Register (PMXEVTYPER) on page C10-115

Power-down and Reset Control Device Power-down and Reset Control Register (DBGPRCR), v7 Debug
only on page C10-31

Power-down and Reset Status Device Power-down and Reset Status Register (DBGPRSR), v7 Debug
only on page C10-34

Prefetch Status, ARMv6 c7, Block Transfer Status Register on page AppxG-43

Primary Region Remap VMSA c10, Primary Region Remap Register (PRRR) on page B3-143

Processor Feature CP15 c0, Processor Feature registers on page B5-4

Program Counter Sampling, Debug Program Counter Sampling Register (DBGPCSR) on page C10-38

PRRR VMSA c10, Primary Region Remap Register (PRRR) on page B3-143

PSR Program Status Registers (PSRs) on page B1-14

Q0 - Q15 Advanced SIMD and VFP extension registers on page A2-21

R0 - R15 ARM core registers on page A2-11 for application-level description

ARM core registers on page B1-9 for system-level description

R0_usr - R12_usr ARM core registers on page B1-9

R8_fiq - R12_fiq ARM core registers on page B1-9

RGNR PMSA c6, MPU Region Number Register (RGNR) on page B4-66

Run Control, Debug Debug Run Control Register (DBGDRCR), v7 Debug only on
page C10-29

S0 - S31 Advanced SIMD and VFP extension registers on page A2-21

Table K-1 Register index (continued)

Register Ina Description, see
AppxK-18 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Register Index
SCR VMSA c1, Secure Configuration Register (SCR) on page B3-106

SCTLR PMSA c1, System Control Register (SCTLR) on page B4-45

VMSA c1, System Control Register (SCTLR) on page B3-96

SDER VMSA c1, Secure Debug Enable Register (SDER) on page B3-108

Secure Configuration VMSA c1, Secure Configuration Register (SCR) on page B3-106

Secure Debug Enable VMSA c1, Secure Debug Enable Register (SDER) on page B3-108

Software Increment c9, Software Increment Register (PMSWINC) on page C10-112

Software Thread ID PMSA CP15 c13 Software Thread ID registers on page B4-77

VMSA CP15 c13 Software Thread ID registers on page B3-154

SP ARM core registers on page A2-11 for application-level description

ARM core registers on page B1-9 for system-level description

SP-_abt, SP_fiq, SP_irq, SP_mon,
SP-_svc, SP-_und, SP_usr

ARM core registers on page B1-9

SPSR The Saved Program Status Registers (SPSRs) on page B1-15

SPSR_abt, SPSR_fiq, SPSR_irq,
SPSR_mon, SPSR-_svc, SPSR-_und

ARM core registers on page B1-9

System Control PMSA CP15 c1, System control registers on page B4-44

System Control VMSA CP15 c1, System control registers on page B3-96

Target to Host Data Transfer Target to Host Data Transfer Register (DBGDTRTX) on page C10-43

TCM Data Region, ARMv6 c9, TCM Region Registers (DTCMRR and ITCMRR) on page AppxG-47

TCM Instruction or unified Region,
ARMv6

c9, TCM Region Registers (DTCMRR and ITCMRR) on page AppxG-47

TCM Non-Secure Access Control,
ARMv6

c9, TCM Non-Secure Access Control Registers, DTCM-NSACR and
ITCM-NSACR on page AppxG-51

TCM Selection, ARMv6 c9, TCM Selection Register (TCMSR) on page AppxG-46

TCM Type PMSA c0, TCM Type Register (TCMTR) on page B4-35

VMSA c0, TCM Type Register (TCMTR) on page B3-85

Table K-1 Register index (continued)

Register Ina Description, see
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxK-19

Register Index
TCMSR, ARMv6 c9, TCM Selection Register (TCMSR) on page AppxG-46

TCMTR PMSA c0, TCM Type Register (TCMTR) on page B4-35

VMSA c0, TCM Type Register (TCMTR) on page B3-85

TEECR ThumbEE Configuration Register (TEECR) on page A2-70

TEEHBR ThumbEE Handler Base Register (TEEHBR) on page A2-71

TEX Remap VMSA CP15 c10, Memory Remap Registers on page B3-143

ThumbEE Configuration ThumbEE Configuration Register (TEECR) on page A2-70

ThumbEE Handler Base ThumbEE Handler Base Register (TEEHBR) on page A2-71

TLB Lockdown Register, pre-ARMv7 c10, VMSA TLB lockdown support on page AppxH-59

TLB Type VMSA c0, TLB Type Register (TLBTR) on page B3-86

TLBIALL VMSA CP15 c8, TLB maintenance operations on page B3-138

TLBIALLIS VMSA CP15 c8, TLB maintenance operations on page B3-138

TLBIASID VMSA CP15 c8, TLB maintenance operations on page B3-138

TLBIASIDIS VMSA CP15 c8, TLB maintenance operations on page B3-138

TLBIMVA VMSA CP15 c8, TLB maintenance operations on page B3-138

TLBIMVAA VMSA CP15 c8, TLB maintenance operations on page B3-138

TLBIMVAAIS VMSA CP15 c8, TLB maintenance operations on page B3-138

TLBIMVAIS VMSA CP15 c8, TLB maintenance operations on page B3-138

TLBTR c0, TLB Type Register (TLBTR) on page B3-86

TPIDRPRW PMSA CP15 c13 Software Thread ID registers on page B4-77

VMSA CP15 c13 Software Thread ID registers on page B3-154

TPIDRURO PMSA CP15 c13 Software Thread ID registers on page B4-77

VMSA CP15 c13 Software Thread ID registers on page B3-154

TPIDRURW PMSA CP15 c13 Software Thread ID registers on page B4-77

VMSA CP15 c13 Software Thread ID registers on page B3-154

Table K-1 Register index (continued)

Register Ina Description, see
AppxK-20 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Register Index
Translation Table Base VMSA CP15 c2, Translation table support registers on page B3-113

TTBCR VMSA c2, Translation Table Base Control Register (TTBCR) on page B3-117

TTBR0 VMSA c2, Translation Table Base Register 0 (TTBR0) on page B3-113

TTBR1 VMSA c2, Translation Table Base Register 1 (TTBR1) on page B3-116

User Enable c9, User Enable Register (PMUSERENR) on page C10-117

UTLBIALL VMSA

Previous names for the CP15 c8 operations TLBIALL, TLBIASID, and
TLBIMVA, see CP15 c8, TLB maintenance operations on page B3-138

UTLBIASID VMSA

UTLBIMVA VMSA

V2PCWPR VMSA CP15 c7, Virtual Address to Physical Address translation operations on
page B3-130

V2PCWPW VMSA CP15 c7, Virtual Address to Physical Address translation operations on
page B3-130

V2PCWUR VMSA CP15 c7, Virtual Address to Physical Address translation operations on
page B3-130

V2PCWUW VMSA CP15 c7, Virtual Address to Physical Address translation operations on
page B3-130

V2POWPR VMSA CP15 c7, Virtual Address to Physical Address translation operations on
page B3-130

V2POWPW VMSA CP15 c7, Virtual Address to Physical Address translation operations on
page B3-130

V2POWUR VMSA CP15 c7, Virtual Address to Physical Address translation operations on
page B3-130

V2POWUW VMSA CP15 c7, Virtual Address to Physical Address translation operations on
page B3-130

VBAR VMSA c12, Vector Base Address Register (VBAR) on page B3-148

Vector Base Address VMSA c12, Vector Base Address Register (VBAR) on page B3-148

Vector Catch Register Vector Catch Register (DBGVCR) on page C10-67

Watchpoint Control Watchpoint Control Registers (DBGWCR) on page C10-61

Table K-1 Register index (continued)

Register Ina Description, see
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AppxK-21

Register Index
Watchpoint Fault Address, CP14 Watchpoint Fault Address Register (DBGWFAR) on page C10-28

Watchpoint Fault Address, CP15,
ARMv6

c6, Watchpoint Fault Address Register (DBGWFAR) on page AppxG-37

Watchpoint Value Watchpoint Value Registers (DBGWVR) on page C10-60

a. Applies only to entries for ARMv7 CP15 registers and operations. Where these are included in both a VMSA
implementation and a PMSA implementation these are described in Chapter B3 Virtual Memory System Architecture
(VMSA) and in Chapter B4 Protected Memory System Architecture (PMSA), and both descriptions are included in this
index.

Table K-1 Register index (continued)

Register Ina Description, see
AppxK-22 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Glossary

Abort Is caused by an illegal memory access. Aborts can be caused by the external memory system or the MMU
or MPU.

Abort model
Describes what happens to the processor state when a Data Abort exception occurs. Different abort models
behave differently with regard to load/store instructions that specify base register write-back. For more
details, see Effects of data-aborted instructions on page B1-57.

Addressing mode
Means a method for generating the memory address used by a load/store instruction.

Advanced SIMD
Is an extension to the ARM architecture that provides SIMD operations on a bank of extension registers. If
the VFP extension is also implemented, the two extensions share the register bank and the SIMD operations
include single-precision floating-point SIMD operations.

Aligned Refers to data items stored in such a way that their address is divisible by the highest power of 2 that divides
their size. Aligned halfwords, words and doublewords therefore have addresses that are divisible by 2, 4 and
8 respectively.

An aligned access is one where the address of the access is aligned to the size of an element of the access

ARM instruction
Is a word that specifies an operation for a processor in ARM state to perform. ARM instructions must be
word-aligned.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. Glossary-1

Glossary
Atomicity
Is a term that describes either single-copy atomicity or multi-copy atomicity. The forms of atomicity used
in the ARM architecture are defined in Atomicity in the ARM architecture on page A3-26.

See also Multi-copy Atomicity, Single-copy atomicity.

Banked register
Is a register that has multiple instances, with the instance that is in use depending on the processor mode,
security state, or other processor state.

Base register
Is a register specified by a load/store instruction that is used as the base value for the instruction's address
calculation. Depending on the instruction and its addressing mode, an offset can be added to or subtracted
from the base register value to form the virtual address that is sent to memory.

Base register write-back
Describes writing back a modified value to the base register used in an address calculation.

Big-endian memory
Means that:

• a byte or halfword at a word-aligned address is the most significant byte or halfword in the word at
that address

• a byte at a halfword-aligned address is the most significant byte in the halfword at that address.

Blocking
Describes an operation that does not permit following instructions to be executed before the operation is
completed.

A non-blocking operation can permit following instructions to be executed before the operation is
completed, and in the event of encountering an exception do not signal an exception to the processor. This
enables implementations to retire following instructions while the non-blocking operation is executing,
without the need to retain precise processor state.

Branch prediction
Is where a processor chooses a future execution path to prefetch along (see Prefetching). For example, after
a branch instruction, the processor can choose to prefetch either the instruction following the branch or the
instruction at the branch target.

Breakpoint
Is a debug event triggered by the execution of a particular instruction, specified in terms of the address of
the instruction and/or the state of the processor when the instruction is executed.

Byte Is an 8-bit data item.

Cache Is a block of high-speed memory locations whose addresses are changed automatically in response to which
memory locations the processor is accessing, and whose purpose is to increase the average speed of a
memory access.
Glossary-2 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Glossary
Cache contention
Is when the number of frequently-used memory cache lines that use a particular cache set exceeds the
set-associativity of the cache. In this case, main memory activity goes up and performance drops.

Cache hit
Is a memory access that can be processed at high speed because the data it addresses is already in the cache.

Cache line
Is the basic unit of storage in a cache. Its size is always a power of two (usually 4 or 8 words), and must be
aligned to a suitable memory boundary. A memory cache line is a block of memory locations with the same
size and alignment as a cache line. Memory cache lines are sometimes loosely just called cache lines.

Cache line index
Is a number associated with each cache line in a cache set. In each cache set, the cache lines are numbered
from 0 to (set associativity)–1.

Cache lockdown
Alleviates the delays caused by accessing a cache in a worst-case situation. Cache lockdown enables critical
code and data to be loaded into the cache so that the cache lines containing them are not subsequently
re-allocated. This ensures that all subsequent accesses to the code and data concerned are cache hits and so
complete quickly.

Cache lockdown blocks
Consist of one line from each cache set. Cache lockdown is performed in units of a cache lockdown block.

Cache miss
Is a memory access that cannot be processed at high speed because the data it addresses is not in the cache.

Cache sets
Are areas of a cache, divided up to simplify and speed up the process of determining whether a cache hit
occurs. The number of cache sets is always a power of two.

Cache way
A cache way consists of one cache line from each cache set. The cache ways are indexed from 0 to
ASSOCIATIVITY-1. The cache lines in a cache way are chosen to have the same index as the cache way.
So for example cache way 0 consists of the cache line with index 0 from each cache set, and cache way n
consists of the cache line with index n from each cache set.

Callee-save registers
Are registers that a called procedure must preserve. To preserve a callee-save register, the called procedure
would normally either not use the register at all, or store the register to the stack during procedure entry and
re-load it from the stack during procedure exit.

Caller-save registers
Are registers that a called procedure need not preserve. If the calling procedure requires their values to be
preserved, it must store and reload them itself.

Condition field
Is a 4-bit field in an instruction that is used to specify a condition under which the instruction can execute.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. Glossary-3

Glossary
Conditional execution
Means that if the condition code flags indicate that the corresponding condition is true when the instruction
starts executing, it executes normally. Otherwise, the instruction does nothing.

Configuration
Settings made on reset, or immediately after reset, and normally expected to remain static throughout
program execution.

Context switch
Is the saving and restoring of computational state when switching between different threads or processes. In
this manual, the term context switch is used to describe any situations where the context is switched by an
operating system and might or might not include changes to the address space.

Data cache
Is a separate cache used only for processing data loads and stores.

Digital signal processing (DSP)
Refers to a variety of algorithms that are used to process signals that have been sampled and converted to
digital form. Saturated arithmetic is often used in such algorithms.

Direct-mapped cache
Is a one-way set-associative cache. Each cache set consists of a single cache line, so cache look-up just needs
to select and check one cache line.

Direct Memory Access
Is an operation that accesses main memory directly, without the processor performing any accesses to the
data concerned.

DNM See Do-not-modify.

Domain Is a collection of sections, Large pages and Small pages of memory, that can have their access permissions
switched rapidly by writing to the Domain Access Control Register, in CP15 c3.

Do-not-modify (DNM)
Means the value must not be altered by software. DNM fields read as UNKNOWN values, and must only be
written with the same value read from the same field on the same processor.

Double-precision value
Consists of two 32-bit words that must appear consecutively in memory and must both be word-aligned, and
that is interpreted as a basic double-precision floating-point number according to the IEEE 754-1985
standard.

Doubleword
Is a 64-bit data item. Doublewords are normally at least word-aligned in ARM systems.

Doubleword-aligned
Means that the address is divisible by 8.

DSP See Digital signal processing

Endianness
Is an aspect of the system memory mapping. See big-endian and little-endian.
Glossary-4 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2011_Q2
Cross-Out

ARM_2011_Q2
Replacement Text
In the ARM architecture, domain is used in the following contexts.
Shareability domain
Defines a set of observers for which the shareability attributes make the data or unified caches transparent for data accesses.
Power domain
Defines a block of logic with a single, common, power supply.
Memory regions domain
Defines a collection of Sections, Large pages and Small pages of memory, that can have their access permissions switched rapidly by writing to the Domain Access Control Register (DACR). ARM deprecates any use of memory regions domains.

ARM_2011_Q2
Sticky Note
The current definition includes only one of the three contexts in which Domain is used.

Glossary
Exception
Handles an event. For example, an exception could handle an external interrupt or an Undefined Instruction.

Exception modes
Are privileged modes that are entered when specific exceptions occur.

Exception vector
Is one of a number of fixed addresses in low memory, or in high memory if high vectors are configured.

Execution stream
The stream of instructions that would have been executed by sequential execution of the program.

Explicit access
A read from memory, or a write to memory, generated by a load/store instruction executed in the processor.
Reads and writes generated by L1 DMA accesses or hardware translation table accesses are not explicit
accesses.

External abort
Is an abort that is generated by the external memory system.

Fault Is an abort that is generated by the MMU.

Fast Context Switch Extension (FCSE)
Modifies the behavior of an ARM memory system to enable multiple programs running on the ARM
processor to use identical address ranges, while ensuring that the addresses they present to the rest of the
memory system differ. From ARMv6, use of the FCSE is deprecated, and the FCSE is optional in ARMv7.

FCSE See Fast Context Switch Extension.

Flat address mapping
Is where the physical address for every access is equal to its virtual address.

Flush-to-zero mode
Is a special processing mode that optimizes the performance of some VFP algorithms by replacing the
denormalized operands and intermediate results with zeros, without significantly affecting the accuracy of
their final results.

Fully-associative cache
Has just one cache set, that consists of the entire cache. See also direct-mapped cache.

General-purpose register
Is one of the 32-bit general-purpose integer registers, R0 to R15. Note that R15 holds the Program Counter,
and there are often limitations on its use that do not apply to R0 to R14.

Halfword
Is a 16-bit data item. Halfwords are normally halfword-aligned in ARM systems.

Halfword-aligned
Means that the address is divisible by 2.

High registers
Are ARM core registers 8 to 15, that can be accessed by some Thumb instructions.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. Glossary-5

Glossary
High vectors
Are alternative locations for exception vectors. The high vector address range is near the top of the address
space, rather than at the bottom.

Immediate and offset fields
Are unsigned unless otherwise stated.

Immediate values
Are values that are encoded directly in the instruction and used as numeric data when the instruction is
executed. Many ARM and Thumb instructions permit small numeric values to be encoded as immediate
values in the instruction that operates on them.

IMP Is an abbreviation used in diagrams to indicate that the bit or bits concerned have IMPLEMENTATION DEFINED
behavior.

IMPLEMENTATION DEFINED
Means that the behavior is not architecturally defined, but should be defined and documented by individual
implementations.

Index register
Is a register specified in some load/store instructions. The value of this register is used as an offset to be
added to or subtracted from the base register value to form the virtual address that is sent to memory. Some
addressing modes optionally permit the index register value to be shifted before the addition or subtraction.

Inline literals
These are constant addresses and other data items held in the same area as the code itself. They are
automatically generated by compilers, and can also appear in assembler code.

Instruction cache
Is a separate cache used only for processing instruction fetches.

Interworking
Is a method of working that permits branches between ARM and Thumb code.

Little-endian memory
Means that:

• a byte or halfword at a word-aligned address is the least significant byte or halfword in the word at
that address

• a byte at a halfword-aligned address is the least significant byte in the halfword at that address.

Load/Store architecture
Is an architecture where data-processing operations only operate on register contents, not directly on
memory contents.

Long branch
Is the use of a load instruction to branch to anywhere in the 4GB address space.

Memory barrier
See Memory barriers on page A3-47.
Glossary-6 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM_2010_Q2
Cross-Out
This term is not used in the ARMv7 Architecture Reference Manual.

Glossary
Memory coherency
Is the problem of ensuring that when a memory location is read (either by a data read or an instruction fetch),
the value actually obtained is always the value that was most recently written to the location. This can be
difficult when there are multiple possible physical locations, such as main memory, a write buffer and/or
cache(s).

Memory Management Unit (MMU)
Provides detailed control of a memory system. Most of the control is provided via translation tables held in
memory.

Memory-mapped I/O
Uses special memory addresses that supply I/O functions when they are loaded from or stored to.

Memory Protection Unit (MPU)
Is a hardware unit whose registers provide simple control of a limited number of protection regions in
memory.

Mixed-endian
A processor supports mixed-endian memory accesses if accesses to big-endian data and little-endian data
can be freely intermixed, with only small performance and code size penalties for doing so.

Modified Virtual Address (MVA)
Is the address produced by the FCSE that is sent to the rest of the memory system to be used in place of the
normal virtual address. From ARMv6, use of the FCSE is deprecated, and the FCSE is optional in ARMv7.
When the FCSE is absent or disabled the MVA and the Virtual Address (VA) have the same value.

MMU See Memory Management Unit.

MPU See Memory Protection Unit.

Multi-copy atomicity
Is the form of atomicity described in Multi-copy atomicity on page A3-28.

See also Atomicity, Single-copy atomicity.

MVA See Modified Virtual Address.

NaN NaNs are special floating-point values that can be used when neither a numeric value nor an infinity is
appropriate. NaNs can be quiet NaNs that propagate through most floating-point operations, or signaling
NaNs that cause Invalid Operation floating-point exceptions when used. For details, see the IEEE 754
standard.

Observer
A processor or mechanism in the system, such as a peripheral device, that can generate reads from or writes
to memory.

Offset addressing
Means that the memory address is formed by adding or subtracting an offset to or from the base register
value.

PA See Physical address.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. Glossary-7

Glossary
Physical address (PA)
Identifies a main memory location.

Post-indexed addressing
Means that the memory address is the base register value, but an offset is added to or subtracted from the
base register value and the result is written back to the base register.

Prefetching
Is the process of fetching instructions from memory before the instructions that precede them have finished
executing. Prefetching an instruction does not mean that the instruction has to be executed.

Pre-indexed addressing
Means that the memory address is formed in the same way as for offset addressing, but the memory address
is also written back to the base register.

Privileged mode
Is any processor mode other than User mode. Memory systems typically check memory accesses from
privileged modes against supervisor access permissions rather than the more restrictive user access
permissions. The use of some instructions is also restricted to privileged modes.

Process ID
In the FCSE, this is a 7-bit number that identifies which process block the current process is loaded into.

Protection region
Is a memory region whose position, size, and other properties are defined by Memory Protection Unit
registers.

Protection Unit
See Memory Protection Unit.

Pseudo-instruction
UAL assembler syntax that assembles to an instruction encoding that is expected to disassemble to a
different assembler syntax, and is described in this manual under that other syntax. For example,
MOV <Rd>,<Rm>, LSL #<n> is a pseudo-instruction that is expected to disassemble as LSL <Rd>,<Rm>,#<n>

Quiet NaN
Is a NaN that propagates unchanged through most floating-point operations.

RAO See Read-As-One.

RAZ See Read-As-Zero.

RAO/SBOP
Read-As-One, Should-Be-One-or-Preserved on writes.

In any implementation, the bit must read as 1, or all 1s for a bit field, and writes to the field must be ignored.

Software can rely on the bit reading as 1, or all 1s for a bit field, but must use an SBOP policy to write to
the field.

RAO/WI Read-As-One, Writes Ignored.

In any implementation, the bit must read as 1, or all 1s for a bit field, and writes to the field must be ignored
Glossary-8 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Glossary
Software can rely on the bit reading as 1, or all 1s for a bit field, and on writes being ignored.

RAZ/SBZP
Read-As-Zero, Should-Be-Zero-or-Preserved on writes.

In any implementation, the bit must read as 0, or all 0s for a bit field, and writes to the field must be ignored.

Software can rely on the bit reading as 0, or all 0s for a bit field, but must use an SBZP policy to write to the
field.

RAZ/WI Read-As-Zero, Writes Ignored.

In any implementation, the bit must read as 0, or all 0s for a bit field, and writes to the field must be ignored.

Software can rely on the bit reading as 0, or all 0s for a bit field, and on writes being ignored.

Read-allocate cache
Is a cache in which a cache miss on reading data causes a cache line to be allocated into the cache.

Read-As-One (RAO)
In any implementation, the bit must read as 1, or all 1s for a bit field.

Read-As-Zero (RAZ)
In any implementation, the bit must read as 0, or all 0s for a bit field.

Read, modify, write
In a read, modify, write instruction sequence, a value is read to a general-purpose register, the relevant fields
updated in that register, and the new value written back.

Reserved
Unless otherwise stated:

• instructions that are reserved or that access reserved registers have UNPREDICTABLE behavior

• bit positions described as Reserved are UNK/SBZP.

RISC Reduced Instruction Set Computer.

Rounding error
Is defined to be the value of the rounded result of an arithmetic operation minus the exact result of the
operation.

Rounding modes
Specify how the exact result of a floating-point operation is rounded to a value that is representable in the
destination format.

Round to Nearest (RN) mode
Means that the rounded result is the nearest representable number to the unrounded result.

Round towards Plus Infinity (RP) mode
Means that the rounded result is the nearest representable number that is greater than or equal to the exact
result.

Round towards Minus Infinity (RM) mode
Means that the rounded result is the nearest representable number that is less than or equal to the exact result.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. Glossary-9

Glossary
Round towards Zero (RZ) mode
Means that results are rounded to the nearest representable number that is no greater in magnitude than the
unrounded result.

Saturated arithmetic
Is integer arithmetic in which a result that would be greater than the largest representable number is set to
the largest representable number, and a result that would be less than the smallest representable number is
set to the smallest representable number. Signed saturated arithmetic is often used in DSP algorithms. It
contrasts with the normal signed integer arithmetic used in ARM processors, in which overflowing results
wrap around from +231–1 to –231 or vice versa.

SBO See Should-Be-One.

SBOP See Should-Be-One-or-Preserved.

SBZ See Should-Be-Zero.

SBZP See Should-Be-Zero-or-Preserved.

Security hole
Is a mechanism that bypasses system protection.

Self-modifying code
Is code that writes one or more instructions to memory and then executes them. When using self-modifying
code you must use cache maintenance and barrier instructions to ensure synchronization. For details see
Ordering of cache and branch predictor maintenance operations on page B2-21.

Set-associativity
Is the number of cache lines in each of the cache sets in a cache. It can be any number ≥ 1, and is not
restricted to being a power of two.

Should-Be-One (SBO)
Should be written as 1, or all 1s for a bit field, by software. Values other than 1 produce UNPREDICTABLE
results.

Should-Be-One-or-Preserved (SBOP)
Must be written as 1, or all 1s for a bit field, by software if the value is being written without having been
previously read, or if the register has not been initialized. Where the register was previously read on the same
processor, since the processor was last reset, the value in the field should be preserved by writing the value
that was previously read.

Hardware must ignore writes to these fields.

If a value is written to the field that is neither 1 (or all 1s for a bit field), nor a value previously read for the
same field on the same processor, the result is UNPREDICTABLE.

Should-Be-Zero (SBZ)
Should be written as 0, or all 0s for a bit field, by software. Values other than 0 produce UNPREDICTABLE
results.
Glossary-10 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Glossary
Should-Be-Zero-or-Preserved (SBZP)
Must be written as 0, or all 0s for a bit field, by software if the value is being written without having been
previously read, or if the register has not been initialized. Where the register was previously read on the same
processor, since the processor was last reset, the value in the field should be preserved by writing the value
that was previously read.

Hardware must ignore writes to these fields.

If a value is written to the field that is neither 0 (or all 0s for a bit field), nor a value previously read for the
same field on the same processor, the result is UNPREDICTABLE.

Signaling NaNs
Cause an Invalid Operation exception whenever any floating-point operation receives a signaling NaN as an
operand. Signaling Nans can be used in debugging, to track down some uses of uninitialized variables.

Signed data types
Represent an integer in the range −2N−1 to +2N−1– 1, using two's complement format.

Signed immediate and offset fields
Are encoded in two’s complement notation unless otherwise stated.

SIMD Means Single-Instruction, Multiple-Data operations.

Single-copy atomicity
Is the form of atomicity described in Single-copy atomicity on page A3-27.

See also Atomicity, Multi-copy atomicity.

Single-precision value
Is a 32-bit word, that must be word-aligned when held in memory, and that is interpreted as a basic
single-precision floating-point number according to the IEEE 754-1985 standard.

Spatial locality
Is the observed effect that after a program has accessed a memory location, it is likely to also access nearby
memory locations in the near future. Caches with multi-word cache lines exploit this effect to improve
performance.

SUBARCHITECTURE DEFINED
Means that the behavior is expected to be specified by a subarchitecture definition. Typically, this will be
shared by multiple implementations, but it must only be relied on by specified types of code. This minimizes
the software changes required when a new subarchitecture has to be developed.

In this manual, subarchitecture definitions are used for:

• the interface between a VFP implementation and its support code

• the interface between an implementation of the Jazelle extension and an Enabled JVM.

Tag bits Are bits [31:L+S]) of a virtual address, where L = log2(cache line length) and
S = log2(number of cache sets). A cache hit occurs if the tag bits of the virtual address supplied by the ARM
processor match the tag bits associated with a valid line in the selected cache set.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. Glossary-11

ARM_2008_Q4
Inserted Text
[New entry]

Simple sequential execution
The behaviour of an implementation that fetches, decodes and completely executes each instruction before proceeding to the next instruction. Such an implementation performs no speculative accesses to memory, including to instruction memory. The implementation does not pipeline any phase of execution. In practice, this is the theoretical execution model that the architecture is based on, and ARM does not expect this model to correspond to a realistic implementation of the architecture.

ARM_2009_Q2
Cross-Out

Glossary
Temporal locality
Is the observed effect that after a program has accesses a memory location, it is likely to access the same
memory location again in the near future. Caches exploit this effect to improve performance.

Thumb instruction
Is one or two halfwords that specify an operation for a processor in Thumb state to perform. Thumb
instructions must be halfword-aligned.

TLB See Translation Lookaside Buffer.

TLB lockdown
Is a way to prevent specific translation table walk results being accessed. This ensures that accesses to the
associated memory areas never cause a translation table walk.

Translation Lookaside Buffer (TLB)
Is a memory structure containing the results of translation table walks. They help to reduce the average cost
of a memory access. Usually, there is a TLB for each memory interface of the ARM implementation.

Translation tables
Are tables held in memory. They define the properties of memory areas of various sizes from 1KB to 1MB.

Translation table walk
Is the process of doing a full translation table lookup. It is performed automatically by hardware.

Trap enable bits
Determine whether trapped or untrapped exception handling is selected. If trapped exception handling is
selected, the way it is carried out is IMPLEMENTATION DEFINED.

Unaligned
An unaligned access is an access where the address of the access is not aligned to the size of an element of
the access.

Unaligned memory accesses
Are memory accesses that are not, or might not be, appropriately halfword-aligned, word-aligned, or
doubleword-aligned.

Unallocated
Except where otherwise stated, an instruction encoding is unallocated if the architecture does not assign a
specific function to the entire bit pattern of the instruction, but instead describes it as UNDEFINED,
UNPREDICTABLE, or an unallocated hint instruction.

A bit in a register is unallocated if the architecture does not assign a function to that bit.

UNDEFINED
Indicates an instruction that generates an Undefined Instruction exception.

See also Undefined Instruction exception on page B1-49.

Unified cache
Is a cache used for both processing instruction fetches and processing data loads and stores.
Glossary-12 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Glossary
Unindexed addressing
Means addressing in which the base register value is used directly as the virtual address to send to memory,
without adding or subtracting an offset. In most types of load/store instruction, unindexed addressing is
performed by using offset addressing with an immediate offset of 0. The LDC, LDC2, STC, and STC2 instructions
have an explicit unindexed addressing mode that permits the offset field in the instruction to be used to
specify additional coprocessor options.

UNKNOWN
An UNKNOWN value does not contain valid data, and can vary from moment to moment, instruction to
instruction, and implementation to implementation. An UNKNOWN value must not be a security hole.
UNKNOWN values must not be documented or promoted as having a defined value or effect.

UNK/SBOP
UNKNOWN on reads, Should-Be-One-or-Preserved on writes.

In any implementation, the bit must read as 1, or all 1s for a bit field, and writes to the field must be ignored.

Software must not rely on the bit reading as 1, or all 1s for a bit field, and must use an SBOP policy to write
to the field.

UNK/SBZP
UNKNOWN on reads, Should-Be-Zero-or-Preserved on writes.

In any implementation, the bit must read as 0, or all 0s for a bit field, and writes to the field must be ignored.

Software must not rely on the bit reading as 0, or all 0s for a bit field, and must use an SBZP policy to write
to the field.

UNK Is an abbreviation indicating that software must treat a field as containing an UNKNOWN value.

In any implementation, the bit must read as 0, or all 0s for a bit field. Software must not rely on the field
reading as zero.

UNPREDICTABLE
Means the behavior cannot be relied upon. UNPREDICTABLE behavior must not represent security holes.
UNPREDICTABLE behavior must not halt or hang the processor, or any parts of the system. UNPREDICTABLE
behavior must not be documented or promoted as having a defined effect.

Unsigned data types
Represent a non-negative integer in the range 0 to +2N−1, using normal binary format.

VA See Virtual address.

VFP Is a coprocessor extension to the ARM architecture. It provides single-precision and double-precision
floating-point arithmetic.

Virtual address (VA)
Is an address generated by an ARM processor. For a PMSA implementation, the virtual address is identical
to the physical address.

Watchpoint
Is a debug event triggered by an access to memory, specified in terms of the address of the location in
memory being accessed.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. Glossary-13

ARM_2009_Q2
Inserted Text

An instruction that is UNPREDICTABLE can be implemented as UNDEFINED.

ARM_2010_Q3
Cross-Out

ARM_2010_Q3
Replacement Text
perform any function that cannot be performed at the current or lower level of privilege using instructions that are not UNPREDICTABLE.

ARM_2010_Q3
Sticky Note
These changes are clarifications of the architectural meaning of UNPREDICTABLE.

Glossary
Word Is a 32-bit data item. Words are normally word-aligned in ARM systems.

Word-aligned
Means that the address is divisible by 4.

Write-Allocate cache
Is a cache in which a cache miss on storing data causes a cache line to be allocated into the cache.

Write-Back cache
Is a cache in which when a cache hit occurs on a store access, the data is only written to the cache. Data in
the cache can therefore be more up-to-date than data in main memory. Any such data is written back to main
memory when the cache line is cleaned or re-allocated. Another common term for a Write-Back cache is a
copy-back cache.

Write-Through cache
Is a cache in which when a cache hit occurs on a store access, the data is written both to the cache and to
main memory. This is normally done via a write buffer, to avoid slowing down the processor.

Write buffer
Is a block of high-speed memory whose purpose is to optimize stores to main memory.
Glossary-14 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

	ARM Architecture Reference Manual ARMv7-A and ARMv7-R edition
	Contents
	Preface
	About this manual
	Using this manual
	Part A, Application Level Architecture
	Part B, System Level Architecture
	Part C, Debug Architecture
	Part D, Appendices

	Conventions
	General typographic conventions
	Signals
	Numbers
	Bit values
	Pseudocode descriptions
	Assembler syntax descriptions

	Further reading
	ARM publications
	External publications

	Feedback
	Feedback on this manual

	Application Level Architecture
	Introduction to the ARM Architecture
	A1.1 About the ARM architecture
	A1.2 The ARM and Thumb instruction sets
	A1.3 Architecture versions, profiles, and variants
	A1.4 Architecture extensions
	A1.5 The ARM memory model
	A1.6 Debug

	Application Level Programmers’ Model
	A2.1 About the Application level programmers’ model
	A2.2 ARM core data types and arithmetic
	A2.2.1 Integer arithmetic
	Shift and rotate operations
	Pseudocode details of addition and subtraction
	Pseudocode details of saturation

	A2.3 ARM core registers
	A2.3.1 Pseudocode details of operations on ARM core registers

	A2.4 The Application Program Status Register (APSR)
	A2.5 Execution state registers
	A2.5.1 ISETSTATE
	Pseudocode details of ISETSTATE operations

	A2.5.2 ITSTATE
	Pseudocode details of ITSTATE operations

	A2.5.3 ENDIANSTATE
	Pseudocode details of ENDIANSTATE operations

	A2.6 Advanced SIMD and VFP extensions
	A2.6.1 Advanced SIMD and VFP extension registers
	Advanced SIMD views of the extension register set
	VFP views of the extension register set
	Advanced SIMD and VFP register mapping
	Pseudocode details of Advanced SIMD and VFP extension registers

	A2.6.2 Data types supported by the Advanced SIMD extension
	A2.6.3 Advanced SIMD vectors
	Pseudocode details of Advanced SIMD vectors

	A2.6.4 Advanced SIMD and VFP system registers
	Floating-point Status and Control Register (FPSCR)

	A2.6.5 VFPv3U

	A2.7 Floating-point data types and arithmetic
	A2.7.1 ARM standard floating-point input and output values
	A2.7.2 Advanced SIMD and VFP single-precision format
	A2.7.3 VFP double-precision format
	A2.7.4 Advanced SIMD and VFP half-precision formats
	A2.7.5 Flush-to-zero
	A2.7.6 NaN handling and the Default NaN
	A2.7.7 Floating-point exceptions
	Combinations of exceptions

	A2.7.8 Pseudocode details of floating-point operations
	Generation of specific floating-point values
	Negation and absolute value
	Floating-point value unpacking
	Floating-point exception and NaN handling
	Floating-point rounding
	Selection of ARM standard floating-point arithmetic
	Comparisons
	Maximum and minimum
	Addition and subtraction
	Multiplication and division
	Reciprocal estimate and step
	Square root
	Reciprocal square root
	Conversions

	A2.8 Polynomial arithmetic over {0,1}
	A2.8.1 Pseudocode details of polynomial multiplication

	A2.9 Coprocessor support
	A2.10 Execution environment support
	A2.10.1 Thumb Execution Environment
	ThumbEE instructions
	ThumbEE configuration

	A2.10.2 Jazelle direct bytecode execution support
	Subarchitectures
	Jazelle state
	Jazelle state entry instruction, BXJ
	Application level configuration and control of the Jazelle extension
	EJVM operation

	A2.11 Exceptions, debug events and checks
	A2.11.1 The Yield instruction

	Application Level Memory Model
	A3.1 Address space
	A3.1.1 Address incrementing and address space overflow

	A3.2 Alignment support
	A3.2.1 Unaligned data access
	A3.2.2 Cases where unaligned accesses are unpredictable
	A3.2.3 Unaligned data access restrictions in ARMv7 and ARMv6

	A3.3 Endian support
	A3.3.1 Control of the endianness mapping scheme in ARMv7
	A3.3.2 Instruction endianness
	Instruction endianness static configuration, ARMv7-R only

	A3.3.3 Element size and endianness
	A3.3.4 Instructions to reverse bytes in a general-purpose register
	A3.3.5 Endianness in Advanced SIMD

	A3.4 Synchronization and semaphores
	A3.4.1 Exclusive access instructions and Non-shareable memory regions
	A3.4.2 Exclusive access instructions and Shareable memory regions
	Operation of the global monitor

	A3.4.3 Tagging and the size of the tagged memory block
	A3.4.4 Context switch support
	A3.4.5 Load-Exclusive and Store-Exclusive usage restrictions
	A3.4.6 Semaphores
	A3.4.7 Synchronization primitives and the memory order model
	A3.4.8 Use of WFE and SEV instructions by spin-locks

	A3.5 Memory types and attributes and the memory order model
	A3.5.1 Memory types
	A3.5.2 Summary of ARMv7 memory attributes
	A3.5.3 Atomicity in the ARM architecture
	Single-copy atomicity
	Multi-copy atomicity

	A3.5.4 Normal memory
	Non-shareable Normal memory
	Shareable, Inner Shareable, and Outer Shareable Normal memory
	Write-Through Cacheable, Write-Back Cacheable and Non-cacheable Normal memory

	A3.5.5 Device memory
	Shareable attribute for Device memory regions

	A3.5.6 Strongly-ordered memory
	A3.5.7 Memory access restrictions
	A3.5.8 Backwards compatibility
	A3.5.9 The effect of the Security Extensions

	A3.6 Access rights
	A3.6.1 Privilege level access controls for data accesses
	A3.6.2 Privilege level access controls for instruction accesses
	A3.6.3 Memory region security status

	A3.7 Virtual and physical addressing
	A3.8 Memory access order
	A3.8.1 Reads and writes
	Reads
	Writes
	Synchronization primitives
	Observability and completion

	A3.8.2 Ordering requirements for memory accesses
	Program order for instruction execution

	A3.8.3 Memory barriers
	Data Memory Barrier (DMB)
	Data Synchronization Barrier (DSB)
	Instruction Synchronization Barrier (ISB)
	Pseudocode details of memory barriers

	A3.9 Caches and memory hierarchy
	A3.9.1 Introduction to caches
	A3.9.2 Memory hierarchy
	A3.9.3 Implication of caches for the application programmer
	Data coherency issues
	Instruction coherency issues

	A3.9.4 Preloading caches

	The Instruction Sets
	A4.1 About the instruction sets
	A4.1.1 Changing between Thumb state and ARM state
	A4.1.2 Conditional execution

	A4.2 Unified Assembler Language
	A4.2.1 Conditional instructions
	A4.2.2 Use of labels in UAL instruction syntax

	A4.3 Branch instructions
	A4.4 Data-processing instructions
	A4.4.1 Standard data-processing instructions
	A4.4.2 Shift instructions
	A4.4.3 Multiply instructions
	A4.4.4 Saturating instructions
	A4.4.5 Packing and unpacking instructions
	A4.4.6 Miscellaneous data-processing instructions
	A4.4.7 Parallel addition and subtraction instructions
	A4.4.8 Divide instructions

	A4.5 Status register access instructions
	A4.6 Load/store instructions
	A4.6.1 Loads to the PC
	A4.6.2 Halfword and byte loads and stores
	A4.6.3 Unprivileged loads and stores
	A4.6.4 Exclusive loads and stores
	A4.6.5 Addressing modes

	A4.7 Load/store multiple instructions
	A4.7.1 Loads to the PC

	A4.8 Miscellaneous instructions
	A4.9 Exception-generating and exception-handling instructions
	A4.10 Coprocessor instructions
	A4.11 Advanced SIMD and VFP load/store instructions
	A4.11.1 Element and structure load/store instructions

	A4.12 Advanced SIMD and VFP register transfer instructions
	A4.13 Advanced SIMD data-processing operations
	A4.13.1 Advanced SIMD parallel addition and subtraction
	A4.13.2 Bitwise Advanced SIMD data-processing instructions
	A4.13.3 Advanced SIMD comparison instructions
	A4.13.4 Advanced SIMD shift instructions
	A4.13.5 Advanced SIMD multiply instructions
	A4.13.6 Miscellaneous Advanced SIMD data-processing instructions

	A4.14 VFP data-processing instructions

	ARM Instruction Set Encoding
	A5.1 ARM instruction set encoding
	A5.1.1 The condition field
	A5.1.2 UNDEFINED and UNPREDICTABLE instruction set space
	A5.1.3 The PC and the use of 0b1111 as a register specifier
	A5.1.4 The SP and the use of 0b1101 as a register specifier

	A5.2 Data-processing and miscellaneous instructions
	A5.2.1 Data-processing (register)
	A5.2.2 Data-processing (register-shifted register)
	A5.2.3 Data-processing (immediate)
	A5.2.4 Modified immediate constants in ARM instructions
	Carry out
	Constants with multiple encodings
	Operation

	A5.2.5 Multiply and multiply-accumulate
	A5.2.6 Saturating addition and subtraction
	A5.2.7 Halfword multiply and multiply-accumulate
	A5.2.8 Extra load/store instructions
	A5.2.9 Extra load/store instructions (unprivileged)
	A5.2.10 Synchronization primitives
	A5.2.11 MSR (immediate), and hints
	A5.2.12 Miscellaneous instructions

	A5.3 Load/store word and unsigned byte
	A5.4 Media instructions
	A5.4.1 Parallel addition and subtraction, signed
	A5.4.2 Parallel addition and subtraction, unsigned
	A5.4.3 Packing, unpacking, saturation, and reversal
	A5.4.4 Signed multiplies

	A5.5 Branch, branch with link, and block data transfer
	A5.6 Supervisor Call, and coprocessor instructions
	A5.7 Unconditional instructions
	A5.7.1 Miscellaneous instructions, memory hints, and Advanced SIMD instructions

	Thumb Instruction Set Encoding
	A6.1 Thumb instruction set encoding
	A6.1.1 UNDEFINED and UNPREDICTABLE instruction set space
	A6.1.2 Use of 0b1111 as a register specifier
	A6.1.3 Use of 0b1101 as a register specifier
	R13[1:0] definition
	32-bit Thumb instruction support for R13
	16-bit Thumb instruction support for R13

	A6.2 16-bit Thumb instruction encoding
	A6.2.1 Shift (immediate), add, subtract, move, and compare
	A6.2.2 Data-processing
	A6.2.3 Special data instructions and branch and exchange
	A6.2.4 Load/store single data item
	A6.2.5 Miscellaneous 16-bit instructions
	If-Then, and hints

	A6.2.6 Conditional branch, and Supervisor Call

	A6.3 32-bit Thumb instruction encoding
	A6.3.1 Data-processing (modified immediate)
	A6.3.2 Modified immediate constants in Thumb instructions
	Carry out
	Operation

	A6.3.3 Data-processing (plain binary immediate)
	A6.3.4 Branches and miscellaneous control
	Change Processor State, and hints
	Miscellaneous control instructions

	A6.3.5 Load/store multiple
	A6.3.6 Load/store dual, load/store exclusive, table branch
	A6.3.7 Load word
	A6.3.8 Load halfword, memory hints
	A6.3.9 Load byte, memory hints
	A6.3.10 Store single data item
	A6.3.11 Data-processing (shifted register)
	A6.3.12 Data-processing (register)
	A6.3.13 Parallel addition and subtraction, signed
	A6.3.14 Parallel addition and subtraction, unsigned
	A6.3.15 Miscellaneous operations
	A6.3.16 Multiply, multiply accumulate, and absolute difference
	A6.3.17 Long multiply, long multiply accumulate, and divide
	A6.3.18 Coprocessor instructions

	Advanced SIMD and VFP Instruction Encoding
	A7.1 Overview
	A7.1.1 Advanced SIMD
	A7.1.2 VFP

	A7.2 Advanced SIMD and VFP instruction syntax
	A7.2.1 Advanced SIMD Instruction modifiers
	A7.2.2 Advanced SIMD Operand shapes
	A7.2.3 Data type specifiers
	Syntax flexibility

	A7.2.4 Register specifiers
	A7.2.5 Register lists
	Syntax flexibility

	A7.3 Register encoding
	A7.3.1 Advanced SIMD scalars

	A7.4 Advanced SIMD data-processing instructions
	A7.4.1 Three registers of the same length
	A7.4.2 Three registers of different lengths
	A7.4.3 Two registers and a scalar
	A7.4.4 Two registers and a shift amount
	A7.4.5 Two registers, miscellaneous
	A7.4.6 One register and a modified immediate value
	Operation

	A7.5 VFP data-processing instructions
	A7.5.1 Operation

	A7.6 Extension register load/store instructions
	A7.7 Advanced SIMD element or structure load/store instructions
	A7.7.1 Advanced SIMD addressing mode

	A7.8 8, 16, and 32-bit transfer between ARM core and extension registers
	A7.9 64-bit transfers between ARM core and extension registers

	Instruction Details
	A8.1 Format of instruction descriptions
	A8.1.1 Instruction section title
	A8.1.2 Introduction to the instruction
	A8.1.3 Instruction encodings
	A8.1.4 Assembler syntax
	Assembler syntax prototype line conventions

	A8.1.5 Pseudocode describing how the instruction operates
	A8.1.6 Exception information
	A8.1.7 Notes

	A8.2 Standard assembler syntax fields
	A8.3 Conditional execution
	A8.3.1 Pseudocode details of conditional execution

	A8.4 Shifts applied to a register
	A8.4.1 Constant shifts
	Encoding

	A8.4.2 Register controlled shifts
	A8.4.3 Pseudocode details of instruction-specified shifts and rotates

	A8.5 Memory accesses
	A8.6 Alphabetical list of instructions
	A8.6.1 ADC (immediate)
	Assembler syntax
	Operation
	Exceptions

	A8.6.2 ADC (register)
	Assembler syntax
	Operation
	Exceptions

	A8.6.3 ADC (register-shifted register)
	Assembler syntax
	Operation
	Exceptions

	A8.6.4 ADD (immediate, Thumb)
	Assembler syntax
	Operation
	Exceptions

	A8.6.5 ADD (immediate, ARM)
	Assembler syntax
	Operation
	Exceptions

	A8.6.6 ADD (register)
	Assembler syntax
	Operation
	Exceptions

	A8.6.7 ADD (register-shifted register)
	Assembler syntax
	Operation
	Exceptions

	A8.6.8 ADD (SP plus immediate)
	Assembler syntax
	Operation
	Exceptions

	A8.6.9 ADD (SP plus register)
	Assembler syntax
	Operation
	Exceptions

	A8.6.10 ADR
	Assembler syntax
	Operation
	Exceptions

	A8.6.11 AND (immediate)
	Assembler syntax
	Operation
	Exceptions

	A8.6.12 AND (register)
	Assembler syntax
	Operation
	Exceptions

	A8.6.13 AND (register-shifted register)
	Assembler syntax
	Operation
	Exceptions

	A8.6.14 ASR (immediate)
	Assembler syntax
	Operation
	Exceptions

	A8.6.15 ASR (register)
	Assembler syntax
	Operation
	Exceptions

	A8.6.16 B
	Assembler syntax
	Operation
	Exceptions

	A8.6.17 BFC
	Assembler syntax
	Operation
	Exceptions

	A8.6.18 BFI
	Assembler syntax
	Operation
	Exceptions

	A8.6.19 BIC (immediate)
	Assembler syntax
	Operation
	Exceptions

	A8.6.20 BIC (register)
	Assembler syntax
	Operation
	Exceptions

	A8.6.21 BIC (register-shifted register)
	Assembler syntax
	Operation
	Exceptions

	A8.6.22 BKPT
	Assembler syntax
	Operation
	Exceptions

	A8.6.23 BL, BLX (immediate)
	Assembler syntax
	Operation
	Exceptions
	Branch range before ARMv6T2

	A8.6.24 BLX (register)
	Assembler syntax
	Operation
	Exceptions

	A8.6.25 BX
	Assembler syntax
	Operation
	Exceptions

	A8.6.26 BXJ
	Assembler syntax
	Operation
	Exceptions

	A8.6.27 CBNZ, CBZ
	Assembler syntax
	Operation
	Exceptions

	A8.6.28 CDP, CDP2
	Assembler syntax
	Operation
	Exceptions

	A8.6.29 CHKA
	A8.6.30 CLREX
	Assembler syntax
	Operation
	Exceptions

	A8.6.31 CLZ
	Assembler syntax
	Operation
	Exceptions

	A8.6.32 CMN (immediate)
	Assembler syntax
	Operation
	Exceptions

	A8.6.33 CMN (register)
	Assembler syntax
	Operation
	Exceptions

	A8.6.34 CMN (register-shifted register)
	Assembler syntax
	Operation
	Exceptions

	A8.6.35 CMP (immediate)
	Assembler syntax
	Operation
	Exceptions

	A8.6.36 CMP (register)
	Assembler syntax
	Operation
	Exceptions

	A8.6.37 CMP (register-shifted register)
	Assembler syntax
	Operation
	Exceptions

	A8.6.38 CPS
	A8.6.39 CPY
	Assembler syntax
	Exceptions

	A8.6.40 DBG
	Assembler syntax
	Operation
	Exceptions

	A8.6.41 DMB
	Assembler syntax
	Operation
	Exceptions

	A8.6.42 DSB
	Assembler syntax
	Operation
	Exceptions

	A8.6.43 ENTERX
	A8.6.44 EOR (immediate)
	Assembler syntax
	Operation
	Exceptions

	A8.6.45 EOR (register)
	Assembler syntax
	Operation
	Exceptions

	A8.6.46 EOR (register-shifted register)
	Assembler syntax
	Operation
	Exceptions

	A8.6.47 F* (former VFP instruction mnemonics)
	FLDMX, FSTMX

	A8.6.48 HB, HBL, HBLP, HBP
	A8.6.49 ISB
	Assembler syntax
	Operation
	Exceptions

	A8.6.50 IT
	Assembler syntax
	Operation
	Exceptions

	A8.6.51 LDC, LDC2 (immediate)
	Assembler syntax
	Operation
	Exceptions

	A8.6.52 LDC, LDC2 (literal)
	Assembler syntax
	Operation
	Exceptions

	A8.6.53 LDM / LDMIA / LDMFD
	Assembler syntax
	Operation
	Exceptions

	A8.6.54 LDMDA / LDMFA
	Assembler syntax
	Operation
	Exceptions

	A8.6.55 LDMDB / LDMEA
	Assembler syntax
	Operation
	Exceptions

	A8.6.56 LDMIB / LDMED
	Assembler syntax
	Operation
	Exceptions

	A8.6.57 LDR (immediate, Thumb)
	Assembler syntax
	Operation
	Exceptions
	ThumbEE instruction

	A8.6.58 LDR (immediate, ARM)
	Assembler syntax
	Operation
	Exceptions

	A8.6.59 LDR (literal)
	Assembler syntax
	Operation
	Exceptions

	A8.6.60 LDR (register)
	Assembler syntax
	Operation
	Exceptions

	A8.6.61 LDRB (immediate, Thumb)
	Assembler syntax
	Operation
	Exceptions

	A8.6.62 LDRB (immediate, ARM)
	Assembler syntax
	Operation
	Exceptions

	A8.6.63 LDRB (literal)
	Assembler syntax
	Operation
	Exceptions

	A8.6.64 LDRB (register)
	Assembler syntax
	Operation
	Exceptions

	A8.6.65 LDRBT
	Assembler syntax
	Operation
	Exceptions

	A8.6.66 LDRD (immediate)
	Assembler syntax
	Operation
	Exceptions

	A8.6.67 LDRD (literal)
	Assembler syntax
	Operation
	Exceptions

	A8.6.68 LDRD (register)
	Assembler syntax
	Operation
	Exceptions

	A8.6.69 LDREX
	Assembler syntax
	Operation
	Exceptions

	A8.6.70 LDREXB
	Assembler syntax
	Operation
	Exceptions

	A8.6.71 LDREXD
	Assembler syntax
	Operation
	Exceptions

	A8.6.72 LDREXH
	Assembler syntax
	Operation
	Exceptions

	A8.6.73 LDRH (immediate, Thumb)
	Assembler syntax
	Operation
	Exceptions

	A8.6.74 LDRH (immediate, ARM)
	Assembler syntax
	Operation
	Exceptions

	A8.6.75 LDRH (literal)
	Assembler syntax
	Operation
	Exceptions

	A8.6.76 LDRH (register)
	Assembler syntax
	Operation
	Exceptions

	A8.6.77 LDRHT
	Assembler syntax
	Operation
	Exceptions

	A8.6.78 LDRSB (immediate)
	Assembler syntax
	Operation
	Exceptions

	A8.6.79 LDRSB (literal)
	Assembler syntax
	Operation
	Exceptions

	A8.6.80 LDRSB (register)
	Assembler syntax
	Operation
	Exceptions

	A8.6.81 LDRSBT
	Assembler syntax
	Operation
	Exceptions

	A8.6.82 LDRSH (immediate)
	Assembler syntax
	Operation
	Exceptions

	A8.6.83 LDRSH (literal)
	Assembler syntax
	Operation
	Exceptions

	A8.6.84 LDRSH (register)
	Assembler syntax
	Operation
	Exceptions

	A8.6.85 LDRSHT
	Assembler syntax
	Operation
	Exceptions

	A8.6.86 LDRT
	Assembler syntax
	Operation
	Exceptions

	A8.6.87 LEAVEX
	A8.6.88 LSL (immediate)
	Assembler syntax
	Operation
	Exceptions

	A8.6.89 LSL (register)
	Assembler syntax
	Operation
	Exceptions

	A8.6.90 LSR (immediate)
	Assembler syntax
	Operation
	Exceptions

	A8.6.91 LSR (register)
	Assembler syntax
	Operation
	Exceptions

	A8.6.92 MCR, MCR2
	Assembler syntax
	Operation
	Exceptions

	A8.6.93 MCRR, MCRR2
	Assembler syntax
	Operation
	Exceptions

	A8.6.94 MLA
	Assembler syntax
	Operation
	Exceptions

	A8.6.95 MLS
	Assembler syntax
	Operation
	Exceptions

	A8.6.96 MOV (immediate)
	Assembler syntax
	Operation
	Exceptions

	A8.6.97 MOV (register)
	Assembler syntax
	Operation
	Exceptions

	A8.6.98 MOV (shifted register)
	Assembler syntax
	Exceptions

	A8.6.99 MOVT
	Assembler syntax
	Operation
	Exceptions

	A8.6.100 MRC, MRC2
	Assembler syntax
	Operation
	Exceptions

	A8.6.101 MRRC, MRRC2
	Assembler syntax
	Operation
	Exceptions

	A8.6.102 MRS
	Assembler syntax
	Operation
	Exceptions

	A8.6.103 MSR (immediate)
	Assembler syntax
	Operation
	Exceptions
	Usage

	A8.6.104 MSR (register)
	Assembler syntax
	Operation
	Exceptions
	Usage

	A8.6.105 MUL
	Assembler syntax
	Operation
	Exceptions

	A8.6.106 MVN (immediate)
	Assembler syntax
	Operation
	Exceptions

	A8.6.107 MVN (register)
	Assembler syntax
	Operation
	Exceptions

	A8.6.108 MVN (register-shifted register)
	Assembler syntax
	Operation
	Exceptions

	A8.6.109 NEG
	Assembler syntax
	Exceptions

	A8.6.110 NOP
	Assembler syntax
	Operation
	Exceptions

	A8.6.111 ORN (immediate)
	Assembler syntax
	Operation
	Exceptions

	A8.6.112 ORN (register)
	Assembler syntax
	Operation
	Exceptions

	A8.6.113 ORR (immediate)
	Assembler syntax
	Operation
	Exceptions

	A8.6.114 ORR (register)
	Assembler syntax
	Operation
	Exceptions

	A8.6.115 ORR (register-shifted register)
	Assembler syntax
	Operation
	Exceptions

	A8.6.116 PKH
	Assembler syntax
	Operation
	Exceptions

	A8.6.117 PLD, PLDW (immediate)
	Assembler syntax
	Operation
	Exceptions

	A8.6.118 PLD (literal)
	Assembler syntax
	Operation
	Exceptions

	A8.6.119 PLD, PLDW (register)
	Assembler syntax
	Operation
	Exceptions

	A8.6.120 PLI (immediate, literal)
	Assembler syntax
	Operation
	Exceptions

	A8.6.121 PLI (register)
	Assembler syntax
	Operation
	Exceptions

	A8.6.122 POP
	Assembler syntax
	Operation
	Exceptions

	A8.6.123 PUSH
	Assembler syntax
	Operation
	Exceptions

	A8.6.124 QADD
	Assembler syntax
	Operation
	Exceptions

	A8.6.125 QADD16
	Assembler syntax
	Operation
	Exceptions

	A8.6.126 QADD8
	Assembler syntax
	Operation
	Exceptions

	A8.6.127 QASX
	Assembler syntax
	Operation
	Exceptions

	A8.6.128 QDADD
	Assembler syntax
	Operation
	Exceptions

	A8.6.129 QDSUB
	Assembler syntax
	Operation
	Exceptions

	A8.6.130 QSAX
	Assembler syntax
	Operation
	Exceptions

	A8.6.131 QSUB
	Assembler syntax
	Operation
	Exceptions

	A8.6.132 QSUB16
	Assembler syntax
	Operation
	Exceptions

	A8.6.133 QSUB8
	Assembler syntax
	Operation
	Exceptions

	A8.6.134 RBIT
	Assembler syntax
	Operation
	Exceptions

	A8.6.135 REV
	Assembler syntax
	Operation
	Exceptions

	A8.6.136 REV16
	Assembler syntax
	Operation
	Exceptions

	A8.6.137 REVSH
	Assembler syntax
	Operation
	Exceptions

	A8.6.138 RFE
	A8.6.139 ROR (immediate)
	Assembler syntax
	Operation
	Exceptions

	A8.6.140 ROR (register)
	Assembler syntax
	Operation
	Exceptions

	A8.6.141 RRX
	Assembler syntax
	Operation
	Exceptions

	A8.6.142 RSB (immediate)
	Assembler syntax
	Operation
	Exceptions

	A8.6.143 RSB (register)
	Assembler syntax
	Operation
	Exceptions

	A8.6.144 RSB (register-shifted register)
	Assembler syntax
	Operation
	Exceptions

	A8.6.145 RSC (immediate)
	Assembler syntax
	Operation
	Exceptions

	A8.6.146 RSC (register)
	Assembler syntax
	Operation
	Exceptions

	A8.6.147 RSC (register-shifted register)
	Assembler syntax
	Operation
	Exceptions

	A8.6.148 SADD16
	Assembler syntax
	Operation
	Exceptions

	A8.6.149 SADD8
	Assembler syntax
	Operation
	Exceptions

	A8.6.150 SASX
	Assembler syntax
	Operation
	Exceptions

	A8.6.151 SBC (immediate)
	Assembler syntax
	Operation
	Exceptions

	A8.6.152 SBC (register)
	Assembler syntax
	Operation
	Exceptions

	A8.6.153 SBC (register-shifted register)
	Assembler syntax
	Operation
	Exceptions

	A8.6.154 SBFX
	Assembler syntax
	Operation
	Exceptions

	A8.6.155 SDIV
	Assembler syntax
	Operation
	Exceptions
	Overflow

	A8.6.156 SEL
	Assembler syntax
	Operation
	Exceptions

	A8.6.157 SETEND
	Assembler syntax
	Operation
	Exceptions

	A8.6.158 SEV
	Assembler syntax
	Operation
	Exceptions

	A8.6.159 SHADD16
	Assembler syntax
	Operation
	Exceptions

	A8.6.160 SHADD8
	Assembler syntax
	Operation
	Exceptions

	A8.6.161 SHASX
	Assembler syntax
	Operation
	Exceptions

	A8.6.162 SHSAX
	Assembler syntax
	Operation
	Exceptions

	A8.6.163 SHSUB16
	Assembler syntax
	Operation
	Exceptions

	A8.6.164 SHSUB8
	Assembler syntax
	Operation
	Exceptions

	A8.6.165 SMC (previously SMI)
	A8.6.166 SMLABB, SMLABT, SMLATB, SMLATT
	Assembler syntax
	Operation
	Exceptions

	A8.6.167 SMLAD
	Assembler syntax
	Operation
	Exceptions

	A8.6.168 SMLAL
	Assembler syntax
	Operation
	Exceptions

	A8.6.169 SMLALBB, SMLALBT, SMLALTB, SMLALTT
	Assembler syntax
	Operation
	Exceptions

	A8.6.170 SMLALD
	Assembler syntax
	Operation
	Exceptions

	A8.6.171 SMLAWB, SMLAWT
	Assembler syntax
	Operation
	Exceptions

	A8.6.172 SMLSD
	Assembler syntax
	Operation
	Exceptions

	A8.6.173 SMLSLD
	Assembler syntax
	Operation
	Exceptions

	A8.6.174 SMMLA
	Assembler syntax
	Operation
	Exceptions

	A8.6.175 SMMLS
	Assembler syntax
	Operation
	Exceptions

	A8.6.176 SMMUL
	Assembler syntax
	Operation
	Exceptions

	A8.6.177 SMUAD
	Assembler syntax
	Operation
	Exceptions

	A8.6.178 SMULBB, SMULBT, SMULTB, SMULTT
	Assembler syntax
	Operation
	Exceptions

	A8.6.179 SMULL
	Assembler syntax
	Operation
	Exceptions

	A8.6.180 SMULWB, SMULWT
	Assembler syntax
	Operation
	Exceptions

	A8.6.181 SMUSD
	Assembler syntax
	Operation
	Exceptions

	A8.6.182 SRS
	A8.6.183 SSAT
	Assembler syntax
	Operation
	Exceptions

	A8.6.184 SSAT16
	Assembler syntax
	Operation
	Exceptions

	A8.6.185 SSAX
	Assembler syntax
	Operation
	Exceptions

	A8.6.186 SSUB16
	Assembler syntax
	Operation
	Exceptions

	A8.6.187 SSUB8
	Assembler syntax
	Operation
	Exceptions

	A8.6.188 STC, STC2
	Assembler syntax
	Operation
	Exceptions

	A8.6.189 STM / STMIA / STMEA
	Assembler syntax
	Operation
	Exceptions

	A8.6.190 STMDA / STMED
	Assembler syntax
	Operation
	Exceptions

	A8.6.191 STMDB / STMFD
	Assembler syntax
	Operation
	Exceptions

	A8.6.192 STMIB / STMFA
	Assembler syntax
	Operation
	Exceptions

	A8.6.193 STR (immediate, Thumb)
	Assembler syntax
	Operation
	Exceptions
	ThumbEE instruction

	A8.6.194 STR (immediate, ARM)
	Assembler syntax
	Operation
	Exceptions

	A8.6.195 STR (register)
	Assembler syntax
	Operation
	Exceptions

	A8.6.196 STRB (immediate, Thumb)
	Assembler syntax
	Operation
	Exceptions

	A8.6.197 STRB (immediate, ARM)
	Assembler syntax
	Operation
	Exceptions

	A8.6.198 STRB (register)
	Assembler syntax
	Operation
	Exceptions

	A8.6.199 STRBT
	Assembler syntax
	Operation
	Exceptions

	A8.6.200 STRD (immediate)
	Assembler syntax
	Operation
	Exceptions

	A8.6.201 STRD (register)
	Assembler syntax
	Operation
	Exceptions

	A8.6.202 STREX
	Assembler syntax
	Operation
	Exceptions
	Aborts and alignment

	A8.6.203 STREXB
	Assembler syntax
	Operation
	Exceptions
	Aborts

	A8.6.204 STREXD
	Assembler syntax
	Operation
	Exceptions
	Aborts and alignment

	A8.6.205 STREXH
	Assembler syntax
	Operation
	Exceptions
	Aborts and alignment

	A8.6.206 STRH (immediate, Thumb)
	Assembler syntax
	Operation
	Exceptions

	A8.6.207 STRH (immediate, ARM)
	Assembler syntax
	Operation
	Exceptions

	A8.6.208 STRH (register)
	Assembler syntax
	Operation
	Exceptions

	A8.6.209 STRHT
	Assembler syntax
	Operation
	Exceptions

	A8.6.210 STRT
	Assembler syntax
	Operation
	Exceptions

	A8.6.211 SUB (immediate, Thumb)
	Assembler syntax
	Operation
	Exceptions

	A8.6.212 SUB (immediate, ARM)
	Assembler syntax
	Operation
	Exceptions

	A8.6.213 SUB (register)
	Assembler syntax
	Operation
	Exceptions

	A8.6.214 SUB (register-shifted register)
	Assembler syntax
	Operation
	Exceptions

	A8.6.215 SUB (SP minus immediate)
	Assembler syntax
	Operation
	Exceptions

	A8.6.216 SUB (SP minus register)
	Assembler syntax
	Operation
	Exceptions

	A8.6.217 SUBS PC, LR and related instructions
	A8.6.218 SVC (previously SWI)
	Assembler syntax
	Operation
	Exceptions

	A8.6.219 SWP, SWPB
	Assembler syntax
	Operation
	Exceptions

	A8.6.220 SXTAB
	Assembler syntax
	Operation
	Exceptions

	A8.6.221 SXTAB16
	Assembler syntax
	Operation
	Exceptions

	A8.6.222 SXTAH
	Assembler syntax
	Operation
	Exceptions

	A8.6.223 SXTB
	Assembler syntax
	Operation
	Exceptions

	A8.6.224 SXTB16
	Assembler syntax
	Operation
	Exceptions

	A8.6.225 SXTH
	Assembler syntax
	Operation
	Exceptions

	A8.6.226 TBB, TBH
	Assembler syntax
	Operation
	Exceptions

	A8.6.227 TEQ (immediate)
	Assembler syntax
	Operation
	Exceptions

	A8.6.228 TEQ (register)
	Assembler syntax
	Operation
	Exceptions

	A8.6.229 TEQ (register-shifted register)
	Assembler syntax
	Operation
	Exceptions

	A8.6.230 TST (immediate)
	Assembler syntax
	Operation
	Exceptions

	A8.6.231 TST (register)
	Assembler syntax
	Operation
	Exceptions

	A8.6.232 TST (register-shifted register)
	Assembler syntax
	Operation
	Exceptions

	A8.6.233 UADD16
	Assembler syntax
	Operation
	Exceptions

	A8.6.234 UADD8
	Assembler syntax
	Operation
	Exceptions

	A8.6.235 UASX
	Assembler syntax
	Operation
	Exceptions

	A8.6.236 UBFX
	Assembler syntax
	Operation
	Exceptions

	A8.6.237 UDIV
	Assembler syntax
	Operation
	Exceptions

	A8.6.238 UHADD16
	Assembler syntax
	Operation
	Exceptions

	A8.6.239 UHADD8
	Assembler syntax
	Operation
	Exceptions

	A8.6.240 UHASX
	Assembler syntax
	Operation
	Exceptions

	A8.6.241 UHSAX
	Assembler syntax
	Operation
	Exceptions

	A8.6.242 UHSUB16
	Assembler syntax
	Operation
	Exceptions

	A8.6.243 UHSUB8
	Assembler syntax
	Operation
	Exceptions

	A8.6.244 UMAAL
	Assembler syntax
	Operation
	Exceptions

	A8.6.245 UMLAL
	Assembler syntax
	Operation
	Exceptions

	A8.6.246 UMULL
	Assembler syntax
	Operation
	Exceptions

	A8.6.247 UQADD16
	Assembler syntax
	Operation
	Exceptions

	A8.6.248 UQADD8
	Assembler syntax
	Operation
	Exceptions

	A8.6.249 UQASX
	Assembler syntax
	Operation
	Exceptions

	A8.6.250 UQSAX
	Assembler syntax
	Operation
	Exceptions

	A8.6.251 UQSUB16
	Assembler syntax
	Operation
	Exceptions

	A8.6.252 UQSUB8
	Assembler syntax
	Operation
	Exceptions

	A8.6.253 USAD8
	Assembler syntax
	Operation
	Exceptions

	A8.6.254 USADA8
	Assembler syntax
	Operation
	Exceptions

	A8.6.255 USAT
	Assembler syntax
	Operation
	Exceptions

	A8.6.256 USAT16
	Assembler syntax
	Operation
	Exceptions

	A8.6.257 USAX
	Assembler syntax
	Operation
	Exceptions

	A8.6.258 USUB16
	Assembler syntax
	Operation
	Exceptions

	A8.6.259 USUB8
	Assembler syntax
	Operation
	Exceptions

	A8.6.260 UXTAB
	Assembler syntax
	Operation
	Exceptions

	A8.6.261 UXTAB16
	Assembler syntax
	Operation
	Exceptions

	A8.6.262 UXTAH
	Assembler syntax
	Operation
	Exceptions

	A8.6.263 UXTB
	Assembler syntax
	Operation
	Exceptions

	A8.6.264 UXTB16
	Assembler syntax
	Operation
	Exceptions

	A8.6.265 UXTH
	Assembler syntax
	Operation
	Exceptions

	A8.6.266 VABA, VABAL
	Assembler syntax
	Operation
	Exceptions

	A8.6.267 VABD, VABDL (integer)
	Assembler syntax
	Operation
	Exceptions

	A8.6.268 VABD (floating-point)
	Assembler syntax
	Operation
	Exceptions

	A8.6.269 VABS
	Assembler syntax
	Operation
	Exceptions

	A8.6.270 VACGE, VACGT, VACLE,VACLT
	Assembler syntax
	Operation
	Exceptions

	A8.6.271 VADD (integer)
	Assembler syntax
	Operation
	Exceptions

	A8.6.272 VADD (floating-point)
	Assembler syntax
	Operation
	Exceptions

	A8.6.273 VADDHN
	Assembler syntax
	Operation
	Exceptions

	A8.6.274 VADDL, VADDW
	Assembler syntax
	Operation
	Exceptions

	A8.6.275 VAND (immediate)
	A8.6.276 VAND (register)
	Assembler syntax
	Operation
	Exceptions

	A8.6.277 VBIC (immediate)
	Assembler syntax
	Operation
	Exceptions
	Pseudo-instructions

	A8.6.278 VBIC (register)
	Assembler syntax
	Operation
	Exceptions

	A8.6.279 VBIF, VBIT, VBSL
	Assembler syntax
	Operation
	Exceptions

	A8.6.280 VCEQ (register)
	Assembler syntax
	Operation
	Exceptions

	A8.6.281 VCEQ (immediate #0)
	Assembler syntax
	Operation
	Exceptions

	A8.6.282 VCGE (register)
	Assembler syntax
	Operation
	Exceptions

	A8.6.283 VCGE (immediate #0)
	Assembler syntax
	Operation
	Exceptions

	A8.6.284 VCGT (register)
	Assembler syntax
	Operation
	Exceptions

	A8.6.285 VCGT (immediate #0)
	Assembler syntax
	Operation
	Exceptions

	A8.6.286 VCLE (register)
	A8.6.287 VCLE (immediate #0)
	Assembler syntax
	Operation
	Exceptions

	A8.6.288 VCLS
	Assembler syntax
	Operation
	Exceptions

	A8.6.289 VCLT (register)
	A8.6.290 VCLT (immediate #0)
	Assembler syntax
	Operation
	Exceptions

	A8.6.291 VCLZ
	Assembler syntax
	Operation
	Exceptions

	A8.6.292 VCMP, VCMPE
	Assembler syntax
	Operation
	Exceptions
	NaNs

	A8.6.293 VCNT
	Assembler syntax
	Operation
	Exceptions

	A8.6.294 VCVT (between floating-point and integer, Advanced SIMD)
	Assembler syntax
	Operation
	Exceptions

	A8.6.295 VCVT, VCVTR (between floating-point and integer, VFP)
	Assembler syntax
	Operation
	Exceptions

	A8.6.296 VCVT (between floating-point and fixed-point, Advanced SIMD)
	Assembler syntax
	Operation
	Exceptions

	A8.6.297 VCVT (between floating-point and fixed-point, VFP)
	Assembler syntax
	Operation
	Exceptions

	A8.6.298 VCVT (between double-precision and single-precision)
	Assembler syntax
	Operation
	Exceptions

	A8.6.299 VCVT (between half-precision and single-precision, Advanced SIMD)
	Assembler syntax
	Operation
	Exceptions

	A8.6.300 VCVTB, VCVTT (between half-precision and single-precision, VFP)
	Assembler syntax
	Operation
	Exceptions

	A8.6.301 VDIV
	Assembler syntax
	Operation
	Exceptions

	A8.6.302 VDUP (scalar)
	Assembler syntax
	Operation
	Exceptions

	A8.6.303 VDUP (ARM core register)
	Assembler syntax
	Operation
	Exceptions

	A8.6.304 VEOR
	Assembler syntax
	Operation
	Exceptions

	A8.6.305 VEXT
	Assembler syntax
	Operation
	Exceptions

	A8.6.306 VHADD, VHSUB
	Assembler syntax
	Operation
	Exceptions

	A8.6.307 VLD1 (multiple single elements)
	Assembler syntax
	Operation
	Exceptions

	A8.6.308 VLD1 (single element to one lane)
	Assembler syntax
	Operation
	Exceptions

	A8.6.309 VLD1 (single element to all lanes)
	Assembler syntax
	Operation
	Exceptions

	A8.6.310 VLD2 (multiple 2-element structures)
	Assembler syntax
	Operation
	Exceptions

	A8.6.311 VLD2 (single 2-element structure to one lane)
	Assembler syntax
	Operation
	Exceptions

	A8.6.312 VLD2 (single 2-element structure to all lanes)
	Assembler syntax
	Operation
	Exceptions

	A8.6.313 VLD3 (multiple 3-element structures)
	Assembler syntax
	Operation
	Exceptions

	A8.6.314 VLD3 (single 3-element structure to one lane)
	Assembler syntax
	Alignment
	Operation
	Exceptions

	A8.6.315 VLD3 (single 3-element structure to all lanes)
	Assembler syntax
	Alignment
	Operation
	Exceptions

	A8.6.316 VLD4 (multiple 4-element structures)
	Assembler syntax
	Operation
	Exceptions

	A8.6.317 VLD4 (single 4-element structure to one lane)
	Assembler syntax
	Operation
	Exceptions

	A8.6.318 VLD4 (single 4-element structure to all lanes)
	Assembler syntax
	Operation
	Exceptions

	A8.6.319 VLDM
	Assembler syntax
	Operation
	Exceptions

	A8.6.320 VLDR
	Assembler syntax
	Operation
	Exceptions

	A8.6.321 VMAX, VMIN (integer)
	Assembler syntax
	Operation
	Exceptions

	A8.6.322 VMAX, VMIN (floating-point)
	Assembler syntax
	Operation
	Exceptions
	Floating-point maximum and minimum

	A8.6.323 VMLA, VMLAL, VMLS, VMLSL (integer)
	Assembler syntax
	Operation
	Exceptions

	A8.6.324 VMLA, VMLS (floating-point)
	Assembler syntax
	Operation
	Exceptions

	A8.6.325 VMLA, VMLAL, VMLS, VMLSL (by scalar)
	Assembler syntax
	Operation
	Exceptions

	A8.6.326 VMOV (immediate)
	Assembler syntax
	Operation
	Exceptions
	Pseudo-instructions

	A8.6.327 VMOV (register)
	Assembler syntax
	Operation
	Exceptions

	A8.6.328 VMOV (ARM core register to scalar)
	Assembler syntax
	Operation
	Exceptions

	A8.6.329 VMOV (scalar to ARM core register)
	Assembler syntax
	Operation
	Exceptions

	A8.6.330 VMOV (between ARM core register and single-precision register)
	Assembler syntax
	Operation
	Exceptions

	A8.6.331 VMOV (between two ARM core registers and two single-precision registers)
	Assembler syntax
	Operation
	Exceptions

	A8.6.332 VMOV (between two ARM core registers and a doubleword extension register)
	Assembler syntax
	Operation
	Exceptions

	A8.6.333 VMOVL
	Assembler syntax
	Operation
	Exceptions

	A8.6.334 VMOVN
	Assembler syntax
	Operation
	Exceptions

	A8.6.335 VMRS
	Assembler syntax
	Operation
	Exceptions

	A8.6.336 VMSR
	Assembler syntax
	Operation
	Exceptions

	A8.6.337 VMUL, VMULL (integer and polynomial)
	Assembler syntax
	Operation
	Exceptions

	A8.6.338 VMUL (floating-point)
	Assembler syntax
	Operation
	Exceptions

	A8.6.339 VMUL, VMULL (by scalar)
	Assembler syntax
	Operation
	Exceptions

	A8.6.340 VMVN (immediate)
	Assembler syntax
	Operation
	Exceptions
	Pseudo-instructions

	A8.6.341 VMVN (register)
	Assembler syntax
	Operation
	Exceptions

	A8.6.342 VNEG
	Assembler syntax
	Operation
	Exceptions

	A8.6.343 VNMLA, VNMLS, VNMUL
	Assembler syntax
	Operation
	Exceptions

	A8.6.344 VORN (immediate)
	A8.6.345 VORN (register)
	Assembler syntax
	Operation
	Exceptions

	A8.6.346 VORR (immediate)
	Assembler syntax
	Operation
	Exceptions
	Pseudo-instructions

	A8.6.347 VORR (register)
	Assembler syntax
	Operation
	Exceptions

	A8.6.348 VPADAL
	Assembler syntax
	Operation
	Exceptions

	A8.6.349 VPADD (integer)
	Assembler syntax
	Operation
	Exceptions

	A8.6.350 VPADD (floating-point)
	Assembler syntax
	Operation
	Exceptions

	A8.6.351 VPADDL
	Assembler syntax
	Operation
	Exceptions

	A8.6.352 VPMAX, VPMIN (integer)
	Assembler syntax
	Operation
	Exceptions

	A8.6.353 VPMAX, VPMIN (floating-point)
	Assembler syntax
	Operation
	Exceptions

	A8.6.354 VPOP
	Assembler syntax
	Operation
	Exceptions

	A8.6.355 VPUSH
	Assembler syntax
	Operation
	Exceptions

	A8.6.356 VQABS
	Assembler syntax
	Operation
	Exceptions

	A8.6.357 VQADD
	Assembler syntax
	Operation
	Exceptions

	A8.6.358 VQDMLAL, VQDMLSL
	Assembler syntax
	Operation
	Exceptions

	A8.6.359 VQDMULH
	Assembler syntax
	Operation
	Exceptions

	A8.6.360 VQDMULL
	Assembler syntax
	Operation
	Exceptions

	A8.6.361 VQMOVN, VQMOVUN
	Assembler syntax
	Operation
	Exceptions

	A8.6.362 VQNEG
	Assembler syntax
	Operation
	Exceptions

	A8.6.363 VQRDMULH
	Assembler syntax
	Operation
	Exceptions

	A8.6.364 VQRSHL
	Assembler syntax
	Operation
	Exceptions

	A8.6.365 VQRSHRN, VQRSHRUN
	Assembler syntax
	Operation
	Exceptions
	Pseudo-instructions

	A8.6.366 VQSHL (register)
	Assembler syntax
	Operation
	Exceptions

	A8.6.367 VQSHL, VQSHLU (immediate)
	Assembler syntax
	Operation
	Exceptions

	A8.6.368 VQSHRN, VQSHRUN
	Assembler syntax
	Operation
	Exceptions
	Pseudo-instructions

	A8.6.369 VQSUB
	Assembler syntax
	Operation
	Exceptions

	A8.6.370 VRADDHN
	Assembler syntax
	Operation
	Exceptions

	A8.6.371 VRECPE
	Assembler syntax
	Operation
	Exceptions
	Newton-Raphson iteration

	A8.6.372 VRECPS
	Assembler syntax
	Operation
	Exceptions
	Newton-Raphson iteration

	A8.6.373 VREV16, VREV32, VREV64
	Assembler syntax
	Operation
	Exceptions

	A8.6.374 VRHADD
	Assembler syntax
	Operation
	Exceptions

	A8.6.375 VRSHL
	Assembler syntax
	Operation
	Exceptions

	A8.6.376 VRSHR
	Assembler syntax
	Operation
	Exceptions
	Pseudo-instructions

	A8.6.377 VRSHRN
	Assembler syntax
	Operation
	Exceptions
	Pseudo-instructions

	A8.6.378 VRSQRTE
	Assembler syntax
	Operation
	Exceptions
	Newton-Raphson iteration

	A8.6.379 VRSQRTS
	Assembler syntax
	Operation
	Exceptions
	Newton-Raphson iteration

	A8.6.380 VRSRA
	Assembler syntax
	Operation
	Exceptions

	A8.6.381 VRSUBHN
	Assembler syntax
	Operation
	Exceptions

	A8.6.382 VSHL (immediate)
	Assembler syntax
	Operation
	Exceptions

	A8.6.383 VSHL (register)
	Assembler syntax
	Operation
	Exceptions

	A8.6.384 VSHLL
	Assembler syntax
	Operation
	Exceptions

	A8.6.385 VSHR
	Assembler syntax
	Operation
	Exceptions
	Pseudo-instructions

	A8.6.386 VSHRN
	Assembler syntax
	Operation
	Exceptions
	Pseudo-instructions

	A8.6.387 VSLI
	Assembler syntax
	Operation
	Exceptions

	A8.6.388 VSQRT
	Assembler syntax
	Operation
	Exceptions

	A8.6.389 VSRA
	Assembler syntax
	Operation
	Exceptions

	A8.6.390 VSRI
	Assembler syntax
	Operation
	Exceptions

	A8.6.391 VST1 (multiple single elements)
	Assembler syntax
	Operation
	Exceptions

	A8.6.392 VST1 (single element from one lane)
	Assembler syntax
	Operation
	Exceptions

	A8.6.393 VST2 (multiple 2-element structures)
	Assembler syntax
	Operation
	Exceptions

	A8.6.394 VST2 (single 2-element structure from one lane)
	Assembler syntax
	Operation
	Exceptions

	A8.6.395 VST3 (multiple 3-element structures)
	Assembler syntax
	Operation
	Exceptions

	A8.6.396 VST3 (single 3-element structure from one lane)
	Assembler syntax
	Alignment
	Operation
	Exceptions

	A8.6.397 VST4 (multiple 4-element structures)
	Assembler syntax
	Operation
	Exceptions

	A8.6.398 VST4 (single 4-element structure from one lane)
	Assembler syntax
	Operation
	Exceptions

	A8.6.399 VSTM
	Assembler syntax
	Operation
	Exceptions

	A8.6.400 VSTR
	Assembler syntax
	Operation
	Exceptions

	A8.6.401 VSUB (integer)
	Assembler syntax
	Operation
	Exceptions

	A8.6.402 VSUB (floating-point)
	Assembler syntax
	Operation
	Exceptions

	A8.6.403 VSUBHN
	Assembler syntax
	Operation
	Exceptions

	A8.6.404 VSUBL, VSUBW
	Assembler syntax
	Operation
	Exceptions

	A8.6.405 VSWP
	Assembler syntax
	Operation
	Exceptions

	A8.6.406 VTBL, VTBX
	Assembler syntax
	Operation
	Exceptions

	A8.6.407 VTRN
	Assembler syntax
	Operation
	Exceptions

	A8.6.408 VTST
	Assembler syntax
	Operation
	Exceptions

	A8.6.409 VUZP
	Assembler syntax
	Operation
	Exceptions
	Pseudo-instruction

	A8.6.410 VZIP
	Assembler syntax
	Operation
	Exceptions
	Pseudo-instructions

	A8.6.411 WFE
	Assembler syntax
	Operation
	Exceptions

	A8.6.412 WFI
	Assembler syntax
	Operation
	Exceptions

	A8.6.413 YIELD
	Assembler syntax
	Operation
	Exceptions

	ThumbEE
	A9.1 The ThumbEE instruction set
	A9.1.1 ThumbEE state transitions
	A9.1.2 Null checking
	A9.1.3 Instructions with modifications
	A9.1.4 IT block and check handlers

	A9.2 ThumbEE instruction set encoding
	A9.2.1 16-bit ThumbEE instructions

	A9.3 Additional instructions in Thumb and ThumbEE instruction sets
	A9.3.1 ENTERX, LEAVEX
	Assembler syntax
	Operation
	Exceptions

	A9.4 ThumbEE instructions with modified behavior
	A9.4.1 LDR (register)
	Assembler syntax
	Operation
	Exceptions and checks

	A9.4.2 LDRH (register)
	Assembler syntax
	Operation
	Exceptions and checks

	A9.4.3 LDRSH (register)
	Assembler syntax
	Operation
	Exceptions and checks

	A9.4.4 STR (register)
	Assembler syntax
	Operation
	Exceptions and checks

	A9.4.5 STRH (register)
	Assembler syntax
	Operation
	Exceptions and checks

	A9.5 Additional ThumbEE instructions
	A9.5.1 CHKA
	Assembler syntax
	Operation
	Exceptions and checks
	Usage

	A9.5.2 HB, HBL
	Assembler syntax
	Operation
	Exceptions
	Usage

	A9.5.3 HBLP
	Assembler syntax
	Operation
	Exceptions

	A9.5.4 HBP
	Assembler syntax
	Operation
	Exceptions

	A9.5.5 LDR (immediate)
	Assembler syntax
	Operation
	Exceptions and checks

	A9.5.6 STR (immediate)
	Assembler syntax
	Operation
	Exceptions and checks

	System Level Architecture
	The System Level Programmers’ Model
	B1.1 About the system level programmers’ model
	B1.2 System level concepts and terminology
	B1.2.1 Privilege, mode, and state
	Privilege
	Mode
	State

	B1.2.2 Exceptions
	Terminology for describing exceptions

	B1.3 ARM processor modes and core registers
	B1.3.1 ARM processor modes
	Notes on the ARM processor modes
	Pseudocode details of mode operations

	B1.3.2 ARM core registers
	Writing to the PC
	Pseudocode details of ARM core register operations

	B1.3.3 Program Status Registers (PSRs)
	The Current Program Status Register (CPSR)
	The Saved Program Status Registers (SPSRs)
	Format of the CPSR and SPSRs
	Accessing the execution state bits
	Non-maskable fast interrupts
	Use of the A, F, and Mode bits by the Security Extensions
	Pseudocode details of PSR operations

	B1.4 Instruction set states
	B1.4.1 Exceptions and instruction set state
	B1.4.2 Unimplemented instruction sets

	B1.5 The Security Extensions
	B1.5.1 Security states
	Changing from Secure to Non-secure state
	Pseudocode details of Secure state operations

	B1.5.2 Impact of the Security Extensions on the modes and exception model

	B1.6 Exceptions
	B1.6.1 Exception vectors and the exception base address
	Vectored interrupt support
	Operation

	B1.6.2 Exception priority order
	B1.6.3 Exception entry
	Instruction set state on exception entry
	CPSR M field and A, I, and F mask bit values on exception entry
	CPSR.E bit value on exception entry

	B1.6.4 Exception return
	Alignment of exception returns
	Exception return to an unsupported instruction set state

	B1.6.5 Exception-handling instructions
	B1.6.6 Control of exception handling by the Security Extensions
	Control of aborts by the Security Extensions
	Control of FIQs by the Security Extensions
	Control of IRQs by the Security Extensions

	B1.6.7 Low interrupt latency configuration
	B1.6.8 Wait For Event and Send Event
	WFE wake-up events
	The Event Register
	The Send Event instruction
	The Wait For Event instruction
	Pseudocode details of the Wait For Event lock mechanism

	B1.6.9 Wait For Interrupt
	Using WFI to indicate an idle state on bus interfaces
	Pseudocode details of Wait For Interrupt

	B1.6.10 Reset
	B1.6.11 Undefined Instruction exception
	Conditional execution of undefined instructions

	B1.6.12 Supervisor Call (SVC) exception
	B1.6.13 Secure Monitor Call (SMC) exception
	B1.6.14 Prefetch Abort exception
	B1.6.15 Data Abort exception
	Effects of data-aborted instructions
	The ARM abort model

	B1.6.16 IRQ exception
	B1.6.17 FIQ exception

	B1.7 Coprocessors and system control
	B1.7.1 CP15 System Control coprocessor registers
	B1.7.2 Access controls on CP0 to CP13

	B1.8 Advanced SIMD and floating-point support
	B1.8.1 Enabling Advanced SIMD and floating-point support
	Pseudocode details of enabling the Advanced SIMD and VFP extensions

	B1.8.2 Advanced SIMD and VFP extension system registers
	Register map of the Advanced SIMD and VFP extension system registers
	Accessing the Advanced SIMD and VFP extension system registers

	B1.8.3 The Floating-Point Exception Register (FPEXC)
	B1.8.4 Context switching with the Advanced SIMD and VFP extensions
	B1.8.5 VFP support code
	Asynchronous bounces, serialization, and VFP exception barriers
	Interactions with the ARM architecture
	Interrupts

	B1.8.6 VFP subarchitecture support

	B1.9 Execution environment support
	B1.9.1 Thumb Execution Environment
	ThumbEE and the Security Extensions
	Aborts, exceptions, and checks

	B1.9.2 Jazelle direct bytecode execution
	Extension of the PC to 32 bits
	Exception handling in the Jazelle extension
	Jazelle state configuration and control
	Jazelle OS Control Register (JOSCR)
	EJVM operation
	Trivial implementation of the Jazelle extension
	Jazelle state

	Common Memory System Architecture Features
	B2.1 About the memory system architecture
	B2.1.1 Form of the memory system architecture
	B2.1.2 Memory attributes
	B2.1.3 Levels of cache

	B2.2 Caches
	B2.2.1 Cache identification
	Identifying the cache resources in ARMv7

	B2.2.2 Cache behavior
	General behavior of the caches
	Behavior of the caches at reset
	Behavior of Preload Data (PLD, PLDW) and Preload Instruction (PLI) with caches
	Cache lockdown

	B2.2.3 Cache enabling and disabling
	B2.2.4 Cache maintenance functionality
	Terms used in describing cache operations
	ARMv7 cache maintenance operations
	The ARMv7 abstraction of the cache hierarchy

	B2.2.5 The interaction of cache lockdown with cache maintenance
	Additional cache functions for the implementation of lockdown

	B2.2.6 Branch predictors
	Branch prediction maintenance operations
	Behavior of the branch predictors at reset

	B2.2.7 Ordering of cache and branch predictor maintenance operations
	B2.2.8 Multiprocessor effects on cache maintenance operations
	Base ARMv7 architecture
	Multiprocessing Extensions

	B2.2.9 System-level caches

	B2.3 Implementation defined memory system features
	B2.3.1 ARMv7 CP15 register support for implementation defined features

	B2.4 Pseudocode details of general memory system operations
	B2.4.1 Memory data type definitions
	B2.4.2 Basic memory accesses
	B2.4.3 Interfaces to memory system specific pseudocode
	B2.4.4 Aligned memory accesses
	B2.4.5 Unaligned memory accesses
	B2.4.6 Reverse endianness
	B2.4.7 Exclusive monitors operations
	B2.4.8 Access permission checking
	B2.4.9 Default memory access decode
	B2.4.10 Data Abort exception

	Virtual Memory System Architecture (VMSA)
	B3.1 About the VMSA
	B3.2 Memory access sequence
	B3.2.1 FCSE translation
	B3.2.2 Translation from MVA to PA using the translation tables
	B3.2.3 Enabling and disabling the MMU

	B3.3 Translation tables
	B3.3.1 Translation table entry formats
	First-level descriptors
	Second-level descriptors
	Additional requirements for translation tables

	B3.3.2 Translation table base registers
	B3.3.3 Translation table walks
	Reading a first-level translation table
	Reading a second-level translation table
	The full translation flow for Sections, Supersections, Small pages and Large pages

	B3.3.4 Changing translation table attributes
	B3.3.5 The access flag
	Software management of the access flag
	Hardware management of the access flag
	Changing the access flag enable

	B3.4 Address mapping restrictions
	B3.4.1 Requirements for instruction caches
	B3.4.2 Instruction cache maintenance operations by MVA

	B3.5 Secure and Non-secure address spaces
	B3.5.1 The effect of the Security Extensions on the cache operations

	B3.6 Memory access control
	B3.6.1 Access permissions
	Simplified access permissions model

	B3.6.2 The Execute Never (XN) attribute and instruction prefetching
	B3.6.3 Domains

	B3.7 Memory region attributes
	B3.7.1 The alternative descriptions of the Memory region attributes
	B3.7.2 C, B, and TEX[2:0] encodings without TEX remap
	Cacheable memory attributes

	B3.7.3 Memory region attribute descriptions when TEX remap is enabled
	Interpretation of the NOSn fields in the PRRR
	SCTLR.TRE, SCTLR.M, and the effect of the MMU remap registers
	The OS managed translation table bits

	B3.7.4 The effect of the Security Extensions on TEX remapping

	B3.8 VMSA memory aborts
	B3.8.1 MMU faults
	Fault-checking sequence
	Alignment fault
	External abort on a translation table walk
	Translation fault
	Access Flag fault
	Domain fault
	Permission fault

	B3.8.2 External aborts
	External abort on instruction fetch
	External abort on data read or write
	External abort on a translation table walk
	Behavior of external aborts on a translation table walk caused by a VA to PA translation
	Parity error reporting

	B3.8.3 Prioritization of aborts

	B3.9 Fault Status and Fault Address registers in a VMSA implementation
	B3.9.1 About the Fault Status and Fault Address registers
	B3.9.2 Data Abort exceptions
	B3.9.3 Prefetch Abort exceptions
	B3.9.4 Fault Status Register encodings for the VMSA
	Reserved encodings in the IFSR and DFSR encodings tables

	B3.9.5 Distinguishing read and write accesses on Data Abort exceptions
	B3.9.6 Provision for classification of external aborts
	B3.9.7 The Domain field in the DFSR
	B3.9.8 Auxiliary Fault Status Registers

	B3.10 Translation Lookaside Buffers (TLBs)
	B3.10.1 Global and non-global regions in the virtual memory map
	B3.10.2 TLB matching
	TLB block size

	B3.10.3 TLB behavior at reset
	B3.10.4 TLB lockdown
	B3.10.5 TLB maintenance
	The interaction of TLB maintenance operations with TLB lockdown
	The effect of the Security Extensions on the TLB maintenance operations
	TLB maintenance operations and the memory order model
	Synchronization of changes of ASID and TTBR
	Multiprocessor effects on TLB maintenance operations

	B3.11 Virtual Address to Physical Address translation operations
	B3.12 CP15 registers for a VMSA implementation
	B3.12.1 Organization of the CP15 registers in a VMSA implementation
	Summary of CP15 register descriptions in a VMSA implementation

	B3.12.2 General behavior of CP15 registers
	Read-only bits in read/write registers
	Unpredictable and undefined behavior for CP15 accesses
	Reset behavior of CP15 registers

	B3.12.3 Effect of the Security Extensions on the CP15 registers
	Banked CP15 registers
	Restricted access CP15 registers
	Configurable access CP15 registers
	Common CP15 registers
	Secure CP15 registers
	The CP15SDISABLE input
	Access to registers in Monitor mode

	B3.12.4 Changes to CP15 registers and the memory order model
	B3.12.5 Meaning of fixed bit values in register diagrams
	B3.12.6 CP15 c0, ID codes registers
	B3.12.7 c0, Main ID Register (MIDR)
	Accessing the MIDR

	B3.12.8 c0, Cache Type Register (CTR)
	Accessing the CTR

	B3.12.9 c0, TCM Type Register (TCMTR)
	Accessing the TCMTR

	B3.12.10 c0, TLB Type Register (TLBTR)
	Accessing the TLBTR

	B3.12.11 c0, Multiprocessor Affinity Register (MPIDR)
	Multi-threading approach to lowest affinity levels, Multiprocessing Extensions
	Recommended use of the MPIDR
	Accessing the MPIDR

	B3.12.12 c0, Cache Size ID Registers (CCSIDR)
	Accessing the currently selected CCSIDR

	B3.12.13 c0, Cache Level ID Register (CLIDR)
	Accessing the CLIDR

	B3.12.14 c0, Implementation defined Auxiliary ID Register (AIDR)
	Accessing the AIDR

	B3.12.15 c0, Cache Size Selection Register (CSSELR)
	Accessing CSSELR

	B3.12.16 CP15 c1, System control registers
	B3.12.17 c1, System Control Register (SCTLR)
	Reset value of the SCTLR
	Accessing the SCTLR

	B3.12.18 c1, Implementation defined Auxiliary Control Register (ACTLR)
	Accessing the ACTLR

	B3.12.19 c1, Coprocessor Access Control Register (CPACR)
	Accessing the CPACR

	B3.12.20 c1, Secure Configuration Register (SCR)
	Accessing the SCR

	B3.12.21 c1, Secure Debug Enable Register (SDER)
	Accessing the SDER

	B3.12.22 c1, Non-Secure Access Control Register (NSACR)
	Accessing the NSACR

	B3.12.23 CP15 c2 and c3, Memory protection and control registers
	B3.12.24 CP15 c2, Translation table support registers
	c2, Translation Table Base Register 0 (TTBR0)
	c2, Translation Table Base Register 1 (TTBR1)
	c2, Translation Table Base Control Register (TTBCR)

	B3.12.25 c3, Domain Access Control Register (DACR)
	Accessing the DACR

	B3.12.26 CP15 c4, Not used
	B3.12.27 CP15 c5 and c6, Memory system fault registers
	B3.12.28 CP15 c5, Fault status registers
	c5, Data Fault Status Register (DFSR)
	c5, Instruction Fault Status Register (IFSR)
	c5, Auxiliary Data and Instruction Fault Status Registers (ADFSR and AIFSR)

	B3.12.29 CP15 c6, Fault Address registers
	c6, Data Fault Address Register (DFAR)
	c6, Instruction Fault Address Register (IFAR)

	B3.12.30 CP15 c7, Cache maintenance and other functions
	B3.12.31 CP15 c7, Cache and branch predictor maintenance functions
	Data formats for the cache and branch predictor operations
	Accessing the CP15 c7 cache and branch predictor maintenance operations

	B3.12.32 CP15 c7, Virtual Address to Physical Address translation operations
	c7, Physical Address Register (PAR) and VA to PA translations
	Accessing the PAR and the VA to PA translation operations
	VA to PA translation when the MMU is disabled

	B3.12.33 CP15 c7, Miscellaneous functions
	CP15 c7, Data and Instruction Barrier operations
	CP15 c7, No Operation (NOP)

	B3.12.34 CP15 c8, TLB maintenance operations
	About the TLB maintenance operations
	Accessing the CP15 c8 TLB maintenance operations

	B3.12.35 CP15 c9, Cache and TCM lockdown registers and performance monitors
	B3.12.36 CP15 c10, Memory remapping and TLB control registers
	The implementation defined TLB control operations

	B3.12.37 CP15 c10, Memory Remap Registers
	c10, Primary Region Remap Register (PRRR)
	c10, Normal Memory Remap Register (NMRR)

	B3.12.38 CP15 c11, Reserved for TCM DMA registers
	B3.12.39 CP15 c12, Security Extensions registers
	B3.12.40 c12, Vector Base Address Register (VBAR)
	Accessing the VBAR

	B3.12.41 c12, Monitor Vector Base Address Register (MVBAR)
	Accessing the MVBAR

	B3.12.42 c12, Interrupt Status Register (ISR)
	Accessing the ISR

	B3.12.43 CP15 c13, Process, context and thread ID registers
	B3.12.44 c13, FCSE Process ID Register (FCSEIDR)
	Accessing the FCSEIDR

	B3.12.45 c13, Context ID Register (CONTEXTIDR)
	Using the CONTEXTIDR
	Accessing the CONTEXTIDR

	B3.12.46 CP15 c13 Software Thread ID registers
	Accessing the Software Thread ID registers

	B3.12.47 CP15 c14, Not used
	B3.12.48 CP15 c15, Implementation defined registers

	B3.13 Pseudocode details of VMSA memory system operations
	B3.13.1 Alignment fault
	B3.13.2 FCSE translation
	B3.13.3 Address translation
	B3.13.4 Domain checking
	B3.13.5 TLB operations
	B3.13.6 Translation table walk

	Protected Memory System Architecture (PMSA)
	B4.1 About the PMSA
	B4.1.1 Protection regions
	B4.1.2 Subregions
	B4.1.3 Overlapping regions
	B4.1.4 The background region
	Using the default memory map as a background region

	B4.1.5 Enabling and disabling the MPU
	Behavior when the MPU is disabled
	Behavior of an implementation that does not include an MPU

	B4.1.6 Finding the minimum supported region size

	B4.2 Memory access control
	B4.2.1 Access permissions
	The Execute Never (XN) attribute and instruction prefetching

	B4.3 Memory region attributes
	B4.3.1 C, B, and TEX[2:0] encodings
	Cacheable memory attributes

	B4.4 PMSA memory aborts
	B4.4.1 MPU faults
	Alignment fault
	Background fault
	Permission fault
	The MPU fault checking sequence

	B4.4.2 External aborts
	External abort on instruction fetch
	External abort on data read or write
	Parity error reporting

	B4.4.3 Prioritization of aborts

	B4.5 Fault Status and Fault Address registers in a PMSA implementation
	B4.5.1 About the Fault Status and Fault Address registers
	B4.5.2 Data Abort exceptions
	B4.5.3 Prefetch Abort exceptions
	B4.5.4 Fault Status Register encodings for the PMSA
	Reserved encodings in the IFSR and DFSR encodings tables

	B4.5.5 Distinguishing read and write accesses on Data Abort exceptions
	B4.5.6 Provision for classification of external aborts
	B4.5.7 Auxiliary Fault Status Registers

	B4.6 CP15 registers for a PMSA implementation
	B4.6.1 Organization of the CP15 registers in a PMSA implementation
	Summary of CP15 register descriptions in a PMSA implementation

	B4.6.2 General behavior of CP15 registers
	Read-only bits in read/write registers
	Unpredictable and undefined behavior for CP15 accesses
	Reset behavior of CP15 registers

	B4.6.3 Changes to CP15 registers and the memory order model
	B4.6.4 Meaning of fixed bit values in register diagrams
	B4.6.5 CP15 c0, ID codes registers
	B4.6.6 c0, Main ID Register (MIDR)
	Accessing the MIDR

	B4.6.7 c0, Cache Type Register (CTR)
	Accessing the CTR

	B4.6.8 c0, TCM Type Register (TCMTR)
	Accessing the TCMTR

	B4.6.9 c0, MPU Type Register (MPUIR)
	Accessing the MPUIR

	B4.6.10 c0, Multiprocessor Affinity Register (MPIDR)
	Recommended use of the MPIDR
	Accessing the MPIDR

	B4.6.11 c0, Cache Size ID Registers (CCSIDR)
	Accessing the currently selected CCSIDR

	B4.6.12 c0, Cache Level ID Register (CLIDR)
	Accessing the CLIDR

	B4.6.13 c0, Implementation defined Auxiliary ID Register (AIDR)
	Accessing the AIDR

	B4.6.14 c0, Cache Size Selection Register (CSSELR)
	Accessing CSSELR

	B4.6.15 CP15 c1, System control registers
	B4.6.16 c1, System Control Register (SCTLR)
	Reset value of the SCTLR
	Accessing the SCTLR

	B4.6.17 c1, Implementation defined Auxiliary Control Register (ACTLR)
	Accessing the ACTLR

	B4.6.18 c1, Coprocessor Access Control Register (CPACR)
	Accessing the CPACR

	B4.6.19 CP15 c2 and c3, Not used on a PMSA implementation
	B4.6.20 CP15 c4, Not used
	B4.6.21 CP15 c5 and c6, Memory system fault registers
	B4.6.22 CP15 c5, Fault status registers
	c5, Data Fault Status Register (DFSR)
	c5, Instruction Fault Status Register (IFSR)
	c5, Auxiliary Data and Instruction Fault Status Registers (ADFSR and AIFSR)

	B4.6.23 CP15 c6, Fault Address registers
	c6, Data Fault Address Register (DFAR)
	c6, Instruction Fault Address Register (IFAR)

	B4.6.24 CP15 c6, Memory region programming registers
	c6, Data Region Base Address Register (DRBAR)
	c6, Instruction Region Base Address Register (IRBAR)
	c6, Data Region Size and Enable Register (DRSR)
	c6, Instruction Region Size and Enable Register (IRSR)
	c6, Data Region Access Control Register (DRACR)
	c6, Instruction Region Access Control Register (IRACR)
	c6, MPU Region Number Register (RGNR)

	B4.6.25 CP15 c7, Cache maintenance and other functions
	B4.6.26 CP15 c7, Cache and branch predictor maintenance functions
	Data formats for the cache and branch predictor operations
	Accessing the CP15 c7 cache maintenance operations

	B4.6.27 CP15 c7, Miscellaneous functions
	CP15 c7, Data and Instruction Barrier operations
	CP15 c7, No Operation (NOP)

	B4.6.28 CP15 c8, Not used on a PMSA implementation
	B4.6.29 CP15 c9, Cache and TCM lockdown registers and performance monitors
	B4.6.30 CP15 c10, Not used on a PMSA implementation
	B4.6.31 CP15 c11, Reserved for TCM DMA registers
	B4.6.32 CP15 c12, Not used on a PMSA implementation
	B4.6.33 CP15 c13, Context and Thread ID registers
	B4.6.34 c13, Context ID Register (CONTEXTIDR)
	Accessing the CONTEXTIDR

	B4.6.35 CP15 c13 Software Thread ID registers
	Accessing the Software Thread ID registers

	B4.6.36 CP15 c14, Not used
	B4.6.37 CP15 c15, Implementation defined registers

	B4.7 Pseudocode details of PMSA memory system operations
	B4.7.1 Alignment fault
	B4.7.2 Address translation
	B4.7.3 Default memory map attributes

	The CPUID Identification Scheme
	B5.1 Introduction to the CPUID scheme
	B5.1.1 Organization of the CPUID registers
	B5.1.2 General features of the CPUID registers

	B5.2 The CPUID registers
	B5.2.1 CP15 c0, Processor Feature registers
	c0, Processor Feature Register 0 (ID_PFR0)
	c0, Processor Feature Register 1 (ID_PFR1)
	Accessing the Processor Feature registers

	B5.2.2 c0, Debug Feature Register 0 (ID_DFR0)
	Accessing the ID_DFR0

	B5.2.3 c0, Auxiliary Feature Register 0 (ID_AFR0)
	Accessing the ID_AFR0

	B5.2.4 CP15 c0, Memory Model Feature registers
	c0, Memory Model Feature Register 0 (ID_MMFR0)
	c0, Memory Model Feature Register 1 (ID_MMFR1)
	c0, Memory Model Feature Register 2 (ID_MMFR2)
	c0, Memory Model Feature Register 3 (ID_MMFR3)
	Accessing the Memory Model Feature registers

	B5.2.5 CP15 c0, Instruction Set Attribute registers
	Instruction set descriptions in the CPUID scheme
	Summary of Instruction Set Attribute register attributes
	c0, Instruction Set Attribute Register 0 (ID_ISAR0)
	c0, Instruction Set Attribute Register 1 (ID_ISAR1)
	c0, Instruction Set Attribute Register 2 (ID_ISAR2)
	c0, Instruction Set Attribute Register 3 (ID_ISAR3)
	c0, Instruction Set Attribute Register 4 (ID_ISAR4)
	c0, Instruction Set Attribute Register 5 (ID_ISAR5)
	Accessing the Instruction Set Attribute registers

	B5.3 Advanced SIMD and VFP feature identification registers
	B5.3.1 Floating-point System ID Register (FPSID)
	B5.3.2 Media and VFP Feature registers
	Media and VFP Feature Register 0 (MVFR0)
	Media and VFP Feature Register 1 (MVFR1)

	B5.3.3 Accessing the Advanced SIMD and VFP feature identification registers

	System Instructions
	B6.1 Alphabetical list of instructions
	B6.1.1 CPS
	Assembler syntax
	Operation
	Exceptions
	Hint instructions

	B6.1.2 LDM (exception return)
	Assembler syntax
	Operation
	Exceptions

	B6.1.3 LDM (user registers)
	Assembler syntax
	Operation
	Exceptions

	B6.1.4 LDRBT, LDRHT, LDRSBT, LDRSHT, and LDRT
	B6.1.5 MRS
	Assembler syntax
	Operation
	Exceptions

	B6.1.6 MSR (immediate)
	Assembler syntax
	Operation
	Exceptions
	E bit

	B6.1.7 MSR (register)
	Assembler syntax
	Operation
	Exceptions
	E bit

	B6.1.8 RFE
	Assembler syntax
	Operation
	Exceptions

	B6.1.9 SMC (previously SMI)
	Assembler syntax
	Operation
	Exceptions

	B6.1.10 SRS
	Assembler syntax
	Operation
	Exceptions

	B6.1.11 STM (user registers)
	Assembler syntax
	Operation
	Exceptions

	B6.1.12 STRBT, STRHT, and STRT
	B6.1.13 SUBS PC, LR and related instructions
	Assembler syntax
	Operation
	Exceptions

	B6.1.14 VMRS
	Assembler syntax
	Operation
	Exceptions

	B6.1.15 VMSR
	Assembler syntax
	Operation
	Exceptions

	Debug Architecture
	Introduction to the ARM Debug Architecture
	C1.1 Scope of part C of this manual
	C1.2 About the ARM Debug architecture
	C1.2.1 Invasive debug
	Description of invasive debug features

	C1.2.2 Non-invasive debug
	Trace
	Sample-based profiling
	Performance monitors

	C1.2.3 Major differences between the ARMv6 and ARMv7 Debug architectures
	C1.2.4 Summary of the ARM debug component descriptions

	C1.3 Security Extensions and debug
	C1.4 Register interfaces

	Invasive Debug Authentication
	C2.1 About invasive debug authentication

	Debug Events
	C3.1 About debug events
	C3.2 Software debug events
	C3.2.1 Breakpoint debug events
	Generation of Breakpoint debug events
	Debug event generation conditions defined by the DBGBCR
	IVA comparisons for Debug event generation
	IVA comparisons and instruction length
	Context ID comparisons for Debug event generation
	Additional considerations for IVA mismatch breakpoints
	Additional conditions for linked BRPs

	C3.2.2 Watchpoint debug events
	Synchronous and Asynchronous Watchpoint debug events

	C3.2.3 BKPT Instruction debug events
	C3.2.4 Vector Catch debug events
	Vector catch debug events and vectored interrupt support

	C3.2.5 Memory addresses
	C3.2.6 Unpredictable behavior on Software debug events
	Debug exceptions in abort handlers
	Debug events in the debug monitor
	Monitor debug-mode vector catch on Secure Monitor Call
	Possible effect of the Security Extensions on FIQ vector catch

	C3.2.7 Pseudocode details of Software debug events
	Debug events
	Breakpoints and Vector Catches
	Watchpoints

	C3.3 Halting debug events
	C3.4 Generation of debug events
	C3.5 Debug event prioritization

	Debug Exceptions
	C4.1 About debug exceptions
	C4.1.1 Debug exception on Breakpoint, BKPT Instruction or Vector Catch debug events
	C4.1.2 Debug exception on Watchpoint debug event

	C4.2 Effects of debug exceptions on CP15 registers and the DBGWFAR

	Debug State
	C5.1 About Debug state
	C5.2 Entering Debug state
	C5.2.1 Effect of entering Debug state on CP15 registers and the DBGWFAR
	C5.2.2 Asynchronous aborts and entry to Debug state
	Behavior in ARMv7
	Behavior in ARMv6

	C5.3 Behavior of the PC and CPSR in Debug state
	C5.4 Executing instructions in Debug state
	C5.4.1 Writing to the CPSR in Debug state
	MRS and MSR instructions in Debug state, in v6.1 Debug and v7 Debug

	C5.4.2 Data-processing instructions with the PC as the target in Debug state

	C5.5 Privilege in Debug state
	C5.5.1 Accessing registers and memory in Debug state
	C5.5.2 Altering CPSR privileged bits in Debug state
	Being in Debug state when invasive halting debug is not permitted

	C5.5.3 Changing the SCR.NS bit in Debug state
	C5.5.4 Coprocessor and Advanced SIMD instructions in Debug state
	Instructions for CP0 to CP13, and Advanced SIMD instructions
	Instructions for CP14 and CP15

	C5.6 Behavior of non-invasive debug in Debug state
	C5.7 Exceptions in Debug state
	C5.7.1 Undefined Instruction and Data Abort exceptions in Debug state in v6 Debug

	C5.8 Memory system behavior in Debug state
	C5.8.1 Access to specific cache management functions in Debug state
	v7 Debug restrictions on instruction cache invalidation in Secure User debug

	C5.8.2 Debug state Cache and MMU Control Registers

	C5.9 Leaving Debug state

	Debug Register Interfaces
	C6.1 About the debug register interfaces
	C6.1.1 Processor interface to the debug registers
	C6.1.2 External interface to the debug registers
	C6.1.3 The Debug Communications Channel (DCC)

	C6.2 Reset and power-down support
	C6.2.1 Debug guidelines for systems with energy management capability
	C6.2.2 Power domains and debug
	C6.2.3 The OS Save and Restore mechanism
	The debug logic state preserved by the OS Save and Restore mechanism
	Example OS Save and Restore sequences

	C6.2.4 Recommended reset scheme for v7 Debug
	Debug behavior when the processor is in debug logic reset

	C6.3 Debug register map
	C6.3.1 Internal and external views of the DBGDSCR and the DCC registers
	C6.3.2 Effect of the Security Extensions on the debug registers

	C6.4 Synchronization of debug register updates
	C6.5 Access permissions
	C6.5.1 Permissions in relation to the privilege of the access
	C6.5.2 Permissions in relation to locks
	C6.5.3 Permissions in relation to power-down
	C6.5.4 Access to implementation defined and reserved registers
	Access to implementation defined registers
	Access to reserved registers

	C6.6 The CP14 debug register interfaces
	C6.6.1 The Baseline CP14 debug register interface
	C6.6.2 Extended CP14 interface
	Features specific to v7 Debug
	Features specific to v6 Debug and v6.1 Debug

	C6.6.3 CP14 debug registers access permissions
	Baseline CP14 debug registers access permissions
	v7 Debug CP14 debug registers access permissions, Extended CP14 interface not implemented
	v7 Debug CP14 debug registers access permissions, Extended CP14 interface implemented
	v6 Debug and v6.1 Debug CP14 debug registers access permissions

	C6.7 The memory-mapped and recommended external debug interfaces
	C6.7.1 Register map
	C6.7.2 Shared interface port for the memory-mapped and external debug interfaces
	C6.7.3 Endianness
	C6.7.4 Permission summaries for memory-mapped and external debug interfaces
	Meanings of terms and abbreviations used in this section
	Access permissions for the external debug interface
	Access permissions for the memory-mapped interface
	Permissions summary for separate debug and core power domains
	Permissions summary for SinglePower (debug and core in single power domain)

	C6.7.5 Registers not implemented in the memory-mapped or external debug interface

	Non-invasive Debug Authentication
	C7.1 About non-invasive debug authentication
	C7.2 v7 Debug non-invasive debug authentication
	C7.3 Effects of non-invasive debug authentication
	C7.3.1 Performance monitors
	C7.3.2 Trace

	C7.4 ARMv6 non-invasive debug authentication

	Sample-based Profiling
	C8.1 Program Counter sampling
	C8.1.1 Implemented Program Counter sampling registers
	C8.1.2 Reads of the Program Counter sampling registers

	Performance Monitors
	C9.1 About the performance monitors
	C9.2 Status in the ARM architecture
	C9.3 Accuracy of the performance monitors
	C9.4 Behavior on overflow
	C9.5 Interaction with Security Extensions
	C9.6 Interaction with trace
	C9.7 Interaction with power saving operations
	C9.8 CP15 c9 register map
	C9.8.1 Power domains and performance monitor registers reset

	C9.9 Access permissions
	C9.10 Event numbers
	C9.10.1 Common feature event numbers
	C9.10.2 Implementation defined feature event numbers

	Debug Registers Reference
	C10.1 Accessing the debug registers
	C10.2 Debug identification registers
	C10.2.1 Debug ID Register (DBGDIDR)
	C10.2.2 Debug Device ID Register (DBGDEVID)
	C10.2.3 Debug ROM Address Register (DBGDRAR)
	C10.2.4 Debug Self Address Offset Register (DBGDSAR)

	C10.3 Control and status registers
	C10.3.1 Debug Status and Control Register (DBGDSCR)
	Access controls on the external view of the DCC registers and DBGITR, v7 Debug only
	Method of Debug entry
	Access to the DBGDSCR

	C10.3.2 Watchpoint Fault Address Register (DBGWFAR)
	C10.3.3 Debug Run Control Register (DBGDRCR), v7 Debug only
	Cancel Bus Interface Unit (BIU) Requests

	C10.3.4 Device Power-down and Reset Control Register (DBGPRCR), v7 Debug only
	C10.3.5 Device Power-down and Reset Status Register (DBGPRSR), v7 Debug only
	Reset state
	Powered-up state

	C10.3.6 Program Counter Sampling Register (DBGPCSR)
	C10.3.7 Context ID Sampling Register (DBGCIDSR)

	C10.4 Instruction and data transfer registers
	C10.4.1 Host to Target Data Transfer Register (DBGDTRRX)
	Access to the DBGDTRRX Register

	C10.4.2 Target to Host Data Transfer Register (DBGDTRTX)
	Access to the DBGDTRTX Register

	C10.4.3 Instruction Transfer Register (DBGITR)
	Accesses to the DBGITR

	C10.5 Software debug event registers
	C10.5.1 Breakpoint Value Registers (DBGBVR)
	C10.5.2 Breakpoint Control Registers (DBGBCR)
	Byte address selection behavior on IVA match or mismatch
	Summary of breakpoint generation options

	C10.5.3 Watchpoint Value Registers (DBGWVR)
	C10.5.4 Watchpoint Control Registers (DBGWCR)
	Byte address masking behavior on DVA match
	About security state control

	C10.5.5 Vector Catch Register (DBGVCR)
	Vector catch operation

	C10.6 OS Save and Restore registers, v7 Debug only
	C10.6.1 OS Lock Access Register (DBGOSLAR)
	C10.6.2 OS Lock Status Register (DBGOSLSR)
	C10.6.3 OS Save and Restore Register (DBGOSSRR)
	C10.6.4 Event Catch Register (DBGECR)

	C10.7 Memory system control registers
	C10.7.1 Debug State Cache Control Register (DBGDSCCR)
	Permitted implementation defined limits
	Interaction with Cache Behavior Override Register

	C10.7.2 Debug State MMU Control Register (DBGDSMCR)
	Permitted implementation defined limits

	C10.8 Management registers, ARMv7 only
	C10.8.1 Processor identification registers
	C10.8.2 Integration Mode Control Register (DBGITCTRL)
	C10.8.3 Claim Tag Set Register (DBGCLAIMSET)
	C10.8.4 Claim Tag Clear Register (DBGCLAIMCLR)
	C10.8.5 Lock Access Register (DBGLAR)
	C10.8.6 Lock Status Register (DBGLSR)
	C10.8.7 Authentication Status Register (DBGAUTHSTATUS)
	C10.8.8 Device Type Register (DBGDEVTYPE)
	C10.8.9 Debug Peripheral Identification Registers (DBGPID0 to DBGPID4)
	DBGPID0
	DBGPID1
	DBGPID2
	DBGPID3
	DBGPID4

	C10.8.10 Debug Component Identification Registers (DBGCID0 to DBGCID3)
	DBGCID0
	DBGCID1
	DBGCID2
	DBGCID3

	C10.9 Performance monitor registers
	C10.9.1 c9, Performance Monitor Control Register (PMCR)
	C10.9.2 c9, Count Enable Set Register (PMCNTENSET)
	C10.9.3 c9, Count Enable Clear Register (PMCNTENCLR)
	C10.9.4 c9, Overflow Flag Status Register (PMOVSR)
	C10.9.5 c9, Software Increment Register (PMSWINC)
	C10.9.6 c9, Event Counter Selection Register (PMSELR)
	C10.9.7 c9, Cycle Count Register (PMCCNTR)
	C10.9.8 c9, Event Type Select Register (PMXEVTYPER)
	Event numbers

	C10.9.9 c9, Event Count Register (PMXEVCNTR)
	C10.9.10 c9, User Enable Register (PMUSERENR)
	C10.9.11 c9, Interrupt Enable Set Register (PMINTENSET)
	C10.9.12 c9, Interrupt Enable Clear Register (PMINTENCLR)

	Appendices
	Recommended External Debug Interface
	A.1 System integration signals
	A.1.1 Authentication signals
	Changing the authentication signals

	A.1.2 Run-control and cross-triggering signals
	EDBGRQ
	DBGTRIGGER
	DBGRESTART and DBGRESTARTED

	A.1.3 DBGACK and DBGCPUDONE
	A.1.4 COMMRX and COMMTX
	A.1.5 DBGOSLOCKINIT
	A.1.6 DBGNOPWRDWN
	A.1.7 DBGPWRDUP
	A.1.8 DBGROMADDR and DBGROMADDRV
	A.1.9 DBGSELFADDR and DBGSELFADDRV
	A.1.10 DBGSWENABLE
	A.1.11 PRESETDBGn

	A.2 Recommended debug slave port
	A.2.1 PADDRDBG
	A.2.2 PSLVERRDBG

	Common VFP Subarchitecture Specification
	B.1 Scope of this appendix
	B.2 Introduction to the Common VFP subarchitecture
	B.2.1 VFP support code and bounced instructions
	B.2.2 Exception processing terminology
	B.2.3 Hardware and software implementation
	B.2.4 VFP subarchitecture system registers

	B.3 Exception processing
	B.3.1 Asynchronous exceptions
	Determination of the trigger instruction
	Exception processing for scalar instructions
	Exception processing for short vector instructions

	B.3.2 Synchronous exceptions
	B.3.3 VFP Access Permission faults
	B.3.4 Unallocated VFP instruction encodings
	B.3.5 Trapped floating-point exception handling

	B.4 Support code requirements
	B.5 Context switching
	B.6 Subarchitecture additions to the VFP system registers
	B.6.1 Additions to the Floating-Point Exception Register (FPEXC)
	B.6.2 The Floating-Point Instruction Registers, FPINST and FPINST2
	B.6.3 Accessing the VFP Common subarchitecture registers
	B.6.4 Detecting which VFP Common subarchitecture registers are implemented

	B.7 Version 1 of the Common VFP subarchitecture
	B.7.1 Subarchitecture v1 exception handling when FPSCR.IXE == 1

	B.8 Version 2 of the Common VFP subarchitecture

	Legacy Instruction Mnemonics
	C.1 Thumb instruction mnemonics
	C.2 Pre-UAL pseudo-instruction NOP

	Deprecated and Obsolete Features
	D.1 Deprecated features
	D.1.1 VFP vector mode
	D.1.2 VFP FLDMX and FSTMX instructions
	D.1.3 Fast context switch extension
	D.1.4 Direct manipulation of the Endianness bit
	D.1.5 Strongly-ordered memory accesses and interrupt masks
	D.1.6 Unaligned exception returns
	D.1.7 Use of AP[2] = 1, AP[1:0] = 0b10 in MMU access permissions
	D.1.8 The Domain field in the DFSR
	D.1.9 Watchpoint Fault Address Register in CP15
	D.1.10 CP15 memory barrier operations
	D.1.11 Use of Hivecs exception base address in PMSA implementations
	D.1.12 Use of Secure User halting debug
	D.1.13 Escalation of privilege on CP14 and CP15 accesses in Debug state
	D.1.14 Interrupts or asynchronous aborts in a sequence of memory transactions
	D.1.15 Reading the Debug Program Counter Sampling Registers as register 33
	D.1.16 Old mnemonics for CP15 c8 operations to invalidate entries in a unified TLB

	D.2 Deprecated terminology
	D.3 Obsolete features
	D.3.1 Rotated aligned accesses
	D.3.2 Ordering of instructions that change the CPSR interrupt masks
	D.3.3 ARM LDM and POP instructions that both write back and load their base registers

	D.4 Semaphore instructions
	D.5 Use of the SP as a general-purpose register
	D.5.1 ARM instructions where SP use is not deprecated

	D.6 Explicit use of the PC in ARM instructions
	D.7 Deprecated Thumb instructions

	Fast Context Switch Extension (FCSE)
	E.1 About the FCSE
	E.2 Modified virtual addresses
	E.3 Debug and trace

	VFP Vector Operation Support
	F.1 About VFP vector mode
	F.1.1 Affected instructions

	F.2 Vector length and stride control
	F.3 VFP register banks
	F.4 VFP instruction type selection

	ARMv6 Differences
	G.1 Introduction to ARMv6
	G.1.1 Debug

	G.2 Application level register support
	G.2.1 APSR support
	G.2.2 Instruction set state
	Interworking
	BL and BLX (immediate) instructions, before ARMv6T2

	G.3 Application level memory support
	G.3.1 Alignment
	G.3.2 Endian support
	BE-32 DBGWCR Byte address select values

	G.3.3 Semaphore support
	G.3.4 Memory model and memory ordering
	Ordering of instructions that change the CPSR interrupt masks
	Caches and write buffers
	Tightly Coupled Memory (TCM) support
	DMA support

	G.4 Instruction set support
	G.4.1 ARM instruction set support
	New ARM instructions in ARMv6T2
	Instructions that are only in the ARM instruction set in ARMv6T2
	ARM instructions introduced in ARMv7

	G.4.2 Thumb instruction set support
	Thumb instruction set and ARMv6T2
	Thumb instructions introduced in ARMv7

	G.4.3 System level instruction set support
	G.4.4 Different definition of some LDM and POP instructions

	G.5 System level register support
	G.5.1 Program Status Registers (PSRs)
	The Current Program Status Register (CPSR)
	The Saved Program Status Registers (SPSRs)
	Format of the CPSR and SPSRs

	G.5.2 The exception model
	The ARM abort model
	Exception entry
	Fault reporting

	G.5.3 Execution environment support

	G.6 System level memory model
	G.6.1 Endian configuration and control
	G.6.2 Cache support
	Cache behavior at reset

	G.6.3 Tightly Coupled Memory (TCM) support
	TCM support and VMSA
	TCM CP15 configuration and control

	G.6.4 Virtual memory support
	Execute Never (XN)
	Legacy translation table format
	VMSAv6 translation table format
	ARMv6 and the Security Extensions

	G.6.5 Protected Memory System Architecture (PMSA)
	Execute Never (XN)

	G.7 System Control coprocessor (CP15) support
	G.7.1 Organization of CP15 registers for an ARMv6 VMSA implementation
	G.7.2 Organization of CP15 registers for an ARMv6 PMSA implementation
	G.7.3 c0, ID support
	c0, TCM Type Register (TCMTR)
	c0, TLB Type ID Register (TLBTR)

	G.7.4 c1, System control support
	c1, System Control Register (SCTLR)

	G.7.5 c1, VMSA Security Extensions support
	G.7.6 c2 and c3, VMSA memory protection and control registers
	G.7.7 c5 and c6, VMSA memory system support
	G.7.8 c5 and c6, PMSA memory system support
	G.7.9 c6, Watchpoint Fault Address Register (DBGWFAR)
	G.7.10 c7, Cache operations
	c7, Cache Dirty Status Register (CDSR)
	Block transfer operations

	G.7.11 c7, Miscellaneous functions
	G.7.12 c7, VMSA virtual to physical address translation support
	G.7.13 c8, VMSA TLB support
	G.7.14 c9, Cache lockdown support
	Interaction with CP15 c7 operations

	G.7.15 c9, TCM support
	c9, TCM Selection Register (TCMSR)
	c9, TCM Region Registers (DTCMRR and ITCMRR)

	G.7.16 c9, VMSA support for the Security Extensions
	c9, Cache Behavior Override Register (CBOR)
	c9, TCM Non-Secure Access Control Registers, DTCM-NSACR and ITCM-NSACR

	G.7.17 c10, VMSA memory remapping support
	G.7.18 c10, VMSA TLB lockdown support
	G.7.19 c11, DMA support
	G.7.20 c12, VMSA support for the Security Extensions
	G.7.21 c13, Context ID support
	G.7.22 c15, implementation defined

	ARMv4 and ARMv5 Differences
	H.1 Introduction to ARMv4 and ARMv5
	H.1.1 Debug
	H.1.2 ARMv6 and ARMv7

	H.2 Application level register support
	H.2.1 APSR support
	H.2.2 Instruction set state
	Interworking

	H.3 Application level memory support
	H.3.1 Alignment
	H.3.2 Endian support
	Examples

	H.3.3 Semaphore support
	H.3.4 Memory model and memory ordering
	Memory type support

	H.4 Instruction set support
	H.4.1 ARM instruction set support
	H.4.2 Thumb instruction set support
	H.4.3 System level instruction set support

	H.5 System level register support
	H.5.1 Program Status Registers (PSRs)
	The Current Program Status Register (CPSR)
	The Saved Program Status Registers (SPSRs)
	Format of the CPSR and SPSRs

	H.5.2 The exception model
	The ARM abort model
	Exception entry

	H.5.3 Execution environment support

	H.6 System level memory model
	H.6.1 Cache support
	H.6.2 Tightly Coupled Memory (TCM) support
	H.6.3 Virtual memory support
	Translation attributes
	First level descriptor formats
	Second level Coarse page table descriptor format
	Second level Fine page table descriptor format
	Translation table walks

	H.6.4 Protected memory support
	Control and configuration
	Memory access sequence

	H.7 System Control coprocessor (CP15) support
	H.7.1 Organization of CP15 registers in an ARMv4 or ARMv5 VMSA implementation
	H.7.2 Organization of CP15 registers in an ARMv4 or ARMv5 PMSA implementation
	H.7.3 c0, ID support
	c0, Main ID Register (MIDR)
	c0, Cache Type Register (CTR)
	c0, TCM Type Register (TCMTR)

	H.7.4 c1, System control register support
	c1, System Control Register (SCTLR)

	H.7.5 c2 and c3, VMSA memory protection and control registers
	H.7.6 c5 and c6, VMSA memory system support
	H.7.7 c2, c3, c5, and c6, PMSA support
	c2, Memory Region Cacheability Registers (DCR and ICR)
	c3, Memory Region Bufferability Register (DBR)
	c5, Memory Region Access Permissions Registers (DAPR and IAPR)
	c5, Memory Region Extended Access Permissions Registers (DEAPR and IEAPR)
	c6, Memory Region registers (DMRR0-DMRR7 and IMRR0-IMRR7)

	H.7.8 c7, Cache operations
	Test and clean operations
	Level 2 cache support

	H.7.9 c7, Miscellaneous functions
	H.7.10 c8, VMSA TLB support
	H.7.11 c9, cache lockdown support
	General conditions applying to Format A, B, and C lockdown
	Formats A and B lockdown
	Format A and B cache lockdown procedure
	Format A and B cache unlock procedure
	Format C lockdown
	Format C cache lock procedure
	Format C cache unlock procedure
	Format D lockdown
	Interaction with CP15 c7 operations

	H.7.12 c9, TCM support
	H.7.13 c10, VMSA TLB lockdown support
	The TLB lock by entry model
	The translate and lock model

	H.7.14 c13, VMSA FCSE support
	H.7.15 c15, implementation defined

	Pseudocode Definition
	I.1 Instruction encoding diagrams and pseudocode
	I.1.1 Pseudocode

	I.2 Limitations of pseudocode
	I.3 Data types
	I.3.1 General data type rules
	I.3.2 Bitstrings
	I.3.3 Integers
	I.3.4 Reals
	I.3.5 Booleans
	I.3.6 Enumerations
	I.3.7 Lists
	I.3.8 Arrays

	I.4 Expressions
	I.4.1 General expression syntax
	I.4.2 Operators and functions - polymorphism and prototypes
	I.4.3 Precedence rules

	I.5 Operators and built-in functions
	I.5.1 Operations on generic types
	Equality and non-equality testing
	Conditional selection

	I.5.2 Operations on booleans
	I.5.3 Bitstring manipulation
	Bitstring length and most significant bit
	Bitstring concatenation and replication
	Bitstring extraction
	Logical operations on bitstrings
	Bitstring count
	Testing a bitstring for being all zero or all ones
	Lowest and highest set bits of a bitstring
	Zero-extension and sign-extension of bitstrings
	Converting bitstrings to integers

	I.5.4 Arithmetic
	Unary plus, minus and absolute value
	Addition and subtraction
	Comparisons
	Multiplication
	Division and modulo
	Square Root
	Rounding and aligning
	Scaling
	Maximum and minimum

	I.6 Statements and program structure
	I.6.1 Simple statements
	Assignments
	Procedure calls
	Return statements
	UNDEFINED
	UNPREDICTABLE
	SEE…
	IMPLEMENTATION_DEFINED
	SUBARCHITECTURE_DEFINED

	I.6.2 Compound statements
	if … then … else …
	repeat ... until ...
	while ... do
	for ...
	case ... of ...
	Procedure and function definitions

	I.6.3 Comments

	I.7 Miscellaneous helper procedures and functions
	I.7.1 ArchVersion()
	I.7.2 BadReg()
	I.7.3 Breakpoint()
	I.7.4 CallSupervisor()
	I.7.5 Coproc_Accepted()
	I.7.6 Coproc_DoneLoading()
	I.7.7 Coproc_DoneStoring()
	I.7.8 Coproc_GetOneWord()
	I.7.9 Coproc_GetTwoWords()
	I.7.10 Coproc_GetWordToStore()
	I.7.11 Coproc_InternalOperation()
	I.7.12 Coproc_SendLoadedWord()
	I.7.13 Coproc_SendOneWord()
	I.7.14 Coproc_SendTwoWords()
	I.7.15 EndOfInstruction()
	I.7.16 GenerateAlignmentException()
	I.7.17 GenerateCoprocessorException()
	I.7.18 GenerateIntegerZeroDivide()
	I.7.19 HaveMPExt()
	I.7.20 Hint_Debug()
	I.7.21 Hint_PreloadData()
	I.7.22 Hint_PreloadDataForWrite()
	I.7.23 Hint_PreloadInstr()
	I.7.24 Hint_Yield()
	I.7.25 IntegerZeroDivideTrappingEnabled()
	I.7.26 IsExternalAbort()
	I.7.27 JazelleAcceptsExecution()
	I.7.28 MemorySystemArchitecture()
	I.7.29 ProcessorID()
	I.7.30 RemapRegsHaveResetValues()
	I.7.31 SwitchToJazelleExecution()
	I.7.32 ThisInstr()
	I.7.33 UnalignedSupport()

	Pseudocode Index
	J.1 Pseudocode operators and keywords
	J.2 Pseudocode functions and procedures

	Register Index
	K.1 Register index

	Glossary

