Coding Guidelines for AOS

1 Code formatting

4 space indents, no hard tabs code formatted to 80 columns, mostly.

Braces on the same line, unless it’s a function, in which case the brace goes on a line by itself.
Write C99 standard code, so // comments are ok.

Macro names all upper case.

Function names etc. all lower-case, use underscores to separate words.

Space between if/for/while and the following parenthesis.

Always use braces for if/for/while, even in the case of a single statement.

2 Coding construct guidelines

2.1

2.2

Types

Never typedef a pointer or a struct/union/enum.
All typedefs should be base integer types.
Don’t use the base types like int/long etc, use portable equivalents (eg. uint32_t, uint64_t, uintptr_t).

Enum constants should be prefixed by the enum type name they belong to (and an underscore) and
should be in camelcase.

Naming and Organisation

Always mark functions and global variables static, unless they need to be accessed from code in
another file.

Name non-static functions with a common prefix related to the file name (eg. serial_putchar, mi-
crobench _register, etc.).

Never put code in a header file, unless it’s a static inline and needs to be there.

Try to keep constants and preprocessor macros that are unique to a specific source file in that file
rather than in a header that is included elsewhere.

— Alternatively, create another header for the private declarations used just by that code.

Keep definitions of structures and macros for accessing device hardware in a separate header file
from any code/prototypes, and try to write them in a OS independent manner.

2.3 Return values

Use fugu for error values (see tools/fugu and lecture).

2.4 Misc

e Use doxygen comments.

e Use assert() liberally for sanity checks, but if something might fail at runtime, make sure it still
behaves correctly (i.e., returns an error code) with asserts compiled out.

3 Example code

/**
* \brief This function does nothing of any significant purpose
*
+ \param arg Argument description
* \return uintptr_t Return value description
x/
uintptr_t frongle_blarg(void xblah)
{

if (blah) {

return (uintptr_t)blah - PAGESIZE; // foo
} else {

assert (! "Badness!");

return NULL;

	Code formatting
	Coding construct guidelines
	Types
	Naming and Organisation
	Return values
	Misc

	Example code

