
Coding Guidelines for AOS

1 Code formatting

• 4 space indents, no hard tabs code formatted to 80 columns, mostly.

• Braces on the same line, unless it’s a function, in which case the brace goes on a line by itself.

• Write C99 standard code, so // comments are ok.

• Macro names all upper case.

• Function names etc. all lower-case, use underscores to separate words.

• Space between if/for/while and the following parenthesis.

• Always use braces for if/for/while, even in the case of a single statement.

2 Coding construct guidelines

2.1 Types

• Never typedef a pointer or a struct/union/enum.

• All typedefs should be base integer types.

• Don’t use the base types like int/long etc, use portable equivalents (eg. uint32 t, uint64 t, uintptr t).

• Enum constants should be prefixed by the enum type name they belong to (and an underscore) and
should be in camelcase.

2.2 Naming and Organisation

• Always mark functions and global variables static, unless they need to be accessed from code in
another file.

• Name non-static functions with a common prefix related to the file name (eg. serial putchar, mi-
crobench register, etc.).

• Never put code in a header file, unless it’s a static inline and needs to be there.

• Try to keep constants and preprocessor macros that are unique to a specific source file in that file
rather than in a header that is included elsewhere.

– Alternatively, create another header for the private declarations used just by that code.

• Keep definitions of structures and macros for accessing device hardware in a separate header file
from any code/prototypes, and try to write them in a OS independent manner.

1

2.3 Return values

Use fugu for error values (see tools/fugu and lecture).

2.4 Misc

• Use doxygen comments.

• Use assert() liberally for sanity checks, but if something might fail at runtime, make sure it still
behaves correctly (i.e., returns an error code) with asserts compiled out.

3 Example code

/**
* \brief This function does nothing of any significant purpose

*
* \param arg Argument description

* \return uintptr_t Return value description

*/
uintptr_t frongle_blarg(void *blah)
{

if (blah) {
return (uintptr_t)blah - PAGESIZE; // foo

} else {
assert(!"Badness!");
return NULL;

}
}

2

	Code formatting
	Coding construct guidelines
	Types
	Naming and Organisation
	Return values
	Misc

	Example code

