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The technology to implement a single-chip node composed of 4
high-performance floating-point ALUs will be available by 1995.
This paper presents processor coupling,a mechanism for controlling
multiple ALUs to exploit both instruction-level and inter-thread par-
allelism, by using compile time and runtime scheduling. The com-
piler statically schedules individual threads to discover available
intra-thread instruction-level parallelism. The runtime scheduling
mechanism interleaves threads, exploiting inter-thread parallelism
to maintain high ALU utilization. ALUs are assigned to threads on
a cycle by cycle basis, and several threads can be active concur-
rently. We provide simulation results demonstrating that, on four
simple numerical benchmarks, processor coupling achieves better
performance than purely statically scheduled or multi-processor
machine organizations. We examine how performance is affected
by restricted communication between ALUs and by long memory
latencies. We also present an implementation and feasibility study
of a processor coupled node.
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By 1995, improvements in semiconductor technology will allow
multiple high performance floating point units and several megabits
of memory to reside on a single chip. One possible use of these mul-
tiple arithmetic units is to organize them in a single processor to ex-
ploit instruction-level parallelism. Controlling concurrent function
units presents a challenge. Applications exhibit an uneven amount
of instruction-level parallelism during their execution [11]. In some
parts of a program, all of the function units will be used, while in
others, serial computations with little instruction-level parallelism
�
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dominate. The amount of available parallelism depends upon both
the computation at hand and the accessibility of data. Long memory
latencies can stifle the opportunities to exploit instruction-level par-
allelism. The ideal multiple function unit processing node should
provide a task the use of as many function units as it needs, but also
allow unused units to be assigned to other tasks. In addition to be-
ing effective as a uniprocessor, such a node serves well in a parallel
computing environment since many tasks are available. Further-
more, exploiting instruction-level parallelism in conjunction with
coarser grained algorithmic concurrency improves machine perfor-
mance.
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Processor coupling is a runtime scheduling mechanism in which
multiple function units execute operations from multiple instruc-
tion streams and place results directly in each other’s register files.
Several threads may be active simultaneously sharing use of the
function unit pipelines. Instruction level parallelism within a sin-
gle thread is exploited using static scheduling techniques similar to
those demonstrated in the Multiflow Trace system [4]. At runtime,
the hardware scheduling mechanism interleaves several threads ex-
ploiting inter-thread parallelism to maintain high utilization of func-
tion units.

Figure 1 demonstrates how processor coupling dynamically in-
terleaves instruction streams from multiple threads across multiple
function units. The operations from threads A, B, and C are sched-
uled independently at compile time as shown in the top of the figure.
Each column in a thread’s instruction stream represents an opera-
tion field for a single function unit. Each row holds operations that
may be executed simultaneously. The empty boxes indicate that
there is insufficient instruction-level parallelism to keep all of the
function units busy. During execution, arbitration for function unit
usage is performed on a cycle by cycle basis. When several threads
are competing for a given function unit, one is granted use and the
others must wait. For example, operations A3 and A4 are locked
out during the second cycle because thread C is granted those units
instead. Figure 2 illustrates the mapping of function units to threads
as a result of runtime arbitration for the first two cycles shown in
Figure 1.

Note that operations scheduled in a single long instruction word
need not be executed simultaneously. Allowing the static schedule
to slip provides for finer grain sharing of function units between
threads. In Figure 1, operations A3-A6 are scheduled in the same
instruction word for thread A. Operations A3, A5, and A6 are all
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Figure 1: Interleaving of instruction streams: threads A, B, and C
are scheduled separately and their instruction streams are shown at
the top of the diagram. Each column of the instruction stream is
a field for a particular function unit and each row holds those op-
erations which are allowed to execute simultaneously. The bottom
box shows a runtime interleaving of these threads in which some
operations are delayed due to function unit conflicts.

issued during cycle 3 while A4 is not issued until cycle 4. However,
A4 must be issued before A7 and A8.

A compiler can be used to extract the maximum amount of
statically available instruction-level parallelism from a program
fragment. However, compile time scheduling is limited by un-
predictable memory latencies and by some dependencies, such as
data dependent array references, which cannot be statically deter-
mined. Furthermore, although trace scheduling [5] and software
pipelining techniques [14] can be used, branch boundaries tend
to limit the number of operations that can be scheduled simulta-
neously. By interleaving multiple threads, the hardware runtime
scheduling mechanisms of processor coupling address the limits
of static scheduling due to dynamic program behavior. Additional
information and further analysis of processor coupling can be found
in [12].
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Processor coupling incorporates ideas from research in compile
time scheduling, multiple instruction issue architectures, multi-
threaded machines, and runtime scheduling. Very long instruction
word (VLIW) processors such as the Multiflow Trace series [3]
use only compile time scheduling to manage instruction-level par-
allelism and resource use. Superscalar processors execute multiple
instructions simultaneously by relying upon runtime scheduling
mechanisms to determine data dependencies [18, 10]. The pro-
posed XIMD [19] architecture employs compile time techniques
to statically schedule instructions as well as threads, but does not
dynamically interleave multiple thread execution. Using multiple
threads to hide memory latencies and pipeline delays has been ex-
plored in [7, 8, 13, 17]. Dataflow and hybrid dataflow approaches
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Figure 2: Two mappings of function units to threads. These map-
pings correspond to the first two cycles shown in Figure 1.

such as [2, 9] have decomposed programs into large numbers of
threads consisting of one or a few instructions which are dynami-
cally scheduled. Fisher and Rau summarize many instruction-level
parallelism techniques in [6].
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Processor coupling is useful in machines ranging from workstations
based upon a single multi-ALU node to massively parallel machines
such as the MIT M-Machine, which is currently being designed.
The M-Machine will consist of thousands of multi-ALU processor
coupled nodes and will have many threads to be interleaved at
each node. The machine will thus take advantage of a hierarchy
of parallelism, ranging from coarse-grained algorithmic parallelism
to extremely fine-grained instruction-level parallelism. However,
as will be demonstrated in Section 4, processor coupling can be
effective on only a single node. This paper will consider only a
single node instance of processor coupling.
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The next section examines in more detail the architecture of a pro-
cessor coupled node. Section 3 presents a prototype compiler for
processor coupling, as well as a simulator to evaluate processor
coupled performance. Experimental assumptions, benchmarks, and
results are described in Section 4. Section 5 sketches an implemen-
tation of processor coupling while Section 6 shows that building a
processor coupled node will be feasible. Finally, Section 7 proposes
further directions for research in this area.
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A processor coupled node, as shown in Figure 3 consists of
a collection of function units, register files, memory banks, and
interconnection networks. A function unit may perform integer
operations, floating point operations, branch operations, or memory
accesses. Function units are grouped into clusters sharing a register
file among them. A cluster can write to its own register file or to
that of another cluster through the Unit Interconnection Network.
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Figure 3: This sample machine consists of four clusters, each of
which contains an arithmetic unit and a memory unit. The units
communicate with each other through the unit interconnection net-
work and through memory.

Clusters access memory banks through the Memory Interconnection
Network.

A function unit may be generic, such as an integer ALU, or
more specialized, such as a branch calculation unit or a floating
point multiplier; a unit may be pipelined to arbitrary depth. A
thread’s instruction stream can be considered to be a sparse matrix of
operations, as seen in Figure 1. To keep signal propagation delays as
short as possible,control is distributed throughout the clusters. Each
function unit contains an operation cache and an operation buffer.
When summed over all function units, the operation cachesform the
instruction cache. The operation buffer holds a pending operation
from each active thread. A cluster’s register file is multi-ported
to allow multiple read and write operations per cycle. Although
execution of a thread’s instruction does not take place in lock step,
global management of an instruction pointer prevents operations
from issuing out of order. Section 5 discusses the architecture of a
function unit in more detail.
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Processor coupling uses data presence bits in registers for low level
synchronization within a thread. An operation will not be issued
until all of its source registers are valid. When an operation is issued,
the valid bit for its destination register is cleared. The valid bit is set
when the operation completes and writes data back to the register
file. To move data between function units, an operation may specify
destination registers in other clusters. Thus, registers are used to

Reference Precondition Postcondition
unconditional leave as is

load wait until full leave full
wait until full set empty
unconditional set full

store wait until full leave full
wait until empty set full

Table 1: Loads and stores can complete if the addressed location’s
valid bit satisfies the reference’s precondition. When a memory ref-
erence completes, it sets the valid bit to the specified postcondition.

indicate data dependencies between individual operations and to
prevent operations from executing before their data requirements
are satisfied.

An operation can issue only if all of its data dependencies are
satisfied and all of the previous instruction’s operations have is-
sued. Because different function units may have different pipeline
latencies, this discipline ensures in-order operation issue, but not
necessarily in-order completion.
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Hardware is provided to sequence and synchronize a small number
of active threads. Each thread has its own instruction pointer and
logical set of registers, but shares the function units and interconnect
bandwidth. A thread’s register set is distributed over all of the
clusters that it uses. The combined register set in each cluster can be
implemented as separate register files or as a collection of virtually
mapped registers [15]. Communication between threads takes place
through the shared memory on the node; synchronization between
threads is on the presence or absence of data in a memory location.

Each function unit determines independently, through exami-
nation of dynamic data dependencies, the next operation to issue.
That operation may be from any thread in the active set. The func-
tion unit examines simultaneously the data requirements for each
pending operation by inspecting the valid bits in the correspond-
ing register files. The unit selects a ready operation, marks its
destination register invalid, and issues it to the execution pipeline
stages.

A processor coupled system must provide a set of thread man-
agement functions. If a thread in the active set idles, it may be
swapped out in favor of another thread waiting to execute. The
process of spawning new threads and of terminating threads must
occur with low latency as well. Thread management is beyond the
scope of this paper and will not be further discussed.
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The memory system is used for storage, synchronization, and com-
munication between threads. Like the registers, each memory loca-
tion has a valid bit. Different flavors of loads and stores are used to
accessmemory locations. The capabilities of memory reference op-
erations are similar to those in the Tera machine description [1] and
are summarized in Table 1. These mechanisms can be used to build
producer-consumer relationships, atomic updates, semaphores, and
other types of synchronization schemes.
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On-chip memory is used as a cache and is interleaved into banks
to allow concurrent access to multiple memory locations. Memory
operations that must wait for synchronization are held in the memory
system. When a subsequent reference changesa location’s valid bit,
waiting operations reactivate and complete. This split transaction
protocol reduces memory traffic and allows memory units to issue
other operations.
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In order to evaluate the performance of processor coupling, we
built an experimental environment consisting of a compiler and a
simulator. The compiler is implemented in Common Lisp and the
simulator in C++.
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The compiler source language has simplified C semantics with Lisp
syntax. A configuration file for the machine to be simulated spec-
ifies the number and type of function units, each function unit’s
pipeline latency, and the grouping of function units into clusters.
The compiler uses configuration information to statically schedule
thread operations.

Partitioning of a benchmark program into multiple threads is
made explicit in the source code using fork and forall con-
structs. A fork causes the enclosed expression to be compiled
separately, and at runtime the forked thread runs concurrently with
the host thread.

Code can be compiled in two ways depending on the value of
the mode flag. If set to single, each thread’s code is scheduled
on the function units of a single cluster. The compiler chooses
upon which cluster a given thread will be scheduled. If set to
unrestricted, each thread may use as many of the function
units as it needs. The compiler assigns an ordered list of clusters
to each thread, which determines the function unit access pattern.
Using different orderings for different threads serves as a simple
form of load balancing.

The compiler performs several optimizations including constant
propagation, common subexpression elimination, and static eval-
uation of expressions with constant operands. Live variables are
kept in registers across basic block boundaries. The compiler does
not perform register allocation, assuming that an infinite number of
registers are available. Simulation results show that the realistic ma-
chine configurations all have a peak of fewer than 60 live registers
per cluster, for each of the selected benchmarks. Averaging over
these benchmarks, each cluster uses a peak of 27 registers. Only
ideal mode simulations, in which loops are unrolled extensively by
hand, require as many as 490 registers.

Scheduling is done according to critical path analysis of each
basic block in which the most critical operations are scheduled first.
Operations are placed to minimize the amount of communication
between function units.

The compiler does not perform trace scheduling or software
pipelining, and does not schedule or move code across basic block
boundaries. Loops must be unrolled by hand and procedures are
implemented as macro-expansions. Although a few modern com-
pilers do perform trace scheduling and software pipelining, this

compiler provides a good lower bound on the quality of generated
code. Using more sophisticated schedulingtechniquesshould bene-
fit processor coupling at least as much other machine organizations.

The compiler produces assembly code, a diagnostic file, and
a modified configuration file with information concerning register
and memory requirements.
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Like the compiler, the simulator is parameterized for processor
configurations. The simulator takes the configuration file and the
assembly code produced by the compiler, runs the program, and
generates statistics including dynamic cycle count, operation count,
and function unit utilization.

Simulation is at a functional level rather than at a register transfer
level, but the simulator is accurate in counting the number of cycles
and operations executed. Certain assumptions were made in order
to simplify simulation. Each thread is allocated its own set of
registers while the function units, the communication channels,
and the memory system are shared. No thread management is
considered as all executing threads are assumed to be a part of the
active set. New threads are spawned by the fork instruction which
initiates a new thread context. The number of available registers is
specified by the compiler, and integers and floating point numbers
reside in the same register files.

The memory system is modeled statistically. The configuration
file specifies the hit latency, the miss rate, and a minimum and
maximum miss penalty. If a miss occurs, the number of penalty
cycles is randomly chosen from the penalty range. Also, no bank
conflicts are modeled as a memory operation can always access the
necessary bank. No instruction cache misses or operation prefetch
delays are included.

Additionally, the configuration file describes the behavior of the
interconnection between function units. The simulator manages
arbitration for buses between function units if conflicts arise.
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Since an input program specifies the amount of threading, and the
compiler can adjust how operations are assigned to clusters, five
different modes of operation are possible. Each mode corresponds
to a different type of machine and is described below:

1. Sequential (SEQ): The program is written using only a single
thread with the compiler scheduling the operations on only
one cluster. This is similar to a statically scheduled machine
with an integer unit, a floating point unit, a memory unit, and
a branch unit.

2. Statically Scheduled (STS): Like Sequential mode, only a
single thread is used, but there is no restriction on the clusters
used. This approximates a VLIW machine without extensive
trace scheduling.

3. Ideal: The program is single threaded, has its loops unrolled
as much as possible, and is completely statically scheduled.
This mode is not available for those benchmarks with data de-
pendent control structures as they cannot be statically sched-
uled.
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4. Thread per element (TPE): Multiple threads are specified,
but each thread is restricted to run on only one cluster. Static
load balancing is performed to schedule different threads on
different clusters. A thread may not migrate to other clusters,
but the benchmark programs are written to divide work evenly
among the clusters.

5. Coupled: Multiple threads are allowed and function unit use
is not restricted.
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We selected four simple benchmarks to test the effectiveness of
processor coupling. The benchmark suite includes applications that
exhibit both data parallelism and data dependent control parallelism.
Each benchmark is written so that it can be partitioned easily into
separate threads. This is intended to provide a set of benchmarks
that each machine model can perform upon well.

Matrix is a 9 � 9 matrix multiply of floating point numbers,
with the inner loop unrolled completely. The threaded versions
execute all of the iterations of the outer loop in parallel. The ideal
version of this benchmarkhas all of the loops unrolled and the entire
computation is statically scheduled by the compiler.

FFT is a 32 point decimation-in-time fast-Fourier-transform of
complex numbers. A sequential data movement routine places the
input vector in bit-flipped order. The threaded version executescon-
currently all of the butterfly computations within a single stage. The
ideal version unrolls the inner loop completely statically scheduling
all of the operations within a single stage.

LUD solves a sparse system of linear equations using the lower-
upper decomposition technique. The input data is a 64 � 64 adja-
cency matrix of an 8 � 8 mesh. After selecting a source row, the
threaded version updates all of the target rows concurrently. No
loops are unrolled and there is no ideal version since the control
flow depends upon the input data.

Model is a model evaluator from an VLSI circuit simulator
in which the change in current for each node in the network is
computed based upon previous node voltages. The input circuit
is a 20 device CMOS operational amplifier. The threaded version
creates a new thread to evaluate each device on each iteration of a
master loop. Like LUD, no loops are unrolled.

Although they are small and well contained problems, these
benchmark programs can be used as building blocks for larger nu-
merical applications. For example, the compute intensive portions
of a circuit simulator such as SPICE include a model evaluator and
sparse matrix solver [16].

Using these benchmarks, we first compare the performance of
the different types of simulated machines. Further experiments
explore issues concerning restricted connectivity between function
units, variable memory latencies, and different mixes of function
units.
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The baseline machine consists of four arithmetic clusters and two
branch clusters. Each arithmetic cluster contains an integer unit, a

Compared Utilization
Benchmark Mode #Cycles to Coupled FPU IU
Matrix SEQ 1992 3.12 0.69 0.90
Matrix STS 1182 1.85 1.16 1.52
Matrix TPE 629 0.99 2.19 2.83
Matrix Coupled 638 1.00 2.16 2.79
Matrix Ideal 350 0.55 3.93 0.28
FFT SEQ 3377 3.06 0.24 0.61
FFT STS 1792 1.63 0.45 1.24
FFT TPE 1977 1.79 0.40 1.05
FFT Coupled 1102 1.00 0.73 2.03
FFT Ideal 402 0.36 1.99 2.54
Model SEQ 993 2.69 0.21 0.10
Model STS 771 2.09 0.27 0.13
Model TPE 395 1.07 0.54 0.64
Model Coupled 369 1.00 0.57 0.70
LUD SEQ 57975 2.69 0.14 0.45
LUD STS 33126 1.54 0.24 0.78
LUD TPE 22627 1.05 0.35 1.35
LUD Coupled 21543 1.00 0.37 1.42

Table 2: Cycle count comparison of different types of machines.
Floating point unit (FPU) utilization is given as the average number
of floating point operations executed each cycle. Integer Unit (IU)
utilization is calculated similarly.

floating point unit, a memory unit, and a shared register file, while
a branch cluster contains only a branch unit and a register file. The
branch cluster may be used by any thread for all modes of sim-
ulation. Although processor coupling does not preclude multiple
branch units, since the current version of the compiler allows each
thread to issue at most one branch operation per cycle, one branch
cluster is sufficient. Each function unit has a pipeline latency of
one cycle.

In the baseline machine, an operation can specify at most two
simultaneous register destinations. A function unit can write a result
back to any cluster’s register file, each of which has enough buses
and ports to prevent resource conflicts. Memory units perform the
operations required for address calculation. Memory references
take a single cycle and have no bank conflicts.

Assuming that the compiler produces the best possible schedule,
the number of cycles executed by the fully unrolled instance of a
benchmarkis a lower bound for these particular hardware resources.
Sequential mode operation provides an upper bound since only the
parallelism within a single cluster can be exploited. Table 2 shows
the cycle counts for each machine mode. Floating point utilization
is given as the average number of floating point operations executed
each cycle. Integer unit utilization is calculated similarly. Figure 4
displays the cycle counts graphically.

Considering the statically scheduled benchmarks, STS mode
requires on average 1.7 times fewer cycles than SEQ, since STS
allows use of all the function units. Because the Ideal mode’s
program is fully unrolled and statically scheduled, loop overhead
operations and redundant address calculations are eliminated. This
reduced operation count permits the ideal machine to execute in an
average of 7 times fewer cycles than SEQ.

In threaded mode, the cycle count for Coupled and TPE are
nearly equivalent for the Matrix, LUD, and Model benchmarks
which have been stripped of nearly all sequential execution sections,
and are easily partitionable. TPE is as fast as Coupled since the
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Figure 4: Baseline cycle counts for the five simulation modes.
Matrix, FFT, and Model, are referenced to the left axis, while the
scale for LUD is on the right. Ideal is only implemented for Matrix
and FFT.

load is balanced across its clusters. Processor coupling will have an
advantage in less intrinsically load balanced computations as long
as threads are not allowed to migrate between clusters.

FFT, however, has a large sequential section that cannot be
partitioned. Since each TPE thread can execute on only one cluster,
the performance of TPE in the sequential section is no better than
SEQ. In fact, because of the dominance of the sequential section,
TPE does not even perform as well as STS for the entire benchmark.
Coupled, on the other hand, performs as well as STS on sequential
code. The available instruction level parallelism can be exploited
by Coupled, but not by TPE. Thus, one advantage of Coupled over
TPE is found in sequential code execution. Since parallel speedup
of a program is limited by the amount of sequential code, single
thread performance is vital.

The dynamic scheduling capability of Coupled mode allows it
to execute in an average of 55% fewer cycles than the statically
scheduled STS mode. TPE, with its multiple threads, also executes
faster than STS for all benchmarks but FFT. This reduced cycle
count in TPE and Coupled is due to the fine grained interleaving
of threads. The multiple threads of Coupled mode result in much
higher function unit utilization, and therefore a lower cycle count,
than STS. One of processor coupling’s advantages over a statically
scheduled scheme is the increased unit utilization allowed by dy-
namic scheduling.
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Figure 5 shows for each benchmark, the utilization of the floating
point units, integer units, memory units, and branch units. In all
benchmarks, unit utilization increases as the simulation mode ap-
proaches Ideal. For Matrix, utilization is balanced for FPUs, IUs,
and memory units, up to the Coupled mode. In Ideal mode, the
FPU utilization is 3.9, indicating that the compiler has filled nearly
every floating point operation slot. Note that since the compiler has
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utilization is the average number of FPU operations per cycle. Other
unit utilizations are calculated similarly.

eliminated loop overhead operations and common subexpressions
in array index calculation, very few integer and branch operations
are required. Furthermore, a significant fraction of the memory
operations have been replaced by register operations.

Aside from the ideal mode, FFT utilization is similar. The
multiple active threads available in TPE and Coupled modes drive
memory unit utilization up. This rise results from the many read and
write operations performed by the butterfly calculations of the inner
loop. Memory utilization in the Ideal mode is still high because the
compiler was unable to replace memory references with register
references. The Model and LUD benchmarks are dominated by
memory operations. Thus, even in Coupled and TPE mode, the
integer and floating point utilizations are still quite small.
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For multithreaded versions of the benchmarks programs, the stat-
ically scheduled threads interfere with one another, causing the
runtime cycle count to be longer than the compile time schedule
would suggest. To demonstrate this dilation, we use a slightly dif-
ferent version of the Model benchmark in Coupled mode. Four
threads are created when the program starts. Each thread accesses
a common priority queue of devices to be evaluated, chooses a de-
vice, updates the queue, and then evaluates the device. This loop
is repeated by all threads until the queue is empty. A new input
circuit with identical devices, each at the same operating point, al-
lows extraneous code in the source program to be removed. Thus,
every operation specified in the new source program is executed.
This provides us with ability to compare runtime cycle count with
the number of instructions generated by the compiler. With the
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Compile Time Runtime Devices
Mode Thread Schedule Cycle Count Evaluated
STS 1 25 25.0 20

Coupled 1 23 28.0 8
Coupled 2 23 38.7 6
Coupled 3 23 77.3 3
Coupled 4 23 80.7 3

Table 3: Average cycle counts for each iteration of the inner loop of
the Model benchmark for STS and Coupled with threads assigned
different priorities.

modified benchmark, the effect of the priority assigned to a thread
on its runtime schedule can be seen more clearly. We compare the
Coupled benchmark to a similarly altered version of an STS mode
program.

Table 3 shows the compile time schedule length and the average
runtime cycle count to evaluate one model for each of the four
threads in Coupled mode. The higher priority threads in Coupled
mode execute in fewer cycles. In STS mode, there is only one
thread, and it runs in the same number of cycles as the static schedule
predicts.

In addition, contention between threads for the shared queue
arises in Coupled mode as even the highest priority thread requires
more cycles than the schedule predicts. Taking a weighted aver-
age across the four threads, Coupled mode requires 46.5 cycles
per device evaluation. Although STS requires only 25 cycles per
evaluation, the multiple threads of Coupled allows evaluations to
overlap such that the aggregate running time is shorter (274 cycles
versus 505 for STS). On single threaded code, Coupled and STS
perform equally well; on threaded code, Coupled mode will execute
in fewer cycles.
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Data may need to be transferred from one cluster to another for
several reasons. When two independent operations executing si-
multaneously on different clusters produce results needed by a sub-
sequent operation, at least one of the results must be transferred.
Thus data movement comes as a result of the compiler trying to
exploit the maximum instruction level parallelism. Another source
of data movement comes from operation results that must be used
by multiple subsequent operations. One example is an eliminated
common subexpressionsuch as a redundant array index calculation.
These values might be distributed to multiple clusters.

Since the number of buses and register input ports required to
support fully connected function units is prohibitively expensive,
some compromises must be made. Restricting communication be-
tween function units reduces cost without significantly affecting
cycle count. The five different communication configurations that
were simulated are described below:

1. Full: The function units are fully connected with no restric-
tions on the number of buses or register file write ports.

2. Tri-port: Each register file has three write ports. One port is
usedlocally within a cluster by those units sharing the register
file. The other two ports have their own buses and can be
used by any function unit in another cluster.
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Figure 6: Cycle counts for restricted communication schemes of
processor coupling on all benchmarks. Matrix, FFT, and Model,
are referenced to the left axis while the scale for LUD is on the
right. Cycle count increases dramatically when single buses and
ports are used, but the Tri-Port scheme is nearly as effective as the
fully connected configuration.

3. Dual-port: Each register file has two write ports. This is
similar to Tri-Port with only one global register port.

4. Single-port: Each register file has a single write port with
its own bus. Any function unit can use the port without
interfering with writes to other register files.

5. Shared-bus: Each register file has two ports. One port is
for use within a cluster while the other port is is connected
to a globally shared bus. Arbitration is performed to decide
which function unit may use the bus on a given cycle.

Figure 6 demonstrates how processor coupled performance is
affected by restricting the amount of communication between func-
tion units. As expected, the number of cycles increases when
function units must contend for buses and register ports.

Matrix, FFT, and LUD have high integer unit utilization be-
cause they calculate many common array indices, and are sharply
affected when using a Single-Port or Single-Bus network. Model
exhibits less instruction level parallelism, has low unit utilization,
and is hardly affected by changing communication strategies.

Any restricted communication scheme trades chip area for in-
creased cycle count. Tri-Port performs the best of the restricted
configurations examined requiring an average of only 4% more
cycles than the fully connected configuration. Tri-port can be im-
plemented using only 2 global buses per cluster. The number of
buses to implement a fully connected scheme, on the other hand,
is proportional to the number of function units times the number
of clusters. Furthermore, the completely connected configuration
will require additional register ports. In a four cluster system the
interconnection and register file area for Tri-Port is 28% that of
complete connection.
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Figure 7: Cycle counts when memory latency is varied for all of the
benchmarks. Increased memory latency affects the single threaded
modes (STS and Ideal) more than the threaded modes (Coupled and
TPE).
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Long memory latencies due to synchronization or remote refer-
ences degrade performance of any machine. Statically indetermi-
nant memory latencies are particularly damaging for STS mode
machines since long delays stall the entire computation. Multi-
threaded machines hide long memory latencies by executing other
threads.

A five to ten percent miss rate is assumed for an on-chip cache
depending on its size and organization. If a cache miss occurs, the
memory reference must go off chip. When the requested data is in
local memory, the reference might complete in 20 cycles. Refer-
ences to physically remote nodes can take 100 or more cycles. The
three models of memory system performance used in simulations
are:

É Min: single cycle latency for all memory references.

É Mem1: single cycle hit latency, 5% miss rate, and a miss
penalty randomly distributed between 20 and 100 cycles.

É Mem2: similar to Mem1 with a 10% miss rate.

Figure 7 shows how the cycle counts for different machine
models are affected by long memory latencies. Since the compiler
is able to use 490 registers in Ideal mode for Matrix, very few
memory references need to be made. Thus long latencies hardly
affect the ideal machine’s cycle count. In FFT, however, the cycle
count for Ideal mode increases dramatically because many loads

and stores are required, and each delayed memory reference halts
computation. Cycle count for STS mode rises in all benchmarks
with increasing memory latency for similar reasons. Nearly 5.5
times as many cycles are needed on average for execution with
Mem2 parameters as with Min for STS.

The cycle count for Coupled does not increase as greatly in
any of the benchmarks since other threads are executed when one
thread is waiting for a long latency reference. On average, execution
with Mem2 parameters requires twice as many cycles as Min. If
the compiler knew which references would cause long delays, it
could create a schedule to try to mask long latencies. However,
since memory latencies cannot be statically determined, runtime
scheduling techniques, like those of processor coupling, must be
used to mask the delay. Memory latencies can be quite long in a
distributed memory parallel machine; masking of latency is a major
advantage of Coupled over STS.

TPE is affected only a little more severely than Coupled by long
memory latencies. Execution in Mem2 mode requires 2.3 times as
many cycles as Min. Like Coupled mode, TPE has other threads to
run while waiting for long latency memory references. However,
threads are allocated statically to specific clusters. If only one
thread is resident on a cluster and it stalls waiting for a reference,
the processor resources on that cluster go unused.
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To determine the proper ratio between different types of units, we
simulated all processor coupled machine configurations with up to
four IUs and four FPUs while keeping the number of memory units
constant at four. For our applications, simulation showed that a
single branch unit is sufficient. Figure 8 displays the cycle counts
for all the benchmarks as a function of the number of IUs and FPUs.
The number of FPUs and IUs are on the X and Y axes. Cycle count
is displayed on the Z axis.

The function unit requirements depend greatly upon the appli-
cation. For Matrix, cycle count is highest when only one IU and
one FPU are used, and decreases when more units are added. If
the number of IUs is held constant and the number of FPUs is in-
creased, the cycle count drops. The same holds true if the number
of FPUs is constant and the number of IUs is varied. One FPU
will saturate a single IU, but two IUs are needed to saturate a single
FPU. Even though each benchmark consists primarily of floating
point operations, this shows that integer units, which are used for
synchronization and loop control, can also be a bottleneck. With a
fixed number of function units, cycle count is minimized when the
number of FPUs and IUs are equal.

The results for FFT are similar to those of Matrix. However,
with four FPUs and one IU, the cycle count increases. This is
due to additional IU operations required to move floating point
array indices to remote memory units. Like Matrix, one FPU will
saturate a single IU, but each additional IU improves performance.
LUD shows much the same behavior as FFT with cycle count
increasing as FPUs are added.

Model exhibits much less instruction level parallelism and does
not benefit as greatly as the other benchmarks from additional func-
tion units. Cycle count is still minimized when four IUs and four
FPUs are used.

For these benchmarks, the incremental benefit in cycles de-
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