
Software Infrastructure and Tools for the TRIPS Prototype

Bill Yoder Jim Burrill Robert McDonald Kevin Bush
Katherine Coons Mark Gebhart Sibi Govindan Bertrand Maher

Ramadas Nagarajan Behnam Robatmili Karthikeyan Sankaralingam Sadia Sharif
Aaron Smith Doug Burger Stephen W. Keckler Kathryn S. McKinley

Computer Architecture and Technology Laboratory
Department of Computer Sciences
The University of Texas at Austin

cart@cs.utexas.edu - www.cs.utexas.edu/users/cart/trips

ABSTRACT

The TRIPS hardware prototype is the first instantiation of anExplicit
Data Graph Execution (EDGE) architecture. Building the compiler,
toolset, and system software for the prototype required supporting the
system’s unique dataflow construction, its banked registerand memory
configurations, and its novel Instruction Set Architecture. In particu-
lar, the TRIPS ISA includes (i) a block atomic execution model, (ii) ex-
plicit mappings of instructions to execution units, and (iii) predicated
instructions which may or may not fire, depending on the outcome
of preceding instructions. Our primary goal has been to construct
tools to consume standard C and Fortran source code and generate
binaries both for the TRIPS software simulators and hardware proto-
type. A secondary goal has been to build the software infrastructure on
standard platforms using standard tools. These goals have been met
through a combination of off-the-shelf and custom tools. Wepresent
a number of design issues and their resolution in enabling end users
to exercise the prototype ISA using familiar tools and programming
interfaces. Finally, we offer download instructions for those who wish
to test-drive the TRIPS tools.

1 INTRODUCTION

The development of the TRIPS processor has required build-
ing a large software infrastructure and set of tools (orttools),
including functional and timing simulators; an assembler,
linker, and binary utilities; a high-level language compiler and
instruction scheduler; a set of optimized and unoptimized run-
time libraries; a resource manager to coordinate and control
system resources; and a variety of build and test utilities.

To manage the complexity of compiler development, we
implemented major components using well-defined interfaces,
a variety of Open Source products, and modular construction.

To create a runtime system in a timely fashion with modest
resources, we limited the feature set of the operating environ-
ment, put the bulk of command and control on a stock desktop
Host PCrunning x86/Linux, used off-the-shelf software and
development tools for the motherboard, and defined simple but
powerful protocols between the Host PC and motherboard and

between the motherboard and chips.
A key theme of software development has been to adapt

off-the-shelf solutions when possible and to create homegrown
solutions when necessary.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses the TRIPS language toolchain and the ap-
proach we used to implement a full-featured software devel-
opment kit. Section 3 discusses several of the TRIPS software
simulators, enabling us to prove out a number of design ideas
during every stage of development. Section 4 discusses the
TRIPS operating environment, with its use of a host-based re-
source manager to download, execute, and control TRIPS bi-
naries on the target processors. Section 5 covers the TRIPS
build, integration, and testing processes. Section 6 describes
the availability of the tools and simulators for the TRIPS pro-
totype.

2 LANGUAGE TOOLCHAIN

The TRIPS toolchain is responsible for consuming source files
written in ANSI C, a subset of GNU C, and Fortran 77; apply-
ing both classic and novel optimizations to the control flow
structures; and generating binary objects that can be linked
with standard math and C runtime libraries. Support for
C++ and Fortran 90 applications has thus far not been judged
critical. Toolchain construction has been guided by a well-
designed set of components orlinks, each with clearly spec-
ified syntactical and calling conventions. Figure 1 shows the
various components of the toolchain.

2.1 Architectural Constraints
The TRIPS architecture has several features that require un-
usual support in the software toolchain. The ISA defines a
block atomic execution model, in which program functions
are subdivided into variable-size blocks of up to 128 instruc-
tions [1]. When fetched, each block is mapped onto a row
of architectural registers and a grid of execution units. Each
TRIPS block comprises aheader chunkand one to fourin-

Figure 1: Toolchain links.

struction chunks. Register read and write instructions are em-
bedded in the header chunk, in addition to fields for magic
number, block type information, and processor control flags.
The ISA places strict limits on the number of instructions ina
block, on the number of register reads and writes, and on the
combined number of load/store instructions.

Optimally mapping instructions on the grid is critical, due
to the TRIPS dataflow execution model, in which each execu-
tion node fires when its operands arrive. Cycle counts depend
not only on opcode cycles but on operand arrival times, them-
selves determined by feeds from banked architectural regis-
ters, a routing operand network (OPN), and a banked L1 data
cache.

Despite such contraints, numerous features have made the
prototype easier to program, including regular and clearlyde-
fined instruction formats; a global 40-bit address space, which
enables software to access any chip register or memory lo-
cation through its unique address; and a uniform processor
exception model, in which all processor exceptions occur at
block boundaries and present a consistent interface to the soft-
ware.

Throughout toolchain development, we relied on a ro-
bust functional simulator, an accurate timing simulator, and
a sophisticated set of performance tools to analyze execution
traces, to visualize instruction placement, and to pinpoint crit-
ical paths and execution bottlenecks.

2.2 Binary Utilities
The assembler, linker, and other utilities, such asnm, obj-
dump, andar, are ports of the GNU binary utilities (binutils),
available from the Free Software Foundation [4].

A number of benefits have accrued from the decision to use
the binutils package:� A leveraged and rich set of functionality based on a ma-

ture codebase.� A large installed user base and an active, experienced
development community.

All stack items are aligned on high virtual memory
8-byte boundaries. environment = 0xFFFFFFFF

and
argv strings

argument save area

return address = 0
sp of _start() back chain pointer=0

register save area

local variable area Stack grows down.

argument save area

return address Fixed size
sp of main() back chain pointer link area of main()

register save area

local variable area

argument save area

return address link area of func()
sp of func() back chain pointer

register save area

local variable area

return address link area of leaf()
sp of leaf() back chain pointer

unused stack
area

Application bss
and data area

low memory

 Loader places data beginning at 0x80000000.

Figure 2: Application memory organization.� A common set of application programming interfaces
that can be used by other tools, such as the simulators
and debugger.

We chose to support a simple version of the Executable Link-
ing Format (ELF) to output a small number of string tables and
text, data, andbssprogram sections. Figure 2 shows how the
linker lays out application data in virtual memory. The figure
also reflects the simple but effective calling convention ofthe
TRIPS Application Binary Interface (ABI) [9]. One simpli-
fication that made binutils development easier was dropping
support for shared libraries–all TRIPS executables are stati-
cally linked, which dramatically simplifies installing, version-
ing, and debugging toolchain components and applications.

The utility front ends are largely platform independent. For
example, once we specified the TRIPS data types, such as 64-
bit pointers, longs, and doubles and 32-bit integers and floats,
the GNU utilities transparently provided support for allocating
and accessing TRIPS scalar variables.

However, to support the prototype ISA and high-level com-
piler. the TRIPS-specific back ends required a significant port-
ing effort. Descriptions of major customizations follow.

2.2.1 Block-oriented rather than line-oriented
assembly

The GNU front end assumes that each line of a source file
translates into one instruction word. Once the TRIPS Assem-
bly Language (TASL) had been defined, encoding the individ-

ual 32-bit instructions proved straightforward, simply requir-
ing the tas assembler to parse and translate the source file a
line at a time [14].

However, to support the TRIPS block-atomic model, TASL
syntax groups instructions and register reads and writes into
blocks, demarcated with “block begin” (.bbegin) and “block
end” (.bend) directives for that block. Thetas assembler
therefore tracks the individual statements after the opening
.bbegin directive and enters them into a memory structure rep-
resenting the execution grid and architectural registers.When
encountering the matching.bend directive, the assembler tra-
verses the data structure, marks instructions that requirerelo-
cation, uses the GNU Binary File Description (BFD) routines
to translate x86 Little-Endian formats to TRIPS Big-Endian,
and commits the whole block to disk.

Throughout binutils development, a balance needed to be
struck between treating instructions as individual 32-bitwords
and treating “instructions” as variable-size code blocks.In
addition, the ISA definition of 32-bit instructions and 64-bit
pointers and data types required syntactical support to con-
struct 64-bit data from pieces of the 32-bit instructions. Al-
though the TRIPS prototype restricts global physical addresses
to 40 bits and although thettoolscompiler limits programs to
32-bit virtual addresses, nothing in the ISA or assembly lan-
guage definition precludes full 64-bit addressing.

2.2.2 Block integrity checking

It is easy to write incorrect TASL code. Thetas assembler pro-
vides simple error checking during the first pass while parsing
the individual instructions, to ensure that instruction formats
are correctly specified, that immediate values lie within range,
that proper target operands are in place, and that no block con-
tains more than 128 instructions.

In addition, due to the target formats of the ISA, a second
round of checking is desireable, to ensure that each block is
well-formed. Hence, after each block of instructions is as-
sembled, a two-pass checker is invoked to ensure that source
instructions properly target destination instructions, that predi-
cate outputs target instructions which in fact expect predicates,
that instructions expecting one or two operands receive them,
and so on.

An automated TASL generatortg, which produces thou-
sands of lines of randomized but legal TASL code, proved in-
valuable in shaking out assembler/linker bugs before compiler
readiness. The same tool was used during hardware bringup to
test processor functionality.

2.2.3 Limited reach of call-by-offset instructions

The prototype ISA defines a number ofconstant instructions
which embed immediate values in 16 bits of the 32-bit word.
Using a combination ofgenerateandappendconstant instruc-
tions (GEN andAPP), the compiler can construct efficient in-
struction sequences to generate addresses and literals.

Additionally, the ISA provides both absolute and relative
branching instructions. TheCALL andBR instructions sup-
port 64-bit absolute addressing, just as theCALLO andBRO
instructions containoffset fieldsto specify target addresses.

To save instruction count (4vs. 2 constant instructions),
the compiler emitsCALLO andBRO instructions for all jump
targets. Because the offset field specifies 128-byte chunks and
supports a 20-bit offset, any target within a227 byte-spread is
reachable.

However, for very large applications the 20-bit offset field
can be insufficient. In such cases, the linker must detect the
shortfall, “relax” the current code section, and insert atram-
polineabove the current block which fully specifies the abso-
lute target address with a fabricatedBR instruction. The orig-
inal CALLO or BRO instruction in the block is retargetted to
the adjacent trampoline block, which bounces execution to the
far-flung address. Code trampolines introduce an extra level of
indirection. Fortunately, the need for them rarely occurs.

2.2.4 Disassembling TRIPS binaries

The binary utilities and debugger provide several disassembly
routines. Again, the GNU model of one instruction per code
word had to be extended to support consuming a header chunk
of 128 bytes at once, parsing and rearranging the header into
register reads and writes, reading the following one to four
instruction chunks, and finally disassembling the individual
code words, while maintaining integrity of the complete code
block.

2.3 Compiler and Instruction Scheduler

The TRIPS compiler isScale[8], a Java-based set of 700+
classes offering classic optimizations as well as TRIPS-
specific optimizations. Scale has proven an ideal research ve-
hicle, supporting several code generators (Alpha, Sparc, Pow-
erPC, TRIPS), configurable optimizations, and compilation
phases that can be arranged in arbitrary order.

One early design decision was to partition TRIPS-specific
compilation into two major components:� The Scale compiler, which produces an intermediate

form of assembly code.� An instruction scheduler (tsch), which translates the in-
termediate output from Scale into low-level dataflow in-
structions and maps each explicitly onto the execution
grid.

As described below, this organization has enabled the gener-
ation of a RISC-like, high-level assembly language from the
Scale compiler and the generation of a dataflow syntax from
the instruction scheduler, with little loss in tool efficiency.

2.3.1 Hyperblock generator

The TRIPS prototype accepts up to 128 instructions per block
and executes them in dataflow order and in parallel. Because
basic blocks of control-dependent applications typicallycon-
sist of 5-6 instructions between branches, and because the pro-
totype ISA disallows branches to targets within a block, one
of our key challenges has been to aggregate basic blocks into
much larger predicated hyperblocks [11].

The original goal of the hyperblock generator was simple:
join basic blocks into large hyperblocks, the bigger the bet-
ter [7]. The early design of the hyperblock generator placed
hyperblocking in one of the early phases of compilation, con-
trolling the degree ofwhile and for loop unrolling, if conver-
sions, and function inlining. The compiler broke up and then
re-constituted any of the resulting blocks that exceeded any of
the prototype constraints, such as those containing more than
32 loads and stores.

What we discovered:� The prototype instruction contraints arehard limits.
Even if one block in a million exceeds a hardware con-
straint, the resulting binary cannot execute properly.� It is difficult for early analysis to form accurate instruc-
tion estimates. In some cases, instruction counts will
be overly pessimistic due to later optimizations that re-
move instructions. In other cases, instruction counts will
be overly optimistic, ignoring potential store instructions
for spilling by the register allocator, which is invoked far
downstream from the hyperblocker.� Block-splitting is difficult, in itself requiring not onlyre-
verse if-conversionbut analysis to build new hyperblocks
from resulting fragments. Such regenerated code is typ-
ically inefficient and requires redundant hyperblocking
algorithms.

Consequently, a significant structural revision was forced, in
which the hyperblock generator migrated to the compiler back
end, to good effect. Unrollingwhile loops has subsequently
migrated;for loop migration is soon to follow. Other compiler
optimizations are anticipated:� Hyperblocking based on execution profiles, to pull “hot”

basic blocks into the same hyperblock.� Reducing the number of block exits, to train the proto-
type’s branch predictor in execution patterns.� Instruction merging, to minimize the number of redun-
dant instructions.

2.3.2 TRIPS compiler driver

The dynamic nature of the toolchain has required frequent and
sometimes intricate modifications of command line options to
various components. For example, a variety of options for hy-
perblocking, both in the compiler front end and back end, co-
existed for a number of months. To hide these changes from
the end user, while providing full access to individual options,
the tcc compiler driver was developed.

Originally implemented as a simplebash script, tcc has
grown to 2,500+ lines of Perl to support dozens of command-
line options, both TRIPS-specific andgcc-compatible, such
as canned optimizations (-O3 and -O4), debugger options (-
g), and component options, including-D to the preprocessor,
-Wc,<opt> to the compiler,-Wa,<opt> to the assembler,
-Wl,<opt> to the linker, and–verbose to all. This gcc-
friendly support has aided importing large quanities of existing
applications with only minor Makefile edits, as in changing
CC=gcc to CC=tcc.

2.3.3 High-level vs. low-level assembly lan-
guages

Programmers are familiar with RISC-like, algebraic-
formulated languages which execute in program order. We
therefore defined the TRIPS Intermediate Language (TIL) [10]
as a user-friendly target language, employing a simple and
consistent syntax:

opcode result, operand1 [, operand2]
Example: The following code for blockmain$4 shows

how architectural registers G3 and G12 are read into temporary
registers T0 and T1 of the execution grid, how some amount of
decision-making occurs to determine the outcome of a branch,
and how grid outputs are written back to registers G12 and
G13 before the block terminates.

.bbegin main$4
read $t0, $g3
read $t1, $g12
mov $t2, $t0
addi $t3, $t1, 1
extsw $t4, $t3
tlti $t5, $t4, 10
tnei $t6, $t5, 0
bro_t<$t6> main$3
bro_f<$t6> main$5
write $g12, $t4
write $g13, $t2

.bend

The instruction scheduler, charged with mapping instruction
blocks onto the execution grid, consumes TIL files and pro-
duces target-form output.

Example: In this translated form ofmain$4, the TASL
specifies exactly how inputs are fed into the grid, which exe-
cution nodes ((N[0℄-N[127℄) are brought into play, and where
the execution nodes direct their results.

.bbegin main$4
;;;;;;;;;;; Begin read preamble
R[3] read G[3] N[3,0]
R[0] read G[12] N[0,0]
;;;;;;;;;;; End read preamble
N[3] <0> mov W[1]
N[0] <1> addi 1 N[4,0]
N[4] <2> extsw N[8,0] W[0]
N[8] <3> tlti 10 N[12,0]
N[12] <4> tnei 0 N[16,0]
N[16] <5> mov N[20,p] N[24,p]
N[20] <6> bro_t B[0] main$3
N[24] <7> bro_f B[1] main$5
;;;;;;;;;;; Begin write epilogue
W[0] write G[12]
W[1] write G[13]
;;;;;;;;;;; End write epilogue
.bend

The TRIPS prototype maps the virtual node numbers above to
physical grid coordinates, by using 2 of the 7 bits of the exe-
cution node number for row specifier (y-direction), 3 for frame
specifier (z-direction), and 2 for column specifier (x-direction).

However, the ISA itself dictates no such coordinate system,
and the hardware can choose to map instructions in any way
that is consistent.

Note also that the order of TIL instructions dictates exe-
cution order. No such assumptions hold for the TASL–targets
fire whenever their operands arrive.

By supporting both TIL and TASL, the TRIPS toolchain
enables programmers to express and examine their assem-
bly code in a familiar manner, while enabling the instruction
scheduler to specify instruction placement precisely and en-
abling the assembler to translate source files easily into ma-
chine code.

2.4 Runtime Libraries

2.4.1 C runtime library

The compiler developers chose the Dietlibc embedded C run-
time library authored by Felix von Leitner for its small foot-
print, base set of functionality, and portability [13]. TRIPS-
specific customizations have included:� Implementing a generic system call interface, so that the

compiler treats system calls as function calls, whose def-
initions are automatically generated by them4 macro
preprocessor with register setups, traps to theSCALL
instruction, and return values.� Increasing the amount of inlining used by the compiler
and grouping like functions into multi-compilation units,
so that the compiler can inline across modules.� Defining routines in the C runtime startup module (crt.o)
to interface with the program loader and set up the stack,
provide software floating point division, determine the
base physical address of the chip configuration space,
implementsetjmp(), and so on.� Increasing the amount of buffering used byprintf() and
the memory manager in calls tomalloc(), to minimize
runtime overhead.

2.4.2 Math libraries

We chose the SunSoft Freely Distributable LIBM (libfdm) C
math library for its transcendental math functions [12]. The
libfdm routines are IEEE-754 conformant, portable, and well-
tested. The intention is to replace key functions such assqrt()
with those from the IBM IEEE math library (MathLib) [5], due
to its accurate table method, which executes efficiently on the
prototype.

Due to area constraints, the prototype includes no floating-
point divide unit and noFDIV instruction. Starting from John
Hauser’s platform-independent implmentation of the IEEE
Standard for Binary Floating-Point Arithmetic [6], we ex-
tracted the 64-bit software divide routines, hand-tuned them
for efficient execution, and “baked” them into the C runtime
startup modulecrt0.o, available to all applications.

2.4.3 Optimized string and memory library

The dietlibc runtime library is designed to be compact and
portable across platforms but not necessarily optimal for a
given platform. For example, the dietlibcstrcpy() routine has
at its kernel:

while (*dest++=*t++);

This implementation is portable and reasonably efficient, but
can be re-written to take advantage of large blocks of pred-
icated instructions. Developers have TIL-codedstrcpy() and
other key string and memory operations, grouping them into an
optimized librarythat the linker consults before falling back to
the correspondingdietlibc routine.

A final step involves running the hand-coded routines
through the TRIPSsimulated annealer, which assembles the
source, executes the code on the timing simulator or hardware,
records the cycle count, re-arranges instructions on the grid ac-
cording to a variety of heuristics, and repeats the process until
a minimal threshold of cycle count is achieved.

The ultimate goal is for the Scale compiler and instruction
scheduler to produce equivalent code quality to hand-tuned
code, with their automated loop unrolling, inlining, hyper-
blocking, other transformations, and instruction placement.

2.4.4 Multiple libraries

The default toolchain behavior is to generate optimized TRIPS
binaries with array address strength reduction, dead variable
elmination, copy progation and useless copy removal, loop in-
variant code motion, scalar replacement, tree height reduction,
and other optimizations, but without hyperblocking (-O3). For
fully optimized applications, a set of runtime libraries com-
piled with hyperblocking is available and presented to the
linker when users compile their applications with-O4. Also,
for users of the debugger, the-g flag causes the linker to
link debuggable libraries compiled neither with the above op-
timizations nor function inlining so that debugging runtime
functions closely resembles those of conventional architec-
tures.

3 SOFTWARE SIMULATORS

We have developed a variety of software simulators for TRIPS,
from a simple ISA simulator to a detailed Verilog chip simula-
tor.

Simulators in thettools release include a functional simu-
lator (tsim arch) and a cycle-accurate simulator (tsim proc).
Despite disparate goals, both share the same C++ code base
and key attributes:� A built-in program loader, using theBFDutility routines,

to load the code and data into target memory, to create
TLB entries for the text and data segments as defined
by the linker, to initialize the process registers and stack,
and to schedule the executable to run.� Support forargv, argc, andenvp program variables and
for stdio, stdout, andstderr console I/O.

� A common execution model of fetching the next block
of instructions, mapping the instructions onto the ar-
chitectural registers and execution grid, injecting block
inputs into the grid, executing each instruction as its
operands become ready, forwarding results to target exe-
cution nodes, and outputting register writes and memory
stores.� A set of proxy services for handling system calls.� Common tracing and debugging output formats.� A set of statistical collection routines.

Both simulators model single processor behavior. A system
simulator (tsim sys) has been developed to simulate execution
of multiple processors, enabling the user to download and ex-
ecute one or more applications under the control of the TRIPS
Resource Manager, discussed in section 4.

To manage complexity and guarantee deterministic behav-
ior, all simulators execute as single-threaded processes on
x86/Linux-based hosts.

3.1 Functional Simulator

The tsim arch functional simulator is an architecture-level
simulator intended to model accurately the TRIPS processor
architecture. It is equivalent to a traditional instruction-set
simulator (or functional emulator) and does not provide real-
istic cycle counts.

3.1.1 Execution model

Beginning with the header chunk of the first fetched block,
typically from the start() routine ofcrt0.o, tsim arch maps
the block reads onto the designated architectural registers and
maps the individual instructions onto the execution grid. Each
register read is forwarded to its target execution node or nodes.

Beginning at the “first” active execution node, the simula-
tor visits one node after another, executing each instruction if
its input operands are available and forwarding the result to the
target node or nodes, until it has traversed the grid. Then the
simulator begins a second pass through the grid, again firing
instructions with ready operands, and a third, and so on, until
theblock completion logicis satisfied, typically when all store
instructions have fired, or until a program exception occurs. At
block completion time, the simulator commits all block out-
puts, both register writes and memory stores. The next block
is fetched, based on the virtual address specified in an executed
BR or CALL instruction.

Through the TLB entries, the simulator translates all mem-
ory references to physical addresses. If a TLB miss or other
fatal program exception occurs, a block playback capability
outputs an execution trace for the programmer.

As a convenience, the simulator maintains symbol table in-
formation from the binary in order to print block and variable
names during trace operations.

3.1.2 System call support

Both simulators provide limited system call support, driven by
the requirements of targeted applications. Currently, thesim-
ulators support the following:brk(), close(), creat(), exit(),
fstat(), getpid(), gettimeofday(), lseek(), lstat(), open(),
read(), stat(), time(), unlink(), andwrite().

The C runtime library translates system calls intoSCALL
instructions, which trap into the simulator’s system services
module. The trap handler in turn proxies the service request
on the host, according to the POSIX definition of the call.

3.2 Timing Simulator
In addition to simulating TRIPS processor functionality,
(tsim proc) offers a detailed, cycle-accurate model of the
prototype TRIPS processor. It models the internal organiza-
tion and latencies of the processor and is intended to support
processor-level performance analysis.

Whereastsim arch models the behavior of architectural
registers and execution nodes at the software-visible level,
tsim proc additionally models the microarchitecture struc-
tures within each. For example,tsim proc details the behav-
ior of individual execution nodes when sent commands from
the global control unit, when reading packets from and writ-
ing packets to the operand network, when filling and consum-
ing internal buffers, and during block flushes and commits–in
addition to actually selecting, executing, and retiring instruc-
tions.

On a 2.9GHz Pentium 4,tsim arch can execute 800,000+
simulated instructions per second. Although the increased
level of detail causestsim proc to execute 300-800 times
slower thantsim arch, we have been pleased to confirm that
performance metrics obtained fromtsim proc closely match
those of the actual prototype, discounting memory latencies
outside the modeling capability of the timing simulator. Sta-
tistical output fromtsim proc includes instructions committed
and those flushed (both speculatively and non-speculatively),
branch predictor hits and misses, icache and dcache hits and
misses, speculative load hits and misses, forwarded stores,
OPN packet reads and writes, busy and stalled cycles, buffer
occupancy rates, and total cycles per block.

4 SYSTEM SOFTWARE

This section focuses on system software as it executes on the
prototype hardware. However, much of this same software ex-
ecutes equivalently on our system simulator platform. Those
interested primarily in using the software toolchain and simu-
lators can skip to Section 6, “Release Information.”

4.1 System software goals
System software goals include enabling efficient hardware
bring-up; enabling users to download, execute, observe, man-
age, and debug applications; demonstrating the performance
and capabilities of the prototype on targeted workloads, such
as on EEMBC and SPEC CPU2000 benchmarks; and support-
ing full hardware utilization of processor, chip, memory, and

Figure 3: System software components.

board resources.

4.2 System software components
The TRIPS system employs these components:� An x86/Linux Host PC to manage the motherboards and

provide a networked file system.� A local area network to support communication among
the motherboards and Host PC.� A hardware debugger to provide initial access to the
PowerPC 440GP registers, TLB entries, peripheral bus,
SDRAM controller; and to program the onboard flash
memory.� A bootloader programmed into flash memory.� An embedded Linux kernel executing on the mother-
board.� A device driver and daemon process to mediate commu-
nication between motherboard and target processors.� A cross-compilation toolchain for the embedded Pow-
erPC 440GP processor.� A resource manager running on the Host PC to monitor
and control the target processors,

Figure 3 shows components of the system software.
To manage complexity, system software is organized in

layers, from device driver on the motherboard to end-user
clients on the Host PC. To leverage engineering resources,
much of the software derives from Open Source and off-the-
shelf products.

4.3 Board Software
Up to four dual-core TRIPS chips on individual daughtercards
populate the prototype motherboard. The embedded PowerPC
440GP processor serves two major purposes:� To read and write addresses in the global memory space

shared among processors.

� To service processor interrupts and pass them on to the
Host PC.

A custom Linux 2.6 kernel module has been developed to man-
age PowerPC 440GP bus transactions with the External Bus
Control unit on each of the four TRIPS chips. Extensions to
the software on the PowerPC 440GP will handle TRIPS sys-
tem calls locally.

4.3.1 Boot process

Wolfgang Denk’s Free Software project, the capable and Open
Sourceu-boot bootloader and Linux 2.6 kernel tree, greatly
mitigated the complexities of booting the PowerPC 440GP
into Linux [2].

During a motherboard reboot, the PowerPC 440GP is reset
and begins executingu-boot from flash memory to initialize
processor registers and peripherals, including its UART, Ether-
net, and SDRAM controllers. After copying itself to SDRAM
and jumping there, the bootloader connects across the LAN
connection to the Host PC to download the kernel into proces-
sor memory and transfer execution to the kernel entry point.

After re-initializing board components, the kernel connects
across the LAN to learn its hostname and network parameters
(via DHCP), to set the onboard clock (via NTP), to mount its
root file system (via NFS), and to accept logins (via SSHD).

4.3.2 EBI adapter

At the end of boot process, a boot script creates a/dev/trips
device file, installs theebi driver.ko kernel module, and in-
vokes theebi adapter user-level process.

After detecting which TRIPS chips are physically present
on the board, the EBI adapter spawns two threads–one to lis-
ten on a well-defined socket for Host PC commands from the
TRM and another thread to wait on processor interrupts poten-
tially from all four chips.

4.4 Resource Manager
The TRIPS Resource Manager (TRM), a user-level process on
the Host PC, functions as a light-weight operating system, ini-
tializing the chips, allocating memory, downloading applica-
tions, servicing system calls, and monitoring performance.

4.4.1 Low-Level communication

We defined a low-level Hardware Abstraction Level (HAL)
consisting of a protocol and API supported between the TRM
executing on the Host PC and the EBI adapter executing on
each motherboard. The protocol is simple but powerful, con-
sisting of individual read and write requests, which always
originate from the TRM, and a signalling mechanism by which
the EBI adapter can notify the TRM of processor exceptions.

4.4.2 System call support

The prototype relies on the Host PC for all system services,
including console and file i/o, memory allocation, wallclock
access, and process termination.

When the application issues a system call, such as an
open(), read(), or write(), a well-defined sequence occurs, as
specified in [9]:� System call parameters are written to registersG3 and

following, according to compiler calling conventions.� The C runtime library places the numeric id of the system
call in G0, updates the stack pointer inG1, sets the return
address inG2, and issues theSCALL instruction.� The processor sets an interrupt bit in the External Bus
Controller unit and halts.� The device driver on the PowerPC signals the user-level
EBI adapter, which in turn raises an exception for the
TRM.� During its main loop, the TRM pulls the request from its
network queue and discovers which processor on which
chip on which board has caused the exception.� After determining that the exception is due to a system
call, as opposed to a DTLB translation error, a divide-
by-zero error, a breakpoint, or other exception, the TRM
reads the numeric ID of the system call fromG0, reads
the pass parameters, depending on the type of system
call, and executes the call on behalf of the TRIPS ap-
plication.� Upon proxying the call on the Host PC, the TRM up-
dates processor memory locations as needed and writes
the system call return value into G3.� Finally, the TRM clears theProcessor Status Registerto
restart processor execution.

With remote servicing complete. the application resumes ex-
ecution at the return address specified inG2. According to
compiler calling conventions. the TRM leaves the return value
of the system call inG3. If error occurs, such as an invalid
write(), the return value will be-1 and the TRM will set pro-
gram variableerrno appropriately, according to POSIX con-
vention.

4.4.3 Client-level communication

Running as a background process, the TRM server supports
multiple users and multiple applications executing on multi-
ple processors. Communication between TRM server and the
user’s client application occurs across a TCP/IP socket, con-
nected to the user’s terminal session. To simplify control flow,
all client requests to the TRM areblocking. For example, when
the user requests the TRM server to download an executable
file from the Host PC into chip memory, the user’s session will
wait for the request to complete.

4.5 TRM Clients
A number of x86/Linux client utilities have been developed
so that users can easily allocate system resources on the Host
PC, download applications, and run them. Additional clients

enable users to configure clock speeds andmorphmodes, to
examine and modify current application status, and to produce
statistical information.

4.6 Symbolic Debugger
A special TRM client is the TRIPS symbolic debugger,tdb.
Although many applications can be instrumented withprintf()
statements or debugged on other platforms, the desire has been
to support TRIPS-specific data types, breakpointing, block
stepping, memory and register accesses, and runtime libraries.

Due to its powerful feature set and familiar interface, we
chose to port the GNU debuggergdb to the prototype. The
work was highly leveraged, based on:� The portable x86/Linuxgdb front-end, for command-

line editing and platform-independent operations.� The BFD library, used to read ELF executables. which
was already part of the TRIPS binary utilities,� The TRIPS opcode library, already built into the assem-
bler, to disassemble instructions on a per-block basis.

Those portions oftdb requiring further customizations are dis-
cussed below.

4.6.1 Host-target protocol

gdb normally offers support for remote debugging in two
forms:� A platform-specificstub libraryis linked into each target

executable and handles interrupts and commands from
the host.� A gdbserver runs as a proxy on the target as a separate,
heavy-weight process and controls the behavior of the
target application.

Both forms use a low-level string-based protocol between host
and target. Building on the capabilities of the TRM, we de-
fined a higher-level protocol and an API to communicate be-
tween (a) thegdb backend on the Host PC and (b) the EBI
on the motherboard. The API includes routines to download
and execute programs, to set and clear breakpoints, to continue
and block-step execution, to read registers and virtual memory
locations, and to map virtual to physical addresses.

From the debugger’s perspective, the TRM is both:� A virtual processor, responding to memory and register
requests and breakpointing commands.� An operating environment, with session management,
program loader, file i/o, and system call support.

4.6.2 Symbol table entries

The binary utilities andgdb front end already provide exten-
sive support for symbol table, data type, and line number in-
formation in the form ofstabsentries. However, the Scale
compiler required extensive effort to generate symbol and line

information. A major challenge has been to match source lines
against instruction blocks, as blocks typically contain numer-
ous source lines. If a code block subsumes multiple source
lines, which line should the compiler identify as the “right”
line to represent the whole block? Although the compiler can
emit code with one-line-per-block, the resulting binary isarti-
ficially and excessively bloated.

To that end, the GNU Dynamic Data Debugger (ddd) has
been ported to the prototype system as a front end totdb [3].
By providing a friendly user interface and scrollable visual
listings,ddd enables users to orient themselves in their source
code while stepping through their application.

4.6.3 Breakpoints

The processor offers bothbreak-beforeandbreak-afterhard-
ware breakpoints on a per-block basis. Built on top are TRM
functions to set and clear both types as well as GNU platform-
independent functions.tdb uses a mix of functions for its
breakpointing support.

When execution has stopped on a breakpoint and the user
issues acontinuecommand,tdb uses TRM functions to re-
move the currentbreak-beforebreakpoint, set abreak-after
breakpoint, and continue execution. When it almost imme-
diately hits thebreak-afterbreakpoint,tdb uses TRM func-
tions to restore the originalbreak-beforebreakpoint, clear the
currentbreak-afterbreakpoint, and resume execution transpar-
ently. In this manner, the user interacts with the debugger in
familiar fashion.

Note that due to the TRIPS block-atomic execution model,
single-stepping intdb translates toblock-steppingthrough the
binary; that is, breakpoints are set at block boundaries as the
processor executes a whole block at once. Externally, program
order is maintained, but within a block instructions fire in non-
deterministic order, governed by latencies within the operand
network and memory request fulfillments. A future enhance-
ment will enable the programmer to pinpoint processor faults,
such as a divide-by-zero instruction; namely, an ISA simula-
tor sewn into the debugger will replay the block in software to
identify the offending instruction.

4.6.4 Stack unwinding

As with anygdb port, we needed to implementstack unwind-
ing routines to provide backtracing, pass parameter, and local
variable information. Our debugger required two key enhance-
ments:� In order to examine the current stack frame at function

invocation, the compiler changed its stabs generation to
ensure that breakpoints are set alwaysafter the function
prologue.� In order to determine which values are pushed on the
stack, the debugger uses extensive disassembly and anal-
ysis of the prologue, to trace the possible source of
STORE instructions back to the stack pointer.

4.6.5 Physical addressing

gdb restricts itself to virtual addresses, as determined by the
linker at link time and the call stack at runtime. In order to sup-
port physical memory lookups, we developed a private inter-
face to the TRM, by which the debugger can query the phys-
ical address of a given virtual address. Thegdb e(X)amine
command has been extended to provide such lookups.

Example: The following interaction is based on thedhrys-
tonebenchmark, when a breakpoint is set at functionProc 7()
and program variableInt Loc is examined.

(tdb) c
Continuing.

Breakpoint 1, Proc_7 (Int_1_Par_Val=2,
Int_2_Par_Val=3, Int_Par_Ref=0xffffeec0)

at dhry.c:473
*Int_Par_Ref = Int_2_Par_Val + Int_Loc;
(tdb) ptype Int_Loc
type = int
(tdb) p Int_Loc
$1 = 1
(tdb) p &Int_Loc
$2 = (One_Fifty *) 0xffffee50
(tdb) x/p &Int_Loc
0xffffee50: paddr=0x0147ffee50

We learn from this interaction thatInt Loc is an integer vari-
able, is defined as an application-specificOne Fifty type,
holds a value of “1”, resides on the stack at virtual ad-
dress 0xffffee50, and occupies physical memory location
0x0147ffee50.

5 DEVELOPMENT PROCESSES

5.1 Source Code Management
We use the Concurrent Version System (CVS) to automate
nightly builds from several local and remote source repos-
itories. Nightly cron jobs pull from the repositories, build
toolchain and supporting components, run some number of
“sanity checks” against the newly built components, and if
successful, create a 130MB root file system with those com-
ponents. Unless one of the key components breaks, developers
enjoy fresh bits each morning.

5.2 Regression Testing
To verify operation of constantly evolving toolchain compo-
nents, thousands of nightly regression tests are run after the
root file system is installed. Depending on a weekly rotation
schedule, tests last from 2 to 16 hours.

5.2.1 SPEC CPU2000

Because the prototype supports both streaming and irregular
control flow applications, the SPEC CPU2000 benchmarks
represent important workloads. To maintain the integrity of the
SPEC CPU2000 framework, care has been taken to customize

only platform-specific information, such as pointer type defi-
nitions and Fortran formatted-output specifiers, and to leave in
place the originalrunspec tool and directory structure from
the SPEC distribution media.

With a few simple commands, users can specify the
toolchain version and compiler flags to use, build the bench-
marks in parallel, package the binaries and download them
to the Host PC, run them on the hardware, and generate
email reports, Webpages, and graphs showing block and cy-
cle counts.

6 RELEASE INFORMATION

The current release package ofttools is TRIPS Tools, Version
1.0. It is freely available by means of a Web distribution page.
A description of release contents follows.

6.1 Release Components
A variety of x86/Linux-based tools, TRIPS binaries, and sam-
ple sources are included in the release:� C and Fortran cross-compilers, binary utilities, ISA

and cycle-accurate simulators, and performance analysis
tools.� Application and system header files.� Optimized and unoptimized runtime libraries.� C and Fortran test files.� Source code for hand-optimized routines.

Note that the package does not include system software, such
as the resource manager, system simulator, debugger, and
hardware-specific components.

Note also that the cross-tools are supported only on
x86/Linux systems.

6.2 Manuals and Reference Information
The following documents are included in the release:� Tools Quickstart Guide� Processor Reference Manual 1.2� Chip Reference Manual 1.0� Performance Manual� Intermediate Language (TIL) Manual� Application Binary Interface (ABI) Manual� Assembler and Assembly Language (TASL) Specification� Object File Format (TOFF) Specification

A variety of published papers are also included, as are slides
from the HPCA-12 full-day tutorial, “Design and Implmenta-
tion of the TRIPS EDGE Architecture.”

6.3 Download Instructions
A request page for thettoolssoftware is simple to fill out:

http://www.cs.utexas.edu/users/cart/trips/ttools-req/
The form asks you to enter name, institution, email address,

and technical interest. Within 2-4 days, you will receive a
download invitation and details concerning how to install and
configure the 27MB gzipped package.

REFERENCES

[1] D. Burger, S. Keckler, K. McKinley, and et al. Scaling to the
end of silicon with edge architectures. InIEEE Computer, 37
(7), pages 44–55, July 2004.

[2] W. Denk. U-boot - open source firmware for embedded powerpc,
2007. http://www.denx.de.

[3] F. S. Foundation. Ddd - data display debugger, 2005. http://-
www.gnu.org/software/ddd.

[4] F. S. Foundation. Gnu binutils, 2006. http://sources.redhat.com/-
binutils.

[5] S. Gal and B. Bachelis. An accurate elementary mathematical
library for the ieee floating point standard. InACM Transactions
on Mathematical Sofware,, Vol 17, No. 1, pages 26–45, March
1991.

[6] J. Hauser. Softfloat, 2002. http://www.jhauser.us/arithmetic/-
SoftFloat.html.

[7] S. Mahlke, D. Lin, W. Chen, R. Hank, and R. Bringmann. Ef-
fective compiler support for predicated execution using the hy-
perblock. InProceedings of the 25th Annual International Sym-
posium on Microarchitecture, pages 45–54, June 1992.

[8] K. S. McKinley, J. Burrill, B. Cahoon, J. E. B. Moss, Z. Wang,
and C. Weems. The scale compiler. Technical report, University
of Massachusetts, 2001. http://ali-www.cs.umass.edu/�scale/.

[9] A. Smith, J. Burrill, R. McDonald, and et al. Trips intermedi-
ate language manual - tr-05-22. Technical report, University of
Texas, March 2007.

[10] A. Smith, J. Gibson, J. Burrill, and et al. Trips intermediate lan-
guage manual - tr-05-20. Technical report, University of Texas,
March 2007.

[11] A. Smith, R. McDonald, R. Nargarajan, K. Sankaralingam,
D. Burger, K. McKinley, and S. Keckler. Dataflow predication.
In Proceedings of the 39th Annual International Symposium on
Microarchitecture, pages 236–245, 2006.

[12] SunSoft. Freely distributable libm, 2004. http://www.netlib.-
org/fdlibm/readme.

[13] F. von Leitner. Diet libc - a libc optimized for small size, 2006.
http://www.fefe.de/dietlibc.

[14] B. Yoder, R. McDonald, and et al. Trips assembler and assem-
bly language manual - tr-05-21. Technical report, University of
Texas, September 2003.

