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ABSTRACT

While technology trends have ushered in the age of chip mul-
tiprocessors (CMP), a fundamental question is what size to
make each core. Most current commercial designs are sym-
metric CMPs (SCMP) in which each core is identical and
range from a simple RISC processor to a complex out-of-
order x86 processor. Some researchers have proposed asym-
metric CMPs (ACMP) consisting of multiple types of cores.
While less of an issue for ACMPs, the fixed nature of both
these architectures makes them vulnerable to mismatches
between the granularity of the cores and the parallelism in
the workload, which can cause inefficient execution. To rem-
edy this weakness, recent research has proposed flexible-core
CMPs (FCMP), which have the capability of aggregating
multiple small processing cores to form larger logical pro-
cessors. FCMPs introduce a new resource allocation and
scheduling problem which must determine how many logi-
cal processors should be configured, how powerful each pro-
cessor should be, and where/when each task should run.
This paper introduces and motivates this problem, describes
the challenges associated with it, and evaluates algorithms
appropriate for multitasking on FCMPs. We also evalu-
ate static-core CMPs of various configurations and compare
them to FCMPs for various multitasking workloads.

Categories and Subject Descriptors

D.4.1 [Operating Systems|: Process Management—
multiprocessing/multiprogramming/multitasking,  schedul-
ing; C.1.2 [Processor Architectures]: Multiprocessors—
parallel processors
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1. INTRODUCTION

While technology trends have ushered in the age of chip
multiprocessors (CMP) and enabled designers to place an
increasing number of cores on chip, a fundamental question
is what size to make each core. Most current commercial
designs are symmetric CMPs (SCMPs) in which each core
is identical and range from a relatively simple RISC pipeline
to a large and complex out-of-order x86 core. However, the
concurrency characteristics of programs demonstrate sub-
stantial diversity. For example, the amount of ILP avail-
able across different applications may vary widely. Even the
characteristics of a single program may vary during different
phases of its execution [19]. Selecting the number of cores
and their size at design time will result in inefficiencies when
the characteristics of the workload do not match the fixed
parameters of the system. An alternative to SCMPs are
asymmetric chip multiprocessors (ACMPs) which typically
comprise multiple processors of different sizes and granular-
ities. Such a design allows individual applications or appli-
cation phases to be mapped to the processor size best suited
to it, resulting in better power efficiency, greater through-
put, and better area efficiency than SCMPs. However, the
composition of the ACMPs must still be determined at de-
sign time, leaving them vulnerable to mismatches between
the workload and the system.

Recently proposed alternatives to static-core CMPs are
a family of flexible-core chip multiprocessors (FCMPs) in
which the number and granularity of the processors is deter-
mined at runtime through aggregation and configuration [12,
14, 20]. Such designs typically comprise small to moderately
sized uniprocessor cores which can execute in parallel as a
multitasking/parallel system or which can be aggregated to-
gether to form fewer but more powerful uniprocessor cores.
The aggregation typically produces a core with higher issue
width, a larger instruction window, and more level-1 instruc-
tion and data cache capacity. The flexibility of FCMPs pro-
vides the opportunity to tailor the hardware to the require-
ments of the tasks running on the system, or to co-optimize
the software and the configuration of the underlying hard-
ware. FCMPs offer a number of advantages over ACMPs,
including the opportunity to map a wider range of work-
loads, simpler hardware implementation as all of the cores of
an FCMP can be identical [12], and better tolerance to per-
formance asymmetries resulting from the fixed but varying



cores [2]. The flexibility in FCMPs also allows optimization
of different metrics such as performance, power efficiency,
and area efficiency. When combined with Dynamic Volt-
age Frequency Scaling (DVFS), the range of configuration
possibilities can be quite large.

While providing flexibility is one challenge for FCMPs,
it is also challenging to manage their resources. A sched-
uler and resource allocator must determine (1) how many
logical processors to assemble from the cores, (2) how large
each processor should be, (3) what topology each logical
core should take, (4) where each task should run, (5) under
what circumstances should the configuration or assignment
of tasks to processors change, and (6) the optimal way of mi-
grating task state on reconfiguration. While ACMPs may
require some aspects of (4) and (5), determining the con-
figurations and assignments cooperatively is a new problem
unique to FCMPs.

This paper introduces and motivates this novel schedul-
ing problem, describes the challenges associated with it, and
presents several operating-system amenable scheduling algo-
rithms. We envision FCMPs to be used in a variety of ways
including for multiprogrammed multi- and single-threaded
workloads. As a first step, we explore the problem in an
environment consisting of multiprogrammed single-threaded
workloads with both fixed and dynamic workloads, and leave
the exploration of multi-threaded workloads for future work.
We adapt scheduling algorithms from the multiprocessor
scheduling literature to FCMPs and compare them to exist-
ing algorithms for symmetric and asymmetric CMPs. The
purpose of this comparison is to determine if FCMPs out-
perform static-core CMPs given real scheduling algorithms
and workloads, and if so, by how much. In our experiments,
we focus solely on performance, for which we use makespan,
defined as the total execution time of a workload, and re-
sponse time, defined as the time elapsed between a task’s
arrival and departure, as the metrics. Our results show that
a FCMP’s ability to adapt to task count provides a benefit
of 14% and 23% over the best static-core CMP for fixed and
dynamic workloads, respectively; the ability to adapt to task
types increases the benefits by 13% and 42%, respectively.
For simplicity, we restrict this study to composition of the
cores and leave an examination of DVFS for future work.

2. STATIC-CORE ARCHITECTURES

With conventional uniprocessor architecture scaling com-
ing to a close, microprocessor researchers and vendors have
turned to multicore architectures. Depending on the target
workload, different vendors have chosen to optimize for dif-
ferent core sizes, which we term bulldozers, chainsaws, and
termites. In the general purpose space, vendors are build-
ing bulldozers, such as the 4-issue out-of-order AMD quad-
processor Barcelona, which uses about 36mm? per core in
a 65nm technology [5]. In the commercial space where par-
allel transaction processing is critical, vendors are building
chainsaws, such as the Sun’s single-issue in-order Niagara-
2, which uses 14 mm? [17]. Intel’s Polaris is an example
of a collection of termites in which each processor is lit-
tle more than a floating-point unit and a router, occupy-
ing 2.5mm? [21]. The granularity and number of the cores
affects the type of concurrency exploitable by the proces-
sor: bulldozers are better for serial or coarse-grained parallel
workloads, while termites are better for fine-grained paral-
lel workloads. The goal of flexible-core architectures is to
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Figure 1: Three CLP compositions.

build termites or chainsaws, and aggregate them together
to create bulldozers when necessary.

Recently, architecture researchers have proposed hetero-
geneous multicore (also known as asymmetric multicore)
processors as a means to improve power efficiency or per-
formance over symmetric multicore architectures. Kumar,
et al. initially proposed a single-ISA heterogeneous multi-
core architecture, which consisted of instances of different
generations of Compaq Alpha processors [15]. They sug-
gest that energy efficiency can be maximized by running
a program on the least-powerful core required to meet its
performance demand. Others, such as Ghiasi and Grun-
wald [9] and Grochowsky, et al. [10] also exploit heterogene-
ity in multicore architectures for power efficiency. Kumar,
et al. extended their work to the multiprogramming space,
determining that the core asymmetry provided performance
benefits as well [16]. Annavaram et al. examine the viability
of heterogeneity to accelerate multithreaded programs [1].
Heterogeneity is also finding its way into the commercial
sphere. For example, IBM’s cell processor includes one Pow-
erPC processor for executing system code and 8 SPUs for
executing threaded and data-parallel code [18]. We expect
this trend to continue as specialized cores for graphics or
cryptography are incorporated into processor dies. While
efficient for their assigned tasks, such specialized processors
do not provide adaptivity to different granularities of paral-
lelism as flexible-core processors can.

3. FLEXIBLE-CORE ARCHITECTURES

Flexible-core architectures aim to provide adaptivity in
the number and granularity of processors, enabling the sys-
tem to efficiently execute both a large and a small number
of tasks. The basic approach is to aggregate a number of
smaller identical processors to form larger logical processors.
One example of a flexible-core architecture is Core Fusion,
which provides mechanisms to enable multiple out-of-order
cores to be fused into a single more powerful core [12]. Fed-
eration is a similar solution, but instead federates multiple
in-order cores to create an out-of-order processor [20]. While
these approaches have the advantage of working with con-
ventional instruction set architectures, the sequential exe-
cution model may hinder scaling the number of aggregated
cores. Voltron applies a related approach to fuse multiple
VLIW cores into a larger VLIW core [22]. Supporting this
degree of flexibility requires physical distribution of different
architectural structures including the register file, instruc-
tion window, L1 caches, and operand bypass network. In
addition to the partitioning, various distributed control pro-
tocols are required to correctly implement instruction fetch,
execute, commit, speculation recovery, and other processor
actions. The algorithms explored in this paper are, in prin-
ciple, applicable to the aforementioned FCMPs. However,
these FCMPs have limited scalability (2-4 cores). TFlex
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Figure 2: Illustration of microarchitectural components of one core of a 32-core TFlex CLP (left and center)
and internal organization of the next-block predictor (right).

processors can be composed of more processors and thus
will benefit from more sophisticated scheduling algorithms.

In this paper, we use the TFlex Composable Lightweight
Processor (CLP) architecture [14]. Each CLP core is a sim-
ple dual-issue out-of-order processor. TFlex also contains
32 banks of L2 cache arranged in a non-uniform (NUCA)
architecture [13]. Figure 1 (taken from [14]) shows a high-
level floorplan of this processor, with three of many possible
compositions: (a) 32 1-core processors, (c¢) one 32-core pro-
cessor, and (b) a mix of processors composed of different
numbers of cores. Throughout this paper we will use termi-
nology of P-N to refer to a logical processor consisting of N
cores. The rest of this section describes the architecture of
TFlex, how cores are composed into larger processors, and
considerations for recompositions.

ISA support: The scalability of FCMP architectures can
be hindered by execution models that requires a sequen-
tial instruction stream fetched from a common instruction
store. The model also influences the ease of distributing mi-
croarchitecture structures, such as the operand bypass bus,
register rename table, and load/store queues. To address
these challenges, TFlex employs an Explicit Data Graph Ex-
ecution (EDGE) ISA, which enables distributed instruction
fetch and makes explicit the communication between differ-
ent instructions [3].

EDGE ISAs are characterized by two properties. The
first is block-atomic execution, in which control protocols
for instruction fetch, completion, and commit operate on
blocks, which are chunks of instructions containing up to
128 instructions on TFlex. This model of execution amor-
tizes overheads like those of branch prediction and commit,
making them tolerant to latency inherent in a composed pro-
cessor. The second is that instructions explicitly encode the
address of their consumers. This simplifies operand bypass
hardware, which simply has to route the data produced by
an instruction to the consumer, rather than broadcasting it
on a bus. The instructions are interleaved in a specific order
across all cores composed as one processor, which helps to
locate them using a point-to-point network. The interleav-
ing changes when the core allocation changes.

Microarchitectural support: TFlex achieves full com-
posability, which means that no structures are shared across
cores. Figure 2 (from [14]) illustrates the various microarchi-
tectural components of a TFlex core. When a core operates

as its own dual-issue processor, all of the microarchitecture
structures are local. When cores are aggregated, the logi-
cal instruction window, register file, instruction cache, data
cache, and branch predictor are interleaved over the partic-
ipating cores. These structures are addressed partitioned
in the following manner. Block starting address (equiva-
lent of PC in conventional architectures) is used to partition
the next-block predictor (branch predictor) structures and
block tag structures. Each block is assigned an owner core
based on the starting block address. Instruction IDs (within
blocks) are used to partition the instruction window and I-
cache, which results in a block getting equally distributed
across all participating cores. Data address is used to parti-
tion L1 data cache and register files.

Since interleaving is controlled by bit-level hash functions,
all logical processor sizes must consist of a power-of-two
number of cores. Adjustments to the hashing functions
could allow for non-power-of-2, but we have not experi-
mented with such compositions. All components of block
execution, including branch prediction, instruction fetch, in-
struction execution, memory access, commit, and misspecu-
lation recovery are distributed across the participating cores
and are implemented using pipelined and distributed proto-
cols. The protocols are realized using the control and data
networks of TFlex. Additional details of the TFlex archi-
tecture are found in [14].

Processor recomposition: TFlex contains a virtual-
ization layer that allows creation of arbitrary compositions.
Each core is assigned a physical ID, while each core within
each logical processor is assigned a logical ID. Each core
contains a composition map that translates its logical ID to
physical ID so that the control networks implement the pro-
cessor control protocols correctly. The processor size is used
to compute interleaving factors. Recomposition of a proces-
sor requires three steps: stopping the pipeline, moving reg-
ister state from the old set of cores to the new set of cores
according to the new interleaving, and adjusting the compo-
sition maps to reflect the new mapping of physical cores to
processors. When stopping the pipeline, each I-cache must
be invalidated because a block’s tag is cached only at the
owner core and the execution protocol requires the data
blocks to be present in all of the other cores. TFlex pro-
vides cache coherence at the L1/L2 interface, which makes
invalidating the L1 D-cache unnecessary.



4. SCHEDULING STATIC-CORE CMPS

Symmetric CMPs: In a traditional multitasking paral-
lel system, a scheduler must decide what tasks run and on
what processors. Events triggering scheduling typically in-
clude task arrival, completion, and interrupt. If all resources
are equivalent and all tasks are independent, scheduling can
most trivially be implemented in a first-come, first-served
(FCFS) algorithm, with periodic rescheduling to ensure fair-
ness. Scheduling becomes more challenging when tasks are
composed of multiple threads that interact with one another;
gang scheduling is effective at ensuring that tasks that in-
teract are run simultaneously [7]. For symmetric CMPs,
we assume that tasks are independent of one another and
use a simple FCFS scheduler which runs each task to com-
pletion. We also assume a model that uses the operating
system to perform the scheduling, but recognize that finer
grained rescheduling and reconfiguration could benefit from
more frequent and faster scheduling.

Asymmetric CMPs: Scheduling is more challenging
when the cores in a CMP have different characteristics as
the scheduler must not only decide which tasks to run, but
also on which core to run them. While ACMPs are relatively
new, Kumar et al. have examined a family of scheduling al-
gorithms for them, which can be placed into three categories:
static, random, and dynamic [16]. The static algorithm uses
a priori profiling information about each task to find an op-
timal assignment of tasks to processors; the assignment is
updated on task arrival/departure. The random algorithm
simply finds a random assignment but ensures that more
powerful cores get used before less powerful ones. The dy-
namic algorithms adapt to changes in the environment that
cannot be predicted a priori (like task phase changes). Ku-
mar, et al. divide their dynamic algorithm into two phases:
sample and steady. In the sampling phase the scheduler tries
different assignments to find the “best” one, which is then
run in the much longer steady phase.

Sampling algorithms: Kumar et al. describe several sam-
pling algorithms, but we describe here only their best per-
forming one called sample-sched. Given n tasks, sample-
sched runs at most 4 * n different assignments of tasks to
processors, which are chosen randomly but ensure that each
task runs at least once on the weakest processor. The as-
signment with the best weighted speedup (WS), which is the
sum of individual speedups of each task for a given configu-
ration, is selected to run in the next steady phase. Individual
speedups use the performance on the weakest processor as
the baseline.

Triggering sampling: Kumar et al.’s best policy, bounded-
global-trigger, triggers sampling if the sum of the percentage
IPC change of all tasks running exceeds 100%. To guard
against short phase behavior, the algorithm delays sampling
until the steady phase has run for a minimum threshold
number of cycles. Likewise, when steady phase runs for a
large number of cycles, exceeding a second threshold, the
algorithm triggers sampling. We augment this algorithm by
sampling if a task arrives/departs and the lower threshold
has been exceeded and allocating idle cores to a waiting task
if arrival/departure occurs in the steady phase.

For our experiments, we chose to model the duration of
the sampling interval as 50K cycles. We set the lower- and
upper-bounds for the bounded-global-trigger at 1M and 5M
cycles, respectively, meaning that the steady phase will run
for at least 1M and no more than 5M cycles. These param-

eters are relatively small in order to accommodate the slow
execution rate of simulation. While these values are not as
large as those chosen by Kumar et al., their ratios are similar
to those in the original study.

S. SCHEDULING FLEXIBLE-CORE CMPS

Flexible-Core CMPs present a number of unique chal-
lenges to a scheduler. The resource allocation and scheduling
problem has the following components.

(1) Determining the number and size of logical
processors: Determining the arrangement of cores into log-
ical processors is complicated by the sheer number of pos-
sible configurations. For example, a 32-core TFlex FCMP
has 2279 unique configurations. One configuration might
include four logical processors: one P-16, one P-8, and two
P-4s. The number and size of the processors is influenced
by the number of tasks on the system, the parallelism pro-
files of the tasks, and by the degree of contention for shared
resources like the L2 cache.

(2) Determining the topology of each logical pro-
cessor: FCMPs also expose a tradeoff in the shape of a
logical processor. For example, although a 4-core processor
could be arranged as a 2x2 or a 1x4, the 2x2 will generally
have better performance as it minimizes communication dis-
tances. However, if only a 1x4 space is available, throughput
will benefit from running a task on those four cores rather
than leaving them idle.

(3) Where should each task run: The objective is
to find a free location for each task without shuffling al-
ready running tasks. Fragmentation makes this challenging
because tasks that terminate leave vacated cores that can
occupy discontiguous regions of the grid. Assigning cores
contiguously to a task would require shuffling other tasks
around. The problem of finding logical processors has been
studied for multiprocessors, an excellent survey of which is
provided by Feitelson in [7].

(4) When should the configuration change: The
scheduler attempts to minimize time spent in a non-ideal
configuration. Significant events like task arrival, task de-
parture, or substantial changes in the system performance
can be used to consider reconfiguration. Issues of fairness
and priority can complicate this problem further. A tradeoff
exists between running in a non-ideal configuration and the
overhead of repeated reconfiguration.

(5) State migration during reconfiguration: When a
logical processor is reconfigured for a running task, its state
must be migrated from the old mapping to the new one.
As described in Section 3, the memory state can be mi-
grated automatically, using built-in cache coherency mech-
anisms. Registers can be moved in one of two ways. The
first method, which is similar to a context switch, is to spill
the registers to memory, reconfigure the processors, and re-
trieve the register values from memory. The second method
minimizes the memory traffic by transmitting the register
values directly from the old mappings to the new ones. This
method requires an ordering to the reconfiguration of multi-
ple processors to ensure that no state is lost during the reg-
ister remapping. The operating system is a natural mecha-
nism for performing the reconfiguration, but we also envision
state machines capable of recognizing when reconfiguration
is desired and performing it without software intervention.

While the challenges for FCMP scheduling are numerous,
we focus primarily on selecting the right size and number of



the logical processors. To this end, we examine configuration
scenarios that do not encounter the issues of fragmentation
and shape. We classify the space of FCMP scheduling algo-
rithms into two categories: (1) adapting to changes in task
count; (2) adapting to differences in task type.

5.1 Algorithms adapting to task count

We define this class of algorithms as those that ignore
the characteristics of individual tasks, but do account for
the number of running tasks. One simple algorithm divides
the number of cores into logical processors of equal size and
assigns each one to a task. Thus each task receives the same-
sized processor regardless of its concurrency and resource
demands. Each time the number of tasks changes due to
arrival or departure, the algorithm re-calculates the number
of available cores and can change the task allocation. For
example in a 32-core system with two tasks, each will get
sixteen cores. We call this algorithm FSCMP, which stands
for Flexible Symmetric Chip Multiprocessor.

FSCMP has the drawback of leaving cores idle if the total
core count is not evenly divisible by the task count. For
example, in a 32-core system, a task count of nine will cause
each task to get 32/9 = 2 cores (assuming power-of-two
sizes), thus resulting in 14 idle cores. A simple optimization
is to divide the idle cores equally among a subset of the
tasks. So in the previous example, this optimization will
result in seven tasks getting four cores each, and two tasks
getting two cores each. We call this algorithm FACMP-
Equi, where FACMP stands for Flexible Asymmetric CMP
since this algorithm may create asymmetric allocations. A
slightly different version of this algorithm has been used in
a number of studies on scheduling for parallel systems [7].

5.2 Algorithms adapting to task type

This class of algorithms not only adapts to changes in task
count, but also accounts for the characteristics of tasks. In-
formation about the characteristics of tasks can be collected
either off-line through profiling, or dynamically on-line. We
describe one algorithm of each type below. We term these
algorithms as FACMPs as well because of their ability to
construct asymmetric allocations.

Profile-based algorithms: This class of algorithms assumes
that some information about the characteristics of each task
is available to the scheduler at arrival time. While this in-
formation could be obtained through a priori or on-line pro-
filing, compile-time analysis could also provide hints about
a task’s requirements.

One simple algorithm allocates each task its ideal number
of cores on a first-come, first-served (FCFS) basis. If the
ideal core count for the task at the head of the FCFS queue
is available, the task is mapped onto those cores. Other-
wise, the task waits in the queue. If the task at the head of
the queue must wait, the scheduler could choose to maintain
the FCFS ordering by forcing all other tasks to wait. An-
other option is to backfill by finding later arriving tasks that
have fewer resource requirements to fill in the gaps. While
backfilling has been extensively studied in multiprogrammed
parallel systems [6], we have not yet explored this algorithm.

We call the profile-based algorithm that we implement and
examine in this paper FACMP-Profile. This algorithm as-
sumes that information about how a task’s weighted speedup
varies with core count (cores-to-speedup function) is avail-
able at task arrival time. Given this information, scheduling
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Figure 3: FACMP-PDPA state diagram.

can be stated as the following optimization problem:

t t

Maximize Z fi(ci), given Z ci<=N

i=1 i=1

where f; is the cores-to-speedup function and ¢; is the
number of cores allocated for task i, t is the total number of
tasks, and N is the total number of cores in the system.

We solve this optimization problem by using an opti-
mal dynamic programming algorithm with O(tN?) complex-
ity [11]. Anytime a task departs or a new one arrives, the
scheduler runs the dynamic programming algorithm to find
the new optimal allocation.

Dynamic algorithms:  While FACMP-Profile exploits
knowledge of the characteristics of an individual task, it does
not account for any phase behavior exhibited by a task. Fur-
thermore, profiling information may not always be available
or may be inaccurate due to differences in the profiled and
real execution of the program. The obvious alternative is to
acquire this information online.

The dynamic algorithm FACMP-PDPA (Performance
Driven Processor Allocation) is adapted from [4]. Our mod-
ified version of the algorithm allocates cores based on how
efficiently a task is executing. If a task achieves an efficiency
higher than a predefined threshold called high_eff, the task
can acquire more cores. Similarly, if it achieves an efficiency
lower than a predefined threshold called target_eff, cores are
taken away. Otherwise the allocation is maintained. The ef-
ficiency thresholds are chosen such that target_eff < high_eff.
The algorithm can be best understood by following the state
diagram shown in Figure 3. Each task exists in some state
of this state machine. A timer interrupt periodically trig-
gers invocation of the scheduler, which evaluates each task
on the system as follows.

e NEW: Arriving tasks are placed in a wait queue.

e NOREF: A task selected to execute is allocated one
core providing the baseline for later calculating a task’s
efficiency, which is defined as (Speedup_over_1_core)
/ (Number_of_cores_currently_allocated). Once done,
the task moves to INC with its core count doubled.

e INC: If a task’s efficiency and speedup exceed high_eff
and previous speedup, respectively, its allocation is
doubled and it stays in INC. Otherwise it is moved
to STABLE and if its efficiency drops below target_eff,
its allocation is halved. Comparison of current and



Parameter Configuration

Instruction Supply

128, Btype: 256.

Partitioned 8KB I-cache (1-cycle hit); Local/Gshare Tournament predictor (8K+256 bits, 3 cycle latency)
with speculative updates; Local: 64(L1) + 128(L2), Global: 512, Choice: 512, RAS: 16, CTB: 16, BTB:

Execution

Out-of-order execution, RAM structured 128-entry issue window, dual-issue (up to two INT and one FP).

Data Supply

Partitioned 8KB D-cache (2-cycle hit, 2-way set-associative, 1-read port and l-write port); 44-entry LSQ
bank; 4MB decoupled S-NUCA L2 cache [13] (8-way set-associative, LRU-replacement); L2-hit latency
varies from 5 cycles to 27 cycles depending on memory address; average (unloaded) main memory latency
is 100 cycles. 2 SDRAM controllers each with peak bandwidth of 8-bytes per processor cycle.

SPEC2000 Benchmarks

High-ILP: swim, mgrid, gcc, apsi, art, sixtrack; Low-ILP: applu, bzip2, parser, ammp, twolf, mcf

Table 1: Single core TFlex microarchitecture parameters.

previous speedup ensures that we do not allocate more
cores if speedup fell despite a high efficiency;

e DEC: If eff < target_eff, core count is halved and the
task stays in DEC; else it moves to STABLE.

e STABLE: Once a task enters this state, it stays un-
less the efficiency thresholds change. The thresholds
change if the system load changes significantly, which
ensures that a task does not oscillate between states.
If efficiency < target_eff, the allocation is halved and
the task is moved to DEC; if efficiency > high_eff, the
allocation is doubled and the task moves to INC.

New tasks are always serviced first to ensure that they
at least get started; remaining tasks are then serviced in
FCFS order. If an increment in a task’s allocation cannot
be satisfied, the scheduler ignores it and moves to the next
task. The allocation is always between one and 16 cores.
The algorithm tries to allocate as many cores as close to
ideal (IPC maximizing) for a task, while taking into account
the load on the system.

The efficiency thresholds were chosen as follows:

If num tasks < 3, high_eff = 0.41, target_eff = 0.23,
If num tasks < 7, high_eff = 0.65, target_eff = 0.41,
If num tasks < 10, high_eff = 0.77, target_eff = 0.65,
If num tasks < 13, high_eff = 0.89, target_eff = 0.77,
Otherwise high_eff = 0.99, target_eff = 0.89

These values were selected using the efficiency achieved by
our benchmarks on each core count, and with the desire to
keep the grid as occupied as possible. For example, if num-
tasks < 7 but > 3, a P-8 becomes a luxury and only tasks
with a relatively high efficiency for a P-4 (the next smaller
processor) should get them (high_eff = 0.65). To ensure
that they keep it, we set the target_eff to the efficiency these
tasks achieve on a P-8 (target_eff = 0.41). As load increases,
the thresholds increase to allow only the highest efficiency
tasks get more cores. The timer interval was chosen to be
100K cycles to strike a balance between letting the tasks
reach their stable state as soon as possible, and allowing the
scheduler to evaluate the tasks accurately.

6. EXPERIMENTAL METHODOLOGY

We model a 32-core TFlex processor using the cycle-
accurate simulator used in [14]. Table 1 shows the archi-
tectural parameters of a single TFlex core.

Modeling static-core CMPs: Static-Core CMPs are
modeled by “freezing” a TFlex configuration. For example, a
four-processor static-symmetric CMP (SSCMP) can be cre-
ated by configuring TFlex to have four processors with eight
cores each. We evaluate SSCMPs with granularity varying
from two P-16 processors to 16 P-2 processors. We also
evaluate coarse-grained, fine-grained, and “balanced” static-
asymmetric CMPs (SACMP), where balance indicates that

half of the processors are large and half are small. Table 2(a)
lists all the architectures/algorithms we modeled.

Reconfiguration: All tasks are halted during reconfigu-
ration and their state pulled out of the array of cores. Al-
locations are sorted in descending order of size and placed
starting from the lower left corner of the array, moving up-
wards and to the right. This guarantees a legal allocation
since all are powers-of-two. The following shapes are as-
sumed: a P-16 is 4x4, a P-8 is 4x2, a P-4 is 2x2, and a P-2
is 2x1. Tasks whose register state is pulled out or pushed in
to the array incur a read and write overhead, respectively.
We estimate each to be 150 cycles since the cost of writing
the 128 registers to L2 can be amortized. To account for
any L2 misses generated while accessing the register state
we add a margin of error of 100 cycles. Updating the con-
figuration map costs a further 50 cycles. The total adds up
to roughly 500 cycles of overhead. We assume that tasks
are re-configured sequentially, so each task involved in the
reconfiguration is charged the sum of the overheads of all
such tasks. Note that we do simulate the loss of L1 locality
and its impact on performance due to reconfiguration. We
assume that the scheduling algorithm runs in parallel with
the tasks, thus avoiding any additional overhead.

‘Workload construction: We use a subset of the SPEC
CPU2000 benchmarks (Table 1), selected with the desire
to have diversity in ILP and the memory footprint. Ta-
ble 2(b) shows how their performance varies with number
of cores. For each benchmark, the number of blocks was
chosen such that it ran for 20M cycles on a single core, in
order to strike a balance between simulation time and fi-
delity. We modeled both fixed-sized workloads and dynamic
process arrival. The former vary from two to 16 tasks, each
of which are assumed to be available at time zero. For each
size, ten different workloads were generated and the results
averaged (geometric mean). The dynamic workloads follow
a Poisson process arrival model, with a rate of two, four,
and six tasks arriving in 6M cycles, and a total of 128 ar-
rivals. These values were chosen to simulate a variety of
system loads. All algorithms handle the case where number
of tasks exceeds the number of cores in the system. The
workloads were constructed by random selections from our
pool of benchmarks.

Metrics: (1) Makespan: We chose makespan, which is
defined as the amount of time to complete all tasks in a
workload, as the metric for fixed workloads. For a work-
load of a given size this is equivalent to throughput [8]. (2)
Average Response Time: We chose response time as the
metric for dynamic workloads, which is defined as the time
elapsed between a task’s departure and arrival, and includes
any waiting time. This metric is particularly relevant for
interactive jobs, which care less about their throughput or
execution time, but more about how quickly they can be ser-



(a)

(b)

[ Label | Description |[ Benchmark | P-1 P-2 P-4 P-8 P-16 P-32]
SSCMP-2 Static Symmetric CMP: two P-16s swim 0.60 1.18 2.00 3.85 7.01 10.86
SSCMP-4 Static Symmetric CMP: four P-8s mgrid 0.69 1.21 2.08 3.05 5.02 5.91
SSCMP-8 Static Symmetric CMP: eight P-4s gce 0.82 1.66 2.56 3.30 3.59 4.32
SSCMP-16 Static Symmetric CMP: sixteen P-2s apsi 0.88 1.82 2.76 4.00 4.18 3.62
SACMP-Coarse Static Asymmetric CMP: one P-16, one P-8, two P-4s art 0.74 1.26 2.29 3.26 3.72 3.95
SACMP-Balanced | Static Asymmetric CMP: two P-8s, two P-4s, four P-2s sixtrack 0.76 1.52 2.38 2.98 3.29 2.23
SACMP-Fine Static Asymmetric CMP: four P-4s, four P-2s, eight P-1s applu 0.69 1.36 2.07 257 2.66 1.71
FSCMP Flexible Symmetric CMP: uses equal core allocation bzip2 0.85 1.59 1.78 1.68 1.47 1.49
FACMP-Equi Flexible Asymmetric CMP: uses equal allocation w/out parser 0.60 0.97 1.27 1.62 1.75 1.58

idle cores ammp 0.78 1.26 1.57 1.60 1.30 0.98
FACMP-Profile Flexible Asymmetric CMP: uses off-line profiles of tasks twolf 0.46 0.84 1.14 1.27 1.29 1.20
FACMP-PDPA Flexible Asymmetric CMP: uses efficiency thresholds mcf 0.22 0.28 0.31 0.39 0.40 0.38

Table 2: (a) Summary of architectures and algorithms modeled; (b) Cores-to-IPC for the benchmarks.

80~
W SSCMP-2

& 707§ SSEMP-4
] o SSCMP-8
< 60F O SSCMP-16 M M
= 0 FSCMP —
= 50+ @ FACMP-Equi
£ 40 I
73
o 30|
@
s 20+

10

0

2 4 8 12 16 Gmean
Number of Threads
(a) Fixed Workloads
45,
40 W SSCMP-2
£ v
301 & FAGMP-Equi

Average Response Time (M cycles)

2 4 6 Gmean
Task Arrival Rate (per 6M cycles)
(b) Dynamic Workloads

Figure 4: Adapting to change in task count.

viced. Moreover, for dynamically arriving tasks throughput
cannot exceed the rate of arrival, which reduces its value as
a metric for such workloads. Response time and throughput
have been the metrics of choice in the field of parallel sys-
tems scheduling [4, 7], and were also used by Kumar et al.
to evaluate their scheduling work on ACMPs [16].

7. EXPERIMENTAL RESULTS

This section present the benefits of adapting to changes
in task count and to adapting to different task types. Then,
we compare different scheduling algorithms for FCMP archi-
tectures and explore the sensitivity of the FCMP scheduling
algorithms to L2 cache interference.

Adapting to changes in task count: To focus on
the benefits of adapting to task count changes, we com-
pose workloads of only high-ILP benchmarks, which reduces
inter-task diversity. Moreover, we limit the experiment to

symmetric architectures by comparing SSCMPs to FSCMP
and FACMP-Equi. We include FACMP-Equi to compensate
for the fact that FSCMP does not always match the task
count. While FACMP-Equi generates some asymmetry, the
algorithm does not make intelligent use of it.

Figure 4(a) shows the benefits for fixed workloads. The
x-axis is the workload size (tasks) and the y-axis is the met-
ric Makespan; lower bars indicate better performance. For
each workload size, the first four bars represent the SSCMPs
we evaluated, and the next two correspond to FSCMP and
FACMP-Equi. The SSCMPs that match the task count pre-
cisely generally perform the best for that task count. The
flexible-core algorithms outperform even the best SSCMPs
since they adapt to the task count as it changes due to task
completions. Not matching the processor and task counts
precisely causes FSCMP to perform about 5% worse than
FACMP-Equi, and worse than SSCMP-4 and -8 for work-
loads of size 12. Overall, FACMP-Equi outperforms SS-
CMPs by 14-47%. SSCMP-16 performs worse than both
SSCMP-4 and -8 for workloads of size 16 despite matching
the task count precisely because (1) the higher degree of
concurrency in SSCMP-16 exacerbates contention in the L2
cache, and (2) smaller L1 caches cause more misses. The
latter is less of an issue for FSCMP which allocates more
cores to the tasks still running as tasks finish. This policy
eliminates about 5% of L2 accesses and 7% of L2 misses.

Figure 4(b) shows the benefits of adapting to task count
for the dynamic workloads—the x-axis is the task arrival rate
per 6M cycles, and the y-axis is the metric Average Response
Time. Lower bars indicate better performance. FACMP-
Equi outperforms all SSCMPs by 23-61%. The inability of
FSCMP to precisely match task count is exacerbated in the
dynamic workloads since there are more opportunities for
this mismatch to occur; thus FSCMP performs worse than
SSCMP-4 overall. Interestingly SSCMP-16 is still worse
than SSCMP-4 for an arrival rate of six. For our bench-
marks SSCMP-4 has a 3.25 times faster average execution
time than SSCMP-16, but since SSCMP-16 has four times
more parallelism, the time in which SSCMP-16 completes 16
tasks, SSCMP-4 should complete (3.25/4) x 16 = 13 tasks.
The proximity of the two numbers suggests that the average
waiting times of the two SSCMPs should be close, which is
what happens in reality with SSCMP-4 and SSCMP-16 hav-
ing an average waiting time of 12.25M cycles and 10M cycles,
respectively. However, SSCMP-4’s much faster execution
time dominates the response time and causes SSCMP-4 to
outperform SSCMP-16.

Adapting to differences in task type: To have diver-
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sity across tasks, the workloads selected for this comparison
have an equal mix of high- and low-ILP benchmarks. Fig-
ure 5 shows results of the comparison between CMPs with
FACMP-Equi and -Profile. FACMP-Equi highlights the ad-
vantages of adapting to task count; FACMP-Profile shows
the additional benefits provided by the ability to adapt
to task type. We include all three SACMP variants and
SSCMP-8, which is the best SSCMP across all workloads.

For the fixed workloads, the ability to adapt to task type
provides a benefit of 13%, 8%, 14%, and 9% over SSCMP-8,
SACMP-Coarse, SACMP-Balanced, and SACMP-Fine, re-
spectively. This benefit is larger for the dynamic workloads:
42%, 8%, 19%, and 18%, respectively, mainly due to the
difference in the metrics—response time captures the benefit
experienced by each task, while makespan hides it since it
is determined solely by the task finishing last.

Surprisingly SSCMP-8 outperforms all SACMPs for the
dynamic workloads. As an example, SACMP-Balanced has
half the performance of SSCMP-8 for an arrival rate of six.
Breaking response time into execution and waiting time, we
find that the SACMP’s waiting time is thrice that of the SS-
CMP’s. This difference is a result of the repeated shuffling
of tasks in the sampling phase of the SACMP algorithm,
which fragments the execution of tasks, and may cause them
to finish later than they otherwise would. This effect can
be understood by the following example. Assume that two
identical tasks with unit execution time need to run on a
uniprocessor. One schedule runs them sequentially, which
results in the first task completing at time 1 and the second
at time 2. Another schedule runs each for 1/2 time units
before swapping with the other. This schedule results in
the two tasks completing at time 1.5 and 2 units, respec-
tively. Although the total execution time for both sched-
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ules is the same, the second has an inferior average response
time. Other reasons for the worse performance of SACMPs
are: (1) each sampling phase incurs the overhead of multiple
reconfigurations, and (2) sampling increases the number of
tasks sharing the L2, thus exacerbating contention.

Comparison of flexible-core scheduling algorithms:
The only difference between FSCMP and FACMP-Equi is
that the former can sometimes create more processors than
necessary, which results in idle cores. Between Profile and
Equi, the former primarily outperforms the latter due to its
ability to adapt to task type. Figure 6 shows that the over-
all benefits of adapting to task type for fixed and dynamic
workloads are about 3% and 19%, respectively. A higher
value for dynamic workloads can again be attributed to the
difference in the metrics of the two classes of workloads. For
the dynamic workloads the relative performance of Profile
over Equi improves as the task arrival rate increases, because
Profile gives priority to high-ILP tasks, causing fewer tasks
to execute concurrently than in Equi. This strategy reduces
L2 accesses and L2 contention by allocating larger L1 caches
to each task. The percentage of L2 misses saved by FACMP-
Profile over FACMP-Equi increases from 2% for arrival rate
of two to 22% for arrival rate of six. This improvement in
cache performance causes a reduction in execution time that
outweighs the additional waiting time.

Since PDPA has both attributes of flexibility without rely-
ing upon the availability of a priori information about tasks,
we expected that it would bridge the gap between Equi and
Profile. Surprisingly, PDPA performs worse than Equi for
both fixed and dynamic workloads, which can be attributed
to the following two disadvantages.

First, allocating cores based on global efficiency thresholds
results in inappropriate allocations for many tasks. During
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low system load, the objective is to allocate a task its ideal
number of cores, while for high system load the goal is to
utilize all cores without causing disproportionate allocations
between tasks. These two objectives are virtually impossible
to achieve by using global efficiency thresholds.

Second, the desire to quickly discover and maintain a sta-
ble state for each task has some drawbacks. When the sys-
tem is in the stable state, it cannot immediately absorb any
cores that become free when tasks terminate. The only way
to leave the stable state is for the efficiency thresholds to
change, which happens only if the system load changes suf-
ficiently. Moreover, the prevalence of even small phases can
cause a task to get “stuck” in the wrong state. The effects
are especially drastic for high system loads where some tasks
perform very poorly for some period of time due to insuf-
ficient L2 capacity and bandwidth, which causes their effi-
ciency value to be much lower than expected. These tasks
then experience a form of double jeopardy since the only way
for these tasks to become “unstuck” is for the system load
to reduce, which cannot happen for a very long time since
most of them are stuck with low allocations. Refinements
to this class of on-line algorithms will be required to make
them feasible for FCMPs.

L2 size sensitivity: Figure 7 shows the result of one
sensitivity study: measuring the relative effectiveness of dif-
ferent algorithms as L.2 capacity changes. We limit the study
to the heaviest workloads which is size 16 for the fixed work-
loads and arrival rate six for the dynamic workloads. De-
parting from the earlier fixed 4MB L2 cache, we varied the
L2 cache size from 2MB to 32MB without changing its orga-
nization. To minimize clutter we focus only on the most rel-
evant algorithms/architectures for each class of workloads.
As expected, algorithms providing higher task concurrency
are more sensitive to L2 size since they allocate smaller pro-

cessors, including smaller L1 caches. In the fixed workloads
of Figure 7(a), all architectures benefit from an increasing
cache size, and FCMPs still outperform the SSCMPs for
each cache size. Although SSCMP-16 showed lower perfor-
mance than both SSCMP-4 and -8 for a 4MB L2 due to ex-
cessive L2 contention, it catches up with both when provided
with a larger L2. SSCMP-16 catches SSCMP-8 later than -4
because the former achieves a better balance between con-
current task execution and L2 contention. In the dynamic
workloads of Figure 7(b), all algorithms benefit from a big-
ger L2, but due to the inherent differences between them,
their relative rank remains the same. Although its perfor-
mance improves with L2 size, FACMP-PDPA still performs
relatively poorly due to the weaknesses described earlier.

Application of FCMP algorithms to static-core
CMPs and vice-versa: Comparing the performance of
static-core CMPs to that of flexible-core CMPs is compli-
cated by the existence of two sources of differences: archi-
tecture and algorithms. While an experimental evaluation
that separates these factors is beyond the scope of this paper,
we present below some qualitative insights into the viability
of the algorithms on different architectures.

The default sampling algorithm as implemented in this pa-
per is not likely to perform well on a manycore TFlex sys-
tem because of the sheer number of possible configurations.
To limit the search space, a modified algorithm could bias
the types of considered configurations depending upon the
system load. For example, the scheduler could consider con-
figurations with coarse-granularity processors at low system
load and fine-granularity processors at high system load.

FACMP-PDPA on SACMPs reduces to sorting tasks into
a descending order of efficiency and allocating them from
coarser- to finer-granularity processors, regardless of the sys-
tem load. Unlike TFlex, there is no possibility of making fine
adjustments to the allocations by changing the granularity
of the available processors.

FACMP-Profile can be easily applied to SACMPs but is
likely to be less effective than on TFlex since it will only
have a single configuration to work with. However, the con-
straint of a single configuration will make the dynamic pro-
gramming problem much easier on SACMPs.

8. CONCLUSION

Emerging flexible-core CMP architectures provide new
challenges and opportunities for resource allocation and
scheduling. In this paper, we examined two benefits pro-
vided by FCMPs: (1) the ability to adapt the number of pro-
cessors to the number of tasks, and (2) the ability to adapt
each processor’s ILP granularity to tasks with different con-
currency requirements. Our results show that moderate core
count symmetric CMPs (4 or 8 large processors) work well,
but that the flexibility of FCMPs to better match the core
count to task count results in about a 20% improvement
in multitasking workload latency or response time. When
accounting for variation in task type, FCMP’s ability to
adjust the size and number of cores provides about a 20%
boost over the best asymmetric CMP we examined. Finally,
simple FCMP scheduling algorithms that attempt to evenly
distribute the cores to the tasks work reasonably well, but
profiling information about task requirements can improve
performance. Our on-line performance-driven processor al-
location algorithm performs rather poorly, indicating that
challenges remain for effective on-line scheduling.



Our goal is to devise systems that obtain the best possible
performance, power, and efficiency in general purpose com-
puting by co-optimizing both the hardware and software.
While FCMPs and their scheduling algorithms are a step
in that direction, we anticipate that combining these tech-
niques with other dynamic resource allocation mechanisms
such as DVFS will yield further opportunities for system op-
timization. Furthermore, we expect to expand this study to
include multi-threaded applications, which not only pose the
challenge of determining the allocation to a process but also
the sub-allocation to each of its threads. Moreover, thread
synchronization issues increase the importance of finding an
appropriate physical location for each logical processor.
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