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Abstract
As technology trends have limited the performance scaling of con-
ventional processors, industry and academic research has turned to
parallel architectures on a single chip, including distributed unipro-
cessors and multicore chips. This paper examines how to extend
the archtypical operation of dense linear algebra, matrix multiply,
to an emerging class of uniprocessor architectures characterized by
a large number of independent functional units, register banks, and
cache banks connected by a 2-D on-chip network. We extend the
well known algorithm for matrix multiplication by Goto to this
spatially distributed class of uniprocessor and describe the opti-
mizations of the innermost kernel, a systolic-like algorithm running
on a general purpose uniprocessor. The resulting implementation
yields the first demonstration of high-performance in an applica-
tion executing on the TRIPS processor hardware, a next-generation
distributed processor core. We show that such processors are in-
deed capable of substantial improvements in single threaded per-
formance provided their spatial topography is taken into account.

Categories and Subject Descriptors C.1.1 [Computer Systems
Organization]: Single Data Stream Architectures; C.4 [Computer
Systems Organization]: Performance of Systems; C.1.3 [Com-
puter Systems Organization]: Other Architecture Styles; C.5.3
[Computer Systems Organization]: Microcomputers; D.1.3 [Con-
current Programming]: Parallel Programming

General Terms Algorithms, Design, Performance

Keywords Instruction Level Parallelism, dense linear algebra,
matrix multiply, hybrid dataflow, on-chip networks, tile based ar-
chitecture, grid processors, GotoBLAS

1. Introduction
Previous techniques of increasing single thread performance through
ever deepening pipelines have finally run up against power limits
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and diminishing returns. This has led to changes in computer ar-
chitecture, including emerging massively multicore processors [8],
so dramatic that entire programming paradigms must shift to take
advantage of them. Existing software will no longer see perfor-
mance increases, so many applications will need to be rewritten.
That conventional processors will no longer be able to accelerate
legacy code ironically frees architects to pursue novel architec-
tures. Processors like Raw [5, 10], WaveScalar [4], and TRIPS [7]
tend to depart from the classic scalar/Von Neumann architecture
of program execution and begin to resemble two-dimensional dis-
tributed programming models. In our experience, the characteristic
of spatially distributed processors most relevant to the design of
optimized code is the communication substrate, especially when
the topology is exposed to the programmer.

To determine how conventional algorithms might need to be
modified and what performance gains might be possible for these
new architectures, we chose to evaluate the implementation of ma-
trix multiply on such a system. A heavily optimized matrix-matrix
multiply is at the core of high performance dense linear algebra
libraries like the BLAS [17, 18], while at the same time repre-
senting a simple, regular operation that is easy to reason about. In
this paper, we demonstrate that for our target application, obtain-
ing extremely high performance on such architectures is possible.
We further show that this performance can be achieved by applying
well known existing parallel algorithms in novel contexts, but that
careful attention to detail is required to prevent the interconnecting
network from becoming a bottleneck. The result is a systolic-like
algorthm running on a general purpose processor.

The part of our algorithm most important to achieving high per-
formance is the design of our innermost kernel. We focus on the
optimizations that are broadly applicable to spatially distributed
processors, omitting many details specific only to our chosen im-
plementation platform.

Section 2 discusses the basic mathematical underpinnings of
general high performance matrix multiply, reviews the basic ap-
proach of [1, 3], and presents an overview of distributed architec-
tures such as the TRIPS processor, which we use for our evaluation.
Section 3 discusses extensions to the conventional algorithm for
spatially distributed processors and how to apply these principles
to the TRIPS prototype hardware. Section 4 presents an empirical
study of matrix multiply on the TRIPS processor. Section 5 dis-
cusses optimization principles we discovered when mapping matrix
multiply to TRIPS and Section 6 concludes the paper.



Algorithm: C := DGEPP(A, B, C)
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Figure 1. Outline of optimized implementation of DGEPP.

2. Background
This section summarizes a state-of-the-art algorithm for high per-
formance matrix multiply on conventional uniprocessors. It then
highlights some emerging trends in uniprocessor design which have
led to modern spatially distributed architectures.

2.1 Conventional DGEMM Algorithm
Goto’s streaming matrix multiply algorithms are commonly found
at the core of state of the art linear algebra libraries in conventional
processors [1]. There have been other high profile approaches to
matrix multiply algorithms in the past, e.g. Atlas [19, 20], but
Goto’s algorithms have demonstrated the highest performance [1,
13]. Consider the computation C := AB + C, where C, A, and B
are m × n, m × k, and k × n matrices, respectively. Assume for
simplicity that m = bmM , n = bnN , and k = bkK, where M ,
N , K, bm, bn, and bk are all integers. Partition original matrices as
follows:

A → `
A0 A1 · · · AK−1

´
and B →

0
BBB@

B̌0

B̌1

...
B̌K−1

1
CCCA ,

where Ap and B̌p contain bk columns and rows, respectively and
the symbolˇ is used to indicate a partitioning by rows. Then

C := A0B̌0 + A1B̌1 + · · ·+ AK−1B̌K−1 + C.

A typical high-performance implementation of DGEMM (Double
precision General Matrix Multiply) will focus on making each up-
date C := ApB̌p + C (a panel-panel multiplication, DGEPP) as
fast as possible. The overall performance of DGEMM is driven by
that of each individual DGEPP (Double precision General Panel
Panel multiply) with panel width equal to an optimal size bk.

Figure 1 gives a high-performance algorithm for the DGEPP
operation, C := AB + C, where the “k” dimension is bk. The
algorithm requires three highly optimized components:
• Pack B: A routine for packing B into a contiguous buffer. On

some architectures this routine may also reorganize the data for
specialized instructions used by the DGEBP (Double General
Block Panel multiply) kernel routine described below.

• Pack and transpose Ǎi: A routine for packing Ǎi into a con-
tiguous buffer (Ã). Often this routine also transposes the matrix
to improve the order in which it is accessed by the DGEBP ker-
nel routine. In general, the purpose of packing the Ǎi and B
panels, where the symbol ∼ indicates a packed block, is to re-
arrange the data in a way that the lower level kernel can access
it more coherently.

• DGEBP kernel routine: This routine computes Či := ÃB̃+Či

using the packed buffers.

Algorithm: C := DGEBP(Ã, B̃, C)

for j = 0, n− 1
for i = 0, mb − 1

for p = 0, kb − 1
γij+ = αipβpj

endfor
endfor

9
>>>=
>>>;

cj := Ãb̃j + cj

endfor

Figure 2. The DGEBP algorithm for conventional processors

On current conventional architectures, the size of Ǎi is chosen
to fill about half of the L2 cache (or the memory addressable by the
TLB), as explained in [1]. Considerable effort is required to tune
each of these components, especially the DGEBP kernel routine.

We now give a high level description of how DGEBP itself
is (naively) implemented. Assume that C = ÃB̃ + C is to be
computed, where Ã is mb × kb and C and B have n columns.
The key is to orchestrate the computation so that Ã stays in the L2
cache and B̃ and C are streamed from memory. To accomplish this,
the jth column of C, denoted by cj , is computed as čj := Ãb̃j + čj ,
where b̃j equals the jth column of B̃. Thus as a first approximation,
the implementation of DGEBP boils down to the implementation of
a matrix-vector multiplication, where the matrix is in the L2 cache
and the vectors are assumed to be in memory.

A specific entry of C, γij , can be computed as the inner prod-
uct of the ith row of Ã and b̃j . Thus, we should orchestrate the
computation so that b̃j remains in the L1 cache (since it is reused
many times), and to load elements of čij into registers from main
memory before they are updated by the inner product, after which
they are stored back to main memory. In practice, a number of el-
ements of čij at a time are kept in registers and updated, allowing
the cost of loading an element of b̃j from the L1 cache to regis-
ters to be amortized over more computation. Furthermore, in order
to amortize the cost of bringing elements of Ã into registers, com-
putation with several columns c̃ij and b̃j may be occurring. With
careful prefetching, the cost of loading elements of Ã from the L2
cache into registers can be hidden by the computation with a pre-
vious element of that matrix, allowing DGEBP to achieve close to
peak performance. Figure 2 shows the resulting algorithm that im-
plements this simple DGEBP.

2.2 Linear Algebra Algorithms for Distributed Memory and
Multithreaded Architectures

Many studies have been focused on parallel dense linear algebra al-
gorithms for distributed memory and SMP/multicore architectures.
The most practical distributed memory matrix multiplication algo-
rithms are summarized in [15] while a recent algorithm that targets
SMP-like architectures is discussed in [14] . Further references can
be found in those papers. On those architectures, the primary chal-
lenge lies with the partitioning of the matrices and course-grained
computation among processors. Extending the conventional algo-
rithm to Chip Multi Processors (CMPs) is largely an extension of
this paradigm in which each core is in essence a uniprocessor, al-
though the nature of the higher level algorithm must be altered to
accommodate shared on chip caches and off chip bandwidth [16].

Future chips are clearly going to allow for more concurrency,
but it is not yet clear what architectures will be the best. The core
of a spatially partitioned uniprocessor represents the finest granu-
larity of parallelism, and the purpose of this paper is to examine
how current approaches for matrix multiply can be adapted in this



context. Light weight CMPs such as Cyclops, Niagara 2, or modern
GPUs represent a different point in the spectrum [22]. Our results
and other published data [1] show that our algorithm is generally
applicable to a wide range of architectures, and so we expect it
would do well on a varety of CMPs. In particular, our observations
about network contention and load balancing will likely play an
important role across this spectrum, while specific optimizations of
the innermost kernel will likely be different on each platform.

2.3 Characteristics of an Emerging Class of Uniprocessor
Architectures

The low level kernel of a matrix multiply algorithm is highly de-
pendent on the structure of the uniprocessor. Distributed unipro-
cessor architectures are now emerging to allow higher frequency
operation at lower power, while exposing greater concurrency and
data bandwidth. For example, the Raw processor [9, 10] integrates
a low latency on-chip network into the pipelines of the processors
in a single-chip multiprocessor and allows a programmer to pro-
gram the network routers for static routing. This feature allows a
programmer to treat the Raw tiles as elements of a distributed se-
rial processor. A 2-D spatially distributed uniprocessor may super-
ficially look like a CMP, but the key differences are in the gran-
ularity of computation, with only a few computations done and a
few data values transferred per operation, and the granularity of
synchronization, with the ability to efficiently synchronize at a fine
grain such as a single datum. Often computation is triggered by the
arrival of data at each element. Computational elements are often
little more than a simple FPU with little local storage, and are typ-
ically referred to as Data Processing Units (DPUs).

The most important programming characteristic of a spatially
distributed architecture is that the actual topology of instruction
placement is exposed in the ISA (instruction set architecture), and
performance is greatly dependent on the exact placement of instruc-
tions and the methods of routing data between them. For matrix
multiply algorithms, 2-D spatial arrays are a natural match for 2-D
matrix blocks.

Systolic arrays were specifically designed for regular, compu-
tationally intensive tasks like matrix multiply [11, 12]. A typical
systolic array for matrix multiply has a 2-D array of DPUs, each
with a certain number of local registers for accumulating C values.
Values are passed among DPUs through nearest neighbor network
connections.

In a systolic algorithm for matrix multiplication, a panel of A
values is streamed through one side of the array, while a panel of B
values is streamed through the orthogonal network. On each cycle
of operation, each DPU adds the product of A and B to a local C
register, then passes A and B on to their nearest neighbor.

While it would be possible to implement a systolic algorithm
on TRIPS, it would not truly be “systolic”, since TRIPS has no
local storage at DPUs for accumulating values, and both A and B
vectors would both need to be streamed from memory, removing
the benefits of orthogonal datapaths.

Spatially distributed uniprocessors are designed for general
purpose computation, not matrix multiply, and thus differ from a
systolic array in ways that require some changes to the algorithm.
TRIPS [7] is a prototypical example of a spatially distributed pro-
cessor, having DPUs, register banks, and L1 cache banks connected
via a tightly coupled on-chip network coordinated by the program.
TRIPS uses a hybrid dataflow model that places small groups of in-
structions on the 2-D grid of DPUs and executes them in dataflow
fashion using systolic-like communication between the DPUs. Un-
like a pure dataflow design, each dataflow group reads and writes
to register banks, allowing more conventional algorithms to be
used. Wavescalar is another tiled architecture that also employs a
dataflow execution model but incorporates greater degree of spec-

ulation [4]. Exploiting locality in Wavescalar is challenging as the
lack of register storage prevents easy accumulation of C in matrix
multiply.

2.4 Overview of the TRIPS Processor
Because TRIPS is a good example of a distributed uniprocessor de-
sign and has existing hardware that is readily accessible, we chose
this as the basis for our matrix multiply implementation. Substan-
tial detail on the TRIPS architecture and its silicon implementation
can be found in [6, 7].

Figure 3 shows a diagram of a TRIPS processor core composed
of a 2-D grid of 16 execution tiles (ETs), 4 distributed register file
tiles (RTs), 4 distributed data tiles (DTs) as L1 cache, 5 instruction
cache tiles, and a global control tile. Each ET has an integer unit,
a floating-point unit, and reservation stations for instructions. Each
RT includes 32 registers resulting in a total register file capacity
of 128 registers. The TRIPS tiles communicate using a lightweight
operand network which dynamically routes operands and load/store
traffic through intermediate tiles in Y-X order as necessary.

A TRIPS program consists of a series of instruction blocks that
are individually mapped onto the array of execution tiles and ex-
ecuted atomically. Instruction block inputs are read from registers
and delivered into the ET array. Operands produced and consumed
within the array are delivered directly to the target instruction with
each instruction encoding its targets. Operand arrival triggers in-
struction execution, thus implementing a dataflow execution model.
A TRIPS block may hold up to 128 computation instructions with
up to 8 mapped to any given ET. Up to 8 blocks may execute simul-
taneously (1 non-speculative block and up to 7 speculative blocks)
resulting in a maximum of a 1,024 instruction window. Because
each of the tiles operates independently, the processor can execute
up to 16 instructions and perform up to 4 L1 cache accesses per
cycle.

3. A New Kernel Algorithm for Spatially
Distributed Processors

Goto’s algorithm has two primary components: a higher level con-
cerned with data packing and large block movement, and an in-
nermost kernel routine that performs the block panel matrix multi-
ply [1]. Our contribution lies primarily with the innermost kernel.
We describe a data placement motivated by spatial characteristics
and derive a sub-blocking scheme to accommodate this placement.
We also discuss the mapping of operations in the inner kernel to the
2-D topology of a partitioned uniprocessor and resulting alterations
to the higher level algorithm.

3.1 Extending DGEBP Blocking Hierarchy for Spatial
Processors

We extend the high level DGEBP algorithm with another level of
sub-blocking to exploit a partitioned processor’s large number of
partitioned registers. We then show how the topology of a spatial
uniprocessor motivates general block placement.

The two characteristics of spatially distributed processors that
most affect data placement in the inner kernel are a large number
of registers and a 2-D network connecting the DPUs, L1 cache
banks and register banks. The traditional method of block panel
multiply stores small blocks of C in registers and performs outer
products on these register blocks. Distributed register banks allow
such architectures to have a large number of registers, which in
turn permits larger register blocks and leverages the property that
the ratio of computation to bandwidth increases linearly with block
size.

We can take full advantage of bandwidth in two dimensions and
avoid loading both elements of A and B from L1 cache banks by
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Figure 3. Block Diagram of a TRIPS Processor Core.

additionally storing a block of A in registers. However, the reg-
ister banks can only hold a finite amount of data which must be
loaded from memory into registers before use and later returned.
Therefore, we should maximize the reuse of elements of A as well
as C in register blocks. Since C determines the amount of local
computation, a register block of C must be as large as possible.
To additionally reuse a smaller block of A in registers necessi-
tates small block-panel multiplies between A and B. Use of pan-
els implies rectangular shaped register blocks for B and C, which
can potentially lower the ratio of computation to memory band-
width. However, this advantage is offset by decreasing the memory
bandwidth that would be required if both A and B blocks were
loaded from cache. Streaming data from two locations also pro-
vides a more natural computational fit to the existing physical grid.
To better leverage this topology, the innermost kernel recasts this
small block panel multiply as a series of matrix-vector multiplies
between register block of A and individual columns of B read from
memory. By only updating a single column of C each multiply in-
stead of doing a traditional outer product, we reduce the required
register bandwidth to achievable levels.

Block Decomposition: We now formally extend the high level
algorithm with this extra level of decomposition by further parti-
tioning the C panel, Ã blocks, and B̃ panel in the GEPB algorithm.
We denote a partition of C, Ã, and B̃ into mr × nr , nr × kr , and
kr × nr sized blocks as γ, α, and β, respectively.

In the new algorithm we keep γ and α in registers distributed
across register banks and β in the L1 cache. This new register
blocking amortizes the cost of bringing γ to and from registers
over the multiplication of an nr × kb panel of Ã by a kb × nr

slice of B̃. It keeps α in registers and streams β from memory,
multiplying α by each column of β and updating the corresponding
column in γ. In a spatially partitioned processor, we can multiply
α by each column of β very efficiently by exploiting the spatial
layout of the grid of DPUs and network links in a systolic fashion.
However, the kernel must be designed for minimum contention in
the network. For example, α and β values should arrive in each
DPU with minimum delay, and after local computation, the results
sent to a neighbor DPU through uncontested links.

Relationship to higher level blocking: Because this algorithm
repeatedly uses one slice of B̃, we try to keep it in the L1 cache
while γ blocks of the current slice of C are being updated. One op-
timization that achieves this goal is limiting the area of a slice of B̃
to half of the L1 cache. Figure 4 displays a high level representation
of the algorithm and shows the way that the algorithm traverses a
panel of Ã and a slice of B̃ to update a γ block.

Figure 4. High level representation of the new DGEBP designed
for spatial processors. Shaded areas represent values kept in register
blocks. The figure illustrates a block of γ being computed as a dot
product between a row of α blocks and a slice of B̃.

The width of β and nr determines the dimensions of Ã and
slices of B̃ in L1 cache. The choice of nr has the following perfor-
mance implications:
• Increasing the width of β and nr can amortize α over more

columns of β, but nr is also the width of γ and is limited by the
total number of registers:
mrnr(sizeof γ) + mrkr(sizeof α) < TotalNumberofRegisters
Also, limiting each slice of B̃ to no more than half of the
L1 cache capacity bounds the values of kb and nr: nrkb =
L1size/2

• Increasing the height of B̃ (mb) can amortize loading and
storing of γ over a larger amount of computation, but mb is
also the height of Ã which cannot be increased beyond where
Ã fills half of L2 cache: mbkb = L2size/2

3.2 Customizing the Algorithm for TRIPS
To customize our general DGEBP algorithm to match the specific
topology of the TRIPS processor, we use the guiding principles
above to choose the best possible sizes of α, β, and γ.

3.2.1 Design of the Innermost Kernel
3.2.2 Effect on Higher Level Blocking
Selecting register block sizes: The first step is to choose the opti-
mal size of the register blocks. Mathematically, we desire to max-
imize the ratio of computation, which is 2mrnrkr , divided by the
required bandwidth, which depends on how fast blocks are being
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Figure 5. Mapping of operations into the TRIPS FPUs for updat-
ing a column of γ by multiplying a column of β with a block of α
in registers, where superscripts denote elements.

loaded, constrained such that we can fit needed blocks in registers.
For example, if γ, α, and β must be loaded every time (ignoring
writes), then the bandwidth is mrnr + mrkr + krnr , and the ra-
tio is maximum when mr = nr = kr , that is, square blocks are
optimum. However, if only one block is reloaded, then rectangular
dimensions which minimize the size of that block create a more
favorable ratio. In our algorithm, we stream β the fastest and α
at a lower rate, while γ can be viewed as stationary, leading to a
bandwidth cost of mrkr + krnr and an optimal area for α that is
significantly smaller than β . However, Section 5.5 describes in de-
tail that this optimization depends not only on relative bandwidth
but also on relative register usage (register foot print). Maximizing
all these ratios while constraining size to available register storage
yields a mathematically ideal size of 7× 14 for γ.

However, we learned quickly that the cost of not mapping to the
natural 4×4 topology of TRIPS more than offsets any performance
gains, so the next closest match was a size of 4 × 16 for γ, which
implied a size of 4x4 for a block of α, and a width of 16 for each
panel of β. Note that this has the optimum computation/bandwidth
ratio of any possible multiple-of-four sizes, and its ratio is still
almost 70% that of the mathematically ideal size, while using only
2/3 of the registers.

Mapping to the grid: In the case of TRIPS, the data banks and
register banks are connected orthogonally to the computation grid
as shown Figure 3, providing a data flow of A and B elements
similar to systolic arrays. Arranging the data for systolic computa-
tion is obvious: each register bank is assigned one successive col-
umn of the transpose of α and γ. Similarly, each column of β is
stored on successive TRIPS L1 cache banks. As we send values of
α from registers to corresponding DPUs, we load each column of β
from the data banks, broadcasting elements of it across each row of
DPUs. Next, we multiply β by α at each DPU, and add the results
up each column, updating each column’s γ.

Figure 5 shows the mathematical notation of this method and
identifies which values of α and β participate in computing a
value of γ in each column. In this figure the four boxes on the
top are register banks holding the values of γ. The 4 × 4 grid in

Figure 6. Typical blocking sizes for the TRIPS processor

the middle represents DPUs. For each DPU, the figure shows the
corresponding α value, read from the register bank in that column,
and β value, loaded from L1 data bank in the same row. This pattern
makes excellent usage of the network links because fetching values
of α and β into DPUs uses south bound and east bound links while
sending load addresses for β and reducing sums of γ uses only west
bound and north bound links. Sixteen of the remaining registers
are used for double buffering α, loading the next α block while
multiplying the current α by β.

On a partitioned core communicating over a network, the proper
routing of values to minimize network contention and latency is
the most important aspect of optimized kernel design – a factor
that is completely absent from conventional kernels, but which will
likely be increasingly important to kernel design in future on chip
architectures. In our case, we relied heavily on the concept of data
path routing. This approach first lays out uncontested data paths
between registers and data banks. Then, all the computation that
would operate on this data stream are attached to the path. Finally,
TRIPS has eight instruction blocks in flight and competing for
the shared resources such as registers, L1 caches, DPUs and the
operand network. To minimize inter-block contention, we have all
instructions in one data path operate on the data like an assembly
line.

The design of the innermost kernel and register block sizes
affects both the sizes of the higher level blocks in DGEBP and the
way data must be packed into those blocks in DGEMM.

High level block size: Having determined the optimum size of
register blocks α and panels of γ and β, we can determine the size
of the buffers in Goto’s high level algorithm [1], namely the block
of Ã stored in the L2 cache and the slice of B̃ stored in the L1
cache. As described in Section 3.1, filling half of the L1 cache with
a slice of B̃ and half of the L2 cache with Ã produces the best
reuse. Figure 4 shows that for the innermost kernel to reuse the
register panel, γ, it must use all of the panels of β in a vertical
column. Given the TRIPS L1 cache size of 32KB and the width β
being 16 values (each eight bytes), the height B̃ is set to 128 values,
which must also be the width of Ã. Since the TRIPS L2 cache size
is 1MB and we want to fill half of it with Ã, the height of the Ã
and the height of C̃ is 512. Figure 6 summarizes different block
sizes calculated for the improved DGEBP algorithm optimized for
TRIPS processor.

Effect on packing: As mentioned before, Goto’s algorithm [1]
requires packing for Ã blocks and B̃ panels. Simultaneously lever-
aging all cache banks in our innermost kernel can quadruple mem-
ory bandwidth, reduce operand network contention, and help load
balance the entire computation grid. The price is a slightly more
complicated packing algorithm and the need to pack C̃ in addition
to Ã and B̃. Figure 7 illustrates a sample cache interleave packing
of two consecutive α blocks and β columns. The γ columns are
packed similarly to β.



Figure 7. Data packing model for α and β blocks using in DGEBP
algorithm customized for TRIPS.

4. Experimental Results
To evaluate the algorithmic modifications for distributed proces-
sor cores, we used actual TRIPS hardware with basic character-
istics shown in Table 1 [7]. The TRIPS prototype processor chip
is a custom 170 million transistor ASIC implemented in a 130nm
technology. We collected cycle counts from the hardware perfor-
mance counters using customized libraries and a runtime environ-
ment developed by the TRIPS team. The algorithm is implemented
in C and assembly language and compiled using the TRIPS custom
compiler [21]. Section 4.1 includes a standard performance anal-
ysis and Section 4.2 compares our results to implementations of
Goto’s algorithm on other processors. All the results in the section
are shown in FLOPS per cycles (FPC).

Table 1. TRIPS Chip Parameters.
L1 cache L2 cache SDRAM Processor

size size size speed
32KB 1MB 2GB 366MHz

4.1 Performance Results and Analysis
Performance vs Matrix Size: Figure 8 shows how performance
(measured in FPC) varies in response to changes in the size of A,
B and C matrices, for three different kernel implementations:
• DGEMM: The full matrix multiply application including pack-

ing, a DGEBP layer, and our inner kernel customized for TRIPS
based on the algorithm described in previous sections.

• C Kernel: Identical to above DGEMM implementation, includ-
ing packing and a DGEBP layer, but with the innermost kernel
implemented in C with no explicit spatial positioning of instruc-
tions.

• Simple: A classic triple loop implementation of the matrix mul-
tiply.
The performance of Simple grows gradually and drops at the

point where matrix sizes outgrow the L2 cache near 512×512 ma-
trix size. However, C Kernel does not drop for any matrix sizes be-
yond that point due to the explicit data management of the DGEBP.
DGEMM starts ramping up soon and performs at peak at almost the
same point where the Simple code drops. The fluctuations seen by

Figure 8. Different implementations of the Matrix Multiply with
or without GEBP layer, inner kernel and the packing code

the complete DGEMM timings are due to the unoptimized nature
of the packing code. Another interesting observation is that while C
Kernel and DGEMM share identical code except for the innermost
kernel, the 10X performance difference demonstrates the impact of
data placement and spatial layout of instructions on performance.

Packing Overhead: Figure 9 illustrates the performance lost
due to the packing overhead by showing timings for:

• No-Packing: DGEMM code without re-arranging the data dur-
ing packing, i.e., we pre-arrange the data so that no packing is
required.

• DGEMM : The full matrix multiply application.
• Remainder: The packing overhead computed by taking the dif-

ference between No-Packing and DGEMM.

The small variation in the No-Packing performance is due to
fringe overhead where matrix sizes not evenly divisible by the
buffer size decompose into small remainder blocks. Packing over-
head is roughly 5% once the size reaches 1024 × 1024, falling to
less than 1% at 4096×4096 matrix sizes. As previously mentioned,
our high packing overhead at smaller matrix sizes is due to our un-
optimized implementation of packing which cannot take advantage
of all four available data banks. Additionally, packing is more com-
plex for distributed caches than for single-banked caches due to the
interleaving of cache lines across the four banks.

The Effect of the Shape of Ã: To examine our choice for the
dimensions of the Ã buffer (512 × 128, which is narrow and tall),
we varied the aspect ratio of Ã while keeping its size at half of the
L2 cache. As shown in Figure 10, both square and wide Ã buffers
have lower performance, with the wide buffer performing the worst.
Our observations confirm Goto’s assertion that a tall and narrow Ã
typically offers better performance.

Performance on the Thin Matrices: Dense linear algebra li-
braries like LAPACK [2] can cast algorithms most typically in
terms of DGEMM where the k dimension is relatively small (also
known as a rank-k update). Figure 11 shows the performance for
different values of k when m and n are held constant at 4,096. Per-
formance ramps up with k as low as 100, which is important since
this allows algorithms that cast computation in terms of rank-k up-
dates to achieve high performance for smaller problem sizes.



Table 2. Comparing our performance with select performance numbers taken from [1], Figure 12
Processor Kernel FPC DGEMM FPC1 # of Reg2 γ dim Ã dim L2 cache3

Opteron-EM64T 1.88 1.79 16x2 4x4 384x256 1024
P4-Prescott-EM64T 1.92 1.87 16x2 4x4 696x192 2048
Core2 Duo 3.68 3.58 16x2 4x4 512x256 4096
POWER5 3.84 3.78 32 4x4 256x256 1920
Itanium2 3.96 3.92 128 8x8 128x1924 256
TRIPS 5.80 5.10 128 4x16 128x512 1024
1Flops Per Cycle measured at m=n=k=2000, 2”x2” denotes 2-way SIMD register storage, 3L2 cache size in kilobytes

Figure 9. The packing overhead and the performance ideal kernel
with no packing overhead.

Figure 10. The effect of different Ã buffer dimensions.

4.2 Comparative Analysis
In this section, we compare the performance characteristics of our
algorithm for spatial processors to that of Goto’s algorithm on
conventional processors [1].

The simplest metric for evaluating the performance of DGEMM
is absolute performance in gigaflops/second during computation of
a large matrix multiply. However, DGEMM is also used to im-
plement the Basic Linear Algebra Subroutines, and these routines
break up matrices into smaller blocks of different shapes. For this

Figure 11. Varying k while keeping m and n are constant.

reason, other metrics are important in evaluating DGEMM perfor-
mance:
• ramp-up speed: how large must a matrix be to reach peak

performance.
• aspect ratio: how thin can a vertical panel become before caus-

ing a performance penalty.
• smoothness: how much does performance vary for incremental

changes in matrix size.
However, this paper focuses on the implementation of the high

speed inner kernel on spatially distributed uniprocessors. As seen
in Figure 9, when removing the influence of unoptimized packing
code, our kernel exhibits sufficient ramp-up speed and smoothness.

An important metric that accompanies any matrix multiply pa-
per is the theoretical peak floating point performance of the pro-
cessor, but TRIPS does not have a clear peak Flops Per Cycle
(FPC) because unlike conventional processors, a DPU must explic-
itly trade off floating point computations with data replication and
movement across the network as well as loads, stores, prefetching
and integer operations.

Table 2 compares the performance of our full DGEMM imple-
mentation to other implementations of Goto’s algorithm on con-
ventional processors. Because the TRIPS prototype is an ASIC im-
plemented on 130nm, we compare FPC instead of absolute per-
formance in gigaflops/second 1. We measure “peak FPC” at a ma-
trix size of 2000 to compare directly with [1]. Results indicate that
TRIPS performance ranges from 1.30x to 2.85x times the peak FPC

1 On the current prototype, our sustained performance is 1.9 gigaflops.
However, spatially partitioned processors are specifically designed for ex-
tremely high megahertz/low power performance. For a conservative full-
custom 90nm VLSI implementation at 4 GHz with 8 cores, our algorithm
would sustain over 20 gigaflops per core.



of the five most significant conventional processors in the study.
This improvement is even more significant considering that it was
accomplished solely with general purpose instructions, whereas
most other implementations leverage specialized SIMD units in
addition to general purpose resources. Also note that the chosen
optimal register blocking was generally different, reflecting major
differences between the architectures.

5. Discussion
During the course of our development, we made several interesting
observations on the algorithms and architectures that are worthy of
extra discussion.

5.1 Register Resources on Distributed Uniprocessors
On conventional processors, register bandwidth is essentially infi-
nite (being twice the instruction bandwidth) and so is considered
free. But on a distributed processor of the topology we have de-
scribed, a 2-D grid of DPUs borders a 1-D array of register banks,
and so all the DPUs in a column of the grid must share serial ac-
cess to a single register bank. The result is an imbalance of register-
file to computation bandwidth which increases with the size of the
grid, although partially mitigated via local communication between
DPUs. For this reason, highly parallel algorithms like matrix mul-
tiply must be designed to conserve register bandwidth as well as
cache bandwidth.

5.2 Designing an Optimized Algorithm for a Grid Topology
Section 3.2.1 discussed a set of optimization principles for design-
ing an grid-topology aware algorithm that can be summarized as:
• Minimize network contention: excess contention for even a

single link could cut code performance in half.
• Balance use of grid resources: A single resource bottleneck

can easily dominate performance, and on a spatially distributed
uniprocessor, the opportunity cost is high – when one resource
is used more than the rest, every network link and DPU execu-
tion slot in the 2-D grid goes idle.

• Utilize all register banks and L1 cache banks: use appropriately
strided data access to simultaneously access all cache banks.
Mirror common register values across all register banks.
Because any violation of these principles can adversely affect

performance, there is a degree of fragility to optimizations akin to
what parallel programmers experience. We did find, however, that
creating optimized code for a distributed processor is surprisingly
simple. Straightforward instruction layout techniques like datapath
routing simultaneously satisfy all of the optimization requirements.

5.3 Implementation Details
During the implementation of the kernel, we used the optimization
principles introduced in the previous subsection to overcome archi-
tectural bottlenecks.

Instruction Block Formation: As mentioned before, a TRIPS
program is a series of instruction blocks which are executed atomi-
cally. A TRIPS processor can execute up to eight instruction blocks
simultaneously. In this pipeline, the maximum instruction block
completion rate (BCR) is clamped to one instruction block per 8
cycles. Therefore, each instruction block should contain as as much
actual computation as possible. Instruction block formation (decid-
ing what assembly instructions to place in an execution block) is the
single most important optimization step, responsible for up to 75%
of the performance of the kernel. The goals of instruction block
formation are mapping the algorithm described in Section 3 to the
TRIPS topology, minimizing instruction overhead (code quality),
facilitating interleaving of instruction blocks within the pipeline.

At this stage in the optimization, only conventional style assem-
bly was used, relying on a high performance scheduler to position
all of the instructions along the 2-D grid automatically. Getting fur-
ther performance requires manual 2-D placement of the instruc-
tions.

Avoiding Network Contention: The next fundamental step
after instruction block formation is to avoid network contention
between ALUs. A simple method we use to layout a 2-D schedule
that both minimizes network contention and facilitates instruction
block interleaving is called data path routing. In this optimization,
we think of an instruction block’s operations as parallel data paths
in each column of the grid. Each data path performs the dot-product
of one of the B vectors and a column of the A sub-matrix and adds
the results back to the corresponding C element in that register
bank. Each of these parallel data paths works as an assembly line
operating on the data stream. This pattern requires the B vectors
read from L1 banks to be broadcast to all four columns of the DPU
grid. Because TRIPS has no general broadcast mechanism, move
trees are used to duplicate values. By utilizing a mov4 instruction
that replicates its source to four restricted targets, we reduce move
fanout and achieve 12% improvement. Remaining fanout can be
eliminated by a technique called register mirroring, in which the
same value is put in multiple registers across all banks. As an
example, the address values for loading elements of C are fetched
from registers. If all loads fetch their addresses from the same
register, it causes fanout and network contention. This optimization
increased performance by 30%.

Load Balancing and Block Latency: The optimization meth-
ods explained so far aim to improve useful instructions per block
and end-to-end block execution. However, another important factor
affecting the performance is the maximum use of a single physi-
cal resource per block. Since TRIPS maximum block completion
rate (BCR) is one block every 8 cycles and 8 blocks can be in
flight, exceeding 64 cycles block latency (about half being block
overhead) reduces BCR rate by (64/average latency). Another ma-
jor factor affecting BCR relates to load balancing between the 8
blocks in flight. If a block (on average) uses any single physical
resource (network link or execution slot) more than 8 active cycles
then the BCR is reduced by a factor of 8/(the max number of uses in
a block). Once the basic data path was laid out, load balancing and
minimizing block latency to the extent possible was trivial. Con-
sidering this rule, we realized that our schedule utilized the south
bound links under the register tiles 12 active cycles instead of 8.
For each of those links, 4 of these cycles are spent on reading the
B vector addresses and C vectors’ elements and the remaining 8
cycles are needed to read a row of A sub-matrix twice, once for
each of the two data path mapped to the DPU column below that
register file. We had to read each A element twice because there is
no local storage (register or memory) in the DPUs. Because of this
imbalance in the use of Southbound links, the code ran at exactly
2/3rds the expected speed. We fixed this problem by replacing the
extra 4 register reads with one local replication in each DPU, which
led to a 30% boost in performance. Table 3 shows different levels
of optimization and the performance associated with them.

Although these optimizations used in the inner kernel are im-
plemented in assembly language, and the current TRIPS compiler
does not store arrays in registers, such transformations are within
the realm of standard blocking/tiling compilers, and could be easily
added to the compiler. Data path routing can be automated in the
compiler by detecting parallel paths with minimal communication
between them in instruction blocks and mapping each path onto
a section of the grid. Finally, achieving a low contention schedule
by the compiler is simple by allocating separate data paths in the
Instruction Block, interleaving (overlapping) data movement and
computation (mov instructions).



Optimization FPC
Block Formation and Data Placement 3.9
Data-path Routing and Load Balancing 5.7
Extending to L2 and SDRAM (C compiler) 5.2

Table 3. Performance at different levels of optimization.

5.4 Hardware Recommendations
The purpose of this paper was to examine techniques required to
obtain high performance on a distributed uniprocessor architecture,
rather than examine the design space of the architecture. However,
during the course of developing the inner kernel we came across
some challenges which could be greatly ameliorated by some addi-
tional support in the TRIPS hardware, and result in a significantly
higher performance:

• Local Storage in ALUs: Each instruction block must intially
read a 4x4 sub-matrix of A from registers and use replication
instructions for further reuse within the same instruction block.
Unrestricted access to local “constant” registers in each ALU
would allow the read-only A matrix to be accessed in place,
greatly reducing register bandwidth and overall latency. Fewer
copy and read instructions would allow more computations
per instruction block, increasing performance by 50% or more.
Unrestricted writes to local registers would additionally allow
in place accumulation of an entire 4x4 C matrix.

• Base Address Registers: Reading any values from memory re-
quires using an address from the register bank for each load
command. This overhead consumes already low register band-
width, increases the average latency of load instructions, and
generates disruptive operand network traffic. By extending the
natural dataflow model to include loads as well as register reads,
static load commands and base address registers could be stored
in peripheral data banks. This would not only reduce register
pressure and network congestion but would decouple memory
bandwidth from register bendwidth.

• Efficient Broadcast Mechanism: TRIPS currently “broad-
casts” a value by having the DPUs generate multiple packets
for multiple destinations. This replication completely occu-
pies consecutive DPU execution cycles, making interleaving
instruction blocks difficult and displacing useful instructions. It
also generates more network traffic than necessary and creates
local wire hot spots. Replicating packets in routers would solve
these issues as well as reduce block latency.

• Dual Operand Networks: Most instructions require two in-
puts. In addition to limited register bandwidth, the TRIPS pro-
totype can only admit one external value into a DPU per cycle,
which in the worst case can cut the execution rate in half. Dou-
bling the operand network and the number of reads per instruc-
tion block would better support the existing number of compu-
tational elements.

5.5 The Optimum Shape of Register Blocks
The mathematically ideal size for register blocks is defined as
one that maximizes the ratio of computation to bandwidth. During
development, we were able to extend the mathematical analysis
of ideal block size beyond previous discussions such as [1] and
demonstrate results that would have previously been considered
counter-intuitive.

Summarizing the derivation from [1], if blocks α, β, and γ
are each loaded for every block multiply, then the computation
is proportional to 2mrnrkr , and the bandwidth is proportional to

mrnr + nrkr + mrkr . Maximizing this ratio (and ignoring the
scaling factor of 2) can be visualized as a parallelepiped with di-
mensions mr , nr and kr , where the volume is the computation
and the surface area is the bandwidth. The ratio is maximum when
the parallelepiped is a cube and all blocks are square. If γ must
be read and written for each multiply, its bandwidth carries twice
the weight as the others. Reducing the size of γ reduces bandwidth
demand, stretching the parallelepiped along the kr axis, yielding
a square γ but rectangular α and β blocks as optimum. Our anal-
ysis generalizes this result by accounting for different bandwidth
weights on all three blocks. Solving this system yields an ideal as-
pect ratio for the block sizes that can then be scaled to fit in avail-
able register space.

We found it necessary to simultaneously extend this optimiza-
tion analogy along a new axis. Because some blocks in our algo-
rithm must fit into registers, there is pressure to reduce the register
footprint of those blocks. Since we store two copies of α in reg-
isters (for double buffering) and no copies of β, each block must
have a different weight attached to its register footprint in the anal-
ysis. Register footprint weight acts on the parallelpiped in a similar
manner to bandwidth weight – a large register footprint will exert
influence to make the block smaller. This effect was not observed
in earlier studies because only one block was stored in registers or
all blocks have equal weight.

In our case, each block’s register footprint weight is almost
directly opposed by its bandwidth weight2, so there is no single
ideal aspect ratio; instead, aspect ratio depends on the absolute size
of the block. Thus the ideal shape of a block depends on its size
and no single aspect ratio can be considered mathematically ideal.
As a result, in an exhaustive search of all possible register block
sizes, the sets with the highest ratios of computation to bandwidth
included shapes similar to both outer products and inner product
computations.

Practical algorithms must also consider other factors, such as
the natural topology of the processor, the absolute amount of com-
putation per block multiply, and the total number of registers re-
quired.

6. Conclusion
We examined the adaptation of a high-performance matrix multiply
algorithm to an emerging class of distributed spatial processors. As
with systolic architectures, the two-dimensional nature of matrix
multiply is a good match to such planar arrays of processing ele-
ments. Our implementation on the TRIPS processor shows a high
performance of nearly 6 Flops/cycle, which is 1.30 to 2.85 times the
best performance of conventional architectures, and validates the
viability of spatially distributed uniprocessors as a general purpose
path to future high performance in technology scalable systems. As
a result of the optimization techniques we discovered, our imple-
mentation of DGEMM is currently the highest performing software
on the TRIPS hardware prototype.

Algorithmically, we found that Goto’s streaming approach con-
tinues to work well for moving data through the cache hierarchy,
but algorithms for distributed uniprocessors require some alter-
ations. Our contributions include the incorporation of an extra level
of matrix decomposition that makes better algorithmic use of large
register files and systolic-like communication, an analysis of opti-
mum block size in terms of general bandwidth and register foot-
prints, and the design and mapping of multiple vector-matrix mul-
tiplies across the spatial substrate to maximize resources and min-
imize network contention in the innermost code. As a result, we

2 In our algorithm, the bandwidth weights for γ, α, and β are 0, 1, and
4 respectively (γ is considered stationary), while the register footprint
weights are 1, 2, and 0 (α is stored twice and β is not stored).



have succesfully implemented a systolic-like algorithm on a gen-
eral purpose processor.

We found that the costs of network communication versus lo-
cal computation in on-chip networks makes performance sensi-
tive to small changes in network and execution unit contention.
Nonetheless, achieving high performance was relatively straight-
forward once we determined the relevant resource and algorith-
mic constraints. Our experience indicates that well-engineered al-
gorithms will continue be relevant to emerging architectures that
we anticipate seeing in the future.
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