Exploiting Slack for Low Overhead Soft Error Reliability

Premkishore Shivakumar and Stephen W. Keckler
Department of Computer Sciences, The University of Texa&ustin

Abstract— Designing low overhead mechanisms for improving that there is significant potential for exploiting this atdant
soft error reliability will be a key requirement at future tech- execution slack to reduce the amount of vulnerable processo
nologies. Thedack of an instruction is the number of cycles it state and improving reliability, and at the same time also

can be delayed without extending the execution time. We make . . . f head. W | hni
the observation that while the slack cycles do not affect execution minimize performance overnead. We explore two techniques

time, they add to the total number of program cycles vulnerable for exploiting slack, a dynamidelay and observapproach,
to soft errors. In this paper, we show that exploiting slack and a static technique using the compiler, achieving riitiab

to reduce this component of vulnerable cycles, has significant improvement of 34-42% at only 6-10% performance overhead.
potential to improve soft error reliability. We explore two The rest of the paper is organized as follows. Section II

different mechanisms for exploiting slack, which reduce reduce . . .
soft error rate by 34-42%, at a performance overhead of only 6- introducesslack ACE cycles and discusses methods for esti-

10%. We also demonstrate that while redundant execution incurs Mating slack. Section Ill presents our methodology. Sedto
high performance overhead, these techniques can efficiently apa evaluates our proposed techniques, and Section V disciisses

to the amount of slack available in different programs to achieve jmplications. Finally, Section VI reviews some related kor
reliability improvement with minimum performance overhead. and Section VIl presents our conclusions.

Index Terms—Soft error, slack, delay and observe, static
scheduling slack

Il. SLACK ACE CYCLES

Slack can be broadly defined as the number of cycles an
instruction or an event can be delayed without extending the

Soft errors due to neutron and alpha particle strikes aggecution time [4]. While the slack cycles do not contribute
an increasing concern with exponentially rising transistdo the execution time of the program, the vulnerable prawess
counts at future technologies. Historically, fault tolera at state associated with that slack accumulates ACE cyclésgiur
the processor level has adopted an all-or-nothing approatiis period, which we ternslack ACE cycles There are
using techniques that are either restricted to parity, E&@®, many scenarios where slack ACE cycles are accumulated in a
redundant rows in caches, or employing worst-case desiggnventional processor, providing opportunities for ioypng
techniques such as redundant execution to achieve very highability. A simple example is when an instruction arsve
reliability at correspondingly high cost [1]. While priougties ahead of the operand, and waits in the instruction window
indicate that just adding parity to major on-chip structureuntil it is ready to be executed, accumulating slack ACE eycl
may be insufficient to counter latch and logic error scalinguring that period. Techniques such as front-end thraotlin
trends [2], redundant execution based mechanisms will Bering periods of low utilization may be effective here in
justified only for worst-case soft error rate scaling tremds reducing these slack ACE cycles. A related scenario is when
for markets with very stringent reliability requirementmd the data required by an instruction is present in the registe
will be over-designed in other cases. file well before it is actually needed, adding slack ACE cgcle

Modern microprocessors employ several concurrency teahtil it is read. Compiler or hardware instruction schedgli
niques such as speculative execution to improve perforenantechniques can delay register writes and advance regesidsr
These techniques achieve higher performance by aggrlssite compress the vulnerable window and reduce register file
bringing future program state into the processor and minisiack ACE cycles. Architectural constraints such as ireord
them for available parallelism. As these techniques also isommit of instructions from the ROB and stores from the store
crease the average number of cycles for which program stgteeue can also force younger instructions to accumulatk sla
is resident on the processor, they increase the probability ACE cycles while waiting for older instructions to commit.
the state being corrupted by a soft error. Mukherjee et &l. [3 There have been various techniques used to estimate slack:
provided the insight that a structure is vulnerable to sofirs a) Delay and observeA simple approach that estimates
only during cycles when it contains state that can affect finastruction slack by delaying its execution by n cycles, and
program output, and introduced the metmichitecturally cor- observing if the overall execution time is affected. Srasian
rect executiortycles (ACE cycles) as a measure of reliabillityet al. used this approach to compute the latency tolerance of
A key observation is that while exploiting parallelism camprogram loads [5].
significantly reduce execution time, fetching programestat b) Static slack estimationCompilers generally use static
of the majority of program paths can be delayed by sevemdtimates of instruction slack to perform efficient instime
cycles without extending the execution time. Fields et acheduling within region boundaries (e.g., hyperblock) to
termed this latency tolerance exhibited by program state ashieve higher performance ([6], [7]).
slack and demonstrated that there is a significant amount c¢) Profiling using a dependence-graph moddtields
of slack in program execution [4]. In this paper, we showt al. proposed an off-line profiling methodology based on

I. INTRODUCTION

Slack Instruction | Operand LSQ Register

constructing a dependence-graph model of dynamic program ,-g cycles || Buffers Buffers | Structures| Structures

execution and analyzing the graph to determine executior RF/RQ/WQ
slack [4]. Muthler et al. estimated slack using this method-[__89.6% 70.8% 11.6% 3.8% 13.8%
ology and used it to improve performance [8]. TABLE |

d) Dynamic slack prediction:Fields et al. also imple- DISTRIBUTION OF SLACK ACE CYCLES.
mented a dynamic hardware slack prediction mechanism to
achieve processor energy reduction [4]. logically masked and performance-enhancing in nature/j@].

In this paper, we evaluate the first two techniques f@xtend this methodology in two ways. First, we augment the
reducing instruction slack, and thus tistéack ACE cycles, framework to compute the slack ACE cycles for each structure
to improve soft error reliability, while recognizing thatet in addition to the total ACE cycles. Second, we add support
remaining two techniques are also equally applicable. for computing the contribution from the individual static
instruction blocks to the total dynamic ACE cycles, prouli
a reliability characterization of the program. Associgtian
Register File Banks ACE cycle with a particular block is straightforward in the

TRIPS architecture, since instructions are statically pegp

ICache-M~ Slobal E to the hardware [9]. We compute the ACE cycles for the

1 [B R B intruction and operand buffers, register file, RQ, WQ, LSQ
| ICdche-0 DCache-0 [TE]] ¢ storage structures and the OPN communication buffers. The
‘ ICeilche—lH DCache—ﬁ syl ACE cycles presented in the rest of the paper is the sum of the

00 W e e B ‘ ACE cycles across all these structures. The execution ycle

and ACE cycles are both computed using a cycle-accurate,

IIl. M ETHODOLOGY

‘ ICache—SH DCache—@" “eher e e ‘ validated execution driven simulator that models the TRIPS

Instruction Data architecture and the distributed protocols in great d¢gjil

Cache BanksCache Banks Array of Execution Unit: We used 25 benchmarks from the EEMBC 2.0 suite for our
results.

Fig. 1. TRIPS processor.
IV. EXPLOITING SLACK TO IMPROVE SOFT ERROR

Figure 1 illustrates the organization of the TRIPS archi-
RELIABILITY

tecture we used for our analysis [9]. The TRIPS architecture
contains a two-dimensional array of computation elementsTable | shows the distribution of processor slack ACE
connected by a thin mesh operand routing network (OPNycles. Slack ACE cycles are shown to account for a significan
Each ALU includes an integer unit, a floating point unit, afraction (~ 90%) of the total ACE cycles, due to the abundant
operand router (OPN), and instruction and operand buffars &lack available in programs [4]. The remaining table eatrie
storing instructions and their operands. The level-1 uwgion show how the slack ACE cycles are divided among the
and data cache units, along with the register files (RF) drelividual processor structures. The instruction buffenms the
distributed and placed along the periphery of the executidleminant component (70.8%), with the operand buffers and
array. The processor also uses read (RQ) and write (Wf@pister file structures also contributing a significanttien.
gueues, one per register file bank, for register forwardamg, We propose two schemes to reduce the slack ACE cycles, and
one load-store queue (LSQ) bank per data cache bank for lapdntify the reduction in the overall processor ACE cycled a
and store data forwarding. Ax4 execution array, with 64 the processor SER.
instruction window entries at each ALU, thus representiani We build on the simple observation that execution of the
struction window of 1024 instructions. The TRIPS architeet current TRIPS instruction block effectively commences whe
uses a block-atomic, static-placement dynamic-issue [SPs data dependences with older blocks in the program are sat
execution model. Blocks of 128 instructions are fetched ar&fied through the data forwarding logic. In particular, weds
mapped for execution as one unit. The 1K instruction windoan the inter-block register dependences, delivered thrahg
thus allows eight such instruction blocks to be simulanougegister forwarding logic from one of the other concurrgntl
mapped and speculatively executed on the processor. Executing blocks. The schemes identify the appropriatekblo
compiler statically assigns each block instruction a paléir register input to trigger just-in-time instruction fetch the
instruction window entry; the instruction then dynamigall block, holding the instructions until that time in ECC or
issues based on when it becomes ready. Instruction bloeks parity protected instruction caches. The goal here is tolape
deallocated en masse after the block register and storeitsutgghe time the register value takes to travel from the register
have been committed. file interface to the consumer instruction at the destimatio
We use the methodology proposed by Mukherjee et al. éxecution unit, with the time the instruction takes to ttave
estimate ACE cycles [3]. The methodology only counts cyclédsom the instruction cache interface to the same execution
that contribute to correct program execution, and ignotkes anit. If the register input trigger is too early then therenit
cycles including but not limited to program state that ijdl much reduction in the slack ACE cycles. On the other hand, if
invalid, mis-speculated, predicated-false, dynamicalBad, the register input trigger is too late it can significantlyte:md

100 — = 9% ACE Cycles Improvement
= % ACE Cycles Improvement 90 = % Execution Cycles Overhead

= 9% Execution Cycles Overhead

Performance-Reliability Tradeoff
a
o
|
Performance-Reliability Tradeoff

¥ 8 g2 £ 2 £ €8 5 S 5 8 2 £ 2 £ 88 5 S 5
2 3 2 2 3 S 2 T 3 3 2 3 & 2 3 3 T 3 E 3
T 5 & =228 2 8 2 2 2 &5 & 23 2 8 2 2 2
22 EgREg S 2e " R g Rzg E

— —

=] =]
Benchmark Benchmark
Fig. 2. Reliability-Performance Tradeoff with Delay and ©bs. Fig. 3. Reliability-Performance Tradeoff using Static ®lac

execution time, and hence also lead to an overall increasepimogram behaviour without letting the tuning mechanisnseau
ACE cycles. We propose to use the slack associated with eachigh overhead. Currently, we use the simulator to measure
register input to identify the optimal register input treggto the ACE cycles in each interval, as described in Section IlI.
maximize reduction in ACE cycles, and minimize executioblsing hardware performance counters to measure ACE cycles
time overhead. We explore two of the methods described was suggested in prior work [3], and we think it is a promising
Section II: 1) a dynamialelay and observapproach, and 2) area for future work.
a static compiler estimation of slack. Figure 2 presents the results for a subset of the benchmarks
along with the average. The technique provides significant i
provements for many benchmarks, with an average reduction
Basically, thedelay and observepproach explores eachof 34% in ACE cycles at just 5.6% performance overhead.
register input one-by-one as the potential choice for tioelol These results prove that there is substantial slack in these
instruction fetch trigger. For each choice it observes Weet applications which can be exploited to improve reliability
the execution time was delayed and exceeded a speciffagfther, preliminary results for a subset of SPEC integer an
acceptable threshold, which we set at 15% in this papéibating point benchmarks showed a reliability improvemant
The following paragraph describes the detailed algorithen v28% with just 2.4% performance overhead, and a reliability

implement, which basically uses gradient descent to aaiveimprovement of 5.5% with 3.7% overhead respectively.
the optimal setting.

The execution of a program is divided into multiple interB- Compiler Based Static Slack Estimation
vals. During each execution interval, application perfance The TRIPS compiler performs instruction scheduling for
in instructions-per-cycle (IPC) and the ACE cycles accumeach instruction block. The goal of instruction schedulisig
lated are computed. The first interval is used to determit@ minimize the completion time of the block by exploit-
the baseline IPC, and ACE cycles for the program in thatg instruction level parallelism, minimizing static roug
interval. In the next four intervals, we explore four diffet latency between dependent instructions, and minimizing dy
natural choices for the register input trigger: 1) the firsiving namic latencies such as contention whenever possible. The
register input, 2) the second arriving register input, 3 thalgorithm uses heuristics to model contention on the ALU$ an
third arriving register input, and 4) the fourth arrivinggister OPN links, and provide lookahead for scheduling dependence
input for that block. If a block has less than four registethains. While the scheduling region is limited to the blobie t
inputs, instruction fetch is triggered as soon as all itssteg algorithm also accounts for inter-block (global) critiqaths
inputs have arrived. For instance, a block with two registésuch as loop-carried dependences) to model the blockeegis
inputs really has only the first two choices for the registénput arrival times, which is critical in estimating the ctaof
input trigger, with choices 3 and 4 being identical to 2register inputs [7].
The optimal register input trigger maximizes the reduction At the end of scheduling the block, the same algorithm is
in ACE cycles, while incurring a performance overhead thatsed to compute the critical path length through each block
is within the acceptable threshold. All register input giégs register input. The register input with the longest critigath
are discarded and the baseline instruction fetch mechanikngth has no slack, and if used to trigger block fetch will
is used, if none of the register input triggers fall withireth most likely extend the execution time. As described earlier
acceptable threshold, although there is still some pediooa the goal is to overlap the time the register value takes from
overhead due to this sampling process. The program ththe register file interface to the consumer instructionhwlite
continues execution with this optimal setting for the ne@t 2time the instruction takes from the instruction cache faiee.
intervals, after which this entire process is repeated tomat The compiler approximates this by annotating each block
for changes in program behaviour. In this paper, we chose thi¢gh the register input that has an estimated arrival tingt ju
interval size to be 50K cycles to react quickly to changes smaller than that of the register input with the longestaalt

A. Delay and Observe

path length. The hardware looks for this block register tnpp Techiaue | Application Percentage | ACE Cycles | Execution

.) ; ; Block Contribution | Reduction Overhead
annotation to trigger instruction fetch for the block. Selective | pntrchol 505% 51% 28.5%
Figure 3 presents the results for a subset of the benchmarlkedundant | ¢ run_test$14
along with the average across all of of them. The technigué&xecution | conven00 24.6% 12.8% 64.3%
ides an average improvement of 42% in ACE cycles convol Fincode§10
provi 9 p 0 YCI€SExploting | pntrchol 20.5% 18% 1.1%

improving over thedelay and observepproach. Although | Scheduling| t_run_test$14
the performance overhead is double of theday and observe | Slack CO”VG?]%O S 10 24.6% 9.6% 0.6%
technique, it is still low at 11%. oo

TABLE I
V. DISCUSSION COMPARISON OFTECHNIQUES

These techniques demo(r:strate that substantial saving$yifhe hardware logic paths are non-critical, and exploited
ACE cycles of about 35-40% can be obtained at only 6-10%is circuit level slack for explicit capacitance insertido
overhead if the processor intelligently exploits slack. Whi improve soft error rate [11]. In this paper, we demonstrhg t

redundant execution provides even higher reliability, e, s|siting microarchitectural slack can substantiallyphove
100%, it also incurs a significant performance overhead (sust error reliability.

35%) [1]. The overhead of redundant execution is propoation
to processor utilization, since almost every program djera VIl. CONCLUSIONS ANDFUTURE WORK

is redundantly performed. Gomaa et al. proposed seleaive r We show that there is substantial potential for exploiting

dundant execution during periods of low processor uti@rat slack to improve soft error reliability. We demonstratettha

to significantly reduce this performance overhead [10]. significant amount of ACE cycles~(90%) are accumulated
In this section, we show that techniques based on exploitigge to slack. We explore two techniques, a dynaneiay and

slack can adapt to the amount of execution slack availabighserveapproach, and a static technique using the compiler,

and efficiently extract reliability improvements even a@ri achieving reliability improvement of 34-42% at only 6-10%

periods of high utilization. We use the infrastructure dis®d performance overhead. Further, these techniques efficient

in Section Il to identify the instruction block that coritites adapt to the available slack in programs to provide lower

the maximum to overall dynamic program ACE cycles. Wgverhead than redundant execution. In the future, we intend

compare the reliability improvement and the execution oveto explore the potential of both dynamic hardware slack

head of redundantly executing only this block, with exphgit prediction similar to [4], and using profiling [8] to compute

the compiler determined static scheduling slack of thestegi slack and using it to improve soft error reliability.

input trigger for this block. Table Il presents the resutisthe

top block of two benchmarkgntrch01 (pointer chasing) is an REFERENCES

application with low inherent parallelism, atdrun_test$14 [1] S. S. Mukherjee, M. Kontz, and S. K. Reinhardt, “Detailéesign and

is the top block which contributes 20.5% to the overall ACE g‘é‘i'ffgon of redundant multithreading alternatives.1S€A 2002, pp.

cycles. While redundant execution improves reliability byjy) c. weaver, J. S. Emer, S. S. Mukherjee, and S. K. Reinh&Teth-

51%, it incurs 28.5% performance overhead. Exploitinglslac niqges to reduce the soft error rate of a high-performanceomioces-

on the Oth.er hand, a.chleves only 18% reduction in AC] ;(.)r's.lnl\/:iﬁqerjzeoe?‘lé.p?lilezf\iar,z?f's. Emer, S. K. Reinhardt, Bnh.

cycles but incurs negligible performance overhead of 1.1%." austin, “A systematic methodology to compute the architedturs-

The comparison is even more stark witlhven00, which has nerability factors for a high-performance microprocessior’MICRO,

high p?'ra”elism and hence Ies_ser execution slack. Redﬂlnd%ﬂ éOOASF?gd§9|;4éodk and M. D. Hill, “Slack: Maximizing performance

execution ofconvol Encode$10 incurs almost 65% overhead under technological constraints.” ISCA 2002, pp. 47-58.

to provide a 12.8% increase in reliability. On the others] S. T. Srinivasan and A. R. Lebeck, “Load latency toleraitt dynami-

hand, exploting slack adapts to the lesser slack availaile a ga”sy sl\;fﬂgﬁrlmjulslg zfr:(cj)cssgt.)r(?ibe;:\::?E%fi?(?ﬁtﬁﬁétlrjgticii%duling for

provides 9.6% reduction in ACE cycles with 0.6% overhead. ™ 5 pipelined architecture SIGPLAN Not. vol. 39, no. 4, pp. 167174,

2004,
VI. RELATED WORK [7] K. E. Coons, X. Chen, D. Burger, K. S. McKinley, and S. K.dawaha,

L . “A spatial path scheduling algorithm for edge architecsiiren ASPLOS
The work that comes closest to this is the concept of triggers x”,pzo%,ppp. 129_140.9 9 9 o

and actions proposed by Weaver et al. [2]. They reduced tH8] G. Muthler, D. Crowe, S. Patel, and S. Lumetta, “Instrantifetch

i i deferral using static slack,” iIMICRO, 2002, pp. 51-61.
slack ACE.Cyde.S accuml'!late:d on an L.2. mISs by ﬂusmn?Q} K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D.rger,
the instruction Wlpdow, which mcurred mlnlmal performepc S. Keckler, and C. Moore, “Exploiting ILP, TLP, and DLP withet
overhead in an in-order architecture. While this technique Polymorphous TRIPS Architecture,” i8CA June 2003, pp. 422-433.

ii ; ;] M. A. Gomaa and T. N. Vijaykumar, “Opportunistic transidault
manages the originally available slack, the techniques W& detection "IEEE Micro, vol. 26, no. 1. pp. 92-99. 2006,

propose aim to reduce slack by Sp':e.ading th_e' CompUtati@@] T. Karnik, S. Vangal, V. Veeramachaneni, P. Hazucha,aguntla, and
appropriately. Muthler et al. used profiling to estimaterins- S. Borkar, “Selective Node Engineering for Chip-Level SBitor Rate

tion slack and used it to improve performance [8]. Fields et 'Mmprovement/VLSI Circuits Symposiundune 2002.
al. implemented dynamic slack prediction to reduce prawess
energy consumption [4]. Karnik et al. showed that almost 70%

