
Exploiting Slack for Low Overhead Soft Error Reliability

Premkishore Shivakumar and Stephen W. Keckler
Department of Computer Sciences, The University of Texas atAustin

Abstract— Designing low overhead mechanisms for improving
soft error reliability will be a key requirement at future tech-
nologies. Theslack of an instruction is the number of cycles it
can be delayed without extending the execution time. We make
the observation that while the slack cycles do not affect execution
time, they add to the total number of program cycles vulnerable
to soft errors. In this paper, we show that exploiting slack
to reduce this component of vulnerable cycles, has significant
potential to improve soft error reliability. We explore two
different mechanisms for exploiting slack, which reduce reduce
soft error rate by 34-42%, at a performance overhead of only 6-
10%. We also demonstrate that while redundant execution incurs
high performance overhead, these techniques can efficiently adapt
to the amount of slack available in different programs to achieve
reliability improvement with minimum performance overhead.

Index Terms—Soft error, slack, delay and observe, static
scheduling slack

I. I NTRODUCTION

Soft errors due to neutron and alpha particle strikes are
an increasing concern with exponentially rising transistor
counts at future technologies. Historically, fault tolerance at
the processor level has adopted an all-or-nothing approach,
using techniques that are either restricted to parity, ECC,and
redundant rows in caches, or employing worst-case design
techniques such as redundant execution to achieve very high
reliability at correspondingly high cost [1]. While prior studies
indicate that just adding parity to major on-chip structures
may be insufficient to counter latch and logic error scaling
trends [2], redundant execution based mechanisms will be
justified only for worst-case soft error rate scaling trendsor
for markets with very stringent reliability requirements,and
will be over-designed in other cases.

Modern microprocessors employ several concurrency tech-
niques such as speculative execution to improve performance.
These techniques achieve higher performance by aggressively
bringing future program state into the processor and mining
them for available parallelism. As these techniques also in-
crease the average number of cycles for which program state
is resident on the processor, they increase the probabilityof
the state being corrupted by a soft error. Mukherjee et al. [3]
provided the insight that a structure is vulnerable to soft errors
only during cycles when it contains state that can affect final
program output, and introduced the metricarchitecturally cor-
rect executioncycles (ACE cycles) as a measure of reliabillity.
A key observation is that while exploiting parallelism can
significantly reduce execution time, fetching program state
of the majority of program paths can be delayed by several
cycles without extending the execution time. Fields et al.
termed this latency tolerance exhibited by program state as
slack, and demonstrated that there is a significant amount
of slack in program execution [4]. In this paper, we show

that there is significant potential for exploiting this abundant
execution slack to reduce the amount of vulnerable processor
state and improving reliability, and at the same time also
minimize performance overhead. We explore two techniques
for exploiting slack, a dynamicdelay and observeapproach,
and a static technique using the compiler, achieving reliability
improvement of 34-42% at only 6-10% performance overhead.

The rest of the paper is organized as follows. Section II
introducesslack ACE cycles and discusses methods for esti-
mating slack. Section III presents our methodology. Section IV
evaluates our proposed techniques, and Section V discussesits
implications. Finally, Section VI reviews some related work,
and Section VII presents our conclusions.

II. SLACK ACE CYCLES

Slack can be broadly defined as the number of cycles an
instruction or an event can be delayed without extending the
execution time [4]. While the slack cycles do not contribute
to the execution time of the program, the vulnerable processor
state associated with that slack accumulates ACE cycles during
this period, which we termslack ACE cycles. There are
many scenarios where slack ACE cycles are accumulated in a
conventional processor, providing opportunities for improving
reliability. A simple example is when an instruction arrives
ahead of the operand, and waits in the instruction window
until it is ready to be executed, accumulating slack ACE cycles
during that period. Techniques such as front-end throttling
during periods of low utilization may be effective here in
reducing these slack ACE cycles. A related scenario is when
the data required by an instruction is present in the register
file well before it is actually needed, adding slack ACE cycles
until it is read. Compiler or hardware instruction scheduling
techniques can delay register writes and advance register reads
to compress the vulnerable window and reduce register file
slack ACE cycles. Architectural constraints such as in-order
commit of instructions from the ROB and stores from the store
queue can also force younger instructions to accumulate slack
ACE cycles while waiting for older instructions to commit.

There have been various techniques used to estimate slack:
a) Delay and observe:A simple approach that estimates

instruction slack by delaying its execution by n cycles, and
observing if the overall execution time is affected. Srinivasan
et al. used this approach to compute the latency tolerance of
program loads [5].

b) Static slack estimation:Compilers generally use static
estimates of instruction slack to perform efficient instruction
scheduling within region boundaries (e.g., hyperblock) to
achieve higher performance ([6], [7]).

c) Profiling using a dependence-graph model:Fields
et al. proposed an off-line profiling methodology based on

constructing a dependence-graph model of dynamic program
execution and analyzing the graph to determine execution
slack [4]. Muthler et al. estimated slack using this method-
ology and used it to improve performance [8].

d) Dynamic slack prediction:Fields et al. also imple-
mented a dynamic hardware slack prediction mechanism to
achieve processor energy reduction [4].

In this paper, we evaluate the first two techniques for
reducing instruction slack, and thus theslack ACE cycles,
to improve soft error reliability, while recognizing that the
remaining two techniques are also equally applicable.

III. M ETHODOLOGY

R R R R

E

E

E

E E E E

E

E

EE

E

EE

E

E

ICache−M

ICache−0

ICache−1

ICache−2

ICache−3

DCache−0

DCache−1

DCache−2

DCache−3

Register File Banks

Cache Banks
Instruction Data

Cache Banks Array of Execution Units

Control
Global

Fig. 1. TRIPS processor.

Figure 1 illustrates the organization of the TRIPS archi-
tecture we used for our analysis [9]. The TRIPS architecture
contains a two-dimensional array of computation elements
connected by a thin mesh operand routing network (OPN).
Each ALU includes an integer unit, a floating point unit, an
operand router (OPN), and instruction and operand buffers for
storing instructions and their operands. The level-1 instruction
and data cache units, along with the register files (RF) are
distributed and placed along the periphery of the execution
array. The processor also uses read (RQ) and write (WQ)
queues, one per register file bank, for register forwarding,and
one load-store queue (LSQ) bank per data cache bank for load
and store data forwarding. A4×4 execution array, with 64
instruction window entries at each ALU, thus represents an in-
struction window of 1024 instructions. The TRIPS architecture
uses a block-atomic, static-placement dynamic-issue (SPDI)
execution model. Blocks of 128 instructions are fetched and
mapped for execution as one unit. The 1K instruction window
thus allows eight such instruction blocks to be simulaneously
mapped and speculatively executed on the processor. The
compiler statically assigns each block instruction a particular
instruction window entry; the instruction then dynamically
issues based on when it becomes ready. Instruction blocks are
deallocated en masse after the block register and store outputs
have been committed.

We use the methodology proposed by Mukherjee et al. to
estimate ACE cycles [3]. The methodology only counts cycles
that contribute to correct program execution, and ignores all
cycles including but not limited to program state that is idle,
invalid, mis-speculated, predicated-false, dynamicallydead,

Slack Instruction Operand LSQ Register
ACE cycles Buffers Buffers Structures Structures

RF/RQ/WQ
89.6% 70.8% 11.6% 3.8% 13.8%

TABLE I

DISTRIBUTION OF SLACK ACE CYCLES.

logically masked and performance-enhancing in nature [3].We
extend this methodology in two ways. First, we augment the
framework to compute the slack ACE cycles for each structure
in addition to the total ACE cycles. Second, we add support
for computing the contribution from the individual static
instruction blocks to the total dynamic ACE cycles, providing
a reliability characterization of the program. Associating an
ACE cycle with a particular block is straightforward in the
TRIPS architecture, since instructions are statically mapped
to the hardware [9]. We compute the ACE cycles for the
intruction and operand buffers, register file, RQ, WQ, LSQ
storage structures and the OPN communication buffers. The
ACE cycles presented in the rest of the paper is the sum of the
ACE cycles across all these structures. The execution cycles
and ACE cycles are both computed using a cycle-accurate,
validated execution driven simulator that models the TRIPS
architecture and the distributed protocols in great detail[9].
We used 25 benchmarks from the EEMBC 2.0 suite for our
results.

IV. EXPLOITING SLACK TO IMPROVE SOFT ERROR

RELIABILITY

Table I shows the distribution of processor slack ACE
cycles. Slack ACE cycles are shown to account for a significant
fraction (∼ 90%) of the total ACE cycles, due to the abundant
slack available in programs [4]. The remaining table entries
show how the slack ACE cycles are divided among the
individual processor structures. The instruction buffersare the
dominant component (70.8%), with the operand buffers and
register file structures also contributing a significant fraction.
We propose two schemes to reduce the slack ACE cycles, and
quantify the reduction in the overall processor ACE cycles and
the processor SER.

We build on the simple observation that execution of the
current TRIPS instruction block effectively commences when
its data dependences with older blocks in the program are sat-
isfied through the data forwarding logic. In particular, we focus
on the inter-block register dependences, delivered through the
register forwarding logic from one of the other concurrently
executing blocks. The schemes identify the appropriate block
register input to trigger just-in-time instruction fetch of the
block, holding the instructions until that time in ECC or
parity protected instruction caches. The goal here is to overlap
the time the register value takes to travel from the register
file interface to the consumer instruction at the destination
execution unit, with the time the instruction takes to travel
from the instruction cache interface to the same execution
unit. If the register input trigger is too early then there isnot
much reduction in the slack ACE cycles. On the other hand, if
the register input trigger is too late it can significantly extend

a2time01

cacheb01

tblook01

canrdr01

puwmod01

pntrch01

routelookup

ospf

rotate01

dither01

conven00

AVG

Benchmark

0
10
20
30
40
50
60
70
80
90

100

Pe
rfo

rm
an

ce
-R

eli
ab

ilit
y T

ra
de

off

% ACE Cycles Improvement
% Execution Cycles Overhead

Fig. 2. Reliability-Performance Tradeoff with Delay and Observe.

execution time, and hence also lead to an overall increase in
ACE cycles. We propose to use the slack associated with each
register input to identify the optimal register input trigger to
maximize reduction in ACE cycles, and minimize execution
time overhead. We explore two of the methods described in
Section II: 1) a dynamicdelay and observeapproach, and 2)
a static compiler estimation of slack.

A. Delay and Observe

Basically, thedelay and observeapproach explores each
register input one-by-one as the potential choice for the block
instruction fetch trigger. For each choice it observes whether
the execution time was delayed and exceeded a specified
acceptable threshold, which we set at 15% in this paper.
The following paragraph describes the detailed algorithm we
implement, which basically uses gradient descent to arriveat
the optimal setting.

The execution of a program is divided into multiple inter-
vals. During each execution interval, application performance
in instructions-per-cycle (IPC) and the ACE cycles accumu-
lated are computed. The first interval is used to determine
the baseline IPC, and ACE cycles for the program in that
interval. In the next four intervals, we explore four different
natural choices for the register input trigger: 1) the first arriving
register input, 2) the second arriving register input, 3) the
third arriving register input, and 4) the fourth arriving register
input for that block. If a block has less than four register
inputs, instruction fetch is triggered as soon as all its register
inputs have arrived. For instance, a block with two register
inputs really has only the first two choices for the register
input trigger, with choices 3 and 4 being identical to 2.
The optimal register input trigger maximizes the reduction
in ACE cycles, while incurring a performance overhead that
is within the acceptable threshold. All register input triggers
are discarded and the baseline instruction fetch mechanism
is used, if none of the register input triggers fall within the
acceptable threshold, although there is still some performance
overhead due to this sampling process. The program then
continues execution with this optimal setting for the next 20
intervals, after which this entire process is repeated to account
for changes in program behaviour. In this paper, we chose the
interval size to be 50K cycles to react quickly to changes in

a2time01

cacheb01

tblook01

canrdr01

puwmod01

pntrch01

routelookup

ospf

rotate01

dither01

conven00

AVG

Benchmark

0
10
20
30
40
50
60
70
80
90

100

Pe
rfo

rm
an

ce
-R

eli
ab

ilit
y T

ra
de

off % ACE Cycles Improvement
% Execution Cycles Overhead

Fig. 3. Reliability-Performance Tradeoff using Static Slack.

program behaviour without letting the tuning mechanism cause
a high overhead. Currently, we use the simulator to measure
the ACE cycles in each interval, as described in Section III.
Using hardware performance counters to measure ACE cycles
was suggested in prior work [3], and we think it is a promising
area for future work.

Figure 2 presents the results for a subset of the benchmarks
along with the average. The technique provides significant im-
provements for many benchmarks, with an average reduction
of 34% in ACE cycles at just 5.6% performance overhead.
These results prove that there is substantial slack in these
applications which can be exploited to improve reliability.
Further, preliminary results for a subset of SPEC integer and
floating point benchmarks showed a reliability improvementof
28% with just 2.4% performance overhead, and a reliability
improvement of 5.5% with 3.7% overhead respectively.

B. Compiler Based Static Slack Estimation

The TRIPS compiler performs instruction scheduling for
each instruction block. The goal of instruction schedulingis
to minimize the completion time of the block by exploit-
ing instruction level parallelism, minimizing static routing
latency between dependent instructions, and minimizing dy-
namic latencies such as contention whenever possible. The
algorithm uses heuristics to model contention on the ALUs and
OPN links, and provide lookahead for scheduling dependence
chains. While the scheduling region is limited to the block, the
algorithm also accounts for inter-block (global) criticalpaths
(such as loop-carried dependences) to model the block register
input arrival times, which is critical in estimating the slack of
register inputs [7].

At the end of scheduling the block, the same algorithm is
used to compute the critical path length through each block
register input. The register input with the longest critical path
length has no slack, and if used to trigger block fetch will
most likely extend the execution time. As described earlier,
the goal is to overlap the time the register value takes from
the register file interface to the consumer instruction, with the
time the instruction takes from the instruction cache interface.
The compiler approximates this by annotating each block
with the register input that has an estimated arrival time just
smaller than that of the register input with the longest critical

path length. The hardware looks for this block register input
annotation to trigger instruction fetch for the block.

Figure 3 presents the results for a subset of the benchmarks
along with the average across all of of them. The technique
provides an average improvement of 42% in ACE cycles,
improving over thedelay and observeapproach. Although
the performance overhead is double of thedelay and observe
technique, it is still low at 11%.

V. D ISCUSSION

These techniques demonstrate that substantial savings in
ACE cycles of about 35-40% can be obtained at only 6-10%
overhead if the processor intelligently exploits slack. While
redundant execution provides even higher reliability, near
100%, it also incurs a significant performance overhead (∼

35%) [1]. The overhead of redundant execution is proportional
to processor utilization, since almost every program operation
is redundantly performed. Gomaa et al. proposed selective re-
dundant execution during periods of low processor utilization
to significantly reduce this performance overhead [10].

In this section, we show that techniques based on exploiting
slack can adapt to the amount of execution slack available,
and efficiently extract reliability improvements even during
periods of high utilization. We use the infrastructure described
in Section III to identify the instruction block that contributes
the maximum to overall dynamic program ACE cycles. We
compare the reliability improvement and the execution over-
head of redundantly executing only this block, with exploiting
the compiler determined static scheduling slack of the register
input trigger for this block. Table II presents the results for the
top block of two benchmarks.pntrch01 (pointer chasing) is an
application with low inherent parallelism, andt run test$14

is the top block which contributes 20.5% to the overall ACE
cycles. While redundant execution improves reliability by
51%, it incurs 28.5% performance overhead. Exploiting slack,
on the other hand, achieves only 18% reduction in ACE
cycles but incurs negligible performance overhead of 1.1%.
The comparison is even more stark withconven00, which has
high parallelism and hence lesser execution slack. Redundant
execution ofconvolEncode$10 incurs almost 65% overhead
to provide a 12.8% increase in reliability. On the other
hand, exploting slack adapts to the lesser slack available and
provides 9.6% reduction in ACE cycles with 0.6% overhead.

VI. RELATED WORK

The work that comes closest to this is the concept of triggers
and actions proposed by Weaver et al. [2]. They reduced the
slack ACE cycles accumulated on an L2 miss by flushing
the instruction window, which incurred minimal performance
overhead in an in-order architecture. While this technique
manages the originally available slack, the techniques we
propose aim to reduce slack by spreading the computation
appropriately. Muthler et al. used profiling to estimate instruc-
tion slack and used it to improve performance [8]. Fields et
al. implemented dynamic slack prediction to reduce processor
energy consumption [4]. Karnik et al. showed that almost 70%

Technique Application Percentage ACE Cycles Execution
Block Contribution Reduction Overhead

Selective pntrch01 20.5% 51% 28.5%
Redundant t run test$14

Execution conven00 24.6% 12.8% 64.3%
convolEncode$10

Exploiting pntrch01 20.5% 18% 1.1%
Scheduling t run test$14

Slack conven00 24.6% 9.6% 0.6%
convolEncode$10

TABLE II

COMPARISON OFTECHNIQUES

of the hardware logic paths are non-critical, and exploited
this circuit level slack for explicit capacitance insertion to
improve soft error rate [11]. In this paper, we demonstrate that
exploiting microarchitectural slack can substantially improve
soft error reliability.

VII. C ONCLUSIONS ANDFUTURE WORK

We show that there is substantial potential for exploiting
slack to improve soft error reliability. We demonstrate that a
significant amount of ACE cycles (∼ 90%) are accumulated
due to slack. We explore two techniques, a dynamicdelay and
observeapproach, and a static technique using the compiler,
achieving reliability improvement of 34-42% at only 6-10%
performance overhead. Further, these techniques efficiently
adapt to the available slack in programs to provide lower
overhead than redundant execution. In the future, we intend
to explore the potential of both dynamic hardware slack
prediction similar to [4], and using profiling [8] to compute
slack and using it to improve soft error reliability.

REFERENCES

[1] S. S. Mukherjee, M. Kontz, and S. K. Reinhardt, “Detaileddesign and
evaluation of redundant multithreading alternatives.” inISCA, 2002, pp.
99–110.

[2] C. Weaver, J. S. Emer, S. S. Mukherjee, and S. K. Reinhardt,“Tech-
niques to reduce the soft error rate of a high-performance microproces-
sor.” in ISCA, 2004, pp. 264–275.

[3] S. S. Mukherjee, C. Weaver, J. S. Emer, S. K. Reinhardt, andT. M.
Austin, “A systematic methodology to compute the architectural vul-
nerability factors for a high-performance microprocessor.”in MICRO,
2003, pp. 29–42.

[4] B. A. Fields, R. Bod́ık, and M. D. Hill, “Slack: Maximizing performance
under technological constraints.” inISCA, 2002, pp. 47–58.

[5] S. T. Srinivasan and A. R. Lebeck, “Load latency tolerance in dynami-
cally scheduled processors,” inMICRO, 1998, pp. 148–159.

[6] S. S. Muchnick and P. B. Gibbons, “Efficient instruction scheduling for
a pipelined architecture,”SIGPLAN Not., vol. 39, no. 4, pp. 167–174,
2004.

[7] K. E. Coons, X. Chen, D. Burger, K. S. McKinley, and S. K. Kushwaha,
“A spatial path scheduling algorithm for edge architectures,” in ASPLOS
XII, 2006, pp. 129–140.

[8] G. Muthler, D. Crowe, S. Patel, and S. Lumetta, “Instruction fetch
deferral using static slack,” inMICRO, 2002, pp. 51–61.

[9] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D. Burger,
S. Keckler, and C. Moore, “Exploiting ILP, TLP, and DLP with the
Polymorphous TRIPS Architecture,” inISCA, June 2003, pp. 422–433.

[10] M. A. Gomaa and T. N. Vijaykumar, “Opportunistic transient-fault
detection.”IEEE Micro, vol. 26, no. 1, pp. 92–99, 2006.

[11] T. Karnik, S. Vangal, V. Veeramachaneni, P. Hazucha, V. Erraguntla, and
S. Borkar, “Selective Node Engineering for Chip-Level SoftError Rate
Improvement,”VLSI Circuits Symposium, June 2002.

