
Stream Processing in General-Purpose Processors

Jayanth Gummaraju and Mendel Rosenblum
Computer Systems Laboratory

Stanford University, Stanford, CA 94305

To date stream processing has been applied to a vari-
ety of special purpose hardware architectures including
stream processors, DSP, and graphics engines. We be-
lieve that the stream processing programming paradigm
will also be a win for general-purpose processors, for exe-
cuting both applications that have been identified previ-
ously for streaming such as media processing, as well as
for wider classes of general-purpose computation.

By encouraging programmers to think in a slightly dif-
ferent way, stream programming allows a simple compi-
lation system to efficiently map the computation on to a
general-purpose architecture without the advanced com-
piler techniques that have largely failed to deliver high
performance. Furthermore, developing codes on exist-
ing architectures will form an evolutionary path to the
deployment of new streaming architectures for general-
purpose computing.

In the rest of this paper, we describe the essential charac-
teristics of stream programming and how these character-
istics can be efficiently mapped onto a modern general-
purpose CPU.

Stream processing advocates a gather, operate, and scat-
ter style of programming. First, the data is gathered into
a stream from sequential, strided, or random memory lo-
cations. The data is then operated upon by one or more
kernels, where each kernel comprises of several operations.
Finally, the live data is scattered back to memory. In or-
der to execute a stream program efficiently, the streams
have to be blocked to fit in a local memory in such a way
that producer-consumer locality is exploited – a stream
produced by a kernel is immediately consumed by the
next kernel. Stream processors accomplish this locality
using Stream Register File (SRF), a compiler controlled
addressable memory.

Stream processing may be a good fit for modern general-
purpose processors for many reasons. First, several mod-
ern micro-architectural features directly map to stream
programming paradigm. The large caches in modern
general-purpose processors can be used to emulate the
SRF for exploiting producer-consumer locality. The in-
termediate streams produced by kernels are consumed lo-
cally and therefore, not scattered back to memory. This
reduces the memory bandwidth requirements consider-
ably, directly targeting the memory bottleneck issue in
general-purpose computing. Also, the streaming stages
can be easily mapped onto hardware threads (for ex-
ample, hyper-threads in Intel Pentium IV processors).
A simple implementation for a hyper-threaded processor
with two threads would be to have one thread perform
all the memory accesses and the other thread perform all
the computation. Hardware threads can thus be used to
effectively overlap computation and memory operations.
Second, stream processing enables the ALU units to ex-
ecute at maximum efficiency in the operate stage. This
is because the processor doesn’t stall waiting on memory
references. In essence, the memory references that cause

load misses are pro-actively prefetched in the gather stage.
Third, stream programming style greatly helps compilers
with the traditionally very challenging task of scheduling
the operation of hardware resources to maximize perfor-
mance.

Compiling stream programs for general-purpose proces-
sors has several interesting implications. Stream pro-
gramming simplifies a few compiler analyses and makes a
few other redundant. Streams, by definition, don’t alias
each other and therefore, can be exempt from any alias
analysis. By moving up all the memory references to the
gather stage, software prefetching becomes redundant.
The compiler can software pipeline at a larger granular-
ity – at a stage level (gather, operate, and scatter stage),
rather than at instruction level for better performance.
The cache efficiency also improves if the compiler blocks
the data records by taking into account the producer-
consumer locality of streams. Furthermore, the cache
utilization increases if the compiler creates a stream of
only those fields of a record that are actually accessed by
the kernels.

There are some important challenges in using a general-
purpose processor for stream processing. First, SRF, or
parts of it, can be evicted from cache due to conflict
misses. This is because the SRF is emulated with a con-
tiguous segment of main memory and the general-purpose
hardware does not allow regions of memory to be pinned
in cache. Second, in the presence of conditionals, and
unknown stream lengths at compile time, blocking the
streams efficiently to fit in cache is non-trivial. Third, an
important concern in overlapping a computation thread
and memory thread is that they would have to communi-
cate with each other after the gather and operate stages.
This overhead is exacerbated if streams are blocked with
fewer elements in order to exploit producer-consumer lo-
cality,

We performed some simple experiments to test the effects
of communication overhead on stream processing using
a hyperthreaded Intel Pentium IV processor. Although
the use of hyperthreading technology reduced the com-
munication overhead significantly, we found that it could
be substantial (> 10%). It is encouraging, however, to
note that our initial experiments with some simple micro-
benchmarks show that in spite of these overheads, a pro-
gram written in a streaming style and hand-compiled for
Intel Pentium IV runs more than a factor of 1.5 faster
than the same program written in a conventional style.

In conclusion, we believe that stream processing will be-
come an important programming paradigm in general-
purpose computing. Streaming applications ranging from
media to scientific applications can potentially benefit
from this approach. Looking forward, we could also en-
vision improving the performance of traditional general-
purpose applications by writing portions of them in
streaming-style.

1


