CS343: Artificial Intelligence

Introduction

Prof. Scott Niekum
University of Texas at Austin

[Based on slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All materials available at http://ai.berkeley.edu.]
Course Staff

Professor

Scott Niekum
sniekum@cs.utexas.edu
Office hours: 1:15-2:15 Wed
GDC 3.404

TA

Akanksha Saran
asaran@cs.utexas.edu
Office hours: 5-6 Mon / Wed
GDC 1.302
A bit about me

Perception

Personal Autonomous Robotics Lab

Reinforcement learning

Robotic manipulation and learning from demonstration
Course Information

- **Communication:**
 - Announcements on webpage
 - Grades on Canvas / edX
 - Piazza for discussion

- **Course technology:**
 - edX for interactive homework (unlimited submissions!)
 - Autograded programming projects (submit via Canvas)
 - Make sure you have a CS Unix account IMMEDIATELY!
 - Create an edX account

Class website:

http://www.cs.utexas.edu/users/sniekum/classes/343-F18/desc.php

(or Google “Scott Niekum” and go to the Teaching tab)
Course Information

- **Prerequisites:**
 - Upper division standing
 - No formal class pre-reqs
 - There will be a lot of math (and programming)

- **Coursework**
 - Reading assignments
 - 8 homework assignments:
 - ~2 weeks for each, but overlapping
 - Online, autograded, solve and submit alone
 - No late submissions accepted
 - 6 programming projects
 - Python, groups of 1 or 2 (except Project 0)
 - ~2 weeks for each, non-overlapping
 - 5 late days for semester, maximum 2 per project
 - One midterm, one final
 - Final Contest
Warning: Not a course textbook, so our presentation does not necessarily follow the presentation in the book.

- After classes I’ll post slides
- There are also “step by step” videos posted for some topics
Homework Exercises

- Online on edX
- Autograded text boxes / multiple choice
- Try as many times as you want!
- Goal: self-assess and prepare for tests
- Can discuss at high-level, but work alone
- No spoilers on Piazza discussions!
Programming Assignments

Pacman domain

Projects include:

- path planning and search
- multi-agent game trees
- reinforcement learning
- state estimation
- classification
- final contest

Highly suggested: Pair programming
(switch “driver” and “observer” roles often)
Midterm and Final

- Midterm will cover roughly half the class material
- Final will be comprehensive
- One page of notes, but not open book
Grading

Plus/minus grading - adjustable scale, but no more harsh than:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Score Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>[94–100]</td>
</tr>
<tr>
<td>A-</td>
<td>[90–94)</td>
</tr>
<tr>
<td>B+</td>
<td>[87–90)</td>
</tr>
<tr>
<td>B</td>
<td>[84–87)</td>
</tr>
<tr>
<td>B-</td>
<td>[80–84)</td>
</tr>
<tr>
<td>C+</td>
<td>[77–80)</td>
</tr>
<tr>
<td>C</td>
<td>[74–77)</td>
</tr>
<tr>
<td>C-</td>
<td>[70–74)</td>
</tr>
<tr>
<td>D+</td>
<td>[67–70)</td>
</tr>
<tr>
<td>D</td>
<td>[64–67)</td>
</tr>
<tr>
<td>D-</td>
<td>[60–64)</td>
</tr>
<tr>
<td>F</td>
<td>[0–60)</td>
</tr>
</tbody>
</table>

Grades will be weighted as follows:

- Homework Exercises (20%)
- Programming Assignments (30%)
- Midterm (20%)
- Final (30%)
Academic Honesty

READ THE STATEMENT IN THE SYLLABUS

• Discuss concepts, but don’t share solutions or written work with other students
• Don’t look for answers / code online or elsewhere
• Automated tools will be used to discover cheating
• If unsure, check departmental guidelines or ask — ignorance is not an excuse
• We will pursue the harshest penalties available, so please don’t cheat!
• To be clear: you will fail the class automatically and be reported to the university
Important This Week

• **Important this week:**
 • **Register** for the class on edX (Click on link for HW1 to register for class after making account)
 • **Be sure** that you have a usable CS Unix account - https://apps.cs.utexas.edu/udb/newaccount/
 • **P0: Python tutorial** is out (due on Tuesday 9/4 at 11:59 pm via Canvas)

• **Also important:**
 • **If you are wait-listed**, you might or might not get in depending on how many students drop. Be patient if possible — many students often drop early in the course.
 • **Office Hours** begin Monday
Today

- What is artificial intelligence?
- What can AI do?
- What is this course?
Sci-Fi AI?
AI in the news
A definition for AI

“Artificial Intelligence (AI) is a science and a set of computational technologies that are inspired by — but typically operate quite differently from — the ways people use their nervous systems and bodies to sense, learn, reason, and take action.”
Philosophical questions

- AI is one of the great intellectual adventures of the 20th and 21st centuries.
 - What is a mind?
 - How can a physical object have a mind?
 - Can we build a mind?
 - Can trying to build one teach us what a mind is?
What is AI?

The science of making machines that:

Think like people
Act like people
Think rationally
Act rationally
What is AI?

The science of making machines that:

Think like people
Thinking Like Humans?

- The cognitive science approach:
 - 1960s ``cognitive revolution'': information-processing psychology replaced prevailing orthodoxy of behaviorism (reflexive behaviors, classical conditioning, etc.)

- Scientific theories of internal activities of the brain
 - What level of abstraction? “Knowledge" or “circuits”?
 - **Cognitive science**: Predicting and testing behavior of human subjects (top-down)
 - **Cognitive neuroscience**: Direct identification from neurological data (bottom-up)

- Both approaches now distinct from AI
- Both share with AI the following characteristic:

 The available theories do not explain (or engender) anything resembling human-level general intelligence
What is AI?

The science of making machines that:

Think like people
What is AI?

The science of making machines that:

Think like people

Act like people
Acting Like Humans?

- Turing (1950) “Computing machinery and intelligence”
 - “Can machines think?” → “Can machines behave intelligently?”
 - Operational test for intelligent behavior: the Imitation Game

- Predicted by 2000, a 30% chance of fooling a lay person for 5 minutes
- Anticipated all major arguments against AI in following 50 years
- Suggested major components of AI: knowledge, reasoning, language understanding, learning

- Problem: Turing test is not amenable to mathematical analysis
What is AI?

The science of making machines that:

- Think like people
- Act like people
What is AI?

The science of making machines that:

- Think like people
- Act like people
- Think rationally
- Act rationally
Thinking Rationally?

- The “Laws of Thought” approach
 - What does it mean to “think rationally”?
 - Normative / prescriptive rather than descriptive

- Logicist tradition:
 - Logic: notation and rules of derivation for thoughts
 - Aristotle: what are correct arguments/thought processes?
 - Direct line through mathematics, philosophy, to modern AI

- Problems:
 - Not all intelligent behavior is mediated by logical deliberation
 - What is the purpose of thinking? What thoughts should I (bother to) have?
 - Logical systems tend to do the wrong thing in the presence of uncertainty
 - Why should we care about thought at all, when action is what matters?
What is AI?

The science of making machines that:

Think like people

Think rationally

Act like people
What is AI?

The science of making machines that:

- Think like people
- Think rationally
- Act like people
- Act rationally
Acting Rationally

- **Rational behavior: doing the “right thing”**
 - The right thing: that which is expected to maximize goal achievement, given the available information
 - Doesn't necessarily involve thinking, e.g., blinking
 - Thinking can be in the service of rational action
 - Entirely dependent on goals!
 - Irrational ≠ insane, irrationality is sub-optimal action
 - Rational ≠ successful

- **Our focus here: rational agents**
 - Systems which make the best possible decisions given goals, evidence, and constraints
 - In the real world, usually lots of uncertainty
 - ... and lots of complexity
 - Usually, we’re just approximating rationality
Rational Decisions

We’ll use the term **rational** in a very specific, technical way:

- Rational: maximally achieving pre-defined goals
- Rationality only concerns what decisions are made (not the thought process behind them)
- Goals are expressed in terms of the **utility** of outcomes
- Being rational means **maximizing your expected utility**

A better title for this course would be:

Computational Rationality
Maximize Your Expected Utility
What About the Brain?

- Brains (human minds) are very good at making rational decisions, but not perfect
- Brains aren’t as modular as software, so hard to reverse engineer!
- “Brains are to intelligence as wings are to flight”
A (Short) History of AI
A (Short) History of AI
A (Short) History of AI

- **1940-1950: Early days**
 - 1943: McCulloch & Pitts: Boolean circuit model of brain
 - 1950: Turing’s “Computing Machinery and Intelligence”

- **1950—70: Excitement: Look, Ma, no hands!**
 - 1950s: Early AI programs, including Samuel's checkers program, Newell & Simon's Logic Theorist, Gelernter's Geometry Engine
 - 1956: Dartmouth meeting: “Artificial Intelligence” adopted
 - 1965: Robinson's complete algorithm for logical reasoning

- **1970—90: Knowledge-based approaches**
 - 1969—79: Early development of knowledge-based systems
 - 1980—88: Expert systems industry booms

- **1990—: Statistical approaches**
 - Resurgence of probability, focus on uncertainty
 - General increase in technical depth
 - Agents and learning systems… “AI Spring”?

- **2000—: Where are we now?**
What Can AI Do?

Quiz: Which of the following can be done at present?

- ✔ Play a decent game of table tennis?
- ✔ Play a decent game of Jeopardy?
- ✔ Drive safely along a curving mountain road?
- ❔ Drive safely along 6th Street on a Friday night?
- ✔ Buy a week's worth of groceries on the web?
- ❔ Buy a week's worth of groceries at HEB?
- ❔ Discover and prove a new mathematical theorem?
- ✔ Converse successfully with another person for an hour?
- ❔ Perform a surgical operation?
- ✔ Put away the dishes and fold the laundry?
- ✔ Translate spoken Chinese into spoken English in real time?
- ❔ Write an intentionally funny story?