CS 343: Artificial Intelligence

Perceptrons

Prof. Scott Niekum — The University of Texas at Austin

[These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]
Error-Driven Classification
Errors, and What to Do

- **Examples of errors**

Dear GlobalSCAPE Customer,

GlobalSCAPE has partnered with ScanSoft to offer you the latest version of OmniPage Pro, for just $99.99* - the regular list price is $499! The most common question we've received about this offer is - Is this genuine? We would like to assure you that this offer is authorized by ScanSoft, is genuine and valid. You can get the . . .

... To receive your $30 Amazon.com promotional certificate, click through to

http://www.amazon.com/apparel

and see the prominent link for the $30 offer. All details are there. We hope you enjoyed receiving this message. However, if you'd rather not receive future e-mails announcing new store launches, please click . . .
What to Do About Errors

- Problem: there’s still spam in your inbox

- Need more features – words aren’t enough!
 - Have you emailed the sender before?
 - Have 1M other people just gotten the same email?
 - Is the sending information consistent?
 - Is the email in ALL CAPS?
 - Do inline URLs point where they say they point?
 - Does the email address you by (your) name?

- Naïve Bayes models can incorporate a variety of features, but tend to do best in homogeneous cases (e.g. all features are word occurrences)
Linear Classifiers
Feature Vectors

Hello,
Do you want free printr cartriges? Why pay more when you can get them ABSOLUTELY FREE! Just

$\begin{align*}
x \quad & \quad f(x) \quad \quad y \\
\text{Hello,} \quad & \quad \text{# free : 2} \quad \quad \text{SPAM} \\
\text{Do you want free printr} \quad & \quad \text{YOUR_NAME : 0} \quad \quad \text{or} \\
\text{cartriges? Why pay more} \quad & \quad \text{MISSPELLED : 2} \quad \quad + \\
\text{when you can get them} \quad & \quad \text{FROM_FRIEND : 0} \\
\text{ABSOLUTELY FREE! Just} \quad & \quad \text{...} \\
\end{align*}$

& \quad \text{PIXEL-7,12 : 1} \\
& \quad \text{PIXEL-7,13 : 0} \\
& \quad \text{...} \\
& \quad \text{NUM_LOOPS : 1} \\
& \quad \text{...} \\
\text{2} \quad & \quad \text{“2”}
Some (Simplified) Biology

- Very loose inspiration: human neurons
Linear Classifiers

- Inputs are feature values
- Each feature has a weight
- Sum is the activation

\[\text{activation}_w(x) = \sum_i w_i \cdot f_i(x) = w \cdot f(x) \]

- If the activation is:
 - Positive, output +1
 - Negative, output -1
Weights

- Binary case: compare features to a weight vector
- Learning: figure out the weight vector from examples

\[\mathbf{w} \cdot \mathbf{f} \text{ positive means the positive class} \]
Decision Rules
Binary Decision Rule

- In the space of feature vectors
 - Examples are points
 - Any weight vector is a hyperplane
 - One side corresponds to $Y=+1$
 - Other corresponds to $Y=-1$

\[w \]

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIAS</td>
<td>-3</td>
</tr>
<tr>
<td>free</td>
<td>4</td>
</tr>
<tr>
<td>money</td>
<td>2</td>
</tr>
</tbody>
</table>

\[f \cdot w = 0 \]
Weight Updates
Learning: Binary Perceptron

- Start with weights = 0
- For each training instance:
 - Classify with current weights
 - If correct (i.e., y=y*), no change!
 - If wrong: adjust the weight vector
Learning: Binary Perceptron

- Start with weights = 0
- For each training instance:
 - Classify with current weights
 \[y = \begin{cases}
 +1 & \text{if } w \cdot f(x) \geq 0 \\
 -1 & \text{if } w \cdot f(x) < 0
 \end{cases} \]
 - If correct (i.e., \(y = y^* \)), no change!
 - If wrong: adjust the weight vector by adding or subtracting the feature vector. Subtract if \(y^* \) is -1.
 \[w = w + y^* \cdot f \]
Examples: Perceptron

- Separable Case
Multiclass Decision Rule

- If we have multiple classes:
 - A weight vector for each class:
 \[w_y \]
 - Score (activation) of a class \(y \):
 \[w_y \cdot f(x) \]
 - Prediction highest score wins
 \[y = \arg \max_y w_y \cdot f(x) \]

Binary = multiclass where the negative class has weight zero
Learning: Multiclass Perceptron

- Start with all weights = 0
- Pick up training examples one by one
- Predict with current weights
 \[y = \arg \max_y w_y \cdot f(x) \]
 \[
 \begin{align*}
 w_y &= w_y - f(x) \\
 w_{y*} &= w_{y*} + f(x)
 \end{align*}
 \]
- If correct, no change!
- If wrong: lower score of wrong answer, raise score of right answer
Example: Multiclass Perceptron

“win the vote”

<table>
<thead>
<tr>
<th>w_{SPORTS}</th>
<th>$w_{POLITICS}$</th>
<th>w_{TECH}</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIAS : 1</td>
<td>BIAS : 0</td>
<td>BIAS : 0</td>
</tr>
<tr>
<td>win : 0</td>
<td>win : 0</td>
<td>win : 0</td>
</tr>
<tr>
<td>game : 0</td>
<td>game : 0</td>
<td>game : 0</td>
</tr>
<tr>
<td>vote : 0</td>
<td>vote : 0</td>
<td>vote : 0</td>
</tr>
<tr>
<td>the : 0</td>
<td>the : 0</td>
<td>the : 0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Properties of Perceptrons

- **Separability**: true if some parameters get the training set perfectly correct.

- **Convergence**: if the training is separable, perceptron will eventually converge (binary case).

- **Mistake Bound**: the maximum number of mistakes (binary case) related to the *margin* or degree of separability.

\[
\text{mistakes} < \frac{k}{\delta^2}
\]
Examples: Perceptron

- Non-Separable Case
Improving the Perceptron
Problems with the Perceptron

- **Noise**: if the data isn’t separable, weights might thrash
 - Averaging weight vectors over time can help (averaged perceptron)

- **Mediocre generalization**: finds a “barely” separating solution

- **Overtraining**: test / held-out accuracy usually rises, then falls
 - Overtraining is a kind of overfitting
Fixing the Perceptron

- Idea: adjust the weight update to mitigate these effects
- MIRA*: choose an update size that fixes the current mistake...
- ... but, minimizes the change to w

\[
\min_w \frac{1}{2} \sum_y \|w_y - w'_y\|^2
\]

\[w_{y^*} \cdot f(x) \geq w_y \cdot f(x) + 1\]

- The +1 helps to generalize

* Margin Infused Relaxed Algorithm
Minimum Correcting Update

\[
\min_w \frac{1}{2} \sum_y ||w_y - w'_y||^2 \quad w_y^* \cdot f \geq w_y \cdot f + 1
\]

\[
\min_\tau ||\tau f||^2 \quad w_y^* \cdot f \geq w_y \cdot f + 1
\]

\[
(w_y' + \tau f) \cdot f = (w_y' - \tau f) \cdot f + 1 \quad \tau = \frac{(w_y' - w_y^*) \cdot f + 1}{2f \cdot f}
\]

\[
w_y = w_y' - \tau f(x) \quad w_y^* = w_y^* + \tau f(x)
\]

\[
\tau = 0
\]

min not \(\tau \neq 0 \), or would not have made an error, so min will be where equality holds
In practice, it’s also bad to make updates that are too large

- Example may be labeled incorrectly
- You may not have enough features
- Solution: cap the maximum possible value of τ with some constant C

$$\tau^* = \min \left(\frac{(w'_y - w'_y^*) \cdot f + 1}{2f \cdot f}, C \right)$$

- Corresponds to an optimization that assumes non-separable data
- Usually converges faster than perceptron
- Usually better, especially on noisy data
Linear Separators

- Which of these linear separators is optimal?
Support Vector Machines

- Maximizing the margin: good according to intuition, theory, practice
- Only support vectors matter; other training examples are ignorable
- Support vector machines (SVMs) find the separator with max margin
- Basically, SVMs are MIRA where you optimize over all examples at once

\[
\begin{align*}
\text{MIRA} & : \min_w \frac{1}{2} \|w - w'\|^2 \\
& \quad w_{y^*} \cdot f(x_i) \geq w_y \cdot f(x_i) + 1
\end{align*}
\]

\[
\begin{align*}
\text{SVM} & : \min_w \frac{1}{2} \|w\|^2 \\
& \forall i, y \quad w_{y^*} \cdot f(x_i) \geq w_y \cdot f(x_i) + 1
\end{align*}
\]
Naïve Bayes
- Builds a model training data
- Gives prediction probabilities
- Strong assumptions about feature independence
- One pass through data (counting)

Perceptrons / MIRA:
- Makes less assumptions about data
- Mistake-driven learning
- Multiple passes through data (prediction)
- Often more accurate
Apprenticeship
Pacman Apprenticeship!

- Examples are states s
- Candidates are pairs (s,a)
- "Correct" actions: those taken by expert
- Features defined over (s,a) pairs: $f(s,a)$
- Score of a q-state (s,a) given by:

$$w \cdot f(s,a)$$

- How is this VERY different from reinforcement learning?

∀$a \neq a^*$,

$$w \cdot f(a^*) > w \cdot f(a)$$
Video of Pacman Apprentice
Web Search
Extension: Web Search

- Information retrieval:
 - Given information needs, produce information
 - Includes, e.g., web search, question answering, and classic IR

- Web search: not exactly classification, but rather ranking

\[x = "Apple Computers" \]
Feature-Based Ranking

\[x = \text{“Apple Computer”} \]

\[
f(x, y) = [0.3 \ 5 \ 0 \ 0 \ \ldots]
\]

\[
f(x, y) = [0.8 \ 4 \ 2 \ 1 \ \ldots]
\]
Perceptron for Ranking

- Inputs x
- Candidates y
- Many feature vectors: $f(x, y)$
- One weight vector: w
 - Prediction:
 \[y = \arg \max_y w \cdot f(x, y) \]
 - Update (if wrong):
 \[w = w + f(x, y^*) - f(x, y) \]