CS 343: Artificial Intelligence

Bayes Nets: Independence

Prof. Scott Niekum — The University of Texas at Austin

[These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu]
Announcements

- **Midterm Content**
 - Everything up until RL II
 - No probability or Bayes nets

- **Midterm Review**
 - **Time:** 4:00-6:00pm, Wednesday March 7th
 - **Location:** GDC 4.304
Probability Recap

- **Conditional probability**
 \[P(x|y) = \frac{P(x,y)}{P(y)} \]

- **Product rule**
 \[P(x,y) = P(x|y)P(y) \]

- **Chain rule**
 \[P(X_1, X_2, \ldots, X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)\ldots \]
 \[= \prod_{i=1}^{n} P(X_i|X_1, \ldots, X_{i-1}) \]

- **X, Y independent if and only if:** \(\forall x, y : P(x,y) = P(x)P(y) \)

- **X and Y are conditionally independent given Z if and only if:** \(X \perp Y | Z \)
 \(\forall x, y, z : P(x,y|z) = P(x|z)P(y|z) \)
Bayes Nets

- A Bayes’ net is an efficient encoding of a probabilistic model of a domain

- Questions we can ask:
 - Inference: given a fixed BN, what is $P(X \mid e)$?
 - Representation: given a BN graph, what kinds of distributions can it encode?
 - Modeling: what BN is most appropriate for a given domain?
Bayes Net Semantics

- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node
 - A collection of \(P(X|a_1 \ldots a_n) \), one for each combination of parents' values
- Bayes’ nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

\[
P(x_1, x_2, \ldots x_n) = \prod_{i=1}^{n} P(x_i|\text{parents}(X_i))
\]
Example: Alarm Network

\[
P(+b, -e, +a, -j, +m) =
\]
Example: Alarm Network

\[
P(+b, -e, +a, -j, +m) = \]
\[
P(+b)P(-e)P(+a|+b, -e)P(-j|+a)P(+m|+a) =
\]
\[
0.001 \times 0.998 \times 0.94 \times 0.1 \times 0.7
\]
Size of a Bayes Net

- How big is a joint distribution over N Boolean variables?
 2^N
- How big is an N-node net if nodes have up to k parents?
 $O(N \times 2^{k+1})$

- Both give you the power to calculate $P(X_1, X_2, \ldots X_n)$
- BNs: Huge space savings!
- Also easier to elicit local CPTs
- Also faster to answer queries (coming)
Bayes Nets

- Representation
 - Conditional Independences
 - Probabilistic Inference
 - Learning Bayes’ Nets from Data
Conditional Independence

- X and Y are independent if
 \[\forall x, y \quad P(x, y) = P(x)P(y) \quad \implies \quad X \perp Y \]

- X and Y are conditionally independent given Z
 \[\forall x, y, z \quad P(x, y|z) = P(x|z)P(y|z) \quad \implies \quad X \perp Y|Z \]

- (Conditional) independence is a property of a distribution

- Example: \(\text{Alarm} \perp \text{Fire}|\text{Smoke} \)
Bayes Nets: Assumptions

- Assumptions we are required to make to define the Bayes net when given the graph:
 \[P(x_i|x_1 \cdots x_{i-1}) = P(x_i|\text{parents}(X_i)) \]

- Beyond above “chain rule → Bayes net” conditional independence assumptions:
 - Often additional conditional independences
 - They can be inferred from the graph structure

- Important for modeling: understand assumptions made when choosing a Bayes net graph
Example

- Conditional independence assumptions directly from simplifications in chain rule:
 - Standard chain rule: \(p(x, y, z, w) = p(x)p(y|x)p(z|x, y)p(w|x, y, z) \)
 - Bayes net: \(p(x, y, z, w) = p(x)p(y|x)p(z|y)p(w|z) \)
 - Since: \(z \perp x \mid y \) and \(w \perp x, y \mid z \) (cond. indep. given parents)

- Additional implied conditional independence assumptions? \(w \perp x \mid y \)

\[
p(w|x, y) = \frac{p(w, x, y)}{p(x, y)} = \frac{\sum_z p(x)p(y|x)p(z|y)p(w|z)}{p(x)p(y|x)} = \sum_z p(z|y)p(w|z) = \sum_z p(z|y)p(w|z, y) = \sum_z p(z, w|y) = p(w|y)
\]
Independence in a BN

- Important question about a BN:
 - Are two nodes independent given certain evidence?
 - If yes, can prove using algebra (tedious in general)
 - If no, can prove with a counter example
 - Example:

 ![Diagram](X → Y → Z)

- Question: are X and Z necessarily independent?
 - Answer: no. Example: low pressure causes rain, which causes traffic.
 - X can influence Z, Z can influence X (via Y)
 - Addendum: they could be independent: how?
D-separation: Outline

- Study independence properties for triples
- Analyze complex cases in terms of member triples
- D-separation: a condition / algorithm for answering such queries
Causal Chains

- This configuration is a “causal chain”

 X: Low pressure Y: Rain Z: Traffic

- Guaranteed X independent of Z? **No!**

 One example set of CPTs for which X is not independent of Z is sufficient to show this independence is not guaranteed.

 Example:

 - Low pressure causes rain causes traffic, high pressure causes no rain causes no traffic

 In numbers:

 \[P(x, y, z) = P(x)P(y|x)P(z|y) \]

 \[P(+y|+x) = 1, \ P(-y|-x) = 1, \ P(+z|+y) = 1, \ P(-z|-y) = 1 \]
Causal Chains

- This configuration is a “causal chain”

\[
P(x, y, z) = P(x)P(y|x)P(z|y)
\]

- Guaranteed X independent of Z given Y?

\[
P(z|x, y) = \frac{P(x, y, z)}{P(x, y)}
\]

\[
= \frac{P(x)P(y|x)P(z|y)}{P(x)P(y|x)}
\]

\[
= P(z|y)
\]

Yes!

- Evidence along the chain “blocks” the influence
This configuration is a “common cause”

Guaranteed X independent of Z? No!

One example set of CPTs for which X is not independent of Z is sufficient to show this independence is not guaranteed.

Example:

- Project due causes both forums busy and lab full

In numbers:

$P(+x \mid +y) = 1$, $P(-x \mid -y) = 1$, $P(+z \mid +y) = 1$, $P(-z \mid -y) = 1$
Common Cause

- This configuration is a “common cause”
 - Y: Project due
 - X: Forums busy
 - Z: Lab full

- Guaranteed X and Z independent given Y?

\[
P(z|x, y) = \frac{P(x, y, z)}{P(x, y)} = \frac{P(y)P(x|y)P(z|y)}{P(y)P(x|y)} = P(z|y)
\]

Yes!

- Observing the cause blocks influence between effects.
Common Effect

- Last configuration: two causes of one effect (v-structures)

- Are X and Y independent?
 - Yes: the ballgame and the rain cause traffic, but they are not correlated
 - Still need to prove they must be (try it!)

- Are X and Y independent given Z?
 - No: seeing traffic puts the rain and the ballgame in competition as explanation.

- This is backwards from the other cases
 - Observing an effect activates influence between possible causes.

X: Raining Y: Ballgame
Z: Traffic
The General Case
The General Case

- General question: in a given BN, are two variables independent (given evidence)?

- Solution: analyze the graph

- Any complex example can be broken into repetitions of the three canonical cases
Reachability

- Recipe: shade evidence nodes, look for paths in the resulting graph

- Attempt 1: if two nodes are connected by an undirected path not blocked by a shaded node, they are not conditionally independent
 - Influence can “flow” between them, unblocked

- Almost works, but not quite
 - Where does it break?
 - Answer: the v-structure at T doesn’t count as a link in a path unless “active” via being observed as evidence
Question: Are X and Y conditionally independent given evidence variables \{Z\}?

- Yes, if X and Y “d-separated” by Z
- Consider all (undirected) paths from X to Y
- No active paths = conditional independence!

A path is active if each triple is active:

- Causal chain \(A \rightarrow B \rightarrow C \) where B is unobserved (either direction)
- Common cause \(A \leftarrow B \rightarrow C \) where B is unobserved
- Common effect (aka v-structure) \(A \rightarrow B \leftarrow C \) where B or one of its descendants is observed

All it takes to block a path is a single inactive segment.
D-Separation

- **Query:** \(X_i \perp X_j \mid \{X_{k_1}, \ldots, X_{k_n}\} \) ?

- **Check all (undirected!) paths between** \(X_i \) and \(X_j \):
 - If one or more active, then independence not guaranteed
 \(X_i \nbowtie X_j \mid \{X_{k_1}, \ldots, X_{k_n}\} \)
 - Otherwise (i.e. if all paths are inactive), then independence is guaranteed
 \(X_i \perp X_j \mid \{X_{k_1}, \ldots, X_{k_n}\} \)
Example

\[R \perp B \quad \text{Yes} \]
\[R \perp B | T \quad \text{Not guaranteed} \]
\[R \perp B | T' \quad \text{Not guaranteed} \]
Example

\[L \perp T' | T \quad \text{Yes} \]
\[L \perp B \quad \text{Yes} \]
\[L \perp B | T \quad \text{Not guaranteed} \]
\[L \perp B | T' \quad \text{Not guaranteed} \]
\[L \perp B | T, R \quad \text{Yes} \]
Example

- **Variables:**
 - R: Raining
 - T: Traffic
 - D: Roof drips
 - S: I’m sad

- **Questions:**

 $T \perp D$
 $T \perp D|R$
 $T \perp D|R, S$

 - Not guaranteed
 - Yes
 - Not guaranteed
Given a Bayes net structure, can run d-separation algorithm to build a complete list of conditional independences that are necessarily true of the form

\[X_i \perp\!\!\!\!\perp X_j | \{X_{k_1}, \ldots, X_{k_n}\} \]

This list determines the set of probability distributions that can be represented.
Computing All Independences

\[X \perp Z \mid Y \]
\[X \perp Z \mid Y \]
\[X \perp Z \]
None!
Topology Limits Distributions

- Given some graph topology G, only certain joint distributions can be encoded.
- The graph structure guarantees certain (conditional) independences.
- (There might be more independence)
- Adding arcs increases the set of distributions, but has several costs.
- Full conditioning can encode any distribution.

\[\{X \perp Y, X \perp Z, Y \perp Z, \\ X \perp Z \mid Y, X \perp Y \mid Z, Y \perp Z \mid X\} \]
Bayes Nets Representation Summary

- Bayes nets compactly encode joint distributions
- Guaranteed independencies of distributions can be deduced from BN graph structure
- D-separation gives precise conditional independence guarantees from graph alone
- A Bayes net’s joint distribution may have further (conditional) independence that is not detectable until you inspect its specific distribution
Bayes Nets

- Representation
- Conditional Independences
 - Probabilistic Inference
 - Enumeration (exact, exponential complexity)
 - Variable elimination (exact, worst-case exponential complexity, often better)
 - Probabilistic inference is NP-complete
 - Sampling (approximate)
 - Learning Bayes’ Nets from Data